Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef _LINUX_PGTABLE_H
3 : #define _LINUX_PGTABLE_H
4 :
5 : #include <linux/pfn.h>
6 : #include <asm/pgtable.h>
7 :
8 : #ifndef __ASSEMBLY__
9 : #ifdef CONFIG_MMU
10 :
11 : #include <linux/mm_types.h>
12 : #include <linux/bug.h>
13 : #include <linux/errno.h>
14 : #include <asm-generic/pgtable_uffd.h>
15 :
16 : #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 : defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18 : #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19 : #endif
20 :
21 : /*
22 : * On almost all architectures and configurations, 0 can be used as the
23 : * upper ceiling to free_pgtables(): on many architectures it has the same
24 : * effect as using TASK_SIZE. However, there is one configuration which
25 : * must impose a more careful limit, to avoid freeing kernel pgtables.
26 : */
27 : #ifndef USER_PGTABLES_CEILING
28 : #define USER_PGTABLES_CEILING 0UL
29 : #endif
30 :
31 : /*
32 : * This defines the first usable user address. Platforms
33 : * can override its value with custom FIRST_USER_ADDRESS
34 : * defined in their respective <asm/pgtable.h>.
35 : */
36 : #ifndef FIRST_USER_ADDRESS
37 : #define FIRST_USER_ADDRESS 0UL
38 : #endif
39 :
40 : /*
41 : * This defines the generic helper for accessing PMD page
42 : * table page. Although platforms can still override this
43 : * via their respective <asm/pgtable.h>.
44 : */
45 : #ifndef pmd_pgtable
46 : #define pmd_pgtable(pmd) pmd_page(pmd)
47 : #endif
48 :
49 : /*
50 : * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
51 : *
52 : * The pXx_index() functions return the index of the entry in the page
53 : * table page which would control the given virtual address
54 : *
55 : * As these functions may be used by the same code for different levels of
56 : * the page table folding, they are always available, regardless of
57 : * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
58 : * because in such cases PTRS_PER_PxD equals 1.
59 : */
60 :
61 : static inline unsigned long pte_index(unsigned long address)
62 : {
63 75 : return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
64 : }
65 : #define pte_index pte_index
66 :
67 : #ifndef pmd_index
68 : static inline unsigned long pmd_index(unsigned long address)
69 : {
70 77 : return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
71 : }
72 : #define pmd_index pmd_index
73 : #endif
74 :
75 : #ifndef pud_index
76 : static inline unsigned long pud_index(unsigned long address)
77 : {
78 : return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
79 : }
80 : #define pud_index pud_index
81 : #endif
82 :
83 : #ifndef pgd_index
84 : /* Must be a compile-time constant, so implement it as a macro */
85 : #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
86 : #endif
87 :
88 : #ifndef pte_offset_kernel
89 : static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
90 : {
91 227 : return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
92 : }
93 : #define pte_offset_kernel pte_offset_kernel
94 : #endif
95 :
96 : #if defined(CONFIG_HIGHPTE)
97 : #define pte_offset_map(dir, address) \
98 : ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
99 : pte_index((address)))
100 : #define pte_unmap(pte) kunmap_atomic((pte))
101 : #else
102 : #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
103 : #define pte_unmap(pte) ((void)(pte)) /* NOP */
104 : #endif
105 :
106 : /* Find an entry in the second-level page table.. */
107 : #ifndef pmd_offset
108 : static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
109 : {
110 230 : return pud_pgtable(*pud) + pmd_index(address);
111 : }
112 : #define pmd_offset pmd_offset
113 : #endif
114 :
115 : #ifndef pud_offset
116 : static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
117 : {
118 : return p4d_pgtable(*p4d) + pud_index(address);
119 : }
120 : #define pud_offset pud_offset
121 : #endif
122 :
123 : static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
124 : {
125 75 : return (pgd + pgd_index(address));
126 : };
127 :
128 : /*
129 : * a shortcut to get a pgd_t in a given mm
130 : */
131 : #ifndef pgd_offset
132 : #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
133 : #endif
134 :
135 : /*
136 : * a shortcut which implies the use of the kernel's pgd, instead
137 : * of a process's
138 : */
139 : #ifndef pgd_offset_k
140 : #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
141 : #endif
142 :
143 : /*
144 : * In many cases it is known that a virtual address is mapped at PMD or PTE
145 : * level, so instead of traversing all the page table levels, we can get a
146 : * pointer to the PMD entry in user or kernel page table or translate a virtual
147 : * address to the pointer in the PTE in the kernel page tables with simple
148 : * helpers.
149 : */
150 : static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
151 : {
152 0 : return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
153 : }
154 :
155 : static inline pmd_t *pmd_off_k(unsigned long va)
156 : {
157 : return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
158 : }
159 :
160 : static inline pte_t *virt_to_kpte(unsigned long vaddr)
161 : {
162 : pmd_t *pmd = pmd_off_k(vaddr);
163 :
164 : return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
165 : }
166 :
167 : #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
168 : extern int ptep_set_access_flags(struct vm_area_struct *vma,
169 : unsigned long address, pte_t *ptep,
170 : pte_t entry, int dirty);
171 : #endif
172 :
173 : #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
174 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
175 : extern int pmdp_set_access_flags(struct vm_area_struct *vma,
176 : unsigned long address, pmd_t *pmdp,
177 : pmd_t entry, int dirty);
178 : extern int pudp_set_access_flags(struct vm_area_struct *vma,
179 : unsigned long address, pud_t *pudp,
180 : pud_t entry, int dirty);
181 : #else
182 : static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
183 : unsigned long address, pmd_t *pmdp,
184 : pmd_t entry, int dirty)
185 : {
186 : BUILD_BUG();
187 : return 0;
188 : }
189 : static inline int pudp_set_access_flags(struct vm_area_struct *vma,
190 : unsigned long address, pud_t *pudp,
191 : pud_t entry, int dirty)
192 : {
193 : BUILD_BUG();
194 : return 0;
195 : }
196 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
197 : #endif
198 :
199 : #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
200 : static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
201 : unsigned long address,
202 : pte_t *ptep)
203 : {
204 0 : pte_t pte = *ptep;
205 0 : int r = 1;
206 0 : if (!pte_young(pte))
207 : r = 0;
208 : else
209 0 : set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
210 : return r;
211 : }
212 : #endif
213 :
214 : #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
215 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
216 : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
217 : unsigned long address,
218 : pmd_t *pmdp)
219 : {
220 : pmd_t pmd = *pmdp;
221 : int r = 1;
222 : if (!pmd_young(pmd))
223 : r = 0;
224 : else
225 : set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
226 : return r;
227 : }
228 : #else
229 : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
230 : unsigned long address,
231 : pmd_t *pmdp)
232 : {
233 : BUILD_BUG();
234 : return 0;
235 : }
236 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
237 : #endif
238 :
239 : #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
240 : int ptep_clear_flush_young(struct vm_area_struct *vma,
241 : unsigned long address, pte_t *ptep);
242 : #endif
243 :
244 : #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
245 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 : extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
247 : unsigned long address, pmd_t *pmdp);
248 : #else
249 : /*
250 : * Despite relevant to THP only, this API is called from generic rmap code
251 : * under PageTransHuge(), hence needs a dummy implementation for !THP
252 : */
253 : static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
254 : unsigned long address, pmd_t *pmdp)
255 : {
256 : BUILD_BUG();
257 : return 0;
258 : }
259 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
260 : #endif
261 :
262 : #ifndef __HAVE_ARCH_PTEP_CLEAR
263 : static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
264 : pte_t *ptep)
265 : {
266 : pte_clear(mm, addr, ptep);
267 : }
268 : #endif
269 :
270 : #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
271 : static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
272 : unsigned long address,
273 : pte_t *ptep)
274 : {
275 0 : pte_t pte = *ptep;
276 0 : pte_clear(mm, address, ptep);
277 : return pte;
278 : }
279 : #endif
280 :
281 : #ifndef __HAVE_ARCH_PTEP_GET
282 : static inline pte_t ptep_get(pte_t *ptep)
283 : {
284 : return READ_ONCE(*ptep);
285 : }
286 : #endif
287 :
288 : #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
289 : /*
290 : * WARNING: only to be used in the get_user_pages_fast() implementation.
291 : *
292 : * With get_user_pages_fast(), we walk down the pagetables without taking any
293 : * locks. For this we would like to load the pointers atomically, but sometimes
294 : * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
295 : * we do have is the guarantee that a PTE will only either go from not present
296 : * to present, or present to not present or both -- it will not switch to a
297 : * completely different present page without a TLB flush in between; something
298 : * that we are blocking by holding interrupts off.
299 : *
300 : * Setting ptes from not present to present goes:
301 : *
302 : * ptep->pte_high = h;
303 : * smp_wmb();
304 : * ptep->pte_low = l;
305 : *
306 : * And present to not present goes:
307 : *
308 : * ptep->pte_low = 0;
309 : * smp_wmb();
310 : * ptep->pte_high = 0;
311 : *
312 : * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
313 : * We load pte_high *after* loading pte_low, which ensures we don't see an older
314 : * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
315 : * picked up a changed pte high. We might have gotten rubbish values from
316 : * pte_low and pte_high, but we are guaranteed that pte_low will not have the
317 : * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
318 : * operates on present ptes we're safe.
319 : */
320 : static inline pte_t ptep_get_lockless(pte_t *ptep)
321 : {
322 : pte_t pte;
323 :
324 : do {
325 : pte.pte_low = ptep->pte_low;
326 : smp_rmb();
327 : pte.pte_high = ptep->pte_high;
328 : smp_rmb();
329 : } while (unlikely(pte.pte_low != ptep->pte_low));
330 :
331 : return pte;
332 : }
333 : #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
334 : /*
335 : * We require that the PTE can be read atomically.
336 : */
337 : static inline pte_t ptep_get_lockless(pte_t *ptep)
338 : {
339 : return ptep_get(ptep);
340 : }
341 : #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
342 :
343 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 : #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
345 : static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
346 : unsigned long address,
347 : pmd_t *pmdp)
348 : {
349 : pmd_t pmd = *pmdp;
350 : pmd_clear(pmdp);
351 : return pmd;
352 : }
353 : #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
354 : #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
355 : static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
356 : unsigned long address,
357 : pud_t *pudp)
358 : {
359 : pud_t pud = *pudp;
360 :
361 : pud_clear(pudp);
362 : return pud;
363 : }
364 : #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
365 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
366 :
367 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 : #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
369 : static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
370 : unsigned long address, pmd_t *pmdp,
371 : int full)
372 : {
373 : return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
374 : }
375 : #endif
376 :
377 : #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
378 : static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
379 : unsigned long address, pud_t *pudp,
380 : int full)
381 : {
382 : return pudp_huge_get_and_clear(mm, address, pudp);
383 : }
384 : #endif
385 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
386 :
387 : #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
388 : static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
389 : unsigned long address, pte_t *ptep,
390 : int full)
391 : {
392 : pte_t pte;
393 0 : pte = ptep_get_and_clear(mm, address, ptep);
394 : return pte;
395 : }
396 : #endif
397 :
398 :
399 : /*
400 : * If two threads concurrently fault at the same page, the thread that
401 : * won the race updates the PTE and its local TLB/Cache. The other thread
402 : * gives up, simply does nothing, and continues; on architectures where
403 : * software can update TLB, local TLB can be updated here to avoid next page
404 : * fault. This function updates TLB only, do nothing with cache or others.
405 : * It is the difference with function update_mmu_cache.
406 : */
407 : #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
408 : static inline void update_mmu_tlb(struct vm_area_struct *vma,
409 : unsigned long address, pte_t *ptep)
410 : {
411 : }
412 : #define __HAVE_ARCH_UPDATE_MMU_TLB
413 : #endif
414 :
415 : /*
416 : * Some architectures may be able to avoid expensive synchronization
417 : * primitives when modifications are made to PTE's which are already
418 : * not present, or in the process of an address space destruction.
419 : */
420 : #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
421 : static inline void pte_clear_not_present_full(struct mm_struct *mm,
422 : unsigned long address,
423 : pte_t *ptep,
424 : int full)
425 : {
426 0 : pte_clear(mm, address, ptep);
427 : }
428 : #endif
429 :
430 : #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
431 : extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
432 : unsigned long address,
433 : pte_t *ptep);
434 : #endif
435 :
436 : #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
437 : extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
438 : unsigned long address,
439 : pmd_t *pmdp);
440 : extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
441 : unsigned long address,
442 : pud_t *pudp);
443 : #endif
444 :
445 : #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
446 : struct mm_struct;
447 : static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
448 : {
449 0 : pte_t old_pte = *ptep;
450 0 : set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
451 : }
452 : #endif
453 :
454 : /*
455 : * On some architectures hardware does not set page access bit when accessing
456 : * memory page, it is responsibility of software setting this bit. It brings
457 : * out extra page fault penalty to track page access bit. For optimization page
458 : * access bit can be set during all page fault flow on these arches.
459 : * To be differentiate with macro pte_mkyoung, this macro is used on platforms
460 : * where software maintains page access bit.
461 : */
462 : #ifndef pte_sw_mkyoung
463 : static inline pte_t pte_sw_mkyoung(pte_t pte)
464 : {
465 : return pte;
466 : }
467 : #define pte_sw_mkyoung pte_sw_mkyoung
468 : #endif
469 :
470 : #ifndef pte_savedwrite
471 : #define pte_savedwrite pte_write
472 : #endif
473 :
474 : #ifndef pte_mk_savedwrite
475 : #define pte_mk_savedwrite pte_mkwrite
476 : #endif
477 :
478 : #ifndef pte_clear_savedwrite
479 : #define pte_clear_savedwrite pte_wrprotect
480 : #endif
481 :
482 : #ifndef pmd_savedwrite
483 : #define pmd_savedwrite pmd_write
484 : #endif
485 :
486 : #ifndef pmd_mk_savedwrite
487 : #define pmd_mk_savedwrite pmd_mkwrite
488 : #endif
489 :
490 : #ifndef pmd_clear_savedwrite
491 : #define pmd_clear_savedwrite pmd_wrprotect
492 : #endif
493 :
494 : #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
495 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
496 : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
497 : unsigned long address, pmd_t *pmdp)
498 : {
499 : pmd_t old_pmd = *pmdp;
500 : set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
501 : }
502 : #else
503 : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
504 : unsigned long address, pmd_t *pmdp)
505 : {
506 : BUILD_BUG();
507 : }
508 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
509 : #endif
510 : #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
511 : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
512 : static inline void pudp_set_wrprotect(struct mm_struct *mm,
513 : unsigned long address, pud_t *pudp)
514 : {
515 : pud_t old_pud = *pudp;
516 :
517 : set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
518 : }
519 : #else
520 : static inline void pudp_set_wrprotect(struct mm_struct *mm,
521 : unsigned long address, pud_t *pudp)
522 : {
523 : BUILD_BUG();
524 : }
525 : #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
526 : #endif
527 :
528 : #ifndef pmdp_collapse_flush
529 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 : extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
531 : unsigned long address, pmd_t *pmdp);
532 : #else
533 : static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
534 : unsigned long address,
535 : pmd_t *pmdp)
536 : {
537 : BUILD_BUG();
538 : return *pmdp;
539 : }
540 : #define pmdp_collapse_flush pmdp_collapse_flush
541 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
542 : #endif
543 :
544 : #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
545 : extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
546 : pgtable_t pgtable);
547 : #endif
548 :
549 : #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
550 : extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
551 : #endif
552 :
553 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 : /*
555 : * This is an implementation of pmdp_establish() that is only suitable for an
556 : * architecture that doesn't have hardware dirty/accessed bits. In this case we
557 : * can't race with CPU which sets these bits and non-atomic approach is fine.
558 : */
559 : static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
560 : unsigned long address, pmd_t *pmdp, pmd_t pmd)
561 : {
562 : pmd_t old_pmd = *pmdp;
563 : set_pmd_at(vma->vm_mm, address, pmdp, pmd);
564 : return old_pmd;
565 : }
566 : #endif
567 :
568 : #ifndef __HAVE_ARCH_PMDP_INVALIDATE
569 : extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
570 : pmd_t *pmdp);
571 : #endif
572 :
573 : #ifndef __HAVE_ARCH_PTE_SAME
574 : static inline int pte_same(pte_t pte_a, pte_t pte_b)
575 : {
576 : return pte_val(pte_a) == pte_val(pte_b);
577 : }
578 : #endif
579 :
580 : #ifndef __HAVE_ARCH_PTE_UNUSED
581 : /*
582 : * Some architectures provide facilities to virtualization guests
583 : * so that they can flag allocated pages as unused. This allows the
584 : * host to transparently reclaim unused pages. This function returns
585 : * whether the pte's page is unused.
586 : */
587 : static inline int pte_unused(pte_t pte)
588 : {
589 : return 0;
590 : }
591 : #endif
592 :
593 : #ifndef pte_access_permitted
594 : #define pte_access_permitted(pte, write) \
595 : (pte_present(pte) && (!(write) || pte_write(pte)))
596 : #endif
597 :
598 : #ifndef pmd_access_permitted
599 : #define pmd_access_permitted(pmd, write) \
600 : (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
601 : #endif
602 :
603 : #ifndef pud_access_permitted
604 : #define pud_access_permitted(pud, write) \
605 : (pud_present(pud) && (!(write) || pud_write(pud)))
606 : #endif
607 :
608 : #ifndef p4d_access_permitted
609 : #define p4d_access_permitted(p4d, write) \
610 : (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
611 : #endif
612 :
613 : #ifndef pgd_access_permitted
614 : #define pgd_access_permitted(pgd, write) \
615 : (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
616 : #endif
617 :
618 : #ifndef __HAVE_ARCH_PMD_SAME
619 : static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
620 : {
621 : return pmd_val(pmd_a) == pmd_val(pmd_b);
622 : }
623 :
624 : static inline int pud_same(pud_t pud_a, pud_t pud_b)
625 : {
626 : return pud_val(pud_a) == pud_val(pud_b);
627 : }
628 : #endif
629 :
630 : #ifndef __HAVE_ARCH_P4D_SAME
631 : static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
632 : {
633 : return p4d_val(p4d_a) == p4d_val(p4d_b);
634 : }
635 : #endif
636 :
637 : #ifndef __HAVE_ARCH_PGD_SAME
638 : static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
639 : {
640 : return pgd_val(pgd_a) == pgd_val(pgd_b);
641 : }
642 : #endif
643 :
644 : /*
645 : * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
646 : * TLB flush will be required as a result of the "set". For example, use
647 : * in scenarios where it is known ahead of time that the routine is
648 : * setting non-present entries, or re-setting an existing entry to the
649 : * same value. Otherwise, use the typical "set" helpers and flush the
650 : * TLB.
651 : */
652 : #define set_pte_safe(ptep, pte) \
653 : ({ \
654 : WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
655 : set_pte(ptep, pte); \
656 : })
657 :
658 : #define set_pmd_safe(pmdp, pmd) \
659 : ({ \
660 : WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
661 : set_pmd(pmdp, pmd); \
662 : })
663 :
664 : #define set_pud_safe(pudp, pud) \
665 : ({ \
666 : WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
667 : set_pud(pudp, pud); \
668 : })
669 :
670 : #define set_p4d_safe(p4dp, p4d) \
671 : ({ \
672 : WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
673 : set_p4d(p4dp, p4d); \
674 : })
675 :
676 : #define set_pgd_safe(pgdp, pgd) \
677 : ({ \
678 : WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
679 : set_pgd(pgdp, pgd); \
680 : })
681 :
682 : #ifndef __HAVE_ARCH_DO_SWAP_PAGE
683 : /*
684 : * Some architectures support metadata associated with a page. When a
685 : * page is being swapped out, this metadata must be saved so it can be
686 : * restored when the page is swapped back in. SPARC M7 and newer
687 : * processors support an ADI (Application Data Integrity) tag for the
688 : * page as metadata for the page. arch_do_swap_page() can restore this
689 : * metadata when a page is swapped back in.
690 : */
691 : static inline void arch_do_swap_page(struct mm_struct *mm,
692 : struct vm_area_struct *vma,
693 : unsigned long addr,
694 : pte_t pte, pte_t oldpte)
695 : {
696 :
697 : }
698 : #endif
699 :
700 : #ifndef __HAVE_ARCH_UNMAP_ONE
701 : /*
702 : * Some architectures support metadata associated with a page. When a
703 : * page is being swapped out, this metadata must be saved so it can be
704 : * restored when the page is swapped back in. SPARC M7 and newer
705 : * processors support an ADI (Application Data Integrity) tag for the
706 : * page as metadata for the page. arch_unmap_one() can save this
707 : * metadata on a swap-out of a page.
708 : */
709 : static inline int arch_unmap_one(struct mm_struct *mm,
710 : struct vm_area_struct *vma,
711 : unsigned long addr,
712 : pte_t orig_pte)
713 : {
714 : return 0;
715 : }
716 : #endif
717 :
718 : /*
719 : * Allow architectures to preserve additional metadata associated with
720 : * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
721 : * prototypes must be defined in the arch-specific asm/pgtable.h file.
722 : */
723 : #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
724 : static inline int arch_prepare_to_swap(struct page *page)
725 : {
726 : return 0;
727 : }
728 : #endif
729 :
730 : #ifndef __HAVE_ARCH_SWAP_INVALIDATE
731 : static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
732 : {
733 : }
734 :
735 : static inline void arch_swap_invalidate_area(int type)
736 : {
737 : }
738 : #endif
739 :
740 : #ifndef __HAVE_ARCH_SWAP_RESTORE
741 : static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
742 : {
743 : }
744 : #endif
745 :
746 : #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
747 : #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
748 : #endif
749 :
750 : #ifndef __HAVE_ARCH_MOVE_PTE
751 : #define move_pte(pte, prot, old_addr, new_addr) (pte)
752 : #endif
753 :
754 : #ifndef pte_accessible
755 : # define pte_accessible(mm, pte) ((void)(pte), 1)
756 : #endif
757 :
758 : #ifndef flush_tlb_fix_spurious_fault
759 : #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
760 : #endif
761 :
762 : /*
763 : * When walking page tables, get the address of the next boundary,
764 : * or the end address of the range if that comes earlier. Although no
765 : * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
766 : */
767 :
768 : #define pgd_addr_end(addr, end) \
769 : ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
770 : (__boundary - 1 < (end) - 1)? __boundary: (end); \
771 : })
772 :
773 : #ifndef p4d_addr_end
774 : #define p4d_addr_end(addr, end) \
775 : ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
776 : (__boundary - 1 < (end) - 1)? __boundary: (end); \
777 : })
778 : #endif
779 :
780 : #ifndef pud_addr_end
781 : #define pud_addr_end(addr, end) \
782 : ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
783 : (__boundary - 1 < (end) - 1)? __boundary: (end); \
784 : })
785 : #endif
786 :
787 : #ifndef pmd_addr_end
788 : #define pmd_addr_end(addr, end) \
789 : ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
790 : (__boundary - 1 < (end) - 1)? __boundary: (end); \
791 : })
792 : #endif
793 :
794 : /*
795 : * When walking page tables, we usually want to skip any p?d_none entries;
796 : * and any p?d_bad entries - reporting the error before resetting to none.
797 : * Do the tests inline, but report and clear the bad entry in mm/memory.c.
798 : */
799 : void pgd_clear_bad(pgd_t *);
800 :
801 : #ifndef __PAGETABLE_P4D_FOLDED
802 : void p4d_clear_bad(p4d_t *);
803 : #else
804 : #define p4d_clear_bad(p4d) do { } while (0)
805 : #endif
806 :
807 : #ifndef __PAGETABLE_PUD_FOLDED
808 : void pud_clear_bad(pud_t *);
809 : #else
810 : #define pud_clear_bad(p4d) do { } while (0)
811 : #endif
812 :
813 : void pmd_clear_bad(pmd_t *);
814 :
815 : static inline int pgd_none_or_clear_bad(pgd_t *pgd)
816 : {
817 0 : if (pgd_none(*pgd))
818 : return 1;
819 0 : if (unlikely(pgd_bad(*pgd))) {
820 : pgd_clear_bad(pgd);
821 : return 1;
822 : }
823 : return 0;
824 : }
825 :
826 : static inline int p4d_none_or_clear_bad(p4d_t *p4d)
827 : {
828 0 : if (p4d_none(*p4d))
829 : return 1;
830 0 : if (unlikely(p4d_bad(*p4d))) {
831 : p4d_clear_bad(p4d);
832 : return 1;
833 : }
834 : return 0;
835 : }
836 :
837 : static inline int pud_none_or_clear_bad(pud_t *pud)
838 : {
839 0 : if (pud_none(*pud))
840 : return 1;
841 0 : if (unlikely(pud_bad(*pud))) {
842 : pud_clear_bad(pud);
843 : return 1;
844 : }
845 : return 0;
846 : }
847 :
848 : static inline int pmd_none_or_clear_bad(pmd_t *pmd)
849 : {
850 0 : if (pmd_none(*pmd))
851 : return 1;
852 0 : if (unlikely(pmd_bad(*pmd))) {
853 0 : pmd_clear_bad(pmd);
854 : return 1;
855 : }
856 : return 0;
857 : }
858 :
859 : static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
860 : unsigned long addr,
861 : pte_t *ptep)
862 : {
863 : /*
864 : * Get the current pte state, but zero it out to make it
865 : * non-present, preventing the hardware from asynchronously
866 : * updating it.
867 : */
868 0 : return ptep_get_and_clear(vma->vm_mm, addr, ptep);
869 : }
870 :
871 : static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
872 : unsigned long addr,
873 : pte_t *ptep, pte_t pte)
874 : {
875 : /*
876 : * The pte is non-present, so there's no hardware state to
877 : * preserve.
878 : */
879 0 : set_pte_at(vma->vm_mm, addr, ptep, pte);
880 : }
881 :
882 : #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
883 : /*
884 : * Start a pte protection read-modify-write transaction, which
885 : * protects against asynchronous hardware modifications to the pte.
886 : * The intention is not to prevent the hardware from making pte
887 : * updates, but to prevent any updates it may make from being lost.
888 : *
889 : * This does not protect against other software modifications of the
890 : * pte; the appropriate pte lock must be held over the transaction.
891 : *
892 : * Note that this interface is intended to be batchable, meaning that
893 : * ptep_modify_prot_commit may not actually update the pte, but merely
894 : * queue the update to be done at some later time. The update must be
895 : * actually committed before the pte lock is released, however.
896 : */
897 : static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
898 : unsigned long addr,
899 : pte_t *ptep)
900 : {
901 0 : return __ptep_modify_prot_start(vma, addr, ptep);
902 : }
903 :
904 : /*
905 : * Commit an update to a pte, leaving any hardware-controlled bits in
906 : * the PTE unmodified.
907 : */
908 : static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
909 : unsigned long addr,
910 : pte_t *ptep, pte_t old_pte, pte_t pte)
911 : {
912 0 : __ptep_modify_prot_commit(vma, addr, ptep, pte);
913 : }
914 : #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
915 : #endif /* CONFIG_MMU */
916 :
917 : /*
918 : * No-op macros that just return the current protection value. Defined here
919 : * because these macros can be used even if CONFIG_MMU is not defined.
920 : */
921 :
922 : #ifndef pgprot_nx
923 : #define pgprot_nx(prot) (prot)
924 : #endif
925 :
926 : #ifndef pgprot_noncached
927 : #define pgprot_noncached(prot) (prot)
928 : #endif
929 :
930 : #ifndef pgprot_writecombine
931 : #define pgprot_writecombine pgprot_noncached
932 : #endif
933 :
934 : #ifndef pgprot_writethrough
935 : #define pgprot_writethrough pgprot_noncached
936 : #endif
937 :
938 : #ifndef pgprot_device
939 : #define pgprot_device pgprot_noncached
940 : #endif
941 :
942 : #ifndef pgprot_mhp
943 : #define pgprot_mhp(prot) (prot)
944 : #endif
945 :
946 : #ifdef CONFIG_MMU
947 : #ifndef pgprot_modify
948 : #define pgprot_modify pgprot_modify
949 : static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
950 : {
951 : if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
952 : newprot = pgprot_noncached(newprot);
953 : if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
954 : newprot = pgprot_writecombine(newprot);
955 : if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
956 : newprot = pgprot_device(newprot);
957 : return newprot;
958 : }
959 : #endif
960 : #endif /* CONFIG_MMU */
961 :
962 : #ifndef pgprot_encrypted
963 : #define pgprot_encrypted(prot) (prot)
964 : #endif
965 :
966 : #ifndef pgprot_decrypted
967 : #define pgprot_decrypted(prot) (prot)
968 : #endif
969 :
970 : /*
971 : * A facility to provide lazy MMU batching. This allows PTE updates and
972 : * page invalidations to be delayed until a call to leave lazy MMU mode
973 : * is issued. Some architectures may benefit from doing this, and it is
974 : * beneficial for both shadow and direct mode hypervisors, which may batch
975 : * the PTE updates which happen during this window. Note that using this
976 : * interface requires that read hazards be removed from the code. A read
977 : * hazard could result in the direct mode hypervisor case, since the actual
978 : * write to the page tables may not yet have taken place, so reads though
979 : * a raw PTE pointer after it has been modified are not guaranteed to be
980 : * up to date. This mode can only be entered and left under the protection of
981 : * the page table locks for all page tables which may be modified. In the UP
982 : * case, this is required so that preemption is disabled, and in the SMP case,
983 : * it must synchronize the delayed page table writes properly on other CPUs.
984 : */
985 : #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
986 : #define arch_enter_lazy_mmu_mode() do {} while (0)
987 : #define arch_leave_lazy_mmu_mode() do {} while (0)
988 : #define arch_flush_lazy_mmu_mode() do {} while (0)
989 : #endif
990 :
991 : /*
992 : * A facility to provide batching of the reload of page tables and
993 : * other process state with the actual context switch code for
994 : * paravirtualized guests. By convention, only one of the batched
995 : * update (lazy) modes (CPU, MMU) should be active at any given time,
996 : * entry should never be nested, and entry and exits should always be
997 : * paired. This is for sanity of maintaining and reasoning about the
998 : * kernel code. In this case, the exit (end of the context switch) is
999 : * in architecture-specific code, and so doesn't need a generic
1000 : * definition.
1001 : */
1002 : #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1003 : #define arch_start_context_switch(prev) do {} while (0)
1004 : #endif
1005 :
1006 : #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1007 : #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1008 : static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1009 : {
1010 : return pmd;
1011 : }
1012 :
1013 : static inline int pmd_swp_soft_dirty(pmd_t pmd)
1014 : {
1015 : return 0;
1016 : }
1017 :
1018 : static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1019 : {
1020 : return pmd;
1021 : }
1022 : #endif
1023 : #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1024 : static inline int pte_soft_dirty(pte_t pte)
1025 : {
1026 : return 0;
1027 : }
1028 :
1029 : static inline int pmd_soft_dirty(pmd_t pmd)
1030 : {
1031 : return 0;
1032 : }
1033 :
1034 : static inline pte_t pte_mksoft_dirty(pte_t pte)
1035 : {
1036 : return pte;
1037 : }
1038 :
1039 : static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1040 : {
1041 : return pmd;
1042 : }
1043 :
1044 : static inline pte_t pte_clear_soft_dirty(pte_t pte)
1045 : {
1046 : return pte;
1047 : }
1048 :
1049 : static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1050 : {
1051 : return pmd;
1052 : }
1053 :
1054 : static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1055 : {
1056 : return pte;
1057 : }
1058 :
1059 : static inline int pte_swp_soft_dirty(pte_t pte)
1060 : {
1061 : return 0;
1062 : }
1063 :
1064 : static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1065 : {
1066 : return pte;
1067 : }
1068 :
1069 : static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1070 : {
1071 : return pmd;
1072 : }
1073 :
1074 : static inline int pmd_swp_soft_dirty(pmd_t pmd)
1075 : {
1076 : return 0;
1077 : }
1078 :
1079 : static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1080 : {
1081 : return pmd;
1082 : }
1083 : #endif
1084 :
1085 : #ifndef __HAVE_PFNMAP_TRACKING
1086 : /*
1087 : * Interfaces that can be used by architecture code to keep track of
1088 : * memory type of pfn mappings specified by the remap_pfn_range,
1089 : * vmf_insert_pfn.
1090 : */
1091 :
1092 : /*
1093 : * track_pfn_remap is called when a _new_ pfn mapping is being established
1094 : * by remap_pfn_range() for physical range indicated by pfn and size.
1095 : */
1096 : static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1097 : unsigned long pfn, unsigned long addr,
1098 : unsigned long size)
1099 : {
1100 : return 0;
1101 : }
1102 :
1103 : /*
1104 : * track_pfn_insert is called when a _new_ single pfn is established
1105 : * by vmf_insert_pfn().
1106 : */
1107 : static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1108 : pfn_t pfn)
1109 : {
1110 : }
1111 :
1112 : /*
1113 : * track_pfn_copy is called when vma that is covering the pfnmap gets
1114 : * copied through copy_page_range().
1115 : */
1116 : static inline int track_pfn_copy(struct vm_area_struct *vma)
1117 : {
1118 : return 0;
1119 : }
1120 :
1121 : /*
1122 : * untrack_pfn is called while unmapping a pfnmap for a region.
1123 : * untrack can be called for a specific region indicated by pfn and size or
1124 : * can be for the entire vma (in which case pfn, size are zero).
1125 : */
1126 : static inline void untrack_pfn(struct vm_area_struct *vma,
1127 : unsigned long pfn, unsigned long size)
1128 : {
1129 : }
1130 :
1131 : /*
1132 : * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1133 : */
1134 : static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1135 : {
1136 : }
1137 : #else
1138 : extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1139 : unsigned long pfn, unsigned long addr,
1140 : unsigned long size);
1141 : extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1142 : pfn_t pfn);
1143 : extern int track_pfn_copy(struct vm_area_struct *vma);
1144 : extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1145 : unsigned long size);
1146 : extern void untrack_pfn_moved(struct vm_area_struct *vma);
1147 : #endif
1148 :
1149 : #ifdef CONFIG_MMU
1150 : #ifdef __HAVE_COLOR_ZERO_PAGE
1151 : static inline int is_zero_pfn(unsigned long pfn)
1152 : {
1153 : extern unsigned long zero_pfn;
1154 : unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1155 : return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1156 : }
1157 :
1158 : #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1159 :
1160 : #else
1161 : static inline int is_zero_pfn(unsigned long pfn)
1162 : {
1163 : extern unsigned long zero_pfn;
1164 0 : return pfn == zero_pfn;
1165 : }
1166 :
1167 : static inline unsigned long my_zero_pfn(unsigned long addr)
1168 : {
1169 : extern unsigned long zero_pfn;
1170 0 : return zero_pfn;
1171 : }
1172 : #endif
1173 : #else
1174 : static inline int is_zero_pfn(unsigned long pfn)
1175 : {
1176 : return 0;
1177 : }
1178 :
1179 : static inline unsigned long my_zero_pfn(unsigned long addr)
1180 : {
1181 : return 0;
1182 : }
1183 : #endif /* CONFIG_MMU */
1184 :
1185 : #ifdef CONFIG_MMU
1186 :
1187 : #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1188 : static inline int pmd_trans_huge(pmd_t pmd)
1189 : {
1190 : return 0;
1191 : }
1192 : #ifndef pmd_write
1193 : static inline int pmd_write(pmd_t pmd)
1194 : {
1195 : BUG();
1196 : return 0;
1197 : }
1198 : #endif /* pmd_write */
1199 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1200 :
1201 : #ifndef pud_write
1202 : static inline int pud_write(pud_t pud)
1203 : {
1204 : BUG();
1205 : return 0;
1206 : }
1207 : #endif /* pud_write */
1208 :
1209 : #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1210 : static inline int pmd_devmap(pmd_t pmd)
1211 : {
1212 : return 0;
1213 : }
1214 : static inline int pud_devmap(pud_t pud)
1215 : {
1216 : return 0;
1217 : }
1218 : static inline int pgd_devmap(pgd_t pgd)
1219 : {
1220 : return 0;
1221 : }
1222 : #endif
1223 :
1224 : #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1225 : (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1226 : !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1227 : static inline int pud_trans_huge(pud_t pud)
1228 : {
1229 : return 0;
1230 : }
1231 : #endif
1232 :
1233 : /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1234 : static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1235 : {
1236 : pud_t pudval = READ_ONCE(*pud);
1237 :
1238 : if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1239 : return 1;
1240 : if (unlikely(pud_bad(pudval))) {
1241 : pud_clear_bad(pud);
1242 : return 1;
1243 : }
1244 : return 0;
1245 : }
1246 :
1247 : /* See pmd_trans_unstable for discussion. */
1248 : static inline int pud_trans_unstable(pud_t *pud)
1249 : {
1250 : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1251 : defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1252 : return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1253 : #else
1254 : return 0;
1255 : #endif
1256 : }
1257 :
1258 : #ifndef pmd_read_atomic
1259 : static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1260 : {
1261 : /*
1262 : * Depend on compiler for an atomic pmd read. NOTE: this is
1263 : * only going to work, if the pmdval_t isn't larger than
1264 : * an unsigned long.
1265 : */
1266 0 : return *pmdp;
1267 : }
1268 : #endif
1269 :
1270 : #ifndef arch_needs_pgtable_deposit
1271 : #define arch_needs_pgtable_deposit() (false)
1272 : #endif
1273 : /*
1274 : * This function is meant to be used by sites walking pagetables with
1275 : * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1276 : * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1277 : * into a null pmd and the transhuge page fault can convert a null pmd
1278 : * into an hugepmd or into a regular pmd (if the hugepage allocation
1279 : * fails). While holding the mmap_lock in read mode the pmd becomes
1280 : * stable and stops changing under us only if it's not null and not a
1281 : * transhuge pmd. When those races occurs and this function makes a
1282 : * difference vs the standard pmd_none_or_clear_bad, the result is
1283 : * undefined so behaving like if the pmd was none is safe (because it
1284 : * can return none anyway). The compiler level barrier() is critically
1285 : * important to compute the two checks atomically on the same pmdval.
1286 : *
1287 : * For 32bit kernels with a 64bit large pmd_t this automatically takes
1288 : * care of reading the pmd atomically to avoid SMP race conditions
1289 : * against pmd_populate() when the mmap_lock is hold for reading by the
1290 : * caller (a special atomic read not done by "gcc" as in the generic
1291 : * version above, is also needed when THP is disabled because the page
1292 : * fault can populate the pmd from under us).
1293 : */
1294 0 : static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1295 : {
1296 0 : pmd_t pmdval = pmd_read_atomic(pmd);
1297 : /*
1298 : * The barrier will stabilize the pmdval in a register or on
1299 : * the stack so that it will stop changing under the code.
1300 : *
1301 : * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1302 : * pmd_read_atomic is allowed to return a not atomic pmdval
1303 : * (for example pointing to an hugepage that has never been
1304 : * mapped in the pmd). The below checks will only care about
1305 : * the low part of the pmd with 32bit PAE x86 anyway, with the
1306 : * exception of pmd_none(). So the important thing is that if
1307 : * the low part of the pmd is found null, the high part will
1308 : * be also null or the pmd_none() check below would be
1309 : * confused.
1310 : */
1311 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1312 : barrier();
1313 : #endif
1314 : /*
1315 : * !pmd_present() checks for pmd migration entries
1316 : *
1317 : * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1318 : * But using that requires moving current function and pmd_trans_unstable()
1319 : * to linux/swapops.h to resolve dependency, which is too much code move.
1320 : *
1321 : * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1322 : * because !pmd_present() pages can only be under migration not swapped
1323 : * out.
1324 : *
1325 : * pmd_none() is preserved for future condition checks on pmd migration
1326 : * entries and not confusing with this function name, although it is
1327 : * redundant with !pmd_present().
1328 : */
1329 0 : if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1330 : (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1331 : return 1;
1332 0 : if (unlikely(pmd_bad(pmdval))) {
1333 0 : pmd_clear_bad(pmd);
1334 0 : return 1;
1335 : }
1336 : return 0;
1337 : }
1338 :
1339 : /*
1340 : * This is a noop if Transparent Hugepage Support is not built into
1341 : * the kernel. Otherwise it is equivalent to
1342 : * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1343 : * places that already verified the pmd is not none and they want to
1344 : * walk ptes while holding the mmap sem in read mode (write mode don't
1345 : * need this). If THP is not enabled, the pmd can't go away under the
1346 : * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1347 : * run a pmd_trans_unstable before walking the ptes after
1348 : * split_huge_pmd returns (because it may have run when the pmd become
1349 : * null, but then a page fault can map in a THP and not a regular page).
1350 : */
1351 : static inline int pmd_trans_unstable(pmd_t *pmd)
1352 : {
1353 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1354 : return pmd_none_or_trans_huge_or_clear_bad(pmd);
1355 : #else
1356 : return 0;
1357 : #endif
1358 : }
1359 :
1360 : /*
1361 : * the ordering of these checks is important for pmds with _page_devmap set.
1362 : * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1363 : * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1364 : * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1365 : */
1366 : static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1367 : {
1368 0 : return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1369 : }
1370 :
1371 : #ifndef CONFIG_NUMA_BALANCING
1372 : /*
1373 : * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1374 : * the only case the kernel cares is for NUMA balancing and is only ever set
1375 : * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1376 : * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1377 : * is the responsibility of the caller to distinguish between PROT_NONE
1378 : * protections and NUMA hinting fault protections.
1379 : */
1380 : static inline int pte_protnone(pte_t pte)
1381 : {
1382 : return 0;
1383 : }
1384 :
1385 : static inline int pmd_protnone(pmd_t pmd)
1386 : {
1387 : return 0;
1388 : }
1389 : #endif /* CONFIG_NUMA_BALANCING */
1390 :
1391 : #endif /* CONFIG_MMU */
1392 :
1393 : #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1394 :
1395 : #ifndef __PAGETABLE_P4D_FOLDED
1396 : int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1397 : int p4d_clear_huge(p4d_t *p4d);
1398 : #else
1399 : static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1400 : {
1401 : return 0;
1402 : }
1403 : static inline int p4d_clear_huge(p4d_t *p4d)
1404 : {
1405 : return 0;
1406 : }
1407 : #endif /* !__PAGETABLE_P4D_FOLDED */
1408 :
1409 : int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1410 : int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1411 : int pud_clear_huge(pud_t *pud);
1412 : int pmd_clear_huge(pmd_t *pmd);
1413 : int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1414 : int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1415 : int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1416 : #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1417 : static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1418 : {
1419 : return 0;
1420 : }
1421 : static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1422 : {
1423 : return 0;
1424 : }
1425 : static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1426 : {
1427 : return 0;
1428 : }
1429 : static inline int p4d_clear_huge(p4d_t *p4d)
1430 : {
1431 : return 0;
1432 : }
1433 : static inline int pud_clear_huge(pud_t *pud)
1434 : {
1435 : return 0;
1436 : }
1437 : static inline int pmd_clear_huge(pmd_t *pmd)
1438 : {
1439 : return 0;
1440 : }
1441 : static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1442 : {
1443 : return 0;
1444 : }
1445 : static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1446 : {
1447 : return 0;
1448 : }
1449 : static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1450 : {
1451 : return 0;
1452 : }
1453 : #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1454 :
1455 : #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1456 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1457 : /*
1458 : * ARCHes with special requirements for evicting THP backing TLB entries can
1459 : * implement this. Otherwise also, it can help optimize normal TLB flush in
1460 : * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1461 : * entire TLB if flush span is greater than a threshold, which will
1462 : * likely be true for a single huge page. Thus a single THP flush will
1463 : * invalidate the entire TLB which is not desirable.
1464 : * e.g. see arch/arc: flush_pmd_tlb_range
1465 : */
1466 : #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1467 : #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1468 : #else
1469 : #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1470 : #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1471 : #endif
1472 : #endif
1473 :
1474 : struct file;
1475 : int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1476 : unsigned long size, pgprot_t *vma_prot);
1477 :
1478 : #ifndef CONFIG_X86_ESPFIX64
1479 : static inline void init_espfix_bsp(void) { }
1480 : #endif
1481 :
1482 : extern void __init pgtable_cache_init(void);
1483 :
1484 : #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1485 : static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1486 : {
1487 : return true;
1488 : }
1489 :
1490 : static inline bool arch_has_pfn_modify_check(void)
1491 : {
1492 : return false;
1493 : }
1494 : #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1495 :
1496 : /*
1497 : * Architecture PAGE_KERNEL_* fallbacks
1498 : *
1499 : * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1500 : * because they really don't support them, or the port needs to be updated to
1501 : * reflect the required functionality. Below are a set of relatively safe
1502 : * fallbacks, as best effort, which we can count on in lieu of the architectures
1503 : * not defining them on their own yet.
1504 : */
1505 :
1506 : #ifndef PAGE_KERNEL_RO
1507 : # define PAGE_KERNEL_RO PAGE_KERNEL
1508 : #endif
1509 :
1510 : #ifndef PAGE_KERNEL_EXEC
1511 : # define PAGE_KERNEL_EXEC PAGE_KERNEL
1512 : #endif
1513 :
1514 : /*
1515 : * Page Table Modification bits for pgtbl_mod_mask.
1516 : *
1517 : * These are used by the p?d_alloc_track*() set of functions an in the generic
1518 : * vmalloc/ioremap code to track at which page-table levels entries have been
1519 : * modified. Based on that the code can better decide when vmalloc and ioremap
1520 : * mapping changes need to be synchronized to other page-tables in the system.
1521 : */
1522 : #define __PGTBL_PGD_MODIFIED 0
1523 : #define __PGTBL_P4D_MODIFIED 1
1524 : #define __PGTBL_PUD_MODIFIED 2
1525 : #define __PGTBL_PMD_MODIFIED 3
1526 : #define __PGTBL_PTE_MODIFIED 4
1527 :
1528 : #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1529 : #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1530 : #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1531 : #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1532 : #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1533 :
1534 : /* Page-Table Modification Mask */
1535 : typedef unsigned int pgtbl_mod_mask;
1536 :
1537 : #endif /* !__ASSEMBLY__ */
1538 :
1539 : #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1540 : #ifdef CONFIG_PHYS_ADDR_T_64BIT
1541 : /*
1542 : * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1543 : * with physical address space extension, but falls back to
1544 : * BITS_PER_LONG otherwise.
1545 : */
1546 : #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1547 : #else
1548 : #define MAX_POSSIBLE_PHYSMEM_BITS 32
1549 : #endif
1550 : #endif
1551 :
1552 : #ifndef has_transparent_hugepage
1553 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1554 : #define has_transparent_hugepage() 1
1555 : #else
1556 : #define has_transparent_hugepage() 0
1557 : #endif
1558 : #endif
1559 :
1560 : /*
1561 : * On some architectures it depends on the mm if the p4d/pud or pmd
1562 : * layer of the page table hierarchy is folded or not.
1563 : */
1564 : #ifndef mm_p4d_folded
1565 : #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1566 : #endif
1567 :
1568 : #ifndef mm_pud_folded
1569 : #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1570 : #endif
1571 :
1572 : #ifndef mm_pmd_folded
1573 : #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1574 : #endif
1575 :
1576 : #ifndef p4d_offset_lockless
1577 : #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1578 : #endif
1579 : #ifndef pud_offset_lockless
1580 : #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1581 : #endif
1582 : #ifndef pmd_offset_lockless
1583 : #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1584 : #endif
1585 :
1586 : /*
1587 : * p?d_leaf() - true if this entry is a final mapping to a physical address.
1588 : * This differs from p?d_huge() by the fact that they are always available (if
1589 : * the architecture supports large pages at the appropriate level) even
1590 : * if CONFIG_HUGETLB_PAGE is not defined.
1591 : * Only meaningful when called on a valid entry.
1592 : */
1593 : #ifndef pgd_leaf
1594 : #define pgd_leaf(x) 0
1595 : #endif
1596 : #ifndef p4d_leaf
1597 : #define p4d_leaf(x) 0
1598 : #endif
1599 : #ifndef pud_leaf
1600 : #define pud_leaf(x) 0
1601 : #endif
1602 : #ifndef pmd_leaf
1603 : #define pmd_leaf(x) 0
1604 : #endif
1605 :
1606 : #ifndef pgd_leaf_size
1607 : #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1608 : #endif
1609 : #ifndef p4d_leaf_size
1610 : #define p4d_leaf_size(x) P4D_SIZE
1611 : #endif
1612 : #ifndef pud_leaf_size
1613 : #define pud_leaf_size(x) PUD_SIZE
1614 : #endif
1615 : #ifndef pmd_leaf_size
1616 : #define pmd_leaf_size(x) PMD_SIZE
1617 : #endif
1618 : #ifndef pte_leaf_size
1619 : #define pte_leaf_size(x) PAGE_SIZE
1620 : #endif
1621 :
1622 : /*
1623 : * Some architectures have MMUs that are configurable or selectable at boot
1624 : * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1625 : * helps to have a static maximum value.
1626 : */
1627 :
1628 : #ifndef MAX_PTRS_PER_PTE
1629 : #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1630 : #endif
1631 :
1632 : #ifndef MAX_PTRS_PER_PMD
1633 : #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1634 : #endif
1635 :
1636 : #ifndef MAX_PTRS_PER_PUD
1637 : #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1638 : #endif
1639 :
1640 : #ifndef MAX_PTRS_PER_P4D
1641 : #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1642 : #endif
1643 :
1644 : #endif /* _LINUX_PGTABLE_H */
|