Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /* kernel/rwsem.c: R/W semaphores, public implementation
3 : *
4 : * Written by David Howells (dhowells@redhat.com).
5 : * Derived from asm-i386/semaphore.h
6 : *
7 : * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8 : * and Michel Lespinasse <walken@google.com>
9 : *
10 : * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11 : * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12 : *
13 : * Rwsem count bit fields re-definition and rwsem rearchitecture by
14 : * Waiman Long <longman@redhat.com> and
15 : * Peter Zijlstra <peterz@infradead.org>.
16 : */
17 :
18 : #include <linux/types.h>
19 : #include <linux/kernel.h>
20 : #include <linux/sched.h>
21 : #include <linux/sched/rt.h>
22 : #include <linux/sched/task.h>
23 : #include <linux/sched/debug.h>
24 : #include <linux/sched/wake_q.h>
25 : #include <linux/sched/signal.h>
26 : #include <linux/sched/clock.h>
27 : #include <linux/export.h>
28 : #include <linux/rwsem.h>
29 : #include <linux/atomic.h>
30 :
31 : #ifndef CONFIG_PREEMPT_RT
32 : #include "lock_events.h"
33 :
34 : /*
35 : * The least significant 2 bits of the owner value has the following
36 : * meanings when set.
37 : * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
38 : * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
39 : *
40 : * When the rwsem is reader-owned and a spinning writer has timed out,
41 : * the nonspinnable bit will be set to disable optimistic spinning.
42 :
43 : * When a writer acquires a rwsem, it puts its task_struct pointer
44 : * into the owner field. It is cleared after an unlock.
45 : *
46 : * When a reader acquires a rwsem, it will also puts its task_struct
47 : * pointer into the owner field with the RWSEM_READER_OWNED bit set.
48 : * On unlock, the owner field will largely be left untouched. So
49 : * for a free or reader-owned rwsem, the owner value may contain
50 : * information about the last reader that acquires the rwsem.
51 : *
52 : * That information may be helpful in debugging cases where the system
53 : * seems to hang on a reader owned rwsem especially if only one reader
54 : * is involved. Ideally we would like to track all the readers that own
55 : * a rwsem, but the overhead is simply too big.
56 : *
57 : * A fast path reader optimistic lock stealing is supported when the rwsem
58 : * is previously owned by a writer and the following conditions are met:
59 : * - rwsem is not currently writer owned
60 : * - the handoff isn't set.
61 : */
62 : #define RWSEM_READER_OWNED (1UL << 0)
63 : #define RWSEM_NONSPINNABLE (1UL << 1)
64 : #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
65 :
66 : #ifdef CONFIG_DEBUG_RWSEMS
67 : # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \
68 : if (!debug_locks_silent && \
69 : WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
70 : #c, atomic_long_read(&(sem)->count), \
71 : (unsigned long) sem->magic, \
72 : atomic_long_read(&(sem)->owner), (long)current, \
73 : list_empty(&(sem)->wait_list) ? "" : "not ")) \
74 : debug_locks_off(); \
75 : } while (0)
76 : #else
77 : # define DEBUG_RWSEMS_WARN_ON(c, sem)
78 : #endif
79 :
80 : /*
81 : * On 64-bit architectures, the bit definitions of the count are:
82 : *
83 : * Bit 0 - writer locked bit
84 : * Bit 1 - waiters present bit
85 : * Bit 2 - lock handoff bit
86 : * Bits 3-7 - reserved
87 : * Bits 8-62 - 55-bit reader count
88 : * Bit 63 - read fail bit
89 : *
90 : * On 32-bit architectures, the bit definitions of the count are:
91 : *
92 : * Bit 0 - writer locked bit
93 : * Bit 1 - waiters present bit
94 : * Bit 2 - lock handoff bit
95 : * Bits 3-7 - reserved
96 : * Bits 8-30 - 23-bit reader count
97 : * Bit 31 - read fail bit
98 : *
99 : * It is not likely that the most significant bit (read fail bit) will ever
100 : * be set. This guard bit is still checked anyway in the down_read() fastpath
101 : * just in case we need to use up more of the reader bits for other purpose
102 : * in the future.
103 : *
104 : * atomic_long_fetch_add() is used to obtain reader lock, whereas
105 : * atomic_long_cmpxchg() will be used to obtain writer lock.
106 : *
107 : * There are three places where the lock handoff bit may be set or cleared.
108 : * 1) rwsem_mark_wake() for readers -- set, clear
109 : * 2) rwsem_try_write_lock() for writers -- set, clear
110 : * 3) rwsem_del_waiter() -- clear
111 : *
112 : * For all the above cases, wait_lock will be held. A writer must also
113 : * be the first one in the wait_list to be eligible for setting the handoff
114 : * bit. So concurrent setting/clearing of handoff bit is not possible.
115 : */
116 : #define RWSEM_WRITER_LOCKED (1UL << 0)
117 : #define RWSEM_FLAG_WAITERS (1UL << 1)
118 : #define RWSEM_FLAG_HANDOFF (1UL << 2)
119 : #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1))
120 :
121 : #define RWSEM_READER_SHIFT 8
122 : #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT)
123 : #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1))
124 : #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED
125 : #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
126 : #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
127 : RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
128 :
129 : /*
130 : * All writes to owner are protected by WRITE_ONCE() to make sure that
131 : * store tearing can't happen as optimistic spinners may read and use
132 : * the owner value concurrently without lock. Read from owner, however,
133 : * may not need READ_ONCE() as long as the pointer value is only used
134 : * for comparison and isn't being dereferenced.
135 : */
136 : static inline void rwsem_set_owner(struct rw_semaphore *sem)
137 : {
138 53744 : atomic_long_set(&sem->owner, (long)current);
139 : }
140 :
141 : static inline void rwsem_clear_owner(struct rw_semaphore *sem)
142 : {
143 53744 : atomic_long_set(&sem->owner, 0);
144 : }
145 :
146 : /*
147 : * Test the flags in the owner field.
148 : */
149 : static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
150 : {
151 : return atomic_long_read(&sem->owner) & flags;
152 : }
153 :
154 : /*
155 : * The task_struct pointer of the last owning reader will be left in
156 : * the owner field.
157 : *
158 : * Note that the owner value just indicates the task has owned the rwsem
159 : * previously, it may not be the real owner or one of the real owners
160 : * anymore when that field is examined, so take it with a grain of salt.
161 : *
162 : * The reader non-spinnable bit is preserved.
163 : */
164 : static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
165 : struct task_struct *owner)
166 : {
167 635 : unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
168 1270 : (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
169 :
170 1270 : atomic_long_set(&sem->owner, val);
171 : }
172 :
173 : static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
174 : {
175 1270 : __rwsem_set_reader_owned(sem, current);
176 : }
177 :
178 : /*
179 : * Return true if the rwsem is owned by a reader.
180 : */
181 : static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
182 : {
183 : #ifdef CONFIG_DEBUG_RWSEMS
184 : /*
185 : * Check the count to see if it is write-locked.
186 : */
187 : long count = atomic_long_read(&sem->count);
188 :
189 : if (count & RWSEM_WRITER_MASK)
190 : return false;
191 : #endif
192 : return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
193 : }
194 :
195 : #ifdef CONFIG_DEBUG_RWSEMS
196 : /*
197 : * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
198 : * is a task pointer in owner of a reader-owned rwsem, it will be the
199 : * real owner or one of the real owners. The only exception is when the
200 : * unlock is done by up_read_non_owner().
201 : */
202 : static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
203 : {
204 : unsigned long val = atomic_long_read(&sem->owner);
205 :
206 : while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
207 : if (atomic_long_try_cmpxchg(&sem->owner, &val,
208 : val & RWSEM_OWNER_FLAGS_MASK))
209 : return;
210 : }
211 : }
212 : #else
213 : static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
214 : {
215 : }
216 : #endif
217 :
218 : /*
219 : * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
220 : * remains set. Otherwise, the operation will be aborted.
221 : */
222 : static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
223 : {
224 0 : unsigned long owner = atomic_long_read(&sem->owner);
225 :
226 : do {
227 0 : if (!(owner & RWSEM_READER_OWNED))
228 : break;
229 0 : if (owner & RWSEM_NONSPINNABLE)
230 : break;
231 0 : } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
232 0 : owner | RWSEM_NONSPINNABLE));
233 : }
234 :
235 635 : static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
236 : {
237 1270 : *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
238 :
239 635 : if (WARN_ON_ONCE(*cntp < 0))
240 : rwsem_set_nonspinnable(sem);
241 :
242 635 : if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
243 635 : rwsem_set_reader_owned(sem);
244 635 : return true;
245 : }
246 :
247 : return false;
248 : }
249 :
250 : static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
251 : {
252 26872 : long tmp = RWSEM_UNLOCKED_VALUE;
253 :
254 53744 : if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
255 26872 : rwsem_set_owner(sem);
256 : return true;
257 : }
258 :
259 : return false;
260 : }
261 :
262 : /*
263 : * Return just the real task structure pointer of the owner
264 : */
265 : static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
266 : {
267 : return (struct task_struct *)
268 : (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
269 : }
270 :
271 : /*
272 : * Return the real task structure pointer of the owner and the embedded
273 : * flags in the owner. pflags must be non-NULL.
274 : */
275 : static inline struct task_struct *
276 : rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
277 : {
278 : unsigned long owner = atomic_long_read(&sem->owner);
279 :
280 : *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
281 : return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
282 : }
283 :
284 : /*
285 : * Guide to the rw_semaphore's count field.
286 : *
287 : * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
288 : * by a writer.
289 : *
290 : * The lock is owned by readers when
291 : * (1) the RWSEM_WRITER_LOCKED isn't set in count,
292 : * (2) some of the reader bits are set in count, and
293 : * (3) the owner field has RWSEM_READ_OWNED bit set.
294 : *
295 : * Having some reader bits set is not enough to guarantee a readers owned
296 : * lock as the readers may be in the process of backing out from the count
297 : * and a writer has just released the lock. So another writer may steal
298 : * the lock immediately after that.
299 : */
300 :
301 : /*
302 : * Initialize an rwsem:
303 : */
304 239 : void __init_rwsem(struct rw_semaphore *sem, const char *name,
305 : struct lock_class_key *key)
306 : {
307 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
308 : /*
309 : * Make sure we are not reinitializing a held semaphore:
310 : */
311 : debug_check_no_locks_freed((void *)sem, sizeof(*sem));
312 : lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
313 : #endif
314 : #ifdef CONFIG_DEBUG_RWSEMS
315 : sem->magic = sem;
316 : #endif
317 478 : atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
318 : raw_spin_lock_init(&sem->wait_lock);
319 478 : INIT_LIST_HEAD(&sem->wait_list);
320 478 : atomic_long_set(&sem->owner, 0L);
321 : #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
322 : osq_lock_init(&sem->osq);
323 : #endif
324 239 : }
325 : EXPORT_SYMBOL(__init_rwsem);
326 :
327 : enum rwsem_waiter_type {
328 : RWSEM_WAITING_FOR_WRITE,
329 : RWSEM_WAITING_FOR_READ
330 : };
331 :
332 : struct rwsem_waiter {
333 : struct list_head list;
334 : struct task_struct *task;
335 : enum rwsem_waiter_type type;
336 : unsigned long timeout;
337 :
338 : /* Writer only, not initialized in reader */
339 : bool handoff_set;
340 : };
341 : #define rwsem_first_waiter(sem) \
342 : list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
343 :
344 : enum rwsem_wake_type {
345 : RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */
346 : RWSEM_WAKE_READERS, /* Wake readers only */
347 : RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */
348 : };
349 :
350 : /*
351 : * The typical HZ value is either 250 or 1000. So set the minimum waiting
352 : * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
353 : * queue before initiating the handoff protocol.
354 : */
355 : #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250)
356 :
357 : /*
358 : * Magic number to batch-wakeup waiting readers, even when writers are
359 : * also present in the queue. This both limits the amount of work the
360 : * waking thread must do and also prevents any potential counter overflow,
361 : * however unlikely.
362 : */
363 : #define MAX_READERS_WAKEUP 0x100
364 :
365 : static inline void
366 : rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
367 : {
368 : lockdep_assert_held(&sem->wait_lock);
369 0 : list_add_tail(&waiter->list, &sem->wait_list);
370 : /* caller will set RWSEM_FLAG_WAITERS */
371 : }
372 :
373 : /*
374 : * Remove a waiter from the wait_list and clear flags.
375 : *
376 : * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
377 : * this function. Modify with care.
378 : */
379 : static inline void
380 : rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
381 : {
382 : lockdep_assert_held(&sem->wait_lock);
383 0 : list_del(&waiter->list);
384 0 : if (likely(!list_empty(&sem->wait_list)))
385 : return;
386 :
387 0 : atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
388 : }
389 :
390 : /*
391 : * handle the lock release when processes blocked on it that can now run
392 : * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
393 : * have been set.
394 : * - there must be someone on the queue
395 : * - the wait_lock must be held by the caller
396 : * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
397 : * to actually wakeup the blocked task(s) and drop the reference count,
398 : * preferably when the wait_lock is released
399 : * - woken process blocks are discarded from the list after having task zeroed
400 : * - writers are only marked woken if downgrading is false
401 : *
402 : * Implies rwsem_del_waiter() for all woken readers.
403 : */
404 0 : static void rwsem_mark_wake(struct rw_semaphore *sem,
405 : enum rwsem_wake_type wake_type,
406 : struct wake_q_head *wake_q)
407 : {
408 : struct rwsem_waiter *waiter, *tmp;
409 0 : long oldcount, woken = 0, adjustment = 0;
410 : struct list_head wlist;
411 :
412 : lockdep_assert_held(&sem->wait_lock);
413 :
414 : /*
415 : * Take a peek at the queue head waiter such that we can determine
416 : * the wakeup(s) to perform.
417 : */
418 0 : waiter = rwsem_first_waiter(sem);
419 :
420 0 : if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
421 0 : if (wake_type == RWSEM_WAKE_ANY) {
422 : /*
423 : * Mark writer at the front of the queue for wakeup.
424 : * Until the task is actually later awoken later by
425 : * the caller, other writers are able to steal it.
426 : * Readers, on the other hand, will block as they
427 : * will notice the queued writer.
428 : */
429 0 : wake_q_add(wake_q, waiter->task);
430 : lockevent_inc(rwsem_wake_writer);
431 : }
432 :
433 0 : return;
434 : }
435 :
436 : /*
437 : * No reader wakeup if there are too many of them already.
438 : */
439 0 : if (unlikely(atomic_long_read(&sem->count) < 0))
440 : return;
441 :
442 : /*
443 : * Writers might steal the lock before we grant it to the next reader.
444 : * We prefer to do the first reader grant before counting readers
445 : * so we can bail out early if a writer stole the lock.
446 : */
447 0 : if (wake_type != RWSEM_WAKE_READ_OWNED) {
448 : struct task_struct *owner;
449 :
450 0 : adjustment = RWSEM_READER_BIAS;
451 0 : oldcount = atomic_long_fetch_add(adjustment, &sem->count);
452 0 : if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
453 : /*
454 : * When we've been waiting "too" long (for writers
455 : * to give up the lock), request a HANDOFF to
456 : * force the issue.
457 : */
458 0 : if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
459 0 : time_after(jiffies, waiter->timeout)) {
460 0 : adjustment -= RWSEM_FLAG_HANDOFF;
461 : lockevent_inc(rwsem_rlock_handoff);
462 : }
463 :
464 0 : atomic_long_add(-adjustment, &sem->count);
465 : return;
466 : }
467 : /*
468 : * Set it to reader-owned to give spinners an early
469 : * indication that readers now have the lock.
470 : * The reader nonspinnable bit seen at slowpath entry of
471 : * the reader is copied over.
472 : */
473 0 : owner = waiter->task;
474 : __rwsem_set_reader_owned(sem, owner);
475 : }
476 :
477 : /*
478 : * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
479 : * queue. We know that the woken will be at least 1 as we accounted
480 : * for above. Note we increment the 'active part' of the count by the
481 : * number of readers before waking any processes up.
482 : *
483 : * This is an adaptation of the phase-fair R/W locks where at the
484 : * reader phase (first waiter is a reader), all readers are eligible
485 : * to acquire the lock at the same time irrespective of their order
486 : * in the queue. The writers acquire the lock according to their
487 : * order in the queue.
488 : *
489 : * We have to do wakeup in 2 passes to prevent the possibility that
490 : * the reader count may be decremented before it is incremented. It
491 : * is because the to-be-woken waiter may not have slept yet. So it
492 : * may see waiter->task got cleared, finish its critical section and
493 : * do an unlock before the reader count increment.
494 : *
495 : * 1) Collect the read-waiters in a separate list, count them and
496 : * fully increment the reader count in rwsem.
497 : * 2) For each waiters in the new list, clear waiter->task and
498 : * put them into wake_q to be woken up later.
499 : */
500 0 : INIT_LIST_HEAD(&wlist);
501 0 : list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
502 0 : if (waiter->type == RWSEM_WAITING_FOR_WRITE)
503 0 : continue;
504 :
505 0 : woken++;
506 0 : list_move_tail(&waiter->list, &wlist);
507 :
508 : /*
509 : * Limit # of readers that can be woken up per wakeup call.
510 : */
511 0 : if (unlikely(woken >= MAX_READERS_WAKEUP))
512 : break;
513 : }
514 :
515 0 : adjustment = woken * RWSEM_READER_BIAS - adjustment;
516 : lockevent_cond_inc(rwsem_wake_reader, woken);
517 :
518 0 : oldcount = atomic_long_read(&sem->count);
519 0 : if (list_empty(&sem->wait_list)) {
520 : /*
521 : * Combined with list_move_tail() above, this implies
522 : * rwsem_del_waiter().
523 : */
524 0 : adjustment -= RWSEM_FLAG_WAITERS;
525 0 : if (oldcount & RWSEM_FLAG_HANDOFF)
526 0 : adjustment -= RWSEM_FLAG_HANDOFF;
527 0 : } else if (woken) {
528 : /*
529 : * When we've woken a reader, we no longer need to force
530 : * writers to give up the lock and we can clear HANDOFF.
531 : */
532 0 : if (oldcount & RWSEM_FLAG_HANDOFF)
533 0 : adjustment -= RWSEM_FLAG_HANDOFF;
534 : }
535 :
536 0 : if (adjustment)
537 0 : atomic_long_add(adjustment, &sem->count);
538 :
539 : /* 2nd pass */
540 0 : list_for_each_entry_safe(waiter, tmp, &wlist, list) {
541 : struct task_struct *tsk;
542 :
543 0 : tsk = waiter->task;
544 0 : get_task_struct(tsk);
545 :
546 : /*
547 : * Ensure calling get_task_struct() before setting the reader
548 : * waiter to nil such that rwsem_down_read_slowpath() cannot
549 : * race with do_exit() by always holding a reference count
550 : * to the task to wakeup.
551 : */
552 0 : smp_store_release(&waiter->task, NULL);
553 : /*
554 : * Ensure issuing the wakeup (either by us or someone else)
555 : * after setting the reader waiter to nil.
556 : */
557 0 : wake_q_add_safe(wake_q, tsk);
558 : }
559 : }
560 :
561 : /*
562 : * This function must be called with the sem->wait_lock held to prevent
563 : * race conditions between checking the rwsem wait list and setting the
564 : * sem->count accordingly.
565 : *
566 : * Implies rwsem_del_waiter() on success.
567 : */
568 0 : static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
569 : struct rwsem_waiter *waiter)
570 : {
571 0 : bool first = rwsem_first_waiter(sem) == waiter;
572 : long count, new;
573 :
574 : lockdep_assert_held(&sem->wait_lock);
575 :
576 0 : count = atomic_long_read(&sem->count);
577 : do {
578 0 : bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
579 :
580 0 : if (has_handoff) {
581 0 : if (!first)
582 : return false;
583 :
584 : /* First waiter inherits a previously set handoff bit */
585 0 : waiter->handoff_set = true;
586 : }
587 :
588 0 : new = count;
589 :
590 0 : if (count & RWSEM_LOCK_MASK) {
591 0 : if (has_handoff || (!rt_task(waiter->task) &&
592 0 : !time_after(jiffies, waiter->timeout)))
593 : return false;
594 :
595 0 : new |= RWSEM_FLAG_HANDOFF;
596 : } else {
597 0 : new |= RWSEM_WRITER_LOCKED;
598 0 : new &= ~RWSEM_FLAG_HANDOFF;
599 :
600 0 : if (list_is_singular(&sem->wait_list))
601 0 : new &= ~RWSEM_FLAG_WAITERS;
602 : }
603 0 : } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
604 :
605 : /*
606 : * We have either acquired the lock with handoff bit cleared or
607 : * set the handoff bit.
608 : */
609 0 : if (new & RWSEM_FLAG_HANDOFF) {
610 0 : waiter->handoff_set = true;
611 : lockevent_inc(rwsem_wlock_handoff);
612 0 : return false;
613 : }
614 :
615 : /*
616 : * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
617 : * success.
618 : */
619 0 : list_del(&waiter->list);
620 0 : rwsem_set_owner(sem);
621 0 : return true;
622 : }
623 :
624 : /*
625 : * The rwsem_spin_on_owner() function returns the following 4 values
626 : * depending on the lock owner state.
627 : * OWNER_NULL : owner is currently NULL
628 : * OWNER_WRITER: when owner changes and is a writer
629 : * OWNER_READER: when owner changes and the new owner may be a reader.
630 : * OWNER_NONSPINNABLE:
631 : * when optimistic spinning has to stop because either the
632 : * owner stops running, is unknown, or its timeslice has
633 : * been used up.
634 : */
635 : enum owner_state {
636 : OWNER_NULL = 1 << 0,
637 : OWNER_WRITER = 1 << 1,
638 : OWNER_READER = 1 << 2,
639 : OWNER_NONSPINNABLE = 1 << 3,
640 : };
641 :
642 : #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
643 : /*
644 : * Try to acquire write lock before the writer has been put on wait queue.
645 : */
646 : static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
647 : {
648 : long count = atomic_long_read(&sem->count);
649 :
650 : while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
651 : if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
652 : count | RWSEM_WRITER_LOCKED)) {
653 : rwsem_set_owner(sem);
654 : lockevent_inc(rwsem_opt_lock);
655 : return true;
656 : }
657 : }
658 : return false;
659 : }
660 :
661 : static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
662 : {
663 : struct task_struct *owner;
664 : unsigned long flags;
665 : bool ret = true;
666 :
667 : if (need_resched()) {
668 : lockevent_inc(rwsem_opt_fail);
669 : return false;
670 : }
671 :
672 : preempt_disable();
673 : /*
674 : * Disable preemption is equal to the RCU read-side crital section,
675 : * thus the task_strcut structure won't go away.
676 : */
677 : owner = rwsem_owner_flags(sem, &flags);
678 : /*
679 : * Don't check the read-owner as the entry may be stale.
680 : */
681 : if ((flags & RWSEM_NONSPINNABLE) ||
682 : (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
683 : ret = false;
684 : preempt_enable();
685 :
686 : lockevent_cond_inc(rwsem_opt_fail, !ret);
687 : return ret;
688 : }
689 :
690 : #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER)
691 :
692 : static inline enum owner_state
693 : rwsem_owner_state(struct task_struct *owner, unsigned long flags)
694 : {
695 : if (flags & RWSEM_NONSPINNABLE)
696 : return OWNER_NONSPINNABLE;
697 :
698 : if (flags & RWSEM_READER_OWNED)
699 : return OWNER_READER;
700 :
701 : return owner ? OWNER_WRITER : OWNER_NULL;
702 : }
703 :
704 : static noinline enum owner_state
705 : rwsem_spin_on_owner(struct rw_semaphore *sem)
706 : {
707 : struct task_struct *new, *owner;
708 : unsigned long flags, new_flags;
709 : enum owner_state state;
710 :
711 : lockdep_assert_preemption_disabled();
712 :
713 : owner = rwsem_owner_flags(sem, &flags);
714 : state = rwsem_owner_state(owner, flags);
715 : if (state != OWNER_WRITER)
716 : return state;
717 :
718 : for (;;) {
719 : /*
720 : * When a waiting writer set the handoff flag, it may spin
721 : * on the owner as well. Once that writer acquires the lock,
722 : * we can spin on it. So we don't need to quit even when the
723 : * handoff bit is set.
724 : */
725 : new = rwsem_owner_flags(sem, &new_flags);
726 : if ((new != owner) || (new_flags != flags)) {
727 : state = rwsem_owner_state(new, new_flags);
728 : break;
729 : }
730 :
731 : /*
732 : * Ensure we emit the owner->on_cpu, dereference _after_
733 : * checking sem->owner still matches owner, if that fails,
734 : * owner might point to free()d memory, if it still matches,
735 : * our spinning context already disabled preemption which is
736 : * equal to RCU read-side crital section ensures the memory
737 : * stays valid.
738 : */
739 : barrier();
740 :
741 : if (need_resched() || !owner_on_cpu(owner)) {
742 : state = OWNER_NONSPINNABLE;
743 : break;
744 : }
745 :
746 : cpu_relax();
747 : }
748 :
749 : return state;
750 : }
751 :
752 : /*
753 : * Calculate reader-owned rwsem spinning threshold for writer
754 : *
755 : * The more readers own the rwsem, the longer it will take for them to
756 : * wind down and free the rwsem. So the empirical formula used to
757 : * determine the actual spinning time limit here is:
758 : *
759 : * Spinning threshold = (10 + nr_readers/2)us
760 : *
761 : * The limit is capped to a maximum of 25us (30 readers). This is just
762 : * a heuristic and is subjected to change in the future.
763 : */
764 : static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
765 : {
766 : long count = atomic_long_read(&sem->count);
767 : int readers = count >> RWSEM_READER_SHIFT;
768 : u64 delta;
769 :
770 : if (readers > 30)
771 : readers = 30;
772 : delta = (20 + readers) * NSEC_PER_USEC / 2;
773 :
774 : return sched_clock() + delta;
775 : }
776 :
777 : static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
778 : {
779 : bool taken = false;
780 : int prev_owner_state = OWNER_NULL;
781 : int loop = 0;
782 : u64 rspin_threshold = 0;
783 :
784 : preempt_disable();
785 :
786 : /* sem->wait_lock should not be held when doing optimistic spinning */
787 : if (!osq_lock(&sem->osq))
788 : goto done;
789 :
790 : /*
791 : * Optimistically spin on the owner field and attempt to acquire the
792 : * lock whenever the owner changes. Spinning will be stopped when:
793 : * 1) the owning writer isn't running; or
794 : * 2) readers own the lock and spinning time has exceeded limit.
795 : */
796 : for (;;) {
797 : enum owner_state owner_state;
798 :
799 : owner_state = rwsem_spin_on_owner(sem);
800 : if (!(owner_state & OWNER_SPINNABLE))
801 : break;
802 :
803 : /*
804 : * Try to acquire the lock
805 : */
806 : taken = rwsem_try_write_lock_unqueued(sem);
807 :
808 : if (taken)
809 : break;
810 :
811 : /*
812 : * Time-based reader-owned rwsem optimistic spinning
813 : */
814 : if (owner_state == OWNER_READER) {
815 : /*
816 : * Re-initialize rspin_threshold every time when
817 : * the owner state changes from non-reader to reader.
818 : * This allows a writer to steal the lock in between
819 : * 2 reader phases and have the threshold reset at
820 : * the beginning of the 2nd reader phase.
821 : */
822 : if (prev_owner_state != OWNER_READER) {
823 : if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
824 : break;
825 : rspin_threshold = rwsem_rspin_threshold(sem);
826 : loop = 0;
827 : }
828 :
829 : /*
830 : * Check time threshold once every 16 iterations to
831 : * avoid calling sched_clock() too frequently so
832 : * as to reduce the average latency between the times
833 : * when the lock becomes free and when the spinner
834 : * is ready to do a trylock.
835 : */
836 : else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
837 : rwsem_set_nonspinnable(sem);
838 : lockevent_inc(rwsem_opt_nospin);
839 : break;
840 : }
841 : }
842 :
843 : /*
844 : * An RT task cannot do optimistic spinning if it cannot
845 : * be sure the lock holder is running or live-lock may
846 : * happen if the current task and the lock holder happen
847 : * to run in the same CPU. However, aborting optimistic
848 : * spinning while a NULL owner is detected may miss some
849 : * opportunity where spinning can continue without causing
850 : * problem.
851 : *
852 : * There are 2 possible cases where an RT task may be able
853 : * to continue spinning.
854 : *
855 : * 1) The lock owner is in the process of releasing the
856 : * lock, sem->owner is cleared but the lock has not
857 : * been released yet.
858 : * 2) The lock was free and owner cleared, but another
859 : * task just comes in and acquire the lock before
860 : * we try to get it. The new owner may be a spinnable
861 : * writer.
862 : *
863 : * To take advantage of two scenarios listed above, the RT
864 : * task is made to retry one more time to see if it can
865 : * acquire the lock or continue spinning on the new owning
866 : * writer. Of course, if the time lag is long enough or the
867 : * new owner is not a writer or spinnable, the RT task will
868 : * quit spinning.
869 : *
870 : * If the owner is a writer, the need_resched() check is
871 : * done inside rwsem_spin_on_owner(). If the owner is not
872 : * a writer, need_resched() check needs to be done here.
873 : */
874 : if (owner_state != OWNER_WRITER) {
875 : if (need_resched())
876 : break;
877 : if (rt_task(current) &&
878 : (prev_owner_state != OWNER_WRITER))
879 : break;
880 : }
881 : prev_owner_state = owner_state;
882 :
883 : /*
884 : * The cpu_relax() call is a compiler barrier which forces
885 : * everything in this loop to be re-loaded. We don't need
886 : * memory barriers as we'll eventually observe the right
887 : * values at the cost of a few extra spins.
888 : */
889 : cpu_relax();
890 : }
891 : osq_unlock(&sem->osq);
892 : done:
893 : preempt_enable();
894 : lockevent_cond_inc(rwsem_opt_fail, !taken);
895 : return taken;
896 : }
897 :
898 : /*
899 : * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
900 : * only be called when the reader count reaches 0.
901 : */
902 : static inline void clear_nonspinnable(struct rw_semaphore *sem)
903 : {
904 : if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
905 : atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
906 : }
907 :
908 : #else
909 : static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
910 : {
911 : return false;
912 : }
913 :
914 : static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
915 : {
916 : return false;
917 : }
918 :
919 : static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
920 :
921 : static inline enum owner_state
922 : rwsem_spin_on_owner(struct rw_semaphore *sem)
923 : {
924 : return OWNER_NONSPINNABLE;
925 : }
926 : #endif
927 :
928 : /*
929 : * Wait for the read lock to be granted
930 : */
931 : static struct rw_semaphore __sched *
932 0 : rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
933 : {
934 0 : long adjustment = -RWSEM_READER_BIAS;
935 0 : long rcnt = (count >> RWSEM_READER_SHIFT);
936 : struct rwsem_waiter waiter;
937 0 : DEFINE_WAKE_Q(wake_q);
938 0 : bool wake = false;
939 :
940 : /*
941 : * To prevent a constant stream of readers from starving a sleeping
942 : * waiter, don't attempt optimistic lock stealing if the lock is
943 : * currently owned by readers.
944 : */
945 0 : if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
946 0 : (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
947 : goto queue;
948 :
949 : /*
950 : * Reader optimistic lock stealing.
951 : */
952 0 : if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
953 0 : rwsem_set_reader_owned(sem);
954 : lockevent_inc(rwsem_rlock_steal);
955 :
956 : /*
957 : * Wake up other readers in the wait queue if it is
958 : * the first reader.
959 : */
960 0 : if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
961 0 : raw_spin_lock_irq(&sem->wait_lock);
962 0 : if (!list_empty(&sem->wait_list))
963 0 : rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
964 : &wake_q);
965 0 : raw_spin_unlock_irq(&sem->wait_lock);
966 0 : wake_up_q(&wake_q);
967 : }
968 : return sem;
969 : }
970 :
971 : queue:
972 0 : waiter.task = current;
973 0 : waiter.type = RWSEM_WAITING_FOR_READ;
974 0 : waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
975 :
976 0 : raw_spin_lock_irq(&sem->wait_lock);
977 0 : if (list_empty(&sem->wait_list)) {
978 : /*
979 : * In case the wait queue is empty and the lock isn't owned
980 : * by a writer or has the handoff bit set, this reader can
981 : * exit the slowpath and return immediately as its
982 : * RWSEM_READER_BIAS has already been set in the count.
983 : */
984 0 : if (!(atomic_long_read(&sem->count) &
985 : (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
986 : /* Provide lock ACQUIRE */
987 0 : smp_acquire__after_ctrl_dep();
988 0 : raw_spin_unlock_irq(&sem->wait_lock);
989 0 : rwsem_set_reader_owned(sem);
990 : lockevent_inc(rwsem_rlock_fast);
991 0 : return sem;
992 : }
993 : adjustment += RWSEM_FLAG_WAITERS;
994 : }
995 0 : rwsem_add_waiter(sem, &waiter);
996 :
997 : /* we're now waiting on the lock, but no longer actively locking */
998 0 : count = atomic_long_add_return(adjustment, &sem->count);
999 :
1000 : /*
1001 : * If there are no active locks, wake the front queued process(es).
1002 : *
1003 : * If there are no writers and we are first in the queue,
1004 : * wake our own waiter to join the existing active readers !
1005 : */
1006 0 : if (!(count & RWSEM_LOCK_MASK)) {
1007 0 : clear_nonspinnable(sem);
1008 0 : wake = true;
1009 : }
1010 0 : if (wake || (!(count & RWSEM_WRITER_MASK) &&
1011 0 : (adjustment & RWSEM_FLAG_WAITERS)))
1012 0 : rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1013 :
1014 0 : raw_spin_unlock_irq(&sem->wait_lock);
1015 0 : wake_up_q(&wake_q);
1016 :
1017 : /* wait to be given the lock */
1018 : for (;;) {
1019 0 : set_current_state(state);
1020 0 : if (!smp_load_acquire(&waiter.task)) {
1021 : /* Matches rwsem_mark_wake()'s smp_store_release(). */
1022 : break;
1023 : }
1024 0 : if (signal_pending_state(state, current)) {
1025 0 : raw_spin_lock_irq(&sem->wait_lock);
1026 0 : if (waiter.task)
1027 : goto out_nolock;
1028 0 : raw_spin_unlock_irq(&sem->wait_lock);
1029 : /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1030 0 : break;
1031 : }
1032 0 : schedule();
1033 : lockevent_inc(rwsem_sleep_reader);
1034 : }
1035 :
1036 0 : __set_current_state(TASK_RUNNING);
1037 : lockevent_inc(rwsem_rlock);
1038 0 : return sem;
1039 :
1040 : out_nolock:
1041 0 : rwsem_del_waiter(sem, &waiter);
1042 0 : raw_spin_unlock_irq(&sem->wait_lock);
1043 0 : __set_current_state(TASK_RUNNING);
1044 : lockevent_inc(rwsem_rlock_fail);
1045 0 : return ERR_PTR(-EINTR);
1046 : }
1047 :
1048 : /*
1049 : * Wait until we successfully acquire the write lock
1050 : */
1051 : static struct rw_semaphore __sched *
1052 0 : rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1053 : {
1054 : long count;
1055 : struct rwsem_waiter waiter;
1056 0 : DEFINE_WAKE_Q(wake_q);
1057 :
1058 : /* do optimistic spinning and steal lock if possible */
1059 0 : if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1060 : /* rwsem_optimistic_spin() implies ACQUIRE on success */
1061 : return sem;
1062 : }
1063 :
1064 : /*
1065 : * Optimistic spinning failed, proceed to the slowpath
1066 : * and block until we can acquire the sem.
1067 : */
1068 0 : waiter.task = current;
1069 0 : waiter.type = RWSEM_WAITING_FOR_WRITE;
1070 0 : waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1071 0 : waiter.handoff_set = false;
1072 :
1073 0 : raw_spin_lock_irq(&sem->wait_lock);
1074 0 : rwsem_add_waiter(sem, &waiter);
1075 :
1076 : /* we're now waiting on the lock */
1077 0 : if (rwsem_first_waiter(sem) != &waiter) {
1078 0 : count = atomic_long_read(&sem->count);
1079 :
1080 : /*
1081 : * If there were already threads queued before us and:
1082 : * 1) there are no active locks, wake the front
1083 : * queued process(es) as the handoff bit might be set.
1084 : * 2) there are no active writers and some readers, the lock
1085 : * must be read owned; so we try to wake any read lock
1086 : * waiters that were queued ahead of us.
1087 : */
1088 0 : if (count & RWSEM_WRITER_MASK)
1089 : goto wait;
1090 :
1091 0 : rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1092 : ? RWSEM_WAKE_READERS
1093 : : RWSEM_WAKE_ANY, &wake_q);
1094 :
1095 0 : if (!wake_q_empty(&wake_q)) {
1096 : /*
1097 : * We want to minimize wait_lock hold time especially
1098 : * when a large number of readers are to be woken up.
1099 : */
1100 0 : raw_spin_unlock_irq(&sem->wait_lock);
1101 0 : wake_up_q(&wake_q);
1102 0 : wake_q_init(&wake_q); /* Used again, reinit */
1103 0 : raw_spin_lock_irq(&sem->wait_lock);
1104 : }
1105 : } else {
1106 0 : atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1107 : }
1108 :
1109 : wait:
1110 : /* wait until we successfully acquire the lock */
1111 0 : set_current_state(state);
1112 : for (;;) {
1113 0 : if (rwsem_try_write_lock(sem, &waiter)) {
1114 : /* rwsem_try_write_lock() implies ACQUIRE on success */
1115 : break;
1116 : }
1117 :
1118 0 : raw_spin_unlock_irq(&sem->wait_lock);
1119 :
1120 0 : if (signal_pending_state(state, current))
1121 : goto out_nolock;
1122 :
1123 : /*
1124 : * After setting the handoff bit and failing to acquire
1125 : * the lock, attempt to spin on owner to accelerate lock
1126 : * transfer. If the previous owner is a on-cpu writer and it
1127 : * has just released the lock, OWNER_NULL will be returned.
1128 : * In this case, we attempt to acquire the lock again
1129 : * without sleeping.
1130 : */
1131 0 : if (waiter.handoff_set) {
1132 : enum owner_state owner_state;
1133 :
1134 0 : preempt_disable();
1135 0 : owner_state = rwsem_spin_on_owner(sem);
1136 0 : preempt_enable();
1137 :
1138 : if (owner_state == OWNER_NULL)
1139 : goto trylock_again;
1140 : }
1141 :
1142 0 : schedule();
1143 : lockevent_inc(rwsem_sleep_writer);
1144 0 : set_current_state(state);
1145 : trylock_again:
1146 0 : raw_spin_lock_irq(&sem->wait_lock);
1147 : }
1148 0 : __set_current_state(TASK_RUNNING);
1149 0 : raw_spin_unlock_irq(&sem->wait_lock);
1150 : lockevent_inc(rwsem_wlock);
1151 0 : return sem;
1152 :
1153 : out_nolock:
1154 0 : __set_current_state(TASK_RUNNING);
1155 0 : raw_spin_lock_irq(&sem->wait_lock);
1156 0 : rwsem_del_waiter(sem, &waiter);
1157 0 : if (!list_empty(&sem->wait_list))
1158 0 : rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1159 0 : raw_spin_unlock_irq(&sem->wait_lock);
1160 0 : wake_up_q(&wake_q);
1161 : lockevent_inc(rwsem_wlock_fail);
1162 0 : return ERR_PTR(-EINTR);
1163 : }
1164 :
1165 : /*
1166 : * handle waking up a waiter on the semaphore
1167 : * - up_read/up_write has decremented the active part of count if we come here
1168 : */
1169 0 : static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1170 : {
1171 : unsigned long flags;
1172 0 : DEFINE_WAKE_Q(wake_q);
1173 :
1174 0 : raw_spin_lock_irqsave(&sem->wait_lock, flags);
1175 :
1176 0 : if (!list_empty(&sem->wait_list))
1177 0 : rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1178 :
1179 0 : raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1180 0 : wake_up_q(&wake_q);
1181 :
1182 0 : return sem;
1183 : }
1184 :
1185 : /*
1186 : * downgrade a write lock into a read lock
1187 : * - caller incremented waiting part of count and discovered it still negative
1188 : * - just wake up any readers at the front of the queue
1189 : */
1190 0 : static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1191 : {
1192 : unsigned long flags;
1193 0 : DEFINE_WAKE_Q(wake_q);
1194 :
1195 0 : raw_spin_lock_irqsave(&sem->wait_lock, flags);
1196 :
1197 0 : if (!list_empty(&sem->wait_list))
1198 0 : rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1199 :
1200 0 : raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1201 0 : wake_up_q(&wake_q);
1202 :
1203 0 : return sem;
1204 : }
1205 :
1206 : /*
1207 : * lock for reading
1208 : */
1209 635 : static inline int __down_read_common(struct rw_semaphore *sem, int state)
1210 : {
1211 : long count;
1212 :
1213 635 : if (!rwsem_read_trylock(sem, &count)) {
1214 0 : if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1215 : return -EINTR;
1216 : DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1217 : }
1218 : return 0;
1219 : }
1220 :
1221 : static inline void __down_read(struct rw_semaphore *sem)
1222 : {
1223 635 : __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1224 : }
1225 :
1226 : static inline int __down_read_interruptible(struct rw_semaphore *sem)
1227 : {
1228 0 : return __down_read_common(sem, TASK_INTERRUPTIBLE);
1229 : }
1230 :
1231 : static inline int __down_read_killable(struct rw_semaphore *sem)
1232 : {
1233 0 : return __down_read_common(sem, TASK_KILLABLE);
1234 : }
1235 :
1236 0 : static inline int __down_read_trylock(struct rw_semaphore *sem)
1237 : {
1238 : long tmp;
1239 :
1240 : DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1241 :
1242 0 : tmp = atomic_long_read(&sem->count);
1243 0 : while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1244 0 : if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1245 0 : tmp + RWSEM_READER_BIAS)) {
1246 0 : rwsem_set_reader_owned(sem);
1247 0 : return 1;
1248 : }
1249 : }
1250 : return 0;
1251 : }
1252 :
1253 : /*
1254 : * lock for writing
1255 : */
1256 26872 : static inline int __down_write_common(struct rw_semaphore *sem, int state)
1257 : {
1258 26872 : if (unlikely(!rwsem_write_trylock(sem))) {
1259 0 : if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1260 : return -EINTR;
1261 : }
1262 :
1263 : return 0;
1264 : }
1265 :
1266 : static inline void __down_write(struct rw_semaphore *sem)
1267 : {
1268 26872 : __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1269 : }
1270 :
1271 : static inline int __down_write_killable(struct rw_semaphore *sem)
1272 : {
1273 0 : return __down_write_common(sem, TASK_KILLABLE);
1274 : }
1275 :
1276 : static inline int __down_write_trylock(struct rw_semaphore *sem)
1277 : {
1278 : DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1279 0 : return rwsem_write_trylock(sem);
1280 : }
1281 :
1282 : /*
1283 : * unlock after reading
1284 : */
1285 : static inline void __up_read(struct rw_semaphore *sem)
1286 : {
1287 : long tmp;
1288 :
1289 : DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1290 : DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1291 :
1292 635 : rwsem_clear_reader_owned(sem);
1293 1270 : tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1294 : DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1295 635 : if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1296 : RWSEM_FLAG_WAITERS)) {
1297 0 : clear_nonspinnable(sem);
1298 0 : rwsem_wake(sem);
1299 : }
1300 : }
1301 :
1302 : /*
1303 : * unlock after writing
1304 : */
1305 : static inline void __up_write(struct rw_semaphore *sem)
1306 : {
1307 : long tmp;
1308 :
1309 : DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1310 : /*
1311 : * sem->owner may differ from current if the ownership is transferred
1312 : * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1313 : */
1314 : DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1315 : !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1316 :
1317 26872 : rwsem_clear_owner(sem);
1318 53744 : tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1319 26872 : if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1320 0 : rwsem_wake(sem);
1321 : }
1322 :
1323 : /*
1324 : * downgrade write lock to read lock
1325 : */
1326 0 : static inline void __downgrade_write(struct rw_semaphore *sem)
1327 : {
1328 : long tmp;
1329 :
1330 : /*
1331 : * When downgrading from exclusive to shared ownership,
1332 : * anything inside the write-locked region cannot leak
1333 : * into the read side. In contrast, anything in the
1334 : * read-locked region is ok to be re-ordered into the
1335 : * write side. As such, rely on RELEASE semantics.
1336 : */
1337 : DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1338 0 : tmp = atomic_long_fetch_add_release(
1339 : -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1340 0 : rwsem_set_reader_owned(sem);
1341 0 : if (tmp & RWSEM_FLAG_WAITERS)
1342 0 : rwsem_downgrade_wake(sem);
1343 0 : }
1344 :
1345 : #else /* !CONFIG_PREEMPT_RT */
1346 :
1347 : #define RT_MUTEX_BUILD_MUTEX
1348 : #include "rtmutex.c"
1349 :
1350 : #define rwbase_set_and_save_current_state(state) \
1351 : set_current_state(state)
1352 :
1353 : #define rwbase_restore_current_state() \
1354 : __set_current_state(TASK_RUNNING)
1355 :
1356 : #define rwbase_rtmutex_lock_state(rtm, state) \
1357 : __rt_mutex_lock(rtm, state)
1358 :
1359 : #define rwbase_rtmutex_slowlock_locked(rtm, state) \
1360 : __rt_mutex_slowlock_locked(rtm, NULL, state)
1361 :
1362 : #define rwbase_rtmutex_unlock(rtm) \
1363 : __rt_mutex_unlock(rtm)
1364 :
1365 : #define rwbase_rtmutex_trylock(rtm) \
1366 : __rt_mutex_trylock(rtm)
1367 :
1368 : #define rwbase_signal_pending_state(state, current) \
1369 : signal_pending_state(state, current)
1370 :
1371 : #define rwbase_schedule() \
1372 : schedule()
1373 :
1374 : #include "rwbase_rt.c"
1375 :
1376 : void __init_rwsem(struct rw_semaphore *sem, const char *name,
1377 : struct lock_class_key *key)
1378 : {
1379 : init_rwbase_rt(&(sem)->rwbase);
1380 :
1381 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
1382 : debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1383 : lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1384 : #endif
1385 : }
1386 : EXPORT_SYMBOL(__init_rwsem);
1387 :
1388 : static inline void __down_read(struct rw_semaphore *sem)
1389 : {
1390 : rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1391 : }
1392 :
1393 : static inline int __down_read_interruptible(struct rw_semaphore *sem)
1394 : {
1395 : return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1396 : }
1397 :
1398 : static inline int __down_read_killable(struct rw_semaphore *sem)
1399 : {
1400 : return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1401 : }
1402 :
1403 : static inline int __down_read_trylock(struct rw_semaphore *sem)
1404 : {
1405 : return rwbase_read_trylock(&sem->rwbase);
1406 : }
1407 :
1408 : static inline void __up_read(struct rw_semaphore *sem)
1409 : {
1410 : rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1411 : }
1412 :
1413 : static inline void __sched __down_write(struct rw_semaphore *sem)
1414 : {
1415 : rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1416 : }
1417 :
1418 : static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1419 : {
1420 : return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1421 : }
1422 :
1423 : static inline int __down_write_trylock(struct rw_semaphore *sem)
1424 : {
1425 : return rwbase_write_trylock(&sem->rwbase);
1426 : }
1427 :
1428 : static inline void __up_write(struct rw_semaphore *sem)
1429 : {
1430 : rwbase_write_unlock(&sem->rwbase);
1431 : }
1432 :
1433 : static inline void __downgrade_write(struct rw_semaphore *sem)
1434 : {
1435 : rwbase_write_downgrade(&sem->rwbase);
1436 : }
1437 :
1438 : /* Debug stubs for the common API */
1439 : #define DEBUG_RWSEMS_WARN_ON(c, sem)
1440 :
1441 : static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1442 : struct task_struct *owner)
1443 : {
1444 : }
1445 :
1446 : static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1447 : {
1448 : int count = atomic_read(&sem->rwbase.readers);
1449 :
1450 : return count < 0 && count != READER_BIAS;
1451 : }
1452 :
1453 : #endif /* CONFIG_PREEMPT_RT */
1454 :
1455 : /*
1456 : * lock for reading
1457 : */
1458 635 : void __sched down_read(struct rw_semaphore *sem)
1459 : {
1460 : might_sleep();
1461 : rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1462 :
1463 635 : LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1464 635 : }
1465 : EXPORT_SYMBOL(down_read);
1466 :
1467 0 : int __sched down_read_interruptible(struct rw_semaphore *sem)
1468 : {
1469 : might_sleep();
1470 : rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1471 :
1472 0 : if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1473 : rwsem_release(&sem->dep_map, _RET_IP_);
1474 : return -EINTR;
1475 : }
1476 :
1477 0 : return 0;
1478 : }
1479 : EXPORT_SYMBOL(down_read_interruptible);
1480 :
1481 0 : int __sched down_read_killable(struct rw_semaphore *sem)
1482 : {
1483 : might_sleep();
1484 : rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1485 :
1486 0 : if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1487 : rwsem_release(&sem->dep_map, _RET_IP_);
1488 : return -EINTR;
1489 : }
1490 :
1491 0 : return 0;
1492 : }
1493 : EXPORT_SYMBOL(down_read_killable);
1494 :
1495 : /*
1496 : * trylock for reading -- returns 1 if successful, 0 if contention
1497 : */
1498 0 : int down_read_trylock(struct rw_semaphore *sem)
1499 : {
1500 0 : int ret = __down_read_trylock(sem);
1501 :
1502 : if (ret == 1)
1503 : rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1504 0 : return ret;
1505 : }
1506 : EXPORT_SYMBOL(down_read_trylock);
1507 :
1508 : /*
1509 : * lock for writing
1510 : */
1511 26872 : void __sched down_write(struct rw_semaphore *sem)
1512 : {
1513 : might_sleep();
1514 : rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1515 26872 : LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1516 26872 : }
1517 : EXPORT_SYMBOL(down_write);
1518 :
1519 : /*
1520 : * lock for writing
1521 : */
1522 0 : int __sched down_write_killable(struct rw_semaphore *sem)
1523 : {
1524 : might_sleep();
1525 : rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1526 :
1527 0 : if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1528 : __down_write_killable)) {
1529 : rwsem_release(&sem->dep_map, _RET_IP_);
1530 : return -EINTR;
1531 : }
1532 :
1533 0 : return 0;
1534 : }
1535 : EXPORT_SYMBOL(down_write_killable);
1536 :
1537 : /*
1538 : * trylock for writing -- returns 1 if successful, 0 if contention
1539 : */
1540 0 : int down_write_trylock(struct rw_semaphore *sem)
1541 : {
1542 0 : int ret = __down_write_trylock(sem);
1543 :
1544 : if (ret == 1)
1545 : rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1546 :
1547 0 : return ret;
1548 : }
1549 : EXPORT_SYMBOL(down_write_trylock);
1550 :
1551 : /*
1552 : * release a read lock
1553 : */
1554 635 : void up_read(struct rw_semaphore *sem)
1555 : {
1556 : rwsem_release(&sem->dep_map, _RET_IP_);
1557 635 : __up_read(sem);
1558 635 : }
1559 : EXPORT_SYMBOL(up_read);
1560 :
1561 : /*
1562 : * release a write lock
1563 : */
1564 26872 : void up_write(struct rw_semaphore *sem)
1565 : {
1566 : rwsem_release(&sem->dep_map, _RET_IP_);
1567 26872 : __up_write(sem);
1568 26872 : }
1569 : EXPORT_SYMBOL(up_write);
1570 :
1571 : /*
1572 : * downgrade write lock to read lock
1573 : */
1574 0 : void downgrade_write(struct rw_semaphore *sem)
1575 : {
1576 : lock_downgrade(&sem->dep_map, _RET_IP_);
1577 0 : __downgrade_write(sem);
1578 0 : }
1579 : EXPORT_SYMBOL(downgrade_write);
1580 :
1581 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
1582 :
1583 : void down_read_nested(struct rw_semaphore *sem, int subclass)
1584 : {
1585 : might_sleep();
1586 : rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1587 : LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1588 : }
1589 : EXPORT_SYMBOL(down_read_nested);
1590 :
1591 : int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1592 : {
1593 : might_sleep();
1594 : rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1595 :
1596 : if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1597 : rwsem_release(&sem->dep_map, _RET_IP_);
1598 : return -EINTR;
1599 : }
1600 :
1601 : return 0;
1602 : }
1603 : EXPORT_SYMBOL(down_read_killable_nested);
1604 :
1605 : void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1606 : {
1607 : might_sleep();
1608 : rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1609 : LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1610 : }
1611 : EXPORT_SYMBOL(_down_write_nest_lock);
1612 :
1613 : void down_read_non_owner(struct rw_semaphore *sem)
1614 : {
1615 : might_sleep();
1616 : __down_read(sem);
1617 : __rwsem_set_reader_owned(sem, NULL);
1618 : }
1619 : EXPORT_SYMBOL(down_read_non_owner);
1620 :
1621 : void down_write_nested(struct rw_semaphore *sem, int subclass)
1622 : {
1623 : might_sleep();
1624 : rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1625 : LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1626 : }
1627 : EXPORT_SYMBOL(down_write_nested);
1628 :
1629 : int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1630 : {
1631 : might_sleep();
1632 : rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1633 :
1634 : if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1635 : __down_write_killable)) {
1636 : rwsem_release(&sem->dep_map, _RET_IP_);
1637 : return -EINTR;
1638 : }
1639 :
1640 : return 0;
1641 : }
1642 : EXPORT_SYMBOL(down_write_killable_nested);
1643 :
1644 : void up_read_non_owner(struct rw_semaphore *sem)
1645 : {
1646 : DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1647 : __up_read(sem);
1648 : }
1649 : EXPORT_SYMBOL(up_read_non_owner);
1650 :
1651 : #endif
|