LCOV - code coverage report
Current view: top level - include/linux - pgtable.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 5 39 12.8 %
Date: 2022-12-09 01:23:36 Functions: 0 1 0.0 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_PGTABLE_H
       3             : #define _LINUX_PGTABLE_H
       4             : 
       5             : #include <linux/pfn.h>
       6             : #include <asm/pgtable.h>
       7             : 
       8             : #ifndef __ASSEMBLY__
       9             : #ifdef CONFIG_MMU
      10             : 
      11             : #include <linux/mm_types.h>
      12             : #include <linux/bug.h>
      13             : #include <linux/errno.h>
      14             : #include <asm-generic/pgtable_uffd.h>
      15             : 
      16             : #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
      17             :         defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
      18             : #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
      19             : #endif
      20             : 
      21             : /*
      22             :  * On almost all architectures and configurations, 0 can be used as the
      23             :  * upper ceiling to free_pgtables(): on many architectures it has the same
      24             :  * effect as using TASK_SIZE.  However, there is one configuration which
      25             :  * must impose a more careful limit, to avoid freeing kernel pgtables.
      26             :  */
      27             : #ifndef USER_PGTABLES_CEILING
      28             : #define USER_PGTABLES_CEILING   0UL
      29             : #endif
      30             : 
      31             : /*
      32             :  * This defines the first usable user address. Platforms
      33             :  * can override its value with custom FIRST_USER_ADDRESS
      34             :  * defined in their respective <asm/pgtable.h>.
      35             :  */
      36             : #ifndef FIRST_USER_ADDRESS
      37             : #define FIRST_USER_ADDRESS      0UL
      38             : #endif
      39             : 
      40             : /*
      41             :  * This defines the generic helper for accessing PMD page
      42             :  * table page. Although platforms can still override this
      43             :  * via their respective <asm/pgtable.h>.
      44             :  */
      45             : #ifndef pmd_pgtable
      46             : #define pmd_pgtable(pmd) pmd_page(pmd)
      47             : #endif
      48             : 
      49             : /*
      50             :  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
      51             :  *
      52             :  * The pXx_index() functions return the index of the entry in the page
      53             :  * table page which would control the given virtual address
      54             :  *
      55             :  * As these functions may be used by the same code for different levels of
      56             :  * the page table folding, they are always available, regardless of
      57             :  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
      58             :  * because in such cases PTRS_PER_PxD equals 1.
      59             :  */
      60             : 
      61             : static inline unsigned long pte_index(unsigned long address)
      62             : {
      63          75 :         return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
      64             : }
      65             : #define pte_index pte_index
      66             : 
      67             : #ifndef pmd_index
      68             : static inline unsigned long pmd_index(unsigned long address)
      69             : {
      70          77 :         return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
      71             : }
      72             : #define pmd_index pmd_index
      73             : #endif
      74             : 
      75             : #ifndef pud_index
      76             : static inline unsigned long pud_index(unsigned long address)
      77             : {
      78             :         return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
      79             : }
      80             : #define pud_index pud_index
      81             : #endif
      82             : 
      83             : #ifndef pgd_index
      84             : /* Must be a compile-time constant, so implement it as a macro */
      85             : #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
      86             : #endif
      87             : 
      88             : #ifndef pte_offset_kernel
      89             : static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
      90             : {
      91         227 :         return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
      92             : }
      93             : #define pte_offset_kernel pte_offset_kernel
      94             : #endif
      95             : 
      96             : #if defined(CONFIG_HIGHPTE)
      97             : #define pte_offset_map(dir, address)                            \
      98             :         ((pte_t *)kmap_atomic(pmd_page(*(dir))) +               \
      99             :          pte_index((address)))
     100             : #define pte_unmap(pte) kunmap_atomic((pte))
     101             : #else
     102             : #define pte_offset_map(dir, address)    pte_offset_kernel((dir), (address))
     103             : #define pte_unmap(pte) ((void)(pte))    /* NOP */
     104             : #endif
     105             : 
     106             : /* Find an entry in the second-level page table.. */
     107             : #ifndef pmd_offset
     108             : static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
     109             : {
     110         230 :         return pud_pgtable(*pud) + pmd_index(address);
     111             : }
     112             : #define pmd_offset pmd_offset
     113             : #endif
     114             : 
     115             : #ifndef pud_offset
     116             : static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
     117             : {
     118             :         return p4d_pgtable(*p4d) + pud_index(address);
     119             : }
     120             : #define pud_offset pud_offset
     121             : #endif
     122             : 
     123             : static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
     124             : {
     125          75 :         return (pgd + pgd_index(address));
     126             : };
     127             : 
     128             : /*
     129             :  * a shortcut to get a pgd_t in a given mm
     130             :  */
     131             : #ifndef pgd_offset
     132             : #define pgd_offset(mm, address)         pgd_offset_pgd((mm)->pgd, (address))
     133             : #endif
     134             : 
     135             : /*
     136             :  * a shortcut which implies the use of the kernel's pgd, instead
     137             :  * of a process's
     138             :  */
     139             : #ifndef pgd_offset_k
     140             : #define pgd_offset_k(address)           pgd_offset(&init_mm, (address))
     141             : #endif
     142             : 
     143             : /*
     144             :  * In many cases it is known that a virtual address is mapped at PMD or PTE
     145             :  * level, so instead of traversing all the page table levels, we can get a
     146             :  * pointer to the PMD entry in user or kernel page table or translate a virtual
     147             :  * address to the pointer in the PTE in the kernel page tables with simple
     148             :  * helpers.
     149             :  */
     150             : static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
     151             : {
     152           0 :         return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
     153             : }
     154             : 
     155             : static inline pmd_t *pmd_off_k(unsigned long va)
     156             : {
     157             :         return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
     158             : }
     159             : 
     160             : static inline pte_t *virt_to_kpte(unsigned long vaddr)
     161             : {
     162             :         pmd_t *pmd = pmd_off_k(vaddr);
     163             : 
     164             :         return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
     165             : }
     166             : 
     167             : #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
     168             : extern int ptep_set_access_flags(struct vm_area_struct *vma,
     169             :                                  unsigned long address, pte_t *ptep,
     170             :                                  pte_t entry, int dirty);
     171             : #endif
     172             : 
     173             : #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
     174             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     175             : extern int pmdp_set_access_flags(struct vm_area_struct *vma,
     176             :                                  unsigned long address, pmd_t *pmdp,
     177             :                                  pmd_t entry, int dirty);
     178             : extern int pudp_set_access_flags(struct vm_area_struct *vma,
     179             :                                  unsigned long address, pud_t *pudp,
     180             :                                  pud_t entry, int dirty);
     181             : #else
     182             : static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
     183             :                                         unsigned long address, pmd_t *pmdp,
     184             :                                         pmd_t entry, int dirty)
     185             : {
     186             :         BUILD_BUG();
     187             :         return 0;
     188             : }
     189             : static inline int pudp_set_access_flags(struct vm_area_struct *vma,
     190             :                                         unsigned long address, pud_t *pudp,
     191             :                                         pud_t entry, int dirty)
     192             : {
     193             :         BUILD_BUG();
     194             :         return 0;
     195             : }
     196             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     197             : #endif
     198             : 
     199             : #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
     200             : static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
     201             :                                             unsigned long address,
     202             :                                             pte_t *ptep)
     203             : {
     204           0 :         pte_t pte = *ptep;
     205           0 :         int r = 1;
     206           0 :         if (!pte_young(pte))
     207             :                 r = 0;
     208             :         else
     209           0 :                 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
     210             :         return r;
     211             : }
     212             : #endif
     213             : 
     214             : #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
     215             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     216             : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
     217             :                                             unsigned long address,
     218             :                                             pmd_t *pmdp)
     219             : {
     220             :         pmd_t pmd = *pmdp;
     221             :         int r = 1;
     222             :         if (!pmd_young(pmd))
     223             :                 r = 0;
     224             :         else
     225             :                 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
     226             :         return r;
     227             : }
     228             : #else
     229             : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
     230             :                                             unsigned long address,
     231             :                                             pmd_t *pmdp)
     232             : {
     233             :         BUILD_BUG();
     234             :         return 0;
     235             : }
     236             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     237             : #endif
     238             : 
     239             : #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
     240             : int ptep_clear_flush_young(struct vm_area_struct *vma,
     241             :                            unsigned long address, pte_t *ptep);
     242             : #endif
     243             : 
     244             : #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
     245             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     246             : extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
     247             :                                   unsigned long address, pmd_t *pmdp);
     248             : #else
     249             : /*
     250             :  * Despite relevant to THP only, this API is called from generic rmap code
     251             :  * under PageTransHuge(), hence needs a dummy implementation for !THP
     252             :  */
     253             : static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
     254             :                                          unsigned long address, pmd_t *pmdp)
     255             : {
     256             :         BUILD_BUG();
     257             :         return 0;
     258             : }
     259             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     260             : #endif
     261             : 
     262             : #ifndef __HAVE_ARCH_PTEP_CLEAR
     263             : static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
     264             :                               pte_t *ptep)
     265             : {
     266             :         pte_clear(mm, addr, ptep);
     267             : }
     268             : #endif
     269             : 
     270             : #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
     271             : static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
     272             :                                        unsigned long address,
     273             :                                        pte_t *ptep)
     274             : {
     275           0 :         pte_t pte = *ptep;
     276           0 :         pte_clear(mm, address, ptep);
     277             :         return pte;
     278             : }
     279             : #endif
     280             : 
     281             : #ifndef __HAVE_ARCH_PTEP_GET
     282             : static inline pte_t ptep_get(pte_t *ptep)
     283             : {
     284             :         return READ_ONCE(*ptep);
     285             : }
     286             : #endif
     287             : 
     288             : #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
     289             : /*
     290             :  * WARNING: only to be used in the get_user_pages_fast() implementation.
     291             :  *
     292             :  * With get_user_pages_fast(), we walk down the pagetables without taking any
     293             :  * locks.  For this we would like to load the pointers atomically, but sometimes
     294             :  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
     295             :  * we do have is the guarantee that a PTE will only either go from not present
     296             :  * to present, or present to not present or both -- it will not switch to a
     297             :  * completely different present page without a TLB flush in between; something
     298             :  * that we are blocking by holding interrupts off.
     299             :  *
     300             :  * Setting ptes from not present to present goes:
     301             :  *
     302             :  *   ptep->pte_high = h;
     303             :  *   smp_wmb();
     304             :  *   ptep->pte_low = l;
     305             :  *
     306             :  * And present to not present goes:
     307             :  *
     308             :  *   ptep->pte_low = 0;
     309             :  *   smp_wmb();
     310             :  *   ptep->pte_high = 0;
     311             :  *
     312             :  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
     313             :  * We load pte_high *after* loading pte_low, which ensures we don't see an older
     314             :  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
     315             :  * picked up a changed pte high. We might have gotten rubbish values from
     316             :  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
     317             :  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
     318             :  * operates on present ptes we're safe.
     319             :  */
     320             : static inline pte_t ptep_get_lockless(pte_t *ptep)
     321             : {
     322             :         pte_t pte;
     323             : 
     324             :         do {
     325             :                 pte.pte_low = ptep->pte_low;
     326             :                 smp_rmb();
     327             :                 pte.pte_high = ptep->pte_high;
     328             :                 smp_rmb();
     329             :         } while (unlikely(pte.pte_low != ptep->pte_low));
     330             : 
     331             :         return pte;
     332             : }
     333             : #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
     334             : /*
     335             :  * We require that the PTE can be read atomically.
     336             :  */
     337             : static inline pte_t ptep_get_lockless(pte_t *ptep)
     338             : {
     339             :         return ptep_get(ptep);
     340             : }
     341             : #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
     342             : 
     343             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     344             : #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
     345             : static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
     346             :                                             unsigned long address,
     347             :                                             pmd_t *pmdp)
     348             : {
     349             :         pmd_t pmd = *pmdp;
     350             :         pmd_clear(pmdp);
     351             :         return pmd;
     352             : }
     353             : #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
     354             : #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
     355             : static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
     356             :                                             unsigned long address,
     357             :                                             pud_t *pudp)
     358             : {
     359             :         pud_t pud = *pudp;
     360             : 
     361             :         pud_clear(pudp);
     362             :         return pud;
     363             : }
     364             : #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
     365             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     366             : 
     367             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     368             : #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
     369             : static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
     370             :                                             unsigned long address, pmd_t *pmdp,
     371             :                                             int full)
     372             : {
     373             :         return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
     374             : }
     375             : #endif
     376             : 
     377             : #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
     378             : static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
     379             :                                             unsigned long address, pud_t *pudp,
     380             :                                             int full)
     381             : {
     382             :         return pudp_huge_get_and_clear(mm, address, pudp);
     383             : }
     384             : #endif
     385             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     386             : 
     387             : #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
     388             : static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
     389             :                                             unsigned long address, pte_t *ptep,
     390             :                                             int full)
     391             : {
     392             :         pte_t pte;
     393           0 :         pte = ptep_get_and_clear(mm, address, ptep);
     394             :         return pte;
     395             : }
     396             : #endif
     397             : 
     398             : 
     399             : /*
     400             :  * If two threads concurrently fault at the same page, the thread that
     401             :  * won the race updates the PTE and its local TLB/Cache. The other thread
     402             :  * gives up, simply does nothing, and continues; on architectures where
     403             :  * software can update TLB,  local TLB can be updated here to avoid next page
     404             :  * fault. This function updates TLB only, do nothing with cache or others.
     405             :  * It is the difference with function update_mmu_cache.
     406             :  */
     407             : #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
     408             : static inline void update_mmu_tlb(struct vm_area_struct *vma,
     409             :                                 unsigned long address, pte_t *ptep)
     410             : {
     411             : }
     412             : #define __HAVE_ARCH_UPDATE_MMU_TLB
     413             : #endif
     414             : 
     415             : /*
     416             :  * Some architectures may be able to avoid expensive synchronization
     417             :  * primitives when modifications are made to PTE's which are already
     418             :  * not present, or in the process of an address space destruction.
     419             :  */
     420             : #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
     421             : static inline void pte_clear_not_present_full(struct mm_struct *mm,
     422             :                                               unsigned long address,
     423             :                                               pte_t *ptep,
     424             :                                               int full)
     425             : {
     426           0 :         pte_clear(mm, address, ptep);
     427             : }
     428             : #endif
     429             : 
     430             : #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
     431             : extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
     432             :                               unsigned long address,
     433             :                               pte_t *ptep);
     434             : #endif
     435             : 
     436             : #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
     437             : extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
     438             :                               unsigned long address,
     439             :                               pmd_t *pmdp);
     440             : extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
     441             :                               unsigned long address,
     442             :                               pud_t *pudp);
     443             : #endif
     444             : 
     445             : #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
     446             : struct mm_struct;
     447             : static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
     448             : {
     449           0 :         pte_t old_pte = *ptep;
     450           0 :         set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
     451             : }
     452             : #endif
     453             : 
     454             : /*
     455             :  * On some architectures hardware does not set page access bit when accessing
     456             :  * memory page, it is responsibility of software setting this bit. It brings
     457             :  * out extra page fault penalty to track page access bit. For optimization page
     458             :  * access bit can be set during all page fault flow on these arches.
     459             :  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
     460             :  * where software maintains page access bit.
     461             :  */
     462             : #ifndef pte_sw_mkyoung
     463             : static inline pte_t pte_sw_mkyoung(pte_t pte)
     464             : {
     465             :         return pte;
     466             : }
     467             : #define pte_sw_mkyoung  pte_sw_mkyoung
     468             : #endif
     469             : 
     470             : #ifndef pte_savedwrite
     471             : #define pte_savedwrite pte_write
     472             : #endif
     473             : 
     474             : #ifndef pte_mk_savedwrite
     475             : #define pte_mk_savedwrite pte_mkwrite
     476             : #endif
     477             : 
     478             : #ifndef pte_clear_savedwrite
     479             : #define pte_clear_savedwrite pte_wrprotect
     480             : #endif
     481             : 
     482             : #ifndef pmd_savedwrite
     483             : #define pmd_savedwrite pmd_write
     484             : #endif
     485             : 
     486             : #ifndef pmd_mk_savedwrite
     487             : #define pmd_mk_savedwrite pmd_mkwrite
     488             : #endif
     489             : 
     490             : #ifndef pmd_clear_savedwrite
     491             : #define pmd_clear_savedwrite pmd_wrprotect
     492             : #endif
     493             : 
     494             : #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
     495             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     496             : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
     497             :                                       unsigned long address, pmd_t *pmdp)
     498             : {
     499             :         pmd_t old_pmd = *pmdp;
     500             :         set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
     501             : }
     502             : #else
     503             : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
     504             :                                       unsigned long address, pmd_t *pmdp)
     505             : {
     506             :         BUILD_BUG();
     507             : }
     508             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     509             : #endif
     510             : #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
     511             : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
     512             : static inline void pudp_set_wrprotect(struct mm_struct *mm,
     513             :                                       unsigned long address, pud_t *pudp)
     514             : {
     515             :         pud_t old_pud = *pudp;
     516             : 
     517             :         set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
     518             : }
     519             : #else
     520             : static inline void pudp_set_wrprotect(struct mm_struct *mm,
     521             :                                       unsigned long address, pud_t *pudp)
     522             : {
     523             :         BUILD_BUG();
     524             : }
     525             : #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
     526             : #endif
     527             : 
     528             : #ifndef pmdp_collapse_flush
     529             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     530             : extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
     531             :                                  unsigned long address, pmd_t *pmdp);
     532             : #else
     533             : static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
     534             :                                         unsigned long address,
     535             :                                         pmd_t *pmdp)
     536             : {
     537             :         BUILD_BUG();
     538             :         return *pmdp;
     539             : }
     540             : #define pmdp_collapse_flush pmdp_collapse_flush
     541             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     542             : #endif
     543             : 
     544             : #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
     545             : extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
     546             :                                        pgtable_t pgtable);
     547             : #endif
     548             : 
     549             : #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
     550             : extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
     551             : #endif
     552             : 
     553             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     554             : /*
     555             :  * This is an implementation of pmdp_establish() that is only suitable for an
     556             :  * architecture that doesn't have hardware dirty/accessed bits. In this case we
     557             :  * can't race with CPU which sets these bits and non-atomic approach is fine.
     558             :  */
     559             : static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
     560             :                 unsigned long address, pmd_t *pmdp, pmd_t pmd)
     561             : {
     562             :         pmd_t old_pmd = *pmdp;
     563             :         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
     564             :         return old_pmd;
     565             : }
     566             : #endif
     567             : 
     568             : #ifndef __HAVE_ARCH_PMDP_INVALIDATE
     569             : extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
     570             :                             pmd_t *pmdp);
     571             : #endif
     572             : 
     573             : #ifndef __HAVE_ARCH_PTE_SAME
     574             : static inline int pte_same(pte_t pte_a, pte_t pte_b)
     575             : {
     576             :         return pte_val(pte_a) == pte_val(pte_b);
     577             : }
     578             : #endif
     579             : 
     580             : #ifndef __HAVE_ARCH_PTE_UNUSED
     581             : /*
     582             :  * Some architectures provide facilities to virtualization guests
     583             :  * so that they can flag allocated pages as unused. This allows the
     584             :  * host to transparently reclaim unused pages. This function returns
     585             :  * whether the pte's page is unused.
     586             :  */
     587             : static inline int pte_unused(pte_t pte)
     588             : {
     589             :         return 0;
     590             : }
     591             : #endif
     592             : 
     593             : #ifndef pte_access_permitted
     594             : #define pte_access_permitted(pte, write) \
     595             :         (pte_present(pte) && (!(write) || pte_write(pte)))
     596             : #endif
     597             : 
     598             : #ifndef pmd_access_permitted
     599             : #define pmd_access_permitted(pmd, write) \
     600             :         (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
     601             : #endif
     602             : 
     603             : #ifndef pud_access_permitted
     604             : #define pud_access_permitted(pud, write) \
     605             :         (pud_present(pud) && (!(write) || pud_write(pud)))
     606             : #endif
     607             : 
     608             : #ifndef p4d_access_permitted
     609             : #define p4d_access_permitted(p4d, write) \
     610             :         (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
     611             : #endif
     612             : 
     613             : #ifndef pgd_access_permitted
     614             : #define pgd_access_permitted(pgd, write) \
     615             :         (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
     616             : #endif
     617             : 
     618             : #ifndef __HAVE_ARCH_PMD_SAME
     619             : static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
     620             : {
     621             :         return pmd_val(pmd_a) == pmd_val(pmd_b);
     622             : }
     623             : 
     624             : static inline int pud_same(pud_t pud_a, pud_t pud_b)
     625             : {
     626             :         return pud_val(pud_a) == pud_val(pud_b);
     627             : }
     628             : #endif
     629             : 
     630             : #ifndef __HAVE_ARCH_P4D_SAME
     631             : static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
     632             : {
     633             :         return p4d_val(p4d_a) == p4d_val(p4d_b);
     634             : }
     635             : #endif
     636             : 
     637             : #ifndef __HAVE_ARCH_PGD_SAME
     638             : static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
     639             : {
     640             :         return pgd_val(pgd_a) == pgd_val(pgd_b);
     641             : }
     642             : #endif
     643             : 
     644             : /*
     645             :  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
     646             :  * TLB flush will be required as a result of the "set". For example, use
     647             :  * in scenarios where it is known ahead of time that the routine is
     648             :  * setting non-present entries, or re-setting an existing entry to the
     649             :  * same value. Otherwise, use the typical "set" helpers and flush the
     650             :  * TLB.
     651             :  */
     652             : #define set_pte_safe(ptep, pte) \
     653             : ({ \
     654             :         WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
     655             :         set_pte(ptep, pte); \
     656             : })
     657             : 
     658             : #define set_pmd_safe(pmdp, pmd) \
     659             : ({ \
     660             :         WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
     661             :         set_pmd(pmdp, pmd); \
     662             : })
     663             : 
     664             : #define set_pud_safe(pudp, pud) \
     665             : ({ \
     666             :         WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
     667             :         set_pud(pudp, pud); \
     668             : })
     669             : 
     670             : #define set_p4d_safe(p4dp, p4d) \
     671             : ({ \
     672             :         WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
     673             :         set_p4d(p4dp, p4d); \
     674             : })
     675             : 
     676             : #define set_pgd_safe(pgdp, pgd) \
     677             : ({ \
     678             :         WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
     679             :         set_pgd(pgdp, pgd); \
     680             : })
     681             : 
     682             : #ifndef __HAVE_ARCH_DO_SWAP_PAGE
     683             : /*
     684             :  * Some architectures support metadata associated with a page. When a
     685             :  * page is being swapped out, this metadata must be saved so it can be
     686             :  * restored when the page is swapped back in. SPARC M7 and newer
     687             :  * processors support an ADI (Application Data Integrity) tag for the
     688             :  * page as metadata for the page. arch_do_swap_page() can restore this
     689             :  * metadata when a page is swapped back in.
     690             :  */
     691             : static inline void arch_do_swap_page(struct mm_struct *mm,
     692             :                                      struct vm_area_struct *vma,
     693             :                                      unsigned long addr,
     694             :                                      pte_t pte, pte_t oldpte)
     695             : {
     696             : 
     697             : }
     698             : #endif
     699             : 
     700             : #ifndef __HAVE_ARCH_UNMAP_ONE
     701             : /*
     702             :  * Some architectures support metadata associated with a page. When a
     703             :  * page is being swapped out, this metadata must be saved so it can be
     704             :  * restored when the page is swapped back in. SPARC M7 and newer
     705             :  * processors support an ADI (Application Data Integrity) tag for the
     706             :  * page as metadata for the page. arch_unmap_one() can save this
     707             :  * metadata on a swap-out of a page.
     708             :  */
     709             : static inline int arch_unmap_one(struct mm_struct *mm,
     710             :                                   struct vm_area_struct *vma,
     711             :                                   unsigned long addr,
     712             :                                   pte_t orig_pte)
     713             : {
     714             :         return 0;
     715             : }
     716             : #endif
     717             : 
     718             : /*
     719             :  * Allow architectures to preserve additional metadata associated with
     720             :  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
     721             :  * prototypes must be defined in the arch-specific asm/pgtable.h file.
     722             :  */
     723             : #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
     724             : static inline int arch_prepare_to_swap(struct page *page)
     725             : {
     726             :         return 0;
     727             : }
     728             : #endif
     729             : 
     730             : #ifndef __HAVE_ARCH_SWAP_INVALIDATE
     731             : static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
     732             : {
     733             : }
     734             : 
     735             : static inline void arch_swap_invalidate_area(int type)
     736             : {
     737             : }
     738             : #endif
     739             : 
     740             : #ifndef __HAVE_ARCH_SWAP_RESTORE
     741             : static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
     742             : {
     743             : }
     744             : #endif
     745             : 
     746             : #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
     747             : #define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
     748             : #endif
     749             : 
     750             : #ifndef __HAVE_ARCH_MOVE_PTE
     751             : #define move_pte(pte, prot, old_addr, new_addr) (pte)
     752             : #endif
     753             : 
     754             : #ifndef pte_accessible
     755             : # define pte_accessible(mm, pte)        ((void)(pte), 1)
     756             : #endif
     757             : 
     758             : #ifndef flush_tlb_fix_spurious_fault
     759             : #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
     760             : #endif
     761             : 
     762             : /*
     763             :  * When walking page tables, get the address of the next boundary,
     764             :  * or the end address of the range if that comes earlier.  Although no
     765             :  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
     766             :  */
     767             : 
     768             : #define pgd_addr_end(addr, end)                                         \
     769             : ({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;      \
     770             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     771             : })
     772             : 
     773             : #ifndef p4d_addr_end
     774             : #define p4d_addr_end(addr, end)                                         \
     775             : ({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;  \
     776             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     777             : })
     778             : #endif
     779             : 
     780             : #ifndef pud_addr_end
     781             : #define pud_addr_end(addr, end)                                         \
     782             : ({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;  \
     783             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     784             : })
     785             : #endif
     786             : 
     787             : #ifndef pmd_addr_end
     788             : #define pmd_addr_end(addr, end)                                         \
     789             : ({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;  \
     790             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     791             : })
     792             : #endif
     793             : 
     794             : /*
     795             :  * When walking page tables, we usually want to skip any p?d_none entries;
     796             :  * and any p?d_bad entries - reporting the error before resetting to none.
     797             :  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
     798             :  */
     799             : void pgd_clear_bad(pgd_t *);
     800             : 
     801             : #ifndef __PAGETABLE_P4D_FOLDED
     802             : void p4d_clear_bad(p4d_t *);
     803             : #else
     804             : #define p4d_clear_bad(p4d)        do { } while (0)
     805             : #endif
     806             : 
     807             : #ifndef __PAGETABLE_PUD_FOLDED
     808             : void pud_clear_bad(pud_t *);
     809             : #else
     810             : #define pud_clear_bad(p4d)        do { } while (0)
     811             : #endif
     812             : 
     813             : void pmd_clear_bad(pmd_t *);
     814             : 
     815             : static inline int pgd_none_or_clear_bad(pgd_t *pgd)
     816             : {
     817           0 :         if (pgd_none(*pgd))
     818             :                 return 1;
     819           0 :         if (unlikely(pgd_bad(*pgd))) {
     820             :                 pgd_clear_bad(pgd);
     821             :                 return 1;
     822             :         }
     823             :         return 0;
     824             : }
     825             : 
     826             : static inline int p4d_none_or_clear_bad(p4d_t *p4d)
     827             : {
     828           0 :         if (p4d_none(*p4d))
     829             :                 return 1;
     830           0 :         if (unlikely(p4d_bad(*p4d))) {
     831             :                 p4d_clear_bad(p4d);
     832             :                 return 1;
     833             :         }
     834             :         return 0;
     835             : }
     836             : 
     837             : static inline int pud_none_or_clear_bad(pud_t *pud)
     838             : {
     839           0 :         if (pud_none(*pud))
     840             :                 return 1;
     841           0 :         if (unlikely(pud_bad(*pud))) {
     842             :                 pud_clear_bad(pud);
     843             :                 return 1;
     844             :         }
     845             :         return 0;
     846             : }
     847             : 
     848             : static inline int pmd_none_or_clear_bad(pmd_t *pmd)
     849             : {
     850           0 :         if (pmd_none(*pmd))
     851             :                 return 1;
     852           0 :         if (unlikely(pmd_bad(*pmd))) {
     853           0 :                 pmd_clear_bad(pmd);
     854             :                 return 1;
     855             :         }
     856             :         return 0;
     857             : }
     858             : 
     859             : static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
     860             :                                              unsigned long addr,
     861             :                                              pte_t *ptep)
     862             : {
     863             :         /*
     864             :          * Get the current pte state, but zero it out to make it
     865             :          * non-present, preventing the hardware from asynchronously
     866             :          * updating it.
     867             :          */
     868           0 :         return ptep_get_and_clear(vma->vm_mm, addr, ptep);
     869             : }
     870             : 
     871             : static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
     872             :                                              unsigned long addr,
     873             :                                              pte_t *ptep, pte_t pte)
     874             : {
     875             :         /*
     876             :          * The pte is non-present, so there's no hardware state to
     877             :          * preserve.
     878             :          */
     879           0 :         set_pte_at(vma->vm_mm, addr, ptep, pte);
     880             : }
     881             : 
     882             : #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
     883             : /*
     884             :  * Start a pte protection read-modify-write transaction, which
     885             :  * protects against asynchronous hardware modifications to the pte.
     886             :  * The intention is not to prevent the hardware from making pte
     887             :  * updates, but to prevent any updates it may make from being lost.
     888             :  *
     889             :  * This does not protect against other software modifications of the
     890             :  * pte; the appropriate pte lock must be held over the transaction.
     891             :  *
     892             :  * Note that this interface is intended to be batchable, meaning that
     893             :  * ptep_modify_prot_commit may not actually update the pte, but merely
     894             :  * queue the update to be done at some later time.  The update must be
     895             :  * actually committed before the pte lock is released, however.
     896             :  */
     897             : static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
     898             :                                            unsigned long addr,
     899             :                                            pte_t *ptep)
     900             : {
     901           0 :         return __ptep_modify_prot_start(vma, addr, ptep);
     902             : }
     903             : 
     904             : /*
     905             :  * Commit an update to a pte, leaving any hardware-controlled bits in
     906             :  * the PTE unmodified.
     907             :  */
     908             : static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
     909             :                                            unsigned long addr,
     910             :                                            pte_t *ptep, pte_t old_pte, pte_t pte)
     911             : {
     912           0 :         __ptep_modify_prot_commit(vma, addr, ptep, pte);
     913             : }
     914             : #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
     915             : #endif /* CONFIG_MMU */
     916             : 
     917             : /*
     918             :  * No-op macros that just return the current protection value. Defined here
     919             :  * because these macros can be used even if CONFIG_MMU is not defined.
     920             :  */
     921             : 
     922             : #ifndef pgprot_nx
     923             : #define pgprot_nx(prot) (prot)
     924             : #endif
     925             : 
     926             : #ifndef pgprot_noncached
     927             : #define pgprot_noncached(prot)  (prot)
     928             : #endif
     929             : 
     930             : #ifndef pgprot_writecombine
     931             : #define pgprot_writecombine pgprot_noncached
     932             : #endif
     933             : 
     934             : #ifndef pgprot_writethrough
     935             : #define pgprot_writethrough pgprot_noncached
     936             : #endif
     937             : 
     938             : #ifndef pgprot_device
     939             : #define pgprot_device pgprot_noncached
     940             : #endif
     941             : 
     942             : #ifndef pgprot_mhp
     943             : #define pgprot_mhp(prot)        (prot)
     944             : #endif
     945             : 
     946             : #ifdef CONFIG_MMU
     947             : #ifndef pgprot_modify
     948             : #define pgprot_modify pgprot_modify
     949             : static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
     950             : {
     951             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
     952             :                 newprot = pgprot_noncached(newprot);
     953             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
     954             :                 newprot = pgprot_writecombine(newprot);
     955             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
     956             :                 newprot = pgprot_device(newprot);
     957             :         return newprot;
     958             : }
     959             : #endif
     960             : #endif /* CONFIG_MMU */
     961             : 
     962             : #ifndef pgprot_encrypted
     963             : #define pgprot_encrypted(prot)  (prot)
     964             : #endif
     965             : 
     966             : #ifndef pgprot_decrypted
     967             : #define pgprot_decrypted(prot)  (prot)
     968             : #endif
     969             : 
     970             : /*
     971             :  * A facility to provide lazy MMU batching.  This allows PTE updates and
     972             :  * page invalidations to be delayed until a call to leave lazy MMU mode
     973             :  * is issued.  Some architectures may benefit from doing this, and it is
     974             :  * beneficial for both shadow and direct mode hypervisors, which may batch
     975             :  * the PTE updates which happen during this window.  Note that using this
     976             :  * interface requires that read hazards be removed from the code.  A read
     977             :  * hazard could result in the direct mode hypervisor case, since the actual
     978             :  * write to the page tables may not yet have taken place, so reads though
     979             :  * a raw PTE pointer after it has been modified are not guaranteed to be
     980             :  * up to date.  This mode can only be entered and left under the protection of
     981             :  * the page table locks for all page tables which may be modified.  In the UP
     982             :  * case, this is required so that preemption is disabled, and in the SMP case,
     983             :  * it must synchronize the delayed page table writes properly on other CPUs.
     984             :  */
     985             : #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
     986             : #define arch_enter_lazy_mmu_mode()      do {} while (0)
     987             : #define arch_leave_lazy_mmu_mode()      do {} while (0)
     988             : #define arch_flush_lazy_mmu_mode()      do {} while (0)
     989             : #endif
     990             : 
     991             : /*
     992             :  * A facility to provide batching of the reload of page tables and
     993             :  * other process state with the actual context switch code for
     994             :  * paravirtualized guests.  By convention, only one of the batched
     995             :  * update (lazy) modes (CPU, MMU) should be active at any given time,
     996             :  * entry should never be nested, and entry and exits should always be
     997             :  * paired.  This is for sanity of maintaining and reasoning about the
     998             :  * kernel code.  In this case, the exit (end of the context switch) is
     999             :  * in architecture-specific code, and so doesn't need a generic
    1000             :  * definition.
    1001             :  */
    1002             : #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
    1003             : #define arch_start_context_switch(prev) do {} while (0)
    1004             : #endif
    1005             : 
    1006             : #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
    1007             : #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
    1008             : static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
    1009             : {
    1010             :         return pmd;
    1011             : }
    1012             : 
    1013             : static inline int pmd_swp_soft_dirty(pmd_t pmd)
    1014             : {
    1015             :         return 0;
    1016             : }
    1017             : 
    1018             : static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
    1019             : {
    1020             :         return pmd;
    1021             : }
    1022             : #endif
    1023             : #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
    1024             : static inline int pte_soft_dirty(pte_t pte)
    1025             : {
    1026             :         return 0;
    1027             : }
    1028             : 
    1029             : static inline int pmd_soft_dirty(pmd_t pmd)
    1030             : {
    1031             :         return 0;
    1032             : }
    1033             : 
    1034             : static inline pte_t pte_mksoft_dirty(pte_t pte)
    1035             : {
    1036             :         return pte;
    1037             : }
    1038             : 
    1039             : static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
    1040             : {
    1041             :         return pmd;
    1042             : }
    1043             : 
    1044             : static inline pte_t pte_clear_soft_dirty(pte_t pte)
    1045             : {
    1046             :         return pte;
    1047             : }
    1048             : 
    1049             : static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
    1050             : {
    1051             :         return pmd;
    1052             : }
    1053             : 
    1054             : static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
    1055             : {
    1056             :         return pte;
    1057             : }
    1058             : 
    1059             : static inline int pte_swp_soft_dirty(pte_t pte)
    1060             : {
    1061             :         return 0;
    1062             : }
    1063             : 
    1064             : static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
    1065             : {
    1066             :         return pte;
    1067             : }
    1068             : 
    1069             : static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
    1070             : {
    1071             :         return pmd;
    1072             : }
    1073             : 
    1074             : static inline int pmd_swp_soft_dirty(pmd_t pmd)
    1075             : {
    1076             :         return 0;
    1077             : }
    1078             : 
    1079             : static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
    1080             : {
    1081             :         return pmd;
    1082             : }
    1083             : #endif
    1084             : 
    1085             : #ifndef __HAVE_PFNMAP_TRACKING
    1086             : /*
    1087             :  * Interfaces that can be used by architecture code to keep track of
    1088             :  * memory type of pfn mappings specified by the remap_pfn_range,
    1089             :  * vmf_insert_pfn.
    1090             :  */
    1091             : 
    1092             : /*
    1093             :  * track_pfn_remap is called when a _new_ pfn mapping is being established
    1094             :  * by remap_pfn_range() for physical range indicated by pfn and size.
    1095             :  */
    1096             : static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
    1097             :                                   unsigned long pfn, unsigned long addr,
    1098             :                                   unsigned long size)
    1099             : {
    1100             :         return 0;
    1101             : }
    1102             : 
    1103             : /*
    1104             :  * track_pfn_insert is called when a _new_ single pfn is established
    1105             :  * by vmf_insert_pfn().
    1106             :  */
    1107             : static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
    1108             :                                     pfn_t pfn)
    1109             : {
    1110             : }
    1111             : 
    1112             : /*
    1113             :  * track_pfn_copy is called when vma that is covering the pfnmap gets
    1114             :  * copied through copy_page_range().
    1115             :  */
    1116             : static inline int track_pfn_copy(struct vm_area_struct *vma)
    1117             : {
    1118             :         return 0;
    1119             : }
    1120             : 
    1121             : /*
    1122             :  * untrack_pfn is called while unmapping a pfnmap for a region.
    1123             :  * untrack can be called for a specific region indicated by pfn and size or
    1124             :  * can be for the entire vma (in which case pfn, size are zero).
    1125             :  */
    1126             : static inline void untrack_pfn(struct vm_area_struct *vma,
    1127             :                                unsigned long pfn, unsigned long size)
    1128             : {
    1129             : }
    1130             : 
    1131             : /*
    1132             :  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
    1133             :  */
    1134             : static inline void untrack_pfn_moved(struct vm_area_struct *vma)
    1135             : {
    1136             : }
    1137             : #else
    1138             : extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
    1139             :                            unsigned long pfn, unsigned long addr,
    1140             :                            unsigned long size);
    1141             : extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
    1142             :                              pfn_t pfn);
    1143             : extern int track_pfn_copy(struct vm_area_struct *vma);
    1144             : extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
    1145             :                         unsigned long size);
    1146             : extern void untrack_pfn_moved(struct vm_area_struct *vma);
    1147             : #endif
    1148             : 
    1149             : #ifdef CONFIG_MMU
    1150             : #ifdef __HAVE_COLOR_ZERO_PAGE
    1151             : static inline int is_zero_pfn(unsigned long pfn)
    1152             : {
    1153             :         extern unsigned long zero_pfn;
    1154             :         unsigned long offset_from_zero_pfn = pfn - zero_pfn;
    1155             :         return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
    1156             : }
    1157             : 
    1158             : #define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
    1159             : 
    1160             : #else
    1161             : static inline int is_zero_pfn(unsigned long pfn)
    1162             : {
    1163             :         extern unsigned long zero_pfn;
    1164           0 :         return pfn == zero_pfn;
    1165             : }
    1166             : 
    1167             : static inline unsigned long my_zero_pfn(unsigned long addr)
    1168             : {
    1169             :         extern unsigned long zero_pfn;
    1170           0 :         return zero_pfn;
    1171             : }
    1172             : #endif
    1173             : #else
    1174             : static inline int is_zero_pfn(unsigned long pfn)
    1175             : {
    1176             :         return 0;
    1177             : }
    1178             : 
    1179             : static inline unsigned long my_zero_pfn(unsigned long addr)
    1180             : {
    1181             :         return 0;
    1182             : }
    1183             : #endif /* CONFIG_MMU */
    1184             : 
    1185             : #ifdef CONFIG_MMU
    1186             : 
    1187             : #ifndef CONFIG_TRANSPARENT_HUGEPAGE
    1188             : static inline int pmd_trans_huge(pmd_t pmd)
    1189             : {
    1190             :         return 0;
    1191             : }
    1192             : #ifndef pmd_write
    1193             : static inline int pmd_write(pmd_t pmd)
    1194             : {
    1195             :         BUG();
    1196             :         return 0;
    1197             : }
    1198             : #endif /* pmd_write */
    1199             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    1200             : 
    1201             : #ifndef pud_write
    1202             : static inline int pud_write(pud_t pud)
    1203             : {
    1204             :         BUG();
    1205             :         return 0;
    1206             : }
    1207             : #endif /* pud_write */
    1208             : 
    1209             : #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
    1210             : static inline int pmd_devmap(pmd_t pmd)
    1211             : {
    1212             :         return 0;
    1213             : }
    1214             : static inline int pud_devmap(pud_t pud)
    1215             : {
    1216             :         return 0;
    1217             : }
    1218             : static inline int pgd_devmap(pgd_t pgd)
    1219             : {
    1220             :         return 0;
    1221             : }
    1222             : #endif
    1223             : 
    1224             : #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
    1225             :         (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
    1226             :          !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
    1227             : static inline int pud_trans_huge(pud_t pud)
    1228             : {
    1229             :         return 0;
    1230             : }
    1231             : #endif
    1232             : 
    1233             : /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
    1234             : static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
    1235             : {
    1236             :         pud_t pudval = READ_ONCE(*pud);
    1237             : 
    1238             :         if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
    1239             :                 return 1;
    1240             :         if (unlikely(pud_bad(pudval))) {
    1241             :                 pud_clear_bad(pud);
    1242             :                 return 1;
    1243             :         }
    1244             :         return 0;
    1245             : }
    1246             : 
    1247             : /* See pmd_trans_unstable for discussion. */
    1248             : static inline int pud_trans_unstable(pud_t *pud)
    1249             : {
    1250             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
    1251             :         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    1252             :         return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
    1253             : #else
    1254             :         return 0;
    1255             : #endif
    1256             : }
    1257             : 
    1258             : #ifndef pmd_read_atomic
    1259             : static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
    1260             : {
    1261             :         /*
    1262             :          * Depend on compiler for an atomic pmd read. NOTE: this is
    1263             :          * only going to work, if the pmdval_t isn't larger than
    1264             :          * an unsigned long.
    1265             :          */
    1266           0 :         return *pmdp;
    1267             : }
    1268             : #endif
    1269             : 
    1270             : #ifndef arch_needs_pgtable_deposit
    1271             : #define arch_needs_pgtable_deposit() (false)
    1272             : #endif
    1273             : /*
    1274             :  * This function is meant to be used by sites walking pagetables with
    1275             :  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
    1276             :  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
    1277             :  * into a null pmd and the transhuge page fault can convert a null pmd
    1278             :  * into an hugepmd or into a regular pmd (if the hugepage allocation
    1279             :  * fails). While holding the mmap_lock in read mode the pmd becomes
    1280             :  * stable and stops changing under us only if it's not null and not a
    1281             :  * transhuge pmd. When those races occurs and this function makes a
    1282             :  * difference vs the standard pmd_none_or_clear_bad, the result is
    1283             :  * undefined so behaving like if the pmd was none is safe (because it
    1284             :  * can return none anyway). The compiler level barrier() is critically
    1285             :  * important to compute the two checks atomically on the same pmdval.
    1286             :  *
    1287             :  * For 32bit kernels with a 64bit large pmd_t this automatically takes
    1288             :  * care of reading the pmd atomically to avoid SMP race conditions
    1289             :  * against pmd_populate() when the mmap_lock is hold for reading by the
    1290             :  * caller (a special atomic read not done by "gcc" as in the generic
    1291             :  * version above, is also needed when THP is disabled because the page
    1292             :  * fault can populate the pmd from under us).
    1293             :  */
    1294           0 : static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
    1295             : {
    1296           0 :         pmd_t pmdval = pmd_read_atomic(pmd);
    1297             :         /*
    1298             :          * The barrier will stabilize the pmdval in a register or on
    1299             :          * the stack so that it will stop changing under the code.
    1300             :          *
    1301             :          * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
    1302             :          * pmd_read_atomic is allowed to return a not atomic pmdval
    1303             :          * (for example pointing to an hugepage that has never been
    1304             :          * mapped in the pmd). The below checks will only care about
    1305             :          * the low part of the pmd with 32bit PAE x86 anyway, with the
    1306             :          * exception of pmd_none(). So the important thing is that if
    1307             :          * the low part of the pmd is found null, the high part will
    1308             :          * be also null or the pmd_none() check below would be
    1309             :          * confused.
    1310             :          */
    1311             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1312             :         barrier();
    1313             : #endif
    1314             :         /*
    1315             :          * !pmd_present() checks for pmd migration entries
    1316             :          *
    1317             :          * The complete check uses is_pmd_migration_entry() in linux/swapops.h
    1318             :          * But using that requires moving current function and pmd_trans_unstable()
    1319             :          * to linux/swapops.h to resolve dependency, which is too much code move.
    1320             :          *
    1321             :          * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
    1322             :          * because !pmd_present() pages can only be under migration not swapped
    1323             :          * out.
    1324             :          *
    1325             :          * pmd_none() is preserved for future condition checks on pmd migration
    1326             :          * entries and not confusing with this function name, although it is
    1327             :          * redundant with !pmd_present().
    1328             :          */
    1329           0 :         if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
    1330             :                 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
    1331             :                 return 1;
    1332           0 :         if (unlikely(pmd_bad(pmdval))) {
    1333           0 :                 pmd_clear_bad(pmd);
    1334           0 :                 return 1;
    1335             :         }
    1336             :         return 0;
    1337             : }
    1338             : 
    1339             : /*
    1340             :  * This is a noop if Transparent Hugepage Support is not built into
    1341             :  * the kernel. Otherwise it is equivalent to
    1342             :  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
    1343             :  * places that already verified the pmd is not none and they want to
    1344             :  * walk ptes while holding the mmap sem in read mode (write mode don't
    1345             :  * need this). If THP is not enabled, the pmd can't go away under the
    1346             :  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
    1347             :  * run a pmd_trans_unstable before walking the ptes after
    1348             :  * split_huge_pmd returns (because it may have run when the pmd become
    1349             :  * null, but then a page fault can map in a THP and not a regular page).
    1350             :  */
    1351             : static inline int pmd_trans_unstable(pmd_t *pmd)
    1352             : {
    1353             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1354             :         return pmd_none_or_trans_huge_or_clear_bad(pmd);
    1355             : #else
    1356             :         return 0;
    1357             : #endif
    1358             : }
    1359             : 
    1360             : /*
    1361             :  * the ordering of these checks is important for pmds with _page_devmap set.
    1362             :  * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
    1363             :  * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
    1364             :  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
    1365             :  */
    1366             : static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
    1367             : {
    1368           0 :         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
    1369             : }
    1370             : 
    1371             : #ifndef CONFIG_NUMA_BALANCING
    1372             : /*
    1373             :  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
    1374             :  * the only case the kernel cares is for NUMA balancing and is only ever set
    1375             :  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
    1376             :  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
    1377             :  * is the responsibility of the caller to distinguish between PROT_NONE
    1378             :  * protections and NUMA hinting fault protections.
    1379             :  */
    1380             : static inline int pte_protnone(pte_t pte)
    1381             : {
    1382             :         return 0;
    1383             : }
    1384             : 
    1385             : static inline int pmd_protnone(pmd_t pmd)
    1386             : {
    1387             :         return 0;
    1388             : }
    1389             : #endif /* CONFIG_NUMA_BALANCING */
    1390             : 
    1391             : #endif /* CONFIG_MMU */
    1392             : 
    1393             : #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
    1394             : 
    1395             : #ifndef __PAGETABLE_P4D_FOLDED
    1396             : int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
    1397             : int p4d_clear_huge(p4d_t *p4d);
    1398             : #else
    1399             : static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
    1400             : {
    1401             :         return 0;
    1402             : }
    1403             : static inline int p4d_clear_huge(p4d_t *p4d)
    1404             : {
    1405             :         return 0;
    1406             : }
    1407             : #endif /* !__PAGETABLE_P4D_FOLDED */
    1408             : 
    1409             : int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
    1410             : int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
    1411             : int pud_clear_huge(pud_t *pud);
    1412             : int pmd_clear_huge(pmd_t *pmd);
    1413             : int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
    1414             : int pud_free_pmd_page(pud_t *pud, unsigned long addr);
    1415             : int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
    1416             : #else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
    1417             : static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
    1418             : {
    1419             :         return 0;
    1420             : }
    1421             : static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
    1422             : {
    1423             :         return 0;
    1424             : }
    1425             : static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
    1426             : {
    1427             :         return 0;
    1428             : }
    1429             : static inline int p4d_clear_huge(p4d_t *p4d)
    1430             : {
    1431             :         return 0;
    1432             : }
    1433             : static inline int pud_clear_huge(pud_t *pud)
    1434             : {
    1435             :         return 0;
    1436             : }
    1437             : static inline int pmd_clear_huge(pmd_t *pmd)
    1438             : {
    1439             :         return 0;
    1440             : }
    1441             : static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
    1442             : {
    1443             :         return 0;
    1444             : }
    1445             : static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
    1446             : {
    1447             :         return 0;
    1448             : }
    1449             : static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
    1450             : {
    1451             :         return 0;
    1452             : }
    1453             : #endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
    1454             : 
    1455             : #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
    1456             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1457             : /*
    1458             :  * ARCHes with special requirements for evicting THP backing TLB entries can
    1459             :  * implement this. Otherwise also, it can help optimize normal TLB flush in
    1460             :  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
    1461             :  * entire TLB if flush span is greater than a threshold, which will
    1462             :  * likely be true for a single huge page. Thus a single THP flush will
    1463             :  * invalidate the entire TLB which is not desirable.
    1464             :  * e.g. see arch/arc: flush_pmd_tlb_range
    1465             :  */
    1466             : #define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
    1467             : #define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
    1468             : #else
    1469             : #define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
    1470             : #define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
    1471             : #endif
    1472             : #endif
    1473             : 
    1474             : struct file;
    1475             : int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
    1476             :                         unsigned long size, pgprot_t *vma_prot);
    1477             : 
    1478             : #ifndef CONFIG_X86_ESPFIX64
    1479             : static inline void init_espfix_bsp(void) { }
    1480             : #endif
    1481             : 
    1482             : extern void __init pgtable_cache_init(void);
    1483             : 
    1484             : #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
    1485             : static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
    1486             : {
    1487             :         return true;
    1488             : }
    1489             : 
    1490             : static inline bool arch_has_pfn_modify_check(void)
    1491             : {
    1492             :         return false;
    1493             : }
    1494             : #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
    1495             : 
    1496             : /*
    1497             :  * Architecture PAGE_KERNEL_* fallbacks
    1498             :  *
    1499             :  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
    1500             :  * because they really don't support them, or the port needs to be updated to
    1501             :  * reflect the required functionality. Below are a set of relatively safe
    1502             :  * fallbacks, as best effort, which we can count on in lieu of the architectures
    1503             :  * not defining them on their own yet.
    1504             :  */
    1505             : 
    1506             : #ifndef PAGE_KERNEL_RO
    1507             : # define PAGE_KERNEL_RO PAGE_KERNEL
    1508             : #endif
    1509             : 
    1510             : #ifndef PAGE_KERNEL_EXEC
    1511             : # define PAGE_KERNEL_EXEC PAGE_KERNEL
    1512             : #endif
    1513             : 
    1514             : /*
    1515             :  * Page Table Modification bits for pgtbl_mod_mask.
    1516             :  *
    1517             :  * These are used by the p?d_alloc_track*() set of functions an in the generic
    1518             :  * vmalloc/ioremap code to track at which page-table levels entries have been
    1519             :  * modified. Based on that the code can better decide when vmalloc and ioremap
    1520             :  * mapping changes need to be synchronized to other page-tables in the system.
    1521             :  */
    1522             : #define         __PGTBL_PGD_MODIFIED    0
    1523             : #define         __PGTBL_P4D_MODIFIED    1
    1524             : #define         __PGTBL_PUD_MODIFIED    2
    1525             : #define         __PGTBL_PMD_MODIFIED    3
    1526             : #define         __PGTBL_PTE_MODIFIED    4
    1527             : 
    1528             : #define         PGTBL_PGD_MODIFIED      BIT(__PGTBL_PGD_MODIFIED)
    1529             : #define         PGTBL_P4D_MODIFIED      BIT(__PGTBL_P4D_MODIFIED)
    1530             : #define         PGTBL_PUD_MODIFIED      BIT(__PGTBL_PUD_MODIFIED)
    1531             : #define         PGTBL_PMD_MODIFIED      BIT(__PGTBL_PMD_MODIFIED)
    1532             : #define         PGTBL_PTE_MODIFIED      BIT(__PGTBL_PTE_MODIFIED)
    1533             : 
    1534             : /* Page-Table Modification Mask */
    1535             : typedef unsigned int pgtbl_mod_mask;
    1536             : 
    1537             : #endif /* !__ASSEMBLY__ */
    1538             : 
    1539             : #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
    1540             : #ifdef CONFIG_PHYS_ADDR_T_64BIT
    1541             : /*
    1542             :  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
    1543             :  * with physical address space extension, but falls back to
    1544             :  * BITS_PER_LONG otherwise.
    1545             :  */
    1546             : #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
    1547             : #else
    1548             : #define MAX_POSSIBLE_PHYSMEM_BITS 32
    1549             : #endif
    1550             : #endif
    1551             : 
    1552             : #ifndef has_transparent_hugepage
    1553             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1554             : #define has_transparent_hugepage() 1
    1555             : #else
    1556             : #define has_transparent_hugepage() 0
    1557             : #endif
    1558             : #endif
    1559             : 
    1560             : /*
    1561             :  * On some architectures it depends on the mm if the p4d/pud or pmd
    1562             :  * layer of the page table hierarchy is folded or not.
    1563             :  */
    1564             : #ifndef mm_p4d_folded
    1565             : #define mm_p4d_folded(mm)       __is_defined(__PAGETABLE_P4D_FOLDED)
    1566             : #endif
    1567             : 
    1568             : #ifndef mm_pud_folded
    1569             : #define mm_pud_folded(mm)       __is_defined(__PAGETABLE_PUD_FOLDED)
    1570             : #endif
    1571             : 
    1572             : #ifndef mm_pmd_folded
    1573             : #define mm_pmd_folded(mm)       __is_defined(__PAGETABLE_PMD_FOLDED)
    1574             : #endif
    1575             : 
    1576             : #ifndef p4d_offset_lockless
    1577             : #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
    1578             : #endif
    1579             : #ifndef pud_offset_lockless
    1580             : #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
    1581             : #endif
    1582             : #ifndef pmd_offset_lockless
    1583             : #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
    1584             : #endif
    1585             : 
    1586             : /*
    1587             :  * p?d_leaf() - true if this entry is a final mapping to a physical address.
    1588             :  * This differs from p?d_huge() by the fact that they are always available (if
    1589             :  * the architecture supports large pages at the appropriate level) even
    1590             :  * if CONFIG_HUGETLB_PAGE is not defined.
    1591             :  * Only meaningful when called on a valid entry.
    1592             :  */
    1593             : #ifndef pgd_leaf
    1594             : #define pgd_leaf(x)     0
    1595             : #endif
    1596             : #ifndef p4d_leaf
    1597             : #define p4d_leaf(x)     0
    1598             : #endif
    1599             : #ifndef pud_leaf
    1600             : #define pud_leaf(x)     0
    1601             : #endif
    1602             : #ifndef pmd_leaf
    1603             : #define pmd_leaf(x)     0
    1604             : #endif
    1605             : 
    1606             : #ifndef pgd_leaf_size
    1607             : #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
    1608             : #endif
    1609             : #ifndef p4d_leaf_size
    1610             : #define p4d_leaf_size(x) P4D_SIZE
    1611             : #endif
    1612             : #ifndef pud_leaf_size
    1613             : #define pud_leaf_size(x) PUD_SIZE
    1614             : #endif
    1615             : #ifndef pmd_leaf_size
    1616             : #define pmd_leaf_size(x) PMD_SIZE
    1617             : #endif
    1618             : #ifndef pte_leaf_size
    1619             : #define pte_leaf_size(x) PAGE_SIZE
    1620             : #endif
    1621             : 
    1622             : /*
    1623             :  * Some architectures have MMUs that are configurable or selectable at boot
    1624             :  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
    1625             :  * helps to have a static maximum value.
    1626             :  */
    1627             : 
    1628             : #ifndef MAX_PTRS_PER_PTE
    1629             : #define MAX_PTRS_PER_PTE PTRS_PER_PTE
    1630             : #endif
    1631             : 
    1632             : #ifndef MAX_PTRS_PER_PMD
    1633             : #define MAX_PTRS_PER_PMD PTRS_PER_PMD
    1634             : #endif
    1635             : 
    1636             : #ifndef MAX_PTRS_PER_PUD
    1637             : #define MAX_PTRS_PER_PUD PTRS_PER_PUD
    1638             : #endif
    1639             : 
    1640             : #ifndef MAX_PTRS_PER_P4D
    1641             : #define MAX_PTRS_PER_P4D PTRS_PER_P4D
    1642             : #endif
    1643             : 
    1644             : #endif /* _LINUX_PGTABLE_H */

Generated by: LCOV version 1.14