LCOV - code coverage report
Current view: top level - include/linux - mmzone.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 9 15 60.0 %
Date: 2022-12-09 01:23:36 Functions: 0 0 -

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_MMZONE_H
       3             : #define _LINUX_MMZONE_H
       4             : 
       5             : #ifndef __ASSEMBLY__
       6             : #ifndef __GENERATING_BOUNDS_H
       7             : 
       8             : #include <linux/spinlock.h>
       9             : #include <linux/list.h>
      10             : #include <linux/wait.h>
      11             : #include <linux/bitops.h>
      12             : #include <linux/cache.h>
      13             : #include <linux/threads.h>
      14             : #include <linux/numa.h>
      15             : #include <linux/init.h>
      16             : #include <linux/seqlock.h>
      17             : #include <linux/nodemask.h>
      18             : #include <linux/pageblock-flags.h>
      19             : #include <linux/page-flags-layout.h>
      20             : #include <linux/atomic.h>
      21             : #include <linux/mm_types.h>
      22             : #include <linux/page-flags.h>
      23             : #include <linux/local_lock.h>
      24             : #include <asm/page.h>
      25             : 
      26             : /* Free memory management - zoned buddy allocator.  */
      27             : #ifndef CONFIG_FORCE_MAX_ZONEORDER
      28             : #define MAX_ORDER 11
      29             : #else
      30             : #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
      31             : #endif
      32             : #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
      33             : 
      34             : /*
      35             :  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
      36             :  * costly to service.  That is between allocation orders which should
      37             :  * coalesce naturally under reasonable reclaim pressure and those which
      38             :  * will not.
      39             :  */
      40             : #define PAGE_ALLOC_COSTLY_ORDER 3
      41             : 
      42             : enum migratetype {
      43             :         MIGRATE_UNMOVABLE,
      44             :         MIGRATE_MOVABLE,
      45             :         MIGRATE_RECLAIMABLE,
      46             :         MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
      47             :         MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
      48             : #ifdef CONFIG_CMA
      49             :         /*
      50             :          * MIGRATE_CMA migration type is designed to mimic the way
      51             :          * ZONE_MOVABLE works.  Only movable pages can be allocated
      52             :          * from MIGRATE_CMA pageblocks and page allocator never
      53             :          * implicitly change migration type of MIGRATE_CMA pageblock.
      54             :          *
      55             :          * The way to use it is to change migratetype of a range of
      56             :          * pageblocks to MIGRATE_CMA which can be done by
      57             :          * __free_pageblock_cma() function.  What is important though
      58             :          * is that a range of pageblocks must be aligned to
      59             :          * MAX_ORDER_NR_PAGES should biggest page be bigger than
      60             :          * a single pageblock.
      61             :          */
      62             :         MIGRATE_CMA,
      63             : #endif
      64             : #ifdef CONFIG_MEMORY_ISOLATION
      65             :         MIGRATE_ISOLATE,        /* can't allocate from here */
      66             : #endif
      67             :         MIGRATE_TYPES
      68             : };
      69             : 
      70             : /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
      71             : extern const char * const migratetype_names[MIGRATE_TYPES];
      72             : 
      73             : #ifdef CONFIG_CMA
      74             : #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
      75             : #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
      76             : #else
      77             : #  define is_migrate_cma(migratetype) false
      78             : #  define is_migrate_cma_page(_page) false
      79             : #endif
      80             : 
      81             : static inline bool is_migrate_movable(int mt)
      82             : {
      83           0 :         return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
      84             : }
      85             : 
      86             : /*
      87             :  * Check whether a migratetype can be merged with another migratetype.
      88             :  *
      89             :  * It is only mergeable when it can fall back to other migratetypes for
      90             :  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
      91             :  */
      92             : static inline bool migratetype_is_mergeable(int mt)
      93             : {
      94             :         return mt < MIGRATE_PCPTYPES;
      95             : }
      96             : 
      97             : #define for_each_migratetype_order(order, type) \
      98             :         for (order = 0; order < MAX_ORDER; order++) \
      99             :                 for (type = 0; type < MIGRATE_TYPES; type++)
     100             : 
     101             : extern int page_group_by_mobility_disabled;
     102             : 
     103             : #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
     104             : 
     105             : #define get_pageblock_migratetype(page)                                 \
     106             :         get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
     107             : 
     108             : struct free_area {
     109             :         struct list_head        free_list[MIGRATE_TYPES];
     110             :         unsigned long           nr_free;
     111             : };
     112             : 
     113             : static inline struct page *get_page_from_free_area(struct free_area *area,
     114             :                                             int migratetype)
     115             : {
     116        1413 :         return list_first_entry_or_null(&area->free_list[migratetype],
     117             :                                         struct page, lru);
     118             : }
     119             : 
     120             : static inline bool free_area_empty(struct free_area *area, int migratetype)
     121             : {
     122         302 :         return list_empty(&area->free_list[migratetype]);
     123             : }
     124             : 
     125             : struct pglist_data;
     126             : 
     127             : /*
     128             :  * Add a wild amount of padding here to ensure data fall into separate
     129             :  * cachelines.  There are very few zone structures in the machine, so space
     130             :  * consumption is not a concern here.
     131             :  */
     132             : #if defined(CONFIG_SMP)
     133             : struct zone_padding {
     134             :         char x[0];
     135             : } ____cacheline_internodealigned_in_smp;
     136             : #define ZONE_PADDING(name)      struct zone_padding name;
     137             : #else
     138             : #define ZONE_PADDING(name)
     139             : #endif
     140             : 
     141             : #ifdef CONFIG_NUMA
     142             : enum numa_stat_item {
     143             :         NUMA_HIT,               /* allocated in intended node */
     144             :         NUMA_MISS,              /* allocated in non intended node */
     145             :         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
     146             :         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
     147             :         NUMA_LOCAL,             /* allocation from local node */
     148             :         NUMA_OTHER,             /* allocation from other node */
     149             :         NR_VM_NUMA_EVENT_ITEMS
     150             : };
     151             : #else
     152             : #define NR_VM_NUMA_EVENT_ITEMS 0
     153             : #endif
     154             : 
     155             : enum zone_stat_item {
     156             :         /* First 128 byte cacheline (assuming 64 bit words) */
     157             :         NR_FREE_PAGES,
     158             :         NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
     159             :         NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
     160             :         NR_ZONE_ACTIVE_ANON,
     161             :         NR_ZONE_INACTIVE_FILE,
     162             :         NR_ZONE_ACTIVE_FILE,
     163             :         NR_ZONE_UNEVICTABLE,
     164             :         NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
     165             :         NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
     166             :         /* Second 128 byte cacheline */
     167             :         NR_BOUNCE,
     168             : #if IS_ENABLED(CONFIG_ZSMALLOC)
     169             :         NR_ZSPAGES,             /* allocated in zsmalloc */
     170             : #endif
     171             :         NR_FREE_CMA_PAGES,
     172             :         NR_VM_ZONE_STAT_ITEMS };
     173             : 
     174             : enum node_stat_item {
     175             :         NR_LRU_BASE,
     176             :         NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
     177             :         NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
     178             :         NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
     179             :         NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
     180             :         NR_UNEVICTABLE,         /*  "     "     "   "       "         */
     181             :         NR_SLAB_RECLAIMABLE_B,
     182             :         NR_SLAB_UNRECLAIMABLE_B,
     183             :         NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
     184             :         NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
     185             :         WORKINGSET_NODES,
     186             :         WORKINGSET_REFAULT_BASE,
     187             :         WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
     188             :         WORKINGSET_REFAULT_FILE,
     189             :         WORKINGSET_ACTIVATE_BASE,
     190             :         WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
     191             :         WORKINGSET_ACTIVATE_FILE,
     192             :         WORKINGSET_RESTORE_BASE,
     193             :         WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
     194             :         WORKINGSET_RESTORE_FILE,
     195             :         WORKINGSET_NODERECLAIM,
     196             :         NR_ANON_MAPPED, /* Mapped anonymous pages */
     197             :         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
     198             :                            only modified from process context */
     199             :         NR_FILE_PAGES,
     200             :         NR_FILE_DIRTY,
     201             :         NR_WRITEBACK,
     202             :         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
     203             :         NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
     204             :         NR_SHMEM_THPS,
     205             :         NR_SHMEM_PMDMAPPED,
     206             :         NR_FILE_THPS,
     207             :         NR_FILE_PMDMAPPED,
     208             :         NR_ANON_THPS,
     209             :         NR_VMSCAN_WRITE,
     210             :         NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
     211             :         NR_DIRTIED,             /* page dirtyings since bootup */
     212             :         NR_WRITTEN,             /* page writings since bootup */
     213             :         NR_THROTTLED_WRITTEN,   /* NR_WRITTEN while reclaim throttled */
     214             :         NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
     215             :         NR_FOLL_PIN_ACQUIRED,   /* via: pin_user_page(), gup flag: FOLL_PIN */
     216             :         NR_FOLL_PIN_RELEASED,   /* pages returned via unpin_user_page() */
     217             :         NR_KERNEL_STACK_KB,     /* measured in KiB */
     218             : #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
     219             :         NR_KERNEL_SCS_KB,       /* measured in KiB */
     220             : #endif
     221             :         NR_PAGETABLE,           /* used for pagetables */
     222             : #ifdef CONFIG_SWAP
     223             :         NR_SWAPCACHE,
     224             : #endif
     225             : #ifdef CONFIG_NUMA_BALANCING
     226             :         PGPROMOTE_SUCCESS,      /* promote successfully */
     227             : #endif
     228             :         NR_VM_NODE_STAT_ITEMS
     229             : };
     230             : 
     231             : /*
     232             :  * Returns true if the item should be printed in THPs (/proc/vmstat
     233             :  * currently prints number of anon, file and shmem THPs. But the item
     234             :  * is charged in pages).
     235             :  */
     236             : static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
     237             : {
     238             :         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
     239             :                 return false;
     240             : 
     241             :         return item == NR_ANON_THPS ||
     242             :                item == NR_FILE_THPS ||
     243             :                item == NR_SHMEM_THPS ||
     244             :                item == NR_SHMEM_PMDMAPPED ||
     245             :                item == NR_FILE_PMDMAPPED;
     246             : }
     247             : 
     248             : /*
     249             :  * Returns true if the value is measured in bytes (most vmstat values are
     250             :  * measured in pages). This defines the API part, the internal representation
     251             :  * might be different.
     252             :  */
     253             : static __always_inline bool vmstat_item_in_bytes(int idx)
     254             : {
     255             :         /*
     256             :          * Global and per-node slab counters track slab pages.
     257             :          * It's expected that changes are multiples of PAGE_SIZE.
     258             :          * Internally values are stored in pages.
     259             :          *
     260             :          * Per-memcg and per-lruvec counters track memory, consumed
     261             :          * by individual slab objects. These counters are actually
     262             :          * byte-precise.
     263             :          */
     264         457 :         return (idx == NR_SLAB_RECLAIMABLE_B ||
     265             :                 idx == NR_SLAB_UNRECLAIMABLE_B);
     266             : }
     267             : 
     268             : /*
     269             :  * We do arithmetic on the LRU lists in various places in the code,
     270             :  * so it is important to keep the active lists LRU_ACTIVE higher in
     271             :  * the array than the corresponding inactive lists, and to keep
     272             :  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
     273             :  *
     274             :  * This has to be kept in sync with the statistics in zone_stat_item
     275             :  * above and the descriptions in vmstat_text in mm/vmstat.c
     276             :  */
     277             : #define LRU_BASE 0
     278             : #define LRU_ACTIVE 1
     279             : #define LRU_FILE 2
     280             : 
     281             : enum lru_list {
     282             :         LRU_INACTIVE_ANON = LRU_BASE,
     283             :         LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
     284             :         LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
     285             :         LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
     286             :         LRU_UNEVICTABLE,
     287             :         NR_LRU_LISTS
     288             : };
     289             : 
     290             : enum vmscan_throttle_state {
     291             :         VMSCAN_THROTTLE_WRITEBACK,
     292             :         VMSCAN_THROTTLE_ISOLATED,
     293             :         VMSCAN_THROTTLE_NOPROGRESS,
     294             :         VMSCAN_THROTTLE_CONGESTED,
     295             :         NR_VMSCAN_THROTTLE,
     296             : };
     297             : 
     298             : #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
     299             : 
     300             : #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
     301             : 
     302             : static inline bool is_file_lru(enum lru_list lru)
     303             : {
     304           0 :         return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
     305             : }
     306             : 
     307             : static inline bool is_active_lru(enum lru_list lru)
     308             : {
     309           0 :         return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
     310             : }
     311             : 
     312             : #define ANON_AND_FILE 2
     313             : 
     314             : enum lruvec_flags {
     315             :         LRUVEC_CONGESTED,               /* lruvec has many dirty pages
     316             :                                          * backed by a congested BDI
     317             :                                          */
     318             : };
     319             : 
     320             : struct lruvec {
     321             :         struct list_head                lists[NR_LRU_LISTS];
     322             :         /* per lruvec lru_lock for memcg */
     323             :         spinlock_t                      lru_lock;
     324             :         /*
     325             :          * These track the cost of reclaiming one LRU - file or anon -
     326             :          * over the other. As the observed cost of reclaiming one LRU
     327             :          * increases, the reclaim scan balance tips toward the other.
     328             :          */
     329             :         unsigned long                   anon_cost;
     330             :         unsigned long                   file_cost;
     331             :         /* Non-resident age, driven by LRU movement */
     332             :         atomic_long_t                   nonresident_age;
     333             :         /* Refaults at the time of last reclaim cycle */
     334             :         unsigned long                   refaults[ANON_AND_FILE];
     335             :         /* Various lruvec state flags (enum lruvec_flags) */
     336             :         unsigned long                   flags;
     337             : #ifdef CONFIG_MEMCG
     338             :         struct pglist_data *pgdat;
     339             : #endif
     340             : };
     341             : 
     342             : /* Isolate unmapped pages */
     343             : #define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
     344             : /* Isolate for asynchronous migration */
     345             : #define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
     346             : /* Isolate unevictable pages */
     347             : #define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
     348             : 
     349             : /* LRU Isolation modes. */
     350             : typedef unsigned __bitwise isolate_mode_t;
     351             : 
     352             : enum zone_watermarks {
     353             :         WMARK_MIN,
     354             :         WMARK_LOW,
     355             :         WMARK_HIGH,
     356             :         WMARK_PROMO,
     357             :         NR_WMARK
     358             : };
     359             : 
     360             : /*
     361             :  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
     362             :  * for pageblock size for THP if configured.
     363             :  */
     364             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     365             : #define NR_PCP_THP 1
     366             : #else
     367             : #define NR_PCP_THP 0
     368             : #endif
     369             : #define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
     370             : 
     371             : /*
     372             :  * Shift to encode migratetype and order in the same integer, with order
     373             :  * in the least significant bits.
     374             :  */
     375             : #define NR_PCP_ORDER_WIDTH 8
     376             : #define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
     377             : 
     378             : #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
     379             : #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
     380             : #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
     381             : #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
     382             : 
     383             : /* Fields and list protected by pagesets local_lock in page_alloc.c */
     384             : struct per_cpu_pages {
     385             :         int count;              /* number of pages in the list */
     386             :         int high;               /* high watermark, emptying needed */
     387             :         int batch;              /* chunk size for buddy add/remove */
     388             :         short free_factor;      /* batch scaling factor during free */
     389             : #ifdef CONFIG_NUMA
     390             :         short expire;           /* When 0, remote pagesets are drained */
     391             : #endif
     392             : 
     393             :         /* Lists of pages, one per migrate type stored on the pcp-lists */
     394             :         struct list_head lists[NR_PCP_LISTS];
     395             : };
     396             : 
     397             : struct per_cpu_zonestat {
     398             : #ifdef CONFIG_SMP
     399             :         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
     400             :         s8 stat_threshold;
     401             : #endif
     402             : #ifdef CONFIG_NUMA
     403             :         /*
     404             :          * Low priority inaccurate counters that are only folded
     405             :          * on demand. Use a large type to avoid the overhead of
     406             :          * folding during refresh_cpu_vm_stats.
     407             :          */
     408             :         unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
     409             : #endif
     410             : };
     411             : 
     412             : struct per_cpu_nodestat {
     413             :         s8 stat_threshold;
     414             :         s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
     415             : };
     416             : 
     417             : #endif /* !__GENERATING_BOUNDS.H */
     418             : 
     419             : enum zone_type {
     420             :         /*
     421             :          * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
     422             :          * to DMA to all of the addressable memory (ZONE_NORMAL).
     423             :          * On architectures where this area covers the whole 32 bit address
     424             :          * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
     425             :          * DMA addressing constraints. This distinction is important as a 32bit
     426             :          * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
     427             :          * platforms may need both zones as they support peripherals with
     428             :          * different DMA addressing limitations.
     429             :          */
     430             : #ifdef CONFIG_ZONE_DMA
     431             :         ZONE_DMA,
     432             : #endif
     433             : #ifdef CONFIG_ZONE_DMA32
     434             :         ZONE_DMA32,
     435             : #endif
     436             :         /*
     437             :          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
     438             :          * performed on pages in ZONE_NORMAL if the DMA devices support
     439             :          * transfers to all addressable memory.
     440             :          */
     441             :         ZONE_NORMAL,
     442             : #ifdef CONFIG_HIGHMEM
     443             :         /*
     444             :          * A memory area that is only addressable by the kernel through
     445             :          * mapping portions into its own address space. This is for example
     446             :          * used by i386 to allow the kernel to address the memory beyond
     447             :          * 900MB. The kernel will set up special mappings (page
     448             :          * table entries on i386) for each page that the kernel needs to
     449             :          * access.
     450             :          */
     451             :         ZONE_HIGHMEM,
     452             : #endif
     453             :         /*
     454             :          * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
     455             :          * movable pages with few exceptional cases described below. Main use
     456             :          * cases for ZONE_MOVABLE are to make memory offlining/unplug more
     457             :          * likely to succeed, and to locally limit unmovable allocations - e.g.,
     458             :          * to increase the number of THP/huge pages. Notable special cases are:
     459             :          *
     460             :          * 1. Pinned pages: (long-term) pinning of movable pages might
     461             :          *    essentially turn such pages unmovable. Therefore, we do not allow
     462             :          *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
     463             :          *    faulted, they come from the right zone right away. However, it is
     464             :          *    still possible that address space already has pages in
     465             :          *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
     466             :          *    touches that memory before pinning). In such case we migrate them
     467             :          *    to a different zone. When migration fails - pinning fails.
     468             :          * 2. memblock allocations: kernelcore/movablecore setups might create
     469             :          *    situations where ZONE_MOVABLE contains unmovable allocations
     470             :          *    after boot. Memory offlining and allocations fail early.
     471             :          * 3. Memory holes: kernelcore/movablecore setups might create very rare
     472             :          *    situations where ZONE_MOVABLE contains memory holes after boot,
     473             :          *    for example, if we have sections that are only partially
     474             :          *    populated. Memory offlining and allocations fail early.
     475             :          * 4. PG_hwpoison pages: while poisoned pages can be skipped during
     476             :          *    memory offlining, such pages cannot be allocated.
     477             :          * 5. Unmovable PG_offline pages: in paravirtualized environments,
     478             :          *    hotplugged memory blocks might only partially be managed by the
     479             :          *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
     480             :          *    parts not manged by the buddy are unmovable PG_offline pages. In
     481             :          *    some cases (virtio-mem), such pages can be skipped during
     482             :          *    memory offlining, however, cannot be moved/allocated. These
     483             :          *    techniques might use alloc_contig_range() to hide previously
     484             :          *    exposed pages from the buddy again (e.g., to implement some sort
     485             :          *    of memory unplug in virtio-mem).
     486             :          * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
     487             :          *    situations where ZERO_PAGE(0) which is allocated differently
     488             :          *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
     489             :          *    cannot be migrated.
     490             :          * 7. Memory-hotplug: when using memmap_on_memory and onlining the
     491             :          *    memory to the MOVABLE zone, the vmemmap pages are also placed in
     492             :          *    such zone. Such pages cannot be really moved around as they are
     493             :          *    self-stored in the range, but they are treated as movable when
     494             :          *    the range they describe is about to be offlined.
     495             :          *
     496             :          * In general, no unmovable allocations that degrade memory offlining
     497             :          * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
     498             :          * have to expect that migrating pages in ZONE_MOVABLE can fail (even
     499             :          * if has_unmovable_pages() states that there are no unmovable pages,
     500             :          * there can be false negatives).
     501             :          */
     502             :         ZONE_MOVABLE,
     503             : #ifdef CONFIG_ZONE_DEVICE
     504             :         ZONE_DEVICE,
     505             : #endif
     506             :         __MAX_NR_ZONES
     507             : 
     508             : };
     509             : 
     510             : #ifndef __GENERATING_BOUNDS_H
     511             : 
     512             : #define ASYNC_AND_SYNC 2
     513             : 
     514             : struct zone {
     515             :         /* Read-mostly fields */
     516             : 
     517             :         /* zone watermarks, access with *_wmark_pages(zone) macros */
     518             :         unsigned long _watermark[NR_WMARK];
     519             :         unsigned long watermark_boost;
     520             : 
     521             :         unsigned long nr_reserved_highatomic;
     522             : 
     523             :         /*
     524             :          * We don't know if the memory that we're going to allocate will be
     525             :          * freeable or/and it will be released eventually, so to avoid totally
     526             :          * wasting several GB of ram we must reserve some of the lower zone
     527             :          * memory (otherwise we risk to run OOM on the lower zones despite
     528             :          * there being tons of freeable ram on the higher zones).  This array is
     529             :          * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
     530             :          * changes.
     531             :          */
     532             :         long lowmem_reserve[MAX_NR_ZONES];
     533             : 
     534             : #ifdef CONFIG_NUMA
     535             :         int node;
     536             : #endif
     537             :         struct pglist_data      *zone_pgdat;
     538             :         struct per_cpu_pages    __percpu *per_cpu_pageset;
     539             :         struct per_cpu_zonestat __percpu *per_cpu_zonestats;
     540             :         /*
     541             :          * the high and batch values are copied to individual pagesets for
     542             :          * faster access
     543             :          */
     544             :         int pageset_high;
     545             :         int pageset_batch;
     546             : 
     547             : #ifndef CONFIG_SPARSEMEM
     548             :         /*
     549             :          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
     550             :          * In SPARSEMEM, this map is stored in struct mem_section
     551             :          */
     552             :         unsigned long           *pageblock_flags;
     553             : #endif /* CONFIG_SPARSEMEM */
     554             : 
     555             :         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
     556             :         unsigned long           zone_start_pfn;
     557             : 
     558             :         /*
     559             :          * spanned_pages is the total pages spanned by the zone, including
     560             :          * holes, which is calculated as:
     561             :          *      spanned_pages = zone_end_pfn - zone_start_pfn;
     562             :          *
     563             :          * present_pages is physical pages existing within the zone, which
     564             :          * is calculated as:
     565             :          *      present_pages = spanned_pages - absent_pages(pages in holes);
     566             :          *
     567             :          * present_early_pages is present pages existing within the zone
     568             :          * located on memory available since early boot, excluding hotplugged
     569             :          * memory.
     570             :          *
     571             :          * managed_pages is present pages managed by the buddy system, which
     572             :          * is calculated as (reserved_pages includes pages allocated by the
     573             :          * bootmem allocator):
     574             :          *      managed_pages = present_pages - reserved_pages;
     575             :          *
     576             :          * cma pages is present pages that are assigned for CMA use
     577             :          * (MIGRATE_CMA).
     578             :          *
     579             :          * So present_pages may be used by memory hotplug or memory power
     580             :          * management logic to figure out unmanaged pages by checking
     581             :          * (present_pages - managed_pages). And managed_pages should be used
     582             :          * by page allocator and vm scanner to calculate all kinds of watermarks
     583             :          * and thresholds.
     584             :          *
     585             :          * Locking rules:
     586             :          *
     587             :          * zone_start_pfn and spanned_pages are protected by span_seqlock.
     588             :          * It is a seqlock because it has to be read outside of zone->lock,
     589             :          * and it is done in the main allocator path.  But, it is written
     590             :          * quite infrequently.
     591             :          *
     592             :          * The span_seq lock is declared along with zone->lock because it is
     593             :          * frequently read in proximity to zone->lock.  It's good to
     594             :          * give them a chance of being in the same cacheline.
     595             :          *
     596             :          * Write access to present_pages at runtime should be protected by
     597             :          * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
     598             :          * present_pages should get_online_mems() to get a stable value.
     599             :          */
     600             :         atomic_long_t           managed_pages;
     601             :         unsigned long           spanned_pages;
     602             :         unsigned long           present_pages;
     603             : #if defined(CONFIG_MEMORY_HOTPLUG)
     604             :         unsigned long           present_early_pages;
     605             : #endif
     606             : #ifdef CONFIG_CMA
     607             :         unsigned long           cma_pages;
     608             : #endif
     609             : 
     610             :         const char              *name;
     611             : 
     612             : #ifdef CONFIG_MEMORY_ISOLATION
     613             :         /*
     614             :          * Number of isolated pageblock. It is used to solve incorrect
     615             :          * freepage counting problem due to racy retrieving migratetype
     616             :          * of pageblock. Protected by zone->lock.
     617             :          */
     618             :         unsigned long           nr_isolate_pageblock;
     619             : #endif
     620             : 
     621             : #ifdef CONFIG_MEMORY_HOTPLUG
     622             :         /* see spanned/present_pages for more description */
     623             :         seqlock_t               span_seqlock;
     624             : #endif
     625             : 
     626             :         int initialized;
     627             : 
     628             :         /* Write-intensive fields used from the page allocator */
     629             :         ZONE_PADDING(_pad1_)
     630             : 
     631             :         /* free areas of different sizes */
     632             :         struct free_area        free_area[MAX_ORDER];
     633             : 
     634             :         /* zone flags, see below */
     635             :         unsigned long           flags;
     636             : 
     637             :         /* Primarily protects free_area */
     638             :         spinlock_t              lock;
     639             : 
     640             :         /* Write-intensive fields used by compaction and vmstats. */
     641             :         ZONE_PADDING(_pad2_)
     642             : 
     643             :         /*
     644             :          * When free pages are below this point, additional steps are taken
     645             :          * when reading the number of free pages to avoid per-cpu counter
     646             :          * drift allowing watermarks to be breached
     647             :          */
     648             :         unsigned long percpu_drift_mark;
     649             : 
     650             : #if defined CONFIG_COMPACTION || defined CONFIG_CMA
     651             :         /* pfn where compaction free scanner should start */
     652             :         unsigned long           compact_cached_free_pfn;
     653             :         /* pfn where compaction migration scanner should start */
     654             :         unsigned long           compact_cached_migrate_pfn[ASYNC_AND_SYNC];
     655             :         unsigned long           compact_init_migrate_pfn;
     656             :         unsigned long           compact_init_free_pfn;
     657             : #endif
     658             : 
     659             : #ifdef CONFIG_COMPACTION
     660             :         /*
     661             :          * On compaction failure, 1<<compact_defer_shift compactions
     662             :          * are skipped before trying again. The number attempted since
     663             :          * last failure is tracked with compact_considered.
     664             :          * compact_order_failed is the minimum compaction failed order.
     665             :          */
     666             :         unsigned int            compact_considered;
     667             :         unsigned int            compact_defer_shift;
     668             :         int                     compact_order_failed;
     669             : #endif
     670             : 
     671             : #if defined CONFIG_COMPACTION || defined CONFIG_CMA
     672             :         /* Set to true when the PG_migrate_skip bits should be cleared */
     673             :         bool                    compact_blockskip_flush;
     674             : #endif
     675             : 
     676             :         bool                    contiguous;
     677             : 
     678             :         ZONE_PADDING(_pad3_)
     679             :         /* Zone statistics */
     680             :         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
     681             :         atomic_long_t           vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
     682             : } ____cacheline_internodealigned_in_smp;
     683             : 
     684             : enum pgdat_flags {
     685             :         PGDAT_DIRTY,                    /* reclaim scanning has recently found
     686             :                                          * many dirty file pages at the tail
     687             :                                          * of the LRU.
     688             :                                          */
     689             :         PGDAT_WRITEBACK,                /* reclaim scanning has recently found
     690             :                                          * many pages under writeback
     691             :                                          */
     692             :         PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
     693             : };
     694             : 
     695             : enum zone_flags {
     696             :         ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
     697             :                                          * Cleared when kswapd is woken.
     698             :                                          */
     699             :         ZONE_RECLAIM_ACTIVE,            /* kswapd may be scanning the zone. */
     700             : };
     701             : 
     702             : static inline unsigned long zone_managed_pages(struct zone *zone)
     703             : {
     704          42 :         return (unsigned long)atomic_long_read(&zone->managed_pages);
     705             : }
     706             : 
     707             : static inline unsigned long zone_cma_pages(struct zone *zone)
     708             : {
     709             : #ifdef CONFIG_CMA
     710             :         return zone->cma_pages;
     711             : #else
     712             :         return 0;
     713             : #endif
     714             : }
     715             : 
     716             : static inline unsigned long zone_end_pfn(const struct zone *zone)
     717             : {
     718         261 :         return zone->zone_start_pfn + zone->spanned_pages;
     719             : }
     720             : 
     721             : static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
     722             : {
     723           0 :         return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
     724             : }
     725             : 
     726             : static inline bool zone_is_initialized(struct zone *zone)
     727             : {
     728             :         return zone->initialized;
     729             : }
     730             : 
     731             : static inline bool zone_is_empty(struct zone *zone)
     732             : {
     733             :         return zone->spanned_pages == 0;
     734             : }
     735             : 
     736             : /*
     737             :  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
     738             :  * intersection with the given zone
     739             :  */
     740             : static inline bool zone_intersects(struct zone *zone,
     741             :                 unsigned long start_pfn, unsigned long nr_pages)
     742             : {
     743             :         if (zone_is_empty(zone))
     744             :                 return false;
     745             :         if (start_pfn >= zone_end_pfn(zone) ||
     746             :             start_pfn + nr_pages <= zone->zone_start_pfn)
     747             :                 return false;
     748             : 
     749             :         return true;
     750             : }
     751             : 
     752             : /*
     753             :  * The "priority" of VM scanning is how much of the queues we will scan in one
     754             :  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
     755             :  * queues ("queue_length >> 12") during an aging round.
     756             :  */
     757             : #define DEF_PRIORITY 12
     758             : 
     759             : /* Maximum number of zones on a zonelist */
     760             : #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
     761             : 
     762             : enum {
     763             :         ZONELIST_FALLBACK,      /* zonelist with fallback */
     764             : #ifdef CONFIG_NUMA
     765             :         /*
     766             :          * The NUMA zonelists are doubled because we need zonelists that
     767             :          * restrict the allocations to a single node for __GFP_THISNODE.
     768             :          */
     769             :         ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
     770             : #endif
     771             :         MAX_ZONELISTS
     772             : };
     773             : 
     774             : /*
     775             :  * This struct contains information about a zone in a zonelist. It is stored
     776             :  * here to avoid dereferences into large structures and lookups of tables
     777             :  */
     778             : struct zoneref {
     779             :         struct zone *zone;      /* Pointer to actual zone */
     780             :         int zone_idx;           /* zone_idx(zoneref->zone) */
     781             : };
     782             : 
     783             : /*
     784             :  * One allocation request operates on a zonelist. A zonelist
     785             :  * is a list of zones, the first one is the 'goal' of the
     786             :  * allocation, the other zones are fallback zones, in decreasing
     787             :  * priority.
     788             :  *
     789             :  * To speed the reading of the zonelist, the zonerefs contain the zone index
     790             :  * of the entry being read. Helper functions to access information given
     791             :  * a struct zoneref are
     792             :  *
     793             :  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
     794             :  * zonelist_zone_idx()  - Return the index of the zone for an entry
     795             :  * zonelist_node_idx()  - Return the index of the node for an entry
     796             :  */
     797             : struct zonelist {
     798             :         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
     799             : };
     800             : 
     801             : /*
     802             :  * The array of struct pages for flatmem.
     803             :  * It must be declared for SPARSEMEM as well because there are configurations
     804             :  * that rely on that.
     805             :  */
     806             : extern struct page *mem_map;
     807             : 
     808             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     809             : struct deferred_split {
     810             :         spinlock_t split_queue_lock;
     811             :         struct list_head split_queue;
     812             :         unsigned long split_queue_len;
     813             : };
     814             : #endif
     815             : 
     816             : /*
     817             :  * On NUMA machines, each NUMA node would have a pg_data_t to describe
     818             :  * it's memory layout. On UMA machines there is a single pglist_data which
     819             :  * describes the whole memory.
     820             :  *
     821             :  * Memory statistics and page replacement data structures are maintained on a
     822             :  * per-zone basis.
     823             :  */
     824             : typedef struct pglist_data {
     825             :         /*
     826             :          * node_zones contains just the zones for THIS node. Not all of the
     827             :          * zones may be populated, but it is the full list. It is referenced by
     828             :          * this node's node_zonelists as well as other node's node_zonelists.
     829             :          */
     830             :         struct zone node_zones[MAX_NR_ZONES];
     831             : 
     832             :         /*
     833             :          * node_zonelists contains references to all zones in all nodes.
     834             :          * Generally the first zones will be references to this node's
     835             :          * node_zones.
     836             :          */
     837             :         struct zonelist node_zonelists[MAX_ZONELISTS];
     838             : 
     839             :         int nr_zones; /* number of populated zones in this node */
     840             : #ifdef CONFIG_FLATMEM   /* means !SPARSEMEM */
     841             :         struct page *node_mem_map;
     842             : #ifdef CONFIG_PAGE_EXTENSION
     843             :         struct page_ext *node_page_ext;
     844             : #endif
     845             : #endif
     846             : #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
     847             :         /*
     848             :          * Must be held any time you expect node_start_pfn,
     849             :          * node_present_pages, node_spanned_pages or nr_zones to stay constant.
     850             :          * Also synchronizes pgdat->first_deferred_pfn during deferred page
     851             :          * init.
     852             :          *
     853             :          * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
     854             :          * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
     855             :          * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
     856             :          *
     857             :          * Nests above zone->lock and zone->span_seqlock
     858             :          */
     859             :         spinlock_t node_size_lock;
     860             : #endif
     861             :         unsigned long node_start_pfn;
     862             :         unsigned long node_present_pages; /* total number of physical pages */
     863             :         unsigned long node_spanned_pages; /* total size of physical page
     864             :                                              range, including holes */
     865             :         int node_id;
     866             :         wait_queue_head_t kswapd_wait;
     867             :         wait_queue_head_t pfmemalloc_wait;
     868             : 
     869             :         /* workqueues for throttling reclaim for different reasons. */
     870             :         wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
     871             : 
     872             :         atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
     873             :         unsigned long nr_reclaim_start; /* nr pages written while throttled
     874             :                                          * when throttling started. */
     875             :         struct task_struct *kswapd;     /* Protected by
     876             :                                            mem_hotplug_begin/end() */
     877             :         int kswapd_order;
     878             :         enum zone_type kswapd_highest_zoneidx;
     879             : 
     880             :         int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
     881             : 
     882             : #ifdef CONFIG_COMPACTION
     883             :         int kcompactd_max_order;
     884             :         enum zone_type kcompactd_highest_zoneidx;
     885             :         wait_queue_head_t kcompactd_wait;
     886             :         struct task_struct *kcompactd;
     887             :         bool proactive_compact_trigger;
     888             : #endif
     889             :         /*
     890             :          * This is a per-node reserve of pages that are not available
     891             :          * to userspace allocations.
     892             :          */
     893             :         unsigned long           totalreserve_pages;
     894             : 
     895             : #ifdef CONFIG_NUMA
     896             :         /*
     897             :          * node reclaim becomes active if more unmapped pages exist.
     898             :          */
     899             :         unsigned long           min_unmapped_pages;
     900             :         unsigned long           min_slab_pages;
     901             : #endif /* CONFIG_NUMA */
     902             : 
     903             :         /* Write-intensive fields used by page reclaim */
     904             :         ZONE_PADDING(_pad1_)
     905             : 
     906             : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
     907             :         /*
     908             :          * If memory initialisation on large machines is deferred then this
     909             :          * is the first PFN that needs to be initialised.
     910             :          */
     911             :         unsigned long first_deferred_pfn;
     912             : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
     913             : 
     914             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     915             :         struct deferred_split deferred_split_queue;
     916             : #endif
     917             : 
     918             :         /* Fields commonly accessed by the page reclaim scanner */
     919             : 
     920             :         /*
     921             :          * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
     922             :          *
     923             :          * Use mem_cgroup_lruvec() to look up lruvecs.
     924             :          */
     925             :         struct lruvec           __lruvec;
     926             : 
     927             :         unsigned long           flags;
     928             : 
     929             :         ZONE_PADDING(_pad2_)
     930             : 
     931             :         /* Per-node vmstats */
     932             :         struct per_cpu_nodestat __percpu *per_cpu_nodestats;
     933             :         atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
     934             : } pg_data_t;
     935             : 
     936             : #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
     937             : #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
     938             : 
     939             : #define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
     940             : #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
     941             : 
     942             : static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
     943             : {
     944           1 :         return pgdat->node_start_pfn + pgdat->node_spanned_pages;
     945             : }
     946             : 
     947             : static inline bool pgdat_is_empty(pg_data_t *pgdat)
     948             : {
     949             :         return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
     950             : }
     951             : 
     952             : #include <linux/memory_hotplug.h>
     953             : 
     954             : void build_all_zonelists(pg_data_t *pgdat);
     955             : void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
     956             :                    enum zone_type highest_zoneidx);
     957             : bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
     958             :                          int highest_zoneidx, unsigned int alloc_flags,
     959             :                          long free_pages);
     960             : bool zone_watermark_ok(struct zone *z, unsigned int order,
     961             :                 unsigned long mark, int highest_zoneidx,
     962             :                 unsigned int alloc_flags);
     963             : bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
     964             :                 unsigned long mark, int highest_zoneidx);
     965             : /*
     966             :  * Memory initialization context, use to differentiate memory added by
     967             :  * the platform statically or via memory hotplug interface.
     968             :  */
     969             : enum meminit_context {
     970             :         MEMINIT_EARLY,
     971             :         MEMINIT_HOTPLUG,
     972             : };
     973             : 
     974             : extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
     975             :                                      unsigned long size);
     976             : 
     977             : extern void lruvec_init(struct lruvec *lruvec);
     978             : 
     979             : static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
     980             : {
     981             : #ifdef CONFIG_MEMCG
     982             :         return lruvec->pgdat;
     983             : #else
     984           0 :         return container_of(lruvec, struct pglist_data, __lruvec);
     985             : #endif
     986             : }
     987             : 
     988             : #ifdef CONFIG_HAVE_MEMORYLESS_NODES
     989             : int local_memory_node(int node_id);
     990             : #else
     991             : static inline int local_memory_node(int node_id) { return node_id; };
     992             : #endif
     993             : 
     994             : /*
     995             :  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
     996             :  */
     997             : #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
     998             : 
     999             : #ifdef CONFIG_ZONE_DEVICE
    1000             : static inline bool zone_is_zone_device(struct zone *zone)
    1001             : {
    1002             :         return zone_idx(zone) == ZONE_DEVICE;
    1003             : }
    1004             : #else
    1005             : static inline bool zone_is_zone_device(struct zone *zone)
    1006             : {
    1007             :         return false;
    1008             : }
    1009             : #endif
    1010             : 
    1011             : /*
    1012             :  * Returns true if a zone has pages managed by the buddy allocator.
    1013             :  * All the reclaim decisions have to use this function rather than
    1014             :  * populated_zone(). If the whole zone is reserved then we can easily
    1015             :  * end up with populated_zone() && !managed_zone().
    1016             :  */
    1017             : static inline bool managed_zone(struct zone *zone)
    1018             : {
    1019           1 :         return zone_managed_pages(zone);
    1020             : }
    1021             : 
    1022             : /* Returns true if a zone has memory */
    1023             : static inline bool populated_zone(struct zone *zone)
    1024             : {
    1025             :         return zone->present_pages;
    1026             : }
    1027             : 
    1028             : #ifdef CONFIG_NUMA
    1029             : static inline int zone_to_nid(struct zone *zone)
    1030             : {
    1031             :         return zone->node;
    1032             : }
    1033             : 
    1034             : static inline void zone_set_nid(struct zone *zone, int nid)
    1035             : {
    1036             :         zone->node = nid;
    1037             : }
    1038             : #else
    1039             : static inline int zone_to_nid(struct zone *zone)
    1040             : {
    1041             :         return 0;
    1042             : }
    1043             : 
    1044             : static inline void zone_set_nid(struct zone *zone, int nid) {}
    1045             : #endif
    1046             : 
    1047             : extern int movable_zone;
    1048             : 
    1049             : static inline int is_highmem_idx(enum zone_type idx)
    1050             : {
    1051             : #ifdef CONFIG_HIGHMEM
    1052             :         return (idx == ZONE_HIGHMEM ||
    1053             :                 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
    1054             : #else
    1055             :         return 0;
    1056             : #endif
    1057             : }
    1058             : 
    1059             : #ifdef CONFIG_ZONE_DMA
    1060             : bool has_managed_dma(void);
    1061             : #else
    1062             : static inline bool has_managed_dma(void)
    1063             : {
    1064             :         return false;
    1065             : }
    1066             : #endif
    1067             : 
    1068             : /**
    1069             :  * is_highmem - helper function to quickly check if a struct zone is a
    1070             :  *              highmem zone or not.  This is an attempt to keep references
    1071             :  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
    1072             :  * @zone: pointer to struct zone variable
    1073             :  * Return: 1 for a highmem zone, 0 otherwise
    1074             :  */
    1075             : static inline int is_highmem(struct zone *zone)
    1076             : {
    1077             : #ifdef CONFIG_HIGHMEM
    1078             :         return is_highmem_idx(zone_idx(zone));
    1079             : #else
    1080             :         return 0;
    1081             : #endif
    1082             : }
    1083             : 
    1084             : /* These two functions are used to setup the per zone pages min values */
    1085             : struct ctl_table;
    1086             : 
    1087             : int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
    1088             :                 loff_t *);
    1089             : int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
    1090             :                 size_t *, loff_t *);
    1091             : extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
    1092             : int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
    1093             :                 size_t *, loff_t *);
    1094             : int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
    1095             :                 void *, size_t *, loff_t *);
    1096             : int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
    1097             :                 void *, size_t *, loff_t *);
    1098             : int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
    1099             :                 void *, size_t *, loff_t *);
    1100             : int numa_zonelist_order_handler(struct ctl_table *, int,
    1101             :                 void *, size_t *, loff_t *);
    1102             : extern int percpu_pagelist_high_fraction;
    1103             : extern char numa_zonelist_order[];
    1104             : #define NUMA_ZONELIST_ORDER_LEN 16
    1105             : 
    1106             : #ifndef CONFIG_NUMA
    1107             : 
    1108             : extern struct pglist_data contig_page_data;
    1109             : static inline struct pglist_data *NODE_DATA(int nid)
    1110             : {
    1111             :         return &contig_page_data;
    1112             : }
    1113             : 
    1114             : #else /* CONFIG_NUMA */
    1115             : 
    1116             : #include <asm/mmzone.h>
    1117             : 
    1118             : #endif /* !CONFIG_NUMA */
    1119             : 
    1120             : extern struct pglist_data *first_online_pgdat(void);
    1121             : extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
    1122             : extern struct zone *next_zone(struct zone *zone);
    1123             : 
    1124             : /**
    1125             :  * for_each_online_pgdat - helper macro to iterate over all online nodes
    1126             :  * @pgdat: pointer to a pg_data_t variable
    1127             :  */
    1128             : #define for_each_online_pgdat(pgdat)                    \
    1129             :         for (pgdat = first_online_pgdat();              \
    1130             :              pgdat;                                     \
    1131             :              pgdat = next_online_pgdat(pgdat))
    1132             : /**
    1133             :  * for_each_zone - helper macro to iterate over all memory zones
    1134             :  * @zone: pointer to struct zone variable
    1135             :  *
    1136             :  * The user only needs to declare the zone variable, for_each_zone
    1137             :  * fills it in.
    1138             :  */
    1139             : #define for_each_zone(zone)                             \
    1140             :         for (zone = (first_online_pgdat())->node_zones; \
    1141             :              zone;                                      \
    1142             :              zone = next_zone(zone))
    1143             : 
    1144             : #define for_each_populated_zone(zone)                   \
    1145             :         for (zone = (first_online_pgdat())->node_zones; \
    1146             :              zone;                                      \
    1147             :              zone = next_zone(zone))                    \
    1148             :                 if (!populated_zone(zone))              \
    1149             :                         ; /* do nothing */              \
    1150             :                 else
    1151             : 
    1152             : static inline struct zone *zonelist_zone(struct zoneref *zoneref)
    1153             : {
    1154             :         return zoneref->zone;
    1155             : }
    1156             : 
    1157             : static inline int zonelist_zone_idx(struct zoneref *zoneref)
    1158             : {
    1159             :         return zoneref->zone_idx;
    1160             : }
    1161             : 
    1162             : static inline int zonelist_node_idx(struct zoneref *zoneref)
    1163             : {
    1164             :         return zone_to_nid(zoneref->zone);
    1165             : }
    1166             : 
    1167             : struct zoneref *__next_zones_zonelist(struct zoneref *z,
    1168             :                                         enum zone_type highest_zoneidx,
    1169             :                                         nodemask_t *nodes);
    1170             : 
    1171             : /**
    1172             :  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
    1173             :  * @z: The cursor used as a starting point for the search
    1174             :  * @highest_zoneidx: The zone index of the highest zone to return
    1175             :  * @nodes: An optional nodemask to filter the zonelist with
    1176             :  *
    1177             :  * This function returns the next zone at or below a given zone index that is
    1178             :  * within the allowed nodemask using a cursor as the starting point for the
    1179             :  * search. The zoneref returned is a cursor that represents the current zone
    1180             :  * being examined. It should be advanced by one before calling
    1181             :  * next_zones_zonelist again.
    1182             :  *
    1183             :  * Return: the next zone at or below highest_zoneidx within the allowed
    1184             :  * nodemask using a cursor within a zonelist as a starting point
    1185             :  */
    1186             : static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
    1187             :                                         enum zone_type highest_zoneidx,
    1188             :                                         nodemask_t *nodes)
    1189             : {
    1190         504 :         if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
    1191             :                 return z;
    1192           0 :         return __next_zones_zonelist(z, highest_zoneidx, nodes);
    1193             : }
    1194             : 
    1195             : /**
    1196             :  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
    1197             :  * @zonelist: The zonelist to search for a suitable zone
    1198             :  * @highest_zoneidx: The zone index of the highest zone to return
    1199             :  * @nodes: An optional nodemask to filter the zonelist with
    1200             :  *
    1201             :  * This function returns the first zone at or below a given zone index that is
    1202             :  * within the allowed nodemask. The zoneref returned is a cursor that can be
    1203             :  * used to iterate the zonelist with next_zones_zonelist by advancing it by
    1204             :  * one before calling.
    1205             :  *
    1206             :  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
    1207             :  * never NULL). This may happen either genuinely, or due to concurrent nodemask
    1208             :  * update due to cpuset modification.
    1209             :  *
    1210             :  * Return: Zoneref pointer for the first suitable zone found
    1211             :  */
    1212             : static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
    1213             :                                         enum zone_type highest_zoneidx,
    1214             :                                         nodemask_t *nodes)
    1215             : {
    1216        1002 :         return next_zones_zonelist(zonelist->_zonerefs,
    1217             :                                                         highest_zoneidx, nodes);
    1218             : }
    1219             : 
    1220             : /**
    1221             :  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
    1222             :  * @zone: The current zone in the iterator
    1223             :  * @z: The current pointer within zonelist->_zonerefs being iterated
    1224             :  * @zlist: The zonelist being iterated
    1225             :  * @highidx: The zone index of the highest zone to return
    1226             :  * @nodemask: Nodemask allowed by the allocator
    1227             :  *
    1228             :  * This iterator iterates though all zones at or below a given zone index and
    1229             :  * within a given nodemask
    1230             :  */
    1231             : #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
    1232             :         for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
    1233             :                 zone;                                                   \
    1234             :                 z = next_zones_zonelist(++z, highidx, nodemask),        \
    1235             :                         zone = zonelist_zone(z))
    1236             : 
    1237             : #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
    1238             :         for (zone = z->zone; \
    1239             :                 zone;                                                   \
    1240             :                 z = next_zones_zonelist(++z, highidx, nodemask),        \
    1241             :                         zone = zonelist_zone(z))
    1242             : 
    1243             : 
    1244             : /**
    1245             :  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
    1246             :  * @zone: The current zone in the iterator
    1247             :  * @z: The current pointer within zonelist->zones being iterated
    1248             :  * @zlist: The zonelist being iterated
    1249             :  * @highidx: The zone index of the highest zone to return
    1250             :  *
    1251             :  * This iterator iterates though all zones at or below a given zone index.
    1252             :  */
    1253             : #define for_each_zone_zonelist(zone, z, zlist, highidx) \
    1254             :         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
    1255             : 
    1256             : /* Whether the 'nodes' are all movable nodes */
    1257             : static inline bool movable_only_nodes(nodemask_t *nodes)
    1258             : {
    1259             :         struct zonelist *zonelist;
    1260             :         struct zoneref *z;
    1261             :         int nid;
    1262             : 
    1263             :         if (nodes_empty(*nodes))
    1264             :                 return false;
    1265             : 
    1266             :         /*
    1267             :          * We can chose arbitrary node from the nodemask to get a
    1268             :          * zonelist as they are interlinked. We just need to find
    1269             :          * at least one zone that can satisfy kernel allocations.
    1270             :          */
    1271             :         nid = first_node(*nodes);
    1272             :         zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
    1273             :         z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
    1274             :         return (!z->zone) ? true : false;
    1275             : }
    1276             : 
    1277             : 
    1278             : #ifdef CONFIG_SPARSEMEM
    1279             : #include <asm/sparsemem.h>
    1280             : #endif
    1281             : 
    1282             : #ifdef CONFIG_FLATMEM
    1283             : #define pfn_to_nid(pfn)         (0)
    1284             : #endif
    1285             : 
    1286             : #ifdef CONFIG_SPARSEMEM
    1287             : 
    1288             : /*
    1289             :  * PA_SECTION_SHIFT             physical address to/from section number
    1290             :  * PFN_SECTION_SHIFT            pfn to/from section number
    1291             :  */
    1292             : #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
    1293             : #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
    1294             : 
    1295             : #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
    1296             : 
    1297             : #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
    1298             : #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
    1299             : 
    1300             : #define SECTION_BLOCKFLAGS_BITS \
    1301             :         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
    1302             : 
    1303             : #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
    1304             : #error Allocator MAX_ORDER exceeds SECTION_SIZE
    1305             : #endif
    1306             : 
    1307             : static inline unsigned long pfn_to_section_nr(unsigned long pfn)
    1308             : {
    1309             :         return pfn >> PFN_SECTION_SHIFT;
    1310             : }
    1311             : static inline unsigned long section_nr_to_pfn(unsigned long sec)
    1312             : {
    1313             :         return sec << PFN_SECTION_SHIFT;
    1314             : }
    1315             : 
    1316             : #define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
    1317             : #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
    1318             : 
    1319             : #define SUBSECTION_SHIFT 21
    1320             : #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
    1321             : 
    1322             : #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
    1323             : #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
    1324             : #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
    1325             : 
    1326             : #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
    1327             : #error Subsection size exceeds section size
    1328             : #else
    1329             : #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
    1330             : #endif
    1331             : 
    1332             : #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
    1333             : #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
    1334             : 
    1335             : struct mem_section_usage {
    1336             : #ifdef CONFIG_SPARSEMEM_VMEMMAP
    1337             :         DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
    1338             : #endif
    1339             :         /* See declaration of similar field in struct zone */
    1340             :         unsigned long pageblock_flags[0];
    1341             : };
    1342             : 
    1343             : void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
    1344             : 
    1345             : struct page;
    1346             : struct page_ext;
    1347             : struct mem_section {
    1348             :         /*
    1349             :          * This is, logically, a pointer to an array of struct
    1350             :          * pages.  However, it is stored with some other magic.
    1351             :          * (see sparse.c::sparse_init_one_section())
    1352             :          *
    1353             :          * Additionally during early boot we encode node id of
    1354             :          * the location of the section here to guide allocation.
    1355             :          * (see sparse.c::memory_present())
    1356             :          *
    1357             :          * Making it a UL at least makes someone do a cast
    1358             :          * before using it wrong.
    1359             :          */
    1360             :         unsigned long section_mem_map;
    1361             : 
    1362             :         struct mem_section_usage *usage;
    1363             : #ifdef CONFIG_PAGE_EXTENSION
    1364             :         /*
    1365             :          * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
    1366             :          * section. (see page_ext.h about this.)
    1367             :          */
    1368             :         struct page_ext *page_ext;
    1369             :         unsigned long pad;
    1370             : #endif
    1371             :         /*
    1372             :          * WARNING: mem_section must be a power-of-2 in size for the
    1373             :          * calculation and use of SECTION_ROOT_MASK to make sense.
    1374             :          */
    1375             : };
    1376             : 
    1377             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1378             : #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
    1379             : #else
    1380             : #define SECTIONS_PER_ROOT       1
    1381             : #endif
    1382             : 
    1383             : #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
    1384             : #define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
    1385             : #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
    1386             : 
    1387             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1388             : extern struct mem_section **mem_section;
    1389             : #else
    1390             : extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
    1391             : #endif
    1392             : 
    1393             : static inline unsigned long *section_to_usemap(struct mem_section *ms)
    1394             : {
    1395             :         return ms->usage->pageblock_flags;
    1396             : }
    1397             : 
    1398             : static inline struct mem_section *__nr_to_section(unsigned long nr)
    1399             : {
    1400             :         unsigned long root = SECTION_NR_TO_ROOT(nr);
    1401             : 
    1402             :         if (unlikely(root >= NR_SECTION_ROOTS))
    1403             :                 return NULL;
    1404             : 
    1405             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1406             :         if (!mem_section || !mem_section[root])
    1407             :                 return NULL;
    1408             : #endif
    1409             :         return &mem_section[root][nr & SECTION_ROOT_MASK];
    1410             : }
    1411             : extern size_t mem_section_usage_size(void);
    1412             : 
    1413             : /*
    1414             :  * We use the lower bits of the mem_map pointer to store
    1415             :  * a little bit of information.  The pointer is calculated
    1416             :  * as mem_map - section_nr_to_pfn(pnum).  The result is
    1417             :  * aligned to the minimum alignment of the two values:
    1418             :  *   1. All mem_map arrays are page-aligned.
    1419             :  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
    1420             :  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
    1421             :  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
    1422             :  *      worst combination is powerpc with 256k pages,
    1423             :  *      which results in PFN_SECTION_SHIFT equal 6.
    1424             :  * To sum it up, at least 6 bits are available.
    1425             :  */
    1426             : #define SECTION_MARKED_PRESENT          (1UL<<0)
    1427             : #define SECTION_HAS_MEM_MAP             (1UL<<1)
    1428             : #define SECTION_IS_ONLINE               (1UL<<2)
    1429             : #define SECTION_IS_EARLY                (1UL<<3)
    1430             : #define SECTION_TAINT_ZONE_DEVICE       (1UL<<4)
    1431             : #define SECTION_MAP_LAST_BIT            (1UL<<5)
    1432             : #define SECTION_MAP_MASK                (~(SECTION_MAP_LAST_BIT-1))
    1433             : #define SECTION_NID_SHIFT               6
    1434             : 
    1435             : static inline struct page *__section_mem_map_addr(struct mem_section *section)
    1436             : {
    1437             :         unsigned long map = section->section_mem_map;
    1438             :         map &= SECTION_MAP_MASK;
    1439             :         return (struct page *)map;
    1440             : }
    1441             : 
    1442             : static inline int present_section(struct mem_section *section)
    1443             : {
    1444             :         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
    1445             : }
    1446             : 
    1447             : static inline int present_section_nr(unsigned long nr)
    1448             : {
    1449             :         return present_section(__nr_to_section(nr));
    1450             : }
    1451             : 
    1452             : static inline int valid_section(struct mem_section *section)
    1453             : {
    1454             :         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
    1455             : }
    1456             : 
    1457             : static inline int early_section(struct mem_section *section)
    1458             : {
    1459             :         return (section && (section->section_mem_map & SECTION_IS_EARLY));
    1460             : }
    1461             : 
    1462             : static inline int valid_section_nr(unsigned long nr)
    1463             : {
    1464             :         return valid_section(__nr_to_section(nr));
    1465             : }
    1466             : 
    1467             : static inline int online_section(struct mem_section *section)
    1468             : {
    1469             :         return (section && (section->section_mem_map & SECTION_IS_ONLINE));
    1470             : }
    1471             : 
    1472             : static inline int online_device_section(struct mem_section *section)
    1473             : {
    1474             :         unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
    1475             : 
    1476             :         return section && ((section->section_mem_map & flags) == flags);
    1477             : }
    1478             : 
    1479             : static inline int online_section_nr(unsigned long nr)
    1480             : {
    1481             :         return online_section(__nr_to_section(nr));
    1482             : }
    1483             : 
    1484             : #ifdef CONFIG_MEMORY_HOTPLUG
    1485             : void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
    1486             : void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
    1487             : #endif
    1488             : 
    1489             : static inline struct mem_section *__pfn_to_section(unsigned long pfn)
    1490             : {
    1491             :         return __nr_to_section(pfn_to_section_nr(pfn));
    1492             : }
    1493             : 
    1494             : extern unsigned long __highest_present_section_nr;
    1495             : 
    1496             : static inline int subsection_map_index(unsigned long pfn)
    1497             : {
    1498             :         return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
    1499             : }
    1500             : 
    1501             : #ifdef CONFIG_SPARSEMEM_VMEMMAP
    1502             : static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
    1503             : {
    1504             :         int idx = subsection_map_index(pfn);
    1505             : 
    1506             :         return test_bit(idx, ms->usage->subsection_map);
    1507             : }
    1508             : #else
    1509             : static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
    1510             : {
    1511             :         return 1;
    1512             : }
    1513             : #endif
    1514             : 
    1515             : #ifndef CONFIG_HAVE_ARCH_PFN_VALID
    1516             : /**
    1517             :  * pfn_valid - check if there is a valid memory map entry for a PFN
    1518             :  * @pfn: the page frame number to check
    1519             :  *
    1520             :  * Check if there is a valid memory map entry aka struct page for the @pfn.
    1521             :  * Note, that availability of the memory map entry does not imply that
    1522             :  * there is actual usable memory at that @pfn. The struct page may
    1523             :  * represent a hole or an unusable page frame.
    1524             :  *
    1525             :  * Return: 1 for PFNs that have memory map entries and 0 otherwise
    1526             :  */
    1527             : static inline int pfn_valid(unsigned long pfn)
    1528             : {
    1529             :         struct mem_section *ms;
    1530             : 
    1531             :         /*
    1532             :          * Ensure the upper PAGE_SHIFT bits are clear in the
    1533             :          * pfn. Else it might lead to false positives when
    1534             :          * some of the upper bits are set, but the lower bits
    1535             :          * match a valid pfn.
    1536             :          */
    1537             :         if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
    1538             :                 return 0;
    1539             : 
    1540             :         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
    1541             :                 return 0;
    1542             :         ms = __pfn_to_section(pfn);
    1543             :         if (!valid_section(ms))
    1544             :                 return 0;
    1545             :         /*
    1546             :          * Traditionally early sections always returned pfn_valid() for
    1547             :          * the entire section-sized span.
    1548             :          */
    1549             :         return early_section(ms) || pfn_section_valid(ms, pfn);
    1550             : }
    1551             : #endif
    1552             : 
    1553             : static inline int pfn_in_present_section(unsigned long pfn)
    1554             : {
    1555             :         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
    1556             :                 return 0;
    1557             :         return present_section(__pfn_to_section(pfn));
    1558             : }
    1559             : 
    1560             : static inline unsigned long next_present_section_nr(unsigned long section_nr)
    1561             : {
    1562             :         while (++section_nr <= __highest_present_section_nr) {
    1563             :                 if (present_section_nr(section_nr))
    1564             :                         return section_nr;
    1565             :         }
    1566             : 
    1567             :         return -1;
    1568             : }
    1569             : 
    1570             : /*
    1571             :  * These are _only_ used during initialisation, therefore they
    1572             :  * can use __initdata ...  They could have names to indicate
    1573             :  * this restriction.
    1574             :  */
    1575             : #ifdef CONFIG_NUMA
    1576             : #define pfn_to_nid(pfn)                                                 \
    1577             : ({                                                                      \
    1578             :         unsigned long __pfn_to_nid_pfn = (pfn);                         \
    1579             :         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
    1580             : })
    1581             : #else
    1582             : #define pfn_to_nid(pfn)         (0)
    1583             : #endif
    1584             : 
    1585             : void sparse_init(void);
    1586             : #else
    1587             : #define sparse_init()   do {} while (0)
    1588             : #define sparse_index_init(_sec, _nid)  do {} while (0)
    1589             : #define pfn_in_present_section pfn_valid
    1590             : #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
    1591             : #endif /* CONFIG_SPARSEMEM */
    1592             : 
    1593             : #endif /* !__GENERATING_BOUNDS.H */
    1594             : #endif /* !__ASSEMBLY__ */
    1595             : #endif /* _LINUX_MMZONE_H */

Generated by: LCOV version 1.14