LCOV - code coverage report
Current view: top level - kernel - fork.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 443 1080 41.0 %
Date: 2022-12-09 01:23:36 Functions: 31 84 36.9 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  linux/kernel/fork.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992  Linus Torvalds
       6             :  */
       7             : 
       8             : /*
       9             :  *  'fork.c' contains the help-routines for the 'fork' system call
      10             :  * (see also entry.S and others).
      11             :  * Fork is rather simple, once you get the hang of it, but the memory
      12             :  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
      13             :  */
      14             : 
      15             : #include <linux/anon_inodes.h>
      16             : #include <linux/slab.h>
      17             : #include <linux/sched/autogroup.h>
      18             : #include <linux/sched/mm.h>
      19             : #include <linux/sched/coredump.h>
      20             : #include <linux/sched/user.h>
      21             : #include <linux/sched/numa_balancing.h>
      22             : #include <linux/sched/stat.h>
      23             : #include <linux/sched/task.h>
      24             : #include <linux/sched/task_stack.h>
      25             : #include <linux/sched/cputime.h>
      26             : #include <linux/seq_file.h>
      27             : #include <linux/rtmutex.h>
      28             : #include <linux/init.h>
      29             : #include <linux/unistd.h>
      30             : #include <linux/module.h>
      31             : #include <linux/vmalloc.h>
      32             : #include <linux/completion.h>
      33             : #include <linux/personality.h>
      34             : #include <linux/mempolicy.h>
      35             : #include <linux/sem.h>
      36             : #include <linux/file.h>
      37             : #include <linux/fdtable.h>
      38             : #include <linux/iocontext.h>
      39             : #include <linux/key.h>
      40             : #include <linux/binfmts.h>
      41             : #include <linux/mman.h>
      42             : #include <linux/mmu_notifier.h>
      43             : #include <linux/fs.h>
      44             : #include <linux/mm.h>
      45             : #include <linux/mm_inline.h>
      46             : #include <linux/vmacache.h>
      47             : #include <linux/nsproxy.h>
      48             : #include <linux/capability.h>
      49             : #include <linux/cpu.h>
      50             : #include <linux/cgroup.h>
      51             : #include <linux/security.h>
      52             : #include <linux/hugetlb.h>
      53             : #include <linux/seccomp.h>
      54             : #include <linux/swap.h>
      55             : #include <linux/syscalls.h>
      56             : #include <linux/jiffies.h>
      57             : #include <linux/futex.h>
      58             : #include <linux/compat.h>
      59             : #include <linux/kthread.h>
      60             : #include <linux/task_io_accounting_ops.h>
      61             : #include <linux/rcupdate.h>
      62             : #include <linux/ptrace.h>
      63             : #include <linux/mount.h>
      64             : #include <linux/audit.h>
      65             : #include <linux/memcontrol.h>
      66             : #include <linux/ftrace.h>
      67             : #include <linux/proc_fs.h>
      68             : #include <linux/profile.h>
      69             : #include <linux/rmap.h>
      70             : #include <linux/ksm.h>
      71             : #include <linux/acct.h>
      72             : #include <linux/userfaultfd_k.h>
      73             : #include <linux/tsacct_kern.h>
      74             : #include <linux/cn_proc.h>
      75             : #include <linux/freezer.h>
      76             : #include <linux/delayacct.h>
      77             : #include <linux/taskstats_kern.h>
      78             : #include <linux/random.h>
      79             : #include <linux/tty.h>
      80             : #include <linux/fs_struct.h>
      81             : #include <linux/magic.h>
      82             : #include <linux/perf_event.h>
      83             : #include <linux/posix-timers.h>
      84             : #include <linux/user-return-notifier.h>
      85             : #include <linux/oom.h>
      86             : #include <linux/khugepaged.h>
      87             : #include <linux/signalfd.h>
      88             : #include <linux/uprobes.h>
      89             : #include <linux/aio.h>
      90             : #include <linux/compiler.h>
      91             : #include <linux/sysctl.h>
      92             : #include <linux/kcov.h>
      93             : #include <linux/livepatch.h>
      94             : #include <linux/thread_info.h>
      95             : #include <linux/stackleak.h>
      96             : #include <linux/kasan.h>
      97             : #include <linux/scs.h>
      98             : #include <linux/io_uring.h>
      99             : #include <linux/bpf.h>
     100             : #include <linux/sched/mm.h>
     101             : 
     102             : #include <asm/pgalloc.h>
     103             : #include <linux/uaccess.h>
     104             : #include <asm/mmu_context.h>
     105             : #include <asm/cacheflush.h>
     106             : #include <asm/tlbflush.h>
     107             : 
     108             : #include <trace/events/sched.h>
     109             : 
     110             : #define CREATE_TRACE_POINTS
     111             : #include <trace/events/task.h>
     112             : 
     113             : /*
     114             :  * Minimum number of threads to boot the kernel
     115             :  */
     116             : #define MIN_THREADS 20
     117             : 
     118             : /*
     119             :  * Maximum number of threads
     120             :  */
     121             : #define MAX_THREADS FUTEX_TID_MASK
     122             : 
     123             : /*
     124             :  * Protected counters by write_lock_irq(&tasklist_lock)
     125             :  */
     126             : unsigned long total_forks;      /* Handle normal Linux uptimes. */
     127             : int nr_threads;                 /* The idle threads do not count.. */
     128             : 
     129             : static int max_threads;         /* tunable limit on nr_threads */
     130             : 
     131             : #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
     132             : 
     133             : static const char * const resident_page_types[] = {
     134             :         NAMED_ARRAY_INDEX(MM_FILEPAGES),
     135             :         NAMED_ARRAY_INDEX(MM_ANONPAGES),
     136             :         NAMED_ARRAY_INDEX(MM_SWAPENTS),
     137             :         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
     138             : };
     139             : 
     140             : DEFINE_PER_CPU(unsigned long, process_counts) = 0;
     141             : 
     142             : __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
     143             : 
     144             : #ifdef CONFIG_PROVE_RCU
     145             : int lockdep_tasklist_lock_is_held(void)
     146             : {
     147             :         return lockdep_is_held(&tasklist_lock);
     148             : }
     149             : EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
     150             : #endif /* #ifdef CONFIG_PROVE_RCU */
     151             : 
     152           0 : int nr_processes(void)
     153             : {
     154             :         int cpu;
     155           0 :         int total = 0;
     156             : 
     157           0 :         for_each_possible_cpu(cpu)
     158           0 :                 total += per_cpu(process_counts, cpu);
     159             : 
     160           0 :         return total;
     161             : }
     162             : 
     163          92 : void __weak arch_release_task_struct(struct task_struct *tsk)
     164             : {
     165          92 : }
     166             : 
     167             : #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
     168             : static struct kmem_cache *task_struct_cachep;
     169             : 
     170             : static inline struct task_struct *alloc_task_struct_node(int node)
     171             : {
     172         214 :         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
     173             : }
     174             : 
     175             : static inline void free_task_struct(struct task_struct *tsk)
     176             : {
     177          92 :         kmem_cache_free(task_struct_cachep, tsk);
     178             : }
     179             : #endif
     180             : 
     181             : #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
     182             : 
     183             : /*
     184             :  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
     185             :  * kmemcache based allocator.
     186             :  */
     187             : # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
     188             : 
     189             : #  ifdef CONFIG_VMAP_STACK
     190             : /*
     191             :  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
     192             :  * flush.  Try to minimize the number of calls by caching stacks.
     193             :  */
     194             : #define NR_CACHED_STACKS 2
     195             : static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
     196             : 
     197             : struct vm_stack {
     198             :         struct rcu_head rcu;
     199             :         struct vm_struct *stack_vm_area;
     200             : };
     201             : 
     202          92 : static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
     203             : {
     204             :         unsigned int i;
     205             : 
     206          92 :         for (i = 0; i < NR_CACHED_STACKS; i++) {
     207         276 :                 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
     208           0 :                         continue;
     209             :                 return true;
     210             :         }
     211             :         return false;
     212             : }
     213             : 
     214           0 : static void thread_stack_free_rcu(struct rcu_head *rh)
     215             : {
     216           0 :         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
     217             : 
     218           0 :         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
     219             :                 return;
     220             : 
     221           0 :         vfree(vm_stack);
     222             : }
     223             : 
     224             : static void thread_stack_delayed_free(struct task_struct *tsk)
     225             : {
     226           0 :         struct vm_stack *vm_stack = tsk->stack;
     227             : 
     228           0 :         vm_stack->stack_vm_area = tsk->stack_vm_area;
     229           0 :         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
     230             : }
     231             : 
     232           0 : static int free_vm_stack_cache(unsigned int cpu)
     233             : {
     234           0 :         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
     235             :         int i;
     236             : 
     237           0 :         for (i = 0; i < NR_CACHED_STACKS; i++) {
     238           0 :                 struct vm_struct *vm_stack = cached_vm_stacks[i];
     239             : 
     240           0 :                 if (!vm_stack)
     241           0 :                         continue;
     242             : 
     243           0 :                 vfree(vm_stack->addr);
     244           0 :                 cached_vm_stacks[i] = NULL;
     245             :         }
     246             : 
     247           0 :         return 0;
     248             : }
     249             : 
     250         107 : static int memcg_charge_kernel_stack(struct vm_struct *vm)
     251             : {
     252             :         int i;
     253             :         int ret;
     254             : 
     255             :         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
     256         107 :         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
     257             : 
     258             :         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
     259             :                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
     260             :                 if (ret)
     261             :                         goto err;
     262             :         }
     263             :         return 0;
     264             : err:
     265             :         /*
     266             :          * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
     267             :          * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
     268             :          * ignore this page.
     269             :          */
     270             :         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
     271             :                 memcg_kmem_uncharge_page(vm->pages[i], 0);
     272             :         return ret;
     273             : }
     274             : 
     275         107 : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
     276             : {
     277             :         struct vm_struct *vm;
     278             :         void *stack;
     279             :         int i;
     280             : 
     281         274 :         for (i = 0; i < NR_CACHED_STACKS; i++) {
     282             :                 struct vm_struct *s;
     283             : 
     284         366 :                 s = this_cpu_xchg(cached_stacks[i], NULL);
     285             : 
     286         122 :                 if (!s)
     287          30 :                         continue;
     288             : 
     289             :                 /* Reset stack metadata. */
     290          92 :                 kasan_unpoison_range(s->addr, THREAD_SIZE);
     291             : 
     292          92 :                 stack = kasan_reset_tag(s->addr);
     293             : 
     294             :                 /* Clear stale pointers from reused stack. */
     295          92 :                 memset(stack, 0, THREAD_SIZE);
     296             : 
     297          92 :                 if (memcg_charge_kernel_stack(s)) {
     298           0 :                         vfree(s->addr);
     299             :                         return -ENOMEM;
     300             :                 }
     301             : 
     302          92 :                 tsk->stack_vm_area = s;
     303          92 :                 tsk->stack = stack;
     304             :                 return 0;
     305             :         }
     306             : 
     307             :         /*
     308             :          * Allocated stacks are cached and later reused by new threads,
     309             :          * so memcg accounting is performed manually on assigning/releasing
     310             :          * stacks to tasks. Drop __GFP_ACCOUNT.
     311             :          */
     312          30 :         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
     313          15 :                                      VMALLOC_START, VMALLOC_END,
     314             :                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
     315          15 :                                      PAGE_KERNEL,
     316          15 :                                      0, node, __builtin_return_address(0));
     317          15 :         if (!stack)
     318             :                 return -ENOMEM;
     319             : 
     320          15 :         vm = find_vm_area(stack);
     321          15 :         if (memcg_charge_kernel_stack(vm)) {
     322           0 :                 vfree(stack);
     323             :                 return -ENOMEM;
     324             :         }
     325             :         /*
     326             :          * We can't call find_vm_area() in interrupt context, and
     327             :          * free_thread_stack() can be called in interrupt context,
     328             :          * so cache the vm_struct.
     329             :          */
     330          15 :         tsk->stack_vm_area = vm;
     331          15 :         stack = kasan_reset_tag(stack);
     332          15 :         tsk->stack = stack;
     333             :         return 0;
     334             : }
     335             : 
     336          92 : static void free_thread_stack(struct task_struct *tsk)
     337             : {
     338          92 :         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
     339           0 :                 thread_stack_delayed_free(tsk);
     340             : 
     341          92 :         tsk->stack = NULL;
     342          92 :         tsk->stack_vm_area = NULL;
     343          92 : }
     344             : 
     345             : #  else /* !CONFIG_VMAP_STACK */
     346             : 
     347             : static void thread_stack_free_rcu(struct rcu_head *rh)
     348             : {
     349             :         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
     350             : }
     351             : 
     352             : static void thread_stack_delayed_free(struct task_struct *tsk)
     353             : {
     354             :         struct rcu_head *rh = tsk->stack;
     355             : 
     356             :         call_rcu(rh, thread_stack_free_rcu);
     357             : }
     358             : 
     359             : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
     360             : {
     361             :         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
     362             :                                              THREAD_SIZE_ORDER);
     363             : 
     364             :         if (likely(page)) {
     365             :                 tsk->stack = kasan_reset_tag(page_address(page));
     366             :                 return 0;
     367             :         }
     368             :         return -ENOMEM;
     369             : }
     370             : 
     371             : static void free_thread_stack(struct task_struct *tsk)
     372             : {
     373             :         thread_stack_delayed_free(tsk);
     374             :         tsk->stack = NULL;
     375             : }
     376             : 
     377             : #  endif /* CONFIG_VMAP_STACK */
     378             : # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
     379             : 
     380             : static struct kmem_cache *thread_stack_cache;
     381             : 
     382             : static void thread_stack_free_rcu(struct rcu_head *rh)
     383             : {
     384             :         kmem_cache_free(thread_stack_cache, rh);
     385             : }
     386             : 
     387             : static void thread_stack_delayed_free(struct task_struct *tsk)
     388             : {
     389             :         struct rcu_head *rh = tsk->stack;
     390             : 
     391             :         call_rcu(rh, thread_stack_free_rcu);
     392             : }
     393             : 
     394             : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
     395             : {
     396             :         unsigned long *stack;
     397             :         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
     398             :         stack = kasan_reset_tag(stack);
     399             :         tsk->stack = stack;
     400             :         return stack ? 0 : -ENOMEM;
     401             : }
     402             : 
     403             : static void free_thread_stack(struct task_struct *tsk)
     404             : {
     405             :         thread_stack_delayed_free(tsk);
     406             :         tsk->stack = NULL;
     407             : }
     408             : 
     409             : void thread_stack_cache_init(void)
     410             : {
     411             :         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
     412             :                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
     413             :                                         THREAD_SIZE, NULL);
     414             :         BUG_ON(thread_stack_cache == NULL);
     415             : }
     416             : 
     417             : # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
     418             : #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
     419             : 
     420             : static int alloc_thread_stack_node(struct task_struct *tsk, int node)
     421             : {
     422             :         unsigned long *stack;
     423             : 
     424             :         stack = arch_alloc_thread_stack_node(tsk, node);
     425             :         tsk->stack = stack;
     426             :         return stack ? 0 : -ENOMEM;
     427             : }
     428             : 
     429             : static void free_thread_stack(struct task_struct *tsk)
     430             : {
     431             :         arch_free_thread_stack(tsk);
     432             :         tsk->stack = NULL;
     433             : }
     434             : 
     435             : #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
     436             : 
     437             : /* SLAB cache for signal_struct structures (tsk->signal) */
     438             : static struct kmem_cache *signal_cachep;
     439             : 
     440             : /* SLAB cache for sighand_struct structures (tsk->sighand) */
     441             : struct kmem_cache *sighand_cachep;
     442             : 
     443             : /* SLAB cache for files_struct structures (tsk->files) */
     444             : struct kmem_cache *files_cachep;
     445             : 
     446             : /* SLAB cache for fs_struct structures (tsk->fs) */
     447             : struct kmem_cache *fs_cachep;
     448             : 
     449             : /* SLAB cache for vm_area_struct structures */
     450             : static struct kmem_cache *vm_area_cachep;
     451             : 
     452             : /* SLAB cache for mm_struct structures (tsk->mm) */
     453             : static struct kmem_cache *mm_cachep;
     454             : 
     455           0 : struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
     456             : {
     457             :         struct vm_area_struct *vma;
     458             : 
     459           0 :         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
     460           0 :         if (vma)
     461             :                 vma_init(vma, mm);
     462           0 :         return vma;
     463             : }
     464             : 
     465           0 : struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
     466             : {
     467           0 :         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
     468             : 
     469           0 :         if (new) {
     470           0 :                 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
     471           0 :                 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
     472             :                 /*
     473             :                  * orig->shared.rb may be modified concurrently, but the clone
     474             :                  * will be reinitialized.
     475             :                  */
     476           0 :                 *new = data_race(*orig);
     477           0 :                 INIT_LIST_HEAD(&new->anon_vma_chain);
     478           0 :                 new->vm_next = new->vm_prev = NULL;
     479           0 :                 dup_anon_vma_name(orig, new);
     480             :         }
     481           0 :         return new;
     482             : }
     483             : 
     484           0 : void vm_area_free(struct vm_area_struct *vma)
     485             : {
     486           0 :         free_anon_vma_name(vma);
     487           0 :         kmem_cache_free(vm_area_cachep, vma);
     488           0 : }
     489             : 
     490             : static void account_kernel_stack(struct task_struct *tsk, int account)
     491             : {
     492             :         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
     493             :                 struct vm_struct *vm = task_stack_vm_area(tsk);
     494             :                 int i;
     495             : 
     496         800 :                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
     497        1600 :                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
     498             :                                               account * (PAGE_SIZE / 1024));
     499             :         } else {
     500             :                 void *stack = task_stack_page(tsk);
     501             : 
     502             :                 /* All stack pages are in the same node. */
     503             :                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
     504             :                                       account * (THREAD_SIZE / 1024));
     505             :         }
     506             : }
     507             : 
     508          93 : void exit_task_stack_account(struct task_struct *tsk)
     509             : {
     510         186 :         account_kernel_stack(tsk, -1);
     511             : 
     512             :         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
     513             :                 struct vm_struct *vm;
     514             :                 int i;
     515             : 
     516          93 :                 vm = task_stack_vm_area(tsk);
     517          93 :                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
     518             :                         memcg_kmem_uncharge_page(vm->pages[i], 0);
     519             :         }
     520          93 : }
     521             : 
     522          92 : static void release_task_stack(struct task_struct *tsk)
     523             : {
     524          92 :         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
     525             :                 return;  /* Better to leak the stack than to free prematurely */
     526             : 
     527          92 :         free_thread_stack(tsk);
     528             : }
     529             : 
     530             : #ifdef CONFIG_THREAD_INFO_IN_TASK
     531             : void put_task_stack(struct task_struct *tsk)
     532             : {
     533             :         if (refcount_dec_and_test(&tsk->stack_refcount))
     534             :                 release_task_stack(tsk);
     535             : }
     536             : #endif
     537             : 
     538          92 : void free_task(struct task_struct *tsk)
     539             : {
     540          92 :         release_user_cpus_ptr(tsk);
     541          92 :         scs_release(tsk);
     542             : 
     543             : #ifndef CONFIG_THREAD_INFO_IN_TASK
     544             :         /*
     545             :          * The task is finally done with both the stack and thread_info,
     546             :          * so free both.
     547             :          */
     548          92 :         release_task_stack(tsk);
     549             : #else
     550             :         /*
     551             :          * If the task had a separate stack allocation, it should be gone
     552             :          * by now.
     553             :          */
     554             :         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
     555             : #endif
     556          92 :         rt_mutex_debug_task_free(tsk);
     557          92 :         ftrace_graph_exit_task(tsk);
     558          92 :         arch_release_task_struct(tsk);
     559          92 :         if (tsk->flags & PF_KTHREAD)
     560          92 :                 free_kthread_struct(tsk);
     561          92 :         free_task_struct(tsk);
     562          92 : }
     563             : EXPORT_SYMBOL(free_task);
     564             : 
     565           0 : static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
     566             : {
     567             :         struct file *exe_file;
     568             : 
     569           0 :         exe_file = get_mm_exe_file(oldmm);
     570           0 :         RCU_INIT_POINTER(mm->exe_file, exe_file);
     571             :         /*
     572             :          * We depend on the oldmm having properly denied write access to the
     573             :          * exe_file already.
     574             :          */
     575           0 :         if (exe_file && deny_write_access(exe_file))
     576           0 :                 pr_warn_once("deny_write_access() failed in %s\n", __func__);
     577           0 : }
     578             : 
     579             : #ifdef CONFIG_MMU
     580           0 : static __latent_entropy int dup_mmap(struct mm_struct *mm,
     581             :                                         struct mm_struct *oldmm)
     582             : {
     583             :         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
     584             :         struct rb_node **rb_link, *rb_parent;
     585             :         int retval;
     586             :         unsigned long charge;
     587           0 :         LIST_HEAD(uf);
     588             : 
     589           0 :         uprobe_start_dup_mmap();
     590           0 :         if (mmap_write_lock_killable(oldmm)) {
     591             :                 retval = -EINTR;
     592             :                 goto fail_uprobe_end;
     593             :         }
     594           0 :         flush_cache_dup_mm(oldmm);
     595           0 :         uprobe_dup_mmap(oldmm, mm);
     596             :         /*
     597             :          * Not linked in yet - no deadlock potential:
     598             :          */
     599           0 :         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
     600             : 
     601             :         /* No ordering required: file already has been exposed. */
     602           0 :         dup_mm_exe_file(mm, oldmm);
     603             : 
     604           0 :         mm->total_vm = oldmm->total_vm;
     605           0 :         mm->data_vm = oldmm->data_vm;
     606           0 :         mm->exec_vm = oldmm->exec_vm;
     607           0 :         mm->stack_vm = oldmm->stack_vm;
     608             : 
     609           0 :         rb_link = &mm->mm_rb.rb_node;
     610           0 :         rb_parent = NULL;
     611           0 :         pprev = &mm->mmap;
     612           0 :         retval = ksm_fork(mm, oldmm);
     613             :         if (retval)
     614             :                 goto out;
     615           0 :         retval = khugepaged_fork(mm, oldmm);
     616             :         if (retval)
     617             :                 goto out;
     618             : 
     619           0 :         prev = NULL;
     620           0 :         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
     621             :                 struct file *file;
     622             : 
     623           0 :                 if (mpnt->vm_flags & VM_DONTCOPY) {
     624           0 :                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
     625           0 :                         continue;
     626             :                 }
     627           0 :                 charge = 0;
     628             :                 /*
     629             :                  * Don't duplicate many vmas if we've been oom-killed (for
     630             :                  * example)
     631             :                  */
     632           0 :                 if (fatal_signal_pending(current)) {
     633             :                         retval = -EINTR;
     634             :                         goto out;
     635             :                 }
     636           0 :                 if (mpnt->vm_flags & VM_ACCOUNT) {
     637           0 :                         unsigned long len = vma_pages(mpnt);
     638             : 
     639           0 :                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
     640             :                                 goto fail_nomem;
     641             :                         charge = len;
     642             :                 }
     643           0 :                 tmp = vm_area_dup(mpnt);
     644           0 :                 if (!tmp)
     645             :                         goto fail_nomem;
     646           0 :                 retval = vma_dup_policy(mpnt, tmp);
     647             :                 if (retval)
     648             :                         goto fail_nomem_policy;
     649           0 :                 tmp->vm_mm = mm;
     650           0 :                 retval = dup_userfaultfd(tmp, &uf);
     651             :                 if (retval)
     652             :                         goto fail_nomem_anon_vma_fork;
     653           0 :                 if (tmp->vm_flags & VM_WIPEONFORK) {
     654             :                         /*
     655             :                          * VM_WIPEONFORK gets a clean slate in the child.
     656             :                          * Don't prepare anon_vma until fault since we don't
     657             :                          * copy page for current vma.
     658             :                          */
     659           0 :                         tmp->anon_vma = NULL;
     660           0 :                 } else if (anon_vma_fork(tmp, mpnt))
     661             :                         goto fail_nomem_anon_vma_fork;
     662           0 :                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
     663           0 :                 file = tmp->vm_file;
     664           0 :                 if (file) {
     665           0 :                         struct address_space *mapping = file->f_mapping;
     666             : 
     667           0 :                         get_file(file);
     668           0 :                         i_mmap_lock_write(mapping);
     669           0 :                         if (tmp->vm_flags & VM_SHARED)
     670             :                                 mapping_allow_writable(mapping);
     671           0 :                         flush_dcache_mmap_lock(mapping);
     672             :                         /* insert tmp into the share list, just after mpnt */
     673           0 :                         vma_interval_tree_insert_after(tmp, mpnt,
     674             :                                         &mapping->i_mmap);
     675           0 :                         flush_dcache_mmap_unlock(mapping);
     676             :                         i_mmap_unlock_write(mapping);
     677             :                 }
     678             : 
     679             :                 /*
     680             :                  * Clear hugetlb-related page reserves for children. This only
     681             :                  * affects MAP_PRIVATE mappings. Faults generated by the child
     682             :                  * are not guaranteed to succeed, even if read-only
     683             :                  */
     684           0 :                 if (is_vm_hugetlb_page(tmp))
     685             :                         reset_vma_resv_huge_pages(tmp);
     686             : 
     687             :                 /*
     688             :                  * Link in the new vma and copy the page table entries.
     689             :                  */
     690           0 :                 *pprev = tmp;
     691           0 :                 pprev = &tmp->vm_next;
     692           0 :                 tmp->vm_prev = prev;
     693           0 :                 prev = tmp;
     694             : 
     695           0 :                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
     696           0 :                 rb_link = &tmp->vm_rb.rb_right;
     697           0 :                 rb_parent = &tmp->vm_rb;
     698             : 
     699           0 :                 mm->map_count++;
     700           0 :                 if (!(tmp->vm_flags & VM_WIPEONFORK))
     701           0 :                         retval = copy_page_range(tmp, mpnt);
     702             : 
     703           0 :                 if (tmp->vm_ops && tmp->vm_ops->open)
     704           0 :                         tmp->vm_ops->open(tmp);
     705             : 
     706           0 :                 if (retval)
     707             :                         goto out;
     708             :         }
     709             :         /* a new mm has just been created */
     710             :         retval = arch_dup_mmap(oldmm, mm);
     711             : out:
     712           0 :         mmap_write_unlock(mm);
     713           0 :         flush_tlb_mm(oldmm);
     714             :         mmap_write_unlock(oldmm);
     715             :         dup_userfaultfd_complete(&uf);
     716             : fail_uprobe_end:
     717             :         uprobe_end_dup_mmap();
     718           0 :         return retval;
     719             : fail_nomem_anon_vma_fork:
     720           0 :         mpol_put(vma_policy(tmp));
     721             : fail_nomem_policy:
     722             :         vm_area_free(tmp);
     723             : fail_nomem:
     724           0 :         retval = -ENOMEM;
     725           0 :         vm_unacct_memory(charge);
     726             :         goto out;
     727             : }
     728             : 
     729             : static inline int mm_alloc_pgd(struct mm_struct *mm)
     730             : {
     731           0 :         mm->pgd = pgd_alloc(mm);
     732           0 :         if (unlikely(!mm->pgd))
     733             :                 return -ENOMEM;
     734             :         return 0;
     735             : }
     736             : 
     737             : static inline void mm_free_pgd(struct mm_struct *mm)
     738             : {
     739           0 :         pgd_free(mm, mm->pgd);
     740             : }
     741             : #else
     742             : static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
     743             : {
     744             :         mmap_write_lock(oldmm);
     745             :         dup_mm_exe_file(mm, oldmm);
     746             :         mmap_write_unlock(oldmm);
     747             :         return 0;
     748             : }
     749             : #define mm_alloc_pgd(mm)        (0)
     750             : #define mm_free_pgd(mm)
     751             : #endif /* CONFIG_MMU */
     752             : 
     753           0 : static void check_mm(struct mm_struct *mm)
     754             : {
     755             :         int i;
     756             : 
     757             :         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
     758             :                          "Please make sure 'struct resident_page_types[]' is updated as well");
     759             : 
     760           0 :         for (i = 0; i < NR_MM_COUNTERS; i++) {
     761           0 :                 long x = atomic_long_read(&mm->rss_stat.count[i]);
     762             : 
     763           0 :                 if (unlikely(x))
     764           0 :                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
     765             :                                  mm, resident_page_types[i], x);
     766             :         }
     767             : 
     768           0 :         if (mm_pgtables_bytes(mm))
     769           0 :                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
     770             :                                 mm_pgtables_bytes(mm));
     771             : 
     772             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
     773             :         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
     774             : #endif
     775           0 : }
     776             : 
     777             : #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
     778             : #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
     779             : 
     780             : /*
     781             :  * Called when the last reference to the mm
     782             :  * is dropped: either by a lazy thread or by
     783             :  * mmput. Free the page directory and the mm.
     784             :  */
     785           0 : void __mmdrop(struct mm_struct *mm)
     786             : {
     787           0 :         BUG_ON(mm == &init_mm);
     788           0 :         WARN_ON_ONCE(mm == current->mm);
     789           0 :         WARN_ON_ONCE(mm == current->active_mm);
     790           0 :         mm_free_pgd(mm);
     791           0 :         destroy_context(mm);
     792           0 :         mmu_notifier_subscriptions_destroy(mm);
     793           0 :         check_mm(mm);
     794           0 :         put_user_ns(mm->user_ns);
     795           0 :         mm_pasid_drop(mm);
     796           0 :         free_mm(mm);
     797           0 : }
     798             : EXPORT_SYMBOL_GPL(__mmdrop);
     799             : 
     800           0 : static void mmdrop_async_fn(struct work_struct *work)
     801             : {
     802             :         struct mm_struct *mm;
     803             : 
     804           0 :         mm = container_of(work, struct mm_struct, async_put_work);
     805           0 :         __mmdrop(mm);
     806           0 : }
     807             : 
     808           0 : static void mmdrop_async(struct mm_struct *mm)
     809             : {
     810           0 :         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
     811           0 :                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
     812           0 :                 schedule_work(&mm->async_put_work);
     813             :         }
     814           0 : }
     815             : 
     816          92 : static inline void free_signal_struct(struct signal_struct *sig)
     817             : {
     818          92 :         taskstats_tgid_free(sig);
     819          92 :         sched_autogroup_exit(sig);
     820             :         /*
     821             :          * __mmdrop is not safe to call from softirq context on x86 due to
     822             :          * pgd_dtor so postpone it to the async context
     823             :          */
     824          92 :         if (sig->oom_mm)
     825           0 :                 mmdrop_async(sig->oom_mm);
     826          92 :         kmem_cache_free(signal_cachep, sig);
     827          92 : }
     828             : 
     829          92 : static inline void put_signal_struct(struct signal_struct *sig)
     830             : {
     831         184 :         if (refcount_dec_and_test(&sig->sigcnt))
     832          92 :                 free_signal_struct(sig);
     833          92 : }
     834             : 
     835          92 : void __put_task_struct(struct task_struct *tsk)
     836             : {
     837          92 :         WARN_ON(!tsk->exit_state);
     838         184 :         WARN_ON(refcount_read(&tsk->usage));
     839          92 :         WARN_ON(tsk == current);
     840             : 
     841          92 :         io_uring_free(tsk);
     842          92 :         cgroup_free(tsk);
     843          92 :         task_numa_free(tsk, true);
     844          92 :         security_task_free(tsk);
     845          92 :         bpf_task_storage_free(tsk);
     846          92 :         exit_creds(tsk);
     847          92 :         delayacct_tsk_free(tsk);
     848          92 :         put_signal_struct(tsk->signal);
     849          92 :         sched_core_free(tsk);
     850          92 :         free_task(tsk);
     851          92 : }
     852             : EXPORT_SYMBOL_GPL(__put_task_struct);
     853             : 
     854           1 : void __init __weak arch_task_cache_init(void) { }
     855             : 
     856             : /*
     857             :  * set_max_threads
     858             :  */
     859             : static void set_max_threads(unsigned int max_threads_suggested)
     860             : {
     861             :         u64 threads;
     862           1 :         unsigned long nr_pages = totalram_pages();
     863             : 
     864             :         /*
     865             :          * The number of threads shall be limited such that the thread
     866             :          * structures may only consume a small part of the available memory.
     867             :          */
     868           2 :         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
     869             :                 threads = MAX_THREADS;
     870             :         else
     871           2 :                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
     872             :                                     (u64) THREAD_SIZE * 8UL);
     873             : 
     874           1 :         if (threads > max_threads_suggested)
     875           0 :                 threads = max_threads_suggested;
     876             : 
     877           1 :         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
     878             : }
     879             : 
     880             : #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
     881             : /* Initialized by the architecture: */
     882             : int arch_task_struct_size __read_mostly;
     883             : #endif
     884             : 
     885             : #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
     886             : static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
     887             : {
     888             :         /* Fetch thread_struct whitelist for the architecture. */
     889           1 :         arch_thread_struct_whitelist(offset, size);
     890             : 
     891             :         /*
     892             :          * Handle zero-sized whitelist or empty thread_struct, otherwise
     893             :          * adjust offset to position of thread_struct in task_struct.
     894             :          */
     895             :         if (unlikely(*size == 0))
     896             :                 *offset = 0;
     897             :         else
     898           1 :                 *offset += offsetof(struct task_struct, thread);
     899             : }
     900             : #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
     901             : 
     902           1 : void __init fork_init(void)
     903             : {
     904             :         int i;
     905             : #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
     906             : #ifndef ARCH_MIN_TASKALIGN
     907             : #define ARCH_MIN_TASKALIGN      0
     908             : #endif
     909           1 :         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
     910             :         unsigned long useroffset, usersize;
     911             : 
     912             :         /* create a slab on which task_structs can be allocated */
     913           1 :         task_struct_whitelist(&useroffset, &usersize);
     914           1 :         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
     915             :                         arch_task_struct_size, align,
     916             :                         SLAB_PANIC|SLAB_ACCOUNT,
     917             :                         useroffset, usersize, NULL);
     918             : #endif
     919             : 
     920             :         /* do the arch specific task caches init */
     921           1 :         arch_task_cache_init();
     922             : 
     923           1 :         set_max_threads(MAX_THREADS);
     924             : 
     925           1 :         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
     926           1 :         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
     927           1 :         init_task.signal->rlim[RLIMIT_SIGPENDING] =
     928             :                 init_task.signal->rlim[RLIMIT_NPROC];
     929             : 
     930          11 :         for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
     931          10 :                 init_user_ns.ucount_max[i] = max_threads/2;
     932             : 
     933           1 :         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
     934           1 :         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
     935           1 :         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
     936           1 :         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
     937             : 
     938             : #ifdef CONFIG_VMAP_STACK
     939           1 :         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
     940             :                           NULL, free_vm_stack_cache);
     941             : #endif
     942             : 
     943             :         scs_init();
     944             : 
     945           1 :         lockdep_init_task(&init_task);
     946             :         uprobes_init();
     947           1 : }
     948             : 
     949         107 : int __weak arch_dup_task_struct(struct task_struct *dst,
     950             :                                                struct task_struct *src)
     951             : {
     952         107 :         *dst = *src;
     953         107 :         return 0;
     954             : }
     955             : 
     956           1 : void set_task_stack_end_magic(struct task_struct *tsk)
     957             : {
     958             :         unsigned long *stackend;
     959             : 
     960         108 :         stackend = end_of_stack(tsk);
     961         108 :         *stackend = STACK_END_MAGIC;    /* for overflow detection */
     962           1 : }
     963             : 
     964         107 : static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
     965             : {
     966             :         struct task_struct *tsk;
     967             :         int err;
     968             : 
     969         107 :         if (node == NUMA_NO_NODE)
     970         107 :                 node = tsk_fork_get_node(orig);
     971         214 :         tsk = alloc_task_struct_node(node);
     972         107 :         if (!tsk)
     973             :                 return NULL;
     974             : 
     975         107 :         err = arch_dup_task_struct(tsk, orig);
     976         107 :         if (err)
     977             :                 goto free_tsk;
     978             : 
     979         107 :         err = alloc_thread_stack_node(tsk, node);
     980         107 :         if (err)
     981             :                 goto free_tsk;
     982             : 
     983             : #ifdef CONFIG_THREAD_INFO_IN_TASK
     984             :         refcount_set(&tsk->stack_refcount, 1);
     985             : #endif
     986         107 :         account_kernel_stack(tsk, 1);
     987             : 
     988         107 :         err = scs_prepare(tsk, node);
     989             :         if (err)
     990             :                 goto free_stack;
     991             : 
     992             : #ifdef CONFIG_SECCOMP
     993             :         /*
     994             :          * We must handle setting up seccomp filters once we're under
     995             :          * the sighand lock in case orig has changed between now and
     996             :          * then. Until then, filter must be NULL to avoid messing up
     997             :          * the usage counts on the error path calling free_task.
     998             :          */
     999         107 :         tsk->seccomp.filter = NULL;
    1000             : #endif
    1001             : 
    1002         214 :         setup_thread_stack(tsk, orig);
    1003         107 :         clear_user_return_notifier(tsk);
    1004         107 :         clear_tsk_need_resched(tsk);
    1005         107 :         set_task_stack_end_magic(tsk);
    1006             :         clear_syscall_work_syscall_user_dispatch(tsk);
    1007             : 
    1008             : #ifdef CONFIG_STACKPROTECTOR
    1009             :         tsk->stack_canary = get_random_canary();
    1010             : #endif
    1011         107 :         if (orig->cpus_ptr == &orig->cpus_mask)
    1012         107 :                 tsk->cpus_ptr = &tsk->cpus_mask;
    1013         107 :         dup_user_cpus_ptr(tsk, orig, node);
    1014             : 
    1015             :         /*
    1016             :          * One for the user space visible state that goes away when reaped.
    1017             :          * One for the scheduler.
    1018             :          */
    1019         214 :         refcount_set(&tsk->rcu_users, 2);
    1020             :         /* One for the rcu users */
    1021         214 :         refcount_set(&tsk->usage, 1);
    1022             : #ifdef CONFIG_BLK_DEV_IO_TRACE
    1023             :         tsk->btrace_seq = 0;
    1024             : #endif
    1025         107 :         tsk->splice_pipe = NULL;
    1026         107 :         tsk->task_frag.page = NULL;
    1027         107 :         tsk->wake_q.next = NULL;
    1028         107 :         tsk->worker_private = NULL;
    1029             : 
    1030             :         kcov_task_init(tsk);
    1031             :         kmap_local_fork(tsk);
    1032             : 
    1033             : #ifdef CONFIG_FAULT_INJECTION
    1034             :         tsk->fail_nth = 0;
    1035             : #endif
    1036             : 
    1037             : #ifdef CONFIG_BLK_CGROUP
    1038             :         tsk->throttle_queue = NULL;
    1039             :         tsk->use_memdelay = 0;
    1040             : #endif
    1041             : 
    1042             : #ifdef CONFIG_IOMMU_SVA
    1043             :         tsk->pasid_activated = 0;
    1044             : #endif
    1045             : 
    1046             : #ifdef CONFIG_MEMCG
    1047             :         tsk->active_memcg = NULL;
    1048             : #endif
    1049         107 :         return tsk;
    1050             : 
    1051             : free_stack:
    1052             :         exit_task_stack_account(tsk);
    1053             :         free_thread_stack(tsk);
    1054             : free_tsk:
    1055           0 :         free_task_struct(tsk);
    1056           0 :         return NULL;
    1057             : }
    1058             : 
    1059             : __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
    1060             : 
    1061             : static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
    1062             : 
    1063           0 : static int __init coredump_filter_setup(char *s)
    1064             : {
    1065           0 :         default_dump_filter =
    1066           0 :                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
    1067             :                 MMF_DUMP_FILTER_MASK;
    1068           0 :         return 1;
    1069             : }
    1070             : 
    1071             : __setup("coredump_filter=", coredump_filter_setup);
    1072             : 
    1073             : #include <linux/init_task.h>
    1074             : 
    1075             : static void mm_init_aio(struct mm_struct *mm)
    1076             : {
    1077             : #ifdef CONFIG_AIO
    1078           0 :         spin_lock_init(&mm->ioctx_lock);
    1079           0 :         mm->ioctx_table = NULL;
    1080             : #endif
    1081             : }
    1082             : 
    1083             : static __always_inline void mm_clear_owner(struct mm_struct *mm,
    1084             :                                            struct task_struct *p)
    1085             : {
    1086             : #ifdef CONFIG_MEMCG
    1087             :         if (mm->owner == p)
    1088             :                 WRITE_ONCE(mm->owner, NULL);
    1089             : #endif
    1090             : }
    1091             : 
    1092             : static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
    1093             : {
    1094             : #ifdef CONFIG_MEMCG
    1095             :         mm->owner = p;
    1096             : #endif
    1097             : }
    1098             : 
    1099             : static void mm_init_uprobes_state(struct mm_struct *mm)
    1100             : {
    1101             : #ifdef CONFIG_UPROBES
    1102             :         mm->uprobes_state.xol_area = NULL;
    1103             : #endif
    1104             : }
    1105             : 
    1106           0 : static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
    1107             :         struct user_namespace *user_ns)
    1108             : {
    1109           0 :         mm->mmap = NULL;
    1110           0 :         mm->mm_rb = RB_ROOT;
    1111           0 :         mm->vmacache_seqnum = 0;
    1112           0 :         atomic_set(&mm->mm_users, 1);
    1113           0 :         atomic_set(&mm->mm_count, 1);
    1114           0 :         seqcount_init(&mm->write_protect_seq);
    1115           0 :         mmap_init_lock(mm);
    1116           0 :         INIT_LIST_HEAD(&mm->mmlist);
    1117           0 :         mm_pgtables_bytes_init(mm);
    1118           0 :         mm->map_count = 0;
    1119           0 :         mm->locked_vm = 0;
    1120           0 :         atomic64_set(&mm->pinned_vm, 0);
    1121           0 :         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
    1122           0 :         spin_lock_init(&mm->page_table_lock);
    1123           0 :         spin_lock_init(&mm->arg_lock);
    1124           0 :         mm_init_cpumask(mm);
    1125           0 :         mm_init_aio(mm);
    1126           0 :         mm_init_owner(mm, p);
    1127           0 :         mm_pasid_init(mm);
    1128           0 :         RCU_INIT_POINTER(mm->exe_file, NULL);
    1129           0 :         mmu_notifier_subscriptions_init(mm);
    1130           0 :         init_tlb_flush_pending(mm);
    1131             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
    1132             :         mm->pmd_huge_pte = NULL;
    1133             : #endif
    1134           0 :         mm_init_uprobes_state(mm);
    1135           0 :         hugetlb_count_init(mm);
    1136             : 
    1137           0 :         if (current->mm) {
    1138           0 :                 mm->flags = current->mm->flags & MMF_INIT_MASK;
    1139           0 :                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
    1140             :         } else {
    1141           0 :                 mm->flags = default_dump_filter;
    1142           0 :                 mm->def_flags = 0;
    1143             :         }
    1144             : 
    1145           0 :         if (mm_alloc_pgd(mm))
    1146             :                 goto fail_nopgd;
    1147             : 
    1148           0 :         if (init_new_context(p, mm))
    1149             :                 goto fail_nocontext;
    1150             : 
    1151           0 :         mm->user_ns = get_user_ns(user_ns);
    1152             :         return mm;
    1153             : 
    1154             : fail_nocontext:
    1155             :         mm_free_pgd(mm);
    1156             : fail_nopgd:
    1157           0 :         free_mm(mm);
    1158             :         return NULL;
    1159             : }
    1160             : 
    1161             : /*
    1162             :  * Allocate and initialize an mm_struct.
    1163             :  */
    1164           0 : struct mm_struct *mm_alloc(void)
    1165             : {
    1166             :         struct mm_struct *mm;
    1167             : 
    1168           0 :         mm = allocate_mm();
    1169           0 :         if (!mm)
    1170             :                 return NULL;
    1171             : 
    1172           0 :         memset(mm, 0, sizeof(*mm));
    1173           0 :         return mm_init(mm, current, current_user_ns());
    1174             : }
    1175             : 
    1176           0 : static inline void __mmput(struct mm_struct *mm)
    1177             : {
    1178             :         VM_BUG_ON(atomic_read(&mm->mm_users));
    1179             : 
    1180           0 :         uprobe_clear_state(mm);
    1181           0 :         exit_aio(mm);
    1182           0 :         ksm_exit(mm);
    1183           0 :         khugepaged_exit(mm); /* must run before exit_mmap */
    1184           0 :         exit_mmap(mm);
    1185           0 :         mm_put_huge_zero_page(mm);
    1186           0 :         set_mm_exe_file(mm, NULL);
    1187           0 :         if (!list_empty(&mm->mmlist)) {
    1188           0 :                 spin_lock(&mmlist_lock);
    1189           0 :                 list_del(&mm->mmlist);
    1190             :                 spin_unlock(&mmlist_lock);
    1191             :         }
    1192           0 :         if (mm->binfmt)
    1193             :                 module_put(mm->binfmt->module);
    1194           0 :         mmdrop(mm);
    1195           0 : }
    1196             : 
    1197             : /*
    1198             :  * Decrement the use count and release all resources for an mm.
    1199             :  */
    1200           0 : void mmput(struct mm_struct *mm)
    1201             : {
    1202             :         might_sleep();
    1203             : 
    1204           0 :         if (atomic_dec_and_test(&mm->mm_users))
    1205           0 :                 __mmput(mm);
    1206           0 : }
    1207             : EXPORT_SYMBOL_GPL(mmput);
    1208             : 
    1209             : #ifdef CONFIG_MMU
    1210           0 : static void mmput_async_fn(struct work_struct *work)
    1211             : {
    1212           0 :         struct mm_struct *mm = container_of(work, struct mm_struct,
    1213             :                                             async_put_work);
    1214             : 
    1215           0 :         __mmput(mm);
    1216           0 : }
    1217             : 
    1218           0 : void mmput_async(struct mm_struct *mm)
    1219             : {
    1220           0 :         if (atomic_dec_and_test(&mm->mm_users)) {
    1221           0 :                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
    1222           0 :                 schedule_work(&mm->async_put_work);
    1223             :         }
    1224           0 : }
    1225             : #endif
    1226             : 
    1227             : /**
    1228             :  * set_mm_exe_file - change a reference to the mm's executable file
    1229             :  *
    1230             :  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
    1231             :  *
    1232             :  * Main users are mmput() and sys_execve(). Callers prevent concurrent
    1233             :  * invocations: in mmput() nobody alive left, in execve task is single
    1234             :  * threaded.
    1235             :  *
    1236             :  * Can only fail if new_exe_file != NULL.
    1237             :  */
    1238           0 : int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
    1239             : {
    1240             :         struct file *old_exe_file;
    1241             : 
    1242             :         /*
    1243             :          * It is safe to dereference the exe_file without RCU as
    1244             :          * this function is only called if nobody else can access
    1245             :          * this mm -- see comment above for justification.
    1246             :          */
    1247           0 :         old_exe_file = rcu_dereference_raw(mm->exe_file);
    1248             : 
    1249           0 :         if (new_exe_file) {
    1250             :                 /*
    1251             :                  * We expect the caller (i.e., sys_execve) to already denied
    1252             :                  * write access, so this is unlikely to fail.
    1253             :                  */
    1254           0 :                 if (unlikely(deny_write_access(new_exe_file)))
    1255             :                         return -EACCES;
    1256             :                 get_file(new_exe_file);
    1257             :         }
    1258           0 :         rcu_assign_pointer(mm->exe_file, new_exe_file);
    1259           0 :         if (old_exe_file) {
    1260           0 :                 allow_write_access(old_exe_file);
    1261           0 :                 fput(old_exe_file);
    1262             :         }
    1263             :         return 0;
    1264             : }
    1265             : 
    1266             : /**
    1267             :  * replace_mm_exe_file - replace a reference to the mm's executable file
    1268             :  *
    1269             :  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
    1270             :  * dealing with concurrent invocation and without grabbing the mmap lock in
    1271             :  * write mode.
    1272             :  *
    1273             :  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
    1274             :  */
    1275           0 : int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
    1276             : {
    1277             :         struct vm_area_struct *vma;
    1278             :         struct file *old_exe_file;
    1279           0 :         int ret = 0;
    1280             : 
    1281             :         /* Forbid mm->exe_file change if old file still mapped. */
    1282           0 :         old_exe_file = get_mm_exe_file(mm);
    1283           0 :         if (old_exe_file) {
    1284           0 :                 mmap_read_lock(mm);
    1285           0 :                 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
    1286           0 :                         if (!vma->vm_file)
    1287           0 :                                 continue;
    1288           0 :                         if (path_equal(&vma->vm_file->f_path,
    1289           0 :                                        &old_exe_file->f_path))
    1290           0 :                                 ret = -EBUSY;
    1291             :                 }
    1292           0 :                 mmap_read_unlock(mm);
    1293           0 :                 fput(old_exe_file);
    1294           0 :                 if (ret)
    1295             :                         return ret;
    1296             :         }
    1297             : 
    1298             :         /* set the new file, lockless */
    1299           0 :         ret = deny_write_access(new_exe_file);
    1300           0 :         if (ret)
    1301             :                 return -EACCES;
    1302           0 :         get_file(new_exe_file);
    1303             : 
    1304           0 :         old_exe_file = xchg(&mm->exe_file, new_exe_file);
    1305           0 :         if (old_exe_file) {
    1306             :                 /*
    1307             :                  * Don't race with dup_mmap() getting the file and disallowing
    1308             :                  * write access while someone might open the file writable.
    1309             :                  */
    1310           0 :                 mmap_read_lock(mm);
    1311           0 :                 allow_write_access(old_exe_file);
    1312           0 :                 fput(old_exe_file);
    1313             :                 mmap_read_unlock(mm);
    1314             :         }
    1315             :         return 0;
    1316             : }
    1317             : 
    1318             : /**
    1319             :  * get_mm_exe_file - acquire a reference to the mm's executable file
    1320             :  *
    1321             :  * Returns %NULL if mm has no associated executable file.
    1322             :  * User must release file via fput().
    1323             :  */
    1324           0 : struct file *get_mm_exe_file(struct mm_struct *mm)
    1325             : {
    1326             :         struct file *exe_file;
    1327             : 
    1328             :         rcu_read_lock();
    1329           0 :         exe_file = rcu_dereference(mm->exe_file);
    1330           0 :         if (exe_file && !get_file_rcu(exe_file))
    1331           0 :                 exe_file = NULL;
    1332             :         rcu_read_unlock();
    1333           0 :         return exe_file;
    1334             : }
    1335             : 
    1336             : /**
    1337             :  * get_task_exe_file - acquire a reference to the task's executable file
    1338             :  *
    1339             :  * Returns %NULL if task's mm (if any) has no associated executable file or
    1340             :  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
    1341             :  * User must release file via fput().
    1342             :  */
    1343           0 : struct file *get_task_exe_file(struct task_struct *task)
    1344             : {
    1345           0 :         struct file *exe_file = NULL;
    1346             :         struct mm_struct *mm;
    1347             : 
    1348           0 :         task_lock(task);
    1349           0 :         mm = task->mm;
    1350           0 :         if (mm) {
    1351           0 :                 if (!(task->flags & PF_KTHREAD))
    1352           0 :                         exe_file = get_mm_exe_file(mm);
    1353             :         }
    1354           0 :         task_unlock(task);
    1355           0 :         return exe_file;
    1356             : }
    1357             : 
    1358             : /**
    1359             :  * get_task_mm - acquire a reference to the task's mm
    1360             :  *
    1361             :  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
    1362             :  * this kernel workthread has transiently adopted a user mm with use_mm,
    1363             :  * to do its AIO) is not set and if so returns a reference to it, after
    1364             :  * bumping up the use count.  User must release the mm via mmput()
    1365             :  * after use.  Typically used by /proc and ptrace.
    1366             :  */
    1367           0 : struct mm_struct *get_task_mm(struct task_struct *task)
    1368             : {
    1369             :         struct mm_struct *mm;
    1370             : 
    1371           0 :         task_lock(task);
    1372           0 :         mm = task->mm;
    1373           0 :         if (mm) {
    1374           0 :                 if (task->flags & PF_KTHREAD)
    1375             :                         mm = NULL;
    1376             :                 else
    1377             :                         mmget(mm);
    1378             :         }
    1379           0 :         task_unlock(task);
    1380           0 :         return mm;
    1381             : }
    1382             : EXPORT_SYMBOL_GPL(get_task_mm);
    1383             : 
    1384           0 : struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
    1385             : {
    1386             :         struct mm_struct *mm;
    1387             :         int err;
    1388             : 
    1389           0 :         err =  down_read_killable(&task->signal->exec_update_lock);
    1390           0 :         if (err)
    1391           0 :                 return ERR_PTR(err);
    1392             : 
    1393           0 :         mm = get_task_mm(task);
    1394           0 :         if (mm && mm != current->mm &&
    1395           0 :                         !ptrace_may_access(task, mode)) {
    1396             :                 mmput(mm);
    1397             :                 mm = ERR_PTR(-EACCES);
    1398             :         }
    1399           0 :         up_read(&task->signal->exec_update_lock);
    1400             : 
    1401           0 :         return mm;
    1402             : }
    1403             : 
    1404             : static void complete_vfork_done(struct task_struct *tsk)
    1405             : {
    1406             :         struct completion *vfork;
    1407             : 
    1408          93 :         task_lock(tsk);
    1409          93 :         vfork = tsk->vfork_done;
    1410          93 :         if (likely(vfork)) {
    1411          93 :                 tsk->vfork_done = NULL;
    1412          93 :                 complete(vfork);
    1413             :         }
    1414          93 :         task_unlock(tsk);
    1415             : }
    1416             : 
    1417           0 : static int wait_for_vfork_done(struct task_struct *child,
    1418             :                                 struct completion *vfork)
    1419             : {
    1420             :         int killed;
    1421             : 
    1422           0 :         freezer_do_not_count();
    1423             :         cgroup_enter_frozen();
    1424           0 :         killed = wait_for_completion_killable(vfork);
    1425           0 :         cgroup_leave_frozen(false);
    1426           0 :         freezer_count();
    1427             : 
    1428           0 :         if (killed) {
    1429           0 :                 task_lock(child);
    1430           0 :                 child->vfork_done = NULL;
    1431           0 :                 task_unlock(child);
    1432             :         }
    1433             : 
    1434           0 :         put_task_struct(child);
    1435           0 :         return killed;
    1436             : }
    1437             : 
    1438             : /* Please note the differences between mmput and mm_release.
    1439             :  * mmput is called whenever we stop holding onto a mm_struct,
    1440             :  * error success whatever.
    1441             :  *
    1442             :  * mm_release is called after a mm_struct has been removed
    1443             :  * from the current process.
    1444             :  *
    1445             :  * This difference is important for error handling, when we
    1446             :  * only half set up a mm_struct for a new process and need to restore
    1447             :  * the old one.  Because we mmput the new mm_struct before
    1448             :  * restoring the old one. . .
    1449             :  * Eric Biederman 10 January 1998
    1450             :  */
    1451          93 : static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
    1452             : {
    1453          93 :         uprobe_free_utask(tsk);
    1454             : 
    1455             :         /* Get rid of any cached register state */
    1456          93 :         deactivate_mm(tsk, mm);
    1457             : 
    1458             :         /*
    1459             :          * Signal userspace if we're not exiting with a core dump
    1460             :          * because we want to leave the value intact for debugging
    1461             :          * purposes.
    1462             :          */
    1463          93 :         if (tsk->clear_child_tid) {
    1464           0 :                 if (atomic_read(&mm->mm_users) > 1) {
    1465             :                         /*
    1466             :                          * We don't check the error code - if userspace has
    1467             :                          * not set up a proper pointer then tough luck.
    1468             :                          */
    1469           0 :                         put_user(0, tsk->clear_child_tid);
    1470           0 :                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
    1471             :                                         1, NULL, NULL, 0, 0);
    1472             :                 }
    1473           0 :                 tsk->clear_child_tid = NULL;
    1474             :         }
    1475             : 
    1476             :         /*
    1477             :          * All done, finally we can wake up parent and return this mm to him.
    1478             :          * Also kthread_stop() uses this completion for synchronization.
    1479             :          */
    1480          93 :         if (tsk->vfork_done)
    1481          93 :                 complete_vfork_done(tsk);
    1482          93 : }
    1483             : 
    1484          93 : void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
    1485             : {
    1486          93 :         futex_exit_release(tsk);
    1487          93 :         mm_release(tsk, mm);
    1488          93 : }
    1489             : 
    1490           0 : void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
    1491             : {
    1492           0 :         futex_exec_release(tsk);
    1493           0 :         mm_release(tsk, mm);
    1494           0 : }
    1495             : 
    1496             : /**
    1497             :  * dup_mm() - duplicates an existing mm structure
    1498             :  * @tsk: the task_struct with which the new mm will be associated.
    1499             :  * @oldmm: the mm to duplicate.
    1500             :  *
    1501             :  * Allocates a new mm structure and duplicates the provided @oldmm structure
    1502             :  * content into it.
    1503             :  *
    1504             :  * Return: the duplicated mm or NULL on failure.
    1505             :  */
    1506           0 : static struct mm_struct *dup_mm(struct task_struct *tsk,
    1507             :                                 struct mm_struct *oldmm)
    1508             : {
    1509             :         struct mm_struct *mm;
    1510             :         int err;
    1511             : 
    1512           0 :         mm = allocate_mm();
    1513           0 :         if (!mm)
    1514             :                 goto fail_nomem;
    1515             : 
    1516           0 :         memcpy(mm, oldmm, sizeof(*mm));
    1517             : 
    1518           0 :         if (!mm_init(mm, tsk, mm->user_ns))
    1519             :                 goto fail_nomem;
    1520             : 
    1521           0 :         err = dup_mmap(mm, oldmm);
    1522           0 :         if (err)
    1523             :                 goto free_pt;
    1524             : 
    1525           0 :         mm->hiwater_rss = get_mm_rss(mm);
    1526           0 :         mm->hiwater_vm = mm->total_vm;
    1527             : 
    1528           0 :         if (mm->binfmt && !try_module_get(mm->binfmt->module))
    1529             :                 goto free_pt;
    1530             : 
    1531             :         return mm;
    1532             : 
    1533             : free_pt:
    1534             :         /* don't put binfmt in mmput, we haven't got module yet */
    1535           0 :         mm->binfmt = NULL;
    1536           0 :         mm_init_owner(mm, NULL);
    1537             :         mmput(mm);
    1538             : 
    1539             : fail_nomem:
    1540             :         return NULL;
    1541             : }
    1542             : 
    1543         107 : static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
    1544             : {
    1545             :         struct mm_struct *mm, *oldmm;
    1546             : 
    1547         107 :         tsk->min_flt = tsk->maj_flt = 0;
    1548         107 :         tsk->nvcsw = tsk->nivcsw = 0;
    1549             : #ifdef CONFIG_DETECT_HUNG_TASK
    1550             :         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
    1551             :         tsk->last_switch_time = 0;
    1552             : #endif
    1553             : 
    1554         107 :         tsk->mm = NULL;
    1555         107 :         tsk->active_mm = NULL;
    1556             : 
    1557             :         /*
    1558             :          * Are we cloning a kernel thread?
    1559             :          *
    1560             :          * We need to steal a active VM for that..
    1561             :          */
    1562         107 :         oldmm = current->mm;
    1563         107 :         if (!oldmm)
    1564             :                 return 0;
    1565             : 
    1566             :         /* initialize the new vmacache entries */
    1567           0 :         vmacache_flush(tsk);
    1568             : 
    1569           0 :         if (clone_flags & CLONE_VM) {
    1570           0 :                 mmget(oldmm);
    1571           0 :                 mm = oldmm;
    1572             :         } else {
    1573           0 :                 mm = dup_mm(tsk, current->mm);
    1574           0 :                 if (!mm)
    1575             :                         return -ENOMEM;
    1576             :         }
    1577             : 
    1578           0 :         tsk->mm = mm;
    1579           0 :         tsk->active_mm = mm;
    1580           0 :         return 0;
    1581             : }
    1582             : 
    1583         107 : static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
    1584             : {
    1585         107 :         struct fs_struct *fs = current->fs;
    1586         107 :         if (clone_flags & CLONE_FS) {
    1587             :                 /* tsk->fs is already what we want */
    1588         214 :                 spin_lock(&fs->lock);
    1589         107 :                 if (fs->in_exec) {
    1590           0 :                         spin_unlock(&fs->lock);
    1591             :                         return -EAGAIN;
    1592             :                 }
    1593         107 :                 fs->users++;
    1594         214 :                 spin_unlock(&fs->lock);
    1595             :                 return 0;
    1596             :         }
    1597           0 :         tsk->fs = copy_fs_struct(fs);
    1598           0 :         if (!tsk->fs)
    1599             :                 return -ENOMEM;
    1600             :         return 0;
    1601             : }
    1602             : 
    1603         107 : static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
    1604             : {
    1605             :         struct files_struct *oldf, *newf;
    1606         107 :         int error = 0;
    1607             : 
    1608             :         /*
    1609             :          * A background process may not have any files ...
    1610             :          */
    1611         107 :         oldf = current->files;
    1612         107 :         if (!oldf)
    1613             :                 goto out;
    1614             : 
    1615         107 :         if (clone_flags & CLONE_FILES) {
    1616         106 :                 atomic_inc(&oldf->count);
    1617             :                 goto out;
    1618             :         }
    1619             : 
    1620           1 :         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
    1621           1 :         if (!newf)
    1622             :                 goto out;
    1623             : 
    1624           1 :         tsk->files = newf;
    1625           1 :         error = 0;
    1626             : out:
    1627         107 :         return error;
    1628             : }
    1629             : 
    1630         107 : static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
    1631             : {
    1632             :         struct sighand_struct *sig;
    1633             : 
    1634         107 :         if (clone_flags & CLONE_SIGHAND) {
    1635           0 :                 refcount_inc(&current->sighand->count);
    1636           0 :                 return 0;
    1637             :         }
    1638         107 :         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
    1639         107 :         RCU_INIT_POINTER(tsk->sighand, sig);
    1640         107 :         if (!sig)
    1641             :                 return -ENOMEM;
    1642             : 
    1643         214 :         refcount_set(&sig->count, 1);
    1644         214 :         spin_lock_irq(&current->sighand->siglock);
    1645         107 :         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
    1646         214 :         spin_unlock_irq(&current->sighand->siglock);
    1647             : 
    1648             :         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
    1649         107 :         if (clone_flags & CLONE_CLEAR_SIGHAND)
    1650           0 :                 flush_signal_handlers(tsk, 0);
    1651             : 
    1652             :         return 0;
    1653             : }
    1654             : 
    1655          93 : void __cleanup_sighand(struct sighand_struct *sighand)
    1656             : {
    1657         186 :         if (refcount_dec_and_test(&sighand->count)) {
    1658          93 :                 signalfd_cleanup(sighand);
    1659             :                 /*
    1660             :                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
    1661             :                  * without an RCU grace period, see __lock_task_sighand().
    1662             :                  */
    1663          93 :                 kmem_cache_free(sighand_cachep, sighand);
    1664             :         }
    1665          93 : }
    1666             : 
    1667             : /*
    1668             :  * Initialize POSIX timer handling for a thread group.
    1669             :  */
    1670             : static void posix_cpu_timers_init_group(struct signal_struct *sig)
    1671             : {
    1672         107 :         struct posix_cputimers *pct = &sig->posix_cputimers;
    1673             :         unsigned long cpu_limit;
    1674             : 
    1675         107 :         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
    1676         107 :         posix_cputimers_group_init(pct, cpu_limit);
    1677             : }
    1678             : 
    1679         107 : static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
    1680             : {
    1681             :         struct signal_struct *sig;
    1682             : 
    1683         107 :         if (clone_flags & CLONE_THREAD)
    1684             :                 return 0;
    1685             : 
    1686         214 :         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
    1687         107 :         tsk->signal = sig;
    1688         107 :         if (!sig)
    1689             :                 return -ENOMEM;
    1690             : 
    1691         107 :         sig->nr_threads = 1;
    1692         214 :         atomic_set(&sig->live, 1);
    1693         214 :         refcount_set(&sig->sigcnt, 1);
    1694             : 
    1695             :         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
    1696         107 :         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
    1697         107 :         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
    1698             : 
    1699         107 :         init_waitqueue_head(&sig->wait_chldexit);
    1700         107 :         sig->curr_target = tsk;
    1701         214 :         init_sigpending(&sig->shared_pending);
    1702         107 :         INIT_HLIST_HEAD(&sig->multiprocess);
    1703         214 :         seqlock_init(&sig->stats_lock);
    1704         214 :         prev_cputime_init(&sig->prev_cputime);
    1705             : 
    1706             : #ifdef CONFIG_POSIX_TIMERS
    1707         214 :         INIT_LIST_HEAD(&sig->posix_timers);
    1708         107 :         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    1709         107 :         sig->real_timer.function = it_real_fn;
    1710             : #endif
    1711             : 
    1712         107 :         task_lock(current->group_leader);
    1713         107 :         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
    1714         214 :         task_unlock(current->group_leader);
    1715             : 
    1716         107 :         posix_cpu_timers_init_group(sig);
    1717             : 
    1718             :         tty_audit_fork(sig);
    1719             :         sched_autogroup_fork(sig);
    1720             : 
    1721         107 :         sig->oom_score_adj = current->signal->oom_score_adj;
    1722         107 :         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
    1723             : 
    1724         107 :         mutex_init(&sig->cred_guard_mutex);
    1725         107 :         init_rwsem(&sig->exec_update_lock);
    1726             : 
    1727         107 :         return 0;
    1728             : }
    1729             : 
    1730         107 : static void copy_seccomp(struct task_struct *p)
    1731             : {
    1732             : #ifdef CONFIG_SECCOMP
    1733             :         /*
    1734             :          * Must be called with sighand->lock held, which is common to
    1735             :          * all threads in the group. Holding cred_guard_mutex is not
    1736             :          * needed because this new task is not yet running and cannot
    1737             :          * be racing exec.
    1738             :          */
    1739         107 :         assert_spin_locked(&current->sighand->siglock);
    1740             : 
    1741             :         /* Ref-count the new filter user, and assign it. */
    1742         107 :         get_seccomp_filter(current);
    1743         107 :         p->seccomp = current->seccomp;
    1744             : 
    1745             :         /*
    1746             :          * Explicitly enable no_new_privs here in case it got set
    1747             :          * between the task_struct being duplicated and holding the
    1748             :          * sighand lock. The seccomp state and nnp must be in sync.
    1749             :          */
    1750         214 :         if (task_no_new_privs(current))
    1751             :                 task_set_no_new_privs(p);
    1752             : 
    1753             :         /*
    1754             :          * If the parent gained a seccomp mode after copying thread
    1755             :          * flags and between before we held the sighand lock, we have
    1756             :          * to manually enable the seccomp thread flag here.
    1757             :          */
    1758         107 :         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
    1759           0 :                 set_task_syscall_work(p, SECCOMP);
    1760             : #endif
    1761         107 : }
    1762             : 
    1763           0 : SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
    1764             : {
    1765           0 :         current->clear_child_tid = tidptr;
    1766             : 
    1767           0 :         return task_pid_vnr(current);
    1768             : }
    1769             : 
    1770             : static void rt_mutex_init_task(struct task_struct *p)
    1771             : {
    1772             :         raw_spin_lock_init(&p->pi_lock);
    1773             : #ifdef CONFIG_RT_MUTEXES
    1774         107 :         p->pi_waiters = RB_ROOT_CACHED;
    1775         107 :         p->pi_top_task = NULL;
    1776         107 :         p->pi_blocked_on = NULL;
    1777             : #endif
    1778             : }
    1779             : 
    1780             : static inline void init_task_pid_links(struct task_struct *task)
    1781             : {
    1782             :         enum pid_type type;
    1783             : 
    1784         428 :         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
    1785         856 :                 INIT_HLIST_NODE(&task->pid_links[type]);
    1786             : }
    1787             : 
    1788             : static inline void
    1789             : init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
    1790             : {
    1791           0 :         if (type == PIDTYPE_PID)
    1792         107 :                 task->thread_pid = pid;
    1793             :         else
    1794         321 :                 task->signal->pids[type] = pid;
    1795             : }
    1796             : 
    1797             : static inline void rcu_copy_process(struct task_struct *p)
    1798             : {
    1799             : #ifdef CONFIG_PREEMPT_RCU
    1800             :         p->rcu_read_lock_nesting = 0;
    1801             :         p->rcu_read_unlock_special.s = 0;
    1802             :         p->rcu_blocked_node = NULL;
    1803             :         INIT_LIST_HEAD(&p->rcu_node_entry);
    1804             : #endif /* #ifdef CONFIG_PREEMPT_RCU */
    1805             : #ifdef CONFIG_TASKS_RCU
    1806             :         p->rcu_tasks_holdout = false;
    1807             :         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
    1808             :         p->rcu_tasks_idle_cpu = -1;
    1809             : #endif /* #ifdef CONFIG_TASKS_RCU */
    1810             : #ifdef CONFIG_TASKS_TRACE_RCU
    1811             :         p->trc_reader_nesting = 0;
    1812             :         p->trc_reader_special.s = 0;
    1813             :         INIT_LIST_HEAD(&p->trc_holdout_list);
    1814             : #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
    1815             : }
    1816             : 
    1817           0 : struct pid *pidfd_pid(const struct file *file)
    1818             : {
    1819           0 :         if (file->f_op == &pidfd_fops)
    1820           0 :                 return file->private_data;
    1821             : 
    1822             :         return ERR_PTR(-EBADF);
    1823             : }
    1824             : 
    1825           0 : static int pidfd_release(struct inode *inode, struct file *file)
    1826             : {
    1827           0 :         struct pid *pid = file->private_data;
    1828             : 
    1829           0 :         file->private_data = NULL;
    1830           0 :         put_pid(pid);
    1831           0 :         return 0;
    1832             : }
    1833             : 
    1834             : #ifdef CONFIG_PROC_FS
    1835             : /**
    1836             :  * pidfd_show_fdinfo - print information about a pidfd
    1837             :  * @m: proc fdinfo file
    1838             :  * @f: file referencing a pidfd
    1839             :  *
    1840             :  * Pid:
    1841             :  * This function will print the pid that a given pidfd refers to in the
    1842             :  * pid namespace of the procfs instance.
    1843             :  * If the pid namespace of the process is not a descendant of the pid
    1844             :  * namespace of the procfs instance 0 will be shown as its pid. This is
    1845             :  * similar to calling getppid() on a process whose parent is outside of
    1846             :  * its pid namespace.
    1847             :  *
    1848             :  * NSpid:
    1849             :  * If pid namespaces are supported then this function will also print
    1850             :  * the pid of a given pidfd refers to for all descendant pid namespaces
    1851             :  * starting from the current pid namespace of the instance, i.e. the
    1852             :  * Pid field and the first entry in the NSpid field will be identical.
    1853             :  * If the pid namespace of the process is not a descendant of the pid
    1854             :  * namespace of the procfs instance 0 will be shown as its first NSpid
    1855             :  * entry and no others will be shown.
    1856             :  * Note that this differs from the Pid and NSpid fields in
    1857             :  * /proc/<pid>/status where Pid and NSpid are always shown relative to
    1858             :  * the  pid namespace of the procfs instance. The difference becomes
    1859             :  * obvious when sending around a pidfd between pid namespaces from a
    1860             :  * different branch of the tree, i.e. where no ancestral relation is
    1861             :  * present between the pid namespaces:
    1862             :  * - create two new pid namespaces ns1 and ns2 in the initial pid
    1863             :  *   namespace (also take care to create new mount namespaces in the
    1864             :  *   new pid namespace and mount procfs)
    1865             :  * - create a process with a pidfd in ns1
    1866             :  * - send pidfd from ns1 to ns2
    1867             :  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
    1868             :  *   have exactly one entry, which is 0
    1869             :  */
    1870           0 : static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
    1871             : {
    1872           0 :         struct pid *pid = f->private_data;
    1873             :         struct pid_namespace *ns;
    1874           0 :         pid_t nr = -1;
    1875             : 
    1876           0 :         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
    1877           0 :                 ns = proc_pid_ns(file_inode(m->file)->i_sb);
    1878           0 :                 nr = pid_nr_ns(pid, ns);
    1879             :         }
    1880             : 
    1881           0 :         seq_put_decimal_ll(m, "Pid:\t", nr);
    1882             : 
    1883             : #ifdef CONFIG_PID_NS
    1884           0 :         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
    1885           0 :         if (nr > 0) {
    1886             :                 int i;
    1887             : 
    1888             :                 /* If nr is non-zero it means that 'pid' is valid and that
    1889             :                  * ns, i.e. the pid namespace associated with the procfs
    1890             :                  * instance, is in the pid namespace hierarchy of pid.
    1891             :                  * Start at one below the already printed level.
    1892             :                  */
    1893           0 :                 for (i = ns->level + 1; i <= pid->level; i++)
    1894           0 :                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
    1895             :         }
    1896             : #endif
    1897           0 :         seq_putc(m, '\n');
    1898           0 : }
    1899             : #endif
    1900             : 
    1901             : /*
    1902             :  * Poll support for process exit notification.
    1903             :  */
    1904           0 : static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
    1905             : {
    1906           0 :         struct pid *pid = file->private_data;
    1907           0 :         __poll_t poll_flags = 0;
    1908             : 
    1909           0 :         poll_wait(file, &pid->wait_pidfd, pts);
    1910             : 
    1911             :         /*
    1912             :          * Inform pollers only when the whole thread group exits.
    1913             :          * If the thread group leader exits before all other threads in the
    1914             :          * group, then poll(2) should block, similar to the wait(2) family.
    1915             :          */
    1916           0 :         if (thread_group_exited(pid))
    1917           0 :                 poll_flags = EPOLLIN | EPOLLRDNORM;
    1918             : 
    1919           0 :         return poll_flags;
    1920             : }
    1921             : 
    1922             : const struct file_operations pidfd_fops = {
    1923             :         .release = pidfd_release,
    1924             :         .poll = pidfd_poll,
    1925             : #ifdef CONFIG_PROC_FS
    1926             :         .show_fdinfo = pidfd_show_fdinfo,
    1927             : #endif
    1928             : };
    1929             : 
    1930             : static void __delayed_free_task(struct rcu_head *rhp)
    1931             : {
    1932             :         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
    1933             : 
    1934             :         free_task(tsk);
    1935             : }
    1936             : 
    1937             : static __always_inline void delayed_free_task(struct task_struct *tsk)
    1938             : {
    1939             :         if (IS_ENABLED(CONFIG_MEMCG))
    1940             :                 call_rcu(&tsk->rcu, __delayed_free_task);
    1941             :         else
    1942           0 :                 free_task(tsk);
    1943             : }
    1944             : 
    1945         107 : static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
    1946             : {
    1947             :         /* Skip if kernel thread */
    1948         107 :         if (!tsk->mm)
    1949             :                 return;
    1950             : 
    1951             :         /* Skip if spawning a thread or using vfork */
    1952           0 :         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
    1953             :                 return;
    1954             : 
    1955             :         /* We need to synchronize with __set_oom_adj */
    1956           0 :         mutex_lock(&oom_adj_mutex);
    1957           0 :         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
    1958             :         /* Update the values in case they were changed after copy_signal */
    1959           0 :         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
    1960           0 :         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
    1961           0 :         mutex_unlock(&oom_adj_mutex);
    1962             : }
    1963             : 
    1964             : /*
    1965             :  * This creates a new process as a copy of the old one,
    1966             :  * but does not actually start it yet.
    1967             :  *
    1968             :  * It copies the registers, and all the appropriate
    1969             :  * parts of the process environment (as per the clone
    1970             :  * flags). The actual kick-off is left to the caller.
    1971             :  */
    1972         107 : static __latent_entropy struct task_struct *copy_process(
    1973             :                                         struct pid *pid,
    1974             :                                         int trace,
    1975             :                                         int node,
    1976             :                                         struct kernel_clone_args *args)
    1977             : {
    1978         107 :         int pidfd = -1, retval;
    1979             :         struct task_struct *p;
    1980             :         struct multiprocess_signals delayed;
    1981         107 :         struct file *pidfile = NULL;
    1982         107 :         u64 clone_flags = args->flags;
    1983         107 :         struct nsproxy *nsp = current->nsproxy;
    1984             : 
    1985             :         /*
    1986             :          * Don't allow sharing the root directory with processes in a different
    1987             :          * namespace
    1988             :          */
    1989         107 :         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
    1990             :                 return ERR_PTR(-EINVAL);
    1991             : 
    1992         107 :         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
    1993             :                 return ERR_PTR(-EINVAL);
    1994             : 
    1995             :         /*
    1996             :          * Thread groups must share signals as well, and detached threads
    1997             :          * can only be started up within the thread group.
    1998             :          */
    1999         107 :         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
    2000             :                 return ERR_PTR(-EINVAL);
    2001             : 
    2002             :         /*
    2003             :          * Shared signal handlers imply shared VM. By way of the above,
    2004             :          * thread groups also imply shared VM. Blocking this case allows
    2005             :          * for various simplifications in other code.
    2006             :          */
    2007         107 :         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
    2008             :                 return ERR_PTR(-EINVAL);
    2009             : 
    2010             :         /*
    2011             :          * Siblings of global init remain as zombies on exit since they are
    2012             :          * not reaped by their parent (swapper). To solve this and to avoid
    2013             :          * multi-rooted process trees, prevent global and container-inits
    2014             :          * from creating siblings.
    2015             :          */
    2016         107 :         if ((clone_flags & CLONE_PARENT) &&
    2017           0 :                                 current->signal->flags & SIGNAL_UNKILLABLE)
    2018             :                 return ERR_PTR(-EINVAL);
    2019             : 
    2020             :         /*
    2021             :          * If the new process will be in a different pid or user namespace
    2022             :          * do not allow it to share a thread group with the forking task.
    2023             :          */
    2024         107 :         if (clone_flags & CLONE_THREAD) {
    2025           0 :                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
    2026           0 :                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
    2027             :                         return ERR_PTR(-EINVAL);
    2028             :         }
    2029             : 
    2030             :         /*
    2031             :          * If the new process will be in a different time namespace
    2032             :          * do not allow it to share VM or a thread group with the forking task.
    2033             :          */
    2034         107 :         if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
    2035         107 :                 if (nsp->time_ns != nsp->time_ns_for_children)
    2036             :                         return ERR_PTR(-EINVAL);
    2037             :         }
    2038             : 
    2039         107 :         if (clone_flags & CLONE_PIDFD) {
    2040             :                 /*
    2041             :                  * - CLONE_DETACHED is blocked so that we can potentially
    2042             :                  *   reuse it later for CLONE_PIDFD.
    2043             :                  * - CLONE_THREAD is blocked until someone really needs it.
    2044             :                  */
    2045           0 :                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
    2046             :                         return ERR_PTR(-EINVAL);
    2047             :         }
    2048             : 
    2049             :         /*
    2050             :          * Force any signals received before this point to be delivered
    2051             :          * before the fork happens.  Collect up signals sent to multiple
    2052             :          * processes that happen during the fork and delay them so that
    2053             :          * they appear to happen after the fork.
    2054             :          */
    2055         107 :         sigemptyset(&delayed.signal);
    2056         107 :         INIT_HLIST_NODE(&delayed.node);
    2057             : 
    2058         214 :         spin_lock_irq(&current->sighand->siglock);
    2059         107 :         if (!(clone_flags & CLONE_THREAD))
    2060         107 :                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
    2061         107 :         recalc_sigpending();
    2062         214 :         spin_unlock_irq(&current->sighand->siglock);
    2063         107 :         retval = -ERESTARTNOINTR;
    2064         214 :         if (task_sigpending(current))
    2065             :                 goto fork_out;
    2066             : 
    2067         107 :         retval = -ENOMEM;
    2068         107 :         p = dup_task_struct(current, node);
    2069         107 :         if (!p)
    2070             :                 goto fork_out;
    2071         107 :         if (args->io_thread) {
    2072             :                 /*
    2073             :                  * Mark us an IO worker, and block any signal that isn't
    2074             :                  * fatal or STOP
    2075             :                  */
    2076           0 :                 p->flags |= PF_IO_WORKER;
    2077           0 :                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
    2078             :         }
    2079             : 
    2080         107 :         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
    2081             :         /*
    2082             :          * Clear TID on mm_release()?
    2083             :          */
    2084         107 :         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
    2085             : 
    2086         107 :         ftrace_graph_init_task(p);
    2087             : 
    2088         107 :         rt_mutex_init_task(p);
    2089             : 
    2090             :         lockdep_assert_irqs_enabled();
    2091             : #ifdef CONFIG_PROVE_LOCKING
    2092             :         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
    2093             : #endif
    2094         107 :         retval = copy_creds(p, clone_flags);
    2095         107 :         if (retval < 0)
    2096             :                 goto bad_fork_free;
    2097             : 
    2098         107 :         retval = -EAGAIN;
    2099         321 :         if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
    2100           0 :                 if (p->real_cred->user != INIT_USER &&
    2101           0 :                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
    2102             :                         goto bad_fork_cleanup_count;
    2103             :         }
    2104         107 :         current->flags &= ~PF_NPROC_EXCEEDED;
    2105             : 
    2106             :         /*
    2107             :          * If multiple threads are within copy_process(), then this check
    2108             :          * triggers too late. This doesn't hurt, the check is only there
    2109             :          * to stop root fork bombs.
    2110             :          */
    2111         107 :         retval = -EAGAIN;
    2112         107 :         if (data_race(nr_threads >= max_threads))
    2113             :                 goto bad_fork_cleanup_count;
    2114             : 
    2115         107 :         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
    2116         107 :         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
    2117         107 :         p->flags |= PF_FORKNOEXEC;
    2118         214 :         INIT_LIST_HEAD(&p->children);
    2119         214 :         INIT_LIST_HEAD(&p->sibling);
    2120         107 :         rcu_copy_process(p);
    2121         107 :         p->vfork_done = NULL;
    2122         107 :         spin_lock_init(&p->alloc_lock);
    2123             : 
    2124         214 :         init_sigpending(&p->pending);
    2125             : 
    2126         107 :         p->utime = p->stime = p->gtime = 0;
    2127             : #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
    2128             :         p->utimescaled = p->stimescaled = 0;
    2129             : #endif
    2130         214 :         prev_cputime_init(&p->prev_cputime);
    2131             : 
    2132             : #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
    2133             :         seqcount_init(&p->vtime.seqcount);
    2134             :         p->vtime.starttime = 0;
    2135             :         p->vtime.state = VTIME_INACTIVE;
    2136             : #endif
    2137             : 
    2138             : #ifdef CONFIG_IO_URING
    2139         107 :         p->io_uring = NULL;
    2140             : #endif
    2141             : 
    2142             : #if defined(SPLIT_RSS_COUNTING)
    2143             :         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
    2144             : #endif
    2145             : 
    2146         107 :         p->default_timer_slack_ns = current->timer_slack_ns;
    2147             : 
    2148             : #ifdef CONFIG_PSI
    2149             :         p->psi_flags = 0;
    2150             : #endif
    2151             : 
    2152         107 :         task_io_accounting_init(&p->ioac);
    2153         107 :         acct_clear_integrals(p);
    2154             : 
    2155         214 :         posix_cputimers_init(&p->posix_cputimers);
    2156             : 
    2157         107 :         p->io_context = NULL;
    2158         107 :         audit_set_context(p, NULL);
    2159         107 :         cgroup_fork(p);
    2160         107 :         if (p->flags & PF_KTHREAD) {
    2161         107 :                 if (!set_kthread_struct(p))
    2162             :                         goto bad_fork_cleanup_delayacct;
    2163             :         }
    2164             : #ifdef CONFIG_NUMA
    2165             :         p->mempolicy = mpol_dup(p->mempolicy);
    2166             :         if (IS_ERR(p->mempolicy)) {
    2167             :                 retval = PTR_ERR(p->mempolicy);
    2168             :                 p->mempolicy = NULL;
    2169             :                 goto bad_fork_cleanup_delayacct;
    2170             :         }
    2171             : #endif
    2172             : #ifdef CONFIG_CPUSETS
    2173             :         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
    2174             :         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
    2175             :         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
    2176             : #endif
    2177             : #ifdef CONFIG_TRACE_IRQFLAGS
    2178             :         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
    2179             :         p->irqtrace.hardirq_disable_ip       = _THIS_IP_;
    2180             :         p->irqtrace.softirq_enable_ip        = _THIS_IP_;
    2181             :         p->softirqs_enabled          = 1;
    2182             :         p->softirq_context           = 0;
    2183             : #endif
    2184             : 
    2185         107 :         p->pagefault_disabled = 0;
    2186             : 
    2187             : #ifdef CONFIG_LOCKDEP
    2188             :         lockdep_init_task(p);
    2189             : #endif
    2190             : 
    2191             : #ifdef CONFIG_DEBUG_MUTEXES
    2192             :         p->blocked_on = NULL; /* not blocked yet */
    2193             : #endif
    2194             : #ifdef CONFIG_BCACHE
    2195             :         p->sequential_io     = 0;
    2196             :         p->sequential_io_avg = 0;
    2197             : #endif
    2198             : #ifdef CONFIG_BPF_SYSCALL
    2199             :         RCU_INIT_POINTER(p->bpf_storage, NULL);
    2200             :         p->bpf_ctx = NULL;
    2201             : #endif
    2202             : 
    2203             :         /* Perform scheduler related setup. Assign this task to a CPU. */
    2204         107 :         retval = sched_fork(clone_flags, p);
    2205         107 :         if (retval)
    2206             :                 goto bad_fork_cleanup_policy;
    2207             : 
    2208         107 :         retval = perf_event_init_task(p, clone_flags);
    2209             :         if (retval)
    2210             :                 goto bad_fork_cleanup_policy;
    2211         107 :         retval = audit_alloc(p);
    2212             :         if (retval)
    2213             :                 goto bad_fork_cleanup_perf;
    2214             :         /* copy all the process information */
    2215         107 :         shm_init_task(p);
    2216         107 :         retval = security_task_alloc(p, clone_flags);
    2217             :         if (retval)
    2218             :                 goto bad_fork_cleanup_audit;
    2219         107 :         retval = copy_semundo(clone_flags, p);
    2220             :         if (retval)
    2221             :                 goto bad_fork_cleanup_security;
    2222         107 :         retval = copy_files(clone_flags, p);
    2223         107 :         if (retval)
    2224             :                 goto bad_fork_cleanup_semundo;
    2225         107 :         retval = copy_fs(clone_flags, p);
    2226         107 :         if (retval)
    2227             :                 goto bad_fork_cleanup_files;
    2228         107 :         retval = copy_sighand(clone_flags, p);
    2229         107 :         if (retval)
    2230             :                 goto bad_fork_cleanup_fs;
    2231         107 :         retval = copy_signal(clone_flags, p);
    2232         107 :         if (retval)
    2233             :                 goto bad_fork_cleanup_sighand;
    2234         107 :         retval = copy_mm(clone_flags, p);
    2235         107 :         if (retval)
    2236             :                 goto bad_fork_cleanup_signal;
    2237         107 :         retval = copy_namespaces(clone_flags, p);
    2238         107 :         if (retval)
    2239             :                 goto bad_fork_cleanup_mm;
    2240         107 :         retval = copy_io(clone_flags, p);
    2241         107 :         if (retval)
    2242             :                 goto bad_fork_cleanup_namespaces;
    2243         107 :         retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
    2244         107 :         if (retval)
    2245             :                 goto bad_fork_cleanup_io;
    2246             : 
    2247         107 :         stackleak_task_init(p);
    2248             : 
    2249         107 :         if (pid != &init_struct_pid) {
    2250         107 :                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
    2251             :                                 args->set_tid_size);
    2252         107 :                 if (IS_ERR(pid)) {
    2253           0 :                         retval = PTR_ERR(pid);
    2254           0 :                         goto bad_fork_cleanup_thread;
    2255             :                 }
    2256             :         }
    2257             : 
    2258             :         /*
    2259             :          * This has to happen after we've potentially unshared the file
    2260             :          * descriptor table (so that the pidfd doesn't leak into the child
    2261             :          * if the fd table isn't shared).
    2262             :          */
    2263         107 :         if (clone_flags & CLONE_PIDFD) {
    2264           0 :                 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
    2265           0 :                 if (retval < 0)
    2266             :                         goto bad_fork_free_pid;
    2267             : 
    2268           0 :                 pidfd = retval;
    2269             : 
    2270           0 :                 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
    2271             :                                               O_RDWR | O_CLOEXEC);
    2272           0 :                 if (IS_ERR(pidfile)) {
    2273           0 :                         put_unused_fd(pidfd);
    2274           0 :                         retval = PTR_ERR(pidfile);
    2275           0 :                         goto bad_fork_free_pid;
    2276             :                 }
    2277           0 :                 get_pid(pid);   /* held by pidfile now */
    2278             : 
    2279           0 :                 retval = put_user(pidfd, args->pidfd);
    2280           0 :                 if (retval)
    2281             :                         goto bad_fork_put_pidfd;
    2282             :         }
    2283             : 
    2284             : #ifdef CONFIG_BLOCK
    2285         107 :         p->plug = NULL;
    2286             : #endif
    2287         107 :         futex_init_task(p);
    2288             : 
    2289             :         /*
    2290             :          * sigaltstack should be cleared when sharing the same VM
    2291             :          */
    2292         107 :         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
    2293             :                 sas_ss_reset(p);
    2294             : 
    2295             :         /*
    2296             :          * Syscall tracing and stepping should be turned off in the
    2297             :          * child regardless of CLONE_PTRACE.
    2298             :          */
    2299         107 :         user_disable_single_step(p);
    2300         214 :         clear_task_syscall_work(p, SYSCALL_TRACE);
    2301             : #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
    2302             :         clear_task_syscall_work(p, SYSCALL_EMU);
    2303             : #endif
    2304         107 :         clear_tsk_latency_tracing(p);
    2305             : 
    2306             :         /* ok, now we should be set up.. */
    2307         107 :         p->pid = pid_nr(pid);
    2308         107 :         if (clone_flags & CLONE_THREAD) {
    2309           0 :                 p->group_leader = current->group_leader;
    2310           0 :                 p->tgid = current->tgid;
    2311             :         } else {
    2312         107 :                 p->group_leader = p;
    2313         107 :                 p->tgid = p->pid;
    2314             :         }
    2315             : 
    2316         107 :         p->nr_dirtied = 0;
    2317         107 :         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
    2318         107 :         p->dirty_paused_when = 0;
    2319             : 
    2320         107 :         p->pdeath_signal = 0;
    2321         214 :         INIT_LIST_HEAD(&p->thread_group);
    2322         107 :         p->task_works = NULL;
    2323         107 :         clear_posix_cputimers_work(p);
    2324             : 
    2325             : #ifdef CONFIG_KRETPROBES
    2326             :         p->kretprobe_instances.first = NULL;
    2327             : #endif
    2328             : #ifdef CONFIG_RETHOOK
    2329             :         p->rethooks.first = NULL;
    2330             : #endif
    2331             : 
    2332             :         /*
    2333             :          * Ensure that the cgroup subsystem policies allow the new process to be
    2334             :          * forked. It should be noted that the new process's css_set can be changed
    2335             :          * between here and cgroup_post_fork() if an organisation operation is in
    2336             :          * progress.
    2337             :          */
    2338         107 :         retval = cgroup_can_fork(p, args);
    2339             :         if (retval)
    2340             :                 goto bad_fork_put_pidfd;
    2341             : 
    2342             :         /*
    2343             :          * Now that the cgroups are pinned, re-clone the parent cgroup and put
    2344             :          * the new task on the correct runqueue. All this *before* the task
    2345             :          * becomes visible.
    2346             :          *
    2347             :          * This isn't part of ->can_fork() because while the re-cloning is
    2348             :          * cgroup specific, it unconditionally needs to place the task on a
    2349             :          * runqueue.
    2350             :          */
    2351         107 :         sched_cgroup_fork(p, args);
    2352             : 
    2353             :         /*
    2354             :          * From this point on we must avoid any synchronous user-space
    2355             :          * communication until we take the tasklist-lock. In particular, we do
    2356             :          * not want user-space to be able to predict the process start-time by
    2357             :          * stalling fork(2) after we recorded the start_time but before it is
    2358             :          * visible to the system.
    2359             :          */
    2360             : 
    2361         107 :         p->start_time = ktime_get_ns();
    2362         107 :         p->start_boottime = ktime_get_boottime_ns();
    2363             : 
    2364             :         /*
    2365             :          * Make it visible to the rest of the system, but dont wake it up yet.
    2366             :          * Need tasklist lock for parent etc handling!
    2367             :          */
    2368         107 :         write_lock_irq(&tasklist_lock);
    2369             : 
    2370             :         /* CLONE_PARENT re-uses the old parent */
    2371         107 :         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
    2372           0 :                 p->real_parent = current->real_parent;
    2373           0 :                 p->parent_exec_id = current->parent_exec_id;
    2374           0 :                 if (clone_flags & CLONE_THREAD)
    2375           0 :                         p->exit_signal = -1;
    2376             :                 else
    2377           0 :                         p->exit_signal = current->group_leader->exit_signal;
    2378             :         } else {
    2379         107 :                 p->real_parent = current;
    2380         107 :                 p->parent_exec_id = current->self_exec_id;
    2381         107 :                 p->exit_signal = args->exit_signal;
    2382             :         }
    2383             : 
    2384         107 :         klp_copy_process(p);
    2385             : 
    2386         107 :         sched_core_fork(p);
    2387             : 
    2388         214 :         spin_lock(&current->sighand->siglock);
    2389             : 
    2390             :         /*
    2391             :          * Copy seccomp details explicitly here, in case they were changed
    2392             :          * before holding sighand lock.
    2393             :          */
    2394         107 :         copy_seccomp(p);
    2395             : 
    2396         107 :         rseq_fork(p, clone_flags);
    2397             : 
    2398             :         /* Don't start children in a dying pid namespace */
    2399         107 :         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
    2400             :                 retval = -ENOMEM;
    2401             :                 goto bad_fork_cancel_cgroup;
    2402             :         }
    2403             : 
    2404             :         /* Let kill terminate clone/fork in the middle */
    2405         214 :         if (fatal_signal_pending(current)) {
    2406             :                 retval = -EINTR;
    2407             :                 goto bad_fork_cancel_cgroup;
    2408             :         }
    2409             : 
    2410         107 :         init_task_pid_links(p);
    2411         107 :         if (likely(p->pid)) {
    2412         107 :                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
    2413             : 
    2414         214 :                 init_task_pid(p, PIDTYPE_PID, pid);
    2415         107 :                 if (thread_group_leader(p)) {
    2416         214 :                         init_task_pid(p, PIDTYPE_TGID, pid);
    2417         321 :                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
    2418         321 :                         init_task_pid(p, PIDTYPE_SID, task_session(current));
    2419             : 
    2420         107 :                         if (is_child_reaper(pid)) {
    2421           1 :                                 ns_of_pid(pid)->child_reaper = p;
    2422           1 :                                 p->signal->flags |= SIGNAL_UNKILLABLE;
    2423             :                         }
    2424         107 :                         p->signal->shared_pending.signal = delayed.signal;
    2425         321 :                         p->signal->tty = tty_kref_get(current->signal->tty);
    2426             :                         /*
    2427             :                          * Inherit has_child_subreaper flag under the same
    2428             :                          * tasklist_lock with adding child to the process tree
    2429             :                          * for propagate_has_child_subreaper optimization.
    2430             :                          */
    2431         107 :                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
    2432             :                                                          p->real_parent->signal->is_child_subreaper;
    2433         214 :                         list_add_tail(&p->sibling, &p->real_parent->children);
    2434         214 :                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
    2435         107 :                         attach_pid(p, PIDTYPE_TGID);
    2436         107 :                         attach_pid(p, PIDTYPE_PGID);
    2437         107 :                         attach_pid(p, PIDTYPE_SID);
    2438         107 :                         __this_cpu_inc(process_counts);
    2439             :                 } else {
    2440           0 :                         current->signal->nr_threads++;
    2441           0 :                         atomic_inc(&current->signal->live);
    2442           0 :                         refcount_inc(&current->signal->sigcnt);
    2443           0 :                         task_join_group_stop(p);
    2444           0 :                         list_add_tail_rcu(&p->thread_group,
    2445           0 :                                           &p->group_leader->thread_group);
    2446           0 :                         list_add_tail_rcu(&p->thread_node,
    2447           0 :                                           &p->signal->thread_head);
    2448             :                 }
    2449         107 :                 attach_pid(p, PIDTYPE_PID);
    2450         107 :                 nr_threads++;
    2451             :         }
    2452         107 :         total_forks++;
    2453         107 :         hlist_del_init(&delayed.node);
    2454         214 :         spin_unlock(&current->sighand->siglock);
    2455         107 :         syscall_tracepoint_update(p);
    2456         107 :         write_unlock_irq(&tasklist_lock);
    2457             : 
    2458         107 :         if (pidfile)
    2459           0 :                 fd_install(pidfd, pidfile);
    2460             : 
    2461         107 :         proc_fork_connector(p);
    2462         107 :         sched_post_fork(p);
    2463         107 :         cgroup_post_fork(p, args);
    2464         107 :         perf_event_fork(p);
    2465             : 
    2466         107 :         trace_task_newtask(p, clone_flags);
    2467         107 :         uprobe_copy_process(p, clone_flags);
    2468             : 
    2469         107 :         copy_oom_score_adj(clone_flags, p);
    2470             : 
    2471         107 :         return p;
    2472             : 
    2473             : bad_fork_cancel_cgroup:
    2474           0 :         sched_core_free(p);
    2475           0 :         spin_unlock(&current->sighand->siglock);
    2476           0 :         write_unlock_irq(&tasklist_lock);
    2477           0 :         cgroup_cancel_fork(p, args);
    2478             : bad_fork_put_pidfd:
    2479           0 :         if (clone_flags & CLONE_PIDFD) {
    2480           0 :                 fput(pidfile);
    2481           0 :                 put_unused_fd(pidfd);
    2482             :         }
    2483             : bad_fork_free_pid:
    2484           0 :         if (pid != &init_struct_pid)
    2485           0 :                 free_pid(pid);
    2486             : bad_fork_cleanup_thread:
    2487             :         exit_thread(p);
    2488             : bad_fork_cleanup_io:
    2489           0 :         if (p->io_context)
    2490           0 :                 exit_io_context(p);
    2491             : bad_fork_cleanup_namespaces:
    2492           0 :         exit_task_namespaces(p);
    2493             : bad_fork_cleanup_mm:
    2494           0 :         if (p->mm) {
    2495           0 :                 mm_clear_owner(p->mm, p);
    2496           0 :                 mmput(p->mm);
    2497             :         }
    2498             : bad_fork_cleanup_signal:
    2499           0 :         if (!(clone_flags & CLONE_THREAD))
    2500           0 :                 free_signal_struct(p->signal);
    2501             : bad_fork_cleanup_sighand:
    2502           0 :         __cleanup_sighand(p->sighand);
    2503             : bad_fork_cleanup_fs:
    2504           0 :         exit_fs(p); /* blocking */
    2505             : bad_fork_cleanup_files:
    2506           0 :         exit_files(p); /* blocking */
    2507             : bad_fork_cleanup_semundo:
    2508             :         exit_sem(p);
    2509             : bad_fork_cleanup_security:
    2510             :         security_task_free(p);
    2511             : bad_fork_cleanup_audit:
    2512             :         audit_free(p);
    2513             : bad_fork_cleanup_perf:
    2514             :         perf_event_free_task(p);
    2515             : bad_fork_cleanup_policy:
    2516             :         lockdep_free_task(p);
    2517             : #ifdef CONFIG_NUMA
    2518             :         mpol_put(p->mempolicy);
    2519             : #endif
    2520             : bad_fork_cleanup_delayacct:
    2521             :         delayacct_tsk_free(p);
    2522             : bad_fork_cleanup_count:
    2523           0 :         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
    2524           0 :         exit_creds(p);
    2525             : bad_fork_free:
    2526           0 :         WRITE_ONCE(p->__state, TASK_DEAD);
    2527           0 :         exit_task_stack_account(p);
    2528           0 :         put_task_stack(p);
    2529             :         delayed_free_task(p);
    2530             : fork_out:
    2531           0 :         spin_lock_irq(&current->sighand->siglock);
    2532           0 :         hlist_del_init(&delayed.node);
    2533           0 :         spin_unlock_irq(&current->sighand->siglock);
    2534           0 :         return ERR_PTR(retval);
    2535             : }
    2536             : 
    2537             : static inline void init_idle_pids(struct task_struct *idle)
    2538             : {
    2539             :         enum pid_type type;
    2540             : 
    2541           0 :         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
    2542           0 :                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
    2543           0 :                 init_task_pid(idle, type, &init_struct_pid);
    2544             :         }
    2545             : }
    2546             : 
    2547           0 : struct task_struct * __init fork_idle(int cpu)
    2548             : {
    2549             :         struct task_struct *task;
    2550           0 :         struct kernel_clone_args args = {
    2551             :                 .flags = CLONE_VM,
    2552             :         };
    2553             : 
    2554           0 :         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
    2555           0 :         if (!IS_ERR(task)) {
    2556           0 :                 init_idle_pids(task);
    2557           0 :                 init_idle(task, cpu);
    2558             :         }
    2559             : 
    2560           0 :         return task;
    2561             : }
    2562             : 
    2563           0 : struct mm_struct *copy_init_mm(void)
    2564             : {
    2565           0 :         return dup_mm(NULL, &init_mm);
    2566             : }
    2567             : 
    2568             : /*
    2569             :  * This is like kernel_clone(), but shaved down and tailored to just
    2570             :  * creating io_uring workers. It returns a created task, or an error pointer.
    2571             :  * The returned task is inactive, and the caller must fire it up through
    2572             :  * wake_up_new_task(p). All signals are blocked in the created task.
    2573             :  */
    2574           0 : struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
    2575             : {
    2576           0 :         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
    2577             :                                 CLONE_IO;
    2578           0 :         struct kernel_clone_args args = {
    2579             :                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
    2580             :                                     CLONE_UNTRACED) & ~CSIGNAL),
    2581             :                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
    2582           0 :                 .stack          = (unsigned long)fn,
    2583           0 :                 .stack_size     = (unsigned long)arg,
    2584             :                 .io_thread      = 1,
    2585             :         };
    2586             : 
    2587           0 :         return copy_process(NULL, 0, node, &args);
    2588             : }
    2589             : 
    2590             : /*
    2591             :  *  Ok, this is the main fork-routine.
    2592             :  *
    2593             :  * It copies the process, and if successful kick-starts
    2594             :  * it and waits for it to finish using the VM if required.
    2595             :  *
    2596             :  * args->exit_signal is expected to be checked for sanity by the caller.
    2597             :  */
    2598         107 : pid_t kernel_clone(struct kernel_clone_args *args)
    2599             : {
    2600         107 :         u64 clone_flags = args->flags;
    2601             :         struct completion vfork;
    2602             :         struct pid *pid;
    2603             :         struct task_struct *p;
    2604         107 :         int trace = 0;
    2605             :         pid_t nr;
    2606             : 
    2607             :         /*
    2608             :          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
    2609             :          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
    2610             :          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
    2611             :          * field in struct clone_args and it still doesn't make sense to have
    2612             :          * them both point at the same memory location. Performing this check
    2613             :          * here has the advantage that we don't need to have a separate helper
    2614             :          * to check for legacy clone().
    2615             :          */
    2616         107 :         if ((args->flags & CLONE_PIDFD) &&
    2617           0 :             (args->flags & CLONE_PARENT_SETTID) &&
    2618           0 :             (args->pidfd == args->parent_tid))
    2619             :                 return -EINVAL;
    2620             : 
    2621             :         /*
    2622             :          * Determine whether and which event to report to ptracer.  When
    2623             :          * called from kernel_thread or CLONE_UNTRACED is explicitly
    2624             :          * requested, no event is reported; otherwise, report if the event
    2625             :          * for the type of forking is enabled.
    2626             :          */
    2627         107 :         if (!(clone_flags & CLONE_UNTRACED)) {
    2628           0 :                 if (clone_flags & CLONE_VFORK)
    2629             :                         trace = PTRACE_EVENT_VFORK;
    2630           0 :                 else if (args->exit_signal != SIGCHLD)
    2631             :                         trace = PTRACE_EVENT_CLONE;
    2632             :                 else
    2633           0 :                         trace = PTRACE_EVENT_FORK;
    2634             : 
    2635           0 :                 if (likely(!ptrace_event_enabled(current, trace)))
    2636           0 :                         trace = 0;
    2637             :         }
    2638             : 
    2639         107 :         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
    2640         107 :         add_latent_entropy();
    2641             : 
    2642         107 :         if (IS_ERR(p))
    2643           0 :                 return PTR_ERR(p);
    2644             : 
    2645             :         /*
    2646             :          * Do this prior waking up the new thread - the thread pointer
    2647             :          * might get invalid after that point, if the thread exits quickly.
    2648             :          */
    2649         107 :         trace_sched_process_fork(current, p);
    2650             : 
    2651         107 :         pid = get_task_pid(p, PIDTYPE_PID);
    2652         107 :         nr = pid_vnr(pid);
    2653             : 
    2654         107 :         if (clone_flags & CLONE_PARENT_SETTID)
    2655           0 :                 put_user(nr, args->parent_tid);
    2656             : 
    2657         107 :         if (clone_flags & CLONE_VFORK) {
    2658           0 :                 p->vfork_done = &vfork;
    2659           0 :                 init_completion(&vfork);
    2660             :                 get_task_struct(p);
    2661             :         }
    2662             : 
    2663         107 :         wake_up_new_task(p);
    2664             : 
    2665             :         /* forking complete and child started to run, tell ptracer */
    2666         107 :         if (unlikely(trace))
    2667           0 :                 ptrace_event_pid(trace, pid);
    2668             : 
    2669         107 :         if (clone_flags & CLONE_VFORK) {
    2670           0 :                 if (!wait_for_vfork_done(p, &vfork))
    2671           0 :                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
    2672             :         }
    2673             : 
    2674         107 :         put_pid(pid);
    2675         107 :         return nr;
    2676             : }
    2677             : 
    2678             : /*
    2679             :  * Create a kernel thread.
    2680             :  */
    2681         107 : pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
    2682             : {
    2683         535 :         struct kernel_clone_args args = {
    2684         107 :                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
    2685         107 :                                     CLONE_UNTRACED) & ~CSIGNAL),
    2686         107 :                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
    2687         107 :                 .stack          = (unsigned long)fn,
    2688         107 :                 .stack_size     = (unsigned long)arg,
    2689             :         };
    2690             : 
    2691         107 :         return kernel_clone(&args);
    2692             : }
    2693             : 
    2694             : #ifdef __ARCH_WANT_SYS_FORK
    2695           0 : SYSCALL_DEFINE0(fork)
    2696             : {
    2697             : #ifdef CONFIG_MMU
    2698           0 :         struct kernel_clone_args args = {
    2699             :                 .exit_signal = SIGCHLD,
    2700             :         };
    2701             : 
    2702           0 :         return kernel_clone(&args);
    2703             : #else
    2704             :         /* can not support in nommu mode */
    2705             :         return -EINVAL;
    2706             : #endif
    2707             : }
    2708             : #endif
    2709             : 
    2710             : #ifdef __ARCH_WANT_SYS_VFORK
    2711           0 : SYSCALL_DEFINE0(vfork)
    2712             : {
    2713           0 :         struct kernel_clone_args args = {
    2714             :                 .flags          = CLONE_VFORK | CLONE_VM,
    2715             :                 .exit_signal    = SIGCHLD,
    2716             :         };
    2717             : 
    2718           0 :         return kernel_clone(&args);
    2719             : }
    2720             : #endif
    2721             : 
    2722             : #ifdef __ARCH_WANT_SYS_CLONE
    2723             : #ifdef CONFIG_CLONE_BACKWARDS
    2724             : SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
    2725             :                  int __user *, parent_tidptr,
    2726             :                  unsigned long, tls,
    2727             :                  int __user *, child_tidptr)
    2728             : #elif defined(CONFIG_CLONE_BACKWARDS2)
    2729             : SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
    2730             :                  int __user *, parent_tidptr,
    2731             :                  int __user *, child_tidptr,
    2732             :                  unsigned long, tls)
    2733             : #elif defined(CONFIG_CLONE_BACKWARDS3)
    2734             : SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
    2735             :                 int, stack_size,
    2736             :                 int __user *, parent_tidptr,
    2737             :                 int __user *, child_tidptr,
    2738             :                 unsigned long, tls)
    2739             : #else
    2740           0 : SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
    2741             :                  int __user *, parent_tidptr,
    2742             :                  int __user *, child_tidptr,
    2743             :                  unsigned long, tls)
    2744             : #endif
    2745             : {
    2746           0 :         struct kernel_clone_args args = {
    2747           0 :                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
    2748             :                 .pidfd          = parent_tidptr,
    2749             :                 .child_tid      = child_tidptr,
    2750             :                 .parent_tid     = parent_tidptr,
    2751           0 :                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
    2752             :                 .stack          = newsp,
    2753             :                 .tls            = tls,
    2754             :         };
    2755             : 
    2756           0 :         return kernel_clone(&args);
    2757             : }
    2758             : #endif
    2759             : 
    2760             : #ifdef __ARCH_WANT_SYS_CLONE3
    2761             : 
    2762           0 : noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
    2763             :                                               struct clone_args __user *uargs,
    2764             :                                               size_t usize)
    2765             : {
    2766             :         int err;
    2767             :         struct clone_args args;
    2768           0 :         pid_t *kset_tid = kargs->set_tid;
    2769             : 
    2770             :         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
    2771             :                      CLONE_ARGS_SIZE_VER0);
    2772             :         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
    2773             :                      CLONE_ARGS_SIZE_VER1);
    2774             :         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
    2775             :                      CLONE_ARGS_SIZE_VER2);
    2776             :         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
    2777             : 
    2778           0 :         if (unlikely(usize > PAGE_SIZE))
    2779             :                 return -E2BIG;
    2780           0 :         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
    2781             :                 return -EINVAL;
    2782             : 
    2783           0 :         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
    2784           0 :         if (err)
    2785             :                 return err;
    2786             : 
    2787           0 :         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
    2788             :                 return -EINVAL;
    2789             : 
    2790           0 :         if (unlikely(!args.set_tid && args.set_tid_size > 0))
    2791             :                 return -EINVAL;
    2792             : 
    2793           0 :         if (unlikely(args.set_tid && args.set_tid_size == 0))
    2794             :                 return -EINVAL;
    2795             : 
    2796             :         /*
    2797             :          * Verify that higher 32bits of exit_signal are unset and that
    2798             :          * it is a valid signal
    2799             :          */
    2800           0 :         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
    2801             :                      !valid_signal(args.exit_signal)))
    2802             :                 return -EINVAL;
    2803             : 
    2804           0 :         if ((args.flags & CLONE_INTO_CGROUP) &&
    2805           0 :             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
    2806             :                 return -EINVAL;
    2807             : 
    2808           0 :         *kargs = (struct kernel_clone_args){
    2809             :                 .flags          = args.flags,
    2810           0 :                 .pidfd          = u64_to_user_ptr(args.pidfd),
    2811           0 :                 .child_tid      = u64_to_user_ptr(args.child_tid),
    2812           0 :                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
    2813             :                 .exit_signal    = args.exit_signal,
    2814           0 :                 .stack          = args.stack,
    2815           0 :                 .stack_size     = args.stack_size,
    2816           0 :                 .tls            = args.tls,
    2817             :                 .set_tid_size   = args.set_tid_size,
    2818           0 :                 .cgroup         = args.cgroup,
    2819             :         };
    2820             : 
    2821           0 :         if (args.set_tid &&
    2822           0 :                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
    2823             :                         (kargs->set_tid_size * sizeof(pid_t))))
    2824             :                 return -EFAULT;
    2825             : 
    2826           0 :         kargs->set_tid = kset_tid;
    2827             : 
    2828           0 :         return 0;
    2829             : }
    2830             : 
    2831             : /**
    2832             :  * clone3_stack_valid - check and prepare stack
    2833             :  * @kargs: kernel clone args
    2834             :  *
    2835             :  * Verify that the stack arguments userspace gave us are sane.
    2836             :  * In addition, set the stack direction for userspace since it's easy for us to
    2837             :  * determine.
    2838             :  */
    2839           0 : static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
    2840             : {
    2841           0 :         if (kargs->stack == 0) {
    2842           0 :                 if (kargs->stack_size > 0)
    2843             :                         return false;
    2844             :         } else {
    2845           0 :                 if (kargs->stack_size == 0)
    2846             :                         return false;
    2847             : 
    2848           0 :                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
    2849             :                         return false;
    2850             : 
    2851             : #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
    2852           0 :                 kargs->stack += kargs->stack_size;
    2853             : #endif
    2854             :         }
    2855             : 
    2856             :         return true;
    2857             : }
    2858             : 
    2859           0 : static bool clone3_args_valid(struct kernel_clone_args *kargs)
    2860             : {
    2861             :         /* Verify that no unknown flags are passed along. */
    2862           0 :         if (kargs->flags &
    2863             :             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
    2864             :                 return false;
    2865             : 
    2866             :         /*
    2867             :          * - make the CLONE_DETACHED bit reusable for clone3
    2868             :          * - make the CSIGNAL bits reusable for clone3
    2869             :          */
    2870           0 :         if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
    2871             :                 return false;
    2872             : 
    2873           0 :         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
    2874             :             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
    2875             :                 return false;
    2876             : 
    2877           0 :         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
    2878           0 :             kargs->exit_signal)
    2879             :                 return false;
    2880             : 
    2881           0 :         if (!clone3_stack_valid(kargs))
    2882             :                 return false;
    2883             : 
    2884           0 :         return true;
    2885             : }
    2886             : 
    2887             : /**
    2888             :  * clone3 - create a new process with specific properties
    2889             :  * @uargs: argument structure
    2890             :  * @size:  size of @uargs
    2891             :  *
    2892             :  * clone3() is the extensible successor to clone()/clone2().
    2893             :  * It takes a struct as argument that is versioned by its size.
    2894             :  *
    2895             :  * Return: On success, a positive PID for the child process.
    2896             :  *         On error, a negative errno number.
    2897             :  */
    2898           0 : SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
    2899             : {
    2900             :         int err;
    2901             : 
    2902             :         struct kernel_clone_args kargs;
    2903             :         pid_t set_tid[MAX_PID_NS_LEVEL];
    2904             : 
    2905           0 :         kargs.set_tid = set_tid;
    2906             : 
    2907           0 :         err = copy_clone_args_from_user(&kargs, uargs, size);
    2908           0 :         if (err)
    2909           0 :                 return err;
    2910             : 
    2911           0 :         if (!clone3_args_valid(&kargs))
    2912             :                 return -EINVAL;
    2913             : 
    2914           0 :         return kernel_clone(&kargs);
    2915             : }
    2916             : #endif
    2917             : 
    2918           0 : void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
    2919             : {
    2920             :         struct task_struct *leader, *parent, *child;
    2921             :         int res;
    2922             : 
    2923           0 :         read_lock(&tasklist_lock);
    2924           0 :         leader = top = top->group_leader;
    2925             : down:
    2926           0 :         for_each_thread(leader, parent) {
    2927           0 :                 list_for_each_entry(child, &parent->children, sibling) {
    2928           0 :                         res = visitor(child, data);
    2929           0 :                         if (res) {
    2930           0 :                                 if (res < 0)
    2931             :                                         goto out;
    2932             :                                 leader = child;
    2933             :                                 goto down;
    2934             :                         }
    2935             : up:
    2936             :                         ;
    2937             :                 }
    2938             :         }
    2939             : 
    2940           0 :         if (leader != top) {
    2941           0 :                 child = leader;
    2942           0 :                 parent = child->real_parent;
    2943           0 :                 leader = parent->group_leader;
    2944           0 :                 goto up;
    2945             :         }
    2946             : out:
    2947           0 :         read_unlock(&tasklist_lock);
    2948           0 : }
    2949             : 
    2950             : #ifndef ARCH_MIN_MMSTRUCT_ALIGN
    2951             : #define ARCH_MIN_MMSTRUCT_ALIGN 0
    2952             : #endif
    2953             : 
    2954          15 : static void sighand_ctor(void *data)
    2955             : {
    2956          15 :         struct sighand_struct *sighand = data;
    2957             : 
    2958          15 :         spin_lock_init(&sighand->siglock);
    2959          15 :         init_waitqueue_head(&sighand->signalfd_wqh);
    2960          15 : }
    2961             : 
    2962           1 : void __init proc_caches_init(void)
    2963             : {
    2964             :         unsigned int mm_size;
    2965             : 
    2966           1 :         sighand_cachep = kmem_cache_create("sighand_cache",
    2967             :                         sizeof(struct sighand_struct), 0,
    2968             :                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
    2969             :                         SLAB_ACCOUNT, sighand_ctor);
    2970           1 :         signal_cachep = kmem_cache_create("signal_cache",
    2971             :                         sizeof(struct signal_struct), 0,
    2972             :                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    2973             :                         NULL);
    2974           1 :         files_cachep = kmem_cache_create("files_cache",
    2975             :                         sizeof(struct files_struct), 0,
    2976             :                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    2977             :                         NULL);
    2978           1 :         fs_cachep = kmem_cache_create("fs_cache",
    2979             :                         sizeof(struct fs_struct), 0,
    2980             :                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    2981             :                         NULL);
    2982             : 
    2983             :         /*
    2984             :          * The mm_cpumask is located at the end of mm_struct, and is
    2985             :          * dynamically sized based on the maximum CPU number this system
    2986             :          * can have, taking hotplug into account (nr_cpu_ids).
    2987             :          */
    2988           1 :         mm_size = sizeof(struct mm_struct) + cpumask_size();
    2989             : 
    2990           1 :         mm_cachep = kmem_cache_create_usercopy("mm_struct",
    2991             :                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
    2992             :                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    2993             :                         offsetof(struct mm_struct, saved_auxv),
    2994             :                         sizeof_field(struct mm_struct, saved_auxv),
    2995             :                         NULL);
    2996           1 :         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
    2997           1 :         mmap_init();
    2998           1 :         nsproxy_cache_init();
    2999           1 : }
    3000             : 
    3001             : /*
    3002             :  * Check constraints on flags passed to the unshare system call.
    3003             :  */
    3004           0 : static int check_unshare_flags(unsigned long unshare_flags)
    3005             : {
    3006           0 :         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
    3007             :                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
    3008             :                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
    3009             :                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
    3010             :                                 CLONE_NEWTIME))
    3011             :                 return -EINVAL;
    3012             :         /*
    3013             :          * Not implemented, but pretend it works if there is nothing
    3014             :          * to unshare.  Note that unsharing the address space or the
    3015             :          * signal handlers also need to unshare the signal queues (aka
    3016             :          * CLONE_THREAD).
    3017             :          */
    3018           0 :         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
    3019           0 :                 if (!thread_group_empty(current))
    3020             :                         return -EINVAL;
    3021             :         }
    3022           0 :         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
    3023           0 :                 if (refcount_read(&current->sighand->count) > 1)
    3024             :                         return -EINVAL;
    3025             :         }
    3026           0 :         if (unshare_flags & CLONE_VM) {
    3027           0 :                 if (!current_is_single_threaded())
    3028             :                         return -EINVAL;
    3029             :         }
    3030             : 
    3031             :         return 0;
    3032             : }
    3033             : 
    3034             : /*
    3035             :  * Unshare the filesystem structure if it is being shared
    3036             :  */
    3037           0 : static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
    3038             : {
    3039           0 :         struct fs_struct *fs = current->fs;
    3040             : 
    3041           0 :         if (!(unshare_flags & CLONE_FS) || !fs)
    3042             :                 return 0;
    3043             : 
    3044             :         /* don't need lock here; in the worst case we'll do useless copy */
    3045           0 :         if (fs->users == 1)
    3046             :                 return 0;
    3047             : 
    3048           0 :         *new_fsp = copy_fs_struct(fs);
    3049           0 :         if (!*new_fsp)
    3050             :                 return -ENOMEM;
    3051             : 
    3052           0 :         return 0;
    3053             : }
    3054             : 
    3055             : /*
    3056             :  * Unshare file descriptor table if it is being shared
    3057             :  */
    3058           0 : int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
    3059             :                struct files_struct **new_fdp)
    3060             : {
    3061           0 :         struct files_struct *fd = current->files;
    3062           0 :         int error = 0;
    3063             : 
    3064           0 :         if ((unshare_flags & CLONE_FILES) &&
    3065           0 :             (fd && atomic_read(&fd->count) > 1)) {
    3066           0 :                 *new_fdp = dup_fd(fd, max_fds, &error);
    3067           0 :                 if (!*new_fdp)
    3068           0 :                         return error;
    3069             :         }
    3070             : 
    3071             :         return 0;
    3072             : }
    3073             : 
    3074             : /*
    3075             :  * unshare allows a process to 'unshare' part of the process
    3076             :  * context which was originally shared using clone.  copy_*
    3077             :  * functions used by kernel_clone() cannot be used here directly
    3078             :  * because they modify an inactive task_struct that is being
    3079             :  * constructed. Here we are modifying the current, active,
    3080             :  * task_struct.
    3081             :  */
    3082           0 : int ksys_unshare(unsigned long unshare_flags)
    3083             : {
    3084           0 :         struct fs_struct *fs, *new_fs = NULL;
    3085           0 :         struct files_struct *new_fd = NULL;
    3086           0 :         struct cred *new_cred = NULL;
    3087           0 :         struct nsproxy *new_nsproxy = NULL;
    3088           0 :         int do_sysvsem = 0;
    3089             :         int err;
    3090             : 
    3091             :         /*
    3092             :          * If unsharing a user namespace must also unshare the thread group
    3093             :          * and unshare the filesystem root and working directories.
    3094             :          */
    3095           0 :         if (unshare_flags & CLONE_NEWUSER)
    3096           0 :                 unshare_flags |= CLONE_THREAD | CLONE_FS;
    3097             :         /*
    3098             :          * If unsharing vm, must also unshare signal handlers.
    3099             :          */
    3100           0 :         if (unshare_flags & CLONE_VM)
    3101           0 :                 unshare_flags |= CLONE_SIGHAND;
    3102             :         /*
    3103             :          * If unsharing a signal handlers, must also unshare the signal queues.
    3104             :          */
    3105           0 :         if (unshare_flags & CLONE_SIGHAND)
    3106           0 :                 unshare_flags |= CLONE_THREAD;
    3107             :         /*
    3108             :          * If unsharing namespace, must also unshare filesystem information.
    3109             :          */
    3110           0 :         if (unshare_flags & CLONE_NEWNS)
    3111           0 :                 unshare_flags |= CLONE_FS;
    3112             : 
    3113           0 :         err = check_unshare_flags(unshare_flags);
    3114           0 :         if (err)
    3115             :                 goto bad_unshare_out;
    3116             :         /*
    3117             :          * CLONE_NEWIPC must also detach from the undolist: after switching
    3118             :          * to a new ipc namespace, the semaphore arrays from the old
    3119             :          * namespace are unreachable.
    3120             :          */
    3121           0 :         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
    3122           0 :                 do_sysvsem = 1;
    3123           0 :         err = unshare_fs(unshare_flags, &new_fs);
    3124           0 :         if (err)
    3125             :                 goto bad_unshare_out;
    3126           0 :         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
    3127           0 :         if (err)
    3128             :                 goto bad_unshare_cleanup_fs;
    3129           0 :         err = unshare_userns(unshare_flags, &new_cred);
    3130           0 :         if (err)
    3131             :                 goto bad_unshare_cleanup_fd;
    3132           0 :         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
    3133             :                                          new_cred, new_fs);
    3134           0 :         if (err)
    3135             :                 goto bad_unshare_cleanup_cred;
    3136             : 
    3137             :         if (new_cred) {
    3138             :                 err = set_cred_ucounts(new_cred);
    3139             :                 if (err)
    3140             :                         goto bad_unshare_cleanup_cred;
    3141             :         }
    3142             : 
    3143           0 :         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
    3144           0 :                 if (do_sysvsem) {
    3145             :                         /*
    3146             :                          * CLONE_SYSVSEM is equivalent to sys_exit().
    3147             :                          */
    3148           0 :                         exit_sem(current);
    3149             :                 }
    3150           0 :                 if (unshare_flags & CLONE_NEWIPC) {
    3151             :                         /* Orphan segments in old ns (see sem above). */
    3152           0 :                         exit_shm(current);
    3153           0 :                         shm_init_task(current);
    3154             :                 }
    3155             : 
    3156           0 :                 if (new_nsproxy)
    3157           0 :                         switch_task_namespaces(current, new_nsproxy);
    3158             : 
    3159           0 :                 task_lock(current);
    3160             : 
    3161           0 :                 if (new_fs) {
    3162           0 :                         fs = current->fs;
    3163           0 :                         spin_lock(&fs->lock);
    3164           0 :                         current->fs = new_fs;
    3165           0 :                         if (--fs->users)
    3166           0 :                                 new_fs = NULL;
    3167             :                         else
    3168           0 :                                 new_fs = fs;
    3169           0 :                         spin_unlock(&fs->lock);
    3170             :                 }
    3171             : 
    3172           0 :                 if (new_fd)
    3173           0 :                         swap(current->files, new_fd);
    3174             : 
    3175           0 :                 task_unlock(current);
    3176             : 
    3177             :                 if (new_cred) {
    3178             :                         /* Install the new user namespace */
    3179             :                         commit_creds(new_cred);
    3180             :                         new_cred = NULL;
    3181             :                 }
    3182             :         }
    3183             : 
    3184           0 :         perf_event_namespaces(current);
    3185             : 
    3186             : bad_unshare_cleanup_cred:
    3187             :         if (new_cred)
    3188             :                 put_cred(new_cred);
    3189             : bad_unshare_cleanup_fd:
    3190           0 :         if (new_fd)
    3191           0 :                 put_files_struct(new_fd);
    3192             : 
    3193             : bad_unshare_cleanup_fs:
    3194           0 :         if (new_fs)
    3195           0 :                 free_fs_struct(new_fs);
    3196             : 
    3197             : bad_unshare_out:
    3198           0 :         return err;
    3199             : }
    3200             : 
    3201           0 : SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
    3202             : {
    3203           0 :         return ksys_unshare(unshare_flags);
    3204             : }
    3205             : 
    3206             : /*
    3207             :  *      Helper to unshare the files of the current task.
    3208             :  *      We don't want to expose copy_files internals to
    3209             :  *      the exec layer of the kernel.
    3210             :  */
    3211             : 
    3212           0 : int unshare_files(void)
    3213             : {
    3214           0 :         struct task_struct *task = current;
    3215           0 :         struct files_struct *old, *copy = NULL;
    3216             :         int error;
    3217             : 
    3218           0 :         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
    3219           0 :         if (error || !copy)
    3220             :                 return error;
    3221             : 
    3222           0 :         old = task->files;
    3223           0 :         task_lock(task);
    3224           0 :         task->files = copy;
    3225           0 :         task_unlock(task);
    3226           0 :         put_files_struct(old);
    3227           0 :         return 0;
    3228             : }
    3229             : 
    3230           0 : int sysctl_max_threads(struct ctl_table *table, int write,
    3231             :                        void *buffer, size_t *lenp, loff_t *ppos)
    3232             : {
    3233             :         struct ctl_table t;
    3234             :         int ret;
    3235           0 :         int threads = max_threads;
    3236           0 :         int min = 1;
    3237           0 :         int max = MAX_THREADS;
    3238             : 
    3239           0 :         t = *table;
    3240           0 :         t.data = &threads;
    3241           0 :         t.extra1 = &min;
    3242           0 :         t.extra2 = &max;
    3243             : 
    3244           0 :         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
    3245           0 :         if (ret || !write)
    3246             :                 return ret;
    3247             : 
    3248           0 :         max_threads = threads;
    3249             : 
    3250           0 :         return 0;
    3251             : }

Generated by: LCOV version 1.14