Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */ 2 : #ifndef _LINUX_SLUB_DEF_H 3 : #define _LINUX_SLUB_DEF_H 4 : 5 : /* 6 : * SLUB : A Slab allocator without object queues. 7 : * 8 : * (C) 2007 SGI, Christoph Lameter 9 : */ 10 : #include <linux/kfence.h> 11 : #include <linux/kobject.h> 12 : #include <linux/reciprocal_div.h> 13 : #include <linux/local_lock.h> 14 : 15 : enum stat_item { 16 : ALLOC_FASTPATH, /* Allocation from cpu slab */ 17 : ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 18 : FREE_FASTPATH, /* Free to cpu slab */ 19 : FREE_SLOWPATH, /* Freeing not to cpu slab */ 20 : FREE_FROZEN, /* Freeing to frozen slab */ 21 : FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 22 : FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 23 : ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 24 : ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 25 : ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 26 : ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 27 : FREE_SLAB, /* Slab freed to the page allocator */ 28 : CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 29 : DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 30 : DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 31 : DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 32 : DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 33 : DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 34 : DEACTIVATE_BYPASS, /* Implicit deactivation */ 35 : ORDER_FALLBACK, /* Number of times fallback was necessary */ 36 : CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ 37 : CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */ 38 : CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 39 : CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 40 : CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 41 : CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 42 : NR_SLUB_STAT_ITEMS }; 43 : 44 : /* 45 : * When changing the layout, make sure freelist and tid are still compatible 46 : * with this_cpu_cmpxchg_double() alignment requirements. 47 : */ 48 : struct kmem_cache_cpu { 49 : void **freelist; /* Pointer to next available object */ 50 : unsigned long tid; /* Globally unique transaction id */ 51 : struct slab *slab; /* The slab from which we are allocating */ 52 : #ifdef CONFIG_SLUB_CPU_PARTIAL 53 : struct slab *partial; /* Partially allocated frozen slabs */ 54 : #endif 55 : local_lock_t lock; /* Protects the fields above */ 56 : #ifdef CONFIG_SLUB_STATS 57 : unsigned stat[NR_SLUB_STAT_ITEMS]; 58 : #endif 59 : }; 60 : 61 : #ifdef CONFIG_SLUB_CPU_PARTIAL 62 : #define slub_percpu_partial(c) ((c)->partial) 63 : 64 : #define slub_set_percpu_partial(c, p) \ 65 : ({ \ 66 : slub_percpu_partial(c) = (p)->next; \ 67 : }) 68 : 69 : #define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c)) 70 : #else 71 : #define slub_percpu_partial(c) NULL 72 : 73 : #define slub_set_percpu_partial(c, p) 74 : 75 : #define slub_percpu_partial_read_once(c) NULL 76 : #endif // CONFIG_SLUB_CPU_PARTIAL 77 : 78 : /* 79 : * Word size structure that can be atomically updated or read and that 80 : * contains both the order and the number of objects that a slab of the 81 : * given order would contain. 82 : */ 83 : struct kmem_cache_order_objects { 84 : unsigned int x; 85 : }; 86 : 87 : /* 88 : * Slab cache management. 89 : */ 90 : struct kmem_cache { 91 : struct kmem_cache_cpu __percpu *cpu_slab; 92 : /* Used for retrieving partial slabs, etc. */ 93 : slab_flags_t flags; 94 : unsigned long min_partial; 95 : unsigned int size; /* The size of an object including metadata */ 96 : unsigned int object_size;/* The size of an object without metadata */ 97 : struct reciprocal_value reciprocal_size; 98 : unsigned int offset; /* Free pointer offset */ 99 : #ifdef CONFIG_SLUB_CPU_PARTIAL 100 : /* Number of per cpu partial objects to keep around */ 101 : unsigned int cpu_partial; 102 : /* Number of per cpu partial slabs to keep around */ 103 : unsigned int cpu_partial_slabs; 104 : #endif 105 : struct kmem_cache_order_objects oo; 106 : 107 : /* Allocation and freeing of slabs */ 108 : struct kmem_cache_order_objects max; 109 : struct kmem_cache_order_objects min; 110 : gfp_t allocflags; /* gfp flags to use on each alloc */ 111 : int refcount; /* Refcount for slab cache destroy */ 112 : void (*ctor)(void *); 113 : unsigned int inuse; /* Offset to metadata */ 114 : unsigned int align; /* Alignment */ 115 : unsigned int red_left_pad; /* Left redzone padding size */ 116 : const char *name; /* Name (only for display!) */ 117 : struct list_head list; /* List of slab caches */ 118 : #ifdef CONFIG_SYSFS 119 : struct kobject kobj; /* For sysfs */ 120 : #endif 121 : #ifdef CONFIG_SLAB_FREELIST_HARDENED 122 : unsigned long random; 123 : #endif 124 : 125 : #ifdef CONFIG_NUMA 126 : /* 127 : * Defragmentation by allocating from a remote node. 128 : */ 129 : unsigned int remote_node_defrag_ratio; 130 : #endif 131 : 132 : #ifdef CONFIG_SLAB_FREELIST_RANDOM 133 : unsigned int *random_seq; 134 : #endif 135 : 136 : #ifdef CONFIG_KASAN 137 : struct kasan_cache kasan_info; 138 : #endif 139 : 140 : unsigned int useroffset; /* Usercopy region offset */ 141 : unsigned int usersize; /* Usercopy region size */ 142 : 143 : struct kmem_cache_node *node[MAX_NUMNODES]; 144 : }; 145 : 146 : #ifdef CONFIG_SYSFS 147 : #define SLAB_SUPPORTS_SYSFS 148 : void sysfs_slab_unlink(struct kmem_cache *); 149 : void sysfs_slab_release(struct kmem_cache *); 150 : #else 151 : static inline void sysfs_slab_unlink(struct kmem_cache *s) 152 : { 153 : } 154 : static inline void sysfs_slab_release(struct kmem_cache *s) 155 : { 156 : } 157 : #endif 158 : 159 : void *fixup_red_left(struct kmem_cache *s, void *p); 160 : 161 : static inline void *nearest_obj(struct kmem_cache *cache, const struct slab *slab, 162 : void *x) { 163 : void *object = x - (x - slab_address(slab)) % cache->size; 164 : void *last_object = slab_address(slab) + 165 : (slab->objects - 1) * cache->size; 166 : void *result = (unlikely(object > last_object)) ? last_object : object; 167 : 168 : result = fixup_red_left(cache, result); 169 : return result; 170 : } 171 : 172 : /* Determine object index from a given position */ 173 : static inline unsigned int __obj_to_index(const struct kmem_cache *cache, 174 : void *addr, void *obj) 175 : { 176 0 : return reciprocal_divide(kasan_reset_tag(obj) - addr, 177 : cache->reciprocal_size); 178 : } 179 : 180 : static inline unsigned int obj_to_index(const struct kmem_cache *cache, 181 : const struct slab *slab, void *obj) 182 : { 183 : if (is_kfence_address(obj)) 184 : return 0; 185 0 : return __obj_to_index(cache, slab_address(slab), obj); 186 : } 187 : 188 : static inline int objs_per_slab(const struct kmem_cache *cache, 189 : const struct slab *slab) 190 : { 191 : return slab->objects; 192 : } 193 : #endif /* _LINUX_SLUB_DEF_H */