LCOV - code coverage report
Current view: top level - kernel/dma - direct.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 0 134 0.0 %
Date: 2022-12-09 01:23:36 Functions: 0 19 0.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Copyright (C) 2018-2020 Christoph Hellwig.
       4             :  *
       5             :  * DMA operations that map physical memory directly without using an IOMMU.
       6             :  */
       7             : #include <linux/memblock.h> /* for max_pfn */
       8             : #include <linux/export.h>
       9             : #include <linux/mm.h>
      10             : #include <linux/dma-map-ops.h>
      11             : #include <linux/scatterlist.h>
      12             : #include <linux/pfn.h>
      13             : #include <linux/vmalloc.h>
      14             : #include <linux/set_memory.h>
      15             : #include <linux/slab.h>
      16             : #include "direct.h"
      17             : 
      18             : /*
      19             :  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
      20             :  * it for entirely different regions. In that case the arch code needs to
      21             :  * override the variable below for dma-direct to work properly.
      22             :  */
      23             : unsigned int zone_dma_bits __ro_after_init = 24;
      24             : 
      25             : static inline dma_addr_t phys_to_dma_direct(struct device *dev,
      26             :                 phys_addr_t phys)
      27             : {
      28           0 :         if (force_dma_unencrypted(dev))
      29             :                 return phys_to_dma_unencrypted(dev, phys);
      30           0 :         return phys_to_dma(dev, phys);
      31             : }
      32             : 
      33           0 : static inline struct page *dma_direct_to_page(struct device *dev,
      34             :                 dma_addr_t dma_addr)
      35             : {
      36           0 :         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
      37             : }
      38             : 
      39           0 : u64 dma_direct_get_required_mask(struct device *dev)
      40             : {
      41           0 :         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
      42           0 :         u64 max_dma = phys_to_dma_direct(dev, phys);
      43             : 
      44           0 :         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
      45             : }
      46             : 
      47           0 : static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
      48             :                                   u64 *phys_limit)
      49             : {
      50           0 :         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
      51             : 
      52             :         /*
      53             :          * Optimistically try the zone that the physical address mask falls
      54             :          * into first.  If that returns memory that isn't actually addressable
      55             :          * we will fallback to the next lower zone and try again.
      56             :          *
      57             :          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
      58             :          * zones.
      59             :          */
      60           0 :         *phys_limit = dma_to_phys(dev, dma_limit);
      61           0 :         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
      62             :                 return GFP_DMA;
      63           0 :         if (*phys_limit <= DMA_BIT_MASK(32))
      64             :                 return GFP_DMA32;
      65           0 :         return 0;
      66             : }
      67             : 
      68           0 : static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
      69             : {
      70           0 :         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
      71             : 
      72           0 :         if (dma_addr == DMA_MAPPING_ERROR)
      73             :                 return false;
      74           0 :         return dma_addr + size - 1 <=
      75           0 :                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
      76             : }
      77             : 
      78             : static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
      79             : {
      80           0 :         if (!force_dma_unencrypted(dev))
      81             :                 return 0;
      82             :         return set_memory_decrypted((unsigned long)vaddr, 1 << get_order(size));
      83             : }
      84             : 
      85             : static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
      86             : {
      87             :         int ret;
      88             : 
      89           0 :         if (!force_dma_unencrypted(dev))
      90             :                 return 0;
      91             :         ret = set_memory_encrypted((unsigned long)vaddr, 1 << get_order(size));
      92             :         if (ret)
      93             :                 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
      94             :         return ret;
      95             : }
      96             : 
      97             : static void __dma_direct_free_pages(struct device *dev, struct page *page,
      98             :                                     size_t size)
      99             : {
     100           0 :         if (swiotlb_free(dev, page, size))
     101             :                 return;
     102           0 :         dma_free_contiguous(dev, page, size);
     103             : }
     104             : 
     105             : static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
     106             : {
     107             :         struct page *page = swiotlb_alloc(dev, size);
     108             : 
     109             :         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
     110             :                 swiotlb_free(dev, page, size);
     111             :                 return NULL;
     112             :         }
     113             : 
     114             :         return page;
     115             : }
     116             : 
     117           0 : static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
     118             :                 gfp_t gfp)
     119             : {
     120           0 :         int node = dev_to_node(dev);
     121           0 :         struct page *page = NULL;
     122             :         u64 phys_limit;
     123             : 
     124           0 :         WARN_ON_ONCE(!PAGE_ALIGNED(size));
     125             : 
     126           0 :         if (is_swiotlb_for_alloc(dev))
     127             :                 return dma_direct_alloc_swiotlb(dev, size);
     128             : 
     129           0 :         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
     130             :                                            &phys_limit);
     131           0 :         page = dma_alloc_contiguous(dev, size, gfp);
     132             :         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
     133             :                 dma_free_contiguous(dev, page, size);
     134             :                 page = NULL;
     135             :         }
     136             : again:
     137             :         if (!page)
     138           0 :                 page = alloc_pages_node(node, gfp, get_order(size));
     139           0 :         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
     140           0 :                 dma_free_contiguous(dev, page, size);
     141           0 :                 page = NULL;
     142             : 
     143             :                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
     144             :                     phys_limit < DMA_BIT_MASK(64) &&
     145             :                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
     146             :                         gfp |= GFP_DMA32;
     147             :                         goto again;
     148             :                 }
     149             : 
     150             :                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
     151             :                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
     152             :                         goto again;
     153             :                 }
     154             :         }
     155             : 
     156             :         return page;
     157             : }
     158             : 
     159             : /*
     160             :  * Check if a potentially blocking operations needs to dip into the atomic
     161             :  * pools for the given device/gfp.
     162             :  */
     163             : static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
     164             : {
     165             :         return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
     166             : }
     167             : 
     168             : static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
     169             :                 dma_addr_t *dma_handle, gfp_t gfp)
     170             : {
     171             :         struct page *page;
     172             :         u64 phys_mask;
     173             :         void *ret;
     174             : 
     175             :         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
     176             :                 return NULL;
     177             : 
     178             :         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
     179             :                                            &phys_mask);
     180             :         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
     181             :         if (!page)
     182             :                 return NULL;
     183             :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     184             :         return ret;
     185             : }
     186             : 
     187           0 : static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
     188             :                 dma_addr_t *dma_handle, gfp_t gfp)
     189             : {
     190             :         struct page *page;
     191             : 
     192           0 :         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
     193           0 :         if (!page)
     194             :                 return NULL;
     195             : 
     196             :         /* remove any dirty cache lines on the kernel alias */
     197           0 :         if (!PageHighMem(page))
     198             :                 arch_dma_prep_coherent(page, size);
     199             : 
     200             :         /* return the page pointer as the opaque cookie */
     201           0 :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     202           0 :         return page;
     203             : }
     204             : 
     205           0 : void *dma_direct_alloc(struct device *dev, size_t size,
     206             :                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
     207             : {
     208           0 :         bool remap = false, set_uncached = false;
     209             :         struct page *page;
     210             :         void *ret;
     211             : 
     212           0 :         size = PAGE_ALIGN(size);
     213           0 :         if (attrs & DMA_ATTR_NO_WARN)
     214           0 :                 gfp |= __GFP_NOWARN;
     215             : 
     216           0 :         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
     217           0 :             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
     218           0 :                 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
     219             : 
     220           0 :         if (!dev_is_dma_coherent(dev)) {
     221             :                 /*
     222             :                  * Fallback to the arch handler if it exists.  This should
     223             :                  * eventually go away.
     224             :                  */
     225             :                 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
     226             :                     !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
     227             :                     !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
     228             :                     !is_swiotlb_for_alloc(dev))
     229             :                         return arch_dma_alloc(dev, size, dma_handle, gfp,
     230             :                                               attrs);
     231             : 
     232             :                 /*
     233             :                  * If there is a global pool, always allocate from it for
     234             :                  * non-coherent devices.
     235             :                  */
     236             :                 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
     237             :                         return dma_alloc_from_global_coherent(dev, size,
     238             :                                         dma_handle);
     239             : 
     240             :                 /*
     241             :                  * Otherwise remap if the architecture is asking for it.  But
     242             :                  * given that remapping memory is a blocking operation we'll
     243             :                  * instead have to dip into the atomic pools.
     244             :                  */
     245             :                 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
     246             :                 if (remap) {
     247             :                         if (dma_direct_use_pool(dev, gfp))
     248             :                                 return dma_direct_alloc_from_pool(dev, size,
     249             :                                                 dma_handle, gfp);
     250             :                 } else {
     251             :                         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
     252             :                                 return NULL;
     253             :                         set_uncached = true;
     254             :                 }
     255             :         }
     256             : 
     257             :         /*
     258             :          * Decrypting memory may block, so allocate the memory from the atomic
     259             :          * pools if we can't block.
     260             :          */
     261           0 :         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
     262             :                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
     263             : 
     264             :         /* we always manually zero the memory once we are done */
     265           0 :         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
     266           0 :         if (!page)
     267             :                 return NULL;
     268             : 
     269             :         /*
     270             :          * dma_alloc_contiguous can return highmem pages depending on a
     271             :          * combination the cma= arguments and per-arch setup.  These need to be
     272             :          * remapped to return a kernel virtual address.
     273             :          */
     274           0 :         if (PageHighMem(page)) {
     275             :                 remap = true;
     276             :                 set_uncached = false;
     277             :         }
     278             : 
     279             :         if (remap) {
     280             :                 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
     281             : 
     282             :                 if (force_dma_unencrypted(dev))
     283             :                         prot = pgprot_decrypted(prot);
     284             : 
     285             :                 /* remove any dirty cache lines on the kernel alias */
     286             :                 arch_dma_prep_coherent(page, size);
     287             : 
     288             :                 /* create a coherent mapping */
     289             :                 ret = dma_common_contiguous_remap(page, size, prot,
     290             :                                 __builtin_return_address(0));
     291             :                 if (!ret)
     292             :                         goto out_free_pages;
     293             :         } else {
     294           0 :                 ret = page_address(page);
     295           0 :                 if (dma_set_decrypted(dev, ret, size))
     296             :                         goto out_free_pages;
     297             :         }
     298             : 
     299           0 :         memset(ret, 0, size);
     300             : 
     301             :         if (set_uncached) {
     302             :                 arch_dma_prep_coherent(page, size);
     303             :                 ret = arch_dma_set_uncached(ret, size);
     304             :                 if (IS_ERR(ret))
     305             :                         goto out_encrypt_pages;
     306             :         }
     307             : 
     308           0 :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     309           0 :         return ret;
     310             : 
     311             : out_encrypt_pages:
     312             :         if (dma_set_encrypted(dev, page_address(page), size))
     313             :                 return NULL;
     314             : out_free_pages:
     315             :         __dma_direct_free_pages(dev, page, size);
     316             :         return NULL;
     317             : }
     318             : 
     319           0 : void dma_direct_free(struct device *dev, size_t size,
     320             :                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
     321             : {
     322           0 :         unsigned int page_order = get_order(size);
     323             : 
     324           0 :         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
     325           0 :             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
     326             :                 /* cpu_addr is a struct page cookie, not a kernel address */
     327           0 :                 dma_free_contiguous(dev, cpu_addr, size);
     328           0 :                 return;
     329             :         }
     330             : 
     331             :         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
     332             :             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
     333             :             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
     334           0 :             !dev_is_dma_coherent(dev) &&
     335             :             !is_swiotlb_for_alloc(dev)) {
     336             :                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
     337             :                 return;
     338             :         }
     339             : 
     340             :         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
     341             :             !dev_is_dma_coherent(dev)) {
     342             :                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
     343             :                         WARN_ON_ONCE(1);
     344             :                 return;
     345             :         }
     346             : 
     347             :         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
     348             :         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
     349             :             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
     350             :                 return;
     351             : 
     352           0 :         if (is_vmalloc_addr(cpu_addr)) {
     353           0 :                 vunmap(cpu_addr);
     354             :         } else {
     355             :                 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
     356             :                         arch_dma_clear_uncached(cpu_addr, size);
     357             :                 if (dma_set_encrypted(dev, cpu_addr, 1 << page_order))
     358             :                         return;
     359             :         }
     360             : 
     361           0 :         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
     362             : }
     363             : 
     364           0 : struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
     365             :                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
     366             : {
     367             :         struct page *page;
     368             :         void *ret;
     369             : 
     370           0 :         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
     371             :                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
     372             : 
     373           0 :         page = __dma_direct_alloc_pages(dev, size, gfp);
     374           0 :         if (!page)
     375             :                 return NULL;
     376           0 :         if (PageHighMem(page)) {
     377             :                 /*
     378             :                  * Depending on the cma= arguments and per-arch setup
     379             :                  * dma_alloc_contiguous could return highmem pages.
     380             :                  * Without remapping there is no way to return them here,
     381             :                  * so log an error and fail.
     382             :                  */
     383             :                 dev_info(dev, "Rejecting highmem page from CMA.\n");
     384             :                 goto out_free_pages;
     385             :         }
     386             : 
     387           0 :         ret = page_address(page);
     388           0 :         if (dma_set_decrypted(dev, ret, size))
     389             :                 goto out_free_pages;
     390           0 :         memset(ret, 0, size);
     391           0 :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     392           0 :         return page;
     393             : out_free_pages:
     394             :         __dma_direct_free_pages(dev, page, size);
     395             :         return NULL;
     396             : }
     397             : 
     398           0 : void dma_direct_free_pages(struct device *dev, size_t size,
     399             :                 struct page *page, dma_addr_t dma_addr,
     400             :                 enum dma_data_direction dir)
     401             : {
     402           0 :         unsigned int page_order = get_order(size);
     403           0 :         void *vaddr = page_address(page);
     404             : 
     405             :         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
     406             :         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
     407             :             dma_free_from_pool(dev, vaddr, size))
     408             :                 return;
     409             : 
     410           0 :         if (dma_set_encrypted(dev, vaddr, 1 << page_order))
     411             :                 return;
     412           0 :         __dma_direct_free_pages(dev, page, size);
     413             : }
     414             : 
     415             : #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
     416             :     defined(CONFIG_SWIOTLB)
     417             : void dma_direct_sync_sg_for_device(struct device *dev,
     418             :                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
     419             : {
     420             :         struct scatterlist *sg;
     421             :         int i;
     422             : 
     423             :         for_each_sg(sgl, sg, nents, i) {
     424             :                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
     425             : 
     426             :                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
     427             :                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
     428             :                                                        dir);
     429             : 
     430             :                 if (!dev_is_dma_coherent(dev))
     431             :                         arch_sync_dma_for_device(paddr, sg->length,
     432             :                                         dir);
     433             :         }
     434             : }
     435             : #endif
     436             : 
     437             : #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
     438             :     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
     439             :     defined(CONFIG_SWIOTLB)
     440             : void dma_direct_sync_sg_for_cpu(struct device *dev,
     441             :                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
     442             : {
     443             :         struct scatterlist *sg;
     444             :         int i;
     445             : 
     446             :         for_each_sg(sgl, sg, nents, i) {
     447             :                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
     448             : 
     449             :                 if (!dev_is_dma_coherent(dev))
     450             :                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
     451             : 
     452             :                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
     453             :                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
     454             :                                                     dir);
     455             : 
     456             :                 if (dir == DMA_FROM_DEVICE)
     457             :                         arch_dma_mark_clean(paddr, sg->length);
     458             :         }
     459             : 
     460             :         if (!dev_is_dma_coherent(dev))
     461             :                 arch_sync_dma_for_cpu_all();
     462             : }
     463             : 
     464             : void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
     465             :                 int nents, enum dma_data_direction dir, unsigned long attrs)
     466             : {
     467             :         struct scatterlist *sg;
     468             :         int i;
     469             : 
     470             :         for_each_sg(sgl, sg, nents, i)
     471             :                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
     472             :                              attrs);
     473             : }
     474             : #endif
     475             : 
     476           0 : int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
     477             :                 enum dma_data_direction dir, unsigned long attrs)
     478             : {
     479             :         int i;
     480             :         struct scatterlist *sg;
     481             : 
     482           0 :         for_each_sg(sgl, sg, nents, i) {
     483           0 :                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
     484           0 :                                 sg->offset, sg->length, dir, attrs);
     485           0 :                 if (sg->dma_address == DMA_MAPPING_ERROR)
     486             :                         goto out_unmap;
     487             :                 sg_dma_len(sg) = sg->length;
     488             :         }
     489             : 
     490             :         return nents;
     491             : 
     492             : out_unmap:
     493             :         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
     494             :         return -EIO;
     495             : }
     496             : 
     497           0 : dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
     498             :                 size_t size, enum dma_data_direction dir, unsigned long attrs)
     499             : {
     500           0 :         dma_addr_t dma_addr = paddr;
     501             : 
     502           0 :         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
     503           0 :                 dev_err_once(dev,
     504             :                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
     505             :                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
     506           0 :                 WARN_ON_ONCE(1);
     507             :                 return DMA_MAPPING_ERROR;
     508             :         }
     509             : 
     510             :         return dma_addr;
     511             : }
     512             : 
     513           0 : int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
     514             :                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
     515             :                 unsigned long attrs)
     516             : {
     517           0 :         struct page *page = dma_direct_to_page(dev, dma_addr);
     518             :         int ret;
     519             : 
     520           0 :         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
     521           0 :         if (!ret)
     522           0 :                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
     523           0 :         return ret;
     524             : }
     525             : 
     526           0 : bool dma_direct_can_mmap(struct device *dev)
     527             : {
     528           0 :         return dev_is_dma_coherent(dev) ||
     529             :                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
     530             : }
     531             : 
     532           0 : int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
     533             :                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
     534             :                 unsigned long attrs)
     535             : {
     536           0 :         unsigned long user_count = vma_pages(vma);
     537           0 :         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
     538           0 :         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
     539           0 :         int ret = -ENXIO;
     540             : 
     541           0 :         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
     542           0 :         if (force_dma_unencrypted(dev))
     543             :                 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
     544             : 
     545             :         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
     546             :                 return ret;
     547           0 :         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
     548             :                 return ret;
     549             : 
     550           0 :         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
     551             :                 return -ENXIO;
     552           0 :         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
     553             :                         user_count << PAGE_SHIFT, vma->vm_page_prot);
     554             : }
     555             : 
     556           0 : int dma_direct_supported(struct device *dev, u64 mask)
     557             : {
     558           0 :         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
     559             : 
     560             :         /*
     561             :          * Because 32-bit DMA masks are so common we expect every architecture
     562             :          * to be able to satisfy them - either by not supporting more physical
     563             :          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
     564             :          * architecture needs to use an IOMMU instead of the direct mapping.
     565             :          */
     566           0 :         if (mask >= DMA_BIT_MASK(32))
     567             :                 return 1;
     568             : 
     569             :         /*
     570             :          * This check needs to be against the actual bit mask value, so use
     571             :          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
     572             :          * part of the check.
     573             :          */
     574             :         if (IS_ENABLED(CONFIG_ZONE_DMA))
     575             :                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
     576           0 :         return mask >= phys_to_dma_unencrypted(dev, min_mask);
     577             : }
     578             : 
     579           0 : size_t dma_direct_max_mapping_size(struct device *dev)
     580             : {
     581             :         /* If SWIOTLB is active, use its maximum mapping size */
     582           0 :         if (is_swiotlb_active(dev) &&
     583             :             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
     584             :                 return swiotlb_max_mapping_size(dev);
     585             :         return SIZE_MAX;
     586             : }
     587             : 
     588           0 : bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
     589             : {
     590           0 :         return !dev_is_dma_coherent(dev) ||
     591           0 :                is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
     592             : }
     593             : 
     594             : /**
     595             :  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
     596             :  * @dev:        device pointer; needed to "own" the alloced memory.
     597             :  * @cpu_start:  beginning of memory region covered by this offset.
     598             :  * @dma_start:  beginning of DMA/PCI region covered by this offset.
     599             :  * @size:       size of the region.
     600             :  *
     601             :  * This is for the simple case of a uniform offset which cannot
     602             :  * be discovered by "dma-ranges".
     603             :  *
     604             :  * It returns -ENOMEM if out of memory, -EINVAL if a map
     605             :  * already exists, 0 otherwise.
     606             :  *
     607             :  * Note: any call to this from a driver is a bug.  The mapping needs
     608             :  * to be described by the device tree or other firmware interfaces.
     609             :  */
     610           0 : int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
     611             :                          dma_addr_t dma_start, u64 size)
     612             : {
     613             :         struct bus_dma_region *map;
     614           0 :         u64 offset = (u64)cpu_start - (u64)dma_start;
     615             : 
     616           0 :         if (dev->dma_range_map) {
     617           0 :                 dev_err(dev, "attempt to add DMA range to existing map\n");
     618           0 :                 return -EINVAL;
     619             :         }
     620             : 
     621           0 :         if (!offset)
     622             :                 return 0;
     623             : 
     624           0 :         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
     625           0 :         if (!map)
     626             :                 return -ENOMEM;
     627           0 :         map[0].cpu_start = cpu_start;
     628           0 :         map[0].dma_start = dma_start;
     629           0 :         map[0].offset = offset;
     630           0 :         map[0].size = size;
     631           0 :         dev->dma_range_map = map;
     632           0 :         return 0;
     633             : }

Generated by: LCOV version 1.14