LCOV - code coverage report
Current view: top level - kernel/sched - fair.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 354 536 66.0 %
Date: 2022-12-09 01:23:36 Functions: 33 62 53.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
       4             :  *
       5             :  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
       6             :  *
       7             :  *  Interactivity improvements by Mike Galbraith
       8             :  *  (C) 2007 Mike Galbraith <efault@gmx.de>
       9             :  *
      10             :  *  Various enhancements by Dmitry Adamushko.
      11             :  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
      12             :  *
      13             :  *  Group scheduling enhancements by Srivatsa Vaddagiri
      14             :  *  Copyright IBM Corporation, 2007
      15             :  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
      16             :  *
      17             :  *  Scaled math optimizations by Thomas Gleixner
      18             :  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
      19             :  *
      20             :  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
      21             :  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
      22             :  */
      23             : #include <linux/energy_model.h>
      24             : #include <linux/mmap_lock.h>
      25             : #include <linux/hugetlb_inline.h>
      26             : #include <linux/jiffies.h>
      27             : #include <linux/mm_api.h>
      28             : #include <linux/highmem.h>
      29             : #include <linux/spinlock_api.h>
      30             : #include <linux/cpumask_api.h>
      31             : #include <linux/lockdep_api.h>
      32             : #include <linux/softirq.h>
      33             : #include <linux/refcount_api.h>
      34             : #include <linux/topology.h>
      35             : #include <linux/sched/clock.h>
      36             : #include <linux/sched/cond_resched.h>
      37             : #include <linux/sched/cputime.h>
      38             : #include <linux/sched/isolation.h>
      39             : 
      40             : #include <linux/cpuidle.h>
      41             : #include <linux/interrupt.h>
      42             : #include <linux/mempolicy.h>
      43             : #include <linux/mutex_api.h>
      44             : #include <linux/profile.h>
      45             : #include <linux/psi.h>
      46             : #include <linux/ratelimit.h>
      47             : #include <linux/task_work.h>
      48             : 
      49             : #include <asm/switch_to.h>
      50             : 
      51             : #include <linux/sched/cond_resched.h>
      52             : 
      53             : #include "sched.h"
      54             : #include "stats.h"
      55             : #include "autogroup.h"
      56             : 
      57             : /*
      58             :  * Targeted preemption latency for CPU-bound tasks:
      59             :  *
      60             :  * NOTE: this latency value is not the same as the concept of
      61             :  * 'timeslice length' - timeslices in CFS are of variable length
      62             :  * and have no persistent notion like in traditional, time-slice
      63             :  * based scheduling concepts.
      64             :  *
      65             :  * (to see the precise effective timeslice length of your workload,
      66             :  *  run vmstat and monitor the context-switches (cs) field)
      67             :  *
      68             :  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
      69             :  */
      70             : unsigned int sysctl_sched_latency                       = 6000000ULL;
      71             : static unsigned int normalized_sysctl_sched_latency     = 6000000ULL;
      72             : 
      73             : /*
      74             :  * The initial- and re-scaling of tunables is configurable
      75             :  *
      76             :  * Options are:
      77             :  *
      78             :  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
      79             :  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
      80             :  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
      81             :  *
      82             :  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
      83             :  */
      84             : unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
      85             : 
      86             : /*
      87             :  * Minimal preemption granularity for CPU-bound tasks:
      88             :  *
      89             :  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
      90             :  */
      91             : unsigned int sysctl_sched_min_granularity                       = 750000ULL;
      92             : static unsigned int normalized_sysctl_sched_min_granularity     = 750000ULL;
      93             : 
      94             : /*
      95             :  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
      96             :  * Applies only when SCHED_IDLE tasks compete with normal tasks.
      97             :  *
      98             :  * (default: 0.75 msec)
      99             :  */
     100             : unsigned int sysctl_sched_idle_min_granularity                  = 750000ULL;
     101             : 
     102             : /*
     103             :  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
     104             :  */
     105             : static unsigned int sched_nr_latency = 8;
     106             : 
     107             : /*
     108             :  * After fork, child runs first. If set to 0 (default) then
     109             :  * parent will (try to) run first.
     110             :  */
     111             : unsigned int sysctl_sched_child_runs_first __read_mostly;
     112             : 
     113             : /*
     114             :  * SCHED_OTHER wake-up granularity.
     115             :  *
     116             :  * This option delays the preemption effects of decoupled workloads
     117             :  * and reduces their over-scheduling. Synchronous workloads will still
     118             :  * have immediate wakeup/sleep latencies.
     119             :  *
     120             :  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
     121             :  */
     122             : unsigned int sysctl_sched_wakeup_granularity                    = 1000000UL;
     123             : static unsigned int normalized_sysctl_sched_wakeup_granularity  = 1000000UL;
     124             : 
     125             : const_debug unsigned int sysctl_sched_migration_cost    = 500000UL;
     126             : 
     127             : int sched_thermal_decay_shift;
     128           0 : static int __init setup_sched_thermal_decay_shift(char *str)
     129             : {
     130           0 :         int _shift = 0;
     131             : 
     132           0 :         if (kstrtoint(str, 0, &_shift))
     133           0 :                 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
     134             : 
     135           0 :         sched_thermal_decay_shift = clamp(_shift, 0, 10);
     136           0 :         return 1;
     137             : }
     138             : __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
     139             : 
     140             : #ifdef CONFIG_SMP
     141             : /*
     142             :  * For asym packing, by default the lower numbered CPU has higher priority.
     143             :  */
     144             : int __weak arch_asym_cpu_priority(int cpu)
     145             : {
     146             :         return -cpu;
     147             : }
     148             : 
     149             : /*
     150             :  * The margin used when comparing utilization with CPU capacity.
     151             :  *
     152             :  * (default: ~20%)
     153             :  */
     154             : #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
     155             : 
     156             : /*
     157             :  * The margin used when comparing CPU capacities.
     158             :  * is 'cap1' noticeably greater than 'cap2'
     159             :  *
     160             :  * (default: ~5%)
     161             :  */
     162             : #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
     163             : #endif
     164             : 
     165             : #ifdef CONFIG_CFS_BANDWIDTH
     166             : /*
     167             :  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
     168             :  * each time a cfs_rq requests quota.
     169             :  *
     170             :  * Note: in the case that the slice exceeds the runtime remaining (either due
     171             :  * to consumption or the quota being specified to be smaller than the slice)
     172             :  * we will always only issue the remaining available time.
     173             :  *
     174             :  * (default: 5 msec, units: microseconds)
     175             :  */
     176             : unsigned int sysctl_sched_cfs_bandwidth_slice           = 5000UL;
     177             : #endif
     178             : 
     179             : static inline void update_load_add(struct load_weight *lw, unsigned long inc)
     180             : {
     181         727 :         lw->weight += inc;
     182         727 :         lw->inv_weight = 0;
     183             : }
     184             : 
     185             : static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
     186             : {
     187         618 :         lw->weight -= dec;
     188         618 :         lw->inv_weight = 0;
     189             : }
     190             : 
     191             : static inline void update_load_set(struct load_weight *lw, unsigned long w)
     192             : {
     193           4 :         lw->weight = w;
     194           4 :         lw->inv_weight = 0;
     195             : }
     196             : 
     197             : /*
     198             :  * Increase the granularity value when there are more CPUs,
     199             :  * because with more CPUs the 'effective latency' as visible
     200             :  * to users decreases. But the relationship is not linear,
     201             :  * so pick a second-best guess by going with the log2 of the
     202             :  * number of CPUs.
     203             :  *
     204             :  * This idea comes from the SD scheduler of Con Kolivas:
     205             :  */
     206             : static unsigned int get_update_sysctl_factor(void)
     207             : {
     208           1 :         unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
     209             :         unsigned int factor;
     210             : 
     211             :         switch (sysctl_sched_tunable_scaling) {
     212             :         case SCHED_TUNABLESCALING_NONE:
     213             :                 factor = 1;
     214             :                 break;
     215             :         case SCHED_TUNABLESCALING_LINEAR:
     216             :                 factor = cpus;
     217             :                 break;
     218             :         case SCHED_TUNABLESCALING_LOG:
     219             :         default:
     220             :                 factor = 1 + ilog2(cpus);
     221             :                 break;
     222             :         }
     223             : 
     224             :         return factor;
     225             : }
     226             : 
     227             : static void update_sysctl(void)
     228             : {
     229           1 :         unsigned int factor = get_update_sysctl_factor();
     230             : 
     231             : #define SET_SYSCTL(name) \
     232             :         (sysctl_##name = (factor) * normalized_sysctl_##name)
     233           1 :         SET_SYSCTL(sched_min_granularity);
     234           1 :         SET_SYSCTL(sched_latency);
     235           1 :         SET_SYSCTL(sched_wakeup_granularity);
     236             : #undef SET_SYSCTL
     237             : }
     238             : 
     239           1 : void __init sched_init_granularity(void)
     240             : {
     241             :         update_sysctl();
     242           1 : }
     243             : 
     244             : #define WMULT_CONST     (~0U)
     245             : #define WMULT_SHIFT     32
     246             : 
     247             : static void __update_inv_weight(struct load_weight *lw)
     248             : {
     249             :         unsigned long w;
     250             : 
     251         110 :         if (likely(lw->inv_weight))
     252             :                 return;
     253             : 
     254         110 :         w = scale_load_down(lw->weight);
     255             : 
     256         110 :         if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
     257           0 :                 lw->inv_weight = 1;
     258         110 :         else if (unlikely(!w))
     259           0 :                 lw->inv_weight = WMULT_CONST;
     260             :         else
     261         110 :                 lw->inv_weight = WMULT_CONST / w;
     262             : }
     263             : 
     264             : /*
     265             :  * delta_exec * weight / lw.weight
     266             :  *   OR
     267             :  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
     268             :  *
     269             :  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
     270             :  * we're guaranteed shift stays positive because inv_weight is guaranteed to
     271             :  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
     272             :  *
     273             :  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
     274             :  * weight/lw.weight <= 1, and therefore our shift will also be positive.
     275             :  */
     276         110 : static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
     277             : {
     278         110 :         u64 fact = scale_load_down(weight);
     279         110 :         u32 fact_hi = (u32)(fact >> 32);
     280         110 :         int shift = WMULT_SHIFT;
     281             :         int fs;
     282             : 
     283         110 :         __update_inv_weight(lw);
     284             : 
     285         110 :         if (unlikely(fact_hi)) {
     286           0 :                 fs = fls(fact_hi);
     287           0 :                 shift -= fs;
     288           0 :                 fact >>= fs;
     289             :         }
     290             : 
     291         220 :         fact = mul_u32_u32(fact, lw->inv_weight);
     292             : 
     293         110 :         fact_hi = (u32)(fact >> 32);
     294         110 :         if (fact_hi) {
     295           0 :                 fs = fls(fact_hi);
     296           0 :                 shift -= fs;
     297           0 :                 fact >>= fs;
     298             :         }
     299             : 
     300         220 :         return mul_u64_u32_shr(delta_exec, fact, shift);
     301             : }
     302             : 
     303             : 
     304             : const struct sched_class fair_sched_class;
     305             : 
     306             : /**************************************************************
     307             :  * CFS operations on generic schedulable entities:
     308             :  */
     309             : 
     310             : #ifdef CONFIG_FAIR_GROUP_SCHED
     311             : 
     312             : /* Walk up scheduling entities hierarchy */
     313             : #define for_each_sched_entity(se) \
     314             :                 for (; se; se = se->parent)
     315             : 
     316             : static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
     317             : {
     318             :         if (!path)
     319             :                 return;
     320             : 
     321             :         if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
     322             :                 autogroup_path(cfs_rq->tg, path, len);
     323             :         else if (cfs_rq && cfs_rq->tg->css.cgroup)
     324             :                 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
     325             :         else
     326             :                 strlcpy(path, "(null)", len);
     327             : }
     328             : 
     329             : static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     330             : {
     331             :         struct rq *rq = rq_of(cfs_rq);
     332             :         int cpu = cpu_of(rq);
     333             : 
     334             :         if (cfs_rq->on_list)
     335             :                 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
     336             : 
     337             :         cfs_rq->on_list = 1;
     338             : 
     339             :         /*
     340             :          * Ensure we either appear before our parent (if already
     341             :          * enqueued) or force our parent to appear after us when it is
     342             :          * enqueued. The fact that we always enqueue bottom-up
     343             :          * reduces this to two cases and a special case for the root
     344             :          * cfs_rq. Furthermore, it also means that we will always reset
     345             :          * tmp_alone_branch either when the branch is connected
     346             :          * to a tree or when we reach the top of the tree
     347             :          */
     348             :         if (cfs_rq->tg->parent &&
     349             :             cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
     350             :                 /*
     351             :                  * If parent is already on the list, we add the child
     352             :                  * just before. Thanks to circular linked property of
     353             :                  * the list, this means to put the child at the tail
     354             :                  * of the list that starts by parent.
     355             :                  */
     356             :                 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
     357             :                         &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
     358             :                 /*
     359             :                  * The branch is now connected to its tree so we can
     360             :                  * reset tmp_alone_branch to the beginning of the
     361             :                  * list.
     362             :                  */
     363             :                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
     364             :                 return true;
     365             :         }
     366             : 
     367             :         if (!cfs_rq->tg->parent) {
     368             :                 /*
     369             :                  * cfs rq without parent should be put
     370             :                  * at the tail of the list.
     371             :                  */
     372             :                 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
     373             :                         &rq->leaf_cfs_rq_list);
     374             :                 /*
     375             :                  * We have reach the top of a tree so we can reset
     376             :                  * tmp_alone_branch to the beginning of the list.
     377             :                  */
     378             :                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
     379             :                 return true;
     380             :         }
     381             : 
     382             :         /*
     383             :          * The parent has not already been added so we want to
     384             :          * make sure that it will be put after us.
     385             :          * tmp_alone_branch points to the begin of the branch
     386             :          * where we will add parent.
     387             :          */
     388             :         list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
     389             :         /*
     390             :          * update tmp_alone_branch to points to the new begin
     391             :          * of the branch
     392             :          */
     393             :         rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
     394             :         return false;
     395             : }
     396             : 
     397             : static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     398             : {
     399             :         if (cfs_rq->on_list) {
     400             :                 struct rq *rq = rq_of(cfs_rq);
     401             : 
     402             :                 /*
     403             :                  * With cfs_rq being unthrottled/throttled during an enqueue,
     404             :                  * it can happen the tmp_alone_branch points the a leaf that
     405             :                  * we finally want to del. In this case, tmp_alone_branch moves
     406             :                  * to the prev element but it will point to rq->leaf_cfs_rq_list
     407             :                  * at the end of the enqueue.
     408             :                  */
     409             :                 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
     410             :                         rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
     411             : 
     412             :                 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
     413             :                 cfs_rq->on_list = 0;
     414             :         }
     415             : }
     416             : 
     417             : static inline void assert_list_leaf_cfs_rq(struct rq *rq)
     418             : {
     419             :         SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
     420             : }
     421             : 
     422             : /* Iterate thr' all leaf cfs_rq's on a runqueue */
     423             : #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)                      \
     424             :         list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,     \
     425             :                                  leaf_cfs_rq_list)
     426             : 
     427             : /* Do the two (enqueued) entities belong to the same group ? */
     428             : static inline struct cfs_rq *
     429             : is_same_group(struct sched_entity *se, struct sched_entity *pse)
     430             : {
     431             :         if (se->cfs_rq == pse->cfs_rq)
     432             :                 return se->cfs_rq;
     433             : 
     434             :         return NULL;
     435             : }
     436             : 
     437             : static inline struct sched_entity *parent_entity(struct sched_entity *se)
     438             : {
     439             :         return se->parent;
     440             : }
     441             : 
     442             : static void
     443             : find_matching_se(struct sched_entity **se, struct sched_entity **pse)
     444             : {
     445             :         int se_depth, pse_depth;
     446             : 
     447             :         /*
     448             :          * preemption test can be made between sibling entities who are in the
     449             :          * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
     450             :          * both tasks until we find their ancestors who are siblings of common
     451             :          * parent.
     452             :          */
     453             : 
     454             :         /* First walk up until both entities are at same depth */
     455             :         se_depth = (*se)->depth;
     456             :         pse_depth = (*pse)->depth;
     457             : 
     458             :         while (se_depth > pse_depth) {
     459             :                 se_depth--;
     460             :                 *se = parent_entity(*se);
     461             :         }
     462             : 
     463             :         while (pse_depth > se_depth) {
     464             :                 pse_depth--;
     465             :                 *pse = parent_entity(*pse);
     466             :         }
     467             : 
     468             :         while (!is_same_group(*se, *pse)) {
     469             :                 *se = parent_entity(*se);
     470             :                 *pse = parent_entity(*pse);
     471             :         }
     472             : }
     473             : 
     474             : static int tg_is_idle(struct task_group *tg)
     475             : {
     476             :         return tg->idle > 0;
     477             : }
     478             : 
     479             : static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
     480             : {
     481             :         return cfs_rq->idle > 0;
     482             : }
     483             : 
     484             : static int se_is_idle(struct sched_entity *se)
     485             : {
     486             :         if (entity_is_task(se))
     487             :                 return task_has_idle_policy(task_of(se));
     488             :         return cfs_rq_is_idle(group_cfs_rq(se));
     489             : }
     490             : 
     491             : #else   /* !CONFIG_FAIR_GROUP_SCHED */
     492             : 
     493             : #define for_each_sched_entity(se) \
     494             :                 for (; se; se = NULL)
     495             : 
     496             : static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
     497             : {
     498           0 :         if (path)
     499           0 :                 strlcpy(path, "(null)", len);
     500             : }
     501             : 
     502             : static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     503             : {
     504             :         return true;
     505             : }
     506             : 
     507             : static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     508             : {
     509             : }
     510             : 
     511             : static inline void assert_list_leaf_cfs_rq(struct rq *rq)
     512             : {
     513             : }
     514             : 
     515             : #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)      \
     516             :                 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
     517             : 
     518             : static inline struct sched_entity *parent_entity(struct sched_entity *se)
     519             : {
     520             :         return NULL;
     521             : }
     522             : 
     523             : static inline void
     524             : find_matching_se(struct sched_entity **se, struct sched_entity **pse)
     525             : {
     526             : }
     527             : 
     528             : static inline int tg_is_idle(struct task_group *tg)
     529             : {
     530             :         return 0;
     531             : }
     532             : 
     533             : static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
     534             : {
     535             :         return 0;
     536             : }
     537             : 
     538             : static int se_is_idle(struct sched_entity *se)
     539             : {
     540             :         return 0;
     541             : }
     542             : 
     543             : #endif  /* CONFIG_FAIR_GROUP_SCHED */
     544             : 
     545             : static __always_inline
     546             : void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
     547             : 
     548             : /**************************************************************
     549             :  * Scheduling class tree data structure manipulation methods:
     550             :  */
     551             : 
     552             : static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
     553             : {
     554        1235 :         s64 delta = (s64)(vruntime - max_vruntime);
     555        1235 :         if (delta > 0)
     556         514 :                 max_vruntime = vruntime;
     557             : 
     558             :         return max_vruntime;
     559             : }
     560             : 
     561             : static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
     562             : {
     563           3 :         s64 delta = (s64)(vruntime - min_vruntime);
     564           3 :         if (delta < 0)
     565           3 :                 min_vruntime = vruntime;
     566             : 
     567             :         return min_vruntime;
     568             : }
     569             : 
     570             : static inline bool entity_before(struct sched_entity *a,
     571             :                                 struct sched_entity *b)
     572             : {
     573         218 :         return (s64)(a->vruntime - b->vruntime) < 0;
     574             : }
     575             : 
     576             : #define __node_2_se(node) \
     577             :         rb_entry((node), struct sched_entity, run_node)
     578             : 
     579         618 : static void update_min_vruntime(struct cfs_rq *cfs_rq)
     580             : {
     581         618 :         struct sched_entity *curr = cfs_rq->curr;
     582         618 :         struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
     583             : 
     584         618 :         u64 vruntime = cfs_rq->min_vruntime;
     585             : 
     586         618 :         if (curr) {
     587         618 :                 if (curr->on_rq)
     588           3 :                         vruntime = curr->vruntime;
     589             :                 else
     590             :                         curr = NULL;
     591             :         }
     592             : 
     593         618 :         if (leftmost) { /* non-empty tree */
     594         617 :                 struct sched_entity *se = __node_2_se(leftmost);
     595             : 
     596         617 :                 if (!curr)
     597         614 :                         vruntime = se->vruntime;
     598             :                 else
     599           3 :                         vruntime = min_vruntime(vruntime, se->vruntime);
     600             :         }
     601             : 
     602             :         /* ensure we never gain time by being placed backwards. */
     603        1236 :         cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
     604             : #ifndef CONFIG_64BIT
     605             :         smp_wmb();
     606             :         cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
     607             : #endif
     608         618 : }
     609             : 
     610             : static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
     611             : {
     612         218 :         return entity_before(__node_2_se(a), __node_2_se(b));
     613             : }
     614             : 
     615             : /*
     616             :  * Enqueue an entity into the rb-tree:
     617             :  */
     618         621 : static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
     619             : {
     620        1242 :         rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
     621         621 : }
     622             : 
     623             : static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
     624             : {
     625         620 :         rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
     626             : }
     627             : 
     628           0 : struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
     629             : {
     630         617 :         struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
     631             : 
     632         617 :         if (!left)
     633             :                 return NULL;
     634             : 
     635         617 :         return __node_2_se(left);
     636             : }
     637             : 
     638             : static struct sched_entity *__pick_next_entity(struct sched_entity *se)
     639             : {
     640           0 :         struct rb_node *next = rb_next(&se->run_node);
     641             : 
     642           0 :         if (!next)
     643             :                 return NULL;
     644             : 
     645           0 :         return __node_2_se(next);
     646             : }
     647             : 
     648             : #ifdef CONFIG_SCHED_DEBUG
     649           0 : struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
     650             : {
     651           0 :         struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
     652             : 
     653           0 :         if (!last)
     654             :                 return NULL;
     655             : 
     656           0 :         return __node_2_se(last);
     657             : }
     658             : 
     659             : /**************************************************************
     660             :  * Scheduling class statistics methods:
     661             :  */
     662             : 
     663           0 : int sched_update_scaling(void)
     664             : {
     665           0 :         unsigned int factor = get_update_sysctl_factor();
     666             : 
     667           0 :         sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
     668             :                                         sysctl_sched_min_granularity);
     669             : 
     670             : #define WRT_SYSCTL(name) \
     671             :         (normalized_sysctl_##name = sysctl_##name / (factor))
     672           0 :         WRT_SYSCTL(sched_min_granularity);
     673           0 :         WRT_SYSCTL(sched_latency);
     674           0 :         WRT_SYSCTL(sched_wakeup_granularity);
     675             : #undef WRT_SYSCTL
     676             : 
     677           0 :         return 0;
     678             : }
     679             : #endif
     680             : 
     681             : /*
     682             :  * delta /= w
     683             :  */
     684             : static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
     685             : {
     686         313 :         if (unlikely(se->load.weight != NICE_0_LOAD))
     687           0 :                 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
     688             : 
     689             :         return delta;
     690             : }
     691             : 
     692             : /*
     693             :  * The idea is to set a period in which each task runs once.
     694             :  *
     695             :  * When there are too many tasks (sched_nr_latency) we have to stretch
     696             :  * this period because otherwise the slices get too small.
     697             :  *
     698             :  * p = (nr <= nl) ? l : l*nr/nl
     699             :  */
     700             : static u64 __sched_period(unsigned long nr_running)
     701             : {
     702         110 :         if (unlikely(nr_running > sched_nr_latency))
     703           0 :                 return nr_running * sysctl_sched_min_granularity;
     704             :         else
     705         110 :                 return sysctl_sched_latency;
     706             : }
     707             : 
     708             : static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
     709             : 
     710             : /*
     711             :  * We calculate the wall-time slice from the period by taking a part
     712             :  * proportional to the weight.
     713             :  *
     714             :  * s = p*P[w/rw]
     715             :  */
     716         110 : static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
     717             : {
     718         110 :         unsigned int nr_running = cfs_rq->nr_running;
     719         110 :         struct sched_entity *init_se = se;
     720             :         unsigned int min_gran;
     721             :         u64 slice;
     722             : 
     723         110 :         if (sched_feat(ALT_PERIOD))
     724         110 :                 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
     725             : 
     726         110 :         slice = __sched_period(nr_running + !se->on_rq);
     727             : 
     728         110 :         for_each_sched_entity(se) {
     729             :                 struct load_weight *load;
     730             :                 struct load_weight lw;
     731             :                 struct cfs_rq *qcfs_rq;
     732             : 
     733         220 :                 qcfs_rq = cfs_rq_of(se);
     734         110 :                 load = &qcfs_rq->load;
     735             : 
     736         110 :                 if (unlikely(!se->on_rq)) {
     737         107 :                         lw = qcfs_rq->load;
     738             : 
     739         214 :                         update_load_add(&lw, se->load.weight);
     740         107 :                         load = &lw;
     741             :                 }
     742         110 :                 slice = __calc_delta(slice, se->load.weight, load);
     743             :         }
     744             : 
     745         110 :         if (sched_feat(BASE_SLICE)) {
     746         110 :                 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
     747             :                         min_gran = sysctl_sched_idle_min_granularity;
     748             :                 else
     749         110 :                         min_gran = sysctl_sched_min_granularity;
     750             : 
     751         110 :                 slice = max_t(u64, slice, min_gran);
     752             :         }
     753             : 
     754         110 :         return slice;
     755             : }
     756             : 
     757             : /*
     758             :  * We calculate the vruntime slice of a to-be-inserted task.
     759             :  *
     760             :  * vs = s/w
     761             :  */
     762         107 : static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
     763             : {
     764         214 :         return calc_delta_fair(sched_slice(cfs_rq, se), se);
     765             : }
     766             : 
     767             : #include "pelt.h"
     768             : #ifdef CONFIG_SMP
     769             : 
     770             : static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
     771             : static unsigned long task_h_load(struct task_struct *p);
     772             : static unsigned long capacity_of(int cpu);
     773             : 
     774             : /* Give new sched_entity start runnable values to heavy its load in infant time */
     775             : void init_entity_runnable_average(struct sched_entity *se)
     776             : {
     777             :         struct sched_avg *sa = &se->avg;
     778             : 
     779             :         memset(sa, 0, sizeof(*sa));
     780             : 
     781             :         /*
     782             :          * Tasks are initialized with full load to be seen as heavy tasks until
     783             :          * they get a chance to stabilize to their real load level.
     784             :          * Group entities are initialized with zero load to reflect the fact that
     785             :          * nothing has been attached to the task group yet.
     786             :          */
     787             :         if (entity_is_task(se))
     788             :                 sa->load_avg = scale_load_down(se->load.weight);
     789             : 
     790             :         /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
     791             : }
     792             : 
     793             : static void attach_entity_cfs_rq(struct sched_entity *se);
     794             : 
     795             : /*
     796             :  * With new tasks being created, their initial util_avgs are extrapolated
     797             :  * based on the cfs_rq's current util_avg:
     798             :  *
     799             :  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
     800             :  *
     801             :  * However, in many cases, the above util_avg does not give a desired
     802             :  * value. Moreover, the sum of the util_avgs may be divergent, such
     803             :  * as when the series is a harmonic series.
     804             :  *
     805             :  * To solve this problem, we also cap the util_avg of successive tasks to
     806             :  * only 1/2 of the left utilization budget:
     807             :  *
     808             :  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
     809             :  *
     810             :  * where n denotes the nth task and cpu_scale the CPU capacity.
     811             :  *
     812             :  * For example, for a CPU with 1024 of capacity, a simplest series from
     813             :  * the beginning would be like:
     814             :  *
     815             :  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
     816             :  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
     817             :  *
     818             :  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
     819             :  * if util_avg > util_avg_cap.
     820             :  */
     821             : void post_init_entity_util_avg(struct task_struct *p)
     822             : {
     823             :         struct sched_entity *se = &p->se;
     824             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
     825             :         struct sched_avg *sa = &se->avg;
     826             :         long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
     827             :         long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
     828             : 
     829             :         if (cap > 0) {
     830             :                 if (cfs_rq->avg.util_avg != 0) {
     831             :                         sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
     832             :                         sa->util_avg /= (cfs_rq->avg.load_avg + 1);
     833             : 
     834             :                         if (sa->util_avg > cap)
     835             :                                 sa->util_avg = cap;
     836             :                 } else {
     837             :                         sa->util_avg = cap;
     838             :                 }
     839             :         }
     840             : 
     841             :         sa->runnable_avg = sa->util_avg;
     842             : 
     843             :         if (p->sched_class != &fair_sched_class) {
     844             :                 /*
     845             :                  * For !fair tasks do:
     846             :                  *
     847             :                 update_cfs_rq_load_avg(now, cfs_rq);
     848             :                 attach_entity_load_avg(cfs_rq, se);
     849             :                 switched_from_fair(rq, p);
     850             :                  *
     851             :                  * such that the next switched_to_fair() has the
     852             :                  * expected state.
     853             :                  */
     854             :                 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
     855             :                 return;
     856             :         }
     857             : 
     858             :         attach_entity_cfs_rq(se);
     859             : }
     860             : 
     861             : #else /* !CONFIG_SMP */
     862         107 : void init_entity_runnable_average(struct sched_entity *se)
     863             : {
     864         107 : }
     865         107 : void post_init_entity_util_avg(struct task_struct *p)
     866             : {
     867         107 : }
     868             : static void update_tg_load_avg(struct cfs_rq *cfs_rq)
     869             : {
     870             : }
     871             : #endif /* CONFIG_SMP */
     872             : 
     873             : /*
     874             :  * Update the current task's runtime statistics.
     875             :  */
     876        1863 : static void update_curr(struct cfs_rq *cfs_rq)
     877             : {
     878        1863 :         struct sched_entity *curr = cfs_rq->curr;
     879        3726 :         u64 now = rq_clock_task(rq_of(cfs_rq));
     880             :         u64 delta_exec;
     881             : 
     882        1863 :         if (unlikely(!curr))
     883             :                 return;
     884             : 
     885        1857 :         delta_exec = now - curr->exec_start;
     886        1857 :         if (unlikely((s64)delta_exec <= 0))
     887             :                 return;
     888             : 
     889           3 :         curr->exec_start = now;
     890             : 
     891             :         if (schedstat_enabled()) {
     892             :                 struct sched_statistics *stats;
     893             : 
     894             :                 stats = __schedstats_from_se(curr);
     895             :                 __schedstat_set(stats->exec_max,
     896             :                                 max(delta_exec, stats->exec_max));
     897             :         }
     898             : 
     899           3 :         curr->sum_exec_runtime += delta_exec;
     900             :         schedstat_add(cfs_rq->exec_clock, delta_exec);
     901             : 
     902           3 :         curr->vruntime += calc_delta_fair(delta_exec, curr);
     903           3 :         update_min_vruntime(cfs_rq);
     904             : 
     905             :         if (entity_is_task(curr)) {
     906           3 :                 struct task_struct *curtask = task_of(curr);
     907             : 
     908           3 :                 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
     909           3 :                 cgroup_account_cputime(curtask, delta_exec);
     910             :                 account_group_exec_runtime(curtask, delta_exec);
     911             :         }
     912             : 
     913             :         account_cfs_rq_runtime(cfs_rq, delta_exec);
     914             : }
     915             : 
     916           0 : static void update_curr_fair(struct rq *rq)
     917             : {
     918           0 :         update_curr(cfs_rq_of(&rq->curr->se));
     919           0 : }
     920             : 
     921             : static inline void
     922             : update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
     923             : {
     924             :         struct sched_statistics *stats;
     925           1 :         struct task_struct *p = NULL;
     926             : 
     927             :         if (!schedstat_enabled())
     928             :                 return;
     929             : 
     930             :         stats = __schedstats_from_se(se);
     931             : 
     932             :         if (entity_is_task(se))
     933             :                 p = task_of(se);
     934             : 
     935             :         __update_stats_wait_start(rq_of(cfs_rq), p, stats);
     936             : }
     937             : 
     938             : static inline void
     939             : update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
     940             : {
     941             :         struct sched_statistics *stats;
     942         620 :         struct task_struct *p = NULL;
     943             : 
     944             :         if (!schedstat_enabled())
     945             :                 return;
     946             : 
     947             :         stats = __schedstats_from_se(se);
     948             : 
     949             :         /*
     950             :          * When the sched_schedstat changes from 0 to 1, some sched se
     951             :          * maybe already in the runqueue, the se->statistics.wait_start
     952             :          * will be 0.So it will let the delta wrong. We need to avoid this
     953             :          * scenario.
     954             :          */
     955             :         if (unlikely(!schedstat_val(stats->wait_start)))
     956             :                 return;
     957             : 
     958             :         if (entity_is_task(se))
     959             :                 p = task_of(se);
     960             : 
     961             :         __update_stats_wait_end(rq_of(cfs_rq), p, stats);
     962             : }
     963             : 
     964             : static inline void
     965             : update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
     966             : {
     967             :         struct sched_statistics *stats;
     968             :         struct task_struct *tsk = NULL;
     969             : 
     970             :         if (!schedstat_enabled())
     971             :                 return;
     972             : 
     973             :         stats = __schedstats_from_se(se);
     974             : 
     975             :         if (entity_is_task(se))
     976             :                 tsk = task_of(se);
     977             : 
     978             :         __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
     979             : }
     980             : 
     981             : /*
     982             :  * Task is being enqueued - update stats:
     983             :  */
     984             : static inline void
     985             : update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
     986             : {
     987             :         if (!schedstat_enabled())
     988             :                 return;
     989             : 
     990             :         /*
     991             :          * Are we enqueueing a waiting task? (for current tasks
     992             :          * a dequeue/enqueue event is a NOP)
     993             :          */
     994             :         if (se != cfs_rq->curr)
     995             :                 update_stats_wait_start_fair(cfs_rq, se);
     996             : 
     997             :         if (flags & ENQUEUE_WAKEUP)
     998             :                 update_stats_enqueue_sleeper_fair(cfs_rq, se);
     999             : }
    1000             : 
    1001             : static inline void
    1002             : update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    1003             : {
    1004             : 
    1005             :         if (!schedstat_enabled())
    1006             :                 return;
    1007             : 
    1008             :         /*
    1009             :          * Mark the end of the wait period if dequeueing a
    1010             :          * waiting task:
    1011             :          */
    1012             :         if (se != cfs_rq->curr)
    1013             :                 update_stats_wait_end_fair(cfs_rq, se);
    1014             : 
    1015             :         if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
    1016             :                 struct task_struct *tsk = task_of(se);
    1017             :                 unsigned int state;
    1018             : 
    1019             :                 /* XXX racy against TTWU */
    1020             :                 state = READ_ONCE(tsk->__state);
    1021             :                 if (state & TASK_INTERRUPTIBLE)
    1022             :                         __schedstat_set(tsk->stats.sleep_start,
    1023             :                                       rq_clock(rq_of(cfs_rq)));
    1024             :                 if (state & TASK_UNINTERRUPTIBLE)
    1025             :                         __schedstat_set(tsk->stats.block_start,
    1026             :                                       rq_clock(rq_of(cfs_rq)));
    1027             :         }
    1028             : }
    1029             : 
    1030             : /*
    1031             :  * We are picking a new current task - update its stats:
    1032             :  */
    1033             : static inline void
    1034             : update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
    1035             : {
    1036             :         /*
    1037             :          * We are starting a new run period:
    1038             :          */
    1039        1240 :         se->exec_start = rq_clock_task(rq_of(cfs_rq));
    1040             : }
    1041             : 
    1042             : /**************************************************
    1043             :  * Scheduling class queueing methods:
    1044             :  */
    1045             : 
    1046             : #ifdef CONFIG_NUMA_BALANCING
    1047             : /*
    1048             :  * Approximate time to scan a full NUMA task in ms. The task scan period is
    1049             :  * calculated based on the tasks virtual memory size and
    1050             :  * numa_balancing_scan_size.
    1051             :  */
    1052             : unsigned int sysctl_numa_balancing_scan_period_min = 1000;
    1053             : unsigned int sysctl_numa_balancing_scan_period_max = 60000;
    1054             : 
    1055             : /* Portion of address space to scan in MB */
    1056             : unsigned int sysctl_numa_balancing_scan_size = 256;
    1057             : 
    1058             : /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
    1059             : unsigned int sysctl_numa_balancing_scan_delay = 1000;
    1060             : 
    1061             : struct numa_group {
    1062             :         refcount_t refcount;
    1063             : 
    1064             :         spinlock_t lock; /* nr_tasks, tasks */
    1065             :         int nr_tasks;
    1066             :         pid_t gid;
    1067             :         int active_nodes;
    1068             : 
    1069             :         struct rcu_head rcu;
    1070             :         unsigned long total_faults;
    1071             :         unsigned long max_faults_cpu;
    1072             :         /*
    1073             :          * faults[] array is split into two regions: faults_mem and faults_cpu.
    1074             :          *
    1075             :          * Faults_cpu is used to decide whether memory should move
    1076             :          * towards the CPU. As a consequence, these stats are weighted
    1077             :          * more by CPU use than by memory faults.
    1078             :          */
    1079             :         unsigned long faults[];
    1080             : };
    1081             : 
    1082             : /*
    1083             :  * For functions that can be called in multiple contexts that permit reading
    1084             :  * ->numa_group (see struct task_struct for locking rules).
    1085             :  */
    1086             : static struct numa_group *deref_task_numa_group(struct task_struct *p)
    1087             : {
    1088             :         return rcu_dereference_check(p->numa_group, p == current ||
    1089             :                 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
    1090             : }
    1091             : 
    1092             : static struct numa_group *deref_curr_numa_group(struct task_struct *p)
    1093             : {
    1094             :         return rcu_dereference_protected(p->numa_group, p == current);
    1095             : }
    1096             : 
    1097             : static inline unsigned long group_faults_priv(struct numa_group *ng);
    1098             : static inline unsigned long group_faults_shared(struct numa_group *ng);
    1099             : 
    1100             : static unsigned int task_nr_scan_windows(struct task_struct *p)
    1101             : {
    1102             :         unsigned long rss = 0;
    1103             :         unsigned long nr_scan_pages;
    1104             : 
    1105             :         /*
    1106             :          * Calculations based on RSS as non-present and empty pages are skipped
    1107             :          * by the PTE scanner and NUMA hinting faults should be trapped based
    1108             :          * on resident pages
    1109             :          */
    1110             :         nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
    1111             :         rss = get_mm_rss(p->mm);
    1112             :         if (!rss)
    1113             :                 rss = nr_scan_pages;
    1114             : 
    1115             :         rss = round_up(rss, nr_scan_pages);
    1116             :         return rss / nr_scan_pages;
    1117             : }
    1118             : 
    1119             : /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
    1120             : #define MAX_SCAN_WINDOW 2560
    1121             : 
    1122             : static unsigned int task_scan_min(struct task_struct *p)
    1123             : {
    1124             :         unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
    1125             :         unsigned int scan, floor;
    1126             :         unsigned int windows = 1;
    1127             : 
    1128             :         if (scan_size < MAX_SCAN_WINDOW)
    1129             :                 windows = MAX_SCAN_WINDOW / scan_size;
    1130             :         floor = 1000 / windows;
    1131             : 
    1132             :         scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
    1133             :         return max_t(unsigned int, floor, scan);
    1134             : }
    1135             : 
    1136             : static unsigned int task_scan_start(struct task_struct *p)
    1137             : {
    1138             :         unsigned long smin = task_scan_min(p);
    1139             :         unsigned long period = smin;
    1140             :         struct numa_group *ng;
    1141             : 
    1142             :         /* Scale the maximum scan period with the amount of shared memory. */
    1143             :         rcu_read_lock();
    1144             :         ng = rcu_dereference(p->numa_group);
    1145             :         if (ng) {
    1146             :                 unsigned long shared = group_faults_shared(ng);
    1147             :                 unsigned long private = group_faults_priv(ng);
    1148             : 
    1149             :                 period *= refcount_read(&ng->refcount);
    1150             :                 period *= shared + 1;
    1151             :                 period /= private + shared + 1;
    1152             :         }
    1153             :         rcu_read_unlock();
    1154             : 
    1155             :         return max(smin, period);
    1156             : }
    1157             : 
    1158             : static unsigned int task_scan_max(struct task_struct *p)
    1159             : {
    1160             :         unsigned long smin = task_scan_min(p);
    1161             :         unsigned long smax;
    1162             :         struct numa_group *ng;
    1163             : 
    1164             :         /* Watch for min being lower than max due to floor calculations */
    1165             :         smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
    1166             : 
    1167             :         /* Scale the maximum scan period with the amount of shared memory. */
    1168             :         ng = deref_curr_numa_group(p);
    1169             :         if (ng) {
    1170             :                 unsigned long shared = group_faults_shared(ng);
    1171             :                 unsigned long private = group_faults_priv(ng);
    1172             :                 unsigned long period = smax;
    1173             : 
    1174             :                 period *= refcount_read(&ng->refcount);
    1175             :                 period *= shared + 1;
    1176             :                 period /= private + shared + 1;
    1177             : 
    1178             :                 smax = max(smax, period);
    1179             :         }
    1180             : 
    1181             :         return max(smin, smax);
    1182             : }
    1183             : 
    1184             : static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
    1185             : {
    1186             :         rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
    1187             :         rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
    1188             : }
    1189             : 
    1190             : static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
    1191             : {
    1192             :         rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
    1193             :         rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
    1194             : }
    1195             : 
    1196             : /* Shared or private faults. */
    1197             : #define NR_NUMA_HINT_FAULT_TYPES 2
    1198             : 
    1199             : /* Memory and CPU locality */
    1200             : #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
    1201             : 
    1202             : /* Averaged statistics, and temporary buffers. */
    1203             : #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
    1204             : 
    1205             : pid_t task_numa_group_id(struct task_struct *p)
    1206             : {
    1207             :         struct numa_group *ng;
    1208             :         pid_t gid = 0;
    1209             : 
    1210             :         rcu_read_lock();
    1211             :         ng = rcu_dereference(p->numa_group);
    1212             :         if (ng)
    1213             :                 gid = ng->gid;
    1214             :         rcu_read_unlock();
    1215             : 
    1216             :         return gid;
    1217             : }
    1218             : 
    1219             : /*
    1220             :  * The averaged statistics, shared & private, memory & CPU,
    1221             :  * occupy the first half of the array. The second half of the
    1222             :  * array is for current counters, which are averaged into the
    1223             :  * first set by task_numa_placement.
    1224             :  */
    1225             : static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
    1226             : {
    1227             :         return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
    1228             : }
    1229             : 
    1230             : static inline unsigned long task_faults(struct task_struct *p, int nid)
    1231             : {
    1232             :         if (!p->numa_faults)
    1233             :                 return 0;
    1234             : 
    1235             :         return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
    1236             :                 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
    1237             : }
    1238             : 
    1239             : static inline unsigned long group_faults(struct task_struct *p, int nid)
    1240             : {
    1241             :         struct numa_group *ng = deref_task_numa_group(p);
    1242             : 
    1243             :         if (!ng)
    1244             :                 return 0;
    1245             : 
    1246             :         return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
    1247             :                 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
    1248             : }
    1249             : 
    1250             : static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
    1251             : {
    1252             :         return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
    1253             :                 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
    1254             : }
    1255             : 
    1256             : static inline unsigned long group_faults_priv(struct numa_group *ng)
    1257             : {
    1258             :         unsigned long faults = 0;
    1259             :         int node;
    1260             : 
    1261             :         for_each_online_node(node) {
    1262             :                 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
    1263             :         }
    1264             : 
    1265             :         return faults;
    1266             : }
    1267             : 
    1268             : static inline unsigned long group_faults_shared(struct numa_group *ng)
    1269             : {
    1270             :         unsigned long faults = 0;
    1271             :         int node;
    1272             : 
    1273             :         for_each_online_node(node) {
    1274             :                 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
    1275             :         }
    1276             : 
    1277             :         return faults;
    1278             : }
    1279             : 
    1280             : /*
    1281             :  * A node triggering more than 1/3 as many NUMA faults as the maximum is
    1282             :  * considered part of a numa group's pseudo-interleaving set. Migrations
    1283             :  * between these nodes are slowed down, to allow things to settle down.
    1284             :  */
    1285             : #define ACTIVE_NODE_FRACTION 3
    1286             : 
    1287             : static bool numa_is_active_node(int nid, struct numa_group *ng)
    1288             : {
    1289             :         return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
    1290             : }
    1291             : 
    1292             : /* Handle placement on systems where not all nodes are directly connected. */
    1293             : static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
    1294             :                                         int lim_dist, bool task)
    1295             : {
    1296             :         unsigned long score = 0;
    1297             :         int node, max_dist;
    1298             : 
    1299             :         /*
    1300             :          * All nodes are directly connected, and the same distance
    1301             :          * from each other. No need for fancy placement algorithms.
    1302             :          */
    1303             :         if (sched_numa_topology_type == NUMA_DIRECT)
    1304             :                 return 0;
    1305             : 
    1306             :         /* sched_max_numa_distance may be changed in parallel. */
    1307             :         max_dist = READ_ONCE(sched_max_numa_distance);
    1308             :         /*
    1309             :          * This code is called for each node, introducing N^2 complexity,
    1310             :          * which should be ok given the number of nodes rarely exceeds 8.
    1311             :          */
    1312             :         for_each_online_node(node) {
    1313             :                 unsigned long faults;
    1314             :                 int dist = node_distance(nid, node);
    1315             : 
    1316             :                 /*
    1317             :                  * The furthest away nodes in the system are not interesting
    1318             :                  * for placement; nid was already counted.
    1319             :                  */
    1320             :                 if (dist >= max_dist || node == nid)
    1321             :                         continue;
    1322             : 
    1323             :                 /*
    1324             :                  * On systems with a backplane NUMA topology, compare groups
    1325             :                  * of nodes, and move tasks towards the group with the most
    1326             :                  * memory accesses. When comparing two nodes at distance
    1327             :                  * "hoplimit", only nodes closer by than "hoplimit" are part
    1328             :                  * of each group. Skip other nodes.
    1329             :                  */
    1330             :                 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
    1331             :                         continue;
    1332             : 
    1333             :                 /* Add up the faults from nearby nodes. */
    1334             :                 if (task)
    1335             :                         faults = task_faults(p, node);
    1336             :                 else
    1337             :                         faults = group_faults(p, node);
    1338             : 
    1339             :                 /*
    1340             :                  * On systems with a glueless mesh NUMA topology, there are
    1341             :                  * no fixed "groups of nodes". Instead, nodes that are not
    1342             :                  * directly connected bounce traffic through intermediate
    1343             :                  * nodes; a numa_group can occupy any set of nodes.
    1344             :                  * The further away a node is, the less the faults count.
    1345             :                  * This seems to result in good task placement.
    1346             :                  */
    1347             :                 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
    1348             :                         faults *= (max_dist - dist);
    1349             :                         faults /= (max_dist - LOCAL_DISTANCE);
    1350             :                 }
    1351             : 
    1352             :                 score += faults;
    1353             :         }
    1354             : 
    1355             :         return score;
    1356             : }
    1357             : 
    1358             : /*
    1359             :  * These return the fraction of accesses done by a particular task, or
    1360             :  * task group, on a particular numa node.  The group weight is given a
    1361             :  * larger multiplier, in order to group tasks together that are almost
    1362             :  * evenly spread out between numa nodes.
    1363             :  */
    1364             : static inline unsigned long task_weight(struct task_struct *p, int nid,
    1365             :                                         int dist)
    1366             : {
    1367             :         unsigned long faults, total_faults;
    1368             : 
    1369             :         if (!p->numa_faults)
    1370             :                 return 0;
    1371             : 
    1372             :         total_faults = p->total_numa_faults;
    1373             : 
    1374             :         if (!total_faults)
    1375             :                 return 0;
    1376             : 
    1377             :         faults = task_faults(p, nid);
    1378             :         faults += score_nearby_nodes(p, nid, dist, true);
    1379             : 
    1380             :         return 1000 * faults / total_faults;
    1381             : }
    1382             : 
    1383             : static inline unsigned long group_weight(struct task_struct *p, int nid,
    1384             :                                          int dist)
    1385             : {
    1386             :         struct numa_group *ng = deref_task_numa_group(p);
    1387             :         unsigned long faults, total_faults;
    1388             : 
    1389             :         if (!ng)
    1390             :                 return 0;
    1391             : 
    1392             :         total_faults = ng->total_faults;
    1393             : 
    1394             :         if (!total_faults)
    1395             :                 return 0;
    1396             : 
    1397             :         faults = group_faults(p, nid);
    1398             :         faults += score_nearby_nodes(p, nid, dist, false);
    1399             : 
    1400             :         return 1000 * faults / total_faults;
    1401             : }
    1402             : 
    1403             : bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
    1404             :                                 int src_nid, int dst_cpu)
    1405             : {
    1406             :         struct numa_group *ng = deref_curr_numa_group(p);
    1407             :         int dst_nid = cpu_to_node(dst_cpu);
    1408             :         int last_cpupid, this_cpupid;
    1409             : 
    1410             :         this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
    1411             :         last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
    1412             : 
    1413             :         /*
    1414             :          * Allow first faults or private faults to migrate immediately early in
    1415             :          * the lifetime of a task. The magic number 4 is based on waiting for
    1416             :          * two full passes of the "multi-stage node selection" test that is
    1417             :          * executed below.
    1418             :          */
    1419             :         if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
    1420             :             (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
    1421             :                 return true;
    1422             : 
    1423             :         /*
    1424             :          * Multi-stage node selection is used in conjunction with a periodic
    1425             :          * migration fault to build a temporal task<->page relation. By using
    1426             :          * a two-stage filter we remove short/unlikely relations.
    1427             :          *
    1428             :          * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
    1429             :          * a task's usage of a particular page (n_p) per total usage of this
    1430             :          * page (n_t) (in a given time-span) to a probability.
    1431             :          *
    1432             :          * Our periodic faults will sample this probability and getting the
    1433             :          * same result twice in a row, given these samples are fully
    1434             :          * independent, is then given by P(n)^2, provided our sample period
    1435             :          * is sufficiently short compared to the usage pattern.
    1436             :          *
    1437             :          * This quadric squishes small probabilities, making it less likely we
    1438             :          * act on an unlikely task<->page relation.
    1439             :          */
    1440             :         if (!cpupid_pid_unset(last_cpupid) &&
    1441             :                                 cpupid_to_nid(last_cpupid) != dst_nid)
    1442             :                 return false;
    1443             : 
    1444             :         /* Always allow migrate on private faults */
    1445             :         if (cpupid_match_pid(p, last_cpupid))
    1446             :                 return true;
    1447             : 
    1448             :         /* A shared fault, but p->numa_group has not been set up yet. */
    1449             :         if (!ng)
    1450             :                 return true;
    1451             : 
    1452             :         /*
    1453             :          * Destination node is much more heavily used than the source
    1454             :          * node? Allow migration.
    1455             :          */
    1456             :         if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
    1457             :                                         ACTIVE_NODE_FRACTION)
    1458             :                 return true;
    1459             : 
    1460             :         /*
    1461             :          * Distribute memory according to CPU & memory use on each node,
    1462             :          * with 3/4 hysteresis to avoid unnecessary memory migrations:
    1463             :          *
    1464             :          * faults_cpu(dst)   3   faults_cpu(src)
    1465             :          * --------------- * - > ---------------
    1466             :          * faults_mem(dst)   4   faults_mem(src)
    1467             :          */
    1468             :         return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
    1469             :                group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
    1470             : }
    1471             : 
    1472             : /*
    1473             :  * 'numa_type' describes the node at the moment of load balancing.
    1474             :  */
    1475             : enum numa_type {
    1476             :         /* The node has spare capacity that can be used to run more tasks.  */
    1477             :         node_has_spare = 0,
    1478             :         /*
    1479             :          * The node is fully used and the tasks don't compete for more CPU
    1480             :          * cycles. Nevertheless, some tasks might wait before running.
    1481             :          */
    1482             :         node_fully_busy,
    1483             :         /*
    1484             :          * The node is overloaded and can't provide expected CPU cycles to all
    1485             :          * tasks.
    1486             :          */
    1487             :         node_overloaded
    1488             : };
    1489             : 
    1490             : /* Cached statistics for all CPUs within a node */
    1491             : struct numa_stats {
    1492             :         unsigned long load;
    1493             :         unsigned long runnable;
    1494             :         unsigned long util;
    1495             :         /* Total compute capacity of CPUs on a node */
    1496             :         unsigned long compute_capacity;
    1497             :         unsigned int nr_running;
    1498             :         unsigned int weight;
    1499             :         enum numa_type node_type;
    1500             :         int idle_cpu;
    1501             : };
    1502             : 
    1503             : static inline bool is_core_idle(int cpu)
    1504             : {
    1505             : #ifdef CONFIG_SCHED_SMT
    1506             :         int sibling;
    1507             : 
    1508             :         for_each_cpu(sibling, cpu_smt_mask(cpu)) {
    1509             :                 if (cpu == sibling)
    1510             :                         continue;
    1511             : 
    1512             :                 if (!idle_cpu(sibling))
    1513             :                         return false;
    1514             :         }
    1515             : #endif
    1516             : 
    1517             :         return true;
    1518             : }
    1519             : 
    1520             : struct task_numa_env {
    1521             :         struct task_struct *p;
    1522             : 
    1523             :         int src_cpu, src_nid;
    1524             :         int dst_cpu, dst_nid;
    1525             :         int imb_numa_nr;
    1526             : 
    1527             :         struct numa_stats src_stats, dst_stats;
    1528             : 
    1529             :         int imbalance_pct;
    1530             :         int dist;
    1531             : 
    1532             :         struct task_struct *best_task;
    1533             :         long best_imp;
    1534             :         int best_cpu;
    1535             : };
    1536             : 
    1537             : static unsigned long cpu_load(struct rq *rq);
    1538             : static unsigned long cpu_runnable(struct rq *rq);
    1539             : static inline long adjust_numa_imbalance(int imbalance,
    1540             :                                         int dst_running, int imb_numa_nr);
    1541             : 
    1542             : static inline enum
    1543             : numa_type numa_classify(unsigned int imbalance_pct,
    1544             :                          struct numa_stats *ns)
    1545             : {
    1546             :         if ((ns->nr_running > ns->weight) &&
    1547             :             (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
    1548             :              ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
    1549             :                 return node_overloaded;
    1550             : 
    1551             :         if ((ns->nr_running < ns->weight) ||
    1552             :             (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
    1553             :              ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
    1554             :                 return node_has_spare;
    1555             : 
    1556             :         return node_fully_busy;
    1557             : }
    1558             : 
    1559             : #ifdef CONFIG_SCHED_SMT
    1560             : /* Forward declarations of select_idle_sibling helpers */
    1561             : static inline bool test_idle_cores(int cpu, bool def);
    1562             : static inline int numa_idle_core(int idle_core, int cpu)
    1563             : {
    1564             :         if (!static_branch_likely(&sched_smt_present) ||
    1565             :             idle_core >= 0 || !test_idle_cores(cpu, false))
    1566             :                 return idle_core;
    1567             : 
    1568             :         /*
    1569             :          * Prefer cores instead of packing HT siblings
    1570             :          * and triggering future load balancing.
    1571             :          */
    1572             :         if (is_core_idle(cpu))
    1573             :                 idle_core = cpu;
    1574             : 
    1575             :         return idle_core;
    1576             : }
    1577             : #else
    1578             : static inline int numa_idle_core(int idle_core, int cpu)
    1579             : {
    1580             :         return idle_core;
    1581             : }
    1582             : #endif
    1583             : 
    1584             : /*
    1585             :  * Gather all necessary information to make NUMA balancing placement
    1586             :  * decisions that are compatible with standard load balancer. This
    1587             :  * borrows code and logic from update_sg_lb_stats but sharing a
    1588             :  * common implementation is impractical.
    1589             :  */
    1590             : static void update_numa_stats(struct task_numa_env *env,
    1591             :                               struct numa_stats *ns, int nid,
    1592             :                               bool find_idle)
    1593             : {
    1594             :         int cpu, idle_core = -1;
    1595             : 
    1596             :         memset(ns, 0, sizeof(*ns));
    1597             :         ns->idle_cpu = -1;
    1598             : 
    1599             :         rcu_read_lock();
    1600             :         for_each_cpu(cpu, cpumask_of_node(nid)) {
    1601             :                 struct rq *rq = cpu_rq(cpu);
    1602             : 
    1603             :                 ns->load += cpu_load(rq);
    1604             :                 ns->runnable += cpu_runnable(rq);
    1605             :                 ns->util += cpu_util_cfs(cpu);
    1606             :                 ns->nr_running += rq->cfs.h_nr_running;
    1607             :                 ns->compute_capacity += capacity_of(cpu);
    1608             : 
    1609             :                 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
    1610             :                         if (READ_ONCE(rq->numa_migrate_on) ||
    1611             :                             !cpumask_test_cpu(cpu, env->p->cpus_ptr))
    1612             :                                 continue;
    1613             : 
    1614             :                         if (ns->idle_cpu == -1)
    1615             :                                 ns->idle_cpu = cpu;
    1616             : 
    1617             :                         idle_core = numa_idle_core(idle_core, cpu);
    1618             :                 }
    1619             :         }
    1620             :         rcu_read_unlock();
    1621             : 
    1622             :         ns->weight = cpumask_weight(cpumask_of_node(nid));
    1623             : 
    1624             :         ns->node_type = numa_classify(env->imbalance_pct, ns);
    1625             : 
    1626             :         if (idle_core >= 0)
    1627             :                 ns->idle_cpu = idle_core;
    1628             : }
    1629             : 
    1630             : static void task_numa_assign(struct task_numa_env *env,
    1631             :                              struct task_struct *p, long imp)
    1632             : {
    1633             :         struct rq *rq = cpu_rq(env->dst_cpu);
    1634             : 
    1635             :         /* Check if run-queue part of active NUMA balance. */
    1636             :         if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
    1637             :                 int cpu;
    1638             :                 int start = env->dst_cpu;
    1639             : 
    1640             :                 /* Find alternative idle CPU. */
    1641             :                 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
    1642             :                         if (cpu == env->best_cpu || !idle_cpu(cpu) ||
    1643             :                             !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
    1644             :                                 continue;
    1645             :                         }
    1646             : 
    1647             :                         env->dst_cpu = cpu;
    1648             :                         rq = cpu_rq(env->dst_cpu);
    1649             :                         if (!xchg(&rq->numa_migrate_on, 1))
    1650             :                                 goto assign;
    1651             :                 }
    1652             : 
    1653             :                 /* Failed to find an alternative idle CPU */
    1654             :                 return;
    1655             :         }
    1656             : 
    1657             : assign:
    1658             :         /*
    1659             :          * Clear previous best_cpu/rq numa-migrate flag, since task now
    1660             :          * found a better CPU to move/swap.
    1661             :          */
    1662             :         if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
    1663             :                 rq = cpu_rq(env->best_cpu);
    1664             :                 WRITE_ONCE(rq->numa_migrate_on, 0);
    1665             :         }
    1666             : 
    1667             :         if (env->best_task)
    1668             :                 put_task_struct(env->best_task);
    1669             :         if (p)
    1670             :                 get_task_struct(p);
    1671             : 
    1672             :         env->best_task = p;
    1673             :         env->best_imp = imp;
    1674             :         env->best_cpu = env->dst_cpu;
    1675             : }
    1676             : 
    1677             : static bool load_too_imbalanced(long src_load, long dst_load,
    1678             :                                 struct task_numa_env *env)
    1679             : {
    1680             :         long imb, old_imb;
    1681             :         long orig_src_load, orig_dst_load;
    1682             :         long src_capacity, dst_capacity;
    1683             : 
    1684             :         /*
    1685             :          * The load is corrected for the CPU capacity available on each node.
    1686             :          *
    1687             :          * src_load        dst_load
    1688             :          * ------------ vs ---------
    1689             :          * src_capacity    dst_capacity
    1690             :          */
    1691             :         src_capacity = env->src_stats.compute_capacity;
    1692             :         dst_capacity = env->dst_stats.compute_capacity;
    1693             : 
    1694             :         imb = abs(dst_load * src_capacity - src_load * dst_capacity);
    1695             : 
    1696             :         orig_src_load = env->src_stats.load;
    1697             :         orig_dst_load = env->dst_stats.load;
    1698             : 
    1699             :         old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
    1700             : 
    1701             :         /* Would this change make things worse? */
    1702             :         return (imb > old_imb);
    1703             : }
    1704             : 
    1705             : /*
    1706             :  * Maximum NUMA importance can be 1998 (2*999);
    1707             :  * SMALLIMP @ 30 would be close to 1998/64.
    1708             :  * Used to deter task migration.
    1709             :  */
    1710             : #define SMALLIMP        30
    1711             : 
    1712             : /*
    1713             :  * This checks if the overall compute and NUMA accesses of the system would
    1714             :  * be improved if the source tasks was migrated to the target dst_cpu taking
    1715             :  * into account that it might be best if task running on the dst_cpu should
    1716             :  * be exchanged with the source task
    1717             :  */
    1718             : static bool task_numa_compare(struct task_numa_env *env,
    1719             :                               long taskimp, long groupimp, bool maymove)
    1720             : {
    1721             :         struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
    1722             :         struct rq *dst_rq = cpu_rq(env->dst_cpu);
    1723             :         long imp = p_ng ? groupimp : taskimp;
    1724             :         struct task_struct *cur;
    1725             :         long src_load, dst_load;
    1726             :         int dist = env->dist;
    1727             :         long moveimp = imp;
    1728             :         long load;
    1729             :         bool stopsearch = false;
    1730             : 
    1731             :         if (READ_ONCE(dst_rq->numa_migrate_on))
    1732             :                 return false;
    1733             : 
    1734             :         rcu_read_lock();
    1735             :         cur = rcu_dereference(dst_rq->curr);
    1736             :         if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
    1737             :                 cur = NULL;
    1738             : 
    1739             :         /*
    1740             :          * Because we have preemption enabled we can get migrated around and
    1741             :          * end try selecting ourselves (current == env->p) as a swap candidate.
    1742             :          */
    1743             :         if (cur == env->p) {
    1744             :                 stopsearch = true;
    1745             :                 goto unlock;
    1746             :         }
    1747             : 
    1748             :         if (!cur) {
    1749             :                 if (maymove && moveimp >= env->best_imp)
    1750             :                         goto assign;
    1751             :                 else
    1752             :                         goto unlock;
    1753             :         }
    1754             : 
    1755             :         /* Skip this swap candidate if cannot move to the source cpu. */
    1756             :         if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
    1757             :                 goto unlock;
    1758             : 
    1759             :         /*
    1760             :          * Skip this swap candidate if it is not moving to its preferred
    1761             :          * node and the best task is.
    1762             :          */
    1763             :         if (env->best_task &&
    1764             :             env->best_task->numa_preferred_nid == env->src_nid &&
    1765             :             cur->numa_preferred_nid != env->src_nid) {
    1766             :                 goto unlock;
    1767             :         }
    1768             : 
    1769             :         /*
    1770             :          * "imp" is the fault differential for the source task between the
    1771             :          * source and destination node. Calculate the total differential for
    1772             :          * the source task and potential destination task. The more negative
    1773             :          * the value is, the more remote accesses that would be expected to
    1774             :          * be incurred if the tasks were swapped.
    1775             :          *
    1776             :          * If dst and source tasks are in the same NUMA group, or not
    1777             :          * in any group then look only at task weights.
    1778             :          */
    1779             :         cur_ng = rcu_dereference(cur->numa_group);
    1780             :         if (cur_ng == p_ng) {
    1781             :                 imp = taskimp + task_weight(cur, env->src_nid, dist) -
    1782             :                       task_weight(cur, env->dst_nid, dist);
    1783             :                 /*
    1784             :                  * Add some hysteresis to prevent swapping the
    1785             :                  * tasks within a group over tiny differences.
    1786             :                  */
    1787             :                 if (cur_ng)
    1788             :                         imp -= imp / 16;
    1789             :         } else {
    1790             :                 /*
    1791             :                  * Compare the group weights. If a task is all by itself
    1792             :                  * (not part of a group), use the task weight instead.
    1793             :                  */
    1794             :                 if (cur_ng && p_ng)
    1795             :                         imp += group_weight(cur, env->src_nid, dist) -
    1796             :                                group_weight(cur, env->dst_nid, dist);
    1797             :                 else
    1798             :                         imp += task_weight(cur, env->src_nid, dist) -
    1799             :                                task_weight(cur, env->dst_nid, dist);
    1800             :         }
    1801             : 
    1802             :         /* Discourage picking a task already on its preferred node */
    1803             :         if (cur->numa_preferred_nid == env->dst_nid)
    1804             :                 imp -= imp / 16;
    1805             : 
    1806             :         /*
    1807             :          * Encourage picking a task that moves to its preferred node.
    1808             :          * This potentially makes imp larger than it's maximum of
    1809             :          * 1998 (see SMALLIMP and task_weight for why) but in this
    1810             :          * case, it does not matter.
    1811             :          */
    1812             :         if (cur->numa_preferred_nid == env->src_nid)
    1813             :                 imp += imp / 8;
    1814             : 
    1815             :         if (maymove && moveimp > imp && moveimp > env->best_imp) {
    1816             :                 imp = moveimp;
    1817             :                 cur = NULL;
    1818             :                 goto assign;
    1819             :         }
    1820             : 
    1821             :         /*
    1822             :          * Prefer swapping with a task moving to its preferred node over a
    1823             :          * task that is not.
    1824             :          */
    1825             :         if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
    1826             :             env->best_task->numa_preferred_nid != env->src_nid) {
    1827             :                 goto assign;
    1828             :         }
    1829             : 
    1830             :         /*
    1831             :          * If the NUMA importance is less than SMALLIMP,
    1832             :          * task migration might only result in ping pong
    1833             :          * of tasks and also hurt performance due to cache
    1834             :          * misses.
    1835             :          */
    1836             :         if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
    1837             :                 goto unlock;
    1838             : 
    1839             :         /*
    1840             :          * In the overloaded case, try and keep the load balanced.
    1841             :          */
    1842             :         load = task_h_load(env->p) - task_h_load(cur);
    1843             :         if (!load)
    1844             :                 goto assign;
    1845             : 
    1846             :         dst_load = env->dst_stats.load + load;
    1847             :         src_load = env->src_stats.load - load;
    1848             : 
    1849             :         if (load_too_imbalanced(src_load, dst_load, env))
    1850             :                 goto unlock;
    1851             : 
    1852             : assign:
    1853             :         /* Evaluate an idle CPU for a task numa move. */
    1854             :         if (!cur) {
    1855             :                 int cpu = env->dst_stats.idle_cpu;
    1856             : 
    1857             :                 /* Nothing cached so current CPU went idle since the search. */
    1858             :                 if (cpu < 0)
    1859             :                         cpu = env->dst_cpu;
    1860             : 
    1861             :                 /*
    1862             :                  * If the CPU is no longer truly idle and the previous best CPU
    1863             :                  * is, keep using it.
    1864             :                  */
    1865             :                 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
    1866             :                     idle_cpu(env->best_cpu)) {
    1867             :                         cpu = env->best_cpu;
    1868             :                 }
    1869             : 
    1870             :                 env->dst_cpu = cpu;
    1871             :         }
    1872             : 
    1873             :         task_numa_assign(env, cur, imp);
    1874             : 
    1875             :         /*
    1876             :          * If a move to idle is allowed because there is capacity or load
    1877             :          * balance improves then stop the search. While a better swap
    1878             :          * candidate may exist, a search is not free.
    1879             :          */
    1880             :         if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
    1881             :                 stopsearch = true;
    1882             : 
    1883             :         /*
    1884             :          * If a swap candidate must be identified and the current best task
    1885             :          * moves its preferred node then stop the search.
    1886             :          */
    1887             :         if (!maymove && env->best_task &&
    1888             :             env->best_task->numa_preferred_nid == env->src_nid) {
    1889             :                 stopsearch = true;
    1890             :         }
    1891             : unlock:
    1892             :         rcu_read_unlock();
    1893             : 
    1894             :         return stopsearch;
    1895             : }
    1896             : 
    1897             : static void task_numa_find_cpu(struct task_numa_env *env,
    1898             :                                 long taskimp, long groupimp)
    1899             : {
    1900             :         bool maymove = false;
    1901             :         int cpu;
    1902             : 
    1903             :         /*
    1904             :          * If dst node has spare capacity, then check if there is an
    1905             :          * imbalance that would be overruled by the load balancer.
    1906             :          */
    1907             :         if (env->dst_stats.node_type == node_has_spare) {
    1908             :                 unsigned int imbalance;
    1909             :                 int src_running, dst_running;
    1910             : 
    1911             :                 /*
    1912             :                  * Would movement cause an imbalance? Note that if src has
    1913             :                  * more running tasks that the imbalance is ignored as the
    1914             :                  * move improves the imbalance from the perspective of the
    1915             :                  * CPU load balancer.
    1916             :                  * */
    1917             :                 src_running = env->src_stats.nr_running - 1;
    1918             :                 dst_running = env->dst_stats.nr_running + 1;
    1919             :                 imbalance = max(0, dst_running - src_running);
    1920             :                 imbalance = adjust_numa_imbalance(imbalance, dst_running,
    1921             :                                                   env->imb_numa_nr);
    1922             : 
    1923             :                 /* Use idle CPU if there is no imbalance */
    1924             :                 if (!imbalance) {
    1925             :                         maymove = true;
    1926             :                         if (env->dst_stats.idle_cpu >= 0) {
    1927             :                                 env->dst_cpu = env->dst_stats.idle_cpu;
    1928             :                                 task_numa_assign(env, NULL, 0);
    1929             :                                 return;
    1930             :                         }
    1931             :                 }
    1932             :         } else {
    1933             :                 long src_load, dst_load, load;
    1934             :                 /*
    1935             :                  * If the improvement from just moving env->p direction is better
    1936             :                  * than swapping tasks around, check if a move is possible.
    1937             :                  */
    1938             :                 load = task_h_load(env->p);
    1939             :                 dst_load = env->dst_stats.load + load;
    1940             :                 src_load = env->src_stats.load - load;
    1941             :                 maymove = !load_too_imbalanced(src_load, dst_load, env);
    1942             :         }
    1943             : 
    1944             :         for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
    1945             :                 /* Skip this CPU if the source task cannot migrate */
    1946             :                 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
    1947             :                         continue;
    1948             : 
    1949             :                 env->dst_cpu = cpu;
    1950             :                 if (task_numa_compare(env, taskimp, groupimp, maymove))
    1951             :                         break;
    1952             :         }
    1953             : }
    1954             : 
    1955             : static int task_numa_migrate(struct task_struct *p)
    1956             : {
    1957             :         struct task_numa_env env = {
    1958             :                 .p = p,
    1959             : 
    1960             :                 .src_cpu = task_cpu(p),
    1961             :                 .src_nid = task_node(p),
    1962             : 
    1963             :                 .imbalance_pct = 112,
    1964             : 
    1965             :                 .best_task = NULL,
    1966             :                 .best_imp = 0,
    1967             :                 .best_cpu = -1,
    1968             :         };
    1969             :         unsigned long taskweight, groupweight;
    1970             :         struct sched_domain *sd;
    1971             :         long taskimp, groupimp;
    1972             :         struct numa_group *ng;
    1973             :         struct rq *best_rq;
    1974             :         int nid, ret, dist;
    1975             : 
    1976             :         /*
    1977             :          * Pick the lowest SD_NUMA domain, as that would have the smallest
    1978             :          * imbalance and would be the first to start moving tasks about.
    1979             :          *
    1980             :          * And we want to avoid any moving of tasks about, as that would create
    1981             :          * random movement of tasks -- counter the numa conditions we're trying
    1982             :          * to satisfy here.
    1983             :          */
    1984             :         rcu_read_lock();
    1985             :         sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
    1986             :         if (sd) {
    1987             :                 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
    1988             :                 env.imb_numa_nr = sd->imb_numa_nr;
    1989             :         }
    1990             :         rcu_read_unlock();
    1991             : 
    1992             :         /*
    1993             :          * Cpusets can break the scheduler domain tree into smaller
    1994             :          * balance domains, some of which do not cross NUMA boundaries.
    1995             :          * Tasks that are "trapped" in such domains cannot be migrated
    1996             :          * elsewhere, so there is no point in (re)trying.
    1997             :          */
    1998             :         if (unlikely(!sd)) {
    1999             :                 sched_setnuma(p, task_node(p));
    2000             :                 return -EINVAL;
    2001             :         }
    2002             : 
    2003             :         env.dst_nid = p->numa_preferred_nid;
    2004             :         dist = env.dist = node_distance(env.src_nid, env.dst_nid);
    2005             :         taskweight = task_weight(p, env.src_nid, dist);
    2006             :         groupweight = group_weight(p, env.src_nid, dist);
    2007             :         update_numa_stats(&env, &env.src_stats, env.src_nid, false);
    2008             :         taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
    2009             :         groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
    2010             :         update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
    2011             : 
    2012             :         /* Try to find a spot on the preferred nid. */
    2013             :         task_numa_find_cpu(&env, taskimp, groupimp);
    2014             : 
    2015             :         /*
    2016             :          * Look at other nodes in these cases:
    2017             :          * - there is no space available on the preferred_nid
    2018             :          * - the task is part of a numa_group that is interleaved across
    2019             :          *   multiple NUMA nodes; in order to better consolidate the group,
    2020             :          *   we need to check other locations.
    2021             :          */
    2022             :         ng = deref_curr_numa_group(p);
    2023             :         if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
    2024             :                 for_each_node_state(nid, N_CPU) {
    2025             :                         if (nid == env.src_nid || nid == p->numa_preferred_nid)
    2026             :                                 continue;
    2027             : 
    2028             :                         dist = node_distance(env.src_nid, env.dst_nid);
    2029             :                         if (sched_numa_topology_type == NUMA_BACKPLANE &&
    2030             :                                                 dist != env.dist) {
    2031             :                                 taskweight = task_weight(p, env.src_nid, dist);
    2032             :                                 groupweight = group_weight(p, env.src_nid, dist);
    2033             :                         }
    2034             : 
    2035             :                         /* Only consider nodes where both task and groups benefit */
    2036             :                         taskimp = task_weight(p, nid, dist) - taskweight;
    2037             :                         groupimp = group_weight(p, nid, dist) - groupweight;
    2038             :                         if (taskimp < 0 && groupimp < 0)
    2039             :                                 continue;
    2040             : 
    2041             :                         env.dist = dist;
    2042             :                         env.dst_nid = nid;
    2043             :                         update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
    2044             :                         task_numa_find_cpu(&env, taskimp, groupimp);
    2045             :                 }
    2046             :         }
    2047             : 
    2048             :         /*
    2049             :          * If the task is part of a workload that spans multiple NUMA nodes,
    2050             :          * and is migrating into one of the workload's active nodes, remember
    2051             :          * this node as the task's preferred numa node, so the workload can
    2052             :          * settle down.
    2053             :          * A task that migrated to a second choice node will be better off
    2054             :          * trying for a better one later. Do not set the preferred node here.
    2055             :          */
    2056             :         if (ng) {
    2057             :                 if (env.best_cpu == -1)
    2058             :                         nid = env.src_nid;
    2059             :                 else
    2060             :                         nid = cpu_to_node(env.best_cpu);
    2061             : 
    2062             :                 if (nid != p->numa_preferred_nid)
    2063             :                         sched_setnuma(p, nid);
    2064             :         }
    2065             : 
    2066             :         /* No better CPU than the current one was found. */
    2067             :         if (env.best_cpu == -1) {
    2068             :                 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
    2069             :                 return -EAGAIN;
    2070             :         }
    2071             : 
    2072             :         best_rq = cpu_rq(env.best_cpu);
    2073             :         if (env.best_task == NULL) {
    2074             :                 ret = migrate_task_to(p, env.best_cpu);
    2075             :                 WRITE_ONCE(best_rq->numa_migrate_on, 0);
    2076             :                 if (ret != 0)
    2077             :                         trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
    2078             :                 return ret;
    2079             :         }
    2080             : 
    2081             :         ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
    2082             :         WRITE_ONCE(best_rq->numa_migrate_on, 0);
    2083             : 
    2084             :         if (ret != 0)
    2085             :                 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
    2086             :         put_task_struct(env.best_task);
    2087             :         return ret;
    2088             : }
    2089             : 
    2090             : /* Attempt to migrate a task to a CPU on the preferred node. */
    2091             : static void numa_migrate_preferred(struct task_struct *p)
    2092             : {
    2093             :         unsigned long interval = HZ;
    2094             : 
    2095             :         /* This task has no NUMA fault statistics yet */
    2096             :         if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
    2097             :                 return;
    2098             : 
    2099             :         /* Periodically retry migrating the task to the preferred node */
    2100             :         interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
    2101             :         p->numa_migrate_retry = jiffies + interval;
    2102             : 
    2103             :         /* Success if task is already running on preferred CPU */
    2104             :         if (task_node(p) == p->numa_preferred_nid)
    2105             :                 return;
    2106             : 
    2107             :         /* Otherwise, try migrate to a CPU on the preferred node */
    2108             :         task_numa_migrate(p);
    2109             : }
    2110             : 
    2111             : /*
    2112             :  * Find out how many nodes the workload is actively running on. Do this by
    2113             :  * tracking the nodes from which NUMA hinting faults are triggered. This can
    2114             :  * be different from the set of nodes where the workload's memory is currently
    2115             :  * located.
    2116             :  */
    2117             : static void numa_group_count_active_nodes(struct numa_group *numa_group)
    2118             : {
    2119             :         unsigned long faults, max_faults = 0;
    2120             :         int nid, active_nodes = 0;
    2121             : 
    2122             :         for_each_node_state(nid, N_CPU) {
    2123             :                 faults = group_faults_cpu(numa_group, nid);
    2124             :                 if (faults > max_faults)
    2125             :                         max_faults = faults;
    2126             :         }
    2127             : 
    2128             :         for_each_node_state(nid, N_CPU) {
    2129             :                 faults = group_faults_cpu(numa_group, nid);
    2130             :                 if (faults * ACTIVE_NODE_FRACTION > max_faults)
    2131             :                         active_nodes++;
    2132             :         }
    2133             : 
    2134             :         numa_group->max_faults_cpu = max_faults;
    2135             :         numa_group->active_nodes = active_nodes;
    2136             : }
    2137             : 
    2138             : /*
    2139             :  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
    2140             :  * increments. The more local the fault statistics are, the higher the scan
    2141             :  * period will be for the next scan window. If local/(local+remote) ratio is
    2142             :  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
    2143             :  * the scan period will decrease. Aim for 70% local accesses.
    2144             :  */
    2145             : #define NUMA_PERIOD_SLOTS 10
    2146             : #define NUMA_PERIOD_THRESHOLD 7
    2147             : 
    2148             : /*
    2149             :  * Increase the scan period (slow down scanning) if the majority of
    2150             :  * our memory is already on our local node, or if the majority of
    2151             :  * the page accesses are shared with other processes.
    2152             :  * Otherwise, decrease the scan period.
    2153             :  */
    2154             : static void update_task_scan_period(struct task_struct *p,
    2155             :                         unsigned long shared, unsigned long private)
    2156             : {
    2157             :         unsigned int period_slot;
    2158             :         int lr_ratio, ps_ratio;
    2159             :         int diff;
    2160             : 
    2161             :         unsigned long remote = p->numa_faults_locality[0];
    2162             :         unsigned long local = p->numa_faults_locality[1];
    2163             : 
    2164             :         /*
    2165             :          * If there were no record hinting faults then either the task is
    2166             :          * completely idle or all activity is in areas that are not of interest
    2167             :          * to automatic numa balancing. Related to that, if there were failed
    2168             :          * migration then it implies we are migrating too quickly or the local
    2169             :          * node is overloaded. In either case, scan slower
    2170             :          */
    2171             :         if (local + shared == 0 || p->numa_faults_locality[2]) {
    2172             :                 p->numa_scan_period = min(p->numa_scan_period_max,
    2173             :                         p->numa_scan_period << 1);
    2174             : 
    2175             :                 p->mm->numa_next_scan = jiffies +
    2176             :                         msecs_to_jiffies(p->numa_scan_period);
    2177             : 
    2178             :                 return;
    2179             :         }
    2180             : 
    2181             :         /*
    2182             :          * Prepare to scale scan period relative to the current period.
    2183             :          *       == NUMA_PERIOD_THRESHOLD scan period stays the same
    2184             :          *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
    2185             :          *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
    2186             :          */
    2187             :         period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
    2188             :         lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
    2189             :         ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
    2190             : 
    2191             :         if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
    2192             :                 /*
    2193             :                  * Most memory accesses are local. There is no need to
    2194             :                  * do fast NUMA scanning, since memory is already local.
    2195             :                  */
    2196             :                 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
    2197             :                 if (!slot)
    2198             :                         slot = 1;
    2199             :                 diff = slot * period_slot;
    2200             :         } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
    2201             :                 /*
    2202             :                  * Most memory accesses are shared with other tasks.
    2203             :                  * There is no point in continuing fast NUMA scanning,
    2204             :                  * since other tasks may just move the memory elsewhere.
    2205             :                  */
    2206             :                 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
    2207             :                 if (!slot)
    2208             :                         slot = 1;
    2209             :                 diff = slot * period_slot;
    2210             :         } else {
    2211             :                 /*
    2212             :                  * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
    2213             :                  * yet they are not on the local NUMA node. Speed up
    2214             :                  * NUMA scanning to get the memory moved over.
    2215             :                  */
    2216             :                 int ratio = max(lr_ratio, ps_ratio);
    2217             :                 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
    2218             :         }
    2219             : 
    2220             :         p->numa_scan_period = clamp(p->numa_scan_period + diff,
    2221             :                         task_scan_min(p), task_scan_max(p));
    2222             :         memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
    2223             : }
    2224             : 
    2225             : /*
    2226             :  * Get the fraction of time the task has been running since the last
    2227             :  * NUMA placement cycle. The scheduler keeps similar statistics, but
    2228             :  * decays those on a 32ms period, which is orders of magnitude off
    2229             :  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
    2230             :  * stats only if the task is so new there are no NUMA statistics yet.
    2231             :  */
    2232             : static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
    2233             : {
    2234             :         u64 runtime, delta, now;
    2235             :         /* Use the start of this time slice to avoid calculations. */
    2236             :         now = p->se.exec_start;
    2237             :         runtime = p->se.sum_exec_runtime;
    2238             : 
    2239             :         if (p->last_task_numa_placement) {
    2240             :                 delta = runtime - p->last_sum_exec_runtime;
    2241             :                 *period = now - p->last_task_numa_placement;
    2242             : 
    2243             :                 /* Avoid time going backwards, prevent potential divide error: */
    2244             :                 if (unlikely((s64)*period < 0))
    2245             :                         *period = 0;
    2246             :         } else {
    2247             :                 delta = p->se.avg.load_sum;
    2248             :                 *period = LOAD_AVG_MAX;
    2249             :         }
    2250             : 
    2251             :         p->last_sum_exec_runtime = runtime;
    2252             :         p->last_task_numa_placement = now;
    2253             : 
    2254             :         return delta;
    2255             : }
    2256             : 
    2257             : /*
    2258             :  * Determine the preferred nid for a task in a numa_group. This needs to
    2259             :  * be done in a way that produces consistent results with group_weight,
    2260             :  * otherwise workloads might not converge.
    2261             :  */
    2262             : static int preferred_group_nid(struct task_struct *p, int nid)
    2263             : {
    2264             :         nodemask_t nodes;
    2265             :         int dist;
    2266             : 
    2267             :         /* Direct connections between all NUMA nodes. */
    2268             :         if (sched_numa_topology_type == NUMA_DIRECT)
    2269             :                 return nid;
    2270             : 
    2271             :         /*
    2272             :          * On a system with glueless mesh NUMA topology, group_weight
    2273             :          * scores nodes according to the number of NUMA hinting faults on
    2274             :          * both the node itself, and on nearby nodes.
    2275             :          */
    2276             :         if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
    2277             :                 unsigned long score, max_score = 0;
    2278             :                 int node, max_node = nid;
    2279             : 
    2280             :                 dist = sched_max_numa_distance;
    2281             : 
    2282             :                 for_each_node_state(node, N_CPU) {
    2283             :                         score = group_weight(p, node, dist);
    2284             :                         if (score > max_score) {
    2285             :                                 max_score = score;
    2286             :                                 max_node = node;
    2287             :                         }
    2288             :                 }
    2289             :                 return max_node;
    2290             :         }
    2291             : 
    2292             :         /*
    2293             :          * Finding the preferred nid in a system with NUMA backplane
    2294             :          * interconnect topology is more involved. The goal is to locate
    2295             :          * tasks from numa_groups near each other in the system, and
    2296             :          * untangle workloads from different sides of the system. This requires
    2297             :          * searching down the hierarchy of node groups, recursively searching
    2298             :          * inside the highest scoring group of nodes. The nodemask tricks
    2299             :          * keep the complexity of the search down.
    2300             :          */
    2301             :         nodes = node_states[N_CPU];
    2302             :         for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
    2303             :                 unsigned long max_faults = 0;
    2304             :                 nodemask_t max_group = NODE_MASK_NONE;
    2305             :                 int a, b;
    2306             : 
    2307             :                 /* Are there nodes at this distance from each other? */
    2308             :                 if (!find_numa_distance(dist))
    2309             :                         continue;
    2310             : 
    2311             :                 for_each_node_mask(a, nodes) {
    2312             :                         unsigned long faults = 0;
    2313             :                         nodemask_t this_group;
    2314             :                         nodes_clear(this_group);
    2315             : 
    2316             :                         /* Sum group's NUMA faults; includes a==b case. */
    2317             :                         for_each_node_mask(b, nodes) {
    2318             :                                 if (node_distance(a, b) < dist) {
    2319             :                                         faults += group_faults(p, b);
    2320             :                                         node_set(b, this_group);
    2321             :                                         node_clear(b, nodes);
    2322             :                                 }
    2323             :                         }
    2324             : 
    2325             :                         /* Remember the top group. */
    2326             :                         if (faults > max_faults) {
    2327             :                                 max_faults = faults;
    2328             :                                 max_group = this_group;
    2329             :                                 /*
    2330             :                                  * subtle: at the smallest distance there is
    2331             :                                  * just one node left in each "group", the
    2332             :                                  * winner is the preferred nid.
    2333             :                                  */
    2334             :                                 nid = a;
    2335             :                         }
    2336             :                 }
    2337             :                 /* Next round, evaluate the nodes within max_group. */
    2338             :                 if (!max_faults)
    2339             :                         break;
    2340             :                 nodes = max_group;
    2341             :         }
    2342             :         return nid;
    2343             : }
    2344             : 
    2345             : static void task_numa_placement(struct task_struct *p)
    2346             : {
    2347             :         int seq, nid, max_nid = NUMA_NO_NODE;
    2348             :         unsigned long max_faults = 0;
    2349             :         unsigned long fault_types[2] = { 0, 0 };
    2350             :         unsigned long total_faults;
    2351             :         u64 runtime, period;
    2352             :         spinlock_t *group_lock = NULL;
    2353             :         struct numa_group *ng;
    2354             : 
    2355             :         /*
    2356             :          * The p->mm->numa_scan_seq field gets updated without
    2357             :          * exclusive access. Use READ_ONCE() here to ensure
    2358             :          * that the field is read in a single access:
    2359             :          */
    2360             :         seq = READ_ONCE(p->mm->numa_scan_seq);
    2361             :         if (p->numa_scan_seq == seq)
    2362             :                 return;
    2363             :         p->numa_scan_seq = seq;
    2364             :         p->numa_scan_period_max = task_scan_max(p);
    2365             : 
    2366             :         total_faults = p->numa_faults_locality[0] +
    2367             :                        p->numa_faults_locality[1];
    2368             :         runtime = numa_get_avg_runtime(p, &period);
    2369             : 
    2370             :         /* If the task is part of a group prevent parallel updates to group stats */
    2371             :         ng = deref_curr_numa_group(p);
    2372             :         if (ng) {
    2373             :                 group_lock = &ng->lock;
    2374             :                 spin_lock_irq(group_lock);
    2375             :         }
    2376             : 
    2377             :         /* Find the node with the highest number of faults */
    2378             :         for_each_online_node(nid) {
    2379             :                 /* Keep track of the offsets in numa_faults array */
    2380             :                 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
    2381             :                 unsigned long faults = 0, group_faults = 0;
    2382             :                 int priv;
    2383             : 
    2384             :                 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
    2385             :                         long diff, f_diff, f_weight;
    2386             : 
    2387             :                         mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
    2388             :                         membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
    2389             :                         cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
    2390             :                         cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
    2391             : 
    2392             :                         /* Decay existing window, copy faults since last scan */
    2393             :                         diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
    2394             :                         fault_types[priv] += p->numa_faults[membuf_idx];
    2395             :                         p->numa_faults[membuf_idx] = 0;
    2396             : 
    2397             :                         /*
    2398             :                          * Normalize the faults_from, so all tasks in a group
    2399             :                          * count according to CPU use, instead of by the raw
    2400             :                          * number of faults. Tasks with little runtime have
    2401             :                          * little over-all impact on throughput, and thus their
    2402             :                          * faults are less important.
    2403             :                          */
    2404             :                         f_weight = div64_u64(runtime << 16, period + 1);
    2405             :                         f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
    2406             :                                    (total_faults + 1);
    2407             :                         f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
    2408             :                         p->numa_faults[cpubuf_idx] = 0;
    2409             : 
    2410             :                         p->numa_faults[mem_idx] += diff;
    2411             :                         p->numa_faults[cpu_idx] += f_diff;
    2412             :                         faults += p->numa_faults[mem_idx];
    2413             :                         p->total_numa_faults += diff;
    2414             :                         if (ng) {
    2415             :                                 /*
    2416             :                                  * safe because we can only change our own group
    2417             :                                  *
    2418             :                                  * mem_idx represents the offset for a given
    2419             :                                  * nid and priv in a specific region because it
    2420             :                                  * is at the beginning of the numa_faults array.
    2421             :                                  */
    2422             :                                 ng->faults[mem_idx] += diff;
    2423             :                                 ng->faults[cpu_idx] += f_diff;
    2424             :                                 ng->total_faults += diff;
    2425             :                                 group_faults += ng->faults[mem_idx];
    2426             :                         }
    2427             :                 }
    2428             : 
    2429             :                 if (!ng) {
    2430             :                         if (faults > max_faults) {
    2431             :                                 max_faults = faults;
    2432             :                                 max_nid = nid;
    2433             :                         }
    2434             :                 } else if (group_faults > max_faults) {
    2435             :                         max_faults = group_faults;
    2436             :                         max_nid = nid;
    2437             :                 }
    2438             :         }
    2439             : 
    2440             :         /* Cannot migrate task to CPU-less node */
    2441             :         if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
    2442             :                 int near_nid = max_nid;
    2443             :                 int distance, near_distance = INT_MAX;
    2444             : 
    2445             :                 for_each_node_state(nid, N_CPU) {
    2446             :                         distance = node_distance(max_nid, nid);
    2447             :                         if (distance < near_distance) {
    2448             :                                 near_nid = nid;
    2449             :                                 near_distance = distance;
    2450             :                         }
    2451             :                 }
    2452             :                 max_nid = near_nid;
    2453             :         }
    2454             : 
    2455             :         if (ng) {
    2456             :                 numa_group_count_active_nodes(ng);
    2457             :                 spin_unlock_irq(group_lock);
    2458             :                 max_nid = preferred_group_nid(p, max_nid);
    2459             :         }
    2460             : 
    2461             :         if (max_faults) {
    2462             :                 /* Set the new preferred node */
    2463             :                 if (max_nid != p->numa_preferred_nid)
    2464             :                         sched_setnuma(p, max_nid);
    2465             :         }
    2466             : 
    2467             :         update_task_scan_period(p, fault_types[0], fault_types[1]);
    2468             : }
    2469             : 
    2470             : static inline int get_numa_group(struct numa_group *grp)
    2471             : {
    2472             :         return refcount_inc_not_zero(&grp->refcount);
    2473             : }
    2474             : 
    2475             : static inline void put_numa_group(struct numa_group *grp)
    2476             : {
    2477             :         if (refcount_dec_and_test(&grp->refcount))
    2478             :                 kfree_rcu(grp, rcu);
    2479             : }
    2480             : 
    2481             : static void task_numa_group(struct task_struct *p, int cpupid, int flags,
    2482             :                         int *priv)
    2483             : {
    2484             :         struct numa_group *grp, *my_grp;
    2485             :         struct task_struct *tsk;
    2486             :         bool join = false;
    2487             :         int cpu = cpupid_to_cpu(cpupid);
    2488             :         int i;
    2489             : 
    2490             :         if (unlikely(!deref_curr_numa_group(p))) {
    2491             :                 unsigned int size = sizeof(struct numa_group) +
    2492             :                                     NR_NUMA_HINT_FAULT_STATS *
    2493             :                                     nr_node_ids * sizeof(unsigned long);
    2494             : 
    2495             :                 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
    2496             :                 if (!grp)
    2497             :                         return;
    2498             : 
    2499             :                 refcount_set(&grp->refcount, 1);
    2500             :                 grp->active_nodes = 1;
    2501             :                 grp->max_faults_cpu = 0;
    2502             :                 spin_lock_init(&grp->lock);
    2503             :                 grp->gid = p->pid;
    2504             : 
    2505             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2506             :                         grp->faults[i] = p->numa_faults[i];
    2507             : 
    2508             :                 grp->total_faults = p->total_numa_faults;
    2509             : 
    2510             :                 grp->nr_tasks++;
    2511             :                 rcu_assign_pointer(p->numa_group, grp);
    2512             :         }
    2513             : 
    2514             :         rcu_read_lock();
    2515             :         tsk = READ_ONCE(cpu_rq(cpu)->curr);
    2516             : 
    2517             :         if (!cpupid_match_pid(tsk, cpupid))
    2518             :                 goto no_join;
    2519             : 
    2520             :         grp = rcu_dereference(tsk->numa_group);
    2521             :         if (!grp)
    2522             :                 goto no_join;
    2523             : 
    2524             :         my_grp = deref_curr_numa_group(p);
    2525             :         if (grp == my_grp)
    2526             :                 goto no_join;
    2527             : 
    2528             :         /*
    2529             :          * Only join the other group if its bigger; if we're the bigger group,
    2530             :          * the other task will join us.
    2531             :          */
    2532             :         if (my_grp->nr_tasks > grp->nr_tasks)
    2533             :                 goto no_join;
    2534             : 
    2535             :         /*
    2536             :          * Tie-break on the grp address.
    2537             :          */
    2538             :         if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
    2539             :                 goto no_join;
    2540             : 
    2541             :         /* Always join threads in the same process. */
    2542             :         if (tsk->mm == current->mm)
    2543             :                 join = true;
    2544             : 
    2545             :         /* Simple filter to avoid false positives due to PID collisions */
    2546             :         if (flags & TNF_SHARED)
    2547             :                 join = true;
    2548             : 
    2549             :         /* Update priv based on whether false sharing was detected */
    2550             :         *priv = !join;
    2551             : 
    2552             :         if (join && !get_numa_group(grp))
    2553             :                 goto no_join;
    2554             : 
    2555             :         rcu_read_unlock();
    2556             : 
    2557             :         if (!join)
    2558             :                 return;
    2559             : 
    2560             :         BUG_ON(irqs_disabled());
    2561             :         double_lock_irq(&my_grp->lock, &grp->lock);
    2562             : 
    2563             :         for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
    2564             :                 my_grp->faults[i] -= p->numa_faults[i];
    2565             :                 grp->faults[i] += p->numa_faults[i];
    2566             :         }
    2567             :         my_grp->total_faults -= p->total_numa_faults;
    2568             :         grp->total_faults += p->total_numa_faults;
    2569             : 
    2570             :         my_grp->nr_tasks--;
    2571             :         grp->nr_tasks++;
    2572             : 
    2573             :         spin_unlock(&my_grp->lock);
    2574             :         spin_unlock_irq(&grp->lock);
    2575             : 
    2576             :         rcu_assign_pointer(p->numa_group, grp);
    2577             : 
    2578             :         put_numa_group(my_grp);
    2579             :         return;
    2580             : 
    2581             : no_join:
    2582             :         rcu_read_unlock();
    2583             :         return;
    2584             : }
    2585             : 
    2586             : /*
    2587             :  * Get rid of NUMA statistics associated with a task (either current or dead).
    2588             :  * If @final is set, the task is dead and has reached refcount zero, so we can
    2589             :  * safely free all relevant data structures. Otherwise, there might be
    2590             :  * concurrent reads from places like load balancing and procfs, and we should
    2591             :  * reset the data back to default state without freeing ->numa_faults.
    2592             :  */
    2593             : void task_numa_free(struct task_struct *p, bool final)
    2594             : {
    2595             :         /* safe: p either is current or is being freed by current */
    2596             :         struct numa_group *grp = rcu_dereference_raw(p->numa_group);
    2597             :         unsigned long *numa_faults = p->numa_faults;
    2598             :         unsigned long flags;
    2599             :         int i;
    2600             : 
    2601             :         if (!numa_faults)
    2602             :                 return;
    2603             : 
    2604             :         if (grp) {
    2605             :                 spin_lock_irqsave(&grp->lock, flags);
    2606             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2607             :                         grp->faults[i] -= p->numa_faults[i];
    2608             :                 grp->total_faults -= p->total_numa_faults;
    2609             : 
    2610             :                 grp->nr_tasks--;
    2611             :                 spin_unlock_irqrestore(&grp->lock, flags);
    2612             :                 RCU_INIT_POINTER(p->numa_group, NULL);
    2613             :                 put_numa_group(grp);
    2614             :         }
    2615             : 
    2616             :         if (final) {
    2617             :                 p->numa_faults = NULL;
    2618             :                 kfree(numa_faults);
    2619             :         } else {
    2620             :                 p->total_numa_faults = 0;
    2621             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2622             :                         numa_faults[i] = 0;
    2623             :         }
    2624             : }
    2625             : 
    2626             : /*
    2627             :  * Got a PROT_NONE fault for a page on @node.
    2628             :  */
    2629             : void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
    2630             : {
    2631             :         struct task_struct *p = current;
    2632             :         bool migrated = flags & TNF_MIGRATED;
    2633             :         int cpu_node = task_node(current);
    2634             :         int local = !!(flags & TNF_FAULT_LOCAL);
    2635             :         struct numa_group *ng;
    2636             :         int priv;
    2637             : 
    2638             :         if (!static_branch_likely(&sched_numa_balancing))
    2639             :                 return;
    2640             : 
    2641             :         /* for example, ksmd faulting in a user's mm */
    2642             :         if (!p->mm)
    2643             :                 return;
    2644             : 
    2645             :         /* Allocate buffer to track faults on a per-node basis */
    2646             :         if (unlikely(!p->numa_faults)) {
    2647             :                 int size = sizeof(*p->numa_faults) *
    2648             :                            NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
    2649             : 
    2650             :                 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
    2651             :                 if (!p->numa_faults)
    2652             :                         return;
    2653             : 
    2654             :                 p->total_numa_faults = 0;
    2655             :                 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
    2656             :         }
    2657             : 
    2658             :         /*
    2659             :          * First accesses are treated as private, otherwise consider accesses
    2660             :          * to be private if the accessing pid has not changed
    2661             :          */
    2662             :         if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
    2663             :                 priv = 1;
    2664             :         } else {
    2665             :                 priv = cpupid_match_pid(p, last_cpupid);
    2666             :                 if (!priv && !(flags & TNF_NO_GROUP))
    2667             :                         task_numa_group(p, last_cpupid, flags, &priv);
    2668             :         }
    2669             : 
    2670             :         /*
    2671             :          * If a workload spans multiple NUMA nodes, a shared fault that
    2672             :          * occurs wholly within the set of nodes that the workload is
    2673             :          * actively using should be counted as local. This allows the
    2674             :          * scan rate to slow down when a workload has settled down.
    2675             :          */
    2676             :         ng = deref_curr_numa_group(p);
    2677             :         if (!priv && !local && ng && ng->active_nodes > 1 &&
    2678             :                                 numa_is_active_node(cpu_node, ng) &&
    2679             :                                 numa_is_active_node(mem_node, ng))
    2680             :                 local = 1;
    2681             : 
    2682             :         /*
    2683             :          * Retry to migrate task to preferred node periodically, in case it
    2684             :          * previously failed, or the scheduler moved us.
    2685             :          */
    2686             :         if (time_after(jiffies, p->numa_migrate_retry)) {
    2687             :                 task_numa_placement(p);
    2688             :                 numa_migrate_preferred(p);
    2689             :         }
    2690             : 
    2691             :         if (migrated)
    2692             :                 p->numa_pages_migrated += pages;
    2693             :         if (flags & TNF_MIGRATE_FAIL)
    2694             :                 p->numa_faults_locality[2] += pages;
    2695             : 
    2696             :         p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
    2697             :         p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
    2698             :         p->numa_faults_locality[local] += pages;
    2699             : }
    2700             : 
    2701             : static void reset_ptenuma_scan(struct task_struct *p)
    2702             : {
    2703             :         /*
    2704             :          * We only did a read acquisition of the mmap sem, so
    2705             :          * p->mm->numa_scan_seq is written to without exclusive access
    2706             :          * and the update is not guaranteed to be atomic. That's not
    2707             :          * much of an issue though, since this is just used for
    2708             :          * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
    2709             :          * expensive, to avoid any form of compiler optimizations:
    2710             :          */
    2711             :         WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
    2712             :         p->mm->numa_scan_offset = 0;
    2713             : }
    2714             : 
    2715             : /*
    2716             :  * The expensive part of numa migration is done from task_work context.
    2717             :  * Triggered from task_tick_numa().
    2718             :  */
    2719             : static void task_numa_work(struct callback_head *work)
    2720             : {
    2721             :         unsigned long migrate, next_scan, now = jiffies;
    2722             :         struct task_struct *p = current;
    2723             :         struct mm_struct *mm = p->mm;
    2724             :         u64 runtime = p->se.sum_exec_runtime;
    2725             :         struct vm_area_struct *vma;
    2726             :         unsigned long start, end;
    2727             :         unsigned long nr_pte_updates = 0;
    2728             :         long pages, virtpages;
    2729             : 
    2730             :         SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
    2731             : 
    2732             :         work->next = work;
    2733             :         /*
    2734             :          * Who cares about NUMA placement when they're dying.
    2735             :          *
    2736             :          * NOTE: make sure not to dereference p->mm before this check,
    2737             :          * exit_task_work() happens _after_ exit_mm() so we could be called
    2738             :          * without p->mm even though we still had it when we enqueued this
    2739             :          * work.
    2740             :          */
    2741             :         if (p->flags & PF_EXITING)
    2742             :                 return;
    2743             : 
    2744             :         if (!mm->numa_next_scan) {
    2745             :                 mm->numa_next_scan = now +
    2746             :                         msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
    2747             :         }
    2748             : 
    2749             :         /*
    2750             :          * Enforce maximal scan/migration frequency..
    2751             :          */
    2752             :         migrate = mm->numa_next_scan;
    2753             :         if (time_before(now, migrate))
    2754             :                 return;
    2755             : 
    2756             :         if (p->numa_scan_period == 0) {
    2757             :                 p->numa_scan_period_max = task_scan_max(p);
    2758             :                 p->numa_scan_period = task_scan_start(p);
    2759             :         }
    2760             : 
    2761             :         next_scan = now + msecs_to_jiffies(p->numa_scan_period);
    2762             :         if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
    2763             :                 return;
    2764             : 
    2765             :         /*
    2766             :          * Delay this task enough that another task of this mm will likely win
    2767             :          * the next time around.
    2768             :          */
    2769             :         p->node_stamp += 2 * TICK_NSEC;
    2770             : 
    2771             :         start = mm->numa_scan_offset;
    2772             :         pages = sysctl_numa_balancing_scan_size;
    2773             :         pages <<= 20 - PAGE_SHIFT; /* MB in pages */
    2774             :         virtpages = pages * 8;     /* Scan up to this much virtual space */
    2775             :         if (!pages)
    2776             :                 return;
    2777             : 
    2778             : 
    2779             :         if (!mmap_read_trylock(mm))
    2780             :                 return;
    2781             :         vma = find_vma(mm, start);
    2782             :         if (!vma) {
    2783             :                 reset_ptenuma_scan(p);
    2784             :                 start = 0;
    2785             :                 vma = mm->mmap;
    2786             :         }
    2787             :         for (; vma; vma = vma->vm_next) {
    2788             :                 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
    2789             :                         is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
    2790             :                         continue;
    2791             :                 }
    2792             : 
    2793             :                 /*
    2794             :                  * Shared library pages mapped by multiple processes are not
    2795             :                  * migrated as it is expected they are cache replicated. Avoid
    2796             :                  * hinting faults in read-only file-backed mappings or the vdso
    2797             :                  * as migrating the pages will be of marginal benefit.
    2798             :                  */
    2799             :                 if (!vma->vm_mm ||
    2800             :                     (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
    2801             :                         continue;
    2802             : 
    2803             :                 /*
    2804             :                  * Skip inaccessible VMAs to avoid any confusion between
    2805             :                  * PROT_NONE and NUMA hinting ptes
    2806             :                  */
    2807             :                 if (!vma_is_accessible(vma))
    2808             :                         continue;
    2809             : 
    2810             :                 do {
    2811             :                         start = max(start, vma->vm_start);
    2812             :                         end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
    2813             :                         end = min(end, vma->vm_end);
    2814             :                         nr_pte_updates = change_prot_numa(vma, start, end);
    2815             : 
    2816             :                         /*
    2817             :                          * Try to scan sysctl_numa_balancing_size worth of
    2818             :                          * hpages that have at least one present PTE that
    2819             :                          * is not already pte-numa. If the VMA contains
    2820             :                          * areas that are unused or already full of prot_numa
    2821             :                          * PTEs, scan up to virtpages, to skip through those
    2822             :                          * areas faster.
    2823             :                          */
    2824             :                         if (nr_pte_updates)
    2825             :                                 pages -= (end - start) >> PAGE_SHIFT;
    2826             :                         virtpages -= (end - start) >> PAGE_SHIFT;
    2827             : 
    2828             :                         start = end;
    2829             :                         if (pages <= 0 || virtpages <= 0)
    2830             :                                 goto out;
    2831             : 
    2832             :                         cond_resched();
    2833             :                 } while (end != vma->vm_end);
    2834             :         }
    2835             : 
    2836             : out:
    2837             :         /*
    2838             :          * It is possible to reach the end of the VMA list but the last few
    2839             :          * VMAs are not guaranteed to the vma_migratable. If they are not, we
    2840             :          * would find the !migratable VMA on the next scan but not reset the
    2841             :          * scanner to the start so check it now.
    2842             :          */
    2843             :         if (vma)
    2844             :                 mm->numa_scan_offset = start;
    2845             :         else
    2846             :                 reset_ptenuma_scan(p);
    2847             :         mmap_read_unlock(mm);
    2848             : 
    2849             :         /*
    2850             :          * Make sure tasks use at least 32x as much time to run other code
    2851             :          * than they used here, to limit NUMA PTE scanning overhead to 3% max.
    2852             :          * Usually update_task_scan_period slows down scanning enough; on an
    2853             :          * overloaded system we need to limit overhead on a per task basis.
    2854             :          */
    2855             :         if (unlikely(p->se.sum_exec_runtime != runtime)) {
    2856             :                 u64 diff = p->se.sum_exec_runtime - runtime;
    2857             :                 p->node_stamp += 32 * diff;
    2858             :         }
    2859             : }
    2860             : 
    2861             : void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
    2862             : {
    2863             :         int mm_users = 0;
    2864             :         struct mm_struct *mm = p->mm;
    2865             : 
    2866             :         if (mm) {
    2867             :                 mm_users = atomic_read(&mm->mm_users);
    2868             :                 if (mm_users == 1) {
    2869             :                         mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
    2870             :                         mm->numa_scan_seq = 0;
    2871             :                 }
    2872             :         }
    2873             :         p->node_stamp                        = 0;
    2874             :         p->numa_scan_seq             = mm ? mm->numa_scan_seq : 0;
    2875             :         p->numa_scan_period          = sysctl_numa_balancing_scan_delay;
    2876             :         /* Protect against double add, see task_tick_numa and task_numa_work */
    2877             :         p->numa_work.next            = &p->numa_work;
    2878             :         p->numa_faults                       = NULL;
    2879             :         p->numa_pages_migrated               = 0;
    2880             :         p->total_numa_faults         = 0;
    2881             :         RCU_INIT_POINTER(p->numa_group, NULL);
    2882             :         p->last_task_numa_placement  = 0;
    2883             :         p->last_sum_exec_runtime     = 0;
    2884             : 
    2885             :         init_task_work(&p->numa_work, task_numa_work);
    2886             : 
    2887             :         /* New address space, reset the preferred nid */
    2888             :         if (!(clone_flags & CLONE_VM)) {
    2889             :                 p->numa_preferred_nid = NUMA_NO_NODE;
    2890             :                 return;
    2891             :         }
    2892             : 
    2893             :         /*
    2894             :          * New thread, keep existing numa_preferred_nid which should be copied
    2895             :          * already by arch_dup_task_struct but stagger when scans start.
    2896             :          */
    2897             :         if (mm) {
    2898             :                 unsigned int delay;
    2899             : 
    2900             :                 delay = min_t(unsigned int, task_scan_max(current),
    2901             :                         current->numa_scan_period * mm_users * NSEC_PER_MSEC);
    2902             :                 delay += 2 * TICK_NSEC;
    2903             :                 p->node_stamp = delay;
    2904             :         }
    2905             : }
    2906             : 
    2907             : /*
    2908             :  * Drive the periodic memory faults..
    2909             :  */
    2910             : static void task_tick_numa(struct rq *rq, struct task_struct *curr)
    2911             : {
    2912             :         struct callback_head *work = &curr->numa_work;
    2913             :         u64 period, now;
    2914             : 
    2915             :         /*
    2916             :          * We don't care about NUMA placement if we don't have memory.
    2917             :          */
    2918             :         if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
    2919             :                 return;
    2920             : 
    2921             :         /*
    2922             :          * Using runtime rather than walltime has the dual advantage that
    2923             :          * we (mostly) drive the selection from busy threads and that the
    2924             :          * task needs to have done some actual work before we bother with
    2925             :          * NUMA placement.
    2926             :          */
    2927             :         now = curr->se.sum_exec_runtime;
    2928             :         period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
    2929             : 
    2930             :         if (now > curr->node_stamp + period) {
    2931             :                 if (!curr->node_stamp)
    2932             :                         curr->numa_scan_period = task_scan_start(curr);
    2933             :                 curr->node_stamp += period;
    2934             : 
    2935             :                 if (!time_before(jiffies, curr->mm->numa_next_scan))
    2936             :                         task_work_add(curr, work, TWA_RESUME);
    2937             :         }
    2938             : }
    2939             : 
    2940             : static void update_scan_period(struct task_struct *p, int new_cpu)
    2941             : {
    2942             :         int src_nid = cpu_to_node(task_cpu(p));
    2943             :         int dst_nid = cpu_to_node(new_cpu);
    2944             : 
    2945             :         if (!static_branch_likely(&sched_numa_balancing))
    2946             :                 return;
    2947             : 
    2948             :         if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
    2949             :                 return;
    2950             : 
    2951             :         if (src_nid == dst_nid)
    2952             :                 return;
    2953             : 
    2954             :         /*
    2955             :          * Allow resets if faults have been trapped before one scan
    2956             :          * has completed. This is most likely due to a new task that
    2957             :          * is pulled cross-node due to wakeups or load balancing.
    2958             :          */
    2959             :         if (p->numa_scan_seq) {
    2960             :                 /*
    2961             :                  * Avoid scan adjustments if moving to the preferred
    2962             :                  * node or if the task was not previously running on
    2963             :                  * the preferred node.
    2964             :                  */
    2965             :                 if (dst_nid == p->numa_preferred_nid ||
    2966             :                     (p->numa_preferred_nid != NUMA_NO_NODE &&
    2967             :                         src_nid != p->numa_preferred_nid))
    2968             :                         return;
    2969             :         }
    2970             : 
    2971             :         p->numa_scan_period = task_scan_start(p);
    2972             : }
    2973             : 
    2974             : #else
    2975             : static void task_tick_numa(struct rq *rq, struct task_struct *curr)
    2976             : {
    2977             : }
    2978             : 
    2979             : static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
    2980             : {
    2981             : }
    2982             : 
    2983             : static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
    2984             : {
    2985             : }
    2986             : 
    2987             : static inline void update_scan_period(struct task_struct *p, int new_cpu)
    2988             : {
    2989             : }
    2990             : 
    2991             : #endif /* CONFIG_NUMA_BALANCING */
    2992             : 
    2993             : static void
    2994             : account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    2995             : {
    2996        1240 :         update_load_add(&cfs_rq->load, se->load.weight);
    2997             : #ifdef CONFIG_SMP
    2998             :         if (entity_is_task(se)) {
    2999             :                 struct rq *rq = rq_of(cfs_rq);
    3000             : 
    3001             :                 account_numa_enqueue(rq, task_of(se));
    3002             :                 list_add(&se->group_node, &rq->cfs_tasks);
    3003             :         }
    3004             : #endif
    3005         620 :         cfs_rq->nr_running++;
    3006         620 :         if (se_is_idle(se))
    3007             :                 cfs_rq->idle_nr_running++;
    3008             : }
    3009             : 
    3010             : static void
    3011             : account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3012             : {
    3013        1236 :         update_load_sub(&cfs_rq->load, se->load.weight);
    3014             : #ifdef CONFIG_SMP
    3015             :         if (entity_is_task(se)) {
    3016             :                 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
    3017             :                 list_del_init(&se->group_node);
    3018             :         }
    3019             : #endif
    3020         618 :         cfs_rq->nr_running--;
    3021         618 :         if (se_is_idle(se))
    3022             :                 cfs_rq->idle_nr_running--;
    3023             : }
    3024             : 
    3025             : /*
    3026             :  * Signed add and clamp on underflow.
    3027             :  *
    3028             :  * Explicitly do a load-store to ensure the intermediate value never hits
    3029             :  * memory. This allows lockless observations without ever seeing the negative
    3030             :  * values.
    3031             :  */
    3032             : #define add_positive(_ptr, _val) do {                           \
    3033             :         typeof(_ptr) ptr = (_ptr);                              \
    3034             :         typeof(_val) val = (_val);                              \
    3035             :         typeof(*ptr) res, var = READ_ONCE(*ptr);                \
    3036             :                                                                 \
    3037             :         res = var + val;                                        \
    3038             :                                                                 \
    3039             :         if (val < 0 && res > var)                               \
    3040             :                 res = 0;                                        \
    3041             :                                                                 \
    3042             :         WRITE_ONCE(*ptr, res);                                  \
    3043             : } while (0)
    3044             : 
    3045             : /*
    3046             :  * Unsigned subtract and clamp on underflow.
    3047             :  *
    3048             :  * Explicitly do a load-store to ensure the intermediate value never hits
    3049             :  * memory. This allows lockless observations without ever seeing the negative
    3050             :  * values.
    3051             :  */
    3052             : #define sub_positive(_ptr, _val) do {                           \
    3053             :         typeof(_ptr) ptr = (_ptr);                              \
    3054             :         typeof(*ptr) val = (_val);                              \
    3055             :         typeof(*ptr) res, var = READ_ONCE(*ptr);                \
    3056             :         res = var - val;                                        \
    3057             :         if (res > var)                                               \
    3058             :                 res = 0;                                        \
    3059             :         WRITE_ONCE(*ptr, res);                                  \
    3060             : } while (0)
    3061             : 
    3062             : /*
    3063             :  * Remove and clamp on negative, from a local variable.
    3064             :  *
    3065             :  * A variant of sub_positive(), which does not use explicit load-store
    3066             :  * and is thus optimized for local variable updates.
    3067             :  */
    3068             : #define lsub_positive(_ptr, _val) do {                          \
    3069             :         typeof(_ptr) ptr = (_ptr);                              \
    3070             :         *ptr -= min_t(typeof(*ptr), *ptr, _val);                \
    3071             : } while (0)
    3072             : 
    3073             : #ifdef CONFIG_SMP
    3074             : static inline void
    3075             : enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3076             : {
    3077             :         cfs_rq->avg.load_avg += se->avg.load_avg;
    3078             :         cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
    3079             : }
    3080             : 
    3081             : static inline void
    3082             : dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3083             : {
    3084             :         sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
    3085             :         sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
    3086             :         /* See update_cfs_rq_load_avg() */
    3087             :         cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
    3088             :                                           cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
    3089             : }
    3090             : #else
    3091             : static inline void
    3092             : enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
    3093             : static inline void
    3094             : dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
    3095             : #endif
    3096             : 
    3097           4 : static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
    3098             :                             unsigned long weight)
    3099             : {
    3100           4 :         if (se->on_rq) {
    3101             :                 /* commit outstanding execution time */
    3102           0 :                 if (cfs_rq->curr == se)
    3103           0 :                         update_curr(cfs_rq);
    3104           0 :                 update_load_sub(&cfs_rq->load, se->load.weight);
    3105             :         }
    3106           4 :         dequeue_load_avg(cfs_rq, se);
    3107             : 
    3108           8 :         update_load_set(&se->load, weight);
    3109             : 
    3110             : #ifdef CONFIG_SMP
    3111             :         do {
    3112             :                 u32 divider = get_pelt_divider(&se->avg);
    3113             : 
    3114             :                 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
    3115             :         } while (0);
    3116             : #endif
    3117             : 
    3118           4 :         enqueue_load_avg(cfs_rq, se);
    3119           4 :         if (se->on_rq)
    3120           0 :                 update_load_add(&cfs_rq->load, se->load.weight);
    3121             : 
    3122           4 : }
    3123             : 
    3124           4 : void reweight_task(struct task_struct *p, int prio)
    3125             : {
    3126           4 :         struct sched_entity *se = &p->se;
    3127           8 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    3128           4 :         struct load_weight *load = &se->load;
    3129           4 :         unsigned long weight = scale_load(sched_prio_to_weight[prio]);
    3130             : 
    3131           4 :         reweight_entity(cfs_rq, se, weight);
    3132           4 :         load->inv_weight = sched_prio_to_wmult[prio];
    3133           4 : }
    3134             : 
    3135             : #ifdef CONFIG_FAIR_GROUP_SCHED
    3136             : #ifdef CONFIG_SMP
    3137             : /*
    3138             :  * All this does is approximate the hierarchical proportion which includes that
    3139             :  * global sum we all love to hate.
    3140             :  *
    3141             :  * That is, the weight of a group entity, is the proportional share of the
    3142             :  * group weight based on the group runqueue weights. That is:
    3143             :  *
    3144             :  *                     tg->weight * grq->load.weight
    3145             :  *   ge->load.weight = -----------------------------               (1)
    3146             :  *                       \Sum grq->load.weight
    3147             :  *
    3148             :  * Now, because computing that sum is prohibitively expensive to compute (been
    3149             :  * there, done that) we approximate it with this average stuff. The average
    3150             :  * moves slower and therefore the approximation is cheaper and more stable.
    3151             :  *
    3152             :  * So instead of the above, we substitute:
    3153             :  *
    3154             :  *   grq->load.weight -> grq->avg.load_avg                         (2)
    3155             :  *
    3156             :  * which yields the following:
    3157             :  *
    3158             :  *                     tg->weight * grq->avg.load_avg
    3159             :  *   ge->load.weight = ------------------------------              (3)
    3160             :  *                             tg->load_avg
    3161             :  *
    3162             :  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
    3163             :  *
    3164             :  * That is shares_avg, and it is right (given the approximation (2)).
    3165             :  *
    3166             :  * The problem with it is that because the average is slow -- it was designed
    3167             :  * to be exactly that of course -- this leads to transients in boundary
    3168             :  * conditions. In specific, the case where the group was idle and we start the
    3169             :  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
    3170             :  * yielding bad latency etc..
    3171             :  *
    3172             :  * Now, in that special case (1) reduces to:
    3173             :  *
    3174             :  *                     tg->weight * grq->load.weight
    3175             :  *   ge->load.weight = ----------------------------- = tg->weight   (4)
    3176             :  *                         grp->load.weight
    3177             :  *
    3178             :  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
    3179             :  *
    3180             :  * So what we do is modify our approximation (3) to approach (4) in the (near)
    3181             :  * UP case, like:
    3182             :  *
    3183             :  *   ge->load.weight =
    3184             :  *
    3185             :  *              tg->weight * grq->load.weight
    3186             :  *     ---------------------------------------------------         (5)
    3187             :  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
    3188             :  *
    3189             :  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
    3190             :  * we need to use grq->avg.load_avg as its lower bound, which then gives:
    3191             :  *
    3192             :  *
    3193             :  *                     tg->weight * grq->load.weight
    3194             :  *   ge->load.weight = -----------------------------            (6)
    3195             :  *                             tg_load_avg'
    3196             :  *
    3197             :  * Where:
    3198             :  *
    3199             :  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
    3200             :  *                  max(grq->load.weight, grq->avg.load_avg)
    3201             :  *
    3202             :  * And that is shares_weight and is icky. In the (near) UP case it approaches
    3203             :  * (4) while in the normal case it approaches (3). It consistently
    3204             :  * overestimates the ge->load.weight and therefore:
    3205             :  *
    3206             :  *   \Sum ge->load.weight >= tg->weight
    3207             :  *
    3208             :  * hence icky!
    3209             :  */
    3210             : static long calc_group_shares(struct cfs_rq *cfs_rq)
    3211             : {
    3212             :         long tg_weight, tg_shares, load, shares;
    3213             :         struct task_group *tg = cfs_rq->tg;
    3214             : 
    3215             :         tg_shares = READ_ONCE(tg->shares);
    3216             : 
    3217             :         load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
    3218             : 
    3219             :         tg_weight = atomic_long_read(&tg->load_avg);
    3220             : 
    3221             :         /* Ensure tg_weight >= load */
    3222             :         tg_weight -= cfs_rq->tg_load_avg_contrib;
    3223             :         tg_weight += load;
    3224             : 
    3225             :         shares = (tg_shares * load);
    3226             :         if (tg_weight)
    3227             :                 shares /= tg_weight;
    3228             : 
    3229             :         /*
    3230             :          * MIN_SHARES has to be unscaled here to support per-CPU partitioning
    3231             :          * of a group with small tg->shares value. It is a floor value which is
    3232             :          * assigned as a minimum load.weight to the sched_entity representing
    3233             :          * the group on a CPU.
    3234             :          *
    3235             :          * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
    3236             :          * on an 8-core system with 8 tasks each runnable on one CPU shares has
    3237             :          * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
    3238             :          * case no task is runnable on a CPU MIN_SHARES=2 should be returned
    3239             :          * instead of 0.
    3240             :          */
    3241             :         return clamp_t(long, shares, MIN_SHARES, tg_shares);
    3242             : }
    3243             : #endif /* CONFIG_SMP */
    3244             : 
    3245             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
    3246             : 
    3247             : /*
    3248             :  * Recomputes the group entity based on the current state of its group
    3249             :  * runqueue.
    3250             :  */
    3251             : static void update_cfs_group(struct sched_entity *se)
    3252             : {
    3253             :         struct cfs_rq *gcfs_rq = group_cfs_rq(se);
    3254             :         long shares;
    3255             : 
    3256             :         if (!gcfs_rq)
    3257             :                 return;
    3258             : 
    3259             :         if (throttled_hierarchy(gcfs_rq))
    3260             :                 return;
    3261             : 
    3262             : #ifndef CONFIG_SMP
    3263             :         shares = READ_ONCE(gcfs_rq->tg->shares);
    3264             : 
    3265             :         if (likely(se->load.weight == shares))
    3266             :                 return;
    3267             : #else
    3268             :         shares   = calc_group_shares(gcfs_rq);
    3269             : #endif
    3270             : 
    3271             :         reweight_entity(cfs_rq_of(se), se, shares);
    3272             : }
    3273             : 
    3274             : #else /* CONFIG_FAIR_GROUP_SCHED */
    3275             : static inline void update_cfs_group(struct sched_entity *se)
    3276             : {
    3277             : }
    3278             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    3279             : 
    3280             : static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
    3281             : {
    3282        1241 :         struct rq *rq = rq_of(cfs_rq);
    3283             : 
    3284             :         if (&rq->cfs == cfs_rq) {
    3285             :                 /*
    3286             :                  * There are a few boundary cases this might miss but it should
    3287             :                  * get called often enough that that should (hopefully) not be
    3288             :                  * a real problem.
    3289             :                  *
    3290             :                  * It will not get called when we go idle, because the idle
    3291             :                  * thread is a different class (!fair), nor will the utilization
    3292             :                  * number include things like RT tasks.
    3293             :                  *
    3294             :                  * As is, the util number is not freq-invariant (we'd have to
    3295             :                  * implement arch_scale_freq_capacity() for that).
    3296             :                  *
    3297             :                  * See cpu_util_cfs().
    3298             :                  */
    3299             :                 cpufreq_update_util(rq, flags);
    3300             :         }
    3301             : }
    3302             : 
    3303             : #ifdef CONFIG_SMP
    3304             : #ifdef CONFIG_FAIR_GROUP_SCHED
    3305             : /*
    3306             :  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
    3307             :  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
    3308             :  * bottom-up, we only have to test whether the cfs_rq before us on the list
    3309             :  * is our child.
    3310             :  * If cfs_rq is not on the list, test whether a child needs its to be added to
    3311             :  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
    3312             :  */
    3313             : static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
    3314             : {
    3315             :         struct cfs_rq *prev_cfs_rq;
    3316             :         struct list_head *prev;
    3317             : 
    3318             :         if (cfs_rq->on_list) {
    3319             :                 prev = cfs_rq->leaf_cfs_rq_list.prev;
    3320             :         } else {
    3321             :                 struct rq *rq = rq_of(cfs_rq);
    3322             : 
    3323             :                 prev = rq->tmp_alone_branch;
    3324             :         }
    3325             : 
    3326             :         prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
    3327             : 
    3328             :         return (prev_cfs_rq->tg->parent == cfs_rq->tg);
    3329             : }
    3330             : 
    3331             : static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
    3332             : {
    3333             :         if (cfs_rq->load.weight)
    3334             :                 return false;
    3335             : 
    3336             :         if (cfs_rq->avg.load_sum)
    3337             :                 return false;
    3338             : 
    3339             :         if (cfs_rq->avg.util_sum)
    3340             :                 return false;
    3341             : 
    3342             :         if (cfs_rq->avg.runnable_sum)
    3343             :                 return false;
    3344             : 
    3345             :         if (child_cfs_rq_on_list(cfs_rq))
    3346             :                 return false;
    3347             : 
    3348             :         /*
    3349             :          * _avg must be null when _sum are null because _avg = _sum / divider
    3350             :          * Make sure that rounding and/or propagation of PELT values never
    3351             :          * break this.
    3352             :          */
    3353             :         SCHED_WARN_ON(cfs_rq->avg.load_avg ||
    3354             :                       cfs_rq->avg.util_avg ||
    3355             :                       cfs_rq->avg.runnable_avg);
    3356             : 
    3357             :         return true;
    3358             : }
    3359             : 
    3360             : /**
    3361             :  * update_tg_load_avg - update the tg's load avg
    3362             :  * @cfs_rq: the cfs_rq whose avg changed
    3363             :  *
    3364             :  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
    3365             :  * However, because tg->load_avg is a global value there are performance
    3366             :  * considerations.
    3367             :  *
    3368             :  * In order to avoid having to look at the other cfs_rq's, we use a
    3369             :  * differential update where we store the last value we propagated. This in
    3370             :  * turn allows skipping updates if the differential is 'small'.
    3371             :  *
    3372             :  * Updating tg's load_avg is necessary before update_cfs_share().
    3373             :  */
    3374             : static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
    3375             : {
    3376             :         long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
    3377             : 
    3378             :         /*
    3379             :          * No need to update load_avg for root_task_group as it is not used.
    3380             :          */
    3381             :         if (cfs_rq->tg == &root_task_group)
    3382             :                 return;
    3383             : 
    3384             :         if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
    3385             :                 atomic_long_add(delta, &cfs_rq->tg->load_avg);
    3386             :                 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
    3387             :         }
    3388             : }
    3389             : 
    3390             : /*
    3391             :  * Called within set_task_rq() right before setting a task's CPU. The
    3392             :  * caller only guarantees p->pi_lock is held; no other assumptions,
    3393             :  * including the state of rq->lock, should be made.
    3394             :  */
    3395             : void set_task_rq_fair(struct sched_entity *se,
    3396             :                       struct cfs_rq *prev, struct cfs_rq *next)
    3397             : {
    3398             :         u64 p_last_update_time;
    3399             :         u64 n_last_update_time;
    3400             : 
    3401             :         if (!sched_feat(ATTACH_AGE_LOAD))
    3402             :                 return;
    3403             : 
    3404             :         /*
    3405             :          * We are supposed to update the task to "current" time, then its up to
    3406             :          * date and ready to go to new CPU/cfs_rq. But we have difficulty in
    3407             :          * getting what current time is, so simply throw away the out-of-date
    3408             :          * time. This will result in the wakee task is less decayed, but giving
    3409             :          * the wakee more load sounds not bad.
    3410             :          */
    3411             :         if (!(se->avg.last_update_time && prev))
    3412             :                 return;
    3413             : 
    3414             : #ifndef CONFIG_64BIT
    3415             :         {
    3416             :                 u64 p_last_update_time_copy;
    3417             :                 u64 n_last_update_time_copy;
    3418             : 
    3419             :                 do {
    3420             :                         p_last_update_time_copy = prev->load_last_update_time_copy;
    3421             :                         n_last_update_time_copy = next->load_last_update_time_copy;
    3422             : 
    3423             :                         smp_rmb();
    3424             : 
    3425             :                         p_last_update_time = prev->avg.last_update_time;
    3426             :                         n_last_update_time = next->avg.last_update_time;
    3427             : 
    3428             :                 } while (p_last_update_time != p_last_update_time_copy ||
    3429             :                          n_last_update_time != n_last_update_time_copy);
    3430             :         }
    3431             : #else
    3432             :         p_last_update_time = prev->avg.last_update_time;
    3433             :         n_last_update_time = next->avg.last_update_time;
    3434             : #endif
    3435             :         __update_load_avg_blocked_se(p_last_update_time, se);
    3436             :         se->avg.last_update_time = n_last_update_time;
    3437             : }
    3438             : 
    3439             : /*
    3440             :  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
    3441             :  * propagate its contribution. The key to this propagation is the invariant
    3442             :  * that for each group:
    3443             :  *
    3444             :  *   ge->avg == grq->avg                                          (1)
    3445             :  *
    3446             :  * _IFF_ we look at the pure running and runnable sums. Because they
    3447             :  * represent the very same entity, just at different points in the hierarchy.
    3448             :  *
    3449             :  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
    3450             :  * and simply copies the running/runnable sum over (but still wrong, because
    3451             :  * the group entity and group rq do not have their PELT windows aligned).
    3452             :  *
    3453             :  * However, update_tg_cfs_load() is more complex. So we have:
    3454             :  *
    3455             :  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg         (2)
    3456             :  *
    3457             :  * And since, like util, the runnable part should be directly transferable,
    3458             :  * the following would _appear_ to be the straight forward approach:
    3459             :  *
    3460             :  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg      (3)
    3461             :  *
    3462             :  * And per (1) we have:
    3463             :  *
    3464             :  *   ge->avg.runnable_avg == grq->avg.runnable_avg
    3465             :  *
    3466             :  * Which gives:
    3467             :  *
    3468             :  *                      ge->load.weight * grq->avg.load_avg
    3469             :  *   ge->avg.load_avg = -----------------------------------          (4)
    3470             :  *                               grq->load.weight
    3471             :  *
    3472             :  * Except that is wrong!
    3473             :  *
    3474             :  * Because while for entities historical weight is not important and we
    3475             :  * really only care about our future and therefore can consider a pure
    3476             :  * runnable sum, runqueues can NOT do this.
    3477             :  *
    3478             :  * We specifically want runqueues to have a load_avg that includes
    3479             :  * historical weights. Those represent the blocked load, the load we expect
    3480             :  * to (shortly) return to us. This only works by keeping the weights as
    3481             :  * integral part of the sum. We therefore cannot decompose as per (3).
    3482             :  *
    3483             :  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
    3484             :  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
    3485             :  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
    3486             :  * runnable section of these tasks overlap (or not). If they were to perfectly
    3487             :  * align the rq as a whole would be runnable 2/3 of the time. If however we
    3488             :  * always have at least 1 runnable task, the rq as a whole is always runnable.
    3489             :  *
    3490             :  * So we'll have to approximate.. :/
    3491             :  *
    3492             :  * Given the constraint:
    3493             :  *
    3494             :  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
    3495             :  *
    3496             :  * We can construct a rule that adds runnable to a rq by assuming minimal
    3497             :  * overlap.
    3498             :  *
    3499             :  * On removal, we'll assume each task is equally runnable; which yields:
    3500             :  *
    3501             :  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
    3502             :  *
    3503             :  * XXX: only do this for the part of runnable > running ?
    3504             :  *
    3505             :  */
    3506             : static inline void
    3507             : update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3508             : {
    3509             :         long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
    3510             :         u32 new_sum, divider;
    3511             : 
    3512             :         /* Nothing to update */
    3513             :         if (!delta_avg)
    3514             :                 return;
    3515             : 
    3516             :         /*
    3517             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3518             :          * See ___update_load_avg() for details.
    3519             :          */
    3520             :         divider = get_pelt_divider(&cfs_rq->avg);
    3521             : 
    3522             : 
    3523             :         /* Set new sched_entity's utilization */
    3524             :         se->avg.util_avg = gcfs_rq->avg.util_avg;
    3525             :         new_sum = se->avg.util_avg * divider;
    3526             :         delta_sum = (long)new_sum - (long)se->avg.util_sum;
    3527             :         se->avg.util_sum = new_sum;
    3528             : 
    3529             :         /* Update parent cfs_rq utilization */
    3530             :         add_positive(&cfs_rq->avg.util_avg, delta_avg);
    3531             :         add_positive(&cfs_rq->avg.util_sum, delta_sum);
    3532             : 
    3533             :         /* See update_cfs_rq_load_avg() */
    3534             :         cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
    3535             :                                           cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
    3536             : }
    3537             : 
    3538             : static inline void
    3539             : update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3540             : {
    3541             :         long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
    3542             :         u32 new_sum, divider;
    3543             : 
    3544             :         /* Nothing to update */
    3545             :         if (!delta_avg)
    3546             :                 return;
    3547             : 
    3548             :         /*
    3549             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3550             :          * See ___update_load_avg() for details.
    3551             :          */
    3552             :         divider = get_pelt_divider(&cfs_rq->avg);
    3553             : 
    3554             :         /* Set new sched_entity's runnable */
    3555             :         se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
    3556             :         new_sum = se->avg.runnable_avg * divider;
    3557             :         delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
    3558             :         se->avg.runnable_sum = new_sum;
    3559             : 
    3560             :         /* Update parent cfs_rq runnable */
    3561             :         add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
    3562             :         add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
    3563             :         /* See update_cfs_rq_load_avg() */
    3564             :         cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
    3565             :                                               cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
    3566             : }
    3567             : 
    3568             : static inline void
    3569             : update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3570             : {
    3571             :         long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
    3572             :         unsigned long load_avg;
    3573             :         u64 load_sum = 0;
    3574             :         s64 delta_sum;
    3575             :         u32 divider;
    3576             : 
    3577             :         if (!runnable_sum)
    3578             :                 return;
    3579             : 
    3580             :         gcfs_rq->prop_runnable_sum = 0;
    3581             : 
    3582             :         /*
    3583             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3584             :          * See ___update_load_avg() for details.
    3585             :          */
    3586             :         divider = get_pelt_divider(&cfs_rq->avg);
    3587             : 
    3588             :         if (runnable_sum >= 0) {
    3589             :                 /*
    3590             :                  * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
    3591             :                  * the CPU is saturated running == runnable.
    3592             :                  */
    3593             :                 runnable_sum += se->avg.load_sum;
    3594             :                 runnable_sum = min_t(long, runnable_sum, divider);
    3595             :         } else {
    3596             :                 /*
    3597             :                  * Estimate the new unweighted runnable_sum of the gcfs_rq by
    3598             :                  * assuming all tasks are equally runnable.
    3599             :                  */
    3600             :                 if (scale_load_down(gcfs_rq->load.weight)) {
    3601             :                         load_sum = div_u64(gcfs_rq->avg.load_sum,
    3602             :                                 scale_load_down(gcfs_rq->load.weight));
    3603             :                 }
    3604             : 
    3605             :                 /* But make sure to not inflate se's runnable */
    3606             :                 runnable_sum = min(se->avg.load_sum, load_sum);
    3607             :         }
    3608             : 
    3609             :         /*
    3610             :          * runnable_sum can't be lower than running_sum
    3611             :          * Rescale running sum to be in the same range as runnable sum
    3612             :          * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
    3613             :          * runnable_sum is in [0 : LOAD_AVG_MAX]
    3614             :          */
    3615             :         running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
    3616             :         runnable_sum = max(runnable_sum, running_sum);
    3617             : 
    3618             :         load_sum = se_weight(se) * runnable_sum;
    3619             :         load_avg = div_u64(load_sum, divider);
    3620             : 
    3621             :         delta_avg = load_avg - se->avg.load_avg;
    3622             :         if (!delta_avg)
    3623             :                 return;
    3624             : 
    3625             :         delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
    3626             : 
    3627             :         se->avg.load_sum = runnable_sum;
    3628             :         se->avg.load_avg = load_avg;
    3629             :         add_positive(&cfs_rq->avg.load_avg, delta_avg);
    3630             :         add_positive(&cfs_rq->avg.load_sum, delta_sum);
    3631             :         /* See update_cfs_rq_load_avg() */
    3632             :         cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
    3633             :                                           cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
    3634             : }
    3635             : 
    3636             : static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
    3637             : {
    3638             :         cfs_rq->propagate = 1;
    3639             :         cfs_rq->prop_runnable_sum += runnable_sum;
    3640             : }
    3641             : 
    3642             : /* Update task and its cfs_rq load average */
    3643             : static inline int propagate_entity_load_avg(struct sched_entity *se)
    3644             : {
    3645             :         struct cfs_rq *cfs_rq, *gcfs_rq;
    3646             : 
    3647             :         if (entity_is_task(se))
    3648             :                 return 0;
    3649             : 
    3650             :         gcfs_rq = group_cfs_rq(se);
    3651             :         if (!gcfs_rq->propagate)
    3652             :                 return 0;
    3653             : 
    3654             :         gcfs_rq->propagate = 0;
    3655             : 
    3656             :         cfs_rq = cfs_rq_of(se);
    3657             : 
    3658             :         add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
    3659             : 
    3660             :         update_tg_cfs_util(cfs_rq, se, gcfs_rq);
    3661             :         update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
    3662             :         update_tg_cfs_load(cfs_rq, se, gcfs_rq);
    3663             : 
    3664             :         trace_pelt_cfs_tp(cfs_rq);
    3665             :         trace_pelt_se_tp(se);
    3666             : 
    3667             :         return 1;
    3668             : }
    3669             : 
    3670             : /*
    3671             :  * Check if we need to update the load and the utilization of a blocked
    3672             :  * group_entity:
    3673             :  */
    3674             : static inline bool skip_blocked_update(struct sched_entity *se)
    3675             : {
    3676             :         struct cfs_rq *gcfs_rq = group_cfs_rq(se);
    3677             : 
    3678             :         /*
    3679             :          * If sched_entity still have not zero load or utilization, we have to
    3680             :          * decay it:
    3681             :          */
    3682             :         if (se->avg.load_avg || se->avg.util_avg)
    3683             :                 return false;
    3684             : 
    3685             :         /*
    3686             :          * If there is a pending propagation, we have to update the load and
    3687             :          * the utilization of the sched_entity:
    3688             :          */
    3689             :         if (gcfs_rq->propagate)
    3690             :                 return false;
    3691             : 
    3692             :         /*
    3693             :          * Otherwise, the load and the utilization of the sched_entity is
    3694             :          * already zero and there is no pending propagation, so it will be a
    3695             :          * waste of time to try to decay it:
    3696             :          */
    3697             :         return true;
    3698             : }
    3699             : 
    3700             : #else /* CONFIG_FAIR_GROUP_SCHED */
    3701             : 
    3702             : static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
    3703             : 
    3704             : static inline int propagate_entity_load_avg(struct sched_entity *se)
    3705             : {
    3706             :         return 0;
    3707             : }
    3708             : 
    3709             : static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
    3710             : 
    3711             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    3712             : 
    3713             : /**
    3714             :  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
    3715             :  * @now: current time, as per cfs_rq_clock_pelt()
    3716             :  * @cfs_rq: cfs_rq to update
    3717             :  *
    3718             :  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
    3719             :  * avg. The immediate corollary is that all (fair) tasks must be attached, see
    3720             :  * post_init_entity_util_avg().
    3721             :  *
    3722             :  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
    3723             :  *
    3724             :  * Return: true if the load decayed or we removed load.
    3725             :  *
    3726             :  * Since both these conditions indicate a changed cfs_rq->avg.load we should
    3727             :  * call update_tg_load_avg() when this function returns true.
    3728             :  */
    3729             : static inline int
    3730             : update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
    3731             : {
    3732             :         unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
    3733             :         struct sched_avg *sa = &cfs_rq->avg;
    3734             :         int decayed = 0;
    3735             : 
    3736             :         if (cfs_rq->removed.nr) {
    3737             :                 unsigned long r;
    3738             :                 u32 divider = get_pelt_divider(&cfs_rq->avg);
    3739             : 
    3740             :                 raw_spin_lock(&cfs_rq->removed.lock);
    3741             :                 swap(cfs_rq->removed.util_avg, removed_util);
    3742             :                 swap(cfs_rq->removed.load_avg, removed_load);
    3743             :                 swap(cfs_rq->removed.runnable_avg, removed_runnable);
    3744             :                 cfs_rq->removed.nr = 0;
    3745             :                 raw_spin_unlock(&cfs_rq->removed.lock);
    3746             : 
    3747             :                 r = removed_load;
    3748             :                 sub_positive(&sa->load_avg, r);
    3749             :                 sub_positive(&sa->load_sum, r * divider);
    3750             :                 /* See sa->util_sum below */
    3751             :                 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
    3752             : 
    3753             :                 r = removed_util;
    3754             :                 sub_positive(&sa->util_avg, r);
    3755             :                 sub_positive(&sa->util_sum, r * divider);
    3756             :                 /*
    3757             :                  * Because of rounding, se->util_sum might ends up being +1 more than
    3758             :                  * cfs->util_sum. Although this is not a problem by itself, detaching
    3759             :                  * a lot of tasks with the rounding problem between 2 updates of
    3760             :                  * util_avg (~1ms) can make cfs->util_sum becoming null whereas
    3761             :                  * cfs_util_avg is not.
    3762             :                  * Check that util_sum is still above its lower bound for the new
    3763             :                  * util_avg. Given that period_contrib might have moved since the last
    3764             :                  * sync, we are only sure that util_sum must be above or equal to
    3765             :                  *    util_avg * minimum possible divider
    3766             :                  */
    3767             :                 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
    3768             : 
    3769             :                 r = removed_runnable;
    3770             :                 sub_positive(&sa->runnable_avg, r);
    3771             :                 sub_positive(&sa->runnable_sum, r * divider);
    3772             :                 /* See sa->util_sum above */
    3773             :                 sa->runnable_sum = max_t(u32, sa->runnable_sum,
    3774             :                                               sa->runnable_avg * PELT_MIN_DIVIDER);
    3775             : 
    3776             :                 /*
    3777             :                  * removed_runnable is the unweighted version of removed_load so we
    3778             :                  * can use it to estimate removed_load_sum.
    3779             :                  */
    3780             :                 add_tg_cfs_propagate(cfs_rq,
    3781             :                         -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
    3782             : 
    3783             :                 decayed = 1;
    3784             :         }
    3785             : 
    3786             :         decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
    3787             : 
    3788             : #ifndef CONFIG_64BIT
    3789             :         smp_wmb();
    3790             :         cfs_rq->load_last_update_time_copy = sa->last_update_time;
    3791             : #endif
    3792             : 
    3793             :         return decayed;
    3794             : }
    3795             : 
    3796             : /**
    3797             :  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
    3798             :  * @cfs_rq: cfs_rq to attach to
    3799             :  * @se: sched_entity to attach
    3800             :  *
    3801             :  * Must call update_cfs_rq_load_avg() before this, since we rely on
    3802             :  * cfs_rq->avg.last_update_time being current.
    3803             :  */
    3804             : static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3805             : {
    3806             :         /*
    3807             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3808             :          * See ___update_load_avg() for details.
    3809             :          */
    3810             :         u32 divider = get_pelt_divider(&cfs_rq->avg);
    3811             : 
    3812             :         /*
    3813             :          * When we attach the @se to the @cfs_rq, we must align the decay
    3814             :          * window because without that, really weird and wonderful things can
    3815             :          * happen.
    3816             :          *
    3817             :          * XXX illustrate
    3818             :          */
    3819             :         se->avg.last_update_time = cfs_rq->avg.last_update_time;
    3820             :         se->avg.period_contrib = cfs_rq->avg.period_contrib;
    3821             : 
    3822             :         /*
    3823             :          * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
    3824             :          * period_contrib. This isn't strictly correct, but since we're
    3825             :          * entirely outside of the PELT hierarchy, nobody cares if we truncate
    3826             :          * _sum a little.
    3827             :          */
    3828             :         se->avg.util_sum = se->avg.util_avg * divider;
    3829             : 
    3830             :         se->avg.runnable_sum = se->avg.runnable_avg * divider;
    3831             : 
    3832             :         se->avg.load_sum = se->avg.load_avg * divider;
    3833             :         if (se_weight(se) < se->avg.load_sum)
    3834             :                 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
    3835             :         else
    3836             :                 se->avg.load_sum = 1;
    3837             : 
    3838             :         enqueue_load_avg(cfs_rq, se);
    3839             :         cfs_rq->avg.util_avg += se->avg.util_avg;
    3840             :         cfs_rq->avg.util_sum += se->avg.util_sum;
    3841             :         cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
    3842             :         cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
    3843             : 
    3844             :         add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
    3845             : 
    3846             :         cfs_rq_util_change(cfs_rq, 0);
    3847             : 
    3848             :         trace_pelt_cfs_tp(cfs_rq);
    3849             : }
    3850             : 
    3851             : /**
    3852             :  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
    3853             :  * @cfs_rq: cfs_rq to detach from
    3854             :  * @se: sched_entity to detach
    3855             :  *
    3856             :  * Must call update_cfs_rq_load_avg() before this, since we rely on
    3857             :  * cfs_rq->avg.last_update_time being current.
    3858             :  */
    3859             : static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3860             : {
    3861             :         dequeue_load_avg(cfs_rq, se);
    3862             :         sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
    3863             :         sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
    3864             :         /* See update_cfs_rq_load_avg() */
    3865             :         cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
    3866             :                                           cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
    3867             : 
    3868             :         sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
    3869             :         sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
    3870             :         /* See update_cfs_rq_load_avg() */
    3871             :         cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
    3872             :                                               cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
    3873             : 
    3874             :         add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
    3875             : 
    3876             :         cfs_rq_util_change(cfs_rq, 0);
    3877             : 
    3878             :         trace_pelt_cfs_tp(cfs_rq);
    3879             : }
    3880             : 
    3881             : /*
    3882             :  * Optional action to be done while updating the load average
    3883             :  */
    3884             : #define UPDATE_TG       0x1
    3885             : #define SKIP_AGE_LOAD   0x2
    3886             : #define DO_ATTACH       0x4
    3887             : 
    3888             : /* Update task and its cfs_rq load average */
    3889             : static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    3890             : {
    3891             :         u64 now = cfs_rq_clock_pelt(cfs_rq);
    3892             :         int decayed;
    3893             : 
    3894             :         /*
    3895             :          * Track task load average for carrying it to new CPU after migrated, and
    3896             :          * track group sched_entity load average for task_h_load calc in migration
    3897             :          */
    3898             :         if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
    3899             :                 __update_load_avg_se(now, cfs_rq, se);
    3900             : 
    3901             :         decayed  = update_cfs_rq_load_avg(now, cfs_rq);
    3902             :         decayed |= propagate_entity_load_avg(se);
    3903             : 
    3904             :         if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
    3905             : 
    3906             :                 /*
    3907             :                  * DO_ATTACH means we're here from enqueue_entity().
    3908             :                  * !last_update_time means we've passed through
    3909             :                  * migrate_task_rq_fair() indicating we migrated.
    3910             :                  *
    3911             :                  * IOW we're enqueueing a task on a new CPU.
    3912             :                  */
    3913             :                 attach_entity_load_avg(cfs_rq, se);
    3914             :                 update_tg_load_avg(cfs_rq);
    3915             : 
    3916             :         } else if (decayed) {
    3917             :                 cfs_rq_util_change(cfs_rq, 0);
    3918             : 
    3919             :                 if (flags & UPDATE_TG)
    3920             :                         update_tg_load_avg(cfs_rq);
    3921             :         }
    3922             : }
    3923             : 
    3924             : #ifndef CONFIG_64BIT
    3925             : static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
    3926             : {
    3927             :         u64 last_update_time_copy;
    3928             :         u64 last_update_time;
    3929             : 
    3930             :         do {
    3931             :                 last_update_time_copy = cfs_rq->load_last_update_time_copy;
    3932             :                 smp_rmb();
    3933             :                 last_update_time = cfs_rq->avg.last_update_time;
    3934             :         } while (last_update_time != last_update_time_copy);
    3935             : 
    3936             :         return last_update_time;
    3937             : }
    3938             : #else
    3939             : static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
    3940             : {
    3941             :         return cfs_rq->avg.last_update_time;
    3942             : }
    3943             : #endif
    3944             : 
    3945             : /*
    3946             :  * Synchronize entity load avg of dequeued entity without locking
    3947             :  * the previous rq.
    3948             :  */
    3949             : static void sync_entity_load_avg(struct sched_entity *se)
    3950             : {
    3951             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    3952             :         u64 last_update_time;
    3953             : 
    3954             :         last_update_time = cfs_rq_last_update_time(cfs_rq);
    3955             :         __update_load_avg_blocked_se(last_update_time, se);
    3956             : }
    3957             : 
    3958             : /*
    3959             :  * Task first catches up with cfs_rq, and then subtract
    3960             :  * itself from the cfs_rq (task must be off the queue now).
    3961             :  */
    3962             : static void remove_entity_load_avg(struct sched_entity *se)
    3963             : {
    3964             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    3965             :         unsigned long flags;
    3966             : 
    3967             :         /*
    3968             :          * tasks cannot exit without having gone through wake_up_new_task() ->
    3969             :          * post_init_entity_util_avg() which will have added things to the
    3970             :          * cfs_rq, so we can remove unconditionally.
    3971             :          */
    3972             : 
    3973             :         sync_entity_load_avg(se);
    3974             : 
    3975             :         raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
    3976             :         ++cfs_rq->removed.nr;
    3977             :         cfs_rq->removed.util_avg     += se->avg.util_avg;
    3978             :         cfs_rq->removed.load_avg     += se->avg.load_avg;
    3979             :         cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
    3980             :         raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
    3981             : }
    3982             : 
    3983             : static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
    3984             : {
    3985             :         return cfs_rq->avg.runnable_avg;
    3986             : }
    3987             : 
    3988             : static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
    3989             : {
    3990             :         return cfs_rq->avg.load_avg;
    3991             : }
    3992             : 
    3993             : static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
    3994             : 
    3995             : static inline unsigned long task_util(struct task_struct *p)
    3996             : {
    3997             :         return READ_ONCE(p->se.avg.util_avg);
    3998             : }
    3999             : 
    4000             : static inline unsigned long _task_util_est(struct task_struct *p)
    4001             : {
    4002             :         struct util_est ue = READ_ONCE(p->se.avg.util_est);
    4003             : 
    4004             :         return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
    4005             : }
    4006             : 
    4007             : static inline unsigned long task_util_est(struct task_struct *p)
    4008             : {
    4009             :         return max(task_util(p), _task_util_est(p));
    4010             : }
    4011             : 
    4012             : #ifdef CONFIG_UCLAMP_TASK
    4013             : static inline unsigned long uclamp_task_util(struct task_struct *p)
    4014             : {
    4015             :         return clamp(task_util_est(p),
    4016             :                      uclamp_eff_value(p, UCLAMP_MIN),
    4017             :                      uclamp_eff_value(p, UCLAMP_MAX));
    4018             : }
    4019             : #else
    4020             : static inline unsigned long uclamp_task_util(struct task_struct *p)
    4021             : {
    4022             :         return task_util_est(p);
    4023             : }
    4024             : #endif
    4025             : 
    4026             : static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
    4027             :                                     struct task_struct *p)
    4028             : {
    4029             :         unsigned int enqueued;
    4030             : 
    4031             :         if (!sched_feat(UTIL_EST))
    4032             :                 return;
    4033             : 
    4034             :         /* Update root cfs_rq's estimated utilization */
    4035             :         enqueued  = cfs_rq->avg.util_est.enqueued;
    4036             :         enqueued += _task_util_est(p);
    4037             :         WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
    4038             : 
    4039             :         trace_sched_util_est_cfs_tp(cfs_rq);
    4040             : }
    4041             : 
    4042             : static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
    4043             :                                     struct task_struct *p)
    4044             : {
    4045             :         unsigned int enqueued;
    4046             : 
    4047             :         if (!sched_feat(UTIL_EST))
    4048             :                 return;
    4049             : 
    4050             :         /* Update root cfs_rq's estimated utilization */
    4051             :         enqueued  = cfs_rq->avg.util_est.enqueued;
    4052             :         enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
    4053             :         WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
    4054             : 
    4055             :         trace_sched_util_est_cfs_tp(cfs_rq);
    4056             : }
    4057             : 
    4058             : #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
    4059             : 
    4060             : /*
    4061             :  * Check if a (signed) value is within a specified (unsigned) margin,
    4062             :  * based on the observation that:
    4063             :  *
    4064             :  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
    4065             :  *
    4066             :  * NOTE: this only works when value + margin < INT_MAX.
    4067             :  */
    4068             : static inline bool within_margin(int value, int margin)
    4069             : {
    4070             :         return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
    4071             : }
    4072             : 
    4073             : static inline void util_est_update(struct cfs_rq *cfs_rq,
    4074             :                                    struct task_struct *p,
    4075             :                                    bool task_sleep)
    4076             : {
    4077             :         long last_ewma_diff, last_enqueued_diff;
    4078             :         struct util_est ue;
    4079             : 
    4080             :         if (!sched_feat(UTIL_EST))
    4081             :                 return;
    4082             : 
    4083             :         /*
    4084             :          * Skip update of task's estimated utilization when the task has not
    4085             :          * yet completed an activation, e.g. being migrated.
    4086             :          */
    4087             :         if (!task_sleep)
    4088             :                 return;
    4089             : 
    4090             :         /*
    4091             :          * If the PELT values haven't changed since enqueue time,
    4092             :          * skip the util_est update.
    4093             :          */
    4094             :         ue = p->se.avg.util_est;
    4095             :         if (ue.enqueued & UTIL_AVG_UNCHANGED)
    4096             :                 return;
    4097             : 
    4098             :         last_enqueued_diff = ue.enqueued;
    4099             : 
    4100             :         /*
    4101             :          * Reset EWMA on utilization increases, the moving average is used only
    4102             :          * to smooth utilization decreases.
    4103             :          */
    4104             :         ue.enqueued = task_util(p);
    4105             :         if (sched_feat(UTIL_EST_FASTUP)) {
    4106             :                 if (ue.ewma < ue.enqueued) {
    4107             :                         ue.ewma = ue.enqueued;
    4108             :                         goto done;
    4109             :                 }
    4110             :         }
    4111             : 
    4112             :         /*
    4113             :          * Skip update of task's estimated utilization when its members are
    4114             :          * already ~1% close to its last activation value.
    4115             :          */
    4116             :         last_ewma_diff = ue.enqueued - ue.ewma;
    4117             :         last_enqueued_diff -= ue.enqueued;
    4118             :         if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
    4119             :                 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
    4120             :                         goto done;
    4121             : 
    4122             :                 return;
    4123             :         }
    4124             : 
    4125             :         /*
    4126             :          * To avoid overestimation of actual task utilization, skip updates if
    4127             :          * we cannot grant there is idle time in this CPU.
    4128             :          */
    4129             :         if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
    4130             :                 return;
    4131             : 
    4132             :         /*
    4133             :          * Update Task's estimated utilization
    4134             :          *
    4135             :          * When *p completes an activation we can consolidate another sample
    4136             :          * of the task size. This is done by storing the current PELT value
    4137             :          * as ue.enqueued and by using this value to update the Exponential
    4138             :          * Weighted Moving Average (EWMA):
    4139             :          *
    4140             :          *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
    4141             :          *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
    4142             :          *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
    4143             :          *          = w * (      last_ewma_diff            ) +     ewma(t-1)
    4144             :          *          = w * (last_ewma_diff  +  ewma(t-1) / w)
    4145             :          *
    4146             :          * Where 'w' is the weight of new samples, which is configured to be
    4147             :          * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
    4148             :          */
    4149             :         ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
    4150             :         ue.ewma  += last_ewma_diff;
    4151             :         ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
    4152             : done:
    4153             :         ue.enqueued |= UTIL_AVG_UNCHANGED;
    4154             :         WRITE_ONCE(p->se.avg.util_est, ue);
    4155             : 
    4156             :         trace_sched_util_est_se_tp(&p->se);
    4157             : }
    4158             : 
    4159             : static inline int task_fits_capacity(struct task_struct *p,
    4160             :                                      unsigned long capacity)
    4161             : {
    4162             :         return fits_capacity(uclamp_task_util(p), capacity);
    4163             : }
    4164             : 
    4165             : static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
    4166             : {
    4167             :         if (!static_branch_unlikely(&sched_asym_cpucapacity))
    4168             :                 return;
    4169             : 
    4170             :         if (!p || p->nr_cpus_allowed == 1) {
    4171             :                 rq->misfit_task_load = 0;
    4172             :                 return;
    4173             :         }
    4174             : 
    4175             :         if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
    4176             :                 rq->misfit_task_load = 0;
    4177             :                 return;
    4178             :         }
    4179             : 
    4180             :         /*
    4181             :          * Make sure that misfit_task_load will not be null even if
    4182             :          * task_h_load() returns 0.
    4183             :          */
    4184             :         rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
    4185             : }
    4186             : 
    4187             : #else /* CONFIG_SMP */
    4188             : 
    4189             : static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
    4190             : {
    4191             :         return true;
    4192             : }
    4193             : 
    4194             : #define UPDATE_TG       0x0
    4195             : #define SKIP_AGE_LOAD   0x0
    4196             : #define DO_ATTACH       0x0
    4197             : 
    4198             : static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
    4199             : {
    4200        1241 :         cfs_rq_util_change(cfs_rq, 0);
    4201             : }
    4202             : 
    4203             : static inline void remove_entity_load_avg(struct sched_entity *se) {}
    4204             : 
    4205             : static inline void
    4206             : attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
    4207             : static inline void
    4208             : detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
    4209             : 
    4210             : static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
    4211             : {
    4212             :         return 0;
    4213             : }
    4214             : 
    4215             : static inline void
    4216             : util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
    4217             : 
    4218             : static inline void
    4219             : util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
    4220             : 
    4221             : static inline void
    4222             : util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
    4223             :                 bool task_sleep) {}
    4224             : static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
    4225             : 
    4226             : #endif /* CONFIG_SMP */
    4227             : 
    4228             : static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4229             : {
    4230             : #ifdef CONFIG_SCHED_DEBUG
    4231        1239 :         s64 d = se->vruntime - cfs_rq->min_vruntime;
    4232             : 
    4233             :         if (d < 0)
    4234             :                 d = -d;
    4235             : 
    4236             :         if (d > 3*sysctl_sched_latency)
    4237             :                 schedstat_inc(cfs_rq->nr_spread_over);
    4238             : #endif
    4239             : }
    4240             : 
    4241             : static void
    4242         617 : place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
    4243             : {
    4244         617 :         u64 vruntime = cfs_rq->min_vruntime;
    4245             : 
    4246             :         /*
    4247             :          * The 'current' period is already promised to the current tasks,
    4248             :          * however the extra weight of the new task will slow them down a
    4249             :          * little, place the new task so that it fits in the slot that
    4250             :          * stays open at the end.
    4251             :          */
    4252         617 :         if (initial && sched_feat(START_DEBIT))
    4253         107 :                 vruntime += sched_vslice(cfs_rq, se);
    4254             : 
    4255             :         /* sleeps up to a single latency don't count. */
    4256         617 :         if (!initial) {
    4257             :                 unsigned long thresh;
    4258             : 
    4259         510 :                 if (se_is_idle(se))
    4260             :                         thresh = sysctl_sched_min_granularity;
    4261             :                 else
    4262         510 :                         thresh = sysctl_sched_latency;
    4263             : 
    4264             :                 /*
    4265             :                  * Halve their sleep time's effect, to allow
    4266             :                  * for a gentler effect of sleepers:
    4267             :                  */
    4268         510 :                 if (sched_feat(GENTLE_FAIR_SLEEPERS))
    4269         510 :                         thresh >>= 1;
    4270             : 
    4271         510 :                 vruntime -= thresh;
    4272             :         }
    4273             : 
    4274             :         /* ensure we never gain time by being placed backwards. */
    4275        1234 :         se->vruntime = max_vruntime(se->vruntime, vruntime);
    4276         617 : }
    4277             : 
    4278             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
    4279             : 
    4280             : static inline bool cfs_bandwidth_used(void);
    4281             : 
    4282             : /*
    4283             :  * MIGRATION
    4284             :  *
    4285             :  *      dequeue
    4286             :  *        update_curr()
    4287             :  *          update_min_vruntime()
    4288             :  *        vruntime -= min_vruntime
    4289             :  *
    4290             :  *      enqueue
    4291             :  *        update_curr()
    4292             :  *          update_min_vruntime()
    4293             :  *        vruntime += min_vruntime
    4294             :  *
    4295             :  * this way the vruntime transition between RQs is done when both
    4296             :  * min_vruntime are up-to-date.
    4297             :  *
    4298             :  * WAKEUP (remote)
    4299             :  *
    4300             :  *      ->migrate_task_rq_fair() (p->state == TASK_WAKING)
    4301             :  *        vruntime -= min_vruntime
    4302             :  *
    4303             :  *      enqueue
    4304             :  *        update_curr()
    4305             :  *          update_min_vruntime()
    4306             :  *        vruntime += min_vruntime
    4307             :  *
    4308             :  * this way we don't have the most up-to-date min_vruntime on the originating
    4309             :  * CPU and an up-to-date min_vruntime on the destination CPU.
    4310             :  */
    4311             : 
    4312             : static void
    4313         620 : enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    4314             : {
    4315         620 :         bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
    4316         620 :         bool curr = cfs_rq->curr == se;
    4317             : 
    4318             :         /*
    4319             :          * If we're the current task, we must renormalise before calling
    4320             :          * update_curr().
    4321             :          */
    4322         620 :         if (renorm && curr)
    4323           0 :                 se->vruntime += cfs_rq->min_vruntime;
    4324             : 
    4325         620 :         update_curr(cfs_rq);
    4326             : 
    4327             :         /*
    4328             :          * Otherwise, renormalise after, such that we're placed at the current
    4329             :          * moment in time, instead of some random moment in the past. Being
    4330             :          * placed in the past could significantly boost this task to the
    4331             :          * fairness detriment of existing tasks.
    4332             :          */
    4333         620 :         if (renorm && !curr)
    4334         110 :                 se->vruntime += cfs_rq->min_vruntime;
    4335             : 
    4336             :         /*
    4337             :          * When enqueuing a sched_entity, we must:
    4338             :          *   - Update loads to have both entity and cfs_rq synced with now.
    4339             :          *   - Add its load to cfs_rq->runnable_avg
    4340             :          *   - For group_entity, update its weight to reflect the new share of
    4341             :          *     its group cfs_rq
    4342             :          *   - Add its new weight to cfs_rq->load.weight
    4343             :          */
    4344         620 :         update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
    4345         620 :         se_update_runnable(se);
    4346         620 :         update_cfs_group(se);
    4347        1240 :         account_entity_enqueue(cfs_rq, se);
    4348             : 
    4349         620 :         if (flags & ENQUEUE_WAKEUP)
    4350         510 :                 place_entity(cfs_rq, se, 0);
    4351             : 
    4352             :         check_schedstat_required();
    4353         620 :         update_stats_enqueue_fair(cfs_rq, se, flags);
    4354         620 :         check_spread(cfs_rq, se);
    4355         620 :         if (!curr)
    4356         620 :                 __enqueue_entity(cfs_rq, se);
    4357         620 :         se->on_rq = 1;
    4358             : 
    4359             :         /*
    4360             :          * When bandwidth control is enabled, cfs might have been removed
    4361             :          * because of a parent been throttled but cfs->nr_running > 1. Try to
    4362             :          * add it unconditionally.
    4363             :          */
    4364             :         if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
    4365             :                 list_add_leaf_cfs_rq(cfs_rq);
    4366             : 
    4367             :         if (cfs_rq->nr_running == 1)
    4368             :                 check_enqueue_throttle(cfs_rq);
    4369         620 : }
    4370             : 
    4371             : static void __clear_buddies_last(struct sched_entity *se)
    4372             : {
    4373           0 :         for_each_sched_entity(se) {
    4374           0 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4375           0 :                 if (cfs_rq->last != se)
    4376             :                         break;
    4377             : 
    4378           0 :                 cfs_rq->last = NULL;
    4379             :         }
    4380             : }
    4381             : 
    4382             : static void __clear_buddies_next(struct sched_entity *se)
    4383             : {
    4384         200 :         for_each_sched_entity(se) {
    4385         400 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4386         200 :                 if (cfs_rq->next != se)
    4387             :                         break;
    4388             : 
    4389         200 :                 cfs_rq->next = NULL;
    4390             :         }
    4391             : }
    4392             : 
    4393             : static void __clear_buddies_skip(struct sched_entity *se)
    4394             : {
    4395           0 :         for_each_sched_entity(se) {
    4396           0 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4397           0 :                 if (cfs_rq->skip != se)
    4398             :                         break;
    4399             : 
    4400           0 :                 cfs_rq->skip = NULL;
    4401             :         }
    4402             : }
    4403             : 
    4404        1241 : static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4405             : {
    4406        1241 :         if (cfs_rq->last == se)
    4407             :                 __clear_buddies_last(se);
    4408             : 
    4409        1241 :         if (cfs_rq->next == se)
    4410             :                 __clear_buddies_next(se);
    4411             : 
    4412        1241 :         if (cfs_rq->skip == se)
    4413             :                 __clear_buddies_skip(se);
    4414        1241 : }
    4415             : 
    4416             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
    4417             : 
    4418             : static void
    4419         618 : dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    4420             : {
    4421             :         /*
    4422             :          * Update run-time statistics of the 'current'.
    4423             :          */
    4424         618 :         update_curr(cfs_rq);
    4425             : 
    4426             :         /*
    4427             :          * When dequeuing a sched_entity, we must:
    4428             :          *   - Update loads to have both entity and cfs_rq synced with now.
    4429             :          *   - Subtract its load from the cfs_rq->runnable_avg.
    4430             :          *   - Subtract its previous weight from cfs_rq->load.weight.
    4431             :          *   - For group entity, update its weight to reflect the new share
    4432             :          *     of its group cfs_rq.
    4433             :          */
    4434         618 :         update_load_avg(cfs_rq, se, UPDATE_TG);
    4435         618 :         se_update_runnable(se);
    4436             : 
    4437         618 :         update_stats_dequeue_fair(cfs_rq, se, flags);
    4438             : 
    4439         618 :         clear_buddies(cfs_rq, se);
    4440             : 
    4441         618 :         if (se != cfs_rq->curr)
    4442             :                 __dequeue_entity(cfs_rq, se);
    4443         618 :         se->on_rq = 0;
    4444        1236 :         account_entity_dequeue(cfs_rq, se);
    4445             : 
    4446             :         /*
    4447             :          * Normalize after update_curr(); which will also have moved
    4448             :          * min_vruntime if @se is the one holding it back. But before doing
    4449             :          * update_min_vruntime() again, which will discount @se's position and
    4450             :          * can move min_vruntime forward still more.
    4451             :          */
    4452         618 :         if (!(flags & DEQUEUE_SLEEP))
    4453           3 :                 se->vruntime -= cfs_rq->min_vruntime;
    4454             : 
    4455             :         /* return excess runtime on last dequeue */
    4456         618 :         return_cfs_rq_runtime(cfs_rq);
    4457             : 
    4458         618 :         update_cfs_group(se);
    4459             : 
    4460             :         /*
    4461             :          * Now advance min_vruntime if @se was the entity holding it back,
    4462             :          * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
    4463             :          * put back on, and if we advance min_vruntime, we'll be placed back
    4464             :          * further than we started -- ie. we'll be penalized.
    4465             :          */
    4466         618 :         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
    4467         615 :                 update_min_vruntime(cfs_rq);
    4468         618 : }
    4469             : 
    4470             : /*
    4471             :  * Preempt the current task with a newly woken task if needed:
    4472             :  */
    4473             : static void
    4474           3 : check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    4475             : {
    4476             :         unsigned long ideal_runtime, delta_exec;
    4477             :         struct sched_entity *se;
    4478             :         s64 delta;
    4479             : 
    4480           3 :         ideal_runtime = sched_slice(cfs_rq, curr);
    4481           3 :         delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
    4482           3 :         if (delta_exec > ideal_runtime) {
    4483           3 :                 resched_curr(rq_of(cfs_rq));
    4484             :                 /*
    4485             :                  * The current task ran long enough, ensure it doesn't get
    4486             :                  * re-elected due to buddy favours.
    4487             :                  */
    4488           3 :                 clear_buddies(cfs_rq, curr);
    4489           3 :                 return;
    4490             :         }
    4491             : 
    4492             :         /*
    4493             :          * Ensure that a task that missed wakeup preemption by a
    4494             :          * narrow margin doesn't have to wait for a full slice.
    4495             :          * This also mitigates buddy induced latencies under load.
    4496             :          */
    4497           0 :         if (delta_exec < sysctl_sched_min_granularity)
    4498             :                 return;
    4499             : 
    4500           0 :         se = __pick_first_entity(cfs_rq);
    4501           0 :         delta = curr->vruntime - se->vruntime;
    4502             : 
    4503           0 :         if (delta < 0)
    4504             :                 return;
    4505             : 
    4506           0 :         if (delta > ideal_runtime)
    4507           0 :                 resched_curr(rq_of(cfs_rq));
    4508             : }
    4509             : 
    4510             : static void
    4511         620 : set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4512             : {
    4513         620 :         clear_buddies(cfs_rq, se);
    4514             : 
    4515             :         /* 'current' is not kept within the tree. */
    4516         620 :         if (se->on_rq) {
    4517             :                 /*
    4518             :                  * Any task has to be enqueued before it get to execute on
    4519             :                  * a CPU. So account for the time it spent waiting on the
    4520             :                  * runqueue.
    4521             :                  */
    4522        1240 :                 update_stats_wait_end_fair(cfs_rq, se);
    4523             :                 __dequeue_entity(cfs_rq, se);
    4524             :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    4525             :         }
    4526             : 
    4527        1240 :         update_stats_curr_start(cfs_rq, se);
    4528         620 :         cfs_rq->curr = se;
    4529             : 
    4530             :         /*
    4531             :          * Track our maximum slice length, if the CPU's load is at
    4532             :          * least twice that of our own weight (i.e. dont track it
    4533             :          * when there are only lesser-weight tasks around):
    4534             :          */
    4535             :         if (schedstat_enabled() &&
    4536             :             rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
    4537             :                 struct sched_statistics *stats;
    4538             : 
    4539             :                 stats = __schedstats_from_se(se);
    4540             :                 __schedstat_set(stats->slice_max,
    4541             :                                 max((u64)stats->slice_max,
    4542             :                                     se->sum_exec_runtime - se->prev_sum_exec_runtime));
    4543             :         }
    4544             : 
    4545         620 :         se->prev_sum_exec_runtime = se->sum_exec_runtime;
    4546         620 : }
    4547             : 
    4548             : static int
    4549             : wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
    4550             : 
    4551             : /*
    4552             :  * Pick the next process, keeping these things in mind, in this order:
    4553             :  * 1) keep things fair between processes/task groups
    4554             :  * 2) pick the "next" process, since someone really wants that to run
    4555             :  * 3) pick the "last" process, for cache locality
    4556             :  * 4) do not run the "skip" process, if something else is available
    4557             :  */
    4558             : static struct sched_entity *
    4559         617 : pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    4560             : {
    4561         617 :         struct sched_entity *left = __pick_first_entity(cfs_rq);
    4562             :         struct sched_entity *se;
    4563             : 
    4564             :         /*
    4565             :          * If curr is set we have to see if its left of the leftmost entity
    4566             :          * still in the tree, provided there was anything in the tree at all.
    4567             :          */
    4568         617 :         if (!left || (curr && entity_before(curr, left)))
    4569             :                 left = curr;
    4570             : 
    4571         617 :         se = left; /* ideally we run the leftmost entity */
    4572             : 
    4573             :         /*
    4574             :          * Avoid running the skip buddy, if running something else can
    4575             :          * be done without getting too unfair.
    4576             :          */
    4577         617 :         if (cfs_rq->skip && cfs_rq->skip == se) {
    4578             :                 struct sched_entity *second;
    4579             : 
    4580           0 :                 if (se == curr) {
    4581             :                         second = __pick_first_entity(cfs_rq);
    4582             :                 } else {
    4583           0 :                         second = __pick_next_entity(se);
    4584           0 :                         if (!second || (curr && entity_before(curr, second)))
    4585             :                                 second = curr;
    4586             :                 }
    4587             : 
    4588           0 :                 if (second && wakeup_preempt_entity(second, left) < 1)
    4589           0 :                         se = second;
    4590             :         }
    4591             : 
    4592         617 :         if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
    4593             :                 /*
    4594             :                  * Someone really wants this to run. If it's not unfair, run it.
    4595             :                  */
    4596         200 :                 se = cfs_rq->next;
    4597         417 :         } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
    4598             :                 /*
    4599             :                  * Prefer last buddy, try to return the CPU to a preempted task.
    4600             :                  */
    4601           0 :                 se = cfs_rq->last;
    4602             :         }
    4603             : 
    4604         617 :         return se;
    4605             : }
    4606             : 
    4607             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
    4608             : 
    4609         619 : static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
    4610             : {
    4611             :         /*
    4612             :          * If still on the runqueue then deactivate_task()
    4613             :          * was not called and update_curr() has to be done:
    4614             :          */
    4615         619 :         if (prev->on_rq)
    4616           1 :                 update_curr(cfs_rq);
    4617             : 
    4618             :         /* throttle cfs_rqs exceeding runtime */
    4619         619 :         check_cfs_rq_runtime(cfs_rq);
    4620             : 
    4621         619 :         check_spread(cfs_rq, prev);
    4622             : 
    4623         619 :         if (prev->on_rq) {
    4624           1 :                 update_stats_wait_start_fair(cfs_rq, prev);
    4625             :                 /* Put 'current' back into the tree. */
    4626           1 :                 __enqueue_entity(cfs_rq, prev);
    4627             :                 /* in !on_rq case, update occurred at dequeue */
    4628           1 :                 update_load_avg(cfs_rq, prev, 0);
    4629             :         }
    4630         619 :         cfs_rq->curr = NULL;
    4631         619 : }
    4632             : 
    4633             : static void
    4634           3 : entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
    4635             : {
    4636             :         /*
    4637             :          * Update run-time statistics of the 'current'.
    4638             :          */
    4639           3 :         update_curr(cfs_rq);
    4640             : 
    4641             :         /*
    4642             :          * Ensure that runnable average is periodically updated.
    4643             :          */
    4644           3 :         update_load_avg(cfs_rq, curr, UPDATE_TG);
    4645           3 :         update_cfs_group(curr);
    4646             : 
    4647             : #ifdef CONFIG_SCHED_HRTICK
    4648             :         /*
    4649             :          * queued ticks are scheduled to match the slice, so don't bother
    4650             :          * validating it and just reschedule.
    4651             :          */
    4652             :         if (queued) {
    4653             :                 resched_curr(rq_of(cfs_rq));
    4654             :                 return;
    4655             :         }
    4656             :         /*
    4657             :          * don't let the period tick interfere with the hrtick preemption
    4658             :          */
    4659             :         if (!sched_feat(DOUBLE_TICK) &&
    4660             :                         hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
    4661             :                 return;
    4662             : #endif
    4663             : 
    4664           3 :         if (cfs_rq->nr_running > 1)
    4665           3 :                 check_preempt_tick(cfs_rq, curr);
    4666           3 : }
    4667             : 
    4668             : 
    4669             : /**************************************************
    4670             :  * CFS bandwidth control machinery
    4671             :  */
    4672             : 
    4673             : #ifdef CONFIG_CFS_BANDWIDTH
    4674             : 
    4675             : #ifdef CONFIG_JUMP_LABEL
    4676             : static struct static_key __cfs_bandwidth_used;
    4677             : 
    4678             : static inline bool cfs_bandwidth_used(void)
    4679             : {
    4680             :         return static_key_false(&__cfs_bandwidth_used);
    4681             : }
    4682             : 
    4683             : void cfs_bandwidth_usage_inc(void)
    4684             : {
    4685             :         static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
    4686             : }
    4687             : 
    4688             : void cfs_bandwidth_usage_dec(void)
    4689             : {
    4690             :         static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
    4691             : }
    4692             : #else /* CONFIG_JUMP_LABEL */
    4693             : static bool cfs_bandwidth_used(void)
    4694             : {
    4695             :         return true;
    4696             : }
    4697             : 
    4698             : void cfs_bandwidth_usage_inc(void) {}
    4699             : void cfs_bandwidth_usage_dec(void) {}
    4700             : #endif /* CONFIG_JUMP_LABEL */
    4701             : 
    4702             : /*
    4703             :  * default period for cfs group bandwidth.
    4704             :  * default: 0.1s, units: nanoseconds
    4705             :  */
    4706             : static inline u64 default_cfs_period(void)
    4707             : {
    4708             :         return 100000000ULL;
    4709             : }
    4710             : 
    4711             : static inline u64 sched_cfs_bandwidth_slice(void)
    4712             : {
    4713             :         return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
    4714             : }
    4715             : 
    4716             : /*
    4717             :  * Replenish runtime according to assigned quota. We use sched_clock_cpu
    4718             :  * directly instead of rq->clock to avoid adding additional synchronization
    4719             :  * around rq->lock.
    4720             :  *
    4721             :  * requires cfs_b->lock
    4722             :  */
    4723             : void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
    4724             : {
    4725             :         s64 runtime;
    4726             : 
    4727             :         if (unlikely(cfs_b->quota == RUNTIME_INF))
    4728             :                 return;
    4729             : 
    4730             :         cfs_b->runtime += cfs_b->quota;
    4731             :         runtime = cfs_b->runtime_snap - cfs_b->runtime;
    4732             :         if (runtime > 0) {
    4733             :                 cfs_b->burst_time += runtime;
    4734             :                 cfs_b->nr_burst++;
    4735             :         }
    4736             : 
    4737             :         cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
    4738             :         cfs_b->runtime_snap = cfs_b->runtime;
    4739             : }
    4740             : 
    4741             : static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
    4742             : {
    4743             :         return &tg->cfs_bandwidth;
    4744             : }
    4745             : 
    4746             : /* returns 0 on failure to allocate runtime */
    4747             : static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
    4748             :                                    struct cfs_rq *cfs_rq, u64 target_runtime)
    4749             : {
    4750             :         u64 min_amount, amount = 0;
    4751             : 
    4752             :         lockdep_assert_held(&cfs_b->lock);
    4753             : 
    4754             :         /* note: this is a positive sum as runtime_remaining <= 0 */
    4755             :         min_amount = target_runtime - cfs_rq->runtime_remaining;
    4756             : 
    4757             :         if (cfs_b->quota == RUNTIME_INF)
    4758             :                 amount = min_amount;
    4759             :         else {
    4760             :                 start_cfs_bandwidth(cfs_b);
    4761             : 
    4762             :                 if (cfs_b->runtime > 0) {
    4763             :                         amount = min(cfs_b->runtime, min_amount);
    4764             :                         cfs_b->runtime -= amount;
    4765             :                         cfs_b->idle = 0;
    4766             :                 }
    4767             :         }
    4768             : 
    4769             :         cfs_rq->runtime_remaining += amount;
    4770             : 
    4771             :         return cfs_rq->runtime_remaining > 0;
    4772             : }
    4773             : 
    4774             : /* returns 0 on failure to allocate runtime */
    4775             : static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    4776             : {
    4777             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    4778             :         int ret;
    4779             : 
    4780             :         raw_spin_lock(&cfs_b->lock);
    4781             :         ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
    4782             :         raw_spin_unlock(&cfs_b->lock);
    4783             : 
    4784             :         return ret;
    4785             : }
    4786             : 
    4787             : static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
    4788             : {
    4789             :         /* dock delta_exec before expiring quota (as it could span periods) */
    4790             :         cfs_rq->runtime_remaining -= delta_exec;
    4791             : 
    4792             :         if (likely(cfs_rq->runtime_remaining > 0))
    4793             :                 return;
    4794             : 
    4795             :         if (cfs_rq->throttled)
    4796             :                 return;
    4797             :         /*
    4798             :          * if we're unable to extend our runtime we resched so that the active
    4799             :          * hierarchy can be throttled
    4800             :          */
    4801             :         if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
    4802             :                 resched_curr(rq_of(cfs_rq));
    4803             : }
    4804             : 
    4805             : static __always_inline
    4806             : void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
    4807             : {
    4808             :         if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
    4809             :                 return;
    4810             : 
    4811             :         __account_cfs_rq_runtime(cfs_rq, delta_exec);
    4812             : }
    4813             : 
    4814             : static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
    4815             : {
    4816             :         return cfs_bandwidth_used() && cfs_rq->throttled;
    4817             : }
    4818             : 
    4819             : /* check whether cfs_rq, or any parent, is throttled */
    4820             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
    4821             : {
    4822             :         return cfs_bandwidth_used() && cfs_rq->throttle_count;
    4823             : }
    4824             : 
    4825             : /*
    4826             :  * Ensure that neither of the group entities corresponding to src_cpu or
    4827             :  * dest_cpu are members of a throttled hierarchy when performing group
    4828             :  * load-balance operations.
    4829             :  */
    4830             : static inline int throttled_lb_pair(struct task_group *tg,
    4831             :                                     int src_cpu, int dest_cpu)
    4832             : {
    4833             :         struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
    4834             : 
    4835             :         src_cfs_rq = tg->cfs_rq[src_cpu];
    4836             :         dest_cfs_rq = tg->cfs_rq[dest_cpu];
    4837             : 
    4838             :         return throttled_hierarchy(src_cfs_rq) ||
    4839             :                throttled_hierarchy(dest_cfs_rq);
    4840             : }
    4841             : 
    4842             : static int tg_unthrottle_up(struct task_group *tg, void *data)
    4843             : {
    4844             :         struct rq *rq = data;
    4845             :         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    4846             : 
    4847             :         cfs_rq->throttle_count--;
    4848             :         if (!cfs_rq->throttle_count) {
    4849             :                 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
    4850             :                                              cfs_rq->throttled_clock_task;
    4851             : 
    4852             :                 /* Add cfs_rq with load or one or more already running entities to the list */
    4853             :                 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
    4854             :                         list_add_leaf_cfs_rq(cfs_rq);
    4855             :         }
    4856             : 
    4857             :         return 0;
    4858             : }
    4859             : 
    4860             : static int tg_throttle_down(struct task_group *tg, void *data)
    4861             : {
    4862             :         struct rq *rq = data;
    4863             :         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    4864             : 
    4865             :         /* group is entering throttled state, stop time */
    4866             :         if (!cfs_rq->throttle_count) {
    4867             :                 cfs_rq->throttled_clock_task = rq_clock_task(rq);
    4868             :                 list_del_leaf_cfs_rq(cfs_rq);
    4869             :         }
    4870             :         cfs_rq->throttle_count++;
    4871             : 
    4872             :         return 0;
    4873             : }
    4874             : 
    4875             : static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
    4876             : {
    4877             :         struct rq *rq = rq_of(cfs_rq);
    4878             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    4879             :         struct sched_entity *se;
    4880             :         long task_delta, idle_task_delta, dequeue = 1;
    4881             : 
    4882             :         raw_spin_lock(&cfs_b->lock);
    4883             :         /* This will start the period timer if necessary */
    4884             :         if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
    4885             :                 /*
    4886             :                  * We have raced with bandwidth becoming available, and if we
    4887             :                  * actually throttled the timer might not unthrottle us for an
    4888             :                  * entire period. We additionally needed to make sure that any
    4889             :                  * subsequent check_cfs_rq_runtime calls agree not to throttle
    4890             :                  * us, as we may commit to do cfs put_prev+pick_next, so we ask
    4891             :                  * for 1ns of runtime rather than just check cfs_b.
    4892             :                  */
    4893             :                 dequeue = 0;
    4894             :         } else {
    4895             :                 list_add_tail_rcu(&cfs_rq->throttled_list,
    4896             :                                   &cfs_b->throttled_cfs_rq);
    4897             :         }
    4898             :         raw_spin_unlock(&cfs_b->lock);
    4899             : 
    4900             :         if (!dequeue)
    4901             :                 return false;  /* Throttle no longer required. */
    4902             : 
    4903             :         se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
    4904             : 
    4905             :         /* freeze hierarchy runnable averages while throttled */
    4906             :         rcu_read_lock();
    4907             :         walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
    4908             :         rcu_read_unlock();
    4909             : 
    4910             :         task_delta = cfs_rq->h_nr_running;
    4911             :         idle_task_delta = cfs_rq->idle_h_nr_running;
    4912             :         for_each_sched_entity(se) {
    4913             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    4914             :                 /* throttled entity or throttle-on-deactivate */
    4915             :                 if (!se->on_rq)
    4916             :                         goto done;
    4917             : 
    4918             :                 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
    4919             : 
    4920             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    4921             :                         idle_task_delta = cfs_rq->h_nr_running;
    4922             : 
    4923             :                 qcfs_rq->h_nr_running -= task_delta;
    4924             :                 qcfs_rq->idle_h_nr_running -= idle_task_delta;
    4925             : 
    4926             :                 if (qcfs_rq->load.weight) {
    4927             :                         /* Avoid re-evaluating load for this entity: */
    4928             :                         se = parent_entity(se);
    4929             :                         break;
    4930             :                 }
    4931             :         }
    4932             : 
    4933             :         for_each_sched_entity(se) {
    4934             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    4935             :                 /* throttled entity or throttle-on-deactivate */
    4936             :                 if (!se->on_rq)
    4937             :                         goto done;
    4938             : 
    4939             :                 update_load_avg(qcfs_rq, se, 0);
    4940             :                 se_update_runnable(se);
    4941             : 
    4942             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    4943             :                         idle_task_delta = cfs_rq->h_nr_running;
    4944             : 
    4945             :                 qcfs_rq->h_nr_running -= task_delta;
    4946             :                 qcfs_rq->idle_h_nr_running -= idle_task_delta;
    4947             :         }
    4948             : 
    4949             :         /* At this point se is NULL and we are at root level*/
    4950             :         sub_nr_running(rq, task_delta);
    4951             : 
    4952             : done:
    4953             :         /*
    4954             :          * Note: distribution will already see us throttled via the
    4955             :          * throttled-list.  rq->lock protects completion.
    4956             :          */
    4957             :         cfs_rq->throttled = 1;
    4958             :         cfs_rq->throttled_clock = rq_clock(rq);
    4959             :         return true;
    4960             : }
    4961             : 
    4962             : void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
    4963             : {
    4964             :         struct rq *rq = rq_of(cfs_rq);
    4965             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    4966             :         struct sched_entity *se;
    4967             :         long task_delta, idle_task_delta;
    4968             : 
    4969             :         se = cfs_rq->tg->se[cpu_of(rq)];
    4970             : 
    4971             :         cfs_rq->throttled = 0;
    4972             : 
    4973             :         update_rq_clock(rq);
    4974             : 
    4975             :         raw_spin_lock(&cfs_b->lock);
    4976             :         cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
    4977             :         list_del_rcu(&cfs_rq->throttled_list);
    4978             :         raw_spin_unlock(&cfs_b->lock);
    4979             : 
    4980             :         /* update hierarchical throttle state */
    4981             :         walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
    4982             : 
    4983             :         /* Nothing to run but something to decay (on_list)? Complete the branch */
    4984             :         if (!cfs_rq->load.weight) {
    4985             :                 if (cfs_rq->on_list)
    4986             :                         goto unthrottle_throttle;
    4987             :                 return;
    4988             :         }
    4989             : 
    4990             :         task_delta = cfs_rq->h_nr_running;
    4991             :         idle_task_delta = cfs_rq->idle_h_nr_running;
    4992             :         for_each_sched_entity(se) {
    4993             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    4994             : 
    4995             :                 if (se->on_rq)
    4996             :                         break;
    4997             :                 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
    4998             : 
    4999             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    5000             :                         idle_task_delta = cfs_rq->h_nr_running;
    5001             : 
    5002             :                 qcfs_rq->h_nr_running += task_delta;
    5003             :                 qcfs_rq->idle_h_nr_running += idle_task_delta;
    5004             : 
    5005             :                 /* end evaluation on encountering a throttled cfs_rq */
    5006             :                 if (cfs_rq_throttled(qcfs_rq))
    5007             :                         goto unthrottle_throttle;
    5008             :         }
    5009             : 
    5010             :         for_each_sched_entity(se) {
    5011             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    5012             : 
    5013             :                 update_load_avg(qcfs_rq, se, UPDATE_TG);
    5014             :                 se_update_runnable(se);
    5015             : 
    5016             :                 if (cfs_rq_is_idle(group_cfs_rq(se)))
    5017             :                         idle_task_delta = cfs_rq->h_nr_running;
    5018             : 
    5019             :                 qcfs_rq->h_nr_running += task_delta;
    5020             :                 qcfs_rq->idle_h_nr_running += idle_task_delta;
    5021             : 
    5022             :                 /* end evaluation on encountering a throttled cfs_rq */
    5023             :                 if (cfs_rq_throttled(qcfs_rq))
    5024             :                         goto unthrottle_throttle;
    5025             : 
    5026             :                 /*
    5027             :                  * One parent has been throttled and cfs_rq removed from the
    5028             :                  * list. Add it back to not break the leaf list.
    5029             :                  */
    5030             :                 if (throttled_hierarchy(qcfs_rq))
    5031             :                         list_add_leaf_cfs_rq(qcfs_rq);
    5032             :         }
    5033             : 
    5034             :         /* At this point se is NULL and we are at root level*/
    5035             :         add_nr_running(rq, task_delta);
    5036             : 
    5037             : unthrottle_throttle:
    5038             :         /*
    5039             :          * The cfs_rq_throttled() breaks in the above iteration can result in
    5040             :          * incomplete leaf list maintenance, resulting in triggering the
    5041             :          * assertion below.
    5042             :          */
    5043             :         for_each_sched_entity(se) {
    5044             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    5045             : 
    5046             :                 if (list_add_leaf_cfs_rq(qcfs_rq))
    5047             :                         break;
    5048             :         }
    5049             : 
    5050             :         assert_list_leaf_cfs_rq(rq);
    5051             : 
    5052             :         /* Determine whether we need to wake up potentially idle CPU: */
    5053             :         if (rq->curr == rq->idle && rq->cfs.nr_running)
    5054             :                 resched_curr(rq);
    5055             : }
    5056             : 
    5057             : static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
    5058             : {
    5059             :         struct cfs_rq *cfs_rq;
    5060             :         u64 runtime, remaining = 1;
    5061             : 
    5062             :         rcu_read_lock();
    5063             :         list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
    5064             :                                 throttled_list) {
    5065             :                 struct rq *rq = rq_of(cfs_rq);
    5066             :                 struct rq_flags rf;
    5067             : 
    5068             :                 rq_lock_irqsave(rq, &rf);
    5069             :                 if (!cfs_rq_throttled(cfs_rq))
    5070             :                         goto next;
    5071             : 
    5072             :                 /* By the above check, this should never be true */
    5073             :                 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
    5074             : 
    5075             :                 raw_spin_lock(&cfs_b->lock);
    5076             :                 runtime = -cfs_rq->runtime_remaining + 1;
    5077             :                 if (runtime > cfs_b->runtime)
    5078             :                         runtime = cfs_b->runtime;
    5079             :                 cfs_b->runtime -= runtime;
    5080             :                 remaining = cfs_b->runtime;
    5081             :                 raw_spin_unlock(&cfs_b->lock);
    5082             : 
    5083             :                 cfs_rq->runtime_remaining += runtime;
    5084             : 
    5085             :                 /* we check whether we're throttled above */
    5086             :                 if (cfs_rq->runtime_remaining > 0)
    5087             :                         unthrottle_cfs_rq(cfs_rq);
    5088             : 
    5089             : next:
    5090             :                 rq_unlock_irqrestore(rq, &rf);
    5091             : 
    5092             :                 if (!remaining)
    5093             :                         break;
    5094             :         }
    5095             :         rcu_read_unlock();
    5096             : }
    5097             : 
    5098             : /*
    5099             :  * Responsible for refilling a task_group's bandwidth and unthrottling its
    5100             :  * cfs_rqs as appropriate. If there has been no activity within the last
    5101             :  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
    5102             :  * used to track this state.
    5103             :  */
    5104             : static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
    5105             : {
    5106             :         int throttled;
    5107             : 
    5108             :         /* no need to continue the timer with no bandwidth constraint */
    5109             :         if (cfs_b->quota == RUNTIME_INF)
    5110             :                 goto out_deactivate;
    5111             : 
    5112             :         throttled = !list_empty(&cfs_b->throttled_cfs_rq);
    5113             :         cfs_b->nr_periods += overrun;
    5114             : 
    5115             :         /* Refill extra burst quota even if cfs_b->idle */
    5116             :         __refill_cfs_bandwidth_runtime(cfs_b);
    5117             : 
    5118             :         /*
    5119             :          * idle depends on !throttled (for the case of a large deficit), and if
    5120             :          * we're going inactive then everything else can be deferred
    5121             :          */
    5122             :         if (cfs_b->idle && !throttled)
    5123             :                 goto out_deactivate;
    5124             : 
    5125             :         if (!throttled) {
    5126             :                 /* mark as potentially idle for the upcoming period */
    5127             :                 cfs_b->idle = 1;
    5128             :                 return 0;
    5129             :         }
    5130             : 
    5131             :         /* account preceding periods in which throttling occurred */
    5132             :         cfs_b->nr_throttled += overrun;
    5133             : 
    5134             :         /*
    5135             :          * This check is repeated as we release cfs_b->lock while we unthrottle.
    5136             :          */
    5137             :         while (throttled && cfs_b->runtime > 0) {
    5138             :                 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5139             :                 /* we can't nest cfs_b->lock while distributing bandwidth */
    5140             :                 distribute_cfs_runtime(cfs_b);
    5141             :                 raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5142             : 
    5143             :                 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
    5144             :         }
    5145             : 
    5146             :         /*
    5147             :          * While we are ensured activity in the period following an
    5148             :          * unthrottle, this also covers the case in which the new bandwidth is
    5149             :          * insufficient to cover the existing bandwidth deficit.  (Forcing the
    5150             :          * timer to remain active while there are any throttled entities.)
    5151             :          */
    5152             :         cfs_b->idle = 0;
    5153             : 
    5154             :         return 0;
    5155             : 
    5156             : out_deactivate:
    5157             :         return 1;
    5158             : }
    5159             : 
    5160             : /* a cfs_rq won't donate quota below this amount */
    5161             : static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
    5162             : /* minimum remaining period time to redistribute slack quota */
    5163             : static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
    5164             : /* how long we wait to gather additional slack before distributing */
    5165             : static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
    5166             : 
    5167             : /*
    5168             :  * Are we near the end of the current quota period?
    5169             :  *
    5170             :  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
    5171             :  * hrtimer base being cleared by hrtimer_start. In the case of
    5172             :  * migrate_hrtimers, base is never cleared, so we are fine.
    5173             :  */
    5174             : static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
    5175             : {
    5176             :         struct hrtimer *refresh_timer = &cfs_b->period_timer;
    5177             :         s64 remaining;
    5178             : 
    5179             :         /* if the call-back is running a quota refresh is already occurring */
    5180             :         if (hrtimer_callback_running(refresh_timer))
    5181             :                 return 1;
    5182             : 
    5183             :         /* is a quota refresh about to occur? */
    5184             :         remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
    5185             :         if (remaining < (s64)min_expire)
    5186             :                 return 1;
    5187             : 
    5188             :         return 0;
    5189             : }
    5190             : 
    5191             : static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
    5192             : {
    5193             :         u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
    5194             : 
    5195             :         /* if there's a quota refresh soon don't bother with slack */
    5196             :         if (runtime_refresh_within(cfs_b, min_left))
    5197             :                 return;
    5198             : 
    5199             :         /* don't push forwards an existing deferred unthrottle */
    5200             :         if (cfs_b->slack_started)
    5201             :                 return;
    5202             :         cfs_b->slack_started = true;
    5203             : 
    5204             :         hrtimer_start(&cfs_b->slack_timer,
    5205             :                         ns_to_ktime(cfs_bandwidth_slack_period),
    5206             :                         HRTIMER_MODE_REL);
    5207             : }
    5208             : 
    5209             : /* we know any runtime found here is valid as update_curr() precedes return */
    5210             : static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5211             : {
    5212             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    5213             :         s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
    5214             : 
    5215             :         if (slack_runtime <= 0)
    5216             :                 return;
    5217             : 
    5218             :         raw_spin_lock(&cfs_b->lock);
    5219             :         if (cfs_b->quota != RUNTIME_INF) {
    5220             :                 cfs_b->runtime += slack_runtime;
    5221             : 
    5222             :                 /* we are under rq->lock, defer unthrottling using a timer */
    5223             :                 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
    5224             :                     !list_empty(&cfs_b->throttled_cfs_rq))
    5225             :                         start_cfs_slack_bandwidth(cfs_b);
    5226             :         }
    5227             :         raw_spin_unlock(&cfs_b->lock);
    5228             : 
    5229             :         /* even if it's not valid for return we don't want to try again */
    5230             :         cfs_rq->runtime_remaining -= slack_runtime;
    5231             : }
    5232             : 
    5233             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5234             : {
    5235             :         if (!cfs_bandwidth_used())
    5236             :                 return;
    5237             : 
    5238             :         if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
    5239             :                 return;
    5240             : 
    5241             :         __return_cfs_rq_runtime(cfs_rq);
    5242             : }
    5243             : 
    5244             : /*
    5245             :  * This is done with a timer (instead of inline with bandwidth return) since
    5246             :  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
    5247             :  */
    5248             : static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
    5249             : {
    5250             :         u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
    5251             :         unsigned long flags;
    5252             : 
    5253             :         /* confirm we're still not at a refresh boundary */
    5254             :         raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5255             :         cfs_b->slack_started = false;
    5256             : 
    5257             :         if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
    5258             :                 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5259             :                 return;
    5260             :         }
    5261             : 
    5262             :         if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
    5263             :                 runtime = cfs_b->runtime;
    5264             : 
    5265             :         raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5266             : 
    5267             :         if (!runtime)
    5268             :                 return;
    5269             : 
    5270             :         distribute_cfs_runtime(cfs_b);
    5271             : }
    5272             : 
    5273             : /*
    5274             :  * When a group wakes up we want to make sure that its quota is not already
    5275             :  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
    5276             :  * runtime as update_curr() throttling can not trigger until it's on-rq.
    5277             :  */
    5278             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
    5279             : {
    5280             :         if (!cfs_bandwidth_used())
    5281             :                 return;
    5282             : 
    5283             :         /* an active group must be handled by the update_curr()->put() path */
    5284             :         if (!cfs_rq->runtime_enabled || cfs_rq->curr)
    5285             :                 return;
    5286             : 
    5287             :         /* ensure the group is not already throttled */
    5288             :         if (cfs_rq_throttled(cfs_rq))
    5289             :                 return;
    5290             : 
    5291             :         /* update runtime allocation */
    5292             :         account_cfs_rq_runtime(cfs_rq, 0);
    5293             :         if (cfs_rq->runtime_remaining <= 0)
    5294             :                 throttle_cfs_rq(cfs_rq);
    5295             : }
    5296             : 
    5297             : static void sync_throttle(struct task_group *tg, int cpu)
    5298             : {
    5299             :         struct cfs_rq *pcfs_rq, *cfs_rq;
    5300             : 
    5301             :         if (!cfs_bandwidth_used())
    5302             :                 return;
    5303             : 
    5304             :         if (!tg->parent)
    5305             :                 return;
    5306             : 
    5307             :         cfs_rq = tg->cfs_rq[cpu];
    5308             :         pcfs_rq = tg->parent->cfs_rq[cpu];
    5309             : 
    5310             :         cfs_rq->throttle_count = pcfs_rq->throttle_count;
    5311             :         cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
    5312             : }
    5313             : 
    5314             : /* conditionally throttle active cfs_rq's from put_prev_entity() */
    5315             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5316             : {
    5317             :         if (!cfs_bandwidth_used())
    5318             :                 return false;
    5319             : 
    5320             :         if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
    5321             :                 return false;
    5322             : 
    5323             :         /*
    5324             :          * it's possible for a throttled entity to be forced into a running
    5325             :          * state (e.g. set_curr_task), in this case we're finished.
    5326             :          */
    5327             :         if (cfs_rq_throttled(cfs_rq))
    5328             :                 return true;
    5329             : 
    5330             :         return throttle_cfs_rq(cfs_rq);
    5331             : }
    5332             : 
    5333             : static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
    5334             : {
    5335             :         struct cfs_bandwidth *cfs_b =
    5336             :                 container_of(timer, struct cfs_bandwidth, slack_timer);
    5337             : 
    5338             :         do_sched_cfs_slack_timer(cfs_b);
    5339             : 
    5340             :         return HRTIMER_NORESTART;
    5341             : }
    5342             : 
    5343             : extern const u64 max_cfs_quota_period;
    5344             : 
    5345             : static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
    5346             : {
    5347             :         struct cfs_bandwidth *cfs_b =
    5348             :                 container_of(timer, struct cfs_bandwidth, period_timer);
    5349             :         unsigned long flags;
    5350             :         int overrun;
    5351             :         int idle = 0;
    5352             :         int count = 0;
    5353             : 
    5354             :         raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5355             :         for (;;) {
    5356             :                 overrun = hrtimer_forward_now(timer, cfs_b->period);
    5357             :                 if (!overrun)
    5358             :                         break;
    5359             : 
    5360             :                 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
    5361             : 
    5362             :                 if (++count > 3) {
    5363             :                         u64 new, old = ktime_to_ns(cfs_b->period);
    5364             : 
    5365             :                         /*
    5366             :                          * Grow period by a factor of 2 to avoid losing precision.
    5367             :                          * Precision loss in the quota/period ratio can cause __cfs_schedulable
    5368             :                          * to fail.
    5369             :                          */
    5370             :                         new = old * 2;
    5371             :                         if (new < max_cfs_quota_period) {
    5372             :                                 cfs_b->period = ns_to_ktime(new);
    5373             :                                 cfs_b->quota *= 2;
    5374             :                                 cfs_b->burst *= 2;
    5375             : 
    5376             :                                 pr_warn_ratelimited(
    5377             :         "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
    5378             :                                         smp_processor_id(),
    5379             :                                         div_u64(new, NSEC_PER_USEC),
    5380             :                                         div_u64(cfs_b->quota, NSEC_PER_USEC));
    5381             :                         } else {
    5382             :                                 pr_warn_ratelimited(
    5383             :         "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
    5384             :                                         smp_processor_id(),
    5385             :                                         div_u64(old, NSEC_PER_USEC),
    5386             :                                         div_u64(cfs_b->quota, NSEC_PER_USEC));
    5387             :                         }
    5388             : 
    5389             :                         /* reset count so we don't come right back in here */
    5390             :                         count = 0;
    5391             :                 }
    5392             :         }
    5393             :         if (idle)
    5394             :                 cfs_b->period_active = 0;
    5395             :         raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5396             : 
    5397             :         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
    5398             : }
    5399             : 
    5400             : void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    5401             : {
    5402             :         raw_spin_lock_init(&cfs_b->lock);
    5403             :         cfs_b->runtime = 0;
    5404             :         cfs_b->quota = RUNTIME_INF;
    5405             :         cfs_b->period = ns_to_ktime(default_cfs_period());
    5406             :         cfs_b->burst = 0;
    5407             : 
    5408             :         INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
    5409             :         hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
    5410             :         cfs_b->period_timer.function = sched_cfs_period_timer;
    5411             :         hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    5412             :         cfs_b->slack_timer.function = sched_cfs_slack_timer;
    5413             :         cfs_b->slack_started = false;
    5414             : }
    5415             : 
    5416             : static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5417             : {
    5418             :         cfs_rq->runtime_enabled = 0;
    5419             :         INIT_LIST_HEAD(&cfs_rq->throttled_list);
    5420             : }
    5421             : 
    5422             : void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    5423             : {
    5424             :         lockdep_assert_held(&cfs_b->lock);
    5425             : 
    5426             :         if (cfs_b->period_active)
    5427             :                 return;
    5428             : 
    5429             :         cfs_b->period_active = 1;
    5430             :         hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
    5431             :         hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
    5432             : }
    5433             : 
    5434             : static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    5435             : {
    5436             :         /* init_cfs_bandwidth() was not called */
    5437             :         if (!cfs_b->throttled_cfs_rq.next)
    5438             :                 return;
    5439             : 
    5440             :         hrtimer_cancel(&cfs_b->period_timer);
    5441             :         hrtimer_cancel(&cfs_b->slack_timer);
    5442             : }
    5443             : 
    5444             : /*
    5445             :  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
    5446             :  *
    5447             :  * The race is harmless, since modifying bandwidth settings of unhooked group
    5448             :  * bits doesn't do much.
    5449             :  */
    5450             : 
    5451             : /* cpu online callback */
    5452             : static void __maybe_unused update_runtime_enabled(struct rq *rq)
    5453             : {
    5454             :         struct task_group *tg;
    5455             : 
    5456             :         lockdep_assert_rq_held(rq);
    5457             : 
    5458             :         rcu_read_lock();
    5459             :         list_for_each_entry_rcu(tg, &task_groups, list) {
    5460             :                 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
    5461             :                 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    5462             : 
    5463             :                 raw_spin_lock(&cfs_b->lock);
    5464             :                 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
    5465             :                 raw_spin_unlock(&cfs_b->lock);
    5466             :         }
    5467             :         rcu_read_unlock();
    5468             : }
    5469             : 
    5470             : /* cpu offline callback */
    5471             : static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
    5472             : {
    5473             :         struct task_group *tg;
    5474             : 
    5475             :         lockdep_assert_rq_held(rq);
    5476             : 
    5477             :         rcu_read_lock();
    5478             :         list_for_each_entry_rcu(tg, &task_groups, list) {
    5479             :                 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    5480             : 
    5481             :                 if (!cfs_rq->runtime_enabled)
    5482             :                         continue;
    5483             : 
    5484             :                 /*
    5485             :                  * clock_task is not advancing so we just need to make sure
    5486             :                  * there's some valid quota amount
    5487             :                  */
    5488             :                 cfs_rq->runtime_remaining = 1;
    5489             :                 /*
    5490             :                  * Offline rq is schedulable till CPU is completely disabled
    5491             :                  * in take_cpu_down(), so we prevent new cfs throttling here.
    5492             :                  */
    5493             :                 cfs_rq->runtime_enabled = 0;
    5494             : 
    5495             :                 if (cfs_rq_throttled(cfs_rq))
    5496             :                         unthrottle_cfs_rq(cfs_rq);
    5497             :         }
    5498             :         rcu_read_unlock();
    5499             : }
    5500             : 
    5501             : #else /* CONFIG_CFS_BANDWIDTH */
    5502             : 
    5503             : static inline bool cfs_bandwidth_used(void)
    5504             : {
    5505             :         return false;
    5506             : }
    5507             : 
    5508             : static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
    5509             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
    5510             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
    5511             : static inline void sync_throttle(struct task_group *tg, int cpu) {}
    5512             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
    5513             : 
    5514             : static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
    5515             : {
    5516             :         return 0;
    5517             : }
    5518             : 
    5519             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
    5520             : {
    5521             :         return 0;
    5522             : }
    5523             : 
    5524             : static inline int throttled_lb_pair(struct task_group *tg,
    5525             :                                     int src_cpu, int dest_cpu)
    5526             : {
    5527             :         return 0;
    5528             : }
    5529             : 
    5530           0 : void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
    5531             : 
    5532             : #ifdef CONFIG_FAIR_GROUP_SCHED
    5533             : static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
    5534             : #endif
    5535             : 
    5536             : static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
    5537             : {
    5538             :         return NULL;
    5539             : }
    5540             : static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
    5541             : static inline void update_runtime_enabled(struct rq *rq) {}
    5542             : static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
    5543             : 
    5544             : #endif /* CONFIG_CFS_BANDWIDTH */
    5545             : 
    5546             : /**************************************************
    5547             :  * CFS operations on tasks:
    5548             :  */
    5549             : 
    5550             : #ifdef CONFIG_SCHED_HRTICK
    5551             : static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
    5552             : {
    5553             :         struct sched_entity *se = &p->se;
    5554             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    5555             : 
    5556             :         SCHED_WARN_ON(task_rq(p) != rq);
    5557             : 
    5558             :         if (rq->cfs.h_nr_running > 1) {
    5559             :                 u64 slice = sched_slice(cfs_rq, se);
    5560             :                 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
    5561             :                 s64 delta = slice - ran;
    5562             : 
    5563             :                 if (delta < 0) {
    5564             :                         if (task_current(rq, p))
    5565             :                                 resched_curr(rq);
    5566             :                         return;
    5567             :                 }
    5568             :                 hrtick_start(rq, delta);
    5569             :         }
    5570             : }
    5571             : 
    5572             : /*
    5573             :  * called from enqueue/dequeue and updates the hrtick when the
    5574             :  * current task is from our class and nr_running is low enough
    5575             :  * to matter.
    5576             :  */
    5577             : static void hrtick_update(struct rq *rq)
    5578             : {
    5579             :         struct task_struct *curr = rq->curr;
    5580             : 
    5581             :         if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
    5582             :                 return;
    5583             : 
    5584             :         if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
    5585             :                 hrtick_start_fair(rq, curr);
    5586             : }
    5587             : #else /* !CONFIG_SCHED_HRTICK */
    5588             : static inline void
    5589             : hrtick_start_fair(struct rq *rq, struct task_struct *p)
    5590             : {
    5591             : }
    5592             : 
    5593             : static inline void hrtick_update(struct rq *rq)
    5594             : {
    5595             : }
    5596             : #endif
    5597             : 
    5598             : #ifdef CONFIG_SMP
    5599             : static inline bool cpu_overutilized(int cpu)
    5600             : {
    5601             :         return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
    5602             : }
    5603             : 
    5604             : static inline void update_overutilized_status(struct rq *rq)
    5605             : {
    5606             :         if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
    5607             :                 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
    5608             :                 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
    5609             :         }
    5610             : }
    5611             : #else
    5612             : static inline void update_overutilized_status(struct rq *rq) { }
    5613             : #endif
    5614             : 
    5615             : /* Runqueue only has SCHED_IDLE tasks enqueued */
    5616             : static int sched_idle_rq(struct rq *rq)
    5617             : {
    5618        1236 :         return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
    5619             :                         rq->nr_running);
    5620             : }
    5621             : 
    5622             : /*
    5623             :  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
    5624             :  * of idle_nr_running, which does not consider idle descendants of normal
    5625             :  * entities.
    5626             :  */
    5627             : static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
    5628             : {
    5629             :         return cfs_rq->nr_running &&
    5630             :                 cfs_rq->nr_running == cfs_rq->idle_nr_running;
    5631             : }
    5632             : 
    5633             : #ifdef CONFIG_SMP
    5634             : static int sched_idle_cpu(int cpu)
    5635             : {
    5636             :         return sched_idle_rq(cpu_rq(cpu));
    5637             : }
    5638             : #endif
    5639             : 
    5640             : /*
    5641             :  * The enqueue_task method is called before nr_running is
    5642             :  * increased. Here we update the fair scheduling stats and
    5643             :  * then put the task into the rbtree:
    5644             :  */
    5645             : static void
    5646         620 : enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
    5647             : {
    5648             :         struct cfs_rq *cfs_rq;
    5649         620 :         struct sched_entity *se = &p->se;
    5650        1240 :         int idle_h_nr_running = task_has_idle_policy(p);
    5651         620 :         int task_new = !(flags & ENQUEUE_WAKEUP);
    5652             : 
    5653             :         /*
    5654             :          * The code below (indirectly) updates schedutil which looks at
    5655             :          * the cfs_rq utilization to select a frequency.
    5656             :          * Let's add the task's estimated utilization to the cfs_rq's
    5657             :          * estimated utilization, before we update schedutil.
    5658             :          */
    5659         620 :         util_est_enqueue(&rq->cfs, p);
    5660             : 
    5661             :         /*
    5662             :          * If in_iowait is set, the code below may not trigger any cpufreq
    5663             :          * utilization updates, so do it here explicitly with the IOWAIT flag
    5664             :          * passed.
    5665             :          */
    5666             :         if (p->in_iowait)
    5667             :                 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
    5668             : 
    5669        1240 :         for_each_sched_entity(se) {
    5670         620 :                 if (se->on_rq)
    5671             :                         break;
    5672        1240 :                 cfs_rq = cfs_rq_of(se);
    5673         620 :                 enqueue_entity(cfs_rq, se, flags);
    5674             : 
    5675         620 :                 cfs_rq->h_nr_running++;
    5676         620 :                 cfs_rq->idle_h_nr_running += idle_h_nr_running;
    5677             : 
    5678             :                 if (cfs_rq_is_idle(cfs_rq))
    5679             :                         idle_h_nr_running = 1;
    5680             : 
    5681             :                 /* end evaluation on encountering a throttled cfs_rq */
    5682             :                 if (cfs_rq_throttled(cfs_rq))
    5683             :                         goto enqueue_throttle;
    5684             : 
    5685             :                 flags = ENQUEUE_WAKEUP;
    5686             :         }
    5687             : 
    5688           0 :         for_each_sched_entity(se) {
    5689           0 :                 cfs_rq = cfs_rq_of(se);
    5690             : 
    5691           0 :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    5692           0 :                 se_update_runnable(se);
    5693           0 :                 update_cfs_group(se);
    5694             : 
    5695           0 :                 cfs_rq->h_nr_running++;
    5696           0 :                 cfs_rq->idle_h_nr_running += idle_h_nr_running;
    5697             : 
    5698             :                 if (cfs_rq_is_idle(cfs_rq))
    5699             :                         idle_h_nr_running = 1;
    5700             : 
    5701             :                 /* end evaluation on encountering a throttled cfs_rq */
    5702             :                 if (cfs_rq_throttled(cfs_rq))
    5703             :                         goto enqueue_throttle;
    5704             : 
    5705             :                /*
    5706             :                 * One parent has been throttled and cfs_rq removed from the
    5707             :                 * list. Add it back to not break the leaf list.
    5708             :                 */
    5709             :                if (throttled_hierarchy(cfs_rq))
    5710             :                        list_add_leaf_cfs_rq(cfs_rq);
    5711             :         }
    5712             : 
    5713             :         /* At this point se is NULL and we are at root level*/
    5714        1240 :         add_nr_running(rq, 1);
    5715             : 
    5716             :         /*
    5717             :          * Since new tasks are assigned an initial util_avg equal to
    5718             :          * half of the spare capacity of their CPU, tiny tasks have the
    5719             :          * ability to cross the overutilized threshold, which will
    5720             :          * result in the load balancer ruining all the task placement
    5721             :          * done by EAS. As a way to mitigate that effect, do not account
    5722             :          * for the first enqueue operation of new tasks during the
    5723             :          * overutilized flag detection.
    5724             :          *
    5725             :          * A better way of solving this problem would be to wait for
    5726             :          * the PELT signals of tasks to converge before taking them
    5727             :          * into account, but that is not straightforward to implement,
    5728             :          * and the following generally works well enough in practice.
    5729             :          */
    5730             :         if (!task_new)
    5731             :                 update_overutilized_status(rq);
    5732             : 
    5733             : enqueue_throttle:
    5734             :         if (cfs_bandwidth_used()) {
    5735             :                 /*
    5736             :                  * When bandwidth control is enabled; the cfs_rq_throttled()
    5737             :                  * breaks in the above iteration can result in incomplete
    5738             :                  * leaf list maintenance, resulting in triggering the assertion
    5739             :                  * below.
    5740             :                  */
    5741             :                 for_each_sched_entity(se) {
    5742             :                         cfs_rq = cfs_rq_of(se);
    5743             : 
    5744             :                         if (list_add_leaf_cfs_rq(cfs_rq))
    5745             :                                 break;
    5746             :                 }
    5747             :         }
    5748             : 
    5749         620 :         assert_list_leaf_cfs_rq(rq);
    5750             : 
    5751         620 :         hrtick_update(rq);
    5752         620 : }
    5753             : 
    5754             : static void set_next_buddy(struct sched_entity *se);
    5755             : 
    5756             : /*
    5757             :  * The dequeue_task method is called before nr_running is
    5758             :  * decreased. We remove the task from the rbtree and
    5759             :  * update the fair scheduling stats:
    5760             :  */
    5761         618 : static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
    5762             : {
    5763             :         struct cfs_rq *cfs_rq;
    5764         618 :         struct sched_entity *se = &p->se;
    5765         618 :         int task_sleep = flags & DEQUEUE_SLEEP;
    5766        1236 :         int idle_h_nr_running = task_has_idle_policy(p);
    5767        1236 :         bool was_sched_idle = sched_idle_rq(rq);
    5768             : 
    5769         618 :         util_est_dequeue(&rq->cfs, p);
    5770             : 
    5771           1 :         for_each_sched_entity(se) {
    5772        1236 :                 cfs_rq = cfs_rq_of(se);
    5773         618 :                 dequeue_entity(cfs_rq, se, flags);
    5774             : 
    5775         618 :                 cfs_rq->h_nr_running--;
    5776         618 :                 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
    5777             : 
    5778             :                 if (cfs_rq_is_idle(cfs_rq))
    5779             :                         idle_h_nr_running = 1;
    5780             : 
    5781             :                 /* end evaluation on encountering a throttled cfs_rq */
    5782             :                 if (cfs_rq_throttled(cfs_rq))
    5783             :                         goto dequeue_throttle;
    5784             : 
    5785             :                 /* Don't dequeue parent if it has other entities besides us */
    5786         618 :                 if (cfs_rq->load.weight) {
    5787             :                         /* Avoid re-evaluating load for this entity: */
    5788             :                         se = parent_entity(se);
    5789             :                         /*
    5790             :                          * Bias pick_next to pick a task from this cfs_rq, as
    5791             :                          * p is sleeping when it is within its sched_slice.
    5792             :                          */
    5793             :                         if (task_sleep && se && !throttled_hierarchy(cfs_rq))
    5794             :                                 set_next_buddy(se);
    5795             :                         break;
    5796             :                 }
    5797           1 :                 flags |= DEQUEUE_SLEEP;
    5798             :         }
    5799             : 
    5800         618 :         for_each_sched_entity(se) {
    5801           0 :                 cfs_rq = cfs_rq_of(se);
    5802             : 
    5803           0 :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    5804           0 :                 se_update_runnable(se);
    5805           0 :                 update_cfs_group(se);
    5806             : 
    5807           0 :                 cfs_rq->h_nr_running--;
    5808           0 :                 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
    5809             : 
    5810             :                 if (cfs_rq_is_idle(cfs_rq))
    5811             :                         idle_h_nr_running = 1;
    5812             : 
    5813             :                 /* end evaluation on encountering a throttled cfs_rq */
    5814             :                 if (cfs_rq_throttled(cfs_rq))
    5815             :                         goto dequeue_throttle;
    5816             : 
    5817             :         }
    5818             : 
    5819             :         /* At this point se is NULL and we are at root level*/
    5820        1236 :         sub_nr_running(rq, 1);
    5821             : 
    5822             :         /* balance early to pull high priority tasks */
    5823        1236 :         if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
    5824           0 :                 rq->next_balance = jiffies;
    5825             : 
    5826             : dequeue_throttle:
    5827         618 :         util_est_update(&rq->cfs, p, task_sleep);
    5828         618 :         hrtick_update(rq);
    5829         618 : }
    5830             : 
    5831             : #ifdef CONFIG_SMP
    5832             : 
    5833             : /* Working cpumask for: load_balance, load_balance_newidle. */
    5834             : DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
    5835             : DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
    5836             : 
    5837             : #ifdef CONFIG_NO_HZ_COMMON
    5838             : 
    5839             : static struct {
    5840             :         cpumask_var_t idle_cpus_mask;
    5841             :         atomic_t nr_cpus;
    5842             :         int has_blocked;                /* Idle CPUS has blocked load */
    5843             :         int needs_update;               /* Newly idle CPUs need their next_balance collated */
    5844             :         unsigned long next_balance;     /* in jiffy units */
    5845             :         unsigned long next_blocked;     /* Next update of blocked load in jiffies */
    5846             : } nohz ____cacheline_aligned;
    5847             : 
    5848             : #endif /* CONFIG_NO_HZ_COMMON */
    5849             : 
    5850             : static unsigned long cpu_load(struct rq *rq)
    5851             : {
    5852             :         return cfs_rq_load_avg(&rq->cfs);
    5853             : }
    5854             : 
    5855             : /*
    5856             :  * cpu_load_without - compute CPU load without any contributions from *p
    5857             :  * @cpu: the CPU which load is requested
    5858             :  * @p: the task which load should be discounted
    5859             :  *
    5860             :  * The load of a CPU is defined by the load of tasks currently enqueued on that
    5861             :  * CPU as well as tasks which are currently sleeping after an execution on that
    5862             :  * CPU.
    5863             :  *
    5864             :  * This method returns the load of the specified CPU by discounting the load of
    5865             :  * the specified task, whenever the task is currently contributing to the CPU
    5866             :  * load.
    5867             :  */
    5868             : static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
    5869             : {
    5870             :         struct cfs_rq *cfs_rq;
    5871             :         unsigned int load;
    5872             : 
    5873             :         /* Task has no contribution or is new */
    5874             :         if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    5875             :                 return cpu_load(rq);
    5876             : 
    5877             :         cfs_rq = &rq->cfs;
    5878             :         load = READ_ONCE(cfs_rq->avg.load_avg);
    5879             : 
    5880             :         /* Discount task's util from CPU's util */
    5881             :         lsub_positive(&load, task_h_load(p));
    5882             : 
    5883             :         return load;
    5884             : }
    5885             : 
    5886             : static unsigned long cpu_runnable(struct rq *rq)
    5887             : {
    5888             :         return cfs_rq_runnable_avg(&rq->cfs);
    5889             : }
    5890             : 
    5891             : static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
    5892             : {
    5893             :         struct cfs_rq *cfs_rq;
    5894             :         unsigned int runnable;
    5895             : 
    5896             :         /* Task has no contribution or is new */
    5897             :         if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    5898             :                 return cpu_runnable(rq);
    5899             : 
    5900             :         cfs_rq = &rq->cfs;
    5901             :         runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
    5902             : 
    5903             :         /* Discount task's runnable from CPU's runnable */
    5904             :         lsub_positive(&runnable, p->se.avg.runnable_avg);
    5905             : 
    5906             :         return runnable;
    5907             : }
    5908             : 
    5909             : static unsigned long capacity_of(int cpu)
    5910             : {
    5911             :         return cpu_rq(cpu)->cpu_capacity;
    5912             : }
    5913             : 
    5914             : static void record_wakee(struct task_struct *p)
    5915             : {
    5916             :         /*
    5917             :          * Only decay a single time; tasks that have less then 1 wakeup per
    5918             :          * jiffy will not have built up many flips.
    5919             :          */
    5920             :         if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
    5921             :                 current->wakee_flips >>= 1;
    5922             :                 current->wakee_flip_decay_ts = jiffies;
    5923             :         }
    5924             : 
    5925             :         if (current->last_wakee != p) {
    5926             :                 current->last_wakee = p;
    5927             :                 current->wakee_flips++;
    5928             :         }
    5929             : }
    5930             : 
    5931             : /*
    5932             :  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
    5933             :  *
    5934             :  * A waker of many should wake a different task than the one last awakened
    5935             :  * at a frequency roughly N times higher than one of its wakees.
    5936             :  *
    5937             :  * In order to determine whether we should let the load spread vs consolidating
    5938             :  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
    5939             :  * partner, and a factor of lls_size higher frequency in the other.
    5940             :  *
    5941             :  * With both conditions met, we can be relatively sure that the relationship is
    5942             :  * non-monogamous, with partner count exceeding socket size.
    5943             :  *
    5944             :  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
    5945             :  * whatever is irrelevant, spread criteria is apparent partner count exceeds
    5946             :  * socket size.
    5947             :  */
    5948             : static int wake_wide(struct task_struct *p)
    5949             : {
    5950             :         unsigned int master = current->wakee_flips;
    5951             :         unsigned int slave = p->wakee_flips;
    5952             :         int factor = __this_cpu_read(sd_llc_size);
    5953             : 
    5954             :         if (master < slave)
    5955             :                 swap(master, slave);
    5956             :         if (slave < factor || master < slave * factor)
    5957             :                 return 0;
    5958             :         return 1;
    5959             : }
    5960             : 
    5961             : /*
    5962             :  * The purpose of wake_affine() is to quickly determine on which CPU we can run
    5963             :  * soonest. For the purpose of speed we only consider the waking and previous
    5964             :  * CPU.
    5965             :  *
    5966             :  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
    5967             :  *                      cache-affine and is (or will be) idle.
    5968             :  *
    5969             :  * wake_affine_weight() - considers the weight to reflect the average
    5970             :  *                        scheduling latency of the CPUs. This seems to work
    5971             :  *                        for the overloaded case.
    5972             :  */
    5973             : static int
    5974             : wake_affine_idle(int this_cpu, int prev_cpu, int sync)
    5975             : {
    5976             :         /*
    5977             :          * If this_cpu is idle, it implies the wakeup is from interrupt
    5978             :          * context. Only allow the move if cache is shared. Otherwise an
    5979             :          * interrupt intensive workload could force all tasks onto one
    5980             :          * node depending on the IO topology or IRQ affinity settings.
    5981             :          *
    5982             :          * If the prev_cpu is idle and cache affine then avoid a migration.
    5983             :          * There is no guarantee that the cache hot data from an interrupt
    5984             :          * is more important than cache hot data on the prev_cpu and from
    5985             :          * a cpufreq perspective, it's better to have higher utilisation
    5986             :          * on one CPU.
    5987             :          */
    5988             :         if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
    5989             :                 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
    5990             : 
    5991             :         if (sync && cpu_rq(this_cpu)->nr_running == 1)
    5992             :                 return this_cpu;
    5993             : 
    5994             :         if (available_idle_cpu(prev_cpu))
    5995             :                 return prev_cpu;
    5996             : 
    5997             :         return nr_cpumask_bits;
    5998             : }
    5999             : 
    6000             : static int
    6001             : wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
    6002             :                    int this_cpu, int prev_cpu, int sync)
    6003             : {
    6004             :         s64 this_eff_load, prev_eff_load;
    6005             :         unsigned long task_load;
    6006             : 
    6007             :         this_eff_load = cpu_load(cpu_rq(this_cpu));
    6008             : 
    6009             :         if (sync) {
    6010             :                 unsigned long current_load = task_h_load(current);
    6011             : 
    6012             :                 if (current_load > this_eff_load)
    6013             :                         return this_cpu;
    6014             : 
    6015             :                 this_eff_load -= current_load;
    6016             :         }
    6017             : 
    6018             :         task_load = task_h_load(p);
    6019             : 
    6020             :         this_eff_load += task_load;
    6021             :         if (sched_feat(WA_BIAS))
    6022             :                 this_eff_load *= 100;
    6023             :         this_eff_load *= capacity_of(prev_cpu);
    6024             : 
    6025             :         prev_eff_load = cpu_load(cpu_rq(prev_cpu));
    6026             :         prev_eff_load -= task_load;
    6027             :         if (sched_feat(WA_BIAS))
    6028             :                 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
    6029             :         prev_eff_load *= capacity_of(this_cpu);
    6030             : 
    6031             :         /*
    6032             :          * If sync, adjust the weight of prev_eff_load such that if
    6033             :          * prev_eff == this_eff that select_idle_sibling() will consider
    6034             :          * stacking the wakee on top of the waker if no other CPU is
    6035             :          * idle.
    6036             :          */
    6037             :         if (sync)
    6038             :                 prev_eff_load += 1;
    6039             : 
    6040             :         return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
    6041             : }
    6042             : 
    6043             : static int wake_affine(struct sched_domain *sd, struct task_struct *p,
    6044             :                        int this_cpu, int prev_cpu, int sync)
    6045             : {
    6046             :         int target = nr_cpumask_bits;
    6047             : 
    6048             :         if (sched_feat(WA_IDLE))
    6049             :                 target = wake_affine_idle(this_cpu, prev_cpu, sync);
    6050             : 
    6051             :         if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
    6052             :                 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
    6053             : 
    6054             :         schedstat_inc(p->stats.nr_wakeups_affine_attempts);
    6055             :         if (target == nr_cpumask_bits)
    6056             :                 return prev_cpu;
    6057             : 
    6058             :         schedstat_inc(sd->ttwu_move_affine);
    6059             :         schedstat_inc(p->stats.nr_wakeups_affine);
    6060             :         return target;
    6061             : }
    6062             : 
    6063             : static struct sched_group *
    6064             : find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
    6065             : 
    6066             : /*
    6067             :  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
    6068             :  */
    6069             : static int
    6070             : find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
    6071             : {
    6072             :         unsigned long load, min_load = ULONG_MAX;
    6073             :         unsigned int min_exit_latency = UINT_MAX;
    6074             :         u64 latest_idle_timestamp = 0;
    6075             :         int least_loaded_cpu = this_cpu;
    6076             :         int shallowest_idle_cpu = -1;
    6077             :         int i;
    6078             : 
    6079             :         /* Check if we have any choice: */
    6080             :         if (group->group_weight == 1)
    6081             :                 return cpumask_first(sched_group_span(group));
    6082             : 
    6083             :         /* Traverse only the allowed CPUs */
    6084             :         for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
    6085             :                 struct rq *rq = cpu_rq(i);
    6086             : 
    6087             :                 if (!sched_core_cookie_match(rq, p))
    6088             :                         continue;
    6089             : 
    6090             :                 if (sched_idle_cpu(i))
    6091             :                         return i;
    6092             : 
    6093             :                 if (available_idle_cpu(i)) {
    6094             :                         struct cpuidle_state *idle = idle_get_state(rq);
    6095             :                         if (idle && idle->exit_latency < min_exit_latency) {
    6096             :                                 /*
    6097             :                                  * We give priority to a CPU whose idle state
    6098             :                                  * has the smallest exit latency irrespective
    6099             :                                  * of any idle timestamp.
    6100             :                                  */
    6101             :                                 min_exit_latency = idle->exit_latency;
    6102             :                                 latest_idle_timestamp = rq->idle_stamp;
    6103             :                                 shallowest_idle_cpu = i;
    6104             :                         } else if ((!idle || idle->exit_latency == min_exit_latency) &&
    6105             :                                    rq->idle_stamp > latest_idle_timestamp) {
    6106             :                                 /*
    6107             :                                  * If equal or no active idle state, then
    6108             :                                  * the most recently idled CPU might have
    6109             :                                  * a warmer cache.
    6110             :                                  */
    6111             :                                 latest_idle_timestamp = rq->idle_stamp;
    6112             :                                 shallowest_idle_cpu = i;
    6113             :                         }
    6114             :                 } else if (shallowest_idle_cpu == -1) {
    6115             :                         load = cpu_load(cpu_rq(i));
    6116             :                         if (load < min_load) {
    6117             :                                 min_load = load;
    6118             :                                 least_loaded_cpu = i;
    6119             :                         }
    6120             :                 }
    6121             :         }
    6122             : 
    6123             :         return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
    6124             : }
    6125             : 
    6126             : static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
    6127             :                                   int cpu, int prev_cpu, int sd_flag)
    6128             : {
    6129             :         int new_cpu = cpu;
    6130             : 
    6131             :         if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
    6132             :                 return prev_cpu;
    6133             : 
    6134             :         /*
    6135             :          * We need task's util for cpu_util_without, sync it up to
    6136             :          * prev_cpu's last_update_time.
    6137             :          */
    6138             :         if (!(sd_flag & SD_BALANCE_FORK))
    6139             :                 sync_entity_load_avg(&p->se);
    6140             : 
    6141             :         while (sd) {
    6142             :                 struct sched_group *group;
    6143             :                 struct sched_domain *tmp;
    6144             :                 int weight;
    6145             : 
    6146             :                 if (!(sd->flags & sd_flag)) {
    6147             :                         sd = sd->child;
    6148             :                         continue;
    6149             :                 }
    6150             : 
    6151             :                 group = find_idlest_group(sd, p, cpu);
    6152             :                 if (!group) {
    6153             :                         sd = sd->child;
    6154             :                         continue;
    6155             :                 }
    6156             : 
    6157             :                 new_cpu = find_idlest_group_cpu(group, p, cpu);
    6158             :                 if (new_cpu == cpu) {
    6159             :                         /* Now try balancing at a lower domain level of 'cpu': */
    6160             :                         sd = sd->child;
    6161             :                         continue;
    6162             :                 }
    6163             : 
    6164             :                 /* Now try balancing at a lower domain level of 'new_cpu': */
    6165             :                 cpu = new_cpu;
    6166             :                 weight = sd->span_weight;
    6167             :                 sd = NULL;
    6168             :                 for_each_domain(cpu, tmp) {
    6169             :                         if (weight <= tmp->span_weight)
    6170             :                                 break;
    6171             :                         if (tmp->flags & sd_flag)
    6172             :                                 sd = tmp;
    6173             :                 }
    6174             :         }
    6175             : 
    6176             :         return new_cpu;
    6177             : }
    6178             : 
    6179             : static inline int __select_idle_cpu(int cpu, struct task_struct *p)
    6180             : {
    6181             :         if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
    6182             :             sched_cpu_cookie_match(cpu_rq(cpu), p))
    6183             :                 return cpu;
    6184             : 
    6185             :         return -1;
    6186             : }
    6187             : 
    6188             : #ifdef CONFIG_SCHED_SMT
    6189             : DEFINE_STATIC_KEY_FALSE(sched_smt_present);
    6190             : EXPORT_SYMBOL_GPL(sched_smt_present);
    6191             : 
    6192             : static inline void set_idle_cores(int cpu, int val)
    6193             : {
    6194             :         struct sched_domain_shared *sds;
    6195             : 
    6196             :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
    6197             :         if (sds)
    6198             :                 WRITE_ONCE(sds->has_idle_cores, val);
    6199             : }
    6200             : 
    6201             : static inline bool test_idle_cores(int cpu, bool def)
    6202             : {
    6203             :         struct sched_domain_shared *sds;
    6204             : 
    6205             :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
    6206             :         if (sds)
    6207             :                 return READ_ONCE(sds->has_idle_cores);
    6208             : 
    6209             :         return def;
    6210             : }
    6211             : 
    6212             : /*
    6213             :  * Scans the local SMT mask to see if the entire core is idle, and records this
    6214             :  * information in sd_llc_shared->has_idle_cores.
    6215             :  *
    6216             :  * Since SMT siblings share all cache levels, inspecting this limited remote
    6217             :  * state should be fairly cheap.
    6218             :  */
    6219             : void __update_idle_core(struct rq *rq)
    6220             : {
    6221             :         int core = cpu_of(rq);
    6222             :         int cpu;
    6223             : 
    6224             :         rcu_read_lock();
    6225             :         if (test_idle_cores(core, true))
    6226             :                 goto unlock;
    6227             : 
    6228             :         for_each_cpu(cpu, cpu_smt_mask(core)) {
    6229             :                 if (cpu == core)
    6230             :                         continue;
    6231             : 
    6232             :                 if (!available_idle_cpu(cpu))
    6233             :                         goto unlock;
    6234             :         }
    6235             : 
    6236             :         set_idle_cores(core, 1);
    6237             : unlock:
    6238             :         rcu_read_unlock();
    6239             : }
    6240             : 
    6241             : /*
    6242             :  * Scan the entire LLC domain for idle cores; this dynamically switches off if
    6243             :  * there are no idle cores left in the system; tracked through
    6244             :  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
    6245             :  */
    6246             : static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
    6247             : {
    6248             :         bool idle = true;
    6249             :         int cpu;
    6250             : 
    6251             :         if (!static_branch_likely(&sched_smt_present))
    6252             :                 return __select_idle_cpu(core, p);
    6253             : 
    6254             :         for_each_cpu(cpu, cpu_smt_mask(core)) {
    6255             :                 if (!available_idle_cpu(cpu)) {
    6256             :                         idle = false;
    6257             :                         if (*idle_cpu == -1) {
    6258             :                                 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
    6259             :                                         *idle_cpu = cpu;
    6260             :                                         break;
    6261             :                                 }
    6262             :                                 continue;
    6263             :                         }
    6264             :                         break;
    6265             :                 }
    6266             :                 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
    6267             :                         *idle_cpu = cpu;
    6268             :         }
    6269             : 
    6270             :         if (idle)
    6271             :                 return core;
    6272             : 
    6273             :         cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
    6274             :         return -1;
    6275             : }
    6276             : 
    6277             : /*
    6278             :  * Scan the local SMT mask for idle CPUs.
    6279             :  */
    6280             : static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
    6281             : {
    6282             :         int cpu;
    6283             : 
    6284             :         for_each_cpu(cpu, cpu_smt_mask(target)) {
    6285             :                 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
    6286             :                     !cpumask_test_cpu(cpu, sched_domain_span(sd)))
    6287             :                         continue;
    6288             :                 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
    6289             :                         return cpu;
    6290             :         }
    6291             : 
    6292             :         return -1;
    6293             : }
    6294             : 
    6295             : #else /* CONFIG_SCHED_SMT */
    6296             : 
    6297             : static inline void set_idle_cores(int cpu, int val)
    6298             : {
    6299             : }
    6300             : 
    6301             : static inline bool test_idle_cores(int cpu, bool def)
    6302             : {
    6303             :         return def;
    6304             : }
    6305             : 
    6306             : static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
    6307             : {
    6308             :         return __select_idle_cpu(core, p);
    6309             : }
    6310             : 
    6311             : static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
    6312             : {
    6313             :         return -1;
    6314             : }
    6315             : 
    6316             : #endif /* CONFIG_SCHED_SMT */
    6317             : 
    6318             : /*
    6319             :  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
    6320             :  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
    6321             :  * average idle time for this rq (as found in rq->avg_idle).
    6322             :  */
    6323             : static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
    6324             : {
    6325             :         struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
    6326             :         int i, cpu, idle_cpu = -1, nr = INT_MAX;
    6327             :         struct rq *this_rq = this_rq();
    6328             :         int this = smp_processor_id();
    6329             :         struct sched_domain *this_sd;
    6330             :         u64 time = 0;
    6331             : 
    6332             :         this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
    6333             :         if (!this_sd)
    6334             :                 return -1;
    6335             : 
    6336             :         cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
    6337             : 
    6338             :         if (sched_feat(SIS_PROP) && !has_idle_core) {
    6339             :                 u64 avg_cost, avg_idle, span_avg;
    6340             :                 unsigned long now = jiffies;
    6341             : 
    6342             :                 /*
    6343             :                  * If we're busy, the assumption that the last idle period
    6344             :                  * predicts the future is flawed; age away the remaining
    6345             :                  * predicted idle time.
    6346             :                  */
    6347             :                 if (unlikely(this_rq->wake_stamp < now)) {
    6348             :                         while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
    6349             :                                 this_rq->wake_stamp++;
    6350             :                                 this_rq->wake_avg_idle >>= 1;
    6351             :                         }
    6352             :                 }
    6353             : 
    6354             :                 avg_idle = this_rq->wake_avg_idle;
    6355             :                 avg_cost = this_sd->avg_scan_cost + 1;
    6356             : 
    6357             :                 span_avg = sd->span_weight * avg_idle;
    6358             :                 if (span_avg > 4*avg_cost)
    6359             :                         nr = div_u64(span_avg, avg_cost);
    6360             :                 else
    6361             :                         nr = 4;
    6362             : 
    6363             :                 time = cpu_clock(this);
    6364             :         }
    6365             : 
    6366             :         for_each_cpu_wrap(cpu, cpus, target + 1) {
    6367             :                 if (has_idle_core) {
    6368             :                         i = select_idle_core(p, cpu, cpus, &idle_cpu);
    6369             :                         if ((unsigned int)i < nr_cpumask_bits)
    6370             :                                 return i;
    6371             : 
    6372             :                 } else {
    6373             :                         if (!--nr)
    6374             :                                 return -1;
    6375             :                         idle_cpu = __select_idle_cpu(cpu, p);
    6376             :                         if ((unsigned int)idle_cpu < nr_cpumask_bits)
    6377             :                                 break;
    6378             :                 }
    6379             :         }
    6380             : 
    6381             :         if (has_idle_core)
    6382             :                 set_idle_cores(target, false);
    6383             : 
    6384             :         if (sched_feat(SIS_PROP) && !has_idle_core) {
    6385             :                 time = cpu_clock(this) - time;
    6386             : 
    6387             :                 /*
    6388             :                  * Account for the scan cost of wakeups against the average
    6389             :                  * idle time.
    6390             :                  */
    6391             :                 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
    6392             : 
    6393             :                 update_avg(&this_sd->avg_scan_cost, time);
    6394             :         }
    6395             : 
    6396             :         return idle_cpu;
    6397             : }
    6398             : 
    6399             : /*
    6400             :  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
    6401             :  * the task fits. If no CPU is big enough, but there are idle ones, try to
    6402             :  * maximize capacity.
    6403             :  */
    6404             : static int
    6405             : select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
    6406             : {
    6407             :         unsigned long task_util, best_cap = 0;
    6408             :         int cpu, best_cpu = -1;
    6409             :         struct cpumask *cpus;
    6410             : 
    6411             :         cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
    6412             :         cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
    6413             : 
    6414             :         task_util = uclamp_task_util(p);
    6415             : 
    6416             :         for_each_cpu_wrap(cpu, cpus, target) {
    6417             :                 unsigned long cpu_cap = capacity_of(cpu);
    6418             : 
    6419             :                 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
    6420             :                         continue;
    6421             :                 if (fits_capacity(task_util, cpu_cap))
    6422             :                         return cpu;
    6423             : 
    6424             :                 if (cpu_cap > best_cap) {
    6425             :                         best_cap = cpu_cap;
    6426             :                         best_cpu = cpu;
    6427             :                 }
    6428             :         }
    6429             : 
    6430             :         return best_cpu;
    6431             : }
    6432             : 
    6433             : static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
    6434             : {
    6435             :         if (static_branch_unlikely(&sched_asym_cpucapacity))
    6436             :                 return fits_capacity(task_util, capacity_of(cpu));
    6437             : 
    6438             :         return true;
    6439             : }
    6440             : 
    6441             : /*
    6442             :  * Try and locate an idle core/thread in the LLC cache domain.
    6443             :  */
    6444             : static int select_idle_sibling(struct task_struct *p, int prev, int target)
    6445             : {
    6446             :         bool has_idle_core = false;
    6447             :         struct sched_domain *sd;
    6448             :         unsigned long task_util;
    6449             :         int i, recent_used_cpu;
    6450             : 
    6451             :         /*
    6452             :          * On asymmetric system, update task utilization because we will check
    6453             :          * that the task fits with cpu's capacity.
    6454             :          */
    6455             :         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
    6456             :                 sync_entity_load_avg(&p->se);
    6457             :                 task_util = uclamp_task_util(p);
    6458             :         }
    6459             : 
    6460             :         /*
    6461             :          * per-cpu select_idle_mask usage
    6462             :          */
    6463             :         lockdep_assert_irqs_disabled();
    6464             : 
    6465             :         if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
    6466             :             asym_fits_capacity(task_util, target))
    6467             :                 return target;
    6468             : 
    6469             :         /*
    6470             :          * If the previous CPU is cache affine and idle, don't be stupid:
    6471             :          */
    6472             :         if (prev != target && cpus_share_cache(prev, target) &&
    6473             :             (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
    6474             :             asym_fits_capacity(task_util, prev))
    6475             :                 return prev;
    6476             : 
    6477             :         /*
    6478             :          * Allow a per-cpu kthread to stack with the wakee if the
    6479             :          * kworker thread and the tasks previous CPUs are the same.
    6480             :          * The assumption is that the wakee queued work for the
    6481             :          * per-cpu kthread that is now complete and the wakeup is
    6482             :          * essentially a sync wakeup. An obvious example of this
    6483             :          * pattern is IO completions.
    6484             :          */
    6485             :         if (is_per_cpu_kthread(current) &&
    6486             :             in_task() &&
    6487             :             prev == smp_processor_id() &&
    6488             :             this_rq()->nr_running <= 1 &&
    6489             :             asym_fits_capacity(task_util, prev)) {
    6490             :                 return prev;
    6491             :         }
    6492             : 
    6493             :         /* Check a recently used CPU as a potential idle candidate: */
    6494             :         recent_used_cpu = p->recent_used_cpu;
    6495             :         p->recent_used_cpu = prev;
    6496             :         if (recent_used_cpu != prev &&
    6497             :             recent_used_cpu != target &&
    6498             :             cpus_share_cache(recent_used_cpu, target) &&
    6499             :             (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
    6500             :             cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
    6501             :             asym_fits_capacity(task_util, recent_used_cpu)) {
    6502             :                 return recent_used_cpu;
    6503             :         }
    6504             : 
    6505             :         /*
    6506             :          * For asymmetric CPU capacity systems, our domain of interest is
    6507             :          * sd_asym_cpucapacity rather than sd_llc.
    6508             :          */
    6509             :         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
    6510             :                 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
    6511             :                 /*
    6512             :                  * On an asymmetric CPU capacity system where an exclusive
    6513             :                  * cpuset defines a symmetric island (i.e. one unique
    6514             :                  * capacity_orig value through the cpuset), the key will be set
    6515             :                  * but the CPUs within that cpuset will not have a domain with
    6516             :                  * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
    6517             :                  * capacity path.
    6518             :                  */
    6519             :                 if (sd) {
    6520             :                         i = select_idle_capacity(p, sd, target);
    6521             :                         return ((unsigned)i < nr_cpumask_bits) ? i : target;
    6522             :                 }
    6523             :         }
    6524             : 
    6525             :         sd = rcu_dereference(per_cpu(sd_llc, target));
    6526             :         if (!sd)
    6527             :                 return target;
    6528             : 
    6529             :         if (sched_smt_active()) {
    6530             :                 has_idle_core = test_idle_cores(target, false);
    6531             : 
    6532             :                 if (!has_idle_core && cpus_share_cache(prev, target)) {
    6533             :                         i = select_idle_smt(p, sd, prev);
    6534             :                         if ((unsigned int)i < nr_cpumask_bits)
    6535             :                                 return i;
    6536             :                 }
    6537             :         }
    6538             : 
    6539             :         i = select_idle_cpu(p, sd, has_idle_core, target);
    6540             :         if ((unsigned)i < nr_cpumask_bits)
    6541             :                 return i;
    6542             : 
    6543             :         return target;
    6544             : }
    6545             : 
    6546             : /*
    6547             :  * cpu_util_without: compute cpu utilization without any contributions from *p
    6548             :  * @cpu: the CPU which utilization is requested
    6549             :  * @p: the task which utilization should be discounted
    6550             :  *
    6551             :  * The utilization of a CPU is defined by the utilization of tasks currently
    6552             :  * enqueued on that CPU as well as tasks which are currently sleeping after an
    6553             :  * execution on that CPU.
    6554             :  *
    6555             :  * This method returns the utilization of the specified CPU by discounting the
    6556             :  * utilization of the specified task, whenever the task is currently
    6557             :  * contributing to the CPU utilization.
    6558             :  */
    6559             : static unsigned long cpu_util_without(int cpu, struct task_struct *p)
    6560             : {
    6561             :         struct cfs_rq *cfs_rq;
    6562             :         unsigned int util;
    6563             : 
    6564             :         /* Task has no contribution or is new */
    6565             :         if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    6566             :                 return cpu_util_cfs(cpu);
    6567             : 
    6568             :         cfs_rq = &cpu_rq(cpu)->cfs;
    6569             :         util = READ_ONCE(cfs_rq->avg.util_avg);
    6570             : 
    6571             :         /* Discount task's util from CPU's util */
    6572             :         lsub_positive(&util, task_util(p));
    6573             : 
    6574             :         /*
    6575             :          * Covered cases:
    6576             :          *
    6577             :          * a) if *p is the only task sleeping on this CPU, then:
    6578             :          *      cpu_util (== task_util) > util_est (== 0)
    6579             :          *    and thus we return:
    6580             :          *      cpu_util_without = (cpu_util - task_util) = 0
    6581             :          *
    6582             :          * b) if other tasks are SLEEPING on this CPU, which is now exiting
    6583             :          *    IDLE, then:
    6584             :          *      cpu_util >= task_util
    6585             :          *      cpu_util > util_est (== 0)
    6586             :          *    and thus we discount *p's blocked utilization to return:
    6587             :          *      cpu_util_without = (cpu_util - task_util) >= 0
    6588             :          *
    6589             :          * c) if other tasks are RUNNABLE on that CPU and
    6590             :          *      util_est > cpu_util
    6591             :          *    then we use util_est since it returns a more restrictive
    6592             :          *    estimation of the spare capacity on that CPU, by just
    6593             :          *    considering the expected utilization of tasks already
    6594             :          *    runnable on that CPU.
    6595             :          *
    6596             :          * Cases a) and b) are covered by the above code, while case c) is
    6597             :          * covered by the following code when estimated utilization is
    6598             :          * enabled.
    6599             :          */
    6600             :         if (sched_feat(UTIL_EST)) {
    6601             :                 unsigned int estimated =
    6602             :                         READ_ONCE(cfs_rq->avg.util_est.enqueued);
    6603             : 
    6604             :                 /*
    6605             :                  * Despite the following checks we still have a small window
    6606             :                  * for a possible race, when an execl's select_task_rq_fair()
    6607             :                  * races with LB's detach_task():
    6608             :                  *
    6609             :                  *   detach_task()
    6610             :                  *     p->on_rq = TASK_ON_RQ_MIGRATING;
    6611             :                  *     ---------------------------------- A
    6612             :                  *     deactivate_task()                   \
    6613             :                  *       dequeue_task()                     + RaceTime
    6614             :                  *         util_est_dequeue()              /
    6615             :                  *     ---------------------------------- B
    6616             :                  *
    6617             :                  * The additional check on "current == p" it's required to
    6618             :                  * properly fix the execl regression and it helps in further
    6619             :                  * reducing the chances for the above race.
    6620             :                  */
    6621             :                 if (unlikely(task_on_rq_queued(p) || current == p))
    6622             :                         lsub_positive(&estimated, _task_util_est(p));
    6623             : 
    6624             :                 util = max(util, estimated);
    6625             :         }
    6626             : 
    6627             :         /*
    6628             :          * Utilization (estimated) can exceed the CPU capacity, thus let's
    6629             :          * clamp to the maximum CPU capacity to ensure consistency with
    6630             :          * cpu_util.
    6631             :          */
    6632             :         return min_t(unsigned long, util, capacity_orig_of(cpu));
    6633             : }
    6634             : 
    6635             : /*
    6636             :  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
    6637             :  * to @dst_cpu.
    6638             :  */
    6639             : static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
    6640             : {
    6641             :         struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
    6642             :         unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
    6643             : 
    6644             :         /*
    6645             :          * If @p migrates from @cpu to another, remove its contribution. Or,
    6646             :          * if @p migrates from another CPU to @cpu, add its contribution. In
    6647             :          * the other cases, @cpu is not impacted by the migration, so the
    6648             :          * util_avg should already be correct.
    6649             :          */
    6650             :         if (task_cpu(p) == cpu && dst_cpu != cpu)
    6651             :                 lsub_positive(&util, task_util(p));
    6652             :         else if (task_cpu(p) != cpu && dst_cpu == cpu)
    6653             :                 util += task_util(p);
    6654             : 
    6655             :         if (sched_feat(UTIL_EST)) {
    6656             :                 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
    6657             : 
    6658             :                 /*
    6659             :                  * During wake-up, the task isn't enqueued yet and doesn't
    6660             :                  * appear in the cfs_rq->avg.util_est.enqueued of any rq,
    6661             :                  * so just add it (if needed) to "simulate" what will be
    6662             :                  * cpu_util after the task has been enqueued.
    6663             :                  */
    6664             :                 if (dst_cpu == cpu)
    6665             :                         util_est += _task_util_est(p);
    6666             : 
    6667             :                 util = max(util, util_est);
    6668             :         }
    6669             : 
    6670             :         return min(util, capacity_orig_of(cpu));
    6671             : }
    6672             : 
    6673             : /*
    6674             :  * compute_energy(): Estimates the energy that @pd would consume if @p was
    6675             :  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
    6676             :  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
    6677             :  * to compute what would be the energy if we decided to actually migrate that
    6678             :  * task.
    6679             :  */
    6680             : static long
    6681             : compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
    6682             : {
    6683             :         struct cpumask *pd_mask = perf_domain_span(pd);
    6684             :         unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
    6685             :         unsigned long max_util = 0, sum_util = 0;
    6686             :         unsigned long _cpu_cap = cpu_cap;
    6687             :         int cpu;
    6688             : 
    6689             :         _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
    6690             : 
    6691             :         /*
    6692             :          * The capacity state of CPUs of the current rd can be driven by CPUs
    6693             :          * of another rd if they belong to the same pd. So, account for the
    6694             :          * utilization of these CPUs too by masking pd with cpu_online_mask
    6695             :          * instead of the rd span.
    6696             :          *
    6697             :          * If an entire pd is outside of the current rd, it will not appear in
    6698             :          * its pd list and will not be accounted by compute_energy().
    6699             :          */
    6700             :         for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
    6701             :                 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
    6702             :                 unsigned long cpu_util, util_running = util_freq;
    6703             :                 struct task_struct *tsk = NULL;
    6704             : 
    6705             :                 /*
    6706             :                  * When @p is placed on @cpu:
    6707             :                  *
    6708             :                  * util_running = max(cpu_util, cpu_util_est) +
    6709             :                  *                max(task_util, _task_util_est)
    6710             :                  *
    6711             :                  * while cpu_util_next is: max(cpu_util + task_util,
    6712             :                  *                             cpu_util_est + _task_util_est)
    6713             :                  */
    6714             :                 if (cpu == dst_cpu) {
    6715             :                         tsk = p;
    6716             :                         util_running =
    6717             :                                 cpu_util_next(cpu, p, -1) + task_util_est(p);
    6718             :                 }
    6719             : 
    6720             :                 /*
    6721             :                  * Busy time computation: utilization clamping is not
    6722             :                  * required since the ratio (sum_util / cpu_capacity)
    6723             :                  * is already enough to scale the EM reported power
    6724             :                  * consumption at the (eventually clamped) cpu_capacity.
    6725             :                  */
    6726             :                 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
    6727             :                                               ENERGY_UTIL, NULL);
    6728             : 
    6729             :                 sum_util += min(cpu_util, _cpu_cap);
    6730             : 
    6731             :                 /*
    6732             :                  * Performance domain frequency: utilization clamping
    6733             :                  * must be considered since it affects the selection
    6734             :                  * of the performance domain frequency.
    6735             :                  * NOTE: in case RT tasks are running, by default the
    6736             :                  * FREQUENCY_UTIL's utilization can be max OPP.
    6737             :                  */
    6738             :                 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
    6739             :                                               FREQUENCY_UTIL, tsk);
    6740             :                 max_util = max(max_util, min(cpu_util, _cpu_cap));
    6741             :         }
    6742             : 
    6743             :         return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
    6744             : }
    6745             : 
    6746             : /*
    6747             :  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
    6748             :  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
    6749             :  * spare capacity in each performance domain and uses it as a potential
    6750             :  * candidate to execute the task. Then, it uses the Energy Model to figure
    6751             :  * out which of the CPU candidates is the most energy-efficient.
    6752             :  *
    6753             :  * The rationale for this heuristic is as follows. In a performance domain,
    6754             :  * all the most energy efficient CPU candidates (according to the Energy
    6755             :  * Model) are those for which we'll request a low frequency. When there are
    6756             :  * several CPUs for which the frequency request will be the same, we don't
    6757             :  * have enough data to break the tie between them, because the Energy Model
    6758             :  * only includes active power costs. With this model, if we assume that
    6759             :  * frequency requests follow utilization (e.g. using schedutil), the CPU with
    6760             :  * the maximum spare capacity in a performance domain is guaranteed to be among
    6761             :  * the best candidates of the performance domain.
    6762             :  *
    6763             :  * In practice, it could be preferable from an energy standpoint to pack
    6764             :  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
    6765             :  * but that could also hurt our chances to go cluster idle, and we have no
    6766             :  * ways to tell with the current Energy Model if this is actually a good
    6767             :  * idea or not. So, find_energy_efficient_cpu() basically favors
    6768             :  * cluster-packing, and spreading inside a cluster. That should at least be
    6769             :  * a good thing for latency, and this is consistent with the idea that most
    6770             :  * of the energy savings of EAS come from the asymmetry of the system, and
    6771             :  * not so much from breaking the tie between identical CPUs. That's also the
    6772             :  * reason why EAS is enabled in the topology code only for systems where
    6773             :  * SD_ASYM_CPUCAPACITY is set.
    6774             :  *
    6775             :  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
    6776             :  * they don't have any useful utilization data yet and it's not possible to
    6777             :  * forecast their impact on energy consumption. Consequently, they will be
    6778             :  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
    6779             :  * to be energy-inefficient in some use-cases. The alternative would be to
    6780             :  * bias new tasks towards specific types of CPUs first, or to try to infer
    6781             :  * their util_avg from the parent task, but those heuristics could hurt
    6782             :  * other use-cases too. So, until someone finds a better way to solve this,
    6783             :  * let's keep things simple by re-using the existing slow path.
    6784             :  */
    6785             : static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
    6786             : {
    6787             :         unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
    6788             :         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
    6789             :         int cpu, best_energy_cpu = prev_cpu, target = -1;
    6790             :         unsigned long cpu_cap, util, base_energy = 0;
    6791             :         struct sched_domain *sd;
    6792             :         struct perf_domain *pd;
    6793             : 
    6794             :         rcu_read_lock();
    6795             :         pd = rcu_dereference(rd->pd);
    6796             :         if (!pd || READ_ONCE(rd->overutilized))
    6797             :                 goto unlock;
    6798             : 
    6799             :         /*
    6800             :          * Energy-aware wake-up happens on the lowest sched_domain starting
    6801             :          * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
    6802             :          */
    6803             :         sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
    6804             :         while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
    6805             :                 sd = sd->parent;
    6806             :         if (!sd)
    6807             :                 goto unlock;
    6808             : 
    6809             :         target = prev_cpu;
    6810             : 
    6811             :         sync_entity_load_avg(&p->se);
    6812             :         if (!task_util_est(p))
    6813             :                 goto unlock;
    6814             : 
    6815             :         for (; pd; pd = pd->next) {
    6816             :                 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
    6817             :                 bool compute_prev_delta = false;
    6818             :                 unsigned long base_energy_pd;
    6819             :                 int max_spare_cap_cpu = -1;
    6820             : 
    6821             :                 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
    6822             :                         if (!cpumask_test_cpu(cpu, p->cpus_ptr))
    6823             :                                 continue;
    6824             : 
    6825             :                         util = cpu_util_next(cpu, p, cpu);
    6826             :                         cpu_cap = capacity_of(cpu);
    6827             :                         spare_cap = cpu_cap;
    6828             :                         lsub_positive(&spare_cap, util);
    6829             : 
    6830             :                         /*
    6831             :                          * Skip CPUs that cannot satisfy the capacity request.
    6832             :                          * IOW, placing the task there would make the CPU
    6833             :                          * overutilized. Take uclamp into account to see how
    6834             :                          * much capacity we can get out of the CPU; this is
    6835             :                          * aligned with sched_cpu_util().
    6836             :                          */
    6837             :                         util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
    6838             :                         if (!fits_capacity(util, cpu_cap))
    6839             :                                 continue;
    6840             : 
    6841             :                         if (cpu == prev_cpu) {
    6842             :                                 /* Always use prev_cpu as a candidate. */
    6843             :                                 compute_prev_delta = true;
    6844             :                         } else if (spare_cap > max_spare_cap) {
    6845             :                                 /*
    6846             :                                  * Find the CPU with the maximum spare capacity
    6847             :                                  * in the performance domain.
    6848             :                                  */
    6849             :                                 max_spare_cap = spare_cap;
    6850             :                                 max_spare_cap_cpu = cpu;
    6851             :                         }
    6852             :                 }
    6853             : 
    6854             :                 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
    6855             :                         continue;
    6856             : 
    6857             :                 /* Compute the 'base' energy of the pd, without @p */
    6858             :                 base_energy_pd = compute_energy(p, -1, pd);
    6859             :                 base_energy += base_energy_pd;
    6860             : 
    6861             :                 /* Evaluate the energy impact of using prev_cpu. */
    6862             :                 if (compute_prev_delta) {
    6863             :                         prev_delta = compute_energy(p, prev_cpu, pd);
    6864             :                         if (prev_delta < base_energy_pd)
    6865             :                                 goto unlock;
    6866             :                         prev_delta -= base_energy_pd;
    6867             :                         best_delta = min(best_delta, prev_delta);
    6868             :                 }
    6869             : 
    6870             :                 /* Evaluate the energy impact of using max_spare_cap_cpu. */
    6871             :                 if (max_spare_cap_cpu >= 0) {
    6872             :                         cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
    6873             :                         if (cur_delta < base_energy_pd)
    6874             :                                 goto unlock;
    6875             :                         cur_delta -= base_energy_pd;
    6876             :                         if (cur_delta < best_delta) {
    6877             :                                 best_delta = cur_delta;
    6878             :                                 best_energy_cpu = max_spare_cap_cpu;
    6879             :                         }
    6880             :                 }
    6881             :         }
    6882             :         rcu_read_unlock();
    6883             : 
    6884             :         /*
    6885             :          * Pick the best CPU if prev_cpu cannot be used, or if it saves at
    6886             :          * least 6% of the energy used by prev_cpu.
    6887             :          */
    6888             :         if ((prev_delta == ULONG_MAX) ||
    6889             :             (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
    6890             :                 target = best_energy_cpu;
    6891             : 
    6892             :         return target;
    6893             : 
    6894             : unlock:
    6895             :         rcu_read_unlock();
    6896             : 
    6897             :         return target;
    6898             : }
    6899             : 
    6900             : /*
    6901             :  * select_task_rq_fair: Select target runqueue for the waking task in domains
    6902             :  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
    6903             :  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
    6904             :  *
    6905             :  * Balances load by selecting the idlest CPU in the idlest group, or under
    6906             :  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
    6907             :  *
    6908             :  * Returns the target CPU number.
    6909             :  */
    6910             : static int
    6911             : select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
    6912             : {
    6913             :         int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
    6914             :         struct sched_domain *tmp, *sd = NULL;
    6915             :         int cpu = smp_processor_id();
    6916             :         int new_cpu = prev_cpu;
    6917             :         int want_affine = 0;
    6918             :         /* SD_flags and WF_flags share the first nibble */
    6919             :         int sd_flag = wake_flags & 0xF;
    6920             : 
    6921             :         /*
    6922             :          * required for stable ->cpus_allowed
    6923             :          */
    6924             :         lockdep_assert_held(&p->pi_lock);
    6925             :         if (wake_flags & WF_TTWU) {
    6926             :                 record_wakee(p);
    6927             : 
    6928             :                 if (sched_energy_enabled()) {
    6929             :                         new_cpu = find_energy_efficient_cpu(p, prev_cpu);
    6930             :                         if (new_cpu >= 0)
    6931             :                                 return new_cpu;
    6932             :                         new_cpu = prev_cpu;
    6933             :                 }
    6934             : 
    6935             :                 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
    6936             :         }
    6937             : 
    6938             :         rcu_read_lock();
    6939             :         for_each_domain(cpu, tmp) {
    6940             :                 /*
    6941             :                  * If both 'cpu' and 'prev_cpu' are part of this domain,
    6942             :                  * cpu is a valid SD_WAKE_AFFINE target.
    6943             :                  */
    6944             :                 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
    6945             :                     cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
    6946             :                         if (cpu != prev_cpu)
    6947             :                                 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
    6948             : 
    6949             :                         sd = NULL; /* Prefer wake_affine over balance flags */
    6950             :                         break;
    6951             :                 }
    6952             : 
    6953             :                 /*
    6954             :                  * Usually only true for WF_EXEC and WF_FORK, as sched_domains
    6955             :                  * usually do not have SD_BALANCE_WAKE set. That means wakeup
    6956             :                  * will usually go to the fast path.
    6957             :                  */
    6958             :                 if (tmp->flags & sd_flag)
    6959             :                         sd = tmp;
    6960             :                 else if (!want_affine)
    6961             :                         break;
    6962             :         }
    6963             : 
    6964             :         if (unlikely(sd)) {
    6965             :                 /* Slow path */
    6966             :                 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
    6967             :         } else if (wake_flags & WF_TTWU) { /* XXX always ? */
    6968             :                 /* Fast path */
    6969             :                 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
    6970             :         }
    6971             :         rcu_read_unlock();
    6972             : 
    6973             :         return new_cpu;
    6974             : }
    6975             : 
    6976             : static void detach_entity_cfs_rq(struct sched_entity *se);
    6977             : 
    6978             : /*
    6979             :  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
    6980             :  * cfs_rq_of(p) references at time of call are still valid and identify the
    6981             :  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
    6982             :  */
    6983             : static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
    6984             : {
    6985             :         /*
    6986             :          * As blocked tasks retain absolute vruntime the migration needs to
    6987             :          * deal with this by subtracting the old and adding the new
    6988             :          * min_vruntime -- the latter is done by enqueue_entity() when placing
    6989             :          * the task on the new runqueue.
    6990             :          */
    6991             :         if (READ_ONCE(p->__state) == TASK_WAKING) {
    6992             :                 struct sched_entity *se = &p->se;
    6993             :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    6994             :                 u64 min_vruntime;
    6995             : 
    6996             : #ifndef CONFIG_64BIT
    6997             :                 u64 min_vruntime_copy;
    6998             : 
    6999             :                 do {
    7000             :                         min_vruntime_copy = cfs_rq->min_vruntime_copy;
    7001             :                         smp_rmb();
    7002             :                         min_vruntime = cfs_rq->min_vruntime;
    7003             :                 } while (min_vruntime != min_vruntime_copy);
    7004             : #else
    7005             :                 min_vruntime = cfs_rq->min_vruntime;
    7006             : #endif
    7007             : 
    7008             :                 se->vruntime -= min_vruntime;
    7009             :         }
    7010             : 
    7011             :         if (p->on_rq == TASK_ON_RQ_MIGRATING) {
    7012             :                 /*
    7013             :                  * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
    7014             :                  * rq->lock and can modify state directly.
    7015             :                  */
    7016             :                 lockdep_assert_rq_held(task_rq(p));
    7017             :                 detach_entity_cfs_rq(&p->se);
    7018             : 
    7019             :         } else {
    7020             :                 /*
    7021             :                  * We are supposed to update the task to "current" time, then
    7022             :                  * its up to date and ready to go to new CPU/cfs_rq. But we
    7023             :                  * have difficulty in getting what current time is, so simply
    7024             :                  * throw away the out-of-date time. This will result in the
    7025             :                  * wakee task is less decayed, but giving the wakee more load
    7026             :                  * sounds not bad.
    7027             :                  */
    7028             :                 remove_entity_load_avg(&p->se);
    7029             :         }
    7030             : 
    7031             :         /* Tell new CPU we are migrated */
    7032             :         p->se.avg.last_update_time = 0;
    7033             : 
    7034             :         /* We have migrated, no longer consider this task hot */
    7035             :         p->se.exec_start = 0;
    7036             : 
    7037             :         update_scan_period(p, new_cpu);
    7038             : }
    7039             : 
    7040             : static void task_dead_fair(struct task_struct *p)
    7041             : {
    7042             :         remove_entity_load_avg(&p->se);
    7043             : }
    7044             : 
    7045             : static int
    7046             : balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    7047             : {
    7048             :         if (rq->nr_running)
    7049             :                 return 1;
    7050             : 
    7051             :         return newidle_balance(rq, rf) != 0;
    7052             : }
    7053             : #endif /* CONFIG_SMP */
    7054             : 
    7055             : static unsigned long wakeup_gran(struct sched_entity *se)
    7056             : {
    7057         203 :         unsigned long gran = sysctl_sched_wakeup_granularity;
    7058             : 
    7059             :         /*
    7060             :          * Since its curr running now, convert the gran from real-time
    7061             :          * to virtual-time in his units.
    7062             :          *
    7063             :          * By using 'se' instead of 'curr' we penalize light tasks, so
    7064             :          * they get preempted easier. That is, if 'se' < 'curr' then
    7065             :          * the resulting gran will be larger, therefore penalizing the
    7066             :          * lighter, if otoh 'se' > 'curr' then the resulting gran will
    7067             :          * be smaller, again penalizing the lighter task.
    7068             :          *
    7069             :          * This is especially important for buddies when the leftmost
    7070             :          * task is higher priority than the buddy.
    7071             :          */
    7072         203 :         return calc_delta_fair(gran, se);
    7073             : }
    7074             : 
    7075             : /*
    7076             :  * Should 'se' preempt 'curr'.
    7077             :  *
    7078             :  *             |s1
    7079             :  *        |s2
    7080             :  *   |s3
    7081             :  *         g
    7082             :  *      |<--->|c
    7083             :  *
    7084             :  *  w(c, s1) = -1
    7085             :  *  w(c, s2) =  0
    7086             :  *  w(c, s3) =  1
    7087             :  *
    7088             :  */
    7089             : static int
    7090         716 : wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
    7091             : {
    7092         716 :         s64 gran, vdiff = curr->vruntime - se->vruntime;
    7093             : 
    7094         716 :         if (vdiff <= 0)
    7095             :                 return -1;
    7096             : 
    7097         203 :         gran = wakeup_gran(se);
    7098         203 :         if (vdiff > gran)
    7099             :                 return 1;
    7100             : 
    7101             :         return 0;
    7102             : }
    7103             : 
    7104           0 : static void set_last_buddy(struct sched_entity *se)
    7105             : {
    7106           0 :         for_each_sched_entity(se) {
    7107           0 :                 if (SCHED_WARN_ON(!se->on_rq))
    7108             :                         return;
    7109           0 :                 if (se_is_idle(se))
    7110             :                         return;
    7111           0 :                 cfs_rq_of(se)->last = se;
    7112             :         }
    7113             : }
    7114             : 
    7115         200 : static void set_next_buddy(struct sched_entity *se)
    7116             : {
    7117         400 :         for_each_sched_entity(se) {
    7118         200 :                 if (SCHED_WARN_ON(!se->on_rq))
    7119             :                         return;
    7120         200 :                 if (se_is_idle(se))
    7121             :                         return;
    7122         400 :                 cfs_rq_of(se)->next = se;
    7123             :         }
    7124             : }
    7125             : 
    7126             : static void set_skip_buddy(struct sched_entity *se)
    7127             : {
    7128           0 :         for_each_sched_entity(se)
    7129           0 :                 cfs_rq_of(se)->skip = se;
    7130             : }
    7131             : 
    7132             : /*
    7133             :  * Preempt the current task with a newly woken task if needed:
    7134             :  */
    7135         614 : static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
    7136             : {
    7137         614 :         struct task_struct *curr = rq->curr;
    7138         614 :         struct sched_entity *se = &curr->se, *pse = &p->se;
    7139        1228 :         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
    7140         614 :         int scale = cfs_rq->nr_running >= sched_nr_latency;
    7141         614 :         int next_buddy_marked = 0;
    7142             :         int cse_is_idle, pse_is_idle;
    7143             : 
    7144         614 :         if (unlikely(se == pse))
    7145             :                 return;
    7146             : 
    7147             :         /*
    7148             :          * This is possible from callers such as attach_tasks(), in which we
    7149             :          * unconditionally check_preempt_curr() after an enqueue (which may have
    7150             :          * lead to a throttle).  This both saves work and prevents false
    7151             :          * next-buddy nomination below.
    7152             :          */
    7153         614 :         if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
    7154             :                 return;
    7155             : 
    7156         614 :         if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
    7157           0 :                 set_next_buddy(pse);
    7158           0 :                 next_buddy_marked = 1;
    7159             :         }
    7160             : 
    7161             :         /*
    7162             :          * We can come here with TIF_NEED_RESCHED already set from new task
    7163             :          * wake up path.
    7164             :          *
    7165             :          * Note: this also catches the edge-case of curr being in a throttled
    7166             :          * group (e.g. via set_curr_task), since update_curr() (in the
    7167             :          * enqueue of curr) will have resulted in resched being set.  This
    7168             :          * prevents us from potentially nominating it as a false LAST_BUDDY
    7169             :          * below.
    7170             :          */
    7171         614 :         if (test_tsk_need_resched(curr))
    7172             :                 return;
    7173             : 
    7174             :         /* Idle tasks are by definition preempted by non-idle tasks. */
    7175        1032 :         if (unlikely(task_has_idle_policy(curr)) &&
    7176           0 :             likely(!task_has_idle_policy(p)))
    7177             :                 goto preempt;
    7178             : 
    7179             :         /*
    7180             :          * Batch and idle tasks do not preempt non-idle tasks (their preemption
    7181             :          * is driven by the tick):
    7182             :          */
    7183         516 :         if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
    7184             :                 return;
    7185             : 
    7186         516 :         find_matching_se(&se, &pse);
    7187         516 :         BUG_ON(!pse);
    7188             : 
    7189         516 :         cse_is_idle = se_is_idle(se);
    7190         516 :         pse_is_idle = se_is_idle(pse);
    7191             : 
    7192             :         /*
    7193             :          * Preempt an idle group in favor of a non-idle group (and don't preempt
    7194             :          * in the inverse case).
    7195             :          */
    7196             :         if (cse_is_idle && !pse_is_idle)
    7197             :                 goto preempt;
    7198             :         if (cse_is_idle != pse_is_idle)
    7199             :                 return;
    7200             : 
    7201        1032 :         update_curr(cfs_rq_of(se));
    7202         516 :         if (wakeup_preempt_entity(se, pse) == 1) {
    7203             :                 /*
    7204             :                  * Bias pick_next to pick the sched entity that is
    7205             :                  * triggering this preemption.
    7206             :                  */
    7207         200 :                 if (!next_buddy_marked)
    7208         200 :                         set_next_buddy(pse);
    7209             :                 goto preempt;
    7210             :         }
    7211             : 
    7212             :         return;
    7213             : 
    7214             : preempt:
    7215         200 :         resched_curr(rq);
    7216             :         /*
    7217             :          * Only set the backward buddy when the current task is still
    7218             :          * on the rq. This can happen when a wakeup gets interleaved
    7219             :          * with schedule on the ->pre_schedule() or idle_balance()
    7220             :          * point, either of which can * drop the rq lock.
    7221             :          *
    7222             :          * Also, during early boot the idle thread is in the fair class,
    7223             :          * for obvious reasons its a bad idea to schedule back to it.
    7224             :          */
    7225         200 :         if (unlikely(!se->on_rq || curr == rq->idle))
    7226             :                 return;
    7227             : 
    7228         200 :         if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
    7229           0 :                 set_last_buddy(se);
    7230             : }
    7231             : 
    7232             : #ifdef CONFIG_SMP
    7233             : static struct task_struct *pick_task_fair(struct rq *rq)
    7234             : {
    7235             :         struct sched_entity *se;
    7236             :         struct cfs_rq *cfs_rq;
    7237             : 
    7238             : again:
    7239             :         cfs_rq = &rq->cfs;
    7240             :         if (!cfs_rq->nr_running)
    7241             :                 return NULL;
    7242             : 
    7243             :         do {
    7244             :                 struct sched_entity *curr = cfs_rq->curr;
    7245             : 
    7246             :                 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
    7247             :                 if (curr) {
    7248             :                         if (curr->on_rq)
    7249             :                                 update_curr(cfs_rq);
    7250             :                         else
    7251             :                                 curr = NULL;
    7252             : 
    7253             :                         if (unlikely(check_cfs_rq_runtime(cfs_rq)))
    7254             :                                 goto again;
    7255             :                 }
    7256             : 
    7257             :                 se = pick_next_entity(cfs_rq, curr);
    7258             :                 cfs_rq = group_cfs_rq(se);
    7259             :         } while (cfs_rq);
    7260             : 
    7261             :         return task_of(se);
    7262             : }
    7263             : #endif
    7264             : 
    7265             : struct task_struct *
    7266         618 : pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    7267             : {
    7268         618 :         struct cfs_rq *cfs_rq = &rq->cfs;
    7269             :         struct sched_entity *se;
    7270             :         struct task_struct *p;
    7271             :         int new_tasks;
    7272             : 
    7273             : again:
    7274         618 :         if (!sched_fair_runnable(rq))
    7275             :                 goto idle;
    7276             : 
    7277             : #ifdef CONFIG_FAIR_GROUP_SCHED
    7278             :         if (!prev || prev->sched_class != &fair_sched_class)
    7279             :                 goto simple;
    7280             : 
    7281             :         /*
    7282             :          * Because of the set_next_buddy() in dequeue_task_fair() it is rather
    7283             :          * likely that a next task is from the same cgroup as the current.
    7284             :          *
    7285             :          * Therefore attempt to avoid putting and setting the entire cgroup
    7286             :          * hierarchy, only change the part that actually changes.
    7287             :          */
    7288             : 
    7289             :         do {
    7290             :                 struct sched_entity *curr = cfs_rq->curr;
    7291             : 
    7292             :                 /*
    7293             :                  * Since we got here without doing put_prev_entity() we also
    7294             :                  * have to consider cfs_rq->curr. If it is still a runnable
    7295             :                  * entity, update_curr() will update its vruntime, otherwise
    7296             :                  * forget we've ever seen it.
    7297             :                  */
    7298             :                 if (curr) {
    7299             :                         if (curr->on_rq)
    7300             :                                 update_curr(cfs_rq);
    7301             :                         else
    7302             :                                 curr = NULL;
    7303             : 
    7304             :                         /*
    7305             :                          * This call to check_cfs_rq_runtime() will do the
    7306             :                          * throttle and dequeue its entity in the parent(s).
    7307             :                          * Therefore the nr_running test will indeed
    7308             :                          * be correct.
    7309             :                          */
    7310             :                         if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
    7311             :                                 cfs_rq = &rq->cfs;
    7312             : 
    7313             :                                 if (!cfs_rq->nr_running)
    7314             :                                         goto idle;
    7315             : 
    7316             :                                 goto simple;
    7317             :                         }
    7318             :                 }
    7319             : 
    7320             :                 se = pick_next_entity(cfs_rq, curr);
    7321             :                 cfs_rq = group_cfs_rq(se);
    7322             :         } while (cfs_rq);
    7323             : 
    7324             :         p = task_of(se);
    7325             : 
    7326             :         /*
    7327             :          * Since we haven't yet done put_prev_entity and if the selected task
    7328             :          * is a different task than we started out with, try and touch the
    7329             :          * least amount of cfs_rqs.
    7330             :          */
    7331             :         if (prev != p) {
    7332             :                 struct sched_entity *pse = &prev->se;
    7333             : 
    7334             :                 while (!(cfs_rq = is_same_group(se, pse))) {
    7335             :                         int se_depth = se->depth;
    7336             :                         int pse_depth = pse->depth;
    7337             : 
    7338             :                         if (se_depth <= pse_depth) {
    7339             :                                 put_prev_entity(cfs_rq_of(pse), pse);
    7340             :                                 pse = parent_entity(pse);
    7341             :                         }
    7342             :                         if (se_depth >= pse_depth) {
    7343             :                                 set_next_entity(cfs_rq_of(se), se);
    7344             :                                 se = parent_entity(se);
    7345             :                         }
    7346             :                 }
    7347             : 
    7348             :                 put_prev_entity(cfs_rq, pse);
    7349             :                 set_next_entity(cfs_rq, se);
    7350             :         }
    7351             : 
    7352             :         goto done;
    7353             : simple:
    7354             : #endif
    7355         617 :         if (prev)
    7356         617 :                 put_prev_task(rq, prev);
    7357             : 
    7358             :         do {
    7359         617 :                 se = pick_next_entity(cfs_rq, NULL);
    7360         617 :                 set_next_entity(cfs_rq, se);
    7361         617 :                 cfs_rq = group_cfs_rq(se);
    7362             :         } while (cfs_rq);
    7363             : 
    7364         617 :         p = task_of(se);
    7365             : 
    7366             : done: __maybe_unused;
    7367             : #ifdef CONFIG_SMP
    7368             :         /*
    7369             :          * Move the next running task to the front of
    7370             :          * the list, so our cfs_tasks list becomes MRU
    7371             :          * one.
    7372             :          */
    7373             :         list_move(&p->se.group_node, &rq->cfs_tasks);
    7374             : #endif
    7375             : 
    7376         617 :         if (hrtick_enabled_fair(rq))
    7377             :                 hrtick_start_fair(rq, p);
    7378             : 
    7379         617 :         update_misfit_status(p, rq);
    7380             : 
    7381         617 :         return p;
    7382             : 
    7383             : idle:
    7384             :         if (!rf)
    7385             :                 return NULL;
    7386             : 
    7387             :         new_tasks = newidle_balance(rq, rf);
    7388             : 
    7389             :         /*
    7390             :          * Because newidle_balance() releases (and re-acquires) rq->lock, it is
    7391             :          * possible for any higher priority task to appear. In that case we
    7392             :          * must re-start the pick_next_entity() loop.
    7393             :          */
    7394             :         if (new_tasks < 0)
    7395             :                 return RETRY_TASK;
    7396             : 
    7397             :         if (new_tasks > 0)
    7398             :                 goto again;
    7399             : 
    7400             :         /*
    7401             :          * rq is about to be idle, check if we need to update the
    7402             :          * lost_idle_time of clock_pelt
    7403             :          */
    7404             :         update_idle_rq_clock_pelt(rq);
    7405             : 
    7406             :         return NULL;
    7407             : }
    7408             : 
    7409           0 : static struct task_struct *__pick_next_task_fair(struct rq *rq)
    7410             : {
    7411           0 :         return pick_next_task_fair(rq, NULL, NULL);
    7412             : }
    7413             : 
    7414             : /*
    7415             :  * Account for a descheduled task:
    7416             :  */
    7417         619 : static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
    7418             : {
    7419         619 :         struct sched_entity *se = &prev->se;
    7420             :         struct cfs_rq *cfs_rq;
    7421             : 
    7422        1238 :         for_each_sched_entity(se) {
    7423        1238 :                 cfs_rq = cfs_rq_of(se);
    7424         619 :                 put_prev_entity(cfs_rq, se);
    7425             :         }
    7426         619 : }
    7427             : 
    7428             : /*
    7429             :  * sched_yield() is very simple
    7430             :  *
    7431             :  * The magic of dealing with the ->skip buddy is in pick_next_entity.
    7432             :  */
    7433           0 : static void yield_task_fair(struct rq *rq)
    7434             : {
    7435           0 :         struct task_struct *curr = rq->curr;
    7436           0 :         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
    7437           0 :         struct sched_entity *se = &curr->se;
    7438             : 
    7439             :         /*
    7440             :          * Are we the only task in the tree?
    7441             :          */
    7442           0 :         if (unlikely(rq->nr_running == 1))
    7443             :                 return;
    7444             : 
    7445           0 :         clear_buddies(cfs_rq, se);
    7446             : 
    7447           0 :         if (curr->policy != SCHED_BATCH) {
    7448           0 :                 update_rq_clock(rq);
    7449             :                 /*
    7450             :                  * Update run-time statistics of the 'current'.
    7451             :                  */
    7452           0 :                 update_curr(cfs_rq);
    7453             :                 /*
    7454             :                  * Tell update_rq_clock() that we've just updated,
    7455             :                  * so we don't do microscopic update in schedule()
    7456             :                  * and double the fastpath cost.
    7457             :                  */
    7458           0 :                 rq_clock_skip_update(rq);
    7459             :         }
    7460             : 
    7461             :         set_skip_buddy(se);
    7462             : }
    7463             : 
    7464           0 : static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
    7465             : {
    7466           0 :         struct sched_entity *se = &p->se;
    7467             : 
    7468             :         /* throttled hierarchies are not runnable */
    7469           0 :         if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
    7470             :                 return false;
    7471             : 
    7472             :         /* Tell the scheduler that we'd really like pse to run next. */
    7473           0 :         set_next_buddy(se);
    7474             : 
    7475           0 :         yield_task_fair(rq);
    7476             : 
    7477           0 :         return true;
    7478             : }
    7479             : 
    7480             : #ifdef CONFIG_SMP
    7481             : /**************************************************
    7482             :  * Fair scheduling class load-balancing methods.
    7483             :  *
    7484             :  * BASICS
    7485             :  *
    7486             :  * The purpose of load-balancing is to achieve the same basic fairness the
    7487             :  * per-CPU scheduler provides, namely provide a proportional amount of compute
    7488             :  * time to each task. This is expressed in the following equation:
    7489             :  *
    7490             :  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
    7491             :  *
    7492             :  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
    7493             :  * W_i,0 is defined as:
    7494             :  *
    7495             :  *   W_i,0 = \Sum_j w_i,j                                             (2)
    7496             :  *
    7497             :  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
    7498             :  * is derived from the nice value as per sched_prio_to_weight[].
    7499             :  *
    7500             :  * The weight average is an exponential decay average of the instantaneous
    7501             :  * weight:
    7502             :  *
    7503             :  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
    7504             :  *
    7505             :  * C_i is the compute capacity of CPU i, typically it is the
    7506             :  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
    7507             :  * can also include other factors [XXX].
    7508             :  *
    7509             :  * To achieve this balance we define a measure of imbalance which follows
    7510             :  * directly from (1):
    7511             :  *
    7512             :  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
    7513             :  *
    7514             :  * We them move tasks around to minimize the imbalance. In the continuous
    7515             :  * function space it is obvious this converges, in the discrete case we get
    7516             :  * a few fun cases generally called infeasible weight scenarios.
    7517             :  *
    7518             :  * [XXX expand on:
    7519             :  *     - infeasible weights;
    7520             :  *     - local vs global optima in the discrete case. ]
    7521             :  *
    7522             :  *
    7523             :  * SCHED DOMAINS
    7524             :  *
    7525             :  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
    7526             :  * for all i,j solution, we create a tree of CPUs that follows the hardware
    7527             :  * topology where each level pairs two lower groups (or better). This results
    7528             :  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
    7529             :  * tree to only the first of the previous level and we decrease the frequency
    7530             :  * of load-balance at each level inv. proportional to the number of CPUs in
    7531             :  * the groups.
    7532             :  *
    7533             :  * This yields:
    7534             :  *
    7535             :  *     log_2 n     1     n
    7536             :  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
    7537             :  *     i = 0      2^i   2^i
    7538             :  *                               `- size of each group
    7539             :  *         |         |     `- number of CPUs doing load-balance
    7540             :  *         |         `- freq
    7541             :  *         `- sum over all levels
    7542             :  *
    7543             :  * Coupled with a limit on how many tasks we can migrate every balance pass,
    7544             :  * this makes (5) the runtime complexity of the balancer.
    7545             :  *
    7546             :  * An important property here is that each CPU is still (indirectly) connected
    7547             :  * to every other CPU in at most O(log n) steps:
    7548             :  *
    7549             :  * The adjacency matrix of the resulting graph is given by:
    7550             :  *
    7551             :  *             log_2 n
    7552             :  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
    7553             :  *             k = 0
    7554             :  *
    7555             :  * And you'll find that:
    7556             :  *
    7557             :  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
    7558             :  *
    7559             :  * Showing there's indeed a path between every CPU in at most O(log n) steps.
    7560             :  * The task movement gives a factor of O(m), giving a convergence complexity
    7561             :  * of:
    7562             :  *
    7563             :  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
    7564             :  *
    7565             :  *
    7566             :  * WORK CONSERVING
    7567             :  *
    7568             :  * In order to avoid CPUs going idle while there's still work to do, new idle
    7569             :  * balancing is more aggressive and has the newly idle CPU iterate up the domain
    7570             :  * tree itself instead of relying on other CPUs to bring it work.
    7571             :  *
    7572             :  * This adds some complexity to both (5) and (8) but it reduces the total idle
    7573             :  * time.
    7574             :  *
    7575             :  * [XXX more?]
    7576             :  *
    7577             :  *
    7578             :  * CGROUPS
    7579             :  *
    7580             :  * Cgroups make a horror show out of (2), instead of a simple sum we get:
    7581             :  *
    7582             :  *                                s_k,i
    7583             :  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
    7584             :  *                                 S_k
    7585             :  *
    7586             :  * Where
    7587             :  *
    7588             :  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
    7589             :  *
    7590             :  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
    7591             :  *
    7592             :  * The big problem is S_k, its a global sum needed to compute a local (W_i)
    7593             :  * property.
    7594             :  *
    7595             :  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
    7596             :  *      rewrite all of this once again.]
    7597             :  */
    7598             : 
    7599             : static unsigned long __read_mostly max_load_balance_interval = HZ/10;
    7600             : 
    7601             : enum fbq_type { regular, remote, all };
    7602             : 
    7603             : /*
    7604             :  * 'group_type' describes the group of CPUs at the moment of load balancing.
    7605             :  *
    7606             :  * The enum is ordered by pulling priority, with the group with lowest priority
    7607             :  * first so the group_type can simply be compared when selecting the busiest
    7608             :  * group. See update_sd_pick_busiest().
    7609             :  */
    7610             : enum group_type {
    7611             :         /* The group has spare capacity that can be used to run more tasks.  */
    7612             :         group_has_spare = 0,
    7613             :         /*
    7614             :          * The group is fully used and the tasks don't compete for more CPU
    7615             :          * cycles. Nevertheless, some tasks might wait before running.
    7616             :          */
    7617             :         group_fully_busy,
    7618             :         /*
    7619             :          * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
    7620             :          * and must be migrated to a more powerful CPU.
    7621             :          */
    7622             :         group_misfit_task,
    7623             :         /*
    7624             :          * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
    7625             :          * and the task should be migrated to it instead of running on the
    7626             :          * current CPU.
    7627             :          */
    7628             :         group_asym_packing,
    7629             :         /*
    7630             :          * The tasks' affinity constraints previously prevented the scheduler
    7631             :          * from balancing the load across the system.
    7632             :          */
    7633             :         group_imbalanced,
    7634             :         /*
    7635             :          * The CPU is overloaded and can't provide expected CPU cycles to all
    7636             :          * tasks.
    7637             :          */
    7638             :         group_overloaded
    7639             : };
    7640             : 
    7641             : enum migration_type {
    7642             :         migrate_load = 0,
    7643             :         migrate_util,
    7644             :         migrate_task,
    7645             :         migrate_misfit
    7646             : };
    7647             : 
    7648             : #define LBF_ALL_PINNED  0x01
    7649             : #define LBF_NEED_BREAK  0x02
    7650             : #define LBF_DST_PINNED  0x04
    7651             : #define LBF_SOME_PINNED 0x08
    7652             : #define LBF_ACTIVE_LB   0x10
    7653             : 
    7654             : struct lb_env {
    7655             :         struct sched_domain     *sd;
    7656             : 
    7657             :         struct rq               *src_rq;
    7658             :         int                     src_cpu;
    7659             : 
    7660             :         int                     dst_cpu;
    7661             :         struct rq               *dst_rq;
    7662             : 
    7663             :         struct cpumask          *dst_grpmask;
    7664             :         int                     new_dst_cpu;
    7665             :         enum cpu_idle_type      idle;
    7666             :         long                    imbalance;
    7667             :         /* The set of CPUs under consideration for load-balancing */
    7668             :         struct cpumask          *cpus;
    7669             : 
    7670             :         unsigned int            flags;
    7671             : 
    7672             :         unsigned int            loop;
    7673             :         unsigned int            loop_break;
    7674             :         unsigned int            loop_max;
    7675             : 
    7676             :         enum fbq_type           fbq_type;
    7677             :         enum migration_type     migration_type;
    7678             :         struct list_head        tasks;
    7679             : };
    7680             : 
    7681             : /*
    7682             :  * Is this task likely cache-hot:
    7683             :  */
    7684             : static int task_hot(struct task_struct *p, struct lb_env *env)
    7685             : {
    7686             :         s64 delta;
    7687             : 
    7688             :         lockdep_assert_rq_held(env->src_rq);
    7689             : 
    7690             :         if (p->sched_class != &fair_sched_class)
    7691             :                 return 0;
    7692             : 
    7693             :         if (unlikely(task_has_idle_policy(p)))
    7694             :                 return 0;
    7695             : 
    7696             :         /* SMT siblings share cache */
    7697             :         if (env->sd->flags & SD_SHARE_CPUCAPACITY)
    7698             :                 return 0;
    7699             : 
    7700             :         /*
    7701             :          * Buddy candidates are cache hot:
    7702             :          */
    7703             :         if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
    7704             :                         (&p->se == cfs_rq_of(&p->se)->next ||
    7705             :                          &p->se == cfs_rq_of(&p->se)->last))
    7706             :                 return 1;
    7707             : 
    7708             :         if (sysctl_sched_migration_cost == -1)
    7709             :                 return 1;
    7710             : 
    7711             :         /*
    7712             :          * Don't migrate task if the task's cookie does not match
    7713             :          * with the destination CPU's core cookie.
    7714             :          */
    7715             :         if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
    7716             :                 return 1;
    7717             : 
    7718             :         if (sysctl_sched_migration_cost == 0)
    7719             :                 return 0;
    7720             : 
    7721             :         delta = rq_clock_task(env->src_rq) - p->se.exec_start;
    7722             : 
    7723             :         return delta < (s64)sysctl_sched_migration_cost;
    7724             : }
    7725             : 
    7726             : #ifdef CONFIG_NUMA_BALANCING
    7727             : /*
    7728             :  * Returns 1, if task migration degrades locality
    7729             :  * Returns 0, if task migration improves locality i.e migration preferred.
    7730             :  * Returns -1, if task migration is not affected by locality.
    7731             :  */
    7732             : static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
    7733             : {
    7734             :         struct numa_group *numa_group = rcu_dereference(p->numa_group);
    7735             :         unsigned long src_weight, dst_weight;
    7736             :         int src_nid, dst_nid, dist;
    7737             : 
    7738             :         if (!static_branch_likely(&sched_numa_balancing))
    7739             :                 return -1;
    7740             : 
    7741             :         if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
    7742             :                 return -1;
    7743             : 
    7744             :         src_nid = cpu_to_node(env->src_cpu);
    7745             :         dst_nid = cpu_to_node(env->dst_cpu);
    7746             : 
    7747             :         if (src_nid == dst_nid)
    7748             :                 return -1;
    7749             : 
    7750             :         /* Migrating away from the preferred node is always bad. */
    7751             :         if (src_nid == p->numa_preferred_nid) {
    7752             :                 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
    7753             :                         return 1;
    7754             :                 else
    7755             :                         return -1;
    7756             :         }
    7757             : 
    7758             :         /* Encourage migration to the preferred node. */
    7759             :         if (dst_nid == p->numa_preferred_nid)
    7760             :                 return 0;
    7761             : 
    7762             :         /* Leaving a core idle is often worse than degrading locality. */
    7763             :         if (env->idle == CPU_IDLE)
    7764             :                 return -1;
    7765             : 
    7766             :         dist = node_distance(src_nid, dst_nid);
    7767             :         if (numa_group) {
    7768             :                 src_weight = group_weight(p, src_nid, dist);
    7769             :                 dst_weight = group_weight(p, dst_nid, dist);
    7770             :         } else {
    7771             :                 src_weight = task_weight(p, src_nid, dist);
    7772             :                 dst_weight = task_weight(p, dst_nid, dist);
    7773             :         }
    7774             : 
    7775             :         return dst_weight < src_weight;
    7776             : }
    7777             : 
    7778             : #else
    7779             : static inline int migrate_degrades_locality(struct task_struct *p,
    7780             :                                              struct lb_env *env)
    7781             : {
    7782             :         return -1;
    7783             : }
    7784             : #endif
    7785             : 
    7786             : /*
    7787             :  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
    7788             :  */
    7789             : static
    7790             : int can_migrate_task(struct task_struct *p, struct lb_env *env)
    7791             : {
    7792             :         int tsk_cache_hot;
    7793             : 
    7794             :         lockdep_assert_rq_held(env->src_rq);
    7795             : 
    7796             :         /*
    7797             :          * We do not migrate tasks that are:
    7798             :          * 1) throttled_lb_pair, or
    7799             :          * 2) cannot be migrated to this CPU due to cpus_ptr, or
    7800             :          * 3) running (obviously), or
    7801             :          * 4) are cache-hot on their current CPU.
    7802             :          */
    7803             :         if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
    7804             :                 return 0;
    7805             : 
    7806             :         /* Disregard pcpu kthreads; they are where they need to be. */
    7807             :         if (kthread_is_per_cpu(p))
    7808             :                 return 0;
    7809             : 
    7810             :         if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
    7811             :                 int cpu;
    7812             : 
    7813             :                 schedstat_inc(p->stats.nr_failed_migrations_affine);
    7814             : 
    7815             :                 env->flags |= LBF_SOME_PINNED;
    7816             : 
    7817             :                 /*
    7818             :                  * Remember if this task can be migrated to any other CPU in
    7819             :                  * our sched_group. We may want to revisit it if we couldn't
    7820             :                  * meet load balance goals by pulling other tasks on src_cpu.
    7821             :                  *
    7822             :                  * Avoid computing new_dst_cpu
    7823             :                  * - for NEWLY_IDLE
    7824             :                  * - if we have already computed one in current iteration
    7825             :                  * - if it's an active balance
    7826             :                  */
    7827             :                 if (env->idle == CPU_NEWLY_IDLE ||
    7828             :                     env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
    7829             :                         return 0;
    7830             : 
    7831             :                 /* Prevent to re-select dst_cpu via env's CPUs: */
    7832             :                 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
    7833             :                         if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
    7834             :                                 env->flags |= LBF_DST_PINNED;
    7835             :                                 env->new_dst_cpu = cpu;
    7836             :                                 break;
    7837             :                         }
    7838             :                 }
    7839             : 
    7840             :                 return 0;
    7841             :         }
    7842             : 
    7843             :         /* Record that we found at least one task that could run on dst_cpu */
    7844             :         env->flags &= ~LBF_ALL_PINNED;
    7845             : 
    7846             :         if (task_running(env->src_rq, p)) {
    7847             :                 schedstat_inc(p->stats.nr_failed_migrations_running);
    7848             :                 return 0;
    7849             :         }
    7850             : 
    7851             :         /*
    7852             :          * Aggressive migration if:
    7853             :          * 1) active balance
    7854             :          * 2) destination numa is preferred
    7855             :          * 3) task is cache cold, or
    7856             :          * 4) too many balance attempts have failed.
    7857             :          */
    7858             :         if (env->flags & LBF_ACTIVE_LB)
    7859             :                 return 1;
    7860             : 
    7861             :         tsk_cache_hot = migrate_degrades_locality(p, env);
    7862             :         if (tsk_cache_hot == -1)
    7863             :                 tsk_cache_hot = task_hot(p, env);
    7864             : 
    7865             :         if (tsk_cache_hot <= 0 ||
    7866             :             env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
    7867             :                 if (tsk_cache_hot == 1) {
    7868             :                         schedstat_inc(env->sd->lb_hot_gained[env->idle]);
    7869             :                         schedstat_inc(p->stats.nr_forced_migrations);
    7870             :                 }
    7871             :                 return 1;
    7872             :         }
    7873             : 
    7874             :         schedstat_inc(p->stats.nr_failed_migrations_hot);
    7875             :         return 0;
    7876             : }
    7877             : 
    7878             : /*
    7879             :  * detach_task() -- detach the task for the migration specified in env
    7880             :  */
    7881             : static void detach_task(struct task_struct *p, struct lb_env *env)
    7882             : {
    7883             :         lockdep_assert_rq_held(env->src_rq);
    7884             : 
    7885             :         deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
    7886             :         set_task_cpu(p, env->dst_cpu);
    7887             : }
    7888             : 
    7889             : /*
    7890             :  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
    7891             :  * part of active balancing operations within "domain".
    7892             :  *
    7893             :  * Returns a task if successful and NULL otherwise.
    7894             :  */
    7895             : static struct task_struct *detach_one_task(struct lb_env *env)
    7896             : {
    7897             :         struct task_struct *p;
    7898             : 
    7899             :         lockdep_assert_rq_held(env->src_rq);
    7900             : 
    7901             :         list_for_each_entry_reverse(p,
    7902             :                         &env->src_rq->cfs_tasks, se.group_node) {
    7903             :                 if (!can_migrate_task(p, env))
    7904             :                         continue;
    7905             : 
    7906             :                 detach_task(p, env);
    7907             : 
    7908             :                 /*
    7909             :                  * Right now, this is only the second place where
    7910             :                  * lb_gained[env->idle] is updated (other is detach_tasks)
    7911             :                  * so we can safely collect stats here rather than
    7912             :                  * inside detach_tasks().
    7913             :                  */
    7914             :                 schedstat_inc(env->sd->lb_gained[env->idle]);
    7915             :                 return p;
    7916             :         }
    7917             :         return NULL;
    7918             : }
    7919             : 
    7920             : static const unsigned int sched_nr_migrate_break = 32;
    7921             : 
    7922             : /*
    7923             :  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
    7924             :  * busiest_rq, as part of a balancing operation within domain "sd".
    7925             :  *
    7926             :  * Returns number of detached tasks if successful and 0 otherwise.
    7927             :  */
    7928             : static int detach_tasks(struct lb_env *env)
    7929             : {
    7930             :         struct list_head *tasks = &env->src_rq->cfs_tasks;
    7931             :         unsigned long util, load;
    7932             :         struct task_struct *p;
    7933             :         int detached = 0;
    7934             : 
    7935             :         lockdep_assert_rq_held(env->src_rq);
    7936             : 
    7937             :         /*
    7938             :          * Source run queue has been emptied by another CPU, clear
    7939             :          * LBF_ALL_PINNED flag as we will not test any task.
    7940             :          */
    7941             :         if (env->src_rq->nr_running <= 1) {
    7942             :                 env->flags &= ~LBF_ALL_PINNED;
    7943             :                 return 0;
    7944             :         }
    7945             : 
    7946             :         if (env->imbalance <= 0)
    7947             :                 return 0;
    7948             : 
    7949             :         while (!list_empty(tasks)) {
    7950             :                 /*
    7951             :                  * We don't want to steal all, otherwise we may be treated likewise,
    7952             :                  * which could at worst lead to a livelock crash.
    7953             :                  */
    7954             :                 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
    7955             :                         break;
    7956             : 
    7957             :                 p = list_last_entry(tasks, struct task_struct, se.group_node);
    7958             : 
    7959             :                 env->loop++;
    7960             :                 /* We've more or less seen every task there is, call it quits */
    7961             :                 if (env->loop > env->loop_max)
    7962             :                         break;
    7963             : 
    7964             :                 /* take a breather every nr_migrate tasks */
    7965             :                 if (env->loop > env->loop_break) {
    7966             :                         env->loop_break += sched_nr_migrate_break;
    7967             :                         env->flags |= LBF_NEED_BREAK;
    7968             :                         break;
    7969             :                 }
    7970             : 
    7971             :                 if (!can_migrate_task(p, env))
    7972             :                         goto next;
    7973             : 
    7974             :                 switch (env->migration_type) {
    7975             :                 case migrate_load:
    7976             :                         /*
    7977             :                          * Depending of the number of CPUs and tasks and the
    7978             :                          * cgroup hierarchy, task_h_load() can return a null
    7979             :                          * value. Make sure that env->imbalance decreases
    7980             :                          * otherwise detach_tasks() will stop only after
    7981             :                          * detaching up to loop_max tasks.
    7982             :                          */
    7983             :                         load = max_t(unsigned long, task_h_load(p), 1);
    7984             : 
    7985             :                         if (sched_feat(LB_MIN) &&
    7986             :                             load < 16 && !env->sd->nr_balance_failed)
    7987             :                                 goto next;
    7988             : 
    7989             :                         /*
    7990             :                          * Make sure that we don't migrate too much load.
    7991             :                          * Nevertheless, let relax the constraint if
    7992             :                          * scheduler fails to find a good waiting task to
    7993             :                          * migrate.
    7994             :                          */
    7995             :                         if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
    7996             :                                 goto next;
    7997             : 
    7998             :                         env->imbalance -= load;
    7999             :                         break;
    8000             : 
    8001             :                 case migrate_util:
    8002             :                         util = task_util_est(p);
    8003             : 
    8004             :                         if (util > env->imbalance)
    8005             :                                 goto next;
    8006             : 
    8007             :                         env->imbalance -= util;
    8008             :                         break;
    8009             : 
    8010             :                 case migrate_task:
    8011             :                         env->imbalance--;
    8012             :                         break;
    8013             : 
    8014             :                 case migrate_misfit:
    8015             :                         /* This is not a misfit task */
    8016             :                         if (task_fits_capacity(p, capacity_of(env->src_cpu)))
    8017             :                                 goto next;
    8018             : 
    8019             :                         env->imbalance = 0;
    8020             :                         break;
    8021             :                 }
    8022             : 
    8023             :                 detach_task(p, env);
    8024             :                 list_add(&p->se.group_node, &env->tasks);
    8025             : 
    8026             :                 detached++;
    8027             : 
    8028             : #ifdef CONFIG_PREEMPTION
    8029             :                 /*
    8030             :                  * NEWIDLE balancing is a source of latency, so preemptible
    8031             :                  * kernels will stop after the first task is detached to minimize
    8032             :                  * the critical section.
    8033             :                  */
    8034             :                 if (env->idle == CPU_NEWLY_IDLE)
    8035             :                         break;
    8036             : #endif
    8037             : 
    8038             :                 /*
    8039             :                  * We only want to steal up to the prescribed amount of
    8040             :                  * load/util/tasks.
    8041             :                  */
    8042             :                 if (env->imbalance <= 0)
    8043             :                         break;
    8044             : 
    8045             :                 continue;
    8046             : next:
    8047             :                 list_move(&p->se.group_node, tasks);
    8048             :         }
    8049             : 
    8050             :         /*
    8051             :          * Right now, this is one of only two places we collect this stat
    8052             :          * so we can safely collect detach_one_task() stats here rather
    8053             :          * than inside detach_one_task().
    8054             :          */
    8055             :         schedstat_add(env->sd->lb_gained[env->idle], detached);
    8056             : 
    8057             :         return detached;
    8058             : }
    8059             : 
    8060             : /*
    8061             :  * attach_task() -- attach the task detached by detach_task() to its new rq.
    8062             :  */
    8063             : static void attach_task(struct rq *rq, struct task_struct *p)
    8064             : {
    8065             :         lockdep_assert_rq_held(rq);
    8066             : 
    8067             :         BUG_ON(task_rq(p) != rq);
    8068             :         activate_task(rq, p, ENQUEUE_NOCLOCK);
    8069             :         check_preempt_curr(rq, p, 0);
    8070             : }
    8071             : 
    8072             : /*
    8073             :  * attach_one_task() -- attaches the task returned from detach_one_task() to
    8074             :  * its new rq.
    8075             :  */
    8076             : static void attach_one_task(struct rq *rq, struct task_struct *p)
    8077             : {
    8078             :         struct rq_flags rf;
    8079             : 
    8080             :         rq_lock(rq, &rf);
    8081             :         update_rq_clock(rq);
    8082             :         attach_task(rq, p);
    8083             :         rq_unlock(rq, &rf);
    8084             : }
    8085             : 
    8086             : /*
    8087             :  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
    8088             :  * new rq.
    8089             :  */
    8090             : static void attach_tasks(struct lb_env *env)
    8091             : {
    8092             :         struct list_head *tasks = &env->tasks;
    8093             :         struct task_struct *p;
    8094             :         struct rq_flags rf;
    8095             : 
    8096             :         rq_lock(env->dst_rq, &rf);
    8097             :         update_rq_clock(env->dst_rq);
    8098             : 
    8099             :         while (!list_empty(tasks)) {
    8100             :                 p = list_first_entry(tasks, struct task_struct, se.group_node);
    8101             :                 list_del_init(&p->se.group_node);
    8102             : 
    8103             :                 attach_task(env->dst_rq, p);
    8104             :         }
    8105             : 
    8106             :         rq_unlock(env->dst_rq, &rf);
    8107             : }
    8108             : 
    8109             : #ifdef CONFIG_NO_HZ_COMMON
    8110             : static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
    8111             : {
    8112             :         if (cfs_rq->avg.load_avg)
    8113             :                 return true;
    8114             : 
    8115             :         if (cfs_rq->avg.util_avg)
    8116             :                 return true;
    8117             : 
    8118             :         return false;
    8119             : }
    8120             : 
    8121             : static inline bool others_have_blocked(struct rq *rq)
    8122             : {
    8123             :         if (READ_ONCE(rq->avg_rt.util_avg))
    8124             :                 return true;
    8125             : 
    8126             :         if (READ_ONCE(rq->avg_dl.util_avg))
    8127             :                 return true;
    8128             : 
    8129             :         if (thermal_load_avg(rq))
    8130             :                 return true;
    8131             : 
    8132             : #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
    8133             :         if (READ_ONCE(rq->avg_irq.util_avg))
    8134             :                 return true;
    8135             : #endif
    8136             : 
    8137             :         return false;
    8138             : }
    8139             : 
    8140             : static inline void update_blocked_load_tick(struct rq *rq)
    8141             : {
    8142             :         WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
    8143             : }
    8144             : 
    8145             : static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
    8146             : {
    8147             :         if (!has_blocked)
    8148             :                 rq->has_blocked_load = 0;
    8149             : }
    8150             : #else
    8151             : static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
    8152             : static inline bool others_have_blocked(struct rq *rq) { return false; }
    8153             : static inline void update_blocked_load_tick(struct rq *rq) {}
    8154             : static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
    8155             : #endif
    8156             : 
    8157             : static bool __update_blocked_others(struct rq *rq, bool *done)
    8158             : {
    8159             :         const struct sched_class *curr_class;
    8160             :         u64 now = rq_clock_pelt(rq);
    8161             :         unsigned long thermal_pressure;
    8162             :         bool decayed;
    8163             : 
    8164             :         /*
    8165             :          * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
    8166             :          * DL and IRQ signals have been updated before updating CFS.
    8167             :          */
    8168             :         curr_class = rq->curr->sched_class;
    8169             : 
    8170             :         thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
    8171             : 
    8172             :         decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
    8173             :                   update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
    8174             :                   update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
    8175             :                   update_irq_load_avg(rq, 0);
    8176             : 
    8177             :         if (others_have_blocked(rq))
    8178             :                 *done = false;
    8179             : 
    8180             :         return decayed;
    8181             : }
    8182             : 
    8183             : #ifdef CONFIG_FAIR_GROUP_SCHED
    8184             : 
    8185             : static bool __update_blocked_fair(struct rq *rq, bool *done)
    8186             : {
    8187             :         struct cfs_rq *cfs_rq, *pos;
    8188             :         bool decayed = false;
    8189             :         int cpu = cpu_of(rq);
    8190             : 
    8191             :         /*
    8192             :          * Iterates the task_group tree in a bottom up fashion, see
    8193             :          * list_add_leaf_cfs_rq() for details.
    8194             :          */
    8195             :         for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
    8196             :                 struct sched_entity *se;
    8197             : 
    8198             :                 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
    8199             :                         update_tg_load_avg(cfs_rq);
    8200             : 
    8201             :                         if (cfs_rq == &rq->cfs)
    8202             :                                 decayed = true;
    8203             :                 }
    8204             : 
    8205             :                 /* Propagate pending load changes to the parent, if any: */
    8206             :                 se = cfs_rq->tg->se[cpu];
    8207             :                 if (se && !skip_blocked_update(se))
    8208             :                         update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
    8209             : 
    8210             :                 /*
    8211             :                  * There can be a lot of idle CPU cgroups.  Don't let fully
    8212             :                  * decayed cfs_rqs linger on the list.
    8213             :                  */
    8214             :                 if (cfs_rq_is_decayed(cfs_rq))
    8215             :                         list_del_leaf_cfs_rq(cfs_rq);
    8216             : 
    8217             :                 /* Don't need periodic decay once load/util_avg are null */
    8218             :                 if (cfs_rq_has_blocked(cfs_rq))
    8219             :                         *done = false;
    8220             :         }
    8221             : 
    8222             :         return decayed;
    8223             : }
    8224             : 
    8225             : /*
    8226             :  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
    8227             :  * This needs to be done in a top-down fashion because the load of a child
    8228             :  * group is a fraction of its parents load.
    8229             :  */
    8230             : static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
    8231             : {
    8232             :         struct rq *rq = rq_of(cfs_rq);
    8233             :         struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
    8234             :         unsigned long now = jiffies;
    8235             :         unsigned long load;
    8236             : 
    8237             :         if (cfs_rq->last_h_load_update == now)
    8238             :                 return;
    8239             : 
    8240             :         WRITE_ONCE(cfs_rq->h_load_next, NULL);
    8241             :         for_each_sched_entity(se) {
    8242             :                 cfs_rq = cfs_rq_of(se);
    8243             :                 WRITE_ONCE(cfs_rq->h_load_next, se);
    8244             :                 if (cfs_rq->last_h_load_update == now)
    8245             :                         break;
    8246             :         }
    8247             : 
    8248             :         if (!se) {
    8249             :                 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
    8250             :                 cfs_rq->last_h_load_update = now;
    8251             :         }
    8252             : 
    8253             :         while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
    8254             :                 load = cfs_rq->h_load;
    8255             :                 load = div64_ul(load * se->avg.load_avg,
    8256             :                         cfs_rq_load_avg(cfs_rq) + 1);
    8257             :                 cfs_rq = group_cfs_rq(se);
    8258             :                 cfs_rq->h_load = load;
    8259             :                 cfs_rq->last_h_load_update = now;
    8260             :         }
    8261             : }
    8262             : 
    8263             : static unsigned long task_h_load(struct task_struct *p)
    8264             : {
    8265             :         struct cfs_rq *cfs_rq = task_cfs_rq(p);
    8266             : 
    8267             :         update_cfs_rq_h_load(cfs_rq);
    8268             :         return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
    8269             :                         cfs_rq_load_avg(cfs_rq) + 1);
    8270             : }
    8271             : #else
    8272             : static bool __update_blocked_fair(struct rq *rq, bool *done)
    8273             : {
    8274             :         struct cfs_rq *cfs_rq = &rq->cfs;
    8275             :         bool decayed;
    8276             : 
    8277             :         decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
    8278             :         if (cfs_rq_has_blocked(cfs_rq))
    8279             :                 *done = false;
    8280             : 
    8281             :         return decayed;
    8282             : }
    8283             : 
    8284             : static unsigned long task_h_load(struct task_struct *p)
    8285             : {
    8286             :         return p->se.avg.load_avg;
    8287             : }
    8288             : #endif
    8289             : 
    8290             : static void update_blocked_averages(int cpu)
    8291             : {
    8292             :         bool decayed = false, done = true;
    8293             :         struct rq *rq = cpu_rq(cpu);
    8294             :         struct rq_flags rf;
    8295             : 
    8296             :         rq_lock_irqsave(rq, &rf);
    8297             :         update_blocked_load_tick(rq);
    8298             :         update_rq_clock(rq);
    8299             : 
    8300             :         decayed |= __update_blocked_others(rq, &done);
    8301             :         decayed |= __update_blocked_fair(rq, &done);
    8302             : 
    8303             :         update_blocked_load_status(rq, !done);
    8304             :         if (decayed)
    8305             :                 cpufreq_update_util(rq, 0);
    8306             :         rq_unlock_irqrestore(rq, &rf);
    8307             : }
    8308             : 
    8309             : /********** Helpers for find_busiest_group ************************/
    8310             : 
    8311             : /*
    8312             :  * sg_lb_stats - stats of a sched_group required for load_balancing
    8313             :  */
    8314             : struct sg_lb_stats {
    8315             :         unsigned long avg_load; /*Avg load across the CPUs of the group */
    8316             :         unsigned long group_load; /* Total load over the CPUs of the group */
    8317             :         unsigned long group_capacity;
    8318             :         unsigned long group_util; /* Total utilization over the CPUs of the group */
    8319             :         unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
    8320             :         unsigned int sum_nr_running; /* Nr of tasks running in the group */
    8321             :         unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
    8322             :         unsigned int idle_cpus;
    8323             :         unsigned int group_weight;
    8324             :         enum group_type group_type;
    8325             :         unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
    8326             :         unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
    8327             : #ifdef CONFIG_NUMA_BALANCING
    8328             :         unsigned int nr_numa_running;
    8329             :         unsigned int nr_preferred_running;
    8330             : #endif
    8331             : };
    8332             : 
    8333             : /*
    8334             :  * sd_lb_stats - Structure to store the statistics of a sched_domain
    8335             :  *               during load balancing.
    8336             :  */
    8337             : struct sd_lb_stats {
    8338             :         struct sched_group *busiest;    /* Busiest group in this sd */
    8339             :         struct sched_group *local;      /* Local group in this sd */
    8340             :         unsigned long total_load;       /* Total load of all groups in sd */
    8341             :         unsigned long total_capacity;   /* Total capacity of all groups in sd */
    8342             :         unsigned long avg_load; /* Average load across all groups in sd */
    8343             :         unsigned int prefer_sibling; /* tasks should go to sibling first */
    8344             : 
    8345             :         struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
    8346             :         struct sg_lb_stats local_stat;  /* Statistics of the local group */
    8347             : };
    8348             : 
    8349             : static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
    8350             : {
    8351             :         /*
    8352             :          * Skimp on the clearing to avoid duplicate work. We can avoid clearing
    8353             :          * local_stat because update_sg_lb_stats() does a full clear/assignment.
    8354             :          * We must however set busiest_stat::group_type and
    8355             :          * busiest_stat::idle_cpus to the worst busiest group because
    8356             :          * update_sd_pick_busiest() reads these before assignment.
    8357             :          */
    8358             :         *sds = (struct sd_lb_stats){
    8359             :                 .busiest = NULL,
    8360             :                 .local = NULL,
    8361             :                 .total_load = 0UL,
    8362             :                 .total_capacity = 0UL,
    8363             :                 .busiest_stat = {
    8364             :                         .idle_cpus = UINT_MAX,
    8365             :                         .group_type = group_has_spare,
    8366             :                 },
    8367             :         };
    8368             : }
    8369             : 
    8370             : static unsigned long scale_rt_capacity(int cpu)
    8371             : {
    8372             :         struct rq *rq = cpu_rq(cpu);
    8373             :         unsigned long max = arch_scale_cpu_capacity(cpu);
    8374             :         unsigned long used, free;
    8375             :         unsigned long irq;
    8376             : 
    8377             :         irq = cpu_util_irq(rq);
    8378             : 
    8379             :         if (unlikely(irq >= max))
    8380             :                 return 1;
    8381             : 
    8382             :         /*
    8383             :          * avg_rt.util_avg and avg_dl.util_avg track binary signals
    8384             :          * (running and not running) with weights 0 and 1024 respectively.
    8385             :          * avg_thermal.load_avg tracks thermal pressure and the weighted
    8386             :          * average uses the actual delta max capacity(load).
    8387             :          */
    8388             :         used = READ_ONCE(rq->avg_rt.util_avg);
    8389             :         used += READ_ONCE(rq->avg_dl.util_avg);
    8390             :         used += thermal_load_avg(rq);
    8391             : 
    8392             :         if (unlikely(used >= max))
    8393             :                 return 1;
    8394             : 
    8395             :         free = max - used;
    8396             : 
    8397             :         return scale_irq_capacity(free, irq, max);
    8398             : }
    8399             : 
    8400             : static void update_cpu_capacity(struct sched_domain *sd, int cpu)
    8401             : {
    8402             :         unsigned long capacity = scale_rt_capacity(cpu);
    8403             :         struct sched_group *sdg = sd->groups;
    8404             : 
    8405             :         cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
    8406             : 
    8407             :         if (!capacity)
    8408             :                 capacity = 1;
    8409             : 
    8410             :         cpu_rq(cpu)->cpu_capacity = capacity;
    8411             :         trace_sched_cpu_capacity_tp(cpu_rq(cpu));
    8412             : 
    8413             :         sdg->sgc->capacity = capacity;
    8414             :         sdg->sgc->min_capacity = capacity;
    8415             :         sdg->sgc->max_capacity = capacity;
    8416             : }
    8417             : 
    8418             : void update_group_capacity(struct sched_domain *sd, int cpu)
    8419             : {
    8420             :         struct sched_domain *child = sd->child;
    8421             :         struct sched_group *group, *sdg = sd->groups;
    8422             :         unsigned long capacity, min_capacity, max_capacity;
    8423             :         unsigned long interval;
    8424             : 
    8425             :         interval = msecs_to_jiffies(sd->balance_interval);
    8426             :         interval = clamp(interval, 1UL, max_load_balance_interval);
    8427             :         sdg->sgc->next_update = jiffies + interval;
    8428             : 
    8429             :         if (!child) {
    8430             :                 update_cpu_capacity(sd, cpu);
    8431             :                 return;
    8432             :         }
    8433             : 
    8434             :         capacity = 0;
    8435             :         min_capacity = ULONG_MAX;
    8436             :         max_capacity = 0;
    8437             : 
    8438             :         if (child->flags & SD_OVERLAP) {
    8439             :                 /*
    8440             :                  * SD_OVERLAP domains cannot assume that child groups
    8441             :                  * span the current group.
    8442             :                  */
    8443             : 
    8444             :                 for_each_cpu(cpu, sched_group_span(sdg)) {
    8445             :                         unsigned long cpu_cap = capacity_of(cpu);
    8446             : 
    8447             :                         capacity += cpu_cap;
    8448             :                         min_capacity = min(cpu_cap, min_capacity);
    8449             :                         max_capacity = max(cpu_cap, max_capacity);
    8450             :                 }
    8451             :         } else  {
    8452             :                 /*
    8453             :                  * !SD_OVERLAP domains can assume that child groups
    8454             :                  * span the current group.
    8455             :                  */
    8456             : 
    8457             :                 group = child->groups;
    8458             :                 do {
    8459             :                         struct sched_group_capacity *sgc = group->sgc;
    8460             : 
    8461             :                         capacity += sgc->capacity;
    8462             :                         min_capacity = min(sgc->min_capacity, min_capacity);
    8463             :                         max_capacity = max(sgc->max_capacity, max_capacity);
    8464             :                         group = group->next;
    8465             :                 } while (group != child->groups);
    8466             :         }
    8467             : 
    8468             :         sdg->sgc->capacity = capacity;
    8469             :         sdg->sgc->min_capacity = min_capacity;
    8470             :         sdg->sgc->max_capacity = max_capacity;
    8471             : }
    8472             : 
    8473             : /*
    8474             :  * Check whether the capacity of the rq has been noticeably reduced by side
    8475             :  * activity. The imbalance_pct is used for the threshold.
    8476             :  * Return true is the capacity is reduced
    8477             :  */
    8478             : static inline int
    8479             : check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
    8480             : {
    8481             :         return ((rq->cpu_capacity * sd->imbalance_pct) <
    8482             :                                 (rq->cpu_capacity_orig * 100));
    8483             : }
    8484             : 
    8485             : /*
    8486             :  * Check whether a rq has a misfit task and if it looks like we can actually
    8487             :  * help that task: we can migrate the task to a CPU of higher capacity, or
    8488             :  * the task's current CPU is heavily pressured.
    8489             :  */
    8490             : static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
    8491             : {
    8492             :         return rq->misfit_task_load &&
    8493             :                 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
    8494             :                  check_cpu_capacity(rq, sd));
    8495             : }
    8496             : 
    8497             : /*
    8498             :  * Group imbalance indicates (and tries to solve) the problem where balancing
    8499             :  * groups is inadequate due to ->cpus_ptr constraints.
    8500             :  *
    8501             :  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
    8502             :  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
    8503             :  * Something like:
    8504             :  *
    8505             :  *      { 0 1 2 3 } { 4 5 6 7 }
    8506             :  *              *     * * *
    8507             :  *
    8508             :  * If we were to balance group-wise we'd place two tasks in the first group and
    8509             :  * two tasks in the second group. Clearly this is undesired as it will overload
    8510             :  * cpu 3 and leave one of the CPUs in the second group unused.
    8511             :  *
    8512             :  * The current solution to this issue is detecting the skew in the first group
    8513             :  * by noticing the lower domain failed to reach balance and had difficulty
    8514             :  * moving tasks due to affinity constraints.
    8515             :  *
    8516             :  * When this is so detected; this group becomes a candidate for busiest; see
    8517             :  * update_sd_pick_busiest(). And calculate_imbalance() and
    8518             :  * find_busiest_group() avoid some of the usual balance conditions to allow it
    8519             :  * to create an effective group imbalance.
    8520             :  *
    8521             :  * This is a somewhat tricky proposition since the next run might not find the
    8522             :  * group imbalance and decide the groups need to be balanced again. A most
    8523             :  * subtle and fragile situation.
    8524             :  */
    8525             : 
    8526             : static inline int sg_imbalanced(struct sched_group *group)
    8527             : {
    8528             :         return group->sgc->imbalance;
    8529             : }
    8530             : 
    8531             : /*
    8532             :  * group_has_capacity returns true if the group has spare capacity that could
    8533             :  * be used by some tasks.
    8534             :  * We consider that a group has spare capacity if the  * number of task is
    8535             :  * smaller than the number of CPUs or if the utilization is lower than the
    8536             :  * available capacity for CFS tasks.
    8537             :  * For the latter, we use a threshold to stabilize the state, to take into
    8538             :  * account the variance of the tasks' load and to return true if the available
    8539             :  * capacity in meaningful for the load balancer.
    8540             :  * As an example, an available capacity of 1% can appear but it doesn't make
    8541             :  * any benefit for the load balance.
    8542             :  */
    8543             : static inline bool
    8544             : group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
    8545             : {
    8546             :         if (sgs->sum_nr_running < sgs->group_weight)
    8547             :                 return true;
    8548             : 
    8549             :         if ((sgs->group_capacity * imbalance_pct) <
    8550             :                         (sgs->group_runnable * 100))
    8551             :                 return false;
    8552             : 
    8553             :         if ((sgs->group_capacity * 100) >
    8554             :                         (sgs->group_util * imbalance_pct))
    8555             :                 return true;
    8556             : 
    8557             :         return false;
    8558             : }
    8559             : 
    8560             : /*
    8561             :  *  group_is_overloaded returns true if the group has more tasks than it can
    8562             :  *  handle.
    8563             :  *  group_is_overloaded is not equals to !group_has_capacity because a group
    8564             :  *  with the exact right number of tasks, has no more spare capacity but is not
    8565             :  *  overloaded so both group_has_capacity and group_is_overloaded return
    8566             :  *  false.
    8567             :  */
    8568             : static inline bool
    8569             : group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
    8570             : {
    8571             :         if (sgs->sum_nr_running <= sgs->group_weight)
    8572             :                 return false;
    8573             : 
    8574             :         if ((sgs->group_capacity * 100) <
    8575             :                         (sgs->group_util * imbalance_pct))
    8576             :                 return true;
    8577             : 
    8578             :         if ((sgs->group_capacity * imbalance_pct) <
    8579             :                         (sgs->group_runnable * 100))
    8580             :                 return true;
    8581             : 
    8582             :         return false;
    8583             : }
    8584             : 
    8585             : static inline enum
    8586             : group_type group_classify(unsigned int imbalance_pct,
    8587             :                           struct sched_group *group,
    8588             :                           struct sg_lb_stats *sgs)
    8589             : {
    8590             :         if (group_is_overloaded(imbalance_pct, sgs))
    8591             :                 return group_overloaded;
    8592             : 
    8593             :         if (sg_imbalanced(group))
    8594             :                 return group_imbalanced;
    8595             : 
    8596             :         if (sgs->group_asym_packing)
    8597             :                 return group_asym_packing;
    8598             : 
    8599             :         if (sgs->group_misfit_task_load)
    8600             :                 return group_misfit_task;
    8601             : 
    8602             :         if (!group_has_capacity(imbalance_pct, sgs))
    8603             :                 return group_fully_busy;
    8604             : 
    8605             :         return group_has_spare;
    8606             : }
    8607             : 
    8608             : /**
    8609             :  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
    8610             :  * @dst_cpu:    Destination CPU of the load balancing
    8611             :  * @sds:        Load-balancing data with statistics of the local group
    8612             :  * @sgs:        Load-balancing statistics of the candidate busiest group
    8613             :  * @sg:         The candidate busiest group
    8614             :  *
    8615             :  * Check the state of the SMT siblings of both @sds::local and @sg and decide
    8616             :  * if @dst_cpu can pull tasks.
    8617             :  *
    8618             :  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
    8619             :  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
    8620             :  * only if @dst_cpu has higher priority.
    8621             :  *
    8622             :  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
    8623             :  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
    8624             :  * Bigger imbalances in the number of busy CPUs will be dealt with in
    8625             :  * update_sd_pick_busiest().
    8626             :  *
    8627             :  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
    8628             :  * of @dst_cpu are idle and @sg has lower priority.
    8629             :  *
    8630             :  * Return: true if @dst_cpu can pull tasks, false otherwise.
    8631             :  */
    8632             : static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
    8633             :                                     struct sg_lb_stats *sgs,
    8634             :                                     struct sched_group *sg)
    8635             : {
    8636             : #ifdef CONFIG_SCHED_SMT
    8637             :         bool local_is_smt, sg_is_smt;
    8638             :         int sg_busy_cpus;
    8639             : 
    8640             :         local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
    8641             :         sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
    8642             : 
    8643             :         sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
    8644             : 
    8645             :         if (!local_is_smt) {
    8646             :                 /*
    8647             :                  * If we are here, @dst_cpu is idle and does not have SMT
    8648             :                  * siblings. Pull tasks if candidate group has two or more
    8649             :                  * busy CPUs.
    8650             :                  */
    8651             :                 if (sg_busy_cpus >= 2) /* implies sg_is_smt */
    8652             :                         return true;
    8653             : 
    8654             :                 /*
    8655             :                  * @dst_cpu does not have SMT siblings. @sg may have SMT
    8656             :                  * siblings and only one is busy. In such case, @dst_cpu
    8657             :                  * can help if it has higher priority and is idle (i.e.,
    8658             :                  * it has no running tasks).
    8659             :                  */
    8660             :                 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
    8661             :         }
    8662             : 
    8663             :         /* @dst_cpu has SMT siblings. */
    8664             : 
    8665             :         if (sg_is_smt) {
    8666             :                 int local_busy_cpus = sds->local->group_weight -
    8667             :                                       sds->local_stat.idle_cpus;
    8668             :                 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
    8669             : 
    8670             :                 if (busy_cpus_delta == 1)
    8671             :                         return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
    8672             : 
    8673             :                 return false;
    8674             :         }
    8675             : 
    8676             :         /*
    8677             :          * @sg does not have SMT siblings. Ensure that @sds::local does not end
    8678             :          * up with more than one busy SMT sibling and only pull tasks if there
    8679             :          * are not busy CPUs (i.e., no CPU has running tasks).
    8680             :          */
    8681             :         if (!sds->local_stat.sum_nr_running)
    8682             :                 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
    8683             : 
    8684             :         return false;
    8685             : #else
    8686             :         /* Always return false so that callers deal with non-SMT cases. */
    8687             :         return false;
    8688             : #endif
    8689             : }
    8690             : 
    8691             : static inline bool
    8692             : sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
    8693             :            struct sched_group *group)
    8694             : {
    8695             :         /* Only do SMT checks if either local or candidate have SMT siblings */
    8696             :         if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
    8697             :             (group->flags & SD_SHARE_CPUCAPACITY))
    8698             :                 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
    8699             : 
    8700             :         return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
    8701             : }
    8702             : 
    8703             : /**
    8704             :  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
    8705             :  * @env: The load balancing environment.
    8706             :  * @sds: Load-balancing data with statistics of the local group.
    8707             :  * @group: sched_group whose statistics are to be updated.
    8708             :  * @sgs: variable to hold the statistics for this group.
    8709             :  * @sg_status: Holds flag indicating the status of the sched_group
    8710             :  */
    8711             : static inline void update_sg_lb_stats(struct lb_env *env,
    8712             :                                       struct sd_lb_stats *sds,
    8713             :                                       struct sched_group *group,
    8714             :                                       struct sg_lb_stats *sgs,
    8715             :                                       int *sg_status)
    8716             : {
    8717             :         int i, nr_running, local_group;
    8718             : 
    8719             :         memset(sgs, 0, sizeof(*sgs));
    8720             : 
    8721             :         local_group = group == sds->local;
    8722             : 
    8723             :         for_each_cpu_and(i, sched_group_span(group), env->cpus) {
    8724             :                 struct rq *rq = cpu_rq(i);
    8725             : 
    8726             :                 sgs->group_load += cpu_load(rq);
    8727             :                 sgs->group_util += cpu_util_cfs(i);
    8728             :                 sgs->group_runnable += cpu_runnable(rq);
    8729             :                 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
    8730             : 
    8731             :                 nr_running = rq->nr_running;
    8732             :                 sgs->sum_nr_running += nr_running;
    8733             : 
    8734             :                 if (nr_running > 1)
    8735             :                         *sg_status |= SG_OVERLOAD;
    8736             : 
    8737             :                 if (cpu_overutilized(i))
    8738             :                         *sg_status |= SG_OVERUTILIZED;
    8739             : 
    8740             : #ifdef CONFIG_NUMA_BALANCING
    8741             :                 sgs->nr_numa_running += rq->nr_numa_running;
    8742             :                 sgs->nr_preferred_running += rq->nr_preferred_running;
    8743             : #endif
    8744             :                 /*
    8745             :                  * No need to call idle_cpu() if nr_running is not 0
    8746             :                  */
    8747             :                 if (!nr_running && idle_cpu(i)) {
    8748             :                         sgs->idle_cpus++;
    8749             :                         /* Idle cpu can't have misfit task */
    8750             :                         continue;
    8751             :                 }
    8752             : 
    8753             :                 if (local_group)
    8754             :                         continue;
    8755             : 
    8756             :                 /* Check for a misfit task on the cpu */
    8757             :                 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
    8758             :                     sgs->group_misfit_task_load < rq->misfit_task_load) {
    8759             :                         sgs->group_misfit_task_load = rq->misfit_task_load;
    8760             :                         *sg_status |= SG_OVERLOAD;
    8761             :                 }
    8762             :         }
    8763             : 
    8764             :         sgs->group_capacity = group->sgc->capacity;
    8765             : 
    8766             :         sgs->group_weight = group->group_weight;
    8767             : 
    8768             :         /* Check if dst CPU is idle and preferred to this group */
    8769             :         if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
    8770             :             env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
    8771             :             sched_asym(env, sds, sgs, group)) {
    8772             :                 sgs->group_asym_packing = 1;
    8773             :         }
    8774             : 
    8775             :         sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
    8776             : 
    8777             :         /* Computing avg_load makes sense only when group is overloaded */
    8778             :         if (sgs->group_type == group_overloaded)
    8779             :                 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
    8780             :                                 sgs->group_capacity;
    8781             : }
    8782             : 
    8783             : /**
    8784             :  * update_sd_pick_busiest - return 1 on busiest group
    8785             :  * @env: The load balancing environment.
    8786             :  * @sds: sched_domain statistics
    8787             :  * @sg: sched_group candidate to be checked for being the busiest
    8788             :  * @sgs: sched_group statistics
    8789             :  *
    8790             :  * Determine if @sg is a busier group than the previously selected
    8791             :  * busiest group.
    8792             :  *
    8793             :  * Return: %true if @sg is a busier group than the previously selected
    8794             :  * busiest group. %false otherwise.
    8795             :  */
    8796             : static bool update_sd_pick_busiest(struct lb_env *env,
    8797             :                                    struct sd_lb_stats *sds,
    8798             :                                    struct sched_group *sg,
    8799             :                                    struct sg_lb_stats *sgs)
    8800             : {
    8801             :         struct sg_lb_stats *busiest = &sds->busiest_stat;
    8802             : 
    8803             :         /* Make sure that there is at least one task to pull */
    8804             :         if (!sgs->sum_h_nr_running)
    8805             :                 return false;
    8806             : 
    8807             :         /*
    8808             :          * Don't try to pull misfit tasks we can't help.
    8809             :          * We can use max_capacity here as reduction in capacity on some
    8810             :          * CPUs in the group should either be possible to resolve
    8811             :          * internally or be covered by avg_load imbalance (eventually).
    8812             :          */
    8813             :         if (sgs->group_type == group_misfit_task &&
    8814             :             (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
    8815             :              sds->local_stat.group_type != group_has_spare))
    8816             :                 return false;
    8817             : 
    8818             :         if (sgs->group_type > busiest->group_type)
    8819             :                 return true;
    8820             : 
    8821             :         if (sgs->group_type < busiest->group_type)
    8822             :                 return false;
    8823             : 
    8824             :         /*
    8825             :          * The candidate and the current busiest group are the same type of
    8826             :          * group. Let check which one is the busiest according to the type.
    8827             :          */
    8828             : 
    8829             :         switch (sgs->group_type) {
    8830             :         case group_overloaded:
    8831             :                 /* Select the overloaded group with highest avg_load. */
    8832             :                 if (sgs->avg_load <= busiest->avg_load)
    8833             :                         return false;
    8834             :                 break;
    8835             : 
    8836             :         case group_imbalanced:
    8837             :                 /*
    8838             :                  * Select the 1st imbalanced group as we don't have any way to
    8839             :                  * choose one more than another.
    8840             :                  */
    8841             :                 return false;
    8842             : 
    8843             :         case group_asym_packing:
    8844             :                 /* Prefer to move from lowest priority CPU's work */
    8845             :                 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
    8846             :                         return false;
    8847             :                 break;
    8848             : 
    8849             :         case group_misfit_task:
    8850             :                 /*
    8851             :                  * If we have more than one misfit sg go with the biggest
    8852             :                  * misfit.
    8853             :                  */
    8854             :                 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
    8855             :                         return false;
    8856             :                 break;
    8857             : 
    8858             :         case group_fully_busy:
    8859             :                 /*
    8860             :                  * Select the fully busy group with highest avg_load. In
    8861             :                  * theory, there is no need to pull task from such kind of
    8862             :                  * group because tasks have all compute capacity that they need
    8863             :                  * but we can still improve the overall throughput by reducing
    8864             :                  * contention when accessing shared HW resources.
    8865             :                  *
    8866             :                  * XXX for now avg_load is not computed and always 0 so we
    8867             :                  * select the 1st one.
    8868             :                  */
    8869             :                 if (sgs->avg_load <= busiest->avg_load)
    8870             :                         return false;
    8871             :                 break;
    8872             : 
    8873             :         case group_has_spare:
    8874             :                 /*
    8875             :                  * Select not overloaded group with lowest number of idle cpus
    8876             :                  * and highest number of running tasks. We could also compare
    8877             :                  * the spare capacity which is more stable but it can end up
    8878             :                  * that the group has less spare capacity but finally more idle
    8879             :                  * CPUs which means less opportunity to pull tasks.
    8880             :                  */
    8881             :                 if (sgs->idle_cpus > busiest->idle_cpus)
    8882             :                         return false;
    8883             :                 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
    8884             :                          (sgs->sum_nr_running <= busiest->sum_nr_running))
    8885             :                         return false;
    8886             : 
    8887             :                 break;
    8888             :         }
    8889             : 
    8890             :         /*
    8891             :          * Candidate sg has no more than one task per CPU and has higher
    8892             :          * per-CPU capacity. Migrating tasks to less capable CPUs may harm
    8893             :          * throughput. Maximize throughput, power/energy consequences are not
    8894             :          * considered.
    8895             :          */
    8896             :         if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
    8897             :             (sgs->group_type <= group_fully_busy) &&
    8898             :             (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
    8899             :                 return false;
    8900             : 
    8901             :         return true;
    8902             : }
    8903             : 
    8904             : #ifdef CONFIG_NUMA_BALANCING
    8905             : static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
    8906             : {
    8907             :         if (sgs->sum_h_nr_running > sgs->nr_numa_running)
    8908             :                 return regular;
    8909             :         if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
    8910             :                 return remote;
    8911             :         return all;
    8912             : }
    8913             : 
    8914             : static inline enum fbq_type fbq_classify_rq(struct rq *rq)
    8915             : {
    8916             :         if (rq->nr_running > rq->nr_numa_running)
    8917             :                 return regular;
    8918             :         if (rq->nr_running > rq->nr_preferred_running)
    8919             :                 return remote;
    8920             :         return all;
    8921             : }
    8922             : #else
    8923             : static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
    8924             : {
    8925             :         return all;
    8926             : }
    8927             : 
    8928             : static inline enum fbq_type fbq_classify_rq(struct rq *rq)
    8929             : {
    8930             :         return regular;
    8931             : }
    8932             : #endif /* CONFIG_NUMA_BALANCING */
    8933             : 
    8934             : 
    8935             : struct sg_lb_stats;
    8936             : 
    8937             : /*
    8938             :  * task_running_on_cpu - return 1 if @p is running on @cpu.
    8939             :  */
    8940             : 
    8941             : static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
    8942             : {
    8943             :         /* Task has no contribution or is new */
    8944             :         if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    8945             :                 return 0;
    8946             : 
    8947             :         if (task_on_rq_queued(p))
    8948             :                 return 1;
    8949             : 
    8950             :         return 0;
    8951             : }
    8952             : 
    8953             : /**
    8954             :  * idle_cpu_without - would a given CPU be idle without p ?
    8955             :  * @cpu: the processor on which idleness is tested.
    8956             :  * @p: task which should be ignored.
    8957             :  *
    8958             :  * Return: 1 if the CPU would be idle. 0 otherwise.
    8959             :  */
    8960             : static int idle_cpu_without(int cpu, struct task_struct *p)
    8961             : {
    8962             :         struct rq *rq = cpu_rq(cpu);
    8963             : 
    8964             :         if (rq->curr != rq->idle && rq->curr != p)
    8965             :                 return 0;
    8966             : 
    8967             :         /*
    8968             :          * rq->nr_running can't be used but an updated version without the
    8969             :          * impact of p on cpu must be used instead. The updated nr_running
    8970             :          * be computed and tested before calling idle_cpu_without().
    8971             :          */
    8972             : 
    8973             : #ifdef CONFIG_SMP
    8974             :         if (rq->ttwu_pending)
    8975             :                 return 0;
    8976             : #endif
    8977             : 
    8978             :         return 1;
    8979             : }
    8980             : 
    8981             : /*
    8982             :  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
    8983             :  * @sd: The sched_domain level to look for idlest group.
    8984             :  * @group: sched_group whose statistics are to be updated.
    8985             :  * @sgs: variable to hold the statistics for this group.
    8986             :  * @p: The task for which we look for the idlest group/CPU.
    8987             :  */
    8988             : static inline void update_sg_wakeup_stats(struct sched_domain *sd,
    8989             :                                           struct sched_group *group,
    8990             :                                           struct sg_lb_stats *sgs,
    8991             :                                           struct task_struct *p)
    8992             : {
    8993             :         int i, nr_running;
    8994             : 
    8995             :         memset(sgs, 0, sizeof(*sgs));
    8996             : 
    8997             :         for_each_cpu(i, sched_group_span(group)) {
    8998             :                 struct rq *rq = cpu_rq(i);
    8999             :                 unsigned int local;
    9000             : 
    9001             :                 sgs->group_load += cpu_load_without(rq, p);
    9002             :                 sgs->group_util += cpu_util_without(i, p);
    9003             :                 sgs->group_runnable += cpu_runnable_without(rq, p);
    9004             :                 local = task_running_on_cpu(i, p);
    9005             :                 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
    9006             : 
    9007             :                 nr_running = rq->nr_running - local;
    9008             :                 sgs->sum_nr_running += nr_running;
    9009             : 
    9010             :                 /*
    9011             :                  * No need to call idle_cpu_without() if nr_running is not 0
    9012             :                  */
    9013             :                 if (!nr_running && idle_cpu_without(i, p))
    9014             :                         sgs->idle_cpus++;
    9015             : 
    9016             :         }
    9017             : 
    9018             :         /* Check if task fits in the group */
    9019             :         if (sd->flags & SD_ASYM_CPUCAPACITY &&
    9020             :             !task_fits_capacity(p, group->sgc->max_capacity)) {
    9021             :                 sgs->group_misfit_task_load = 1;
    9022             :         }
    9023             : 
    9024             :         sgs->group_capacity = group->sgc->capacity;
    9025             : 
    9026             :         sgs->group_weight = group->group_weight;
    9027             : 
    9028             :         sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
    9029             : 
    9030             :         /*
    9031             :          * Computing avg_load makes sense only when group is fully busy or
    9032             :          * overloaded
    9033             :          */
    9034             :         if (sgs->group_type == group_fully_busy ||
    9035             :                 sgs->group_type == group_overloaded)
    9036             :                 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
    9037             :                                 sgs->group_capacity;
    9038             : }
    9039             : 
    9040             : static bool update_pick_idlest(struct sched_group *idlest,
    9041             :                                struct sg_lb_stats *idlest_sgs,
    9042             :                                struct sched_group *group,
    9043             :                                struct sg_lb_stats *sgs)
    9044             : {
    9045             :         if (sgs->group_type < idlest_sgs->group_type)
    9046             :                 return true;
    9047             : 
    9048             :         if (sgs->group_type > idlest_sgs->group_type)
    9049             :                 return false;
    9050             : 
    9051             :         /*
    9052             :          * The candidate and the current idlest group are the same type of
    9053             :          * group. Let check which one is the idlest according to the type.
    9054             :          */
    9055             : 
    9056             :         switch (sgs->group_type) {
    9057             :         case group_overloaded:
    9058             :         case group_fully_busy:
    9059             :                 /* Select the group with lowest avg_load. */
    9060             :                 if (idlest_sgs->avg_load <= sgs->avg_load)
    9061             :                         return false;
    9062             :                 break;
    9063             : 
    9064             :         case group_imbalanced:
    9065             :         case group_asym_packing:
    9066             :                 /* Those types are not used in the slow wakeup path */
    9067             :                 return false;
    9068             : 
    9069             :         case group_misfit_task:
    9070             :                 /* Select group with the highest max capacity */
    9071             :                 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
    9072             :                         return false;
    9073             :                 break;
    9074             : 
    9075             :         case group_has_spare:
    9076             :                 /* Select group with most idle CPUs */
    9077             :                 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
    9078             :                         return false;
    9079             : 
    9080             :                 /* Select group with lowest group_util */
    9081             :                 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
    9082             :                         idlest_sgs->group_util <= sgs->group_util)
    9083             :                         return false;
    9084             : 
    9085             :                 break;
    9086             :         }
    9087             : 
    9088             :         return true;
    9089             : }
    9090             : 
    9091             : /*
    9092             :  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
    9093             :  * This is an approximation as the number of running tasks may not be
    9094             :  * related to the number of busy CPUs due to sched_setaffinity.
    9095             :  */
    9096             : static inline bool allow_numa_imbalance(int running, int imb_numa_nr)
    9097             : {
    9098             :         return running <= imb_numa_nr;
    9099             : }
    9100             : 
    9101             : /*
    9102             :  * find_idlest_group() finds and returns the least busy CPU group within the
    9103             :  * domain.
    9104             :  *
    9105             :  * Assumes p is allowed on at least one CPU in sd.
    9106             :  */
    9107             : static struct sched_group *
    9108             : find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
    9109             : {
    9110             :         struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
    9111             :         struct sg_lb_stats local_sgs, tmp_sgs;
    9112             :         struct sg_lb_stats *sgs;
    9113             :         unsigned long imbalance;
    9114             :         struct sg_lb_stats idlest_sgs = {
    9115             :                         .avg_load = UINT_MAX,
    9116             :                         .group_type = group_overloaded,
    9117             :         };
    9118             : 
    9119             :         do {
    9120             :                 int local_group;
    9121             : 
    9122             :                 /* Skip over this group if it has no CPUs allowed */
    9123             :                 if (!cpumask_intersects(sched_group_span(group),
    9124             :                                         p->cpus_ptr))
    9125             :                         continue;
    9126             : 
    9127             :                 /* Skip over this group if no cookie matched */
    9128             :                 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
    9129             :                         continue;
    9130             : 
    9131             :                 local_group = cpumask_test_cpu(this_cpu,
    9132             :                                                sched_group_span(group));
    9133             : 
    9134             :                 if (local_group) {
    9135             :                         sgs = &local_sgs;
    9136             :                         local = group;
    9137             :                 } else {
    9138             :                         sgs = &tmp_sgs;
    9139             :                 }
    9140             : 
    9141             :                 update_sg_wakeup_stats(sd, group, sgs, p);
    9142             : 
    9143             :                 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
    9144             :                         idlest = group;
    9145             :                         idlest_sgs = *sgs;
    9146             :                 }
    9147             : 
    9148             :         } while (group = group->next, group != sd->groups);
    9149             : 
    9150             : 
    9151             :         /* There is no idlest group to push tasks to */
    9152             :         if (!idlest)
    9153             :                 return NULL;
    9154             : 
    9155             :         /* The local group has been skipped because of CPU affinity */
    9156             :         if (!local)
    9157             :                 return idlest;
    9158             : 
    9159             :         /*
    9160             :          * If the local group is idler than the selected idlest group
    9161             :          * don't try and push the task.
    9162             :          */
    9163             :         if (local_sgs.group_type < idlest_sgs.group_type)
    9164             :                 return NULL;
    9165             : 
    9166             :         /*
    9167             :          * If the local group is busier than the selected idlest group
    9168             :          * try and push the task.
    9169             :          */
    9170             :         if (local_sgs.group_type > idlest_sgs.group_type)
    9171             :                 return idlest;
    9172             : 
    9173             :         switch (local_sgs.group_type) {
    9174             :         case group_overloaded:
    9175             :         case group_fully_busy:
    9176             : 
    9177             :                 /* Calculate allowed imbalance based on load */
    9178             :                 imbalance = scale_load_down(NICE_0_LOAD) *
    9179             :                                 (sd->imbalance_pct-100) / 100;
    9180             : 
    9181             :                 /*
    9182             :                  * When comparing groups across NUMA domains, it's possible for
    9183             :                  * the local domain to be very lightly loaded relative to the
    9184             :                  * remote domains but "imbalance" skews the comparison making
    9185             :                  * remote CPUs look much more favourable. When considering
    9186             :                  * cross-domain, add imbalance to the load on the remote node
    9187             :                  * and consider staying local.
    9188             :                  */
    9189             : 
    9190             :                 if ((sd->flags & SD_NUMA) &&
    9191             :                     ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
    9192             :                         return NULL;
    9193             : 
    9194             :                 /*
    9195             :                  * If the local group is less loaded than the selected
    9196             :                  * idlest group don't try and push any tasks.
    9197             :                  */
    9198             :                 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
    9199             :                         return NULL;
    9200             : 
    9201             :                 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
    9202             :                         return NULL;
    9203             :                 break;
    9204             : 
    9205             :         case group_imbalanced:
    9206             :         case group_asym_packing:
    9207             :                 /* Those type are not used in the slow wakeup path */
    9208             :                 return NULL;
    9209             : 
    9210             :         case group_misfit_task:
    9211             :                 /* Select group with the highest max capacity */
    9212             :                 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
    9213             :                         return NULL;
    9214             :                 break;
    9215             : 
    9216             :         case group_has_spare:
    9217             :                 if (sd->flags & SD_NUMA) {
    9218             : #ifdef CONFIG_NUMA_BALANCING
    9219             :                         int idlest_cpu;
    9220             :                         /*
    9221             :                          * If there is spare capacity at NUMA, try to select
    9222             :                          * the preferred node
    9223             :                          */
    9224             :                         if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
    9225             :                                 return NULL;
    9226             : 
    9227             :                         idlest_cpu = cpumask_first(sched_group_span(idlest));
    9228             :                         if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
    9229             :                                 return idlest;
    9230             : #endif
    9231             :                         /*
    9232             :                          * Otherwise, keep the task close to the wakeup source
    9233             :                          * and improve locality if the number of running tasks
    9234             :                          * would remain below threshold where an imbalance is
    9235             :                          * allowed. If there is a real need of migration,
    9236             :                          * periodic load balance will take care of it.
    9237             :                          */
    9238             :                         if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, sd->imb_numa_nr))
    9239             :                                 return NULL;
    9240             :                 }
    9241             : 
    9242             :                 /*
    9243             :                  * Select group with highest number of idle CPUs. We could also
    9244             :                  * compare the utilization which is more stable but it can end
    9245             :                  * up that the group has less spare capacity but finally more
    9246             :                  * idle CPUs which means more opportunity to run task.
    9247             :                  */
    9248             :                 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
    9249             :                         return NULL;
    9250             :                 break;
    9251             :         }
    9252             : 
    9253             :         return idlest;
    9254             : }
    9255             : 
    9256             : /**
    9257             :  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
    9258             :  * @env: The load balancing environment.
    9259             :  * @sds: variable to hold the statistics for this sched_domain.
    9260             :  */
    9261             : 
    9262             : static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
    9263             : {
    9264             :         struct sched_domain *child = env->sd->child;
    9265             :         struct sched_group *sg = env->sd->groups;
    9266             :         struct sg_lb_stats *local = &sds->local_stat;
    9267             :         struct sg_lb_stats tmp_sgs;
    9268             :         int sg_status = 0;
    9269             : 
    9270             :         do {
    9271             :                 struct sg_lb_stats *sgs = &tmp_sgs;
    9272             :                 int local_group;
    9273             : 
    9274             :                 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
    9275             :                 if (local_group) {
    9276             :                         sds->local = sg;
    9277             :                         sgs = local;
    9278             : 
    9279             :                         if (env->idle != CPU_NEWLY_IDLE ||
    9280             :                             time_after_eq(jiffies, sg->sgc->next_update))
    9281             :                                 update_group_capacity(env->sd, env->dst_cpu);
    9282             :                 }
    9283             : 
    9284             :                 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
    9285             : 
    9286             :                 if (local_group)
    9287             :                         goto next_group;
    9288             : 
    9289             : 
    9290             :                 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
    9291             :                         sds->busiest = sg;
    9292             :                         sds->busiest_stat = *sgs;
    9293             :                 }
    9294             : 
    9295             : next_group:
    9296             :                 /* Now, start updating sd_lb_stats */
    9297             :                 sds->total_load += sgs->group_load;
    9298             :                 sds->total_capacity += sgs->group_capacity;
    9299             : 
    9300             :                 sg = sg->next;
    9301             :         } while (sg != env->sd->groups);
    9302             : 
    9303             :         /* Tag domain that child domain prefers tasks go to siblings first */
    9304             :         sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
    9305             : 
    9306             : 
    9307             :         if (env->sd->flags & SD_NUMA)
    9308             :                 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
    9309             : 
    9310             :         if (!env->sd->parent) {
    9311             :                 struct root_domain *rd = env->dst_rq->rd;
    9312             : 
    9313             :                 /* update overload indicator if we are at root domain */
    9314             :                 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
    9315             : 
    9316             :                 /* Update over-utilization (tipping point, U >= 0) indicator */
    9317             :                 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
    9318             :                 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
    9319             :         } else if (sg_status & SG_OVERUTILIZED) {
    9320             :                 struct root_domain *rd = env->dst_rq->rd;
    9321             : 
    9322             :                 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
    9323             :                 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
    9324             :         }
    9325             : }
    9326             : 
    9327             : #define NUMA_IMBALANCE_MIN 2
    9328             : 
    9329             : static inline long adjust_numa_imbalance(int imbalance,
    9330             :                                 int dst_running, int imb_numa_nr)
    9331             : {
    9332             :         if (!allow_numa_imbalance(dst_running, imb_numa_nr))
    9333             :                 return imbalance;
    9334             : 
    9335             :         /*
    9336             :          * Allow a small imbalance based on a simple pair of communicating
    9337             :          * tasks that remain local when the destination is lightly loaded.
    9338             :          */
    9339             :         if (imbalance <= NUMA_IMBALANCE_MIN)
    9340             :                 return 0;
    9341             : 
    9342             :         return imbalance;
    9343             : }
    9344             : 
    9345             : /**
    9346             :  * calculate_imbalance - Calculate the amount of imbalance present within the
    9347             :  *                       groups of a given sched_domain during load balance.
    9348             :  * @env: load balance environment
    9349             :  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
    9350             :  */
    9351             : static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
    9352             : {
    9353             :         struct sg_lb_stats *local, *busiest;
    9354             : 
    9355             :         local = &sds->local_stat;
    9356             :         busiest = &sds->busiest_stat;
    9357             : 
    9358             :         if (busiest->group_type == group_misfit_task) {
    9359             :                 /* Set imbalance to allow misfit tasks to be balanced. */
    9360             :                 env->migration_type = migrate_misfit;
    9361             :                 env->imbalance = 1;
    9362             :                 return;
    9363             :         }
    9364             : 
    9365             :         if (busiest->group_type == group_asym_packing) {
    9366             :                 /*
    9367             :                  * In case of asym capacity, we will try to migrate all load to
    9368             :                  * the preferred CPU.
    9369             :                  */
    9370             :                 env->migration_type = migrate_task;
    9371             :                 env->imbalance = busiest->sum_h_nr_running;
    9372             :                 return;
    9373             :         }
    9374             : 
    9375             :         if (busiest->group_type == group_imbalanced) {
    9376             :                 /*
    9377             :                  * In the group_imb case we cannot rely on group-wide averages
    9378             :                  * to ensure CPU-load equilibrium, try to move any task to fix
    9379             :                  * the imbalance. The next load balance will take care of
    9380             :                  * balancing back the system.
    9381             :                  */
    9382             :                 env->migration_type = migrate_task;
    9383             :                 env->imbalance = 1;
    9384             :                 return;
    9385             :         }
    9386             : 
    9387             :         /*
    9388             :          * Try to use spare capacity of local group without overloading it or
    9389             :          * emptying busiest.
    9390             :          */
    9391             :         if (local->group_type == group_has_spare) {
    9392             :                 if ((busiest->group_type > group_fully_busy) &&
    9393             :                     !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
    9394             :                         /*
    9395             :                          * If busiest is overloaded, try to fill spare
    9396             :                          * capacity. This might end up creating spare capacity
    9397             :                          * in busiest or busiest still being overloaded but
    9398             :                          * there is no simple way to directly compute the
    9399             :                          * amount of load to migrate in order to balance the
    9400             :                          * system.
    9401             :                          */
    9402             :                         env->migration_type = migrate_util;
    9403             :                         env->imbalance = max(local->group_capacity, local->group_util) -
    9404             :                                          local->group_util;
    9405             : 
    9406             :                         /*
    9407             :                          * In some cases, the group's utilization is max or even
    9408             :                          * higher than capacity because of migrations but the
    9409             :                          * local CPU is (newly) idle. There is at least one
    9410             :                          * waiting task in this overloaded busiest group. Let's
    9411             :                          * try to pull it.
    9412             :                          */
    9413             :                         if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
    9414             :                                 env->migration_type = migrate_task;
    9415             :                                 env->imbalance = 1;
    9416             :                         }
    9417             : 
    9418             :                         return;
    9419             :                 }
    9420             : 
    9421             :                 if (busiest->group_weight == 1 || sds->prefer_sibling) {
    9422             :                         unsigned int nr_diff = busiest->sum_nr_running;
    9423             :                         /*
    9424             :                          * When prefer sibling, evenly spread running tasks on
    9425             :                          * groups.
    9426             :                          */
    9427             :                         env->migration_type = migrate_task;
    9428             :                         lsub_positive(&nr_diff, local->sum_nr_running);
    9429             :                         env->imbalance = nr_diff >> 1;
    9430             :                 } else {
    9431             : 
    9432             :                         /*
    9433             :                          * If there is no overload, we just want to even the number of
    9434             :                          * idle cpus.
    9435             :                          */
    9436             :                         env->migration_type = migrate_task;
    9437             :                         env->imbalance = max_t(long, 0, (local->idle_cpus -
    9438             :                                                  busiest->idle_cpus) >> 1);
    9439             :                 }
    9440             : 
    9441             :                 /* Consider allowing a small imbalance between NUMA groups */
    9442             :                 if (env->sd->flags & SD_NUMA) {
    9443             :                         env->imbalance = adjust_numa_imbalance(env->imbalance,
    9444             :                                 local->sum_nr_running + 1, env->sd->imb_numa_nr);
    9445             :                 }
    9446             : 
    9447             :                 return;
    9448             :         }
    9449             : 
    9450             :         /*
    9451             :          * Local is fully busy but has to take more load to relieve the
    9452             :          * busiest group
    9453             :          */
    9454             :         if (local->group_type < group_overloaded) {
    9455             :                 /*
    9456             :                  * Local will become overloaded so the avg_load metrics are
    9457             :                  * finally needed.
    9458             :                  */
    9459             : 
    9460             :                 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
    9461             :                                   local->group_capacity;
    9462             : 
    9463             :                 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
    9464             :                                 sds->total_capacity;
    9465             :                 /*
    9466             :                  * If the local group is more loaded than the selected
    9467             :                  * busiest group don't try to pull any tasks.
    9468             :                  */
    9469             :                 if (local->avg_load >= busiest->avg_load) {
    9470             :                         env->imbalance = 0;
    9471             :                         return;
    9472             :                 }
    9473             :         }
    9474             : 
    9475             :         /*
    9476             :          * Both group are or will become overloaded and we're trying to get all
    9477             :          * the CPUs to the average_load, so we don't want to push ourselves
    9478             :          * above the average load, nor do we wish to reduce the max loaded CPU
    9479             :          * below the average load. At the same time, we also don't want to
    9480             :          * reduce the group load below the group capacity. Thus we look for
    9481             :          * the minimum possible imbalance.
    9482             :          */
    9483             :         env->migration_type = migrate_load;
    9484             :         env->imbalance = min(
    9485             :                 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
    9486             :                 (sds->avg_load - local->avg_load) * local->group_capacity
    9487             :         ) / SCHED_CAPACITY_SCALE;
    9488             : }
    9489             : 
    9490             : /******* find_busiest_group() helpers end here *********************/
    9491             : 
    9492             : /*
    9493             :  * Decision matrix according to the local and busiest group type:
    9494             :  *
    9495             :  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
    9496             :  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
    9497             :  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
    9498             :  * misfit_task      force     N/A        N/A    N/A  force      force
    9499             :  * asym_packing     force     force      N/A    N/A  force      force
    9500             :  * imbalanced       force     force      N/A    N/A  force      force
    9501             :  * overloaded       force     force      N/A    N/A  force      avg_load
    9502             :  *
    9503             :  * N/A :      Not Applicable because already filtered while updating
    9504             :  *            statistics.
    9505             :  * balanced : The system is balanced for these 2 groups.
    9506             :  * force :    Calculate the imbalance as load migration is probably needed.
    9507             :  * avg_load : Only if imbalance is significant enough.
    9508             :  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
    9509             :  *            different in groups.
    9510             :  */
    9511             : 
    9512             : /**
    9513             :  * find_busiest_group - Returns the busiest group within the sched_domain
    9514             :  * if there is an imbalance.
    9515             :  * @env: The load balancing environment.
    9516             :  *
    9517             :  * Also calculates the amount of runnable load which should be moved
    9518             :  * to restore balance.
    9519             :  *
    9520             :  * Return:      - The busiest group if imbalance exists.
    9521             :  */
    9522             : static struct sched_group *find_busiest_group(struct lb_env *env)
    9523             : {
    9524             :         struct sg_lb_stats *local, *busiest;
    9525             :         struct sd_lb_stats sds;
    9526             : 
    9527             :         init_sd_lb_stats(&sds);
    9528             : 
    9529             :         /*
    9530             :          * Compute the various statistics relevant for load balancing at
    9531             :          * this level.
    9532             :          */
    9533             :         update_sd_lb_stats(env, &sds);
    9534             : 
    9535             :         if (sched_energy_enabled()) {
    9536             :                 struct root_domain *rd = env->dst_rq->rd;
    9537             : 
    9538             :                 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
    9539             :                         goto out_balanced;
    9540             :         }
    9541             : 
    9542             :         local = &sds.local_stat;
    9543             :         busiest = &sds.busiest_stat;
    9544             : 
    9545             :         /* There is no busy sibling group to pull tasks from */
    9546             :         if (!sds.busiest)
    9547             :                 goto out_balanced;
    9548             : 
    9549             :         /* Misfit tasks should be dealt with regardless of the avg load */
    9550             :         if (busiest->group_type == group_misfit_task)
    9551             :                 goto force_balance;
    9552             : 
    9553             :         /* ASYM feature bypasses nice load balance check */
    9554             :         if (busiest->group_type == group_asym_packing)
    9555             :                 goto force_balance;
    9556             : 
    9557             :         /*
    9558             :          * If the busiest group is imbalanced the below checks don't
    9559             :          * work because they assume all things are equal, which typically
    9560             :          * isn't true due to cpus_ptr constraints and the like.
    9561             :          */
    9562             :         if (busiest->group_type == group_imbalanced)
    9563             :                 goto force_balance;
    9564             : 
    9565             :         /*
    9566             :          * If the local group is busier than the selected busiest group
    9567             :          * don't try and pull any tasks.
    9568             :          */
    9569             :         if (local->group_type > busiest->group_type)
    9570             :                 goto out_balanced;
    9571             : 
    9572             :         /*
    9573             :          * When groups are overloaded, use the avg_load to ensure fairness
    9574             :          * between tasks.
    9575             :          */
    9576             :         if (local->group_type == group_overloaded) {
    9577             :                 /*
    9578             :                  * If the local group is more loaded than the selected
    9579             :                  * busiest group don't try to pull any tasks.
    9580             :                  */
    9581             :                 if (local->avg_load >= busiest->avg_load)
    9582             :                         goto out_balanced;
    9583             : 
    9584             :                 /* XXX broken for overlapping NUMA groups */
    9585             :                 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
    9586             :                                 sds.total_capacity;
    9587             : 
    9588             :                 /*
    9589             :                  * Don't pull any tasks if this group is already above the
    9590             :                  * domain average load.
    9591             :                  */
    9592             :                 if (local->avg_load >= sds.avg_load)
    9593             :                         goto out_balanced;
    9594             : 
    9595             :                 /*
    9596             :                  * If the busiest group is more loaded, use imbalance_pct to be
    9597             :                  * conservative.
    9598             :                  */
    9599             :                 if (100 * busiest->avg_load <=
    9600             :                                 env->sd->imbalance_pct * local->avg_load)
    9601             :                         goto out_balanced;
    9602             :         }
    9603             : 
    9604             :         /* Try to move all excess tasks to child's sibling domain */
    9605             :         if (sds.prefer_sibling && local->group_type == group_has_spare &&
    9606             :             busiest->sum_nr_running > local->sum_nr_running + 1)
    9607             :                 goto force_balance;
    9608             : 
    9609             :         if (busiest->group_type != group_overloaded) {
    9610             :                 if (env->idle == CPU_NOT_IDLE)
    9611             :                         /*
    9612             :                          * If the busiest group is not overloaded (and as a
    9613             :                          * result the local one too) but this CPU is already
    9614             :                          * busy, let another idle CPU try to pull task.
    9615             :                          */
    9616             :                         goto out_balanced;
    9617             : 
    9618             :                 if (busiest->group_weight > 1 &&
    9619             :                     local->idle_cpus <= (busiest->idle_cpus + 1))
    9620             :                         /*
    9621             :                          * If the busiest group is not overloaded
    9622             :                          * and there is no imbalance between this and busiest
    9623             :                          * group wrt idle CPUs, it is balanced. The imbalance
    9624             :                          * becomes significant if the diff is greater than 1
    9625             :                          * otherwise we might end up to just move the imbalance
    9626             :                          * on another group. Of course this applies only if
    9627             :                          * there is more than 1 CPU per group.
    9628             :                          */
    9629             :                         goto out_balanced;
    9630             : 
    9631             :                 if (busiest->sum_h_nr_running == 1)
    9632             :                         /*
    9633             :                          * busiest doesn't have any tasks waiting to run
    9634             :                          */
    9635             :                         goto out_balanced;
    9636             :         }
    9637             : 
    9638             : force_balance:
    9639             :         /* Looks like there is an imbalance. Compute it */
    9640             :         calculate_imbalance(env, &sds);
    9641             :         return env->imbalance ? sds.busiest : NULL;
    9642             : 
    9643             : out_balanced:
    9644             :         env->imbalance = 0;
    9645             :         return NULL;
    9646             : }
    9647             : 
    9648             : /*
    9649             :  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
    9650             :  */
    9651             : static struct rq *find_busiest_queue(struct lb_env *env,
    9652             :                                      struct sched_group *group)
    9653             : {
    9654             :         struct rq *busiest = NULL, *rq;
    9655             :         unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
    9656             :         unsigned int busiest_nr = 0;
    9657             :         int i;
    9658             : 
    9659             :         for_each_cpu_and(i, sched_group_span(group), env->cpus) {
    9660             :                 unsigned long capacity, load, util;
    9661             :                 unsigned int nr_running;
    9662             :                 enum fbq_type rt;
    9663             : 
    9664             :                 rq = cpu_rq(i);
    9665             :                 rt = fbq_classify_rq(rq);
    9666             : 
    9667             :                 /*
    9668             :                  * We classify groups/runqueues into three groups:
    9669             :                  *  - regular: there are !numa tasks
    9670             :                  *  - remote:  there are numa tasks that run on the 'wrong' node
    9671             :                  *  - all:     there is no distinction
    9672             :                  *
    9673             :                  * In order to avoid migrating ideally placed numa tasks,
    9674             :                  * ignore those when there's better options.
    9675             :                  *
    9676             :                  * If we ignore the actual busiest queue to migrate another
    9677             :                  * task, the next balance pass can still reduce the busiest
    9678             :                  * queue by moving tasks around inside the node.
    9679             :                  *
    9680             :                  * If we cannot move enough load due to this classification
    9681             :                  * the next pass will adjust the group classification and
    9682             :                  * allow migration of more tasks.
    9683             :                  *
    9684             :                  * Both cases only affect the total convergence complexity.
    9685             :                  */
    9686             :                 if (rt > env->fbq_type)
    9687             :                         continue;
    9688             : 
    9689             :                 nr_running = rq->cfs.h_nr_running;
    9690             :                 if (!nr_running)
    9691             :                         continue;
    9692             : 
    9693             :                 capacity = capacity_of(i);
    9694             : 
    9695             :                 /*
    9696             :                  * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
    9697             :                  * eventually lead to active_balancing high->low capacity.
    9698             :                  * Higher per-CPU capacity is considered better than balancing
    9699             :                  * average load.
    9700             :                  */
    9701             :                 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
    9702             :                     !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
    9703             :                     nr_running == 1)
    9704             :                         continue;
    9705             : 
    9706             :                 /* Make sure we only pull tasks from a CPU of lower priority */
    9707             :                 if ((env->sd->flags & SD_ASYM_PACKING) &&
    9708             :                     sched_asym_prefer(i, env->dst_cpu) &&
    9709             :                     nr_running == 1)
    9710             :                         continue;
    9711             : 
    9712             :                 switch (env->migration_type) {
    9713             :                 case migrate_load:
    9714             :                         /*
    9715             :                          * When comparing with load imbalance, use cpu_load()
    9716             :                          * which is not scaled with the CPU capacity.
    9717             :                          */
    9718             :                         load = cpu_load(rq);
    9719             : 
    9720             :                         if (nr_running == 1 && load > env->imbalance &&
    9721             :                             !check_cpu_capacity(rq, env->sd))
    9722             :                                 break;
    9723             : 
    9724             :                         /*
    9725             :                          * For the load comparisons with the other CPUs,
    9726             :                          * consider the cpu_load() scaled with the CPU
    9727             :                          * capacity, so that the load can be moved away
    9728             :                          * from the CPU that is potentially running at a
    9729             :                          * lower capacity.
    9730             :                          *
    9731             :                          * Thus we're looking for max(load_i / capacity_i),
    9732             :                          * crosswise multiplication to rid ourselves of the
    9733             :                          * division works out to:
    9734             :                          * load_i * capacity_j > load_j * capacity_i;
    9735             :                          * where j is our previous maximum.
    9736             :                          */
    9737             :                         if (load * busiest_capacity > busiest_load * capacity) {
    9738             :                                 busiest_load = load;
    9739             :                                 busiest_capacity = capacity;
    9740             :                                 busiest = rq;
    9741             :                         }
    9742             :                         break;
    9743             : 
    9744             :                 case migrate_util:
    9745             :                         util = cpu_util_cfs(i);
    9746             : 
    9747             :                         /*
    9748             :                          * Don't try to pull utilization from a CPU with one
    9749             :                          * running task. Whatever its utilization, we will fail
    9750             :                          * detach the task.
    9751             :                          */
    9752             :                         if (nr_running <= 1)
    9753             :                                 continue;
    9754             : 
    9755             :                         if (busiest_util < util) {
    9756             :                                 busiest_util = util;
    9757             :                                 busiest = rq;
    9758             :                         }
    9759             :                         break;
    9760             : 
    9761             :                 case migrate_task:
    9762             :                         if (busiest_nr < nr_running) {
    9763             :                                 busiest_nr = nr_running;
    9764             :                                 busiest = rq;
    9765             :                         }
    9766             :                         break;
    9767             : 
    9768             :                 case migrate_misfit:
    9769             :                         /*
    9770             :                          * For ASYM_CPUCAPACITY domains with misfit tasks we
    9771             :                          * simply seek the "biggest" misfit task.
    9772             :                          */
    9773             :                         if (rq->misfit_task_load > busiest_load) {
    9774             :                                 busiest_load = rq->misfit_task_load;
    9775             :                                 busiest = rq;
    9776             :                         }
    9777             : 
    9778             :                         break;
    9779             : 
    9780             :                 }
    9781             :         }
    9782             : 
    9783             :         return busiest;
    9784             : }
    9785             : 
    9786             : /*
    9787             :  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
    9788             :  * so long as it is large enough.
    9789             :  */
    9790             : #define MAX_PINNED_INTERVAL     512
    9791             : 
    9792             : static inline bool
    9793             : asym_active_balance(struct lb_env *env)
    9794             : {
    9795             :         /*
    9796             :          * ASYM_PACKING needs to force migrate tasks from busy but
    9797             :          * lower priority CPUs in order to pack all tasks in the
    9798             :          * highest priority CPUs.
    9799             :          */
    9800             :         return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
    9801             :                sched_asym_prefer(env->dst_cpu, env->src_cpu);
    9802             : }
    9803             : 
    9804             : static inline bool
    9805             : imbalanced_active_balance(struct lb_env *env)
    9806             : {
    9807             :         struct sched_domain *sd = env->sd;
    9808             : 
    9809             :         /*
    9810             :          * The imbalanced case includes the case of pinned tasks preventing a fair
    9811             :          * distribution of the load on the system but also the even distribution of the
    9812             :          * threads on a system with spare capacity
    9813             :          */
    9814             :         if ((env->migration_type == migrate_task) &&
    9815             :             (sd->nr_balance_failed > sd->cache_nice_tries+2))
    9816             :                 return 1;
    9817             : 
    9818             :         return 0;
    9819             : }
    9820             : 
    9821             : static int need_active_balance(struct lb_env *env)
    9822             : {
    9823             :         struct sched_domain *sd = env->sd;
    9824             : 
    9825             :         if (asym_active_balance(env))
    9826             :                 return 1;
    9827             : 
    9828             :         if (imbalanced_active_balance(env))
    9829             :                 return 1;
    9830             : 
    9831             :         /*
    9832             :          * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
    9833             :          * It's worth migrating the task if the src_cpu's capacity is reduced
    9834             :          * because of other sched_class or IRQs if more capacity stays
    9835             :          * available on dst_cpu.
    9836             :          */
    9837             :         if ((env->idle != CPU_NOT_IDLE) &&
    9838             :             (env->src_rq->cfs.h_nr_running == 1)) {
    9839             :                 if ((check_cpu_capacity(env->src_rq, sd)) &&
    9840             :                     (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
    9841             :                         return 1;
    9842             :         }
    9843             : 
    9844             :         if (env->migration_type == migrate_misfit)
    9845             :                 return 1;
    9846             : 
    9847             :         return 0;
    9848             : }
    9849             : 
    9850             : static int active_load_balance_cpu_stop(void *data);
    9851             : 
    9852             : static int should_we_balance(struct lb_env *env)
    9853             : {
    9854             :         struct sched_group *sg = env->sd->groups;
    9855             :         int cpu;
    9856             : 
    9857             :         /*
    9858             :          * Ensure the balancing environment is consistent; can happen
    9859             :          * when the softirq triggers 'during' hotplug.
    9860             :          */
    9861             :         if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
    9862             :                 return 0;
    9863             : 
    9864             :         /*
    9865             :          * In the newly idle case, we will allow all the CPUs
    9866             :          * to do the newly idle load balance.
    9867             :          */
    9868             :         if (env->idle == CPU_NEWLY_IDLE)
    9869             :                 return 1;
    9870             : 
    9871             :         /* Try to find first idle CPU */
    9872             :         for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
    9873             :                 if (!idle_cpu(cpu))
    9874             :                         continue;
    9875             : 
    9876             :                 /* Are we the first idle CPU? */
    9877             :                 return cpu == env->dst_cpu;
    9878             :         }
    9879             : 
    9880             :         /* Are we the first CPU of this group ? */
    9881             :         return group_balance_cpu(sg) == env->dst_cpu;
    9882             : }
    9883             : 
    9884             : /*
    9885             :  * Check this_cpu to ensure it is balanced within domain. Attempt to move
    9886             :  * tasks if there is an imbalance.
    9887             :  */
    9888             : static int load_balance(int this_cpu, struct rq *this_rq,
    9889             :                         struct sched_domain *sd, enum cpu_idle_type idle,
    9890             :                         int *continue_balancing)
    9891             : {
    9892             :         int ld_moved, cur_ld_moved, active_balance = 0;
    9893             :         struct sched_domain *sd_parent = sd->parent;
    9894             :         struct sched_group *group;
    9895             :         struct rq *busiest;
    9896             :         struct rq_flags rf;
    9897             :         struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
    9898             : 
    9899             :         struct lb_env env = {
    9900             :                 .sd             = sd,
    9901             :                 .dst_cpu        = this_cpu,
    9902             :                 .dst_rq         = this_rq,
    9903             :                 .dst_grpmask    = sched_group_span(sd->groups),
    9904             :                 .idle           = idle,
    9905             :                 .loop_break     = sched_nr_migrate_break,
    9906             :                 .cpus           = cpus,
    9907             :                 .fbq_type       = all,
    9908             :                 .tasks          = LIST_HEAD_INIT(env.tasks),
    9909             :         };
    9910             : 
    9911             :         cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
    9912             : 
    9913             :         schedstat_inc(sd->lb_count[idle]);
    9914             : 
    9915             : redo:
    9916             :         if (!should_we_balance(&env)) {
    9917             :                 *continue_balancing = 0;
    9918             :                 goto out_balanced;
    9919             :         }
    9920             : 
    9921             :         group = find_busiest_group(&env);
    9922             :         if (!group) {
    9923             :                 schedstat_inc(sd->lb_nobusyg[idle]);
    9924             :                 goto out_balanced;
    9925             :         }
    9926             : 
    9927             :         busiest = find_busiest_queue(&env, group);
    9928             :         if (!busiest) {
    9929             :                 schedstat_inc(sd->lb_nobusyq[idle]);
    9930             :                 goto out_balanced;
    9931             :         }
    9932             : 
    9933             :         BUG_ON(busiest == env.dst_rq);
    9934             : 
    9935             :         schedstat_add(sd->lb_imbalance[idle], env.imbalance);
    9936             : 
    9937             :         env.src_cpu = busiest->cpu;
    9938             :         env.src_rq = busiest;
    9939             : 
    9940             :         ld_moved = 0;
    9941             :         /* Clear this flag as soon as we find a pullable task */
    9942             :         env.flags |= LBF_ALL_PINNED;
    9943             :         if (busiest->nr_running > 1) {
    9944             :                 /*
    9945             :                  * Attempt to move tasks. If find_busiest_group has found
    9946             :                  * an imbalance but busiest->nr_running <= 1, the group is
    9947             :                  * still unbalanced. ld_moved simply stays zero, so it is
    9948             :                  * correctly treated as an imbalance.
    9949             :                  */
    9950             :                 env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
    9951             : 
    9952             : more_balance:
    9953             :                 rq_lock_irqsave(busiest, &rf);
    9954             :                 update_rq_clock(busiest);
    9955             : 
    9956             :                 /*
    9957             :                  * cur_ld_moved - load moved in current iteration
    9958             :                  * ld_moved     - cumulative load moved across iterations
    9959             :                  */
    9960             :                 cur_ld_moved = detach_tasks(&env);
    9961             : 
    9962             :                 /*
    9963             :                  * We've detached some tasks from busiest_rq. Every
    9964             :                  * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
    9965             :                  * unlock busiest->lock, and we are able to be sure
    9966             :                  * that nobody can manipulate the tasks in parallel.
    9967             :                  * See task_rq_lock() family for the details.
    9968             :                  */
    9969             : 
    9970             :                 rq_unlock(busiest, &rf);
    9971             : 
    9972             :                 if (cur_ld_moved) {
    9973             :                         attach_tasks(&env);
    9974             :                         ld_moved += cur_ld_moved;
    9975             :                 }
    9976             : 
    9977             :                 local_irq_restore(rf.flags);
    9978             : 
    9979             :                 if (env.flags & LBF_NEED_BREAK) {
    9980             :                         env.flags &= ~LBF_NEED_BREAK;
    9981             :                         goto more_balance;
    9982             :                 }
    9983             : 
    9984             :                 /*
    9985             :                  * Revisit (affine) tasks on src_cpu that couldn't be moved to
    9986             :                  * us and move them to an alternate dst_cpu in our sched_group
    9987             :                  * where they can run. The upper limit on how many times we
    9988             :                  * iterate on same src_cpu is dependent on number of CPUs in our
    9989             :                  * sched_group.
    9990             :                  *
    9991             :                  * This changes load balance semantics a bit on who can move
    9992             :                  * load to a given_cpu. In addition to the given_cpu itself
    9993             :                  * (or a ilb_cpu acting on its behalf where given_cpu is
    9994             :                  * nohz-idle), we now have balance_cpu in a position to move
    9995             :                  * load to given_cpu. In rare situations, this may cause
    9996             :                  * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
    9997             :                  * _independently_ and at _same_ time to move some load to
    9998             :                  * given_cpu) causing excess load to be moved to given_cpu.
    9999             :                  * This however should not happen so much in practice and
   10000             :                  * moreover subsequent load balance cycles should correct the
   10001             :                  * excess load moved.
   10002             :                  */
   10003             :                 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
   10004             : 
   10005             :                         /* Prevent to re-select dst_cpu via env's CPUs */
   10006             :                         __cpumask_clear_cpu(env.dst_cpu, env.cpus);
   10007             : 
   10008             :                         env.dst_rq       = cpu_rq(env.new_dst_cpu);
   10009             :                         env.dst_cpu      = env.new_dst_cpu;
   10010             :                         env.flags       &= ~LBF_DST_PINNED;
   10011             :                         env.loop         = 0;
   10012             :                         env.loop_break   = sched_nr_migrate_break;
   10013             : 
   10014             :                         /*
   10015             :                          * Go back to "more_balance" rather than "redo" since we
   10016             :                          * need to continue with same src_cpu.
   10017             :                          */
   10018             :                         goto more_balance;
   10019             :                 }
   10020             : 
   10021             :                 /*
   10022             :                  * We failed to reach balance because of affinity.
   10023             :                  */
   10024             :                 if (sd_parent) {
   10025             :                         int *group_imbalance = &sd_parent->groups->sgc->imbalance;
   10026             : 
   10027             :                         if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
   10028             :                                 *group_imbalance = 1;
   10029             :                 }
   10030             : 
   10031             :                 /* All tasks on this runqueue were pinned by CPU affinity */
   10032             :                 if (unlikely(env.flags & LBF_ALL_PINNED)) {
   10033             :                         __cpumask_clear_cpu(cpu_of(busiest), cpus);
   10034             :                         /*
   10035             :                          * Attempting to continue load balancing at the current
   10036             :                          * sched_domain level only makes sense if there are
   10037             :                          * active CPUs remaining as possible busiest CPUs to
   10038             :                          * pull load from which are not contained within the
   10039             :                          * destination group that is receiving any migrated
   10040             :                          * load.
   10041             :                          */
   10042             :                         if (!cpumask_subset(cpus, env.dst_grpmask)) {
   10043             :                                 env.loop = 0;
   10044             :                                 env.loop_break = sched_nr_migrate_break;
   10045             :                                 goto redo;
   10046             :                         }
   10047             :                         goto out_all_pinned;
   10048             :                 }
   10049             :         }
   10050             : 
   10051             :         if (!ld_moved) {
   10052             :                 schedstat_inc(sd->lb_failed[idle]);
   10053             :                 /*
   10054             :                  * Increment the failure counter only on periodic balance.
   10055             :                  * We do not want newidle balance, which can be very
   10056             :                  * frequent, pollute the failure counter causing
   10057             :                  * excessive cache_hot migrations and active balances.
   10058             :                  */
   10059             :                 if (idle != CPU_NEWLY_IDLE)
   10060             :                         sd->nr_balance_failed++;
   10061             : 
   10062             :                 if (need_active_balance(&env)) {
   10063             :                         unsigned long flags;
   10064             : 
   10065             :                         raw_spin_rq_lock_irqsave(busiest, flags);
   10066             : 
   10067             :                         /*
   10068             :                          * Don't kick the active_load_balance_cpu_stop,
   10069             :                          * if the curr task on busiest CPU can't be
   10070             :                          * moved to this_cpu:
   10071             :                          */
   10072             :                         if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
   10073             :                                 raw_spin_rq_unlock_irqrestore(busiest, flags);
   10074             :                                 goto out_one_pinned;
   10075             :                         }
   10076             : 
   10077             :                         /* Record that we found at least one task that could run on this_cpu */
   10078             :                         env.flags &= ~LBF_ALL_PINNED;
   10079             : 
   10080             :                         /*
   10081             :                          * ->active_balance synchronizes accesses to
   10082             :                          * ->active_balance_work.  Once set, it's cleared
   10083             :                          * only after active load balance is finished.
   10084             :                          */
   10085             :                         if (!busiest->active_balance) {
   10086             :                                 busiest->active_balance = 1;
   10087             :                                 busiest->push_cpu = this_cpu;
   10088             :                                 active_balance = 1;
   10089             :                         }
   10090             :                         raw_spin_rq_unlock_irqrestore(busiest, flags);
   10091             : 
   10092             :                         if (active_balance) {
   10093             :                                 stop_one_cpu_nowait(cpu_of(busiest),
   10094             :                                         active_load_balance_cpu_stop, busiest,
   10095             :                                         &busiest->active_balance_work);
   10096             :                         }
   10097             :                 }
   10098             :         } else {
   10099             :                 sd->nr_balance_failed = 0;
   10100             :         }
   10101             : 
   10102             :         if (likely(!active_balance) || need_active_balance(&env)) {
   10103             :                 /* We were unbalanced, so reset the balancing interval */
   10104             :                 sd->balance_interval = sd->min_interval;
   10105             :         }
   10106             : 
   10107             :         goto out;
   10108             : 
   10109             : out_balanced:
   10110             :         /*
   10111             :          * We reach balance although we may have faced some affinity
   10112             :          * constraints. Clear the imbalance flag only if other tasks got
   10113             :          * a chance to move and fix the imbalance.
   10114             :          */
   10115             :         if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
   10116             :                 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
   10117             : 
   10118             :                 if (*group_imbalance)
   10119             :                         *group_imbalance = 0;
   10120             :         }
   10121             : 
   10122             : out_all_pinned:
   10123             :         /*
   10124             :          * We reach balance because all tasks are pinned at this level so
   10125             :          * we can't migrate them. Let the imbalance flag set so parent level
   10126             :          * can try to migrate them.
   10127             :          */
   10128             :         schedstat_inc(sd->lb_balanced[idle]);
   10129             : 
   10130             :         sd->nr_balance_failed = 0;
   10131             : 
   10132             : out_one_pinned:
   10133             :         ld_moved = 0;
   10134             : 
   10135             :         /*
   10136             :          * newidle_balance() disregards balance intervals, so we could
   10137             :          * repeatedly reach this code, which would lead to balance_interval
   10138             :          * skyrocketing in a short amount of time. Skip the balance_interval
   10139             :          * increase logic to avoid that.
   10140             :          */
   10141             :         if (env.idle == CPU_NEWLY_IDLE)
   10142             :                 goto out;
   10143             : 
   10144             :         /* tune up the balancing interval */
   10145             :         if ((env.flags & LBF_ALL_PINNED &&
   10146             :              sd->balance_interval < MAX_PINNED_INTERVAL) ||
   10147             :             sd->balance_interval < sd->max_interval)
   10148             :                 sd->balance_interval *= 2;
   10149             : out:
   10150             :         return ld_moved;
   10151             : }
   10152             : 
   10153             : static inline unsigned long
   10154             : get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
   10155             : {
   10156             :         unsigned long interval = sd->balance_interval;
   10157             : 
   10158             :         if (cpu_busy)
   10159             :                 interval *= sd->busy_factor;
   10160             : 
   10161             :         /* scale ms to jiffies */
   10162             :         interval = msecs_to_jiffies(interval);
   10163             : 
   10164             :         /*
   10165             :          * Reduce likelihood of busy balancing at higher domains racing with
   10166             :          * balancing at lower domains by preventing their balancing periods
   10167             :          * from being multiples of each other.
   10168             :          */
   10169             :         if (cpu_busy)
   10170             :                 interval -= 1;
   10171             : 
   10172             :         interval = clamp(interval, 1UL, max_load_balance_interval);
   10173             : 
   10174             :         return interval;
   10175             : }
   10176             : 
   10177             : static inline void
   10178             : update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
   10179             : {
   10180             :         unsigned long interval, next;
   10181             : 
   10182             :         /* used by idle balance, so cpu_busy = 0 */
   10183             :         interval = get_sd_balance_interval(sd, 0);
   10184             :         next = sd->last_balance + interval;
   10185             : 
   10186             :         if (time_after(*next_balance, next))
   10187             :                 *next_balance = next;
   10188             : }
   10189             : 
   10190             : /*
   10191             :  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
   10192             :  * running tasks off the busiest CPU onto idle CPUs. It requires at
   10193             :  * least 1 task to be running on each physical CPU where possible, and
   10194             :  * avoids physical / logical imbalances.
   10195             :  */
   10196             : static int active_load_balance_cpu_stop(void *data)
   10197             : {
   10198             :         struct rq *busiest_rq = data;
   10199             :         int busiest_cpu = cpu_of(busiest_rq);
   10200             :         int target_cpu = busiest_rq->push_cpu;
   10201             :         struct rq *target_rq = cpu_rq(target_cpu);
   10202             :         struct sched_domain *sd;
   10203             :         struct task_struct *p = NULL;
   10204             :         struct rq_flags rf;
   10205             : 
   10206             :         rq_lock_irq(busiest_rq, &rf);
   10207             :         /*
   10208             :          * Between queueing the stop-work and running it is a hole in which
   10209             :          * CPUs can become inactive. We should not move tasks from or to
   10210             :          * inactive CPUs.
   10211             :          */
   10212             :         if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
   10213             :                 goto out_unlock;
   10214             : 
   10215             :         /* Make sure the requested CPU hasn't gone down in the meantime: */
   10216             :         if (unlikely(busiest_cpu != smp_processor_id() ||
   10217             :                      !busiest_rq->active_balance))
   10218             :                 goto out_unlock;
   10219             : 
   10220             :         /* Is there any task to move? */
   10221             :         if (busiest_rq->nr_running <= 1)
   10222             :                 goto out_unlock;
   10223             : 
   10224             :         /*
   10225             :          * This condition is "impossible", if it occurs
   10226             :          * we need to fix it. Originally reported by
   10227             :          * Bjorn Helgaas on a 128-CPU setup.
   10228             :          */
   10229             :         BUG_ON(busiest_rq == target_rq);
   10230             : 
   10231             :         /* Search for an sd spanning us and the target CPU. */
   10232             :         rcu_read_lock();
   10233             :         for_each_domain(target_cpu, sd) {
   10234             :                 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
   10235             :                         break;
   10236             :         }
   10237             : 
   10238             :         if (likely(sd)) {
   10239             :                 struct lb_env env = {
   10240             :                         .sd             = sd,
   10241             :                         .dst_cpu        = target_cpu,
   10242             :                         .dst_rq         = target_rq,
   10243             :                         .src_cpu        = busiest_rq->cpu,
   10244             :                         .src_rq         = busiest_rq,
   10245             :                         .idle           = CPU_IDLE,
   10246             :                         .flags          = LBF_ACTIVE_LB,
   10247             :                 };
   10248             : 
   10249             :                 schedstat_inc(sd->alb_count);
   10250             :                 update_rq_clock(busiest_rq);
   10251             : 
   10252             :                 p = detach_one_task(&env);
   10253             :                 if (p) {
   10254             :                         schedstat_inc(sd->alb_pushed);
   10255             :                         /* Active balancing done, reset the failure counter. */
   10256             :                         sd->nr_balance_failed = 0;
   10257             :                 } else {
   10258             :                         schedstat_inc(sd->alb_failed);
   10259             :                 }
   10260             :         }
   10261             :         rcu_read_unlock();
   10262             : out_unlock:
   10263             :         busiest_rq->active_balance = 0;
   10264             :         rq_unlock(busiest_rq, &rf);
   10265             : 
   10266             :         if (p)
   10267             :                 attach_one_task(target_rq, p);
   10268             : 
   10269             :         local_irq_enable();
   10270             : 
   10271             :         return 0;
   10272             : }
   10273             : 
   10274             : static DEFINE_SPINLOCK(balancing);
   10275             : 
   10276             : /*
   10277             :  * Scale the max load_balance interval with the number of CPUs in the system.
   10278             :  * This trades load-balance latency on larger machines for less cross talk.
   10279             :  */
   10280             : void update_max_interval(void)
   10281             : {
   10282             :         max_load_balance_interval = HZ*num_online_cpus()/10;
   10283             : }
   10284             : 
   10285             : static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
   10286             : {
   10287             :         if (cost > sd->max_newidle_lb_cost) {
   10288             :                 /*
   10289             :                  * Track max cost of a domain to make sure to not delay the
   10290             :                  * next wakeup on the CPU.
   10291             :                  */
   10292             :                 sd->max_newidle_lb_cost = cost;
   10293             :                 sd->last_decay_max_lb_cost = jiffies;
   10294             :         } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
   10295             :                 /*
   10296             :                  * Decay the newidle max times by ~1% per second to ensure that
   10297             :                  * it is not outdated and the current max cost is actually
   10298             :                  * shorter.
   10299             :                  */
   10300             :                 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
   10301             :                 sd->last_decay_max_lb_cost = jiffies;
   10302             : 
   10303             :                 return true;
   10304             :         }
   10305             : 
   10306             :         return false;
   10307             : }
   10308             : 
   10309             : /*
   10310             :  * It checks each scheduling domain to see if it is due to be balanced,
   10311             :  * and initiates a balancing operation if so.
   10312             :  *
   10313             :  * Balancing parameters are set up in init_sched_domains.
   10314             :  */
   10315             : static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
   10316             : {
   10317             :         int continue_balancing = 1;
   10318             :         int cpu = rq->cpu;
   10319             :         int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
   10320             :         unsigned long interval;
   10321             :         struct sched_domain *sd;
   10322             :         /* Earliest time when we have to do rebalance again */
   10323             :         unsigned long next_balance = jiffies + 60*HZ;
   10324             :         int update_next_balance = 0;
   10325             :         int need_serialize, need_decay = 0;
   10326             :         u64 max_cost = 0;
   10327             : 
   10328             :         rcu_read_lock();
   10329             :         for_each_domain(cpu, sd) {
   10330             :                 /*
   10331             :                  * Decay the newidle max times here because this is a regular
   10332             :                  * visit to all the domains.
   10333             :                  */
   10334             :                 need_decay = update_newidle_cost(sd, 0);
   10335             :                 max_cost += sd->max_newidle_lb_cost;
   10336             : 
   10337             :                 /*
   10338             :                  * Stop the load balance at this level. There is another
   10339             :                  * CPU in our sched group which is doing load balancing more
   10340             :                  * actively.
   10341             :                  */
   10342             :                 if (!continue_balancing) {
   10343             :                         if (need_decay)
   10344             :                                 continue;
   10345             :                         break;
   10346             :                 }
   10347             : 
   10348             :                 interval = get_sd_balance_interval(sd, busy);
   10349             : 
   10350             :                 need_serialize = sd->flags & SD_SERIALIZE;
   10351             :                 if (need_serialize) {
   10352             :                         if (!spin_trylock(&balancing))
   10353             :                                 goto out;
   10354             :                 }
   10355             : 
   10356             :                 if (time_after_eq(jiffies, sd->last_balance + interval)) {
   10357             :                         if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
   10358             :                                 /*
   10359             :                                  * The LBF_DST_PINNED logic could have changed
   10360             :                                  * env->dst_cpu, so we can't know our idle
   10361             :                                  * state even if we migrated tasks. Update it.
   10362             :                                  */
   10363             :                                 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
   10364             :                                 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
   10365             :                         }
   10366             :                         sd->last_balance = jiffies;
   10367             :                         interval = get_sd_balance_interval(sd, busy);
   10368             :                 }
   10369             :                 if (need_serialize)
   10370             :                         spin_unlock(&balancing);
   10371             : out:
   10372             :                 if (time_after(next_balance, sd->last_balance + interval)) {
   10373             :                         next_balance = sd->last_balance + interval;
   10374             :                         update_next_balance = 1;
   10375             :                 }
   10376             :         }
   10377             :         if (need_decay) {
   10378             :                 /*
   10379             :                  * Ensure the rq-wide value also decays but keep it at a
   10380             :                  * reasonable floor to avoid funnies with rq->avg_idle.
   10381             :                  */
   10382             :                 rq->max_idle_balance_cost =
   10383             :                         max((u64)sysctl_sched_migration_cost, max_cost);
   10384             :         }
   10385             :         rcu_read_unlock();
   10386             : 
   10387             :         /*
   10388             :          * next_balance will be updated only when there is a need.
   10389             :          * When the cpu is attached to null domain for ex, it will not be
   10390             :          * updated.
   10391             :          */
   10392             :         if (likely(update_next_balance))
   10393             :                 rq->next_balance = next_balance;
   10394             : 
   10395             : }
   10396             : 
   10397             : static inline int on_null_domain(struct rq *rq)
   10398             : {
   10399             :         return unlikely(!rcu_dereference_sched(rq->sd));
   10400             : }
   10401             : 
   10402             : #ifdef CONFIG_NO_HZ_COMMON
   10403             : /*
   10404             :  * idle load balancing details
   10405             :  * - When one of the busy CPUs notice that there may be an idle rebalancing
   10406             :  *   needed, they will kick the idle load balancer, which then does idle
   10407             :  *   load balancing for all the idle CPUs.
   10408             :  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
   10409             :  *   anywhere yet.
   10410             :  */
   10411             : 
   10412             : static inline int find_new_ilb(void)
   10413             : {
   10414             :         int ilb;
   10415             :         const struct cpumask *hk_mask;
   10416             : 
   10417             :         hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
   10418             : 
   10419             :         for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
   10420             : 
   10421             :                 if (ilb == smp_processor_id())
   10422             :                         continue;
   10423             : 
   10424             :                 if (idle_cpu(ilb))
   10425             :                         return ilb;
   10426             :         }
   10427             : 
   10428             :         return nr_cpu_ids;
   10429             : }
   10430             : 
   10431             : /*
   10432             :  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
   10433             :  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
   10434             :  */
   10435             : static void kick_ilb(unsigned int flags)
   10436             : {
   10437             :         int ilb_cpu;
   10438             : 
   10439             :         /*
   10440             :          * Increase nohz.next_balance only when if full ilb is triggered but
   10441             :          * not if we only update stats.
   10442             :          */
   10443             :         if (flags & NOHZ_BALANCE_KICK)
   10444             :                 nohz.next_balance = jiffies+1;
   10445             : 
   10446             :         ilb_cpu = find_new_ilb();
   10447             : 
   10448             :         if (ilb_cpu >= nr_cpu_ids)
   10449             :                 return;
   10450             : 
   10451             :         /*
   10452             :          * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
   10453             :          * the first flag owns it; cleared by nohz_csd_func().
   10454             :          */
   10455             :         flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
   10456             :         if (flags & NOHZ_KICK_MASK)
   10457             :                 return;
   10458             : 
   10459             :         /*
   10460             :          * This way we generate an IPI on the target CPU which
   10461             :          * is idle. And the softirq performing nohz idle load balance
   10462             :          * will be run before returning from the IPI.
   10463             :          */
   10464             :         smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
   10465             : }
   10466             : 
   10467             : /*
   10468             :  * Current decision point for kicking the idle load balancer in the presence
   10469             :  * of idle CPUs in the system.
   10470             :  */
   10471             : static void nohz_balancer_kick(struct rq *rq)
   10472             : {
   10473             :         unsigned long now = jiffies;
   10474             :         struct sched_domain_shared *sds;
   10475             :         struct sched_domain *sd;
   10476             :         int nr_busy, i, cpu = rq->cpu;
   10477             :         unsigned int flags = 0;
   10478             : 
   10479             :         if (unlikely(rq->idle_balance))
   10480             :                 return;
   10481             : 
   10482             :         /*
   10483             :          * We may be recently in ticked or tickless idle mode. At the first
   10484             :          * busy tick after returning from idle, we will update the busy stats.
   10485             :          */
   10486             :         nohz_balance_exit_idle(rq);
   10487             : 
   10488             :         /*
   10489             :          * None are in tickless mode and hence no need for NOHZ idle load
   10490             :          * balancing.
   10491             :          */
   10492             :         if (likely(!atomic_read(&nohz.nr_cpus)))
   10493             :                 return;
   10494             : 
   10495             :         if (READ_ONCE(nohz.has_blocked) &&
   10496             :             time_after(now, READ_ONCE(nohz.next_blocked)))
   10497             :                 flags = NOHZ_STATS_KICK;
   10498             : 
   10499             :         if (time_before(now, nohz.next_balance))
   10500             :                 goto out;
   10501             : 
   10502             :         if (rq->nr_running >= 2) {
   10503             :                 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   10504             :                 goto out;
   10505             :         }
   10506             : 
   10507             :         rcu_read_lock();
   10508             : 
   10509             :         sd = rcu_dereference(rq->sd);
   10510             :         if (sd) {
   10511             :                 /*
   10512             :                  * If there's a CFS task and the current CPU has reduced
   10513             :                  * capacity; kick the ILB to see if there's a better CPU to run
   10514             :                  * on.
   10515             :                  */
   10516             :                 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
   10517             :                         flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   10518             :                         goto unlock;
   10519             :                 }
   10520             :         }
   10521             : 
   10522             :         sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
   10523             :         if (sd) {
   10524             :                 /*
   10525             :                  * When ASYM_PACKING; see if there's a more preferred CPU
   10526             :                  * currently idle; in which case, kick the ILB to move tasks
   10527             :                  * around.
   10528             :                  */
   10529             :                 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
   10530             :                         if (sched_asym_prefer(i, cpu)) {
   10531             :                                 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   10532             :                                 goto unlock;
   10533             :                         }
   10534             :                 }
   10535             :         }
   10536             : 
   10537             :         sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
   10538             :         if (sd) {
   10539             :                 /*
   10540             :                  * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
   10541             :                  * to run the misfit task on.
   10542             :                  */
   10543             :                 if (check_misfit_status(rq, sd)) {
   10544             :                         flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   10545             :                         goto unlock;
   10546             :                 }
   10547             : 
   10548             :                 /*
   10549             :                  * For asymmetric systems, we do not want to nicely balance
   10550             :                  * cache use, instead we want to embrace asymmetry and only
   10551             :                  * ensure tasks have enough CPU capacity.
   10552             :                  *
   10553             :                  * Skip the LLC logic because it's not relevant in that case.
   10554             :                  */
   10555             :                 goto unlock;
   10556             :         }
   10557             : 
   10558             :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
   10559             :         if (sds) {
   10560             :                 /*
   10561             :                  * If there is an imbalance between LLC domains (IOW we could
   10562             :                  * increase the overall cache use), we need some less-loaded LLC
   10563             :                  * domain to pull some load. Likewise, we may need to spread
   10564             :                  * load within the current LLC domain (e.g. packed SMT cores but
   10565             :                  * other CPUs are idle). We can't really know from here how busy
   10566             :                  * the others are - so just get a nohz balance going if it looks
   10567             :                  * like this LLC domain has tasks we could move.
   10568             :                  */
   10569             :                 nr_busy = atomic_read(&sds->nr_busy_cpus);
   10570             :                 if (nr_busy > 1) {
   10571             :                         flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
   10572             :                         goto unlock;
   10573             :                 }
   10574             :         }
   10575             : unlock:
   10576             :         rcu_read_unlock();
   10577             : out:
   10578             :         if (READ_ONCE(nohz.needs_update))
   10579             :                 flags |= NOHZ_NEXT_KICK;
   10580             : 
   10581             :         if (flags)
   10582             :                 kick_ilb(flags);
   10583             : }
   10584             : 
   10585             : static void set_cpu_sd_state_busy(int cpu)
   10586             : {
   10587             :         struct sched_domain *sd;
   10588             : 
   10589             :         rcu_read_lock();
   10590             :         sd = rcu_dereference(per_cpu(sd_llc, cpu));
   10591             : 
   10592             :         if (!sd || !sd->nohz_idle)
   10593             :                 goto unlock;
   10594             :         sd->nohz_idle = 0;
   10595             : 
   10596             :         atomic_inc(&sd->shared->nr_busy_cpus);
   10597             : unlock:
   10598             :         rcu_read_unlock();
   10599             : }
   10600             : 
   10601             : void nohz_balance_exit_idle(struct rq *rq)
   10602             : {
   10603             :         SCHED_WARN_ON(rq != this_rq());
   10604             : 
   10605             :         if (likely(!rq->nohz_tick_stopped))
   10606             :                 return;
   10607             : 
   10608             :         rq->nohz_tick_stopped = 0;
   10609             :         cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
   10610             :         atomic_dec(&nohz.nr_cpus);
   10611             : 
   10612             :         set_cpu_sd_state_busy(rq->cpu);
   10613             : }
   10614             : 
   10615             : static void set_cpu_sd_state_idle(int cpu)
   10616             : {
   10617             :         struct sched_domain *sd;
   10618             : 
   10619             :         rcu_read_lock();
   10620             :         sd = rcu_dereference(per_cpu(sd_llc, cpu));
   10621             : 
   10622             :         if (!sd || sd->nohz_idle)
   10623             :                 goto unlock;
   10624             :         sd->nohz_idle = 1;
   10625             : 
   10626             :         atomic_dec(&sd->shared->nr_busy_cpus);
   10627             : unlock:
   10628             :         rcu_read_unlock();
   10629             : }
   10630             : 
   10631             : /*
   10632             :  * This routine will record that the CPU is going idle with tick stopped.
   10633             :  * This info will be used in performing idle load balancing in the future.
   10634             :  */
   10635             : void nohz_balance_enter_idle(int cpu)
   10636             : {
   10637             :         struct rq *rq = cpu_rq(cpu);
   10638             : 
   10639             :         SCHED_WARN_ON(cpu != smp_processor_id());
   10640             : 
   10641             :         /* If this CPU is going down, then nothing needs to be done: */
   10642             :         if (!cpu_active(cpu))
   10643             :                 return;
   10644             : 
   10645             :         /* Spare idle load balancing on CPUs that don't want to be disturbed: */
   10646             :         if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
   10647             :                 return;
   10648             : 
   10649             :         /*
   10650             :          * Can be set safely without rq->lock held
   10651             :          * If a clear happens, it will have evaluated last additions because
   10652             :          * rq->lock is held during the check and the clear
   10653             :          */
   10654             :         rq->has_blocked_load = 1;
   10655             : 
   10656             :         /*
   10657             :          * The tick is still stopped but load could have been added in the
   10658             :          * meantime. We set the nohz.has_blocked flag to trig a check of the
   10659             :          * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
   10660             :          * of nohz.has_blocked can only happen after checking the new load
   10661             :          */
   10662             :         if (rq->nohz_tick_stopped)
   10663             :                 goto out;
   10664             : 
   10665             :         /* If we're a completely isolated CPU, we don't play: */
   10666             :         if (on_null_domain(rq))
   10667             :                 return;
   10668             : 
   10669             :         rq->nohz_tick_stopped = 1;
   10670             : 
   10671             :         cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
   10672             :         atomic_inc(&nohz.nr_cpus);
   10673             : 
   10674             :         /*
   10675             :          * Ensures that if nohz_idle_balance() fails to observe our
   10676             :          * @idle_cpus_mask store, it must observe the @has_blocked
   10677             :          * and @needs_update stores.
   10678             :          */
   10679             :         smp_mb__after_atomic();
   10680             : 
   10681             :         set_cpu_sd_state_idle(cpu);
   10682             : 
   10683             :         WRITE_ONCE(nohz.needs_update, 1);
   10684             : out:
   10685             :         /*
   10686             :          * Each time a cpu enter idle, we assume that it has blocked load and
   10687             :          * enable the periodic update of the load of idle cpus
   10688             :          */
   10689             :         WRITE_ONCE(nohz.has_blocked, 1);
   10690             : }
   10691             : 
   10692             : static bool update_nohz_stats(struct rq *rq)
   10693             : {
   10694             :         unsigned int cpu = rq->cpu;
   10695             : 
   10696             :         if (!rq->has_blocked_load)
   10697             :                 return false;
   10698             : 
   10699             :         if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
   10700             :                 return false;
   10701             : 
   10702             :         if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
   10703             :                 return true;
   10704             : 
   10705             :         update_blocked_averages(cpu);
   10706             : 
   10707             :         return rq->has_blocked_load;
   10708             : }
   10709             : 
   10710             : /*
   10711             :  * Internal function that runs load balance for all idle cpus. The load balance
   10712             :  * can be a simple update of blocked load or a complete load balance with
   10713             :  * tasks movement depending of flags.
   10714             :  */
   10715             : static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
   10716             :                                enum cpu_idle_type idle)
   10717             : {
   10718             :         /* Earliest time when we have to do rebalance again */
   10719             :         unsigned long now = jiffies;
   10720             :         unsigned long next_balance = now + 60*HZ;
   10721             :         bool has_blocked_load = false;
   10722             :         int update_next_balance = 0;
   10723             :         int this_cpu = this_rq->cpu;
   10724             :         int balance_cpu;
   10725             :         struct rq *rq;
   10726             : 
   10727             :         SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
   10728             : 
   10729             :         /*
   10730             :          * We assume there will be no idle load after this update and clear
   10731             :          * the has_blocked flag. If a cpu enters idle in the mean time, it will
   10732             :          * set the has_blocked flag and trigger another update of idle load.
   10733             :          * Because a cpu that becomes idle, is added to idle_cpus_mask before
   10734             :          * setting the flag, we are sure to not clear the state and not
   10735             :          * check the load of an idle cpu.
   10736             :          *
   10737             :          * Same applies to idle_cpus_mask vs needs_update.
   10738             :          */
   10739             :         if (flags & NOHZ_STATS_KICK)
   10740             :                 WRITE_ONCE(nohz.has_blocked, 0);
   10741             :         if (flags & NOHZ_NEXT_KICK)
   10742             :                 WRITE_ONCE(nohz.needs_update, 0);
   10743             : 
   10744             :         /*
   10745             :          * Ensures that if we miss the CPU, we must see the has_blocked
   10746             :          * store from nohz_balance_enter_idle().
   10747             :          */
   10748             :         smp_mb();
   10749             : 
   10750             :         /*
   10751             :          * Start with the next CPU after this_cpu so we will end with this_cpu and let a
   10752             :          * chance for other idle cpu to pull load.
   10753             :          */
   10754             :         for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
   10755             :                 if (!idle_cpu(balance_cpu))
   10756             :                         continue;
   10757             : 
   10758             :                 /*
   10759             :                  * If this CPU gets work to do, stop the load balancing
   10760             :                  * work being done for other CPUs. Next load
   10761             :                  * balancing owner will pick it up.
   10762             :                  */
   10763             :                 if (need_resched()) {
   10764             :                         if (flags & NOHZ_STATS_KICK)
   10765             :                                 has_blocked_load = true;
   10766             :                         if (flags & NOHZ_NEXT_KICK)
   10767             :                                 WRITE_ONCE(nohz.needs_update, 1);
   10768             :                         goto abort;
   10769             :                 }
   10770             : 
   10771             :                 rq = cpu_rq(balance_cpu);
   10772             : 
   10773             :                 if (flags & NOHZ_STATS_KICK)
   10774             :                         has_blocked_load |= update_nohz_stats(rq);
   10775             : 
   10776             :                 /*
   10777             :                  * If time for next balance is due,
   10778             :                  * do the balance.
   10779             :                  */
   10780             :                 if (time_after_eq(jiffies, rq->next_balance)) {
   10781             :                         struct rq_flags rf;
   10782             : 
   10783             :                         rq_lock_irqsave(rq, &rf);
   10784             :                         update_rq_clock(rq);
   10785             :                         rq_unlock_irqrestore(rq, &rf);
   10786             : 
   10787             :                         if (flags & NOHZ_BALANCE_KICK)
   10788             :                                 rebalance_domains(rq, CPU_IDLE);
   10789             :                 }
   10790             : 
   10791             :                 if (time_after(next_balance, rq->next_balance)) {
   10792             :                         next_balance = rq->next_balance;
   10793             :                         update_next_balance = 1;
   10794             :                 }
   10795             :         }
   10796             : 
   10797             :         /*
   10798             :          * next_balance will be updated only when there is a need.
   10799             :          * When the CPU is attached to null domain for ex, it will not be
   10800             :          * updated.
   10801             :          */
   10802             :         if (likely(update_next_balance))
   10803             :                 nohz.next_balance = next_balance;
   10804             : 
   10805             :         if (flags & NOHZ_STATS_KICK)
   10806             :                 WRITE_ONCE(nohz.next_blocked,
   10807             :                            now + msecs_to_jiffies(LOAD_AVG_PERIOD));
   10808             : 
   10809             : abort:
   10810             :         /* There is still blocked load, enable periodic update */
   10811             :         if (has_blocked_load)
   10812             :                 WRITE_ONCE(nohz.has_blocked, 1);
   10813             : }
   10814             : 
   10815             : /*
   10816             :  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
   10817             :  * rebalancing for all the cpus for whom scheduler ticks are stopped.
   10818             :  */
   10819             : static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
   10820             : {
   10821             :         unsigned int flags = this_rq->nohz_idle_balance;
   10822             : 
   10823             :         if (!flags)
   10824             :                 return false;
   10825             : 
   10826             :         this_rq->nohz_idle_balance = 0;
   10827             : 
   10828             :         if (idle != CPU_IDLE)
   10829             :                 return false;
   10830             : 
   10831             :         _nohz_idle_balance(this_rq, flags, idle);
   10832             : 
   10833             :         return true;
   10834             : }
   10835             : 
   10836             : /*
   10837             :  * Check if we need to run the ILB for updating blocked load before entering
   10838             :  * idle state.
   10839             :  */
   10840             : void nohz_run_idle_balance(int cpu)
   10841             : {
   10842             :         unsigned int flags;
   10843             : 
   10844             :         flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
   10845             : 
   10846             :         /*
   10847             :          * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
   10848             :          * (ie NOHZ_STATS_KICK set) and will do the same.
   10849             :          */
   10850             :         if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
   10851             :                 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
   10852             : }
   10853             : 
   10854             : static void nohz_newidle_balance(struct rq *this_rq)
   10855             : {
   10856             :         int this_cpu = this_rq->cpu;
   10857             : 
   10858             :         /*
   10859             :          * This CPU doesn't want to be disturbed by scheduler
   10860             :          * housekeeping
   10861             :          */
   10862             :         if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
   10863             :                 return;
   10864             : 
   10865             :         /* Will wake up very soon. No time for doing anything else*/
   10866             :         if (this_rq->avg_idle < sysctl_sched_migration_cost)
   10867             :                 return;
   10868             : 
   10869             :         /* Don't need to update blocked load of idle CPUs*/
   10870             :         if (!READ_ONCE(nohz.has_blocked) ||
   10871             :             time_before(jiffies, READ_ONCE(nohz.next_blocked)))
   10872             :                 return;
   10873             : 
   10874             :         /*
   10875             :          * Set the need to trigger ILB in order to update blocked load
   10876             :          * before entering idle state.
   10877             :          */
   10878             :         atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
   10879             : }
   10880             : 
   10881             : #else /* !CONFIG_NO_HZ_COMMON */
   10882             : static inline void nohz_balancer_kick(struct rq *rq) { }
   10883             : 
   10884             : static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
   10885             : {
   10886             :         return false;
   10887             : }
   10888             : 
   10889             : static inline void nohz_newidle_balance(struct rq *this_rq) { }
   10890             : #endif /* CONFIG_NO_HZ_COMMON */
   10891             : 
   10892             : /*
   10893             :  * newidle_balance is called by schedule() if this_cpu is about to become
   10894             :  * idle. Attempts to pull tasks from other CPUs.
   10895             :  *
   10896             :  * Returns:
   10897             :  *   < 0 - we released the lock and there are !fair tasks present
   10898             :  *     0 - failed, no new tasks
   10899             :  *   > 0 - success, new (fair) tasks present
   10900             :  */
   10901             : static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
   10902             : {
   10903             :         unsigned long next_balance = jiffies + HZ;
   10904             :         int this_cpu = this_rq->cpu;
   10905             :         u64 t0, t1, curr_cost = 0;
   10906             :         struct sched_domain *sd;
   10907             :         int pulled_task = 0;
   10908             : 
   10909             :         update_misfit_status(NULL, this_rq);
   10910             : 
   10911             :         /*
   10912             :          * There is a task waiting to run. No need to search for one.
   10913             :          * Return 0; the task will be enqueued when switching to idle.
   10914             :          */
   10915             :         if (this_rq->ttwu_pending)
   10916             :                 return 0;
   10917             : 
   10918             :         /*
   10919             :          * We must set idle_stamp _before_ calling idle_balance(), such that we
   10920             :          * measure the duration of idle_balance() as idle time.
   10921             :          */
   10922             :         this_rq->idle_stamp = rq_clock(this_rq);
   10923             : 
   10924             :         /*
   10925             :          * Do not pull tasks towards !active CPUs...
   10926             :          */
   10927             :         if (!cpu_active(this_cpu))
   10928             :                 return 0;
   10929             : 
   10930             :         /*
   10931             :          * This is OK, because current is on_cpu, which avoids it being picked
   10932             :          * for load-balance and preemption/IRQs are still disabled avoiding
   10933             :          * further scheduler activity on it and we're being very careful to
   10934             :          * re-start the picking loop.
   10935             :          */
   10936             :         rq_unpin_lock(this_rq, rf);
   10937             : 
   10938             :         rcu_read_lock();
   10939             :         sd = rcu_dereference_check_sched_domain(this_rq->sd);
   10940             : 
   10941             :         if (!READ_ONCE(this_rq->rd->overload) ||
   10942             :             (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
   10943             : 
   10944             :                 if (sd)
   10945             :                         update_next_balance(sd, &next_balance);
   10946             :                 rcu_read_unlock();
   10947             : 
   10948             :                 goto out;
   10949             :         }
   10950             :         rcu_read_unlock();
   10951             : 
   10952             :         raw_spin_rq_unlock(this_rq);
   10953             : 
   10954             :         t0 = sched_clock_cpu(this_cpu);
   10955             :         update_blocked_averages(this_cpu);
   10956             : 
   10957             :         rcu_read_lock();
   10958             :         for_each_domain(this_cpu, sd) {
   10959             :                 int continue_balancing = 1;
   10960             :                 u64 domain_cost;
   10961             : 
   10962             :                 update_next_balance(sd, &next_balance);
   10963             : 
   10964             :                 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
   10965             :                         break;
   10966             : 
   10967             :                 if (sd->flags & SD_BALANCE_NEWIDLE) {
   10968             : 
   10969             :                         pulled_task = load_balance(this_cpu, this_rq,
   10970             :                                                    sd, CPU_NEWLY_IDLE,
   10971             :                                                    &continue_balancing);
   10972             : 
   10973             :                         t1 = sched_clock_cpu(this_cpu);
   10974             :                         domain_cost = t1 - t0;
   10975             :                         update_newidle_cost(sd, domain_cost);
   10976             : 
   10977             :                         curr_cost += domain_cost;
   10978             :                         t0 = t1;
   10979             :                 }
   10980             : 
   10981             :                 /*
   10982             :                  * Stop searching for tasks to pull if there are
   10983             :                  * now runnable tasks on this rq.
   10984             :                  */
   10985             :                 if (pulled_task || this_rq->nr_running > 0 ||
   10986             :                     this_rq->ttwu_pending)
   10987             :                         break;
   10988             :         }
   10989             :         rcu_read_unlock();
   10990             : 
   10991             :         raw_spin_rq_lock(this_rq);
   10992             : 
   10993             :         if (curr_cost > this_rq->max_idle_balance_cost)
   10994             :                 this_rq->max_idle_balance_cost = curr_cost;
   10995             : 
   10996             :         /*
   10997             :          * While browsing the domains, we released the rq lock, a task could
   10998             :          * have been enqueued in the meantime. Since we're not going idle,
   10999             :          * pretend we pulled a task.
   11000             :          */
   11001             :         if (this_rq->cfs.h_nr_running && !pulled_task)
   11002             :                 pulled_task = 1;
   11003             : 
   11004             :         /* Is there a task of a high priority class? */
   11005             :         if (this_rq->nr_running != this_rq->cfs.h_nr_running)
   11006             :                 pulled_task = -1;
   11007             : 
   11008             : out:
   11009             :         /* Move the next balance forward */
   11010             :         if (time_after(this_rq->next_balance, next_balance))
   11011             :                 this_rq->next_balance = next_balance;
   11012             : 
   11013             :         if (pulled_task)
   11014             :                 this_rq->idle_stamp = 0;
   11015             :         else
   11016             :                 nohz_newidle_balance(this_rq);
   11017             : 
   11018             :         rq_repin_lock(this_rq, rf);
   11019             : 
   11020             :         return pulled_task;
   11021             : }
   11022             : 
   11023             : /*
   11024             :  * run_rebalance_domains is triggered when needed from the scheduler tick.
   11025             :  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
   11026             :  */
   11027             : static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
   11028             : {
   11029             :         struct rq *this_rq = this_rq();
   11030             :         enum cpu_idle_type idle = this_rq->idle_balance ?
   11031             :                                                 CPU_IDLE : CPU_NOT_IDLE;
   11032             : 
   11033             :         /*
   11034             :          * If this CPU has a pending nohz_balance_kick, then do the
   11035             :          * balancing on behalf of the other idle CPUs whose ticks are
   11036             :          * stopped. Do nohz_idle_balance *before* rebalance_domains to
   11037             :          * give the idle CPUs a chance to load balance. Else we may
   11038             :          * load balance only within the local sched_domain hierarchy
   11039             :          * and abort nohz_idle_balance altogether if we pull some load.
   11040             :          */
   11041             :         if (nohz_idle_balance(this_rq, idle))
   11042             :                 return;
   11043             : 
   11044             :         /* normal load balance */
   11045             :         update_blocked_averages(this_rq->cpu);
   11046             :         rebalance_domains(this_rq, idle);
   11047             : }
   11048             : 
   11049             : /*
   11050             :  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
   11051             :  */
   11052             : void trigger_load_balance(struct rq *rq)
   11053             : {
   11054             :         /*
   11055             :          * Don't need to rebalance while attached to NULL domain or
   11056             :          * runqueue CPU is not active
   11057             :          */
   11058             :         if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
   11059             :                 return;
   11060             : 
   11061             :         if (time_after_eq(jiffies, rq->next_balance))
   11062             :                 raise_softirq(SCHED_SOFTIRQ);
   11063             : 
   11064             :         nohz_balancer_kick(rq);
   11065             : }
   11066             : 
   11067             : static void rq_online_fair(struct rq *rq)
   11068             : {
   11069             :         update_sysctl();
   11070             : 
   11071             :         update_runtime_enabled(rq);
   11072             : }
   11073             : 
   11074             : static void rq_offline_fair(struct rq *rq)
   11075             : {
   11076             :         update_sysctl();
   11077             : 
   11078             :         /* Ensure any throttled groups are reachable by pick_next_task */
   11079             :         unthrottle_offline_cfs_rqs(rq);
   11080             : }
   11081             : 
   11082             : #endif /* CONFIG_SMP */
   11083             : 
   11084             : #ifdef CONFIG_SCHED_CORE
   11085             : static inline bool
   11086             : __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
   11087             : {
   11088             :         u64 slice = sched_slice(cfs_rq_of(se), se);
   11089             :         u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
   11090             : 
   11091             :         return (rtime * min_nr_tasks > slice);
   11092             : }
   11093             : 
   11094             : #define MIN_NR_TASKS_DURING_FORCEIDLE   2
   11095             : static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
   11096             : {
   11097             :         if (!sched_core_enabled(rq))
   11098             :                 return;
   11099             : 
   11100             :         /*
   11101             :          * If runqueue has only one task which used up its slice and
   11102             :          * if the sibling is forced idle, then trigger schedule to
   11103             :          * give forced idle task a chance.
   11104             :          *
   11105             :          * sched_slice() considers only this active rq and it gets the
   11106             :          * whole slice. But during force idle, we have siblings acting
   11107             :          * like a single runqueue and hence we need to consider runnable
   11108             :          * tasks on this CPU and the forced idle CPU. Ideally, we should
   11109             :          * go through the forced idle rq, but that would be a perf hit.
   11110             :          * We can assume that the forced idle CPU has at least
   11111             :          * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
   11112             :          * if we need to give up the CPU.
   11113             :          */
   11114             :         if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
   11115             :             __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
   11116             :                 resched_curr(rq);
   11117             : }
   11118             : 
   11119             : /*
   11120             :  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
   11121             :  */
   11122             : static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
   11123             : {
   11124             :         for_each_sched_entity(se) {
   11125             :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
   11126             : 
   11127             :                 if (forceidle) {
   11128             :                         if (cfs_rq->forceidle_seq == fi_seq)
   11129             :                                 break;
   11130             :                         cfs_rq->forceidle_seq = fi_seq;
   11131             :                 }
   11132             : 
   11133             :                 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
   11134             :         }
   11135             : }
   11136             : 
   11137             : void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
   11138             : {
   11139             :         struct sched_entity *se = &p->se;
   11140             : 
   11141             :         if (p->sched_class != &fair_sched_class)
   11142             :                 return;
   11143             : 
   11144             :         se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
   11145             : }
   11146             : 
   11147             : bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
   11148             : {
   11149             :         struct rq *rq = task_rq(a);
   11150             :         struct sched_entity *sea = &a->se;
   11151             :         struct sched_entity *seb = &b->se;
   11152             :         struct cfs_rq *cfs_rqa;
   11153             :         struct cfs_rq *cfs_rqb;
   11154             :         s64 delta;
   11155             : 
   11156             :         SCHED_WARN_ON(task_rq(b)->core != rq->core);
   11157             : 
   11158             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11159             :         /*
   11160             :          * Find an se in the hierarchy for tasks a and b, such that the se's
   11161             :          * are immediate siblings.
   11162             :          */
   11163             :         while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
   11164             :                 int sea_depth = sea->depth;
   11165             :                 int seb_depth = seb->depth;
   11166             : 
   11167             :                 if (sea_depth >= seb_depth)
   11168             :                         sea = parent_entity(sea);
   11169             :                 if (sea_depth <= seb_depth)
   11170             :                         seb = parent_entity(seb);
   11171             :         }
   11172             : 
   11173             :         se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
   11174             :         se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
   11175             : 
   11176             :         cfs_rqa = sea->cfs_rq;
   11177             :         cfs_rqb = seb->cfs_rq;
   11178             : #else
   11179             :         cfs_rqa = &task_rq(a)->cfs;
   11180             :         cfs_rqb = &task_rq(b)->cfs;
   11181             : #endif
   11182             : 
   11183             :         /*
   11184             :          * Find delta after normalizing se's vruntime with its cfs_rq's
   11185             :          * min_vruntime_fi, which would have been updated in prior calls
   11186             :          * to se_fi_update().
   11187             :          */
   11188             :         delta = (s64)(sea->vruntime - seb->vruntime) +
   11189             :                 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
   11190             : 
   11191             :         return delta > 0;
   11192             : }
   11193             : #else
   11194             : static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
   11195             : #endif
   11196             : 
   11197             : /*
   11198             :  * scheduler tick hitting a task of our scheduling class.
   11199             :  *
   11200             :  * NOTE: This function can be called remotely by the tick offload that
   11201             :  * goes along full dynticks. Therefore no local assumption can be made
   11202             :  * and everything must be accessed through the @rq and @curr passed in
   11203             :  * parameters.
   11204             :  */
   11205           3 : static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
   11206             : {
   11207             :         struct cfs_rq *cfs_rq;
   11208           3 :         struct sched_entity *se = &curr->se;
   11209             : 
   11210           6 :         for_each_sched_entity(se) {
   11211           6 :                 cfs_rq = cfs_rq_of(se);
   11212           3 :                 entity_tick(cfs_rq, se, queued);
   11213             :         }
   11214             : 
   11215           3 :         if (static_branch_unlikely(&sched_numa_balancing))
   11216             :                 task_tick_numa(rq, curr);
   11217             : 
   11218           3 :         update_misfit_status(curr, rq);
   11219           3 :         update_overutilized_status(task_rq(curr));
   11220             : 
   11221           3 :         task_tick_core(rq, curr);
   11222           3 : }
   11223             : 
   11224             : /*
   11225             :  * called on fork with the child task as argument from the parent's context
   11226             :  *  - child not yet on the tasklist
   11227             :  *  - preemption disabled
   11228             :  */
   11229         107 : static void task_fork_fair(struct task_struct *p)
   11230             : {
   11231             :         struct cfs_rq *cfs_rq;
   11232         107 :         struct sched_entity *se = &p->se, *curr;
   11233         107 :         struct rq *rq = this_rq();
   11234             :         struct rq_flags rf;
   11235             : 
   11236         107 :         rq_lock(rq, &rf);
   11237         107 :         update_rq_clock(rq);
   11238             : 
   11239         214 :         cfs_rq = task_cfs_rq(current);
   11240         107 :         curr = cfs_rq->curr;
   11241         107 :         if (curr) {
   11242         105 :                 update_curr(cfs_rq);
   11243         105 :                 se->vruntime = curr->vruntime;
   11244             :         }
   11245         107 :         place_entity(cfs_rq, se, 1);
   11246             : 
   11247         107 :         if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
   11248             :                 /*
   11249             :                  * Upon rescheduling, sched_class::put_prev_task() will place
   11250             :                  * 'current' within the tree based on its new key value.
   11251             :                  */
   11252           0 :                 swap(curr->vruntime, se->vruntime);
   11253           0 :                 resched_curr(rq);
   11254             :         }
   11255             : 
   11256         107 :         se->vruntime -= cfs_rq->min_vruntime;
   11257         107 :         rq_unlock(rq, &rf);
   11258         107 : }
   11259             : 
   11260             : /*
   11261             :  * Priority of the task has changed. Check to see if we preempt
   11262             :  * the current task.
   11263             :  */
   11264             : static void
   11265           4 : prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
   11266             : {
   11267           4 :         if (!task_on_rq_queued(p))
   11268             :                 return;
   11269             : 
   11270           3 :         if (rq->cfs.nr_running == 1)
   11271             :                 return;
   11272             : 
   11273             :         /*
   11274             :          * Reschedule if we are currently running on this runqueue and
   11275             :          * our priority decreased, or if we are not currently running on
   11276             :          * this runqueue and our priority is higher than the current's
   11277             :          */
   11278           3 :         if (task_current(rq, p)) {
   11279           3 :                 if (p->prio > oldprio)
   11280           0 :                         resched_curr(rq);
   11281             :         } else
   11282           0 :                 check_preempt_curr(rq, p, 0);
   11283             : }
   11284             : 
   11285             : static inline bool vruntime_normalized(struct task_struct *p)
   11286             : {
   11287           0 :         struct sched_entity *se = &p->se;
   11288             : 
   11289             :         /*
   11290             :          * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
   11291             :          * the dequeue_entity(.flags=0) will already have normalized the
   11292             :          * vruntime.
   11293             :          */
   11294           0 :         if (p->on_rq)
   11295             :                 return true;
   11296             : 
   11297             :         /*
   11298             :          * When !on_rq, vruntime of the task has usually NOT been normalized.
   11299             :          * But there are some cases where it has already been normalized:
   11300             :          *
   11301             :          * - A forked child which is waiting for being woken up by
   11302             :          *   wake_up_new_task().
   11303             :          * - A task which has been woken up by try_to_wake_up() and
   11304             :          *   waiting for actually being woken up by sched_ttwu_pending().
   11305             :          */
   11306           0 :         if (!se->sum_exec_runtime ||
   11307           0 :             (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
   11308             :                 return true;
   11309             : 
   11310             :         return false;
   11311             : }
   11312             : 
   11313             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11314             : /*
   11315             :  * Propagate the changes of the sched_entity across the tg tree to make it
   11316             :  * visible to the root
   11317             :  */
   11318             : static void propagate_entity_cfs_rq(struct sched_entity *se)
   11319             : {
   11320             :         struct cfs_rq *cfs_rq;
   11321             : 
   11322             :         list_add_leaf_cfs_rq(cfs_rq_of(se));
   11323             : 
   11324             :         /* Start to propagate at parent */
   11325             :         se = se->parent;
   11326             : 
   11327             :         for_each_sched_entity(se) {
   11328             :                 cfs_rq = cfs_rq_of(se);
   11329             : 
   11330             :                 if (!cfs_rq_throttled(cfs_rq)){
   11331             :                         update_load_avg(cfs_rq, se, UPDATE_TG);
   11332             :                         list_add_leaf_cfs_rq(cfs_rq);
   11333             :                         continue;
   11334             :                 }
   11335             : 
   11336             :                 if (list_add_leaf_cfs_rq(cfs_rq))
   11337             :                         break;
   11338             :         }
   11339             : }
   11340             : #else
   11341             : static void propagate_entity_cfs_rq(struct sched_entity *se) { }
   11342             : #endif
   11343             : 
   11344             : static void detach_entity_cfs_rq(struct sched_entity *se)
   11345             : {
   11346           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   11347             : 
   11348             :         /* Catch up with the cfs_rq and remove our load when we leave */
   11349           0 :         update_load_avg(cfs_rq, se, 0);
   11350           0 :         detach_entity_load_avg(cfs_rq, se);
   11351             :         update_tg_load_avg(cfs_rq);
   11352           0 :         propagate_entity_cfs_rq(se);
   11353             : }
   11354             : 
   11355             : static void attach_entity_cfs_rq(struct sched_entity *se)
   11356             : {
   11357           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   11358             : 
   11359             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11360             :         /*
   11361             :          * Since the real-depth could have been changed (only FAIR
   11362             :          * class maintain depth value), reset depth properly.
   11363             :          */
   11364             :         se->depth = se->parent ? se->parent->depth + 1 : 0;
   11365             : #endif
   11366             : 
   11367             :         /* Synchronize entity with its cfs_rq */
   11368           0 :         update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
   11369           0 :         attach_entity_load_avg(cfs_rq, se);
   11370             :         update_tg_load_avg(cfs_rq);
   11371           0 :         propagate_entity_cfs_rq(se);
   11372             : }
   11373             : 
   11374           0 : static void detach_task_cfs_rq(struct task_struct *p)
   11375             : {
   11376           0 :         struct sched_entity *se = &p->se;
   11377           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   11378             : 
   11379           0 :         if (!vruntime_normalized(p)) {
   11380             :                 /*
   11381             :                  * Fix up our vruntime so that the current sleep doesn't
   11382             :                  * cause 'unlimited' sleep bonus.
   11383             :                  */
   11384           0 :                 place_entity(cfs_rq, se, 0);
   11385           0 :                 se->vruntime -= cfs_rq->min_vruntime;
   11386             :         }
   11387             : 
   11388           0 :         detach_entity_cfs_rq(se);
   11389           0 : }
   11390             : 
   11391             : static void attach_task_cfs_rq(struct task_struct *p)
   11392             : {
   11393           0 :         struct sched_entity *se = &p->se;
   11394           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   11395             : 
   11396           0 :         attach_entity_cfs_rq(se);
   11397             : 
   11398           0 :         if (!vruntime_normalized(p))
   11399           0 :                 se->vruntime += cfs_rq->min_vruntime;
   11400             : }
   11401             : 
   11402           0 : static void switched_from_fair(struct rq *rq, struct task_struct *p)
   11403             : {
   11404           0 :         detach_task_cfs_rq(p);
   11405           0 : }
   11406             : 
   11407           0 : static void switched_to_fair(struct rq *rq, struct task_struct *p)
   11408             : {
   11409           0 :         attach_task_cfs_rq(p);
   11410             : 
   11411           0 :         if (task_on_rq_queued(p)) {
   11412             :                 /*
   11413             :                  * We were most likely switched from sched_rt, so
   11414             :                  * kick off the schedule if running, otherwise just see
   11415             :                  * if we can still preempt the current task.
   11416             :                  */
   11417           0 :                 if (task_current(rq, p))
   11418           0 :                         resched_curr(rq);
   11419             :                 else
   11420           0 :                         check_preempt_curr(rq, p, 0);
   11421             :         }
   11422           0 : }
   11423             : 
   11424             : /* Account for a task changing its policy or group.
   11425             :  *
   11426             :  * This routine is mostly called to set cfs_rq->curr field when a task
   11427             :  * migrates between groups/classes.
   11428             :  */
   11429           3 : static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
   11430             : {
   11431           3 :         struct sched_entity *se = &p->se;
   11432             : 
   11433             : #ifdef CONFIG_SMP
   11434             :         if (task_on_rq_queued(p)) {
   11435             :                 /*
   11436             :                  * Move the next running task to the front of the list, so our
   11437             :                  * cfs_tasks list becomes MRU one.
   11438             :                  */
   11439             :                 list_move(&se->group_node, &rq->cfs_tasks);
   11440             :         }
   11441             : #endif
   11442             : 
   11443           6 :         for_each_sched_entity(se) {
   11444           6 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
   11445             : 
   11446           3 :                 set_next_entity(cfs_rq, se);
   11447             :                 /* ensure bandwidth has been allocated on our new cfs_rq */
   11448           3 :                 account_cfs_rq_runtime(cfs_rq, 0);
   11449             :         }
   11450           3 : }
   11451             : 
   11452           1 : void init_cfs_rq(struct cfs_rq *cfs_rq)
   11453             : {
   11454           1 :         cfs_rq->tasks_timeline = RB_ROOT_CACHED;
   11455           1 :         cfs_rq->min_vruntime = (u64)(-(1LL << 20));
   11456             : #ifndef CONFIG_64BIT
   11457             :         cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
   11458             : #endif
   11459             : #ifdef CONFIG_SMP
   11460             :         raw_spin_lock_init(&cfs_rq->removed.lock);
   11461             : #endif
   11462           1 : }
   11463             : 
   11464             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11465             : static void task_set_group_fair(struct task_struct *p)
   11466             : {
   11467             :         struct sched_entity *se = &p->se;
   11468             : 
   11469             :         set_task_rq(p, task_cpu(p));
   11470             :         se->depth = se->parent ? se->parent->depth + 1 : 0;
   11471             : }
   11472             : 
   11473             : static void task_move_group_fair(struct task_struct *p)
   11474             : {
   11475             :         detach_task_cfs_rq(p);
   11476             :         set_task_rq(p, task_cpu(p));
   11477             : 
   11478             : #ifdef CONFIG_SMP
   11479             :         /* Tell se's cfs_rq has been changed -- migrated */
   11480             :         p->se.avg.last_update_time = 0;
   11481             : #endif
   11482             :         attach_task_cfs_rq(p);
   11483             : }
   11484             : 
   11485             : static void task_change_group_fair(struct task_struct *p, int type)
   11486             : {
   11487             :         switch (type) {
   11488             :         case TASK_SET_GROUP:
   11489             :                 task_set_group_fair(p);
   11490             :                 break;
   11491             : 
   11492             :         case TASK_MOVE_GROUP:
   11493             :                 task_move_group_fair(p);
   11494             :                 break;
   11495             :         }
   11496             : }
   11497             : 
   11498             : void free_fair_sched_group(struct task_group *tg)
   11499             : {
   11500             :         int i;
   11501             : 
   11502             :         for_each_possible_cpu(i) {
   11503             :                 if (tg->cfs_rq)
   11504             :                         kfree(tg->cfs_rq[i]);
   11505             :                 if (tg->se)
   11506             :                         kfree(tg->se[i]);
   11507             :         }
   11508             : 
   11509             :         kfree(tg->cfs_rq);
   11510             :         kfree(tg->se);
   11511             : }
   11512             : 
   11513             : int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
   11514             : {
   11515             :         struct sched_entity *se;
   11516             :         struct cfs_rq *cfs_rq;
   11517             :         int i;
   11518             : 
   11519             :         tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
   11520             :         if (!tg->cfs_rq)
   11521             :                 goto err;
   11522             :         tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
   11523             :         if (!tg->se)
   11524             :                 goto err;
   11525             : 
   11526             :         tg->shares = NICE_0_LOAD;
   11527             : 
   11528             :         init_cfs_bandwidth(tg_cfs_bandwidth(tg));
   11529             : 
   11530             :         for_each_possible_cpu(i) {
   11531             :                 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
   11532             :                                       GFP_KERNEL, cpu_to_node(i));
   11533             :                 if (!cfs_rq)
   11534             :                         goto err;
   11535             : 
   11536             :                 se = kzalloc_node(sizeof(struct sched_entity_stats),
   11537             :                                   GFP_KERNEL, cpu_to_node(i));
   11538             :                 if (!se)
   11539             :                         goto err_free_rq;
   11540             : 
   11541             :                 init_cfs_rq(cfs_rq);
   11542             :                 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
   11543             :                 init_entity_runnable_average(se);
   11544             :         }
   11545             : 
   11546             :         return 1;
   11547             : 
   11548             : err_free_rq:
   11549             :         kfree(cfs_rq);
   11550             : err:
   11551             :         return 0;
   11552             : }
   11553             : 
   11554             : void online_fair_sched_group(struct task_group *tg)
   11555             : {
   11556             :         struct sched_entity *se;
   11557             :         struct rq_flags rf;
   11558             :         struct rq *rq;
   11559             :         int i;
   11560             : 
   11561             :         for_each_possible_cpu(i) {
   11562             :                 rq = cpu_rq(i);
   11563             :                 se = tg->se[i];
   11564             :                 rq_lock_irq(rq, &rf);
   11565             :                 update_rq_clock(rq);
   11566             :                 attach_entity_cfs_rq(se);
   11567             :                 sync_throttle(tg, i);
   11568             :                 rq_unlock_irq(rq, &rf);
   11569             :         }
   11570             : }
   11571             : 
   11572             : void unregister_fair_sched_group(struct task_group *tg)
   11573             : {
   11574             :         unsigned long flags;
   11575             :         struct rq *rq;
   11576             :         int cpu;
   11577             : 
   11578             :         destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
   11579             : 
   11580             :         for_each_possible_cpu(cpu) {
   11581             :                 if (tg->se[cpu])
   11582             :                         remove_entity_load_avg(tg->se[cpu]);
   11583             : 
   11584             :                 /*
   11585             :                  * Only empty task groups can be destroyed; so we can speculatively
   11586             :                  * check on_list without danger of it being re-added.
   11587             :                  */
   11588             :                 if (!tg->cfs_rq[cpu]->on_list)
   11589             :                         continue;
   11590             : 
   11591             :                 rq = cpu_rq(cpu);
   11592             : 
   11593             :                 raw_spin_rq_lock_irqsave(rq, flags);
   11594             :                 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
   11595             :                 raw_spin_rq_unlock_irqrestore(rq, flags);
   11596             :         }
   11597             : }
   11598             : 
   11599             : void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
   11600             :                         struct sched_entity *se, int cpu,
   11601             :                         struct sched_entity *parent)
   11602             : {
   11603             :         struct rq *rq = cpu_rq(cpu);
   11604             : 
   11605             :         cfs_rq->tg = tg;
   11606             :         cfs_rq->rq = rq;
   11607             :         init_cfs_rq_runtime(cfs_rq);
   11608             : 
   11609             :         tg->cfs_rq[cpu] = cfs_rq;
   11610             :         tg->se[cpu] = se;
   11611             : 
   11612             :         /* se could be NULL for root_task_group */
   11613             :         if (!se)
   11614             :                 return;
   11615             : 
   11616             :         if (!parent) {
   11617             :                 se->cfs_rq = &rq->cfs;
   11618             :                 se->depth = 0;
   11619             :         } else {
   11620             :                 se->cfs_rq = parent->my_q;
   11621             :                 se->depth = parent->depth + 1;
   11622             :         }
   11623             : 
   11624             :         se->my_q = cfs_rq;
   11625             :         /* guarantee group entities always have weight */
   11626             :         update_load_set(&se->load, NICE_0_LOAD);
   11627             :         se->parent = parent;
   11628             : }
   11629             : 
   11630             : static DEFINE_MUTEX(shares_mutex);
   11631             : 
   11632             : static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
   11633             : {
   11634             :         int i;
   11635             : 
   11636             :         lockdep_assert_held(&shares_mutex);
   11637             : 
   11638             :         /*
   11639             :          * We can't change the weight of the root cgroup.
   11640             :          */
   11641             :         if (!tg->se[0])
   11642             :                 return -EINVAL;
   11643             : 
   11644             :         shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
   11645             : 
   11646             :         if (tg->shares == shares)
   11647             :                 return 0;
   11648             : 
   11649             :         tg->shares = shares;
   11650             :         for_each_possible_cpu(i) {
   11651             :                 struct rq *rq = cpu_rq(i);
   11652             :                 struct sched_entity *se = tg->se[i];
   11653             :                 struct rq_flags rf;
   11654             : 
   11655             :                 /* Propagate contribution to hierarchy */
   11656             :                 rq_lock_irqsave(rq, &rf);
   11657             :                 update_rq_clock(rq);
   11658             :                 for_each_sched_entity(se) {
   11659             :                         update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
   11660             :                         update_cfs_group(se);
   11661             :                 }
   11662             :                 rq_unlock_irqrestore(rq, &rf);
   11663             :         }
   11664             : 
   11665             :         return 0;
   11666             : }
   11667             : 
   11668             : int sched_group_set_shares(struct task_group *tg, unsigned long shares)
   11669             : {
   11670             :         int ret;
   11671             : 
   11672             :         mutex_lock(&shares_mutex);
   11673             :         if (tg_is_idle(tg))
   11674             :                 ret = -EINVAL;
   11675             :         else
   11676             :                 ret = __sched_group_set_shares(tg, shares);
   11677             :         mutex_unlock(&shares_mutex);
   11678             : 
   11679             :         return ret;
   11680             : }
   11681             : 
   11682             : int sched_group_set_idle(struct task_group *tg, long idle)
   11683             : {
   11684             :         int i;
   11685             : 
   11686             :         if (tg == &root_task_group)
   11687             :                 return -EINVAL;
   11688             : 
   11689             :         if (idle < 0 || idle > 1)
   11690             :                 return -EINVAL;
   11691             : 
   11692             :         mutex_lock(&shares_mutex);
   11693             : 
   11694             :         if (tg->idle == idle) {
   11695             :                 mutex_unlock(&shares_mutex);
   11696             :                 return 0;
   11697             :         }
   11698             : 
   11699             :         tg->idle = idle;
   11700             : 
   11701             :         for_each_possible_cpu(i) {
   11702             :                 struct rq *rq = cpu_rq(i);
   11703             :                 struct sched_entity *se = tg->se[i];
   11704             :                 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
   11705             :                 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
   11706             :                 long idle_task_delta;
   11707             :                 struct rq_flags rf;
   11708             : 
   11709             :                 rq_lock_irqsave(rq, &rf);
   11710             : 
   11711             :                 grp_cfs_rq->idle = idle;
   11712             :                 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
   11713             :                         goto next_cpu;
   11714             : 
   11715             :                 if (se->on_rq) {
   11716             :                         parent_cfs_rq = cfs_rq_of(se);
   11717             :                         if (cfs_rq_is_idle(grp_cfs_rq))
   11718             :                                 parent_cfs_rq->idle_nr_running++;
   11719             :                         else
   11720             :                                 parent_cfs_rq->idle_nr_running--;
   11721             :                 }
   11722             : 
   11723             :                 idle_task_delta = grp_cfs_rq->h_nr_running -
   11724             :                                   grp_cfs_rq->idle_h_nr_running;
   11725             :                 if (!cfs_rq_is_idle(grp_cfs_rq))
   11726             :                         idle_task_delta *= -1;
   11727             : 
   11728             :                 for_each_sched_entity(se) {
   11729             :                         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   11730             : 
   11731             :                         if (!se->on_rq)
   11732             :                                 break;
   11733             : 
   11734             :                         cfs_rq->idle_h_nr_running += idle_task_delta;
   11735             : 
   11736             :                         /* Already accounted at parent level and above. */
   11737             :                         if (cfs_rq_is_idle(cfs_rq))
   11738             :                                 break;
   11739             :                 }
   11740             : 
   11741             : next_cpu:
   11742             :                 rq_unlock_irqrestore(rq, &rf);
   11743             :         }
   11744             : 
   11745             :         /* Idle groups have minimum weight. */
   11746             :         if (tg_is_idle(tg))
   11747             :                 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
   11748             :         else
   11749             :                 __sched_group_set_shares(tg, NICE_0_LOAD);
   11750             : 
   11751             :         mutex_unlock(&shares_mutex);
   11752             :         return 0;
   11753             : }
   11754             : 
   11755             : #else /* CONFIG_FAIR_GROUP_SCHED */
   11756             : 
   11757           0 : void free_fair_sched_group(struct task_group *tg) { }
   11758             : 
   11759           0 : int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
   11760             : {
   11761           0 :         return 1;
   11762             : }
   11763             : 
   11764           0 : void online_fair_sched_group(struct task_group *tg) { }
   11765             : 
   11766           0 : void unregister_fair_sched_group(struct task_group *tg) { }
   11767             : 
   11768             : #endif /* CONFIG_FAIR_GROUP_SCHED */
   11769             : 
   11770             : 
   11771           0 : static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
   11772             : {
   11773           0 :         struct sched_entity *se = &task->se;
   11774           0 :         unsigned int rr_interval = 0;
   11775             : 
   11776             :         /*
   11777             :          * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
   11778             :          * idle runqueue:
   11779             :          */
   11780           0 :         if (rq->cfs.load.weight)
   11781           0 :                 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
   11782             : 
   11783           0 :         return rr_interval;
   11784             : }
   11785             : 
   11786             : /*
   11787             :  * All the scheduling class methods:
   11788             :  */
   11789             : DEFINE_SCHED_CLASS(fair) = {
   11790             : 
   11791             :         .enqueue_task           = enqueue_task_fair,
   11792             :         .dequeue_task           = dequeue_task_fair,
   11793             :         .yield_task             = yield_task_fair,
   11794             :         .yield_to_task          = yield_to_task_fair,
   11795             : 
   11796             :         .check_preempt_curr     = check_preempt_wakeup,
   11797             : 
   11798             :         .pick_next_task         = __pick_next_task_fair,
   11799             :         .put_prev_task          = put_prev_task_fair,
   11800             :         .set_next_task          = set_next_task_fair,
   11801             : 
   11802             : #ifdef CONFIG_SMP
   11803             :         .balance                = balance_fair,
   11804             :         .pick_task              = pick_task_fair,
   11805             :         .select_task_rq         = select_task_rq_fair,
   11806             :         .migrate_task_rq        = migrate_task_rq_fair,
   11807             : 
   11808             :         .rq_online              = rq_online_fair,
   11809             :         .rq_offline             = rq_offline_fair,
   11810             : 
   11811             :         .task_dead              = task_dead_fair,
   11812             :         .set_cpus_allowed       = set_cpus_allowed_common,
   11813             : #endif
   11814             : 
   11815             :         .task_tick              = task_tick_fair,
   11816             :         .task_fork              = task_fork_fair,
   11817             : 
   11818             :         .prio_changed           = prio_changed_fair,
   11819             :         .switched_from          = switched_from_fair,
   11820             :         .switched_to            = switched_to_fair,
   11821             : 
   11822             :         .get_rr_interval        = get_rr_interval_fair,
   11823             : 
   11824             :         .update_curr            = update_curr_fair,
   11825             : 
   11826             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11827             :         .task_change_group      = task_change_group_fair,
   11828             : #endif
   11829             : 
   11830             : #ifdef CONFIG_UCLAMP_TASK
   11831             :         .uclamp_enabled         = 1,
   11832             : #endif
   11833             : };
   11834             : 
   11835             : #ifdef CONFIG_SCHED_DEBUG
   11836           0 : void print_cfs_stats(struct seq_file *m, int cpu)
   11837             : {
   11838             :         struct cfs_rq *cfs_rq, *pos;
   11839             : 
   11840             :         rcu_read_lock();
   11841           0 :         for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
   11842           0 :                 print_cfs_rq(m, cpu, cfs_rq);
   11843             :         rcu_read_unlock();
   11844           0 : }
   11845             : 
   11846             : #ifdef CONFIG_NUMA_BALANCING
   11847             : void show_numa_stats(struct task_struct *p, struct seq_file *m)
   11848             : {
   11849             :         int node;
   11850             :         unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
   11851             :         struct numa_group *ng;
   11852             : 
   11853             :         rcu_read_lock();
   11854             :         ng = rcu_dereference(p->numa_group);
   11855             :         for_each_online_node(node) {
   11856             :                 if (p->numa_faults) {
   11857             :                         tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
   11858             :                         tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
   11859             :                 }
   11860             :                 if (ng) {
   11861             :                         gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
   11862             :                         gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
   11863             :                 }
   11864             :                 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
   11865             :         }
   11866             :         rcu_read_unlock();
   11867             : }
   11868             : #endif /* CONFIG_NUMA_BALANCING */
   11869             : #endif /* CONFIG_SCHED_DEBUG */
   11870             : 
   11871           1 : __init void init_sched_fair_class(void)
   11872             : {
   11873             : #ifdef CONFIG_SMP
   11874             :         open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
   11875             : 
   11876             : #ifdef CONFIG_NO_HZ_COMMON
   11877             :         nohz.next_balance = jiffies;
   11878             :         nohz.next_blocked = jiffies;
   11879             :         zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
   11880             : #endif
   11881             : #endif /* SMP */
   11882             : 
   11883           1 : }
   11884             : 
   11885             : /*
   11886             :  * Helper functions to facilitate extracting info from tracepoints.
   11887             :  */
   11888             : 
   11889           0 : const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
   11890             : {
   11891             : #ifdef CONFIG_SMP
   11892             :         return cfs_rq ? &cfs_rq->avg : NULL;
   11893             : #else
   11894           0 :         return NULL;
   11895             : #endif
   11896             : }
   11897             : EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
   11898             : 
   11899           0 : char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
   11900             : {
   11901           0 :         if (!cfs_rq) {
   11902           0 :                 if (str)
   11903           0 :                         strlcpy(str, "(null)", len);
   11904             :                 else
   11905             :                         return NULL;
   11906             :         }
   11907             : 
   11908           0 :         cfs_rq_tg_path(cfs_rq, str, len);
   11909             :         return str;
   11910             : }
   11911             : EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
   11912             : 
   11913           0 : int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
   11914             : {
   11915           0 :         return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
   11916             : }
   11917             : EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
   11918             : 
   11919           0 : const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
   11920             : {
   11921             : #ifdef CONFIG_SMP
   11922             :         return rq ? &rq->avg_rt : NULL;
   11923             : #else
   11924           0 :         return NULL;
   11925             : #endif
   11926             : }
   11927             : EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
   11928             : 
   11929           0 : const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
   11930             : {
   11931             : #ifdef CONFIG_SMP
   11932             :         return rq ? &rq->avg_dl : NULL;
   11933             : #else
   11934           0 :         return NULL;
   11935             : #endif
   11936             : }
   11937             : EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
   11938             : 
   11939           0 : const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
   11940             : {
   11941             : #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
   11942             :         return rq ? &rq->avg_irq : NULL;
   11943             : #else
   11944           0 :         return NULL;
   11945             : #endif
   11946             : }
   11947             : EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
   11948             : 
   11949           0 : int sched_trace_rq_cpu(struct rq *rq)
   11950             : {
   11951           0 :         return rq ? cpu_of(rq) : -1;
   11952             : }
   11953             : EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
   11954             : 
   11955           0 : int sched_trace_rq_cpu_capacity(struct rq *rq)
   11956             : {
   11957             :         return rq ?
   11958             : #ifdef CONFIG_SMP
   11959             :                 rq->cpu_capacity
   11960             : #else
   11961             :                 SCHED_CAPACITY_SCALE
   11962             : #endif
   11963           0 :                 : -1;
   11964             : }
   11965             : EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
   11966             : 
   11967           0 : const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
   11968             : {
   11969             : #ifdef CONFIG_SMP
   11970             :         return rd ? rd->span : NULL;
   11971             : #else
   11972           0 :         return NULL;
   11973             : #endif
   11974             : }
   11975             : EXPORT_SYMBOL_GPL(sched_trace_rd_span);
   11976             : 
   11977           0 : int sched_trace_rq_nr_running(struct rq *rq)
   11978             : {
   11979           0 :         return rq ? rq->nr_running : -1;
   11980             : }
   11981             : EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);

Generated by: LCOV version 1.14