Line data Source code
1 : #ifdef CONFIG_SMP 2 : #include "sched-pelt.h" 3 : 4 : int __update_load_avg_blocked_se(u64 now, struct sched_entity *se); 5 : int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se); 6 : int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq); 7 : int update_rt_rq_load_avg(u64 now, struct rq *rq, int running); 8 : int update_dl_rq_load_avg(u64 now, struct rq *rq, int running); 9 : 10 : #ifdef CONFIG_SCHED_THERMAL_PRESSURE 11 : int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity); 12 : 13 : static inline u64 thermal_load_avg(struct rq *rq) 14 : { 15 : return READ_ONCE(rq->avg_thermal.load_avg); 16 : } 17 : #else 18 : static inline int 19 : update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) 20 : { 21 : return 0; 22 : } 23 : 24 : static inline u64 thermal_load_avg(struct rq *rq) 25 : { 26 : return 0; 27 : } 28 : #endif 29 : 30 : #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 31 : int update_irq_load_avg(struct rq *rq, u64 running); 32 : #else 33 : static inline int 34 : update_irq_load_avg(struct rq *rq, u64 running) 35 : { 36 : return 0; 37 : } 38 : #endif 39 : 40 : #define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024) 41 : 42 : static inline u32 get_pelt_divider(struct sched_avg *avg) 43 : { 44 : return PELT_MIN_DIVIDER + avg->period_contrib; 45 : } 46 : 47 : static inline void cfs_se_util_change(struct sched_avg *avg) 48 : { 49 : unsigned int enqueued; 50 : 51 : if (!sched_feat(UTIL_EST)) 52 : return; 53 : 54 : /* Avoid store if the flag has been already reset */ 55 : enqueued = avg->util_est.enqueued; 56 : if (!(enqueued & UTIL_AVG_UNCHANGED)) 57 : return; 58 : 59 : /* Reset flag to report util_avg has been updated */ 60 : enqueued &= ~UTIL_AVG_UNCHANGED; 61 : WRITE_ONCE(avg->util_est.enqueued, enqueued); 62 : } 63 : 64 : /* 65 : * The clock_pelt scales the time to reflect the effective amount of 66 : * computation done during the running delta time but then sync back to 67 : * clock_task when rq is idle. 68 : * 69 : * 70 : * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16 71 : * @ max capacity ------******---------------******--------------- 72 : * @ half capacity ------************---------************--------- 73 : * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16 74 : * 75 : */ 76 : static inline void update_rq_clock_pelt(struct rq *rq, s64 delta) 77 : { 78 : if (unlikely(is_idle_task(rq->curr))) { 79 : /* The rq is idle, we can sync to clock_task */ 80 : rq->clock_pelt = rq_clock_task(rq); 81 : return; 82 : } 83 : 84 : /* 85 : * When a rq runs at a lower compute capacity, it will need 86 : * more time to do the same amount of work than at max 87 : * capacity. In order to be invariant, we scale the delta to 88 : * reflect how much work has been really done. 89 : * Running longer results in stealing idle time that will 90 : * disturb the load signal compared to max capacity. This 91 : * stolen idle time will be automatically reflected when the 92 : * rq will be idle and the clock will be synced with 93 : * rq_clock_task. 94 : */ 95 : 96 : /* 97 : * Scale the elapsed time to reflect the real amount of 98 : * computation 99 : */ 100 : delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq))); 101 : delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq))); 102 : 103 : rq->clock_pelt += delta; 104 : } 105 : 106 : /* 107 : * When rq becomes idle, we have to check if it has lost idle time 108 : * because it was fully busy. A rq is fully used when the /Sum util_sum 109 : * is greater or equal to: 110 : * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT; 111 : * For optimization and computing rounding purpose, we don't take into account 112 : * the position in the current window (period_contrib) and we use the higher 113 : * bound of util_sum to decide. 114 : */ 115 : static inline void update_idle_rq_clock_pelt(struct rq *rq) 116 : { 117 : u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX; 118 : u32 util_sum = rq->cfs.avg.util_sum; 119 : util_sum += rq->avg_rt.util_sum; 120 : util_sum += rq->avg_dl.util_sum; 121 : 122 : /* 123 : * Reflecting stolen time makes sense only if the idle 124 : * phase would be present at max capacity. As soon as the 125 : * utilization of a rq has reached the maximum value, it is 126 : * considered as an always running rq without idle time to 127 : * steal. This potential idle time is considered as lost in 128 : * this case. We keep track of this lost idle time compare to 129 : * rq's clock_task. 130 : */ 131 : if (util_sum >= divider) 132 : rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt; 133 : } 134 : 135 : static inline u64 rq_clock_pelt(struct rq *rq) 136 : { 137 : lockdep_assert_rq_held(rq); 138 : assert_clock_updated(rq); 139 : 140 : return rq->clock_pelt - rq->lost_idle_time; 141 : } 142 : 143 : #ifdef CONFIG_CFS_BANDWIDTH 144 : /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 145 : static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) 146 : { 147 : if (unlikely(cfs_rq->throttle_count)) 148 : return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 149 : 150 : return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 151 : } 152 : #else 153 : static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) 154 : { 155 : return rq_clock_pelt(rq_of(cfs_rq)); 156 : } 157 : #endif 158 : 159 : #else 160 : 161 : static inline int 162 : update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 163 : { 164 : return 0; 165 : } 166 : 167 : static inline int 168 : update_rt_rq_load_avg(u64 now, struct rq *rq, int running) 169 : { 170 : return 0; 171 : } 172 : 173 : static inline int 174 : update_dl_rq_load_avg(u64 now, struct rq *rq, int running) 175 : { 176 : return 0; 177 : } 178 : 179 : static inline int 180 : update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) 181 : { 182 : return 0; 183 : } 184 : 185 : static inline u64 thermal_load_avg(struct rq *rq) 186 : { 187 : return 0; 188 : } 189 : 190 : static inline int 191 : update_irq_load_avg(struct rq *rq, u64 running) 192 : { 193 : return 0; 194 : } 195 : 196 : static inline u64 rq_clock_pelt(struct rq *rq) 197 : { 198 0 : return rq_clock_task(rq); 199 : } 200 : 201 : static inline void 202 : update_rq_clock_pelt(struct rq *rq, s64 delta) { } 203 : 204 : static inline void 205 : update_idle_rq_clock_pelt(struct rq *rq) { } 206 : 207 : #endif 208 : 209 :