LCOV - code coverage report
Current view: top level - kernel/time - posix-cpu-timers.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 31 462 6.7 %
Date: 2022-12-09 01:23:36 Functions: 6 43 14.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Implement CPU time clocks for the POSIX clock interface.
       4             :  */
       5             : 
       6             : #include <linux/sched/signal.h>
       7             : #include <linux/sched/cputime.h>
       8             : #include <linux/posix-timers.h>
       9             : #include <linux/errno.h>
      10             : #include <linux/math64.h>
      11             : #include <linux/uaccess.h>
      12             : #include <linux/kernel_stat.h>
      13             : #include <trace/events/timer.h>
      14             : #include <linux/tick.h>
      15             : #include <linux/workqueue.h>
      16             : #include <linux/compat.h>
      17             : #include <linux/sched/deadline.h>
      18             : #include <linux/task_work.h>
      19             : 
      20             : #include "posix-timers.h"
      21             : 
      22             : static void posix_cpu_timer_rearm(struct k_itimer *timer);
      23             : 
      24         107 : void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
      25             : {
      26         107 :         posix_cputimers_init(pct);
      27         107 :         if (cpu_limit != RLIM_INFINITY) {
      28           0 :                 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
      29           0 :                 pct->timers_active = true;
      30             :         }
      31         107 : }
      32             : 
      33             : /*
      34             :  * Called after updating RLIMIT_CPU to run cpu timer and update
      35             :  * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
      36             :  * necessary. Needs siglock protection since other code may update the
      37             :  * expiration cache as well.
      38             :  *
      39             :  * Returns 0 on success, -ESRCH on failure.  Can fail if the task is exiting and
      40             :  * we cannot lock_task_sighand.  Cannot fail if task is current.
      41             :  */
      42           0 : int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
      43             : {
      44           0 :         u64 nsecs = rlim_new * NSEC_PER_SEC;
      45             :         unsigned long irq_fl;
      46             : 
      47           0 :         if (!lock_task_sighand(task, &irq_fl))
      48             :                 return -ESRCH;
      49           0 :         set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
      50           0 :         unlock_task_sighand(task, &irq_fl);
      51           0 :         return 0;
      52             : }
      53             : 
      54             : /*
      55             :  * Functions for validating access to tasks.
      56             :  */
      57           0 : static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
      58             : {
      59           0 :         const bool thread = !!CPUCLOCK_PERTHREAD(clock);
      60           0 :         const pid_t upid = CPUCLOCK_PID(clock);
      61             :         struct pid *pid;
      62             : 
      63           0 :         if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
      64             :                 return NULL;
      65             : 
      66             :         /*
      67             :          * If the encoded PID is 0, then the timer is targeted at current
      68             :          * or the process to which current belongs.
      69             :          */
      70           0 :         if (upid == 0)
      71           0 :                 return thread ? task_pid(current) : task_tgid(current);
      72             : 
      73           0 :         pid = find_vpid(upid);
      74           0 :         if (!pid)
      75             :                 return NULL;
      76             : 
      77           0 :         if (thread) {
      78           0 :                 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
      79           0 :                 return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
      80             :         }
      81             : 
      82             :         /*
      83             :          * For clock_gettime(PROCESS) allow finding the process by
      84             :          * with the pid of the current task.  The code needs the tgid
      85             :          * of the process so that pid_task(pid, PIDTYPE_TGID) can be
      86             :          * used to find the process.
      87             :          */
      88           0 :         if (gettime && (pid == task_pid(current)))
      89           0 :                 return task_tgid(current);
      90             : 
      91             :         /*
      92             :          * For processes require that pid identifies a process.
      93             :          */
      94           0 :         return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
      95             : }
      96             : 
      97             : static inline int validate_clock_permissions(const clockid_t clock)
      98             : {
      99             :         int ret;
     100             : 
     101             :         rcu_read_lock();
     102           0 :         ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
     103             :         rcu_read_unlock();
     104             : 
     105             :         return ret;
     106             : }
     107             : 
     108             : static inline enum pid_type clock_pid_type(const clockid_t clock)
     109             : {
     110           0 :         return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
     111             : }
     112             : 
     113             : static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
     114             : {
     115           0 :         return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
     116             : }
     117             : 
     118             : /*
     119             :  * Update expiry time from increment, and increase overrun count,
     120             :  * given the current clock sample.
     121             :  */
     122           0 : static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
     123             : {
     124           0 :         u64 delta, incr, expires = timer->it.cpu.node.expires;
     125             :         int i;
     126             : 
     127           0 :         if (!timer->it_interval)
     128             :                 return expires;
     129             : 
     130           0 :         if (now < expires)
     131             :                 return expires;
     132             : 
     133           0 :         incr = timer->it_interval;
     134           0 :         delta = now + incr - expires;
     135             : 
     136             :         /* Don't use (incr*2 < delta), incr*2 might overflow. */
     137           0 :         for (i = 0; incr < delta - incr; i++)
     138           0 :                 incr = incr << 1;
     139             : 
     140           0 :         for (; i >= 0; incr >>= 1, i--) {
     141           0 :                 if (delta < incr)
     142           0 :                         continue;
     143             : 
     144           0 :                 timer->it.cpu.node.expires += incr;
     145           0 :                 timer->it_overrun += 1LL << i;
     146           0 :                 delta -= incr;
     147             :         }
     148           0 :         return timer->it.cpu.node.expires;
     149             : }
     150             : 
     151             : /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
     152             : static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
     153             : {
     154          26 :         return !(~pct->bases[CPUCLOCK_PROF].nextevt |
     155          26 :                  ~pct->bases[CPUCLOCK_VIRT].nextevt |
     156          13 :                  ~pct->bases[CPUCLOCK_SCHED].nextevt);
     157             : }
     158             : 
     159             : static int
     160           0 : posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
     161             : {
     162           0 :         int error = validate_clock_permissions(which_clock);
     163             : 
     164           0 :         if (!error) {
     165           0 :                 tp->tv_sec = 0;
     166           0 :                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
     167           0 :                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
     168             :                         /*
     169             :                          * If sched_clock is using a cycle counter, we
     170             :                          * don't have any idea of its true resolution
     171             :                          * exported, but it is much more than 1s/HZ.
     172             :                          */
     173           0 :                         tp->tv_nsec = 1;
     174             :                 }
     175             :         }
     176           0 :         return error;
     177             : }
     178             : 
     179             : static int
     180           0 : posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
     181             : {
     182           0 :         int error = validate_clock_permissions(clock);
     183             : 
     184             :         /*
     185             :          * You can never reset a CPU clock, but we check for other errors
     186             :          * in the call before failing with EPERM.
     187             :          */
     188           0 :         return error ? : -EPERM;
     189             : }
     190             : 
     191             : /*
     192             :  * Sample a per-thread clock for the given task. clkid is validated.
     193             :  */
     194           0 : static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
     195             : {
     196             :         u64 utime, stime;
     197             : 
     198           0 :         if (clkid == CPUCLOCK_SCHED)
     199           0 :                 return task_sched_runtime(p);
     200             : 
     201           0 :         task_cputime(p, &utime, &stime);
     202             : 
     203           0 :         switch (clkid) {
     204             :         case CPUCLOCK_PROF:
     205           0 :                 return utime + stime;
     206             :         case CPUCLOCK_VIRT:
     207             :                 return utime;
     208             :         default:
     209           0 :                 WARN_ON_ONCE(1);
     210             :         }
     211             :         return 0;
     212             : }
     213             : 
     214             : static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
     215             : {
     216           0 :         samples[CPUCLOCK_PROF] = stime + utime;
     217           0 :         samples[CPUCLOCK_VIRT] = utime;
     218           0 :         samples[CPUCLOCK_SCHED] = rtime;
     219             : }
     220             : 
     221             : static void task_sample_cputime(struct task_struct *p, u64 *samples)
     222             : {
     223             :         u64 stime, utime;
     224             : 
     225           0 :         task_cputime(p, &utime, &stime);
     226           0 :         store_samples(samples, stime, utime, p->se.sum_exec_runtime);
     227             : }
     228             : 
     229             : static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
     230             :                                        u64 *samples)
     231             : {
     232             :         u64 stime, utime, rtime;
     233             : 
     234           0 :         utime = atomic64_read(&at->utime);
     235           0 :         stime = atomic64_read(&at->stime);
     236           0 :         rtime = atomic64_read(&at->sum_exec_runtime);
     237           0 :         store_samples(samples, stime, utime, rtime);
     238             : }
     239             : 
     240             : /*
     241             :  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
     242             :  * to avoid race conditions with concurrent updates to cputime.
     243             :  */
     244             : static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
     245             : {
     246             :         u64 curr_cputime;
     247             : retry:
     248           0 :         curr_cputime = atomic64_read(cputime);
     249           0 :         if (sum_cputime > curr_cputime) {
     250           0 :                 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
     251             :                         goto retry;
     252             :         }
     253             : }
     254             : 
     255           0 : static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
     256             :                               struct task_cputime *sum)
     257             : {
     258           0 :         __update_gt_cputime(&cputime_atomic->utime, sum->utime);
     259           0 :         __update_gt_cputime(&cputime_atomic->stime, sum->stime);
     260           0 :         __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
     261           0 : }
     262             : 
     263             : /**
     264             :  * thread_group_sample_cputime - Sample cputime for a given task
     265             :  * @tsk:        Task for which cputime needs to be started
     266             :  * @samples:    Storage for time samples
     267             :  *
     268             :  * Called from sys_getitimer() to calculate the expiry time of an active
     269             :  * timer. That means group cputime accounting is already active. Called
     270             :  * with task sighand lock held.
     271             :  *
     272             :  * Updates @times with an uptodate sample of the thread group cputimes.
     273             :  */
     274           0 : void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
     275             : {
     276           0 :         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
     277           0 :         struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
     278             : 
     279           0 :         WARN_ON_ONCE(!pct->timers_active);
     280             : 
     281           0 :         proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
     282           0 : }
     283             : 
     284             : /**
     285             :  * thread_group_start_cputime - Start cputime and return a sample
     286             :  * @tsk:        Task for which cputime needs to be started
     287             :  * @samples:    Storage for time samples
     288             :  *
     289             :  * The thread group cputime accounting is avoided when there are no posix
     290             :  * CPU timers armed. Before starting a timer it's required to check whether
     291             :  * the time accounting is active. If not, a full update of the atomic
     292             :  * accounting store needs to be done and the accounting enabled.
     293             :  *
     294             :  * Updates @times with an uptodate sample of the thread group cputimes.
     295             :  */
     296           0 : static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
     297             : {
     298           0 :         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
     299           0 :         struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
     300             : 
     301           0 :         lockdep_assert_task_sighand_held(tsk);
     302             : 
     303             :         /* Check if cputimer isn't running. This is accessed without locking. */
     304           0 :         if (!READ_ONCE(pct->timers_active)) {
     305             :                 struct task_cputime sum;
     306             : 
     307             :                 /*
     308             :                  * The POSIX timer interface allows for absolute time expiry
     309             :                  * values through the TIMER_ABSTIME flag, therefore we have
     310             :                  * to synchronize the timer to the clock every time we start it.
     311             :                  */
     312           0 :                 thread_group_cputime(tsk, &sum);
     313           0 :                 update_gt_cputime(&cputimer->cputime_atomic, &sum);
     314             : 
     315             :                 /*
     316             :                  * We're setting timers_active without a lock. Ensure this
     317             :                  * only gets written to in one operation. We set it after
     318             :                  * update_gt_cputime() as a small optimization, but
     319             :                  * barriers are not required because update_gt_cputime()
     320             :                  * can handle concurrent updates.
     321             :                  */
     322           0 :                 WRITE_ONCE(pct->timers_active, true);
     323             :         }
     324           0 :         proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
     325           0 : }
     326             : 
     327             : static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
     328             : {
     329             :         struct task_cputime ct;
     330             : 
     331           0 :         thread_group_cputime(tsk, &ct);
     332           0 :         store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
     333             : }
     334             : 
     335             : /*
     336             :  * Sample a process (thread group) clock for the given task clkid. If the
     337             :  * group's cputime accounting is already enabled, read the atomic
     338             :  * store. Otherwise a full update is required.  clkid is already validated.
     339             :  */
     340           0 : static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
     341             :                                   bool start)
     342             : {
     343           0 :         struct thread_group_cputimer *cputimer = &p->signal->cputimer;
     344           0 :         struct posix_cputimers *pct = &p->signal->posix_cputimers;
     345             :         u64 samples[CPUCLOCK_MAX];
     346             : 
     347           0 :         if (!READ_ONCE(pct->timers_active)) {
     348           0 :                 if (start)
     349           0 :                         thread_group_start_cputime(p, samples);
     350             :                 else
     351             :                         __thread_group_cputime(p, samples);
     352             :         } else {
     353           0 :                 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
     354             :         }
     355             : 
     356           0 :         return samples[clkid];
     357             : }
     358             : 
     359           0 : static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
     360             : {
     361           0 :         const clockid_t clkid = CPUCLOCK_WHICH(clock);
     362             :         struct task_struct *tsk;
     363             :         u64 t;
     364             : 
     365             :         rcu_read_lock();
     366           0 :         tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
     367           0 :         if (!tsk) {
     368             :                 rcu_read_unlock();
     369           0 :                 return -EINVAL;
     370             :         }
     371             : 
     372           0 :         if (CPUCLOCK_PERTHREAD(clock))
     373           0 :                 t = cpu_clock_sample(clkid, tsk);
     374             :         else
     375           0 :                 t = cpu_clock_sample_group(clkid, tsk, false);
     376             :         rcu_read_unlock();
     377             : 
     378           0 :         *tp = ns_to_timespec64(t);
     379           0 :         return 0;
     380             : }
     381             : 
     382             : /*
     383             :  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
     384             :  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
     385             :  * new timer already all-zeros initialized.
     386             :  */
     387           0 : static int posix_cpu_timer_create(struct k_itimer *new_timer)
     388             : {
     389             :         static struct lock_class_key posix_cpu_timers_key;
     390             :         struct pid *pid;
     391             : 
     392             :         rcu_read_lock();
     393           0 :         pid = pid_for_clock(new_timer->it_clock, false);
     394           0 :         if (!pid) {
     395             :                 rcu_read_unlock();
     396           0 :                 return -EINVAL;
     397             :         }
     398             : 
     399             :         /*
     400             :          * If posix timer expiry is handled in task work context then
     401             :          * timer::it_lock can be taken without disabling interrupts as all
     402             :          * other locking happens in task context. This requires a separate
     403             :          * lock class key otherwise regular posix timer expiry would record
     404             :          * the lock class being taken in interrupt context and generate a
     405             :          * false positive warning.
     406             :          */
     407             :         if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
     408             :                 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
     409             : 
     410           0 :         new_timer->kclock = &clock_posix_cpu;
     411           0 :         timerqueue_init(&new_timer->it.cpu.node);
     412           0 :         new_timer->it.cpu.pid = get_pid(pid);
     413             :         rcu_read_unlock();
     414           0 :         return 0;
     415             : }
     416             : 
     417             : static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
     418             :                                               struct task_struct *tsk)
     419             : {
     420           0 :         int clkidx = CPUCLOCK_WHICH(timer->it_clock);
     421             : 
     422           0 :         if (CPUCLOCK_PERTHREAD(timer->it_clock))
     423           0 :                 return tsk->posix_cputimers.bases + clkidx;
     424             :         else
     425           0 :                 return tsk->signal->posix_cputimers.bases + clkidx;
     426             : }
     427             : 
     428             : /*
     429             :  * Force recalculating the base earliest expiration on the next tick.
     430             :  * This will also re-evaluate the need to keep around the process wide
     431             :  * cputime counter and tick dependency and eventually shut these down
     432             :  * if necessary.
     433             :  */
     434             : static void trigger_base_recalc_expires(struct k_itimer *timer,
     435             :                                         struct task_struct *tsk)
     436             : {
     437           0 :         struct posix_cputimer_base *base = timer_base(timer, tsk);
     438             : 
     439           0 :         base->nextevt = 0;
     440             : }
     441             : 
     442             : /*
     443             :  * Dequeue the timer and reset the base if it was its earliest expiration.
     444             :  * It makes sure the next tick recalculates the base next expiration so we
     445             :  * don't keep the costly process wide cputime counter around for a random
     446             :  * amount of time, along with the tick dependency.
     447             :  *
     448             :  * If another timer gets queued between this and the next tick, its
     449             :  * expiration will update the base next event if necessary on the next
     450             :  * tick.
     451             :  */
     452           0 : static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
     453             : {
     454           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     455             :         struct posix_cputimer_base *base;
     456             : 
     457           0 :         if (!cpu_timer_dequeue(ctmr))
     458             :                 return;
     459             : 
     460           0 :         base = timer_base(timer, p);
     461           0 :         if (cpu_timer_getexpires(ctmr) == base->nextevt)
     462             :                 trigger_base_recalc_expires(timer, p);
     463             : }
     464             : 
     465             : 
     466             : /*
     467             :  * Clean up a CPU-clock timer that is about to be destroyed.
     468             :  * This is called from timer deletion with the timer already locked.
     469             :  * If we return TIMER_RETRY, it's necessary to release the timer's lock
     470             :  * and try again.  (This happens when the timer is in the middle of firing.)
     471             :  */
     472           0 : static int posix_cpu_timer_del(struct k_itimer *timer)
     473             : {
     474           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     475             :         struct sighand_struct *sighand;
     476             :         struct task_struct *p;
     477             :         unsigned long flags;
     478           0 :         int ret = 0;
     479             : 
     480             :         rcu_read_lock();
     481           0 :         p = cpu_timer_task_rcu(timer);
     482           0 :         if (!p)
     483             :                 goto out;
     484             : 
     485             :         /*
     486             :          * Protect against sighand release/switch in exit/exec and process/
     487             :          * thread timer list entry concurrent read/writes.
     488             :          */
     489           0 :         sighand = lock_task_sighand(p, &flags);
     490           0 :         if (unlikely(sighand == NULL)) {
     491             :                 /*
     492             :                  * This raced with the reaping of the task. The exit cleanup
     493             :                  * should have removed this timer from the timer queue.
     494             :                  */
     495           0 :                 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
     496             :         } else {
     497           0 :                 if (timer->it.cpu.firing)
     498             :                         ret = TIMER_RETRY;
     499             :                 else
     500           0 :                         disarm_timer(timer, p);
     501             : 
     502           0 :                 unlock_task_sighand(p, &flags);
     503             :         }
     504             : 
     505             : out:
     506             :         rcu_read_unlock();
     507           0 :         if (!ret)
     508           0 :                 put_pid(ctmr->pid);
     509             : 
     510           0 :         return ret;
     511             : }
     512             : 
     513             : static void cleanup_timerqueue(struct timerqueue_head *head)
     514             : {
     515             :         struct timerqueue_node *node;
     516             :         struct cpu_timer *ctmr;
     517             : 
     518        1116 :         while ((node = timerqueue_getnext(head))) {
     519           0 :                 timerqueue_del(head, node);
     520           0 :                 ctmr = container_of(node, struct cpu_timer, node);
     521           0 :                 ctmr->head = NULL;
     522             :         }
     523             : }
     524             : 
     525             : /*
     526             :  * Clean out CPU timers which are still armed when a thread exits. The
     527             :  * timers are only removed from the list. No other updates are done. The
     528             :  * corresponding posix timers are still accessible, but cannot be rearmed.
     529             :  *
     530             :  * This must be called with the siglock held.
     531             :  */
     532         186 : static void cleanup_timers(struct posix_cputimers *pct)
     533             : {
     534         372 :         cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
     535         372 :         cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
     536         372 :         cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
     537         186 : }
     538             : 
     539             : /*
     540             :  * These are both called with the siglock held, when the current thread
     541             :  * is being reaped.  When the final (leader) thread in the group is reaped,
     542             :  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
     543             :  */
     544          93 : void posix_cpu_timers_exit(struct task_struct *tsk)
     545             : {
     546          93 :         cleanup_timers(&tsk->posix_cputimers);
     547          93 : }
     548          93 : void posix_cpu_timers_exit_group(struct task_struct *tsk)
     549             : {
     550          93 :         cleanup_timers(&tsk->signal->posix_cputimers);
     551          93 : }
     552             : 
     553             : /*
     554             :  * Insert the timer on the appropriate list before any timers that
     555             :  * expire later.  This must be called with the sighand lock held.
     556             :  */
     557           0 : static void arm_timer(struct k_itimer *timer, struct task_struct *p)
     558             : {
     559           0 :         struct posix_cputimer_base *base = timer_base(timer, p);
     560           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     561           0 :         u64 newexp = cpu_timer_getexpires(ctmr);
     562             : 
     563           0 :         if (!cpu_timer_enqueue(&base->tqhead, ctmr))
     564             :                 return;
     565             : 
     566             :         /*
     567             :          * We are the new earliest-expiring POSIX 1.b timer, hence
     568             :          * need to update expiration cache. Take into account that
     569             :          * for process timers we share expiration cache with itimers
     570             :          * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
     571             :          */
     572           0 :         if (newexp < base->nextevt)
     573           0 :                 base->nextevt = newexp;
     574             : 
     575             :         if (CPUCLOCK_PERTHREAD(timer->it_clock))
     576             :                 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
     577             :         else
     578             :                 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
     579             : }
     580             : 
     581             : /*
     582             :  * The timer is locked, fire it and arrange for its reload.
     583             :  */
     584           0 : static void cpu_timer_fire(struct k_itimer *timer)
     585             : {
     586           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     587             : 
     588           0 :         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
     589             :                 /*
     590             :                  * User don't want any signal.
     591             :                  */
     592           0 :                 cpu_timer_setexpires(ctmr, 0);
     593           0 :         } else if (unlikely(timer->sigq == NULL)) {
     594             :                 /*
     595             :                  * This a special case for clock_nanosleep,
     596             :                  * not a normal timer from sys_timer_create.
     597             :                  */
     598           0 :                 wake_up_process(timer->it_process);
     599           0 :                 cpu_timer_setexpires(ctmr, 0);
     600           0 :         } else if (!timer->it_interval) {
     601             :                 /*
     602             :                  * One-shot timer.  Clear it as soon as it's fired.
     603             :                  */
     604           0 :                 posix_timer_event(timer, 0);
     605           0 :                 cpu_timer_setexpires(ctmr, 0);
     606           0 :         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
     607             :                 /*
     608             :                  * The signal did not get queued because the signal
     609             :                  * was ignored, so we won't get any callback to
     610             :                  * reload the timer.  But we need to keep it
     611             :                  * ticking in case the signal is deliverable next time.
     612             :                  */
     613           0 :                 posix_cpu_timer_rearm(timer);
     614           0 :                 ++timer->it_requeue_pending;
     615             :         }
     616           0 : }
     617             : 
     618             : /*
     619             :  * Guts of sys_timer_settime for CPU timers.
     620             :  * This is called with the timer locked and interrupts disabled.
     621             :  * If we return TIMER_RETRY, it's necessary to release the timer's lock
     622             :  * and try again.  (This happens when the timer is in the middle of firing.)
     623             :  */
     624           0 : static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
     625             :                                struct itimerspec64 *new, struct itimerspec64 *old)
     626             : {
     627           0 :         clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
     628             :         u64 old_expires, new_expires, old_incr, val;
     629           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     630             :         struct sighand_struct *sighand;
     631             :         struct task_struct *p;
     632             :         unsigned long flags;
     633           0 :         int ret = 0;
     634             : 
     635             :         rcu_read_lock();
     636           0 :         p = cpu_timer_task_rcu(timer);
     637           0 :         if (!p) {
     638             :                 /*
     639             :                  * If p has just been reaped, we can no
     640             :                  * longer get any information about it at all.
     641             :                  */
     642             :                 rcu_read_unlock();
     643           0 :                 return -ESRCH;
     644             :         }
     645             : 
     646             :         /*
     647             :          * Use the to_ktime conversion because that clamps the maximum
     648             :          * value to KTIME_MAX and avoid multiplication overflows.
     649             :          */
     650           0 :         new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
     651             : 
     652             :         /*
     653             :          * Protect against sighand release/switch in exit/exec and p->cpu_timers
     654             :          * and p->signal->cpu_timers read/write in arm_timer()
     655             :          */
     656           0 :         sighand = lock_task_sighand(p, &flags);
     657             :         /*
     658             :          * If p has just been reaped, we can no
     659             :          * longer get any information about it at all.
     660             :          */
     661           0 :         if (unlikely(sighand == NULL)) {
     662             :                 rcu_read_unlock();
     663           0 :                 return -ESRCH;
     664             :         }
     665             : 
     666             :         /*
     667             :          * Disarm any old timer after extracting its expiry time.
     668             :          */
     669           0 :         old_incr = timer->it_interval;
     670           0 :         old_expires = cpu_timer_getexpires(ctmr);
     671             : 
     672           0 :         if (unlikely(timer->it.cpu.firing)) {
     673           0 :                 timer->it.cpu.firing = -1;
     674           0 :                 ret = TIMER_RETRY;
     675             :         } else {
     676             :                 cpu_timer_dequeue(ctmr);
     677             :         }
     678             : 
     679             :         /*
     680             :          * We need to sample the current value to convert the new
     681             :          * value from to relative and absolute, and to convert the
     682             :          * old value from absolute to relative.  To set a process
     683             :          * timer, we need a sample to balance the thread expiry
     684             :          * times (in arm_timer).  With an absolute time, we must
     685             :          * check if it's already passed.  In short, we need a sample.
     686             :          */
     687           0 :         if (CPUCLOCK_PERTHREAD(timer->it_clock))
     688           0 :                 val = cpu_clock_sample(clkid, p);
     689             :         else
     690           0 :                 val = cpu_clock_sample_group(clkid, p, true);
     691             : 
     692           0 :         if (old) {
     693           0 :                 if (old_expires == 0) {
     694           0 :                         old->it_value.tv_sec = 0;
     695           0 :                         old->it_value.tv_nsec = 0;
     696             :                 } else {
     697             :                         /*
     698             :                          * Update the timer in case it has overrun already.
     699             :                          * If it has, we'll report it as having overrun and
     700             :                          * with the next reloaded timer already ticking,
     701             :                          * though we are swallowing that pending
     702             :                          * notification here to install the new setting.
     703             :                          */
     704           0 :                         u64 exp = bump_cpu_timer(timer, val);
     705             : 
     706           0 :                         if (val < exp) {
     707           0 :                                 old_expires = exp - val;
     708           0 :                                 old->it_value = ns_to_timespec64(old_expires);
     709             :                         } else {
     710           0 :                                 old->it_value.tv_nsec = 1;
     711           0 :                                 old->it_value.tv_sec = 0;
     712             :                         }
     713             :                 }
     714             :         }
     715             : 
     716           0 :         if (unlikely(ret)) {
     717             :                 /*
     718             :                  * We are colliding with the timer actually firing.
     719             :                  * Punt after filling in the timer's old value, and
     720             :                  * disable this firing since we are already reporting
     721             :                  * it as an overrun (thanks to bump_cpu_timer above).
     722             :                  */
     723           0 :                 unlock_task_sighand(p, &flags);
     724             :                 goto out;
     725             :         }
     726             : 
     727           0 :         if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
     728           0 :                 new_expires += val;
     729             :         }
     730             : 
     731             :         /*
     732             :          * Install the new expiry time (or zero).
     733             :          * For a timer with no notification action, we don't actually
     734             :          * arm the timer (we'll just fake it for timer_gettime).
     735             :          */
     736           0 :         cpu_timer_setexpires(ctmr, new_expires);
     737           0 :         if (new_expires != 0 && val < new_expires) {
     738           0 :                 arm_timer(timer, p);
     739             :         }
     740             : 
     741           0 :         unlock_task_sighand(p, &flags);
     742             :         /*
     743             :          * Install the new reload setting, and
     744             :          * set up the signal and overrun bookkeeping.
     745             :          */
     746           0 :         timer->it_interval = timespec64_to_ktime(new->it_interval);
     747             : 
     748             :         /*
     749             :          * This acts as a modification timestamp for the timer,
     750             :          * so any automatic reload attempt will punt on seeing
     751             :          * that we have reset the timer manually.
     752             :          */
     753           0 :         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
     754             :                 ~REQUEUE_PENDING;
     755           0 :         timer->it_overrun_last = 0;
     756           0 :         timer->it_overrun = -1;
     757             : 
     758           0 :         if (val >= new_expires) {
     759           0 :                 if (new_expires != 0) {
     760             :                         /*
     761             :                          * The designated time already passed, so we notify
     762             :                          * immediately, even if the thread never runs to
     763             :                          * accumulate more time on this clock.
     764             :                          */
     765           0 :                         cpu_timer_fire(timer);
     766             :                 }
     767             : 
     768             :                 /*
     769             :                  * Make sure we don't keep around the process wide cputime
     770             :                  * counter or the tick dependency if they are not necessary.
     771             :                  */
     772           0 :                 sighand = lock_task_sighand(p, &flags);
     773           0 :                 if (!sighand)
     774             :                         goto out;
     775             : 
     776           0 :                 if (!cpu_timer_queued(ctmr))
     777             :                         trigger_base_recalc_expires(timer, p);
     778             : 
     779           0 :                 unlock_task_sighand(p, &flags);
     780             :         }
     781             :  out:
     782             :         rcu_read_unlock();
     783           0 :         if (old)
     784           0 :                 old->it_interval = ns_to_timespec64(old_incr);
     785             : 
     786             :         return ret;
     787             : }
     788             : 
     789           0 : static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
     790             : {
     791           0 :         clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
     792           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     793           0 :         u64 now, expires = cpu_timer_getexpires(ctmr);
     794             :         struct task_struct *p;
     795             : 
     796             :         rcu_read_lock();
     797           0 :         p = cpu_timer_task_rcu(timer);
     798           0 :         if (!p)
     799             :                 goto out;
     800             : 
     801             :         /*
     802             :          * Easy part: convert the reload time.
     803             :          */
     804           0 :         itp->it_interval = ktime_to_timespec64(timer->it_interval);
     805             : 
     806           0 :         if (!expires)
     807             :                 goto out;
     808             : 
     809             :         /*
     810             :          * Sample the clock to take the difference with the expiry time.
     811             :          */
     812           0 :         if (CPUCLOCK_PERTHREAD(timer->it_clock))
     813           0 :                 now = cpu_clock_sample(clkid, p);
     814             :         else
     815           0 :                 now = cpu_clock_sample_group(clkid, p, false);
     816             : 
     817           0 :         if (now < expires) {
     818           0 :                 itp->it_value = ns_to_timespec64(expires - now);
     819             :         } else {
     820             :                 /*
     821             :                  * The timer should have expired already, but the firing
     822             :                  * hasn't taken place yet.  Say it's just about to expire.
     823             :                  */
     824           0 :                 itp->it_value.tv_nsec = 1;
     825           0 :                 itp->it_value.tv_sec = 0;
     826             :         }
     827             : out:
     828             :         rcu_read_unlock();
     829           0 : }
     830             : 
     831             : #define MAX_COLLECTED   20
     832             : 
     833           0 : static u64 collect_timerqueue(struct timerqueue_head *head,
     834             :                               struct list_head *firing, u64 now)
     835             : {
     836             :         struct timerqueue_node *next;
     837           0 :         int i = 0;
     838             : 
     839           0 :         while ((next = timerqueue_getnext(head))) {
     840             :                 struct cpu_timer *ctmr;
     841             :                 u64 expires;
     842             : 
     843           0 :                 ctmr = container_of(next, struct cpu_timer, node);
     844           0 :                 expires = cpu_timer_getexpires(ctmr);
     845             :                 /* Limit the number of timers to expire at once */
     846           0 :                 if (++i == MAX_COLLECTED || now < expires)
     847             :                         return expires;
     848             : 
     849           0 :                 ctmr->firing = 1;
     850           0 :                 cpu_timer_dequeue(ctmr);
     851           0 :                 list_add_tail(&ctmr->elist, firing);
     852             :         }
     853             : 
     854             :         return U64_MAX;
     855             : }
     856             : 
     857           0 : static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
     858             :                                     struct list_head *firing)
     859             : {
     860           0 :         struct posix_cputimer_base *base = pct->bases;
     861             :         int i;
     862             : 
     863           0 :         for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
     864           0 :                 base->nextevt = collect_timerqueue(&base->tqhead, firing,
     865           0 :                                                     samples[i]);
     866             :         }
     867           0 : }
     868             : 
     869             : static inline void check_dl_overrun(struct task_struct *tsk)
     870             : {
     871           0 :         if (tsk->dl.dl_overrun) {
     872           0 :                 tsk->dl.dl_overrun = 0;
     873           0 :                 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
     874             :         }
     875             : }
     876             : 
     877           0 : static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
     878             : {
     879           0 :         if (time < limit)
     880             :                 return false;
     881             : 
     882           0 :         if (print_fatal_signals) {
     883           0 :                 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
     884             :                         rt ? "RT" : "CPU", hard ? "hard" : "soft",
     885             :                         current->comm, task_pid_nr(current));
     886             :         }
     887           0 :         __group_send_sig_info(signo, SEND_SIG_PRIV, current);
     888           0 :         return true;
     889             : }
     890             : 
     891             : /*
     892             :  * Check for any per-thread CPU timers that have fired and move them off
     893             :  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
     894             :  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
     895             :  */
     896           0 : static void check_thread_timers(struct task_struct *tsk,
     897             :                                 struct list_head *firing)
     898             : {
     899           0 :         struct posix_cputimers *pct = &tsk->posix_cputimers;
     900             :         u64 samples[CPUCLOCK_MAX];
     901             :         unsigned long soft;
     902             : 
     903           0 :         if (dl_task(tsk))
     904             :                 check_dl_overrun(tsk);
     905             : 
     906           0 :         if (expiry_cache_is_inactive(pct))
     907           0 :                 return;
     908             : 
     909           0 :         task_sample_cputime(tsk, samples);
     910           0 :         collect_posix_cputimers(pct, samples, firing);
     911             : 
     912             :         /*
     913             :          * Check for the special case thread timers.
     914             :          */
     915           0 :         soft = task_rlimit(tsk, RLIMIT_RTTIME);
     916           0 :         if (soft != RLIM_INFINITY) {
     917             :                 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
     918           0 :                 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
     919           0 :                 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
     920             : 
     921             :                 /* At the hard limit, send SIGKILL. No further action. */
     922           0 :                 if (hard != RLIM_INFINITY &&
     923           0 :                     check_rlimit(rttime, hard, SIGKILL, true, true))
     924             :                         return;
     925             : 
     926             :                 /* At the soft limit, send a SIGXCPU every second */
     927           0 :                 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
     928           0 :                         soft += USEC_PER_SEC;
     929           0 :                         tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
     930             :                 }
     931             :         }
     932             : 
     933           0 :         if (expiry_cache_is_inactive(pct))
     934             :                 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
     935             : }
     936             : 
     937             : static inline void stop_process_timers(struct signal_struct *sig)
     938             : {
     939           0 :         struct posix_cputimers *pct = &sig->posix_cputimers;
     940             : 
     941             :         /* Turn off the active flag. This is done without locking. */
     942           0 :         WRITE_ONCE(pct->timers_active, false);
     943           0 :         tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
     944             : }
     945             : 
     946           0 : static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
     947             :                              u64 *expires, u64 cur_time, int signo)
     948             : {
     949           0 :         if (!it->expires)
     950             :                 return;
     951             : 
     952           0 :         if (cur_time >= it->expires) {
     953           0 :                 if (it->incr)
     954           0 :                         it->expires += it->incr;
     955             :                 else
     956           0 :                         it->expires = 0;
     957             : 
     958           0 :                 trace_itimer_expire(signo == SIGPROF ?
     959             :                                     ITIMER_PROF : ITIMER_VIRTUAL,
     960             :                                     task_tgid(tsk), cur_time);
     961           0 :                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
     962             :         }
     963             : 
     964           0 :         if (it->expires && it->expires < *expires)
     965           0 :                 *expires = it->expires;
     966             : }
     967             : 
     968             : /*
     969             :  * Check for any per-thread CPU timers that have fired and move them
     970             :  * off the tsk->*_timers list onto the firing list.  Per-thread timers
     971             :  * have already been taken off.
     972             :  */
     973           0 : static void check_process_timers(struct task_struct *tsk,
     974             :                                  struct list_head *firing)
     975             : {
     976           0 :         struct signal_struct *const sig = tsk->signal;
     977           0 :         struct posix_cputimers *pct = &sig->posix_cputimers;
     978             :         u64 samples[CPUCLOCK_MAX];
     979             :         unsigned long soft;
     980             : 
     981             :         /*
     982             :          * If there are no active process wide timers (POSIX 1.b, itimers,
     983             :          * RLIMIT_CPU) nothing to check. Also skip the process wide timer
     984             :          * processing when there is already another task handling them.
     985             :          */
     986           0 :         if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
     987           0 :                 return;
     988             : 
     989             :         /*
     990             :          * Signify that a thread is checking for process timers.
     991             :          * Write access to this field is protected by the sighand lock.
     992             :          */
     993           0 :         pct->expiry_active = true;
     994             : 
     995             :         /*
     996             :          * Collect the current process totals. Group accounting is active
     997             :          * so the sample can be taken directly.
     998             :          */
     999           0 :         proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
    1000           0 :         collect_posix_cputimers(pct, samples, firing);
    1001             : 
    1002             :         /*
    1003             :          * Check for the special case process timers.
    1004             :          */
    1005           0 :         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
    1006             :                          &pct->bases[CPUCLOCK_PROF].nextevt,
    1007             :                          samples[CPUCLOCK_PROF], SIGPROF);
    1008           0 :         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
    1009             :                          &pct->bases[CPUCLOCK_VIRT].nextevt,
    1010             :                          samples[CPUCLOCK_VIRT], SIGVTALRM);
    1011             : 
    1012           0 :         soft = task_rlimit(tsk, RLIMIT_CPU);
    1013           0 :         if (soft != RLIM_INFINITY) {
    1014             :                 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
    1015           0 :                 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
    1016           0 :                 u64 ptime = samples[CPUCLOCK_PROF];
    1017           0 :                 u64 softns = (u64)soft * NSEC_PER_SEC;
    1018           0 :                 u64 hardns = (u64)hard * NSEC_PER_SEC;
    1019             : 
    1020             :                 /* At the hard limit, send SIGKILL. No further action. */
    1021           0 :                 if (hard != RLIM_INFINITY &&
    1022           0 :                     check_rlimit(ptime, hardns, SIGKILL, false, true))
    1023             :                         return;
    1024             : 
    1025             :                 /* At the soft limit, send a SIGXCPU every second */
    1026           0 :                 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
    1027           0 :                         sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
    1028           0 :                         softns += NSEC_PER_SEC;
    1029             :                 }
    1030             : 
    1031             :                 /* Update the expiry cache */
    1032           0 :                 if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
    1033           0 :                         pct->bases[CPUCLOCK_PROF].nextevt = softns;
    1034             :         }
    1035             : 
    1036           0 :         if (expiry_cache_is_inactive(pct))
    1037             :                 stop_process_timers(sig);
    1038             : 
    1039           0 :         pct->expiry_active = false;
    1040             : }
    1041             : 
    1042             : /*
    1043             :  * This is called from the signal code (via posixtimer_rearm)
    1044             :  * when the last timer signal was delivered and we have to reload the timer.
    1045             :  */
    1046           0 : static void posix_cpu_timer_rearm(struct k_itimer *timer)
    1047             : {
    1048           0 :         clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
    1049             :         struct task_struct *p;
    1050             :         struct sighand_struct *sighand;
    1051             :         unsigned long flags;
    1052             :         u64 now;
    1053             : 
    1054             :         rcu_read_lock();
    1055           0 :         p = cpu_timer_task_rcu(timer);
    1056           0 :         if (!p)
    1057             :                 goto out;
    1058             : 
    1059             :         /* Protect timer list r/w in arm_timer() */
    1060           0 :         sighand = lock_task_sighand(p, &flags);
    1061           0 :         if (unlikely(sighand == NULL))
    1062             :                 goto out;
    1063             : 
    1064             :         /*
    1065             :          * Fetch the current sample and update the timer's expiry time.
    1066             :          */
    1067           0 :         if (CPUCLOCK_PERTHREAD(timer->it_clock))
    1068           0 :                 now = cpu_clock_sample(clkid, p);
    1069             :         else
    1070           0 :                 now = cpu_clock_sample_group(clkid, p, true);
    1071             : 
    1072           0 :         bump_cpu_timer(timer, now);
    1073             : 
    1074             :         /*
    1075             :          * Now re-arm for the new expiry time.
    1076             :          */
    1077           0 :         arm_timer(timer, p);
    1078           0 :         unlock_task_sighand(p, &flags);
    1079             : out:
    1080             :         rcu_read_unlock();
    1081           0 : }
    1082             : 
    1083             : /**
    1084             :  * task_cputimers_expired - Check whether posix CPU timers are expired
    1085             :  *
    1086             :  * @samples:    Array of current samples for the CPUCLOCK clocks
    1087             :  * @pct:        Pointer to a posix_cputimers container
    1088             :  *
    1089             :  * Returns true if any member of @samples is greater than the corresponding
    1090             :  * member of @pct->bases[CLK].nextevt. False otherwise
    1091             :  */
    1092             : static inline bool
    1093             : task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
    1094             : {
    1095             :         int i;
    1096             : 
    1097           0 :         for (i = 0; i < CPUCLOCK_MAX; i++) {
    1098           0 :                 if (samples[i] >= pct->bases[i].nextevt)
    1099             :                         return true;
    1100             :         }
    1101             :         return false;
    1102             : }
    1103             : 
    1104             : /**
    1105             :  * fastpath_timer_check - POSIX CPU timers fast path.
    1106             :  *
    1107             :  * @tsk:        The task (thread) being checked.
    1108             :  *
    1109             :  * Check the task and thread group timers.  If both are zero (there are no
    1110             :  * timers set) return false.  Otherwise snapshot the task and thread group
    1111             :  * timers and compare them with the corresponding expiration times.  Return
    1112             :  * true if a timer has expired, else return false.
    1113             :  */
    1114          13 : static inline bool fastpath_timer_check(struct task_struct *tsk)
    1115             : {
    1116          13 :         struct posix_cputimers *pct = &tsk->posix_cputimers;
    1117             :         struct signal_struct *sig;
    1118             : 
    1119          13 :         if (!expiry_cache_is_inactive(pct)) {
    1120             :                 u64 samples[CPUCLOCK_MAX];
    1121             : 
    1122             :                 task_sample_cputime(tsk, samples);
    1123           0 :                 if (task_cputimers_expired(samples, pct))
    1124           0 :                         return true;
    1125             :         }
    1126             : 
    1127          13 :         sig = tsk->signal;
    1128          13 :         pct = &sig->posix_cputimers;
    1129             :         /*
    1130             :          * Check if thread group timers expired when timers are active and
    1131             :          * no other thread in the group is already handling expiry for
    1132             :          * thread group cputimers. These fields are read without the
    1133             :          * sighand lock. However, this is fine because this is meant to be
    1134             :          * a fastpath heuristic to determine whether we should try to
    1135             :          * acquire the sighand lock to handle timer expiry.
    1136             :          *
    1137             :          * In the worst case scenario, if concurrently timers_active is set
    1138             :          * or expiry_active is cleared, but the current thread doesn't see
    1139             :          * the change yet, the timer checks are delayed until the next
    1140             :          * thread in the group gets a scheduler interrupt to handle the
    1141             :          * timer. This isn't an issue in practice because these types of
    1142             :          * delays with signals actually getting sent are expected.
    1143             :          */
    1144          13 :         if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
    1145             :                 u64 samples[CPUCLOCK_MAX];
    1146             : 
    1147           0 :                 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
    1148             :                                            samples);
    1149             : 
    1150           0 :                 if (task_cputimers_expired(samples, pct))
    1151           0 :                         return true;
    1152             :         }
    1153             : 
    1154          26 :         if (dl_task(tsk) && tsk->dl.dl_overrun)
    1155             :                 return true;
    1156             : 
    1157          13 :         return false;
    1158             : }
    1159             : 
    1160             : static void handle_posix_cpu_timers(struct task_struct *tsk);
    1161             : 
    1162             : #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
    1163             : static void posix_cpu_timers_work(struct callback_head *work)
    1164             : {
    1165             :         handle_posix_cpu_timers(current);
    1166             : }
    1167             : 
    1168             : /*
    1169             :  * Clear existing posix CPU timers task work.
    1170             :  */
    1171             : void clear_posix_cputimers_work(struct task_struct *p)
    1172             : {
    1173             :         /*
    1174             :          * A copied work entry from the old task is not meaningful, clear it.
    1175             :          * N.B. init_task_work will not do this.
    1176             :          */
    1177             :         memset(&p->posix_cputimers_work.work, 0,
    1178             :                sizeof(p->posix_cputimers_work.work));
    1179             :         init_task_work(&p->posix_cputimers_work.work,
    1180             :                        posix_cpu_timers_work);
    1181             :         p->posix_cputimers_work.scheduled = false;
    1182             : }
    1183             : 
    1184             : /*
    1185             :  * Initialize posix CPU timers task work in init task. Out of line to
    1186             :  * keep the callback static and to avoid header recursion hell.
    1187             :  */
    1188             : void __init posix_cputimers_init_work(void)
    1189             : {
    1190             :         clear_posix_cputimers_work(current);
    1191             : }
    1192             : 
    1193             : /*
    1194             :  * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
    1195             :  * in hard interrupt context or in task context with interrupts
    1196             :  * disabled. Aside of that the writer/reader interaction is always in the
    1197             :  * context of the current task, which means they are strict per CPU.
    1198             :  */
    1199             : static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
    1200             : {
    1201             :         return tsk->posix_cputimers_work.scheduled;
    1202             : }
    1203             : 
    1204             : static inline void __run_posix_cpu_timers(struct task_struct *tsk)
    1205             : {
    1206             :         if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
    1207             :                 return;
    1208             : 
    1209             :         /* Schedule task work to actually expire the timers */
    1210             :         tsk->posix_cputimers_work.scheduled = true;
    1211             :         task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
    1212             : }
    1213             : 
    1214             : static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
    1215             :                                                 unsigned long start)
    1216             : {
    1217             :         bool ret = true;
    1218             : 
    1219             :         /*
    1220             :          * On !RT kernels interrupts are disabled while collecting expired
    1221             :          * timers, so no tick can happen and the fast path check can be
    1222             :          * reenabled without further checks.
    1223             :          */
    1224             :         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
    1225             :                 tsk->posix_cputimers_work.scheduled = false;
    1226             :                 return true;
    1227             :         }
    1228             : 
    1229             :         /*
    1230             :          * On RT enabled kernels ticks can happen while the expired timers
    1231             :          * are collected under sighand lock. But any tick which observes
    1232             :          * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
    1233             :          * checks. So reenabling the tick work has do be done carefully:
    1234             :          *
    1235             :          * Disable interrupts and run the fast path check if jiffies have
    1236             :          * advanced since the collecting of expired timers started. If
    1237             :          * jiffies have not advanced or the fast path check did not find
    1238             :          * newly expired timers, reenable the fast path check in the timer
    1239             :          * interrupt. If there are newly expired timers, return false and
    1240             :          * let the collection loop repeat.
    1241             :          */
    1242             :         local_irq_disable();
    1243             :         if (start != jiffies && fastpath_timer_check(tsk))
    1244             :                 ret = false;
    1245             :         else
    1246             :                 tsk->posix_cputimers_work.scheduled = false;
    1247             :         local_irq_enable();
    1248             : 
    1249             :         return ret;
    1250             : }
    1251             : #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
    1252             : static inline void __run_posix_cpu_timers(struct task_struct *tsk)
    1253             : {
    1254             :         lockdep_posixtimer_enter();
    1255           0 :         handle_posix_cpu_timers(tsk);
    1256             :         lockdep_posixtimer_exit();
    1257             : }
    1258             : 
    1259             : static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
    1260             : {
    1261             :         return false;
    1262             : }
    1263             : 
    1264             : static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
    1265             :                                                 unsigned long start)
    1266             : {
    1267             :         return true;
    1268             : }
    1269             : #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
    1270             : 
    1271           0 : static void handle_posix_cpu_timers(struct task_struct *tsk)
    1272             : {
    1273             :         struct k_itimer *timer, *next;
    1274             :         unsigned long flags, start;
    1275           0 :         LIST_HEAD(firing);
    1276             : 
    1277           0 :         if (!lock_task_sighand(tsk, &flags))
    1278           0 :                 return;
    1279             : 
    1280             :         do {
    1281             :                 /*
    1282             :                  * On RT locking sighand lock does not disable interrupts,
    1283             :                  * so this needs to be careful vs. ticks. Store the current
    1284             :                  * jiffies value.
    1285             :                  */
    1286           0 :                 start = READ_ONCE(jiffies);
    1287           0 :                 barrier();
    1288             : 
    1289             :                 /*
    1290             :                  * Here we take off tsk->signal->cpu_timers[N] and
    1291             :                  * tsk->cpu_timers[N] all the timers that are firing, and
    1292             :                  * put them on the firing list.
    1293             :                  */
    1294           0 :                 check_thread_timers(tsk, &firing);
    1295             : 
    1296           0 :                 check_process_timers(tsk, &firing);
    1297             : 
    1298             :                 /*
    1299             :                  * The above timer checks have updated the expiry cache and
    1300             :                  * because nothing can have queued or modified timers after
    1301             :                  * sighand lock was taken above it is guaranteed to be
    1302             :                  * consistent. So the next timer interrupt fastpath check
    1303             :                  * will find valid data.
    1304             :                  *
    1305             :                  * If timer expiry runs in the timer interrupt context then
    1306             :                  * the loop is not relevant as timers will be directly
    1307             :                  * expired in interrupt context. The stub function below
    1308             :                  * returns always true which allows the compiler to
    1309             :                  * optimize the loop out.
    1310             :                  *
    1311             :                  * If timer expiry is deferred to task work context then
    1312             :                  * the following rules apply:
    1313             :                  *
    1314             :                  * - On !RT kernels no tick can have happened on this CPU
    1315             :                  *   after sighand lock was acquired because interrupts are
    1316             :                  *   disabled. So reenabling task work before dropping
    1317             :                  *   sighand lock and reenabling interrupts is race free.
    1318             :                  *
    1319             :                  * - On RT kernels ticks might have happened but the tick
    1320             :                  *   work ignored posix CPU timer handling because the
    1321             :                  *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
    1322             :                  *   must be done very carefully including a check whether
    1323             :                  *   ticks have happened since the start of the timer
    1324             :                  *   expiry checks. posix_cpu_timers_enable_work() takes
    1325             :                  *   care of that and eventually lets the expiry checks
    1326             :                  *   run again.
    1327             :                  */
    1328           0 :         } while (!posix_cpu_timers_enable_work(tsk, start));
    1329             : 
    1330             :         /*
    1331             :          * We must release sighand lock before taking any timer's lock.
    1332             :          * There is a potential race with timer deletion here, as the
    1333             :          * siglock now protects our private firing list.  We have set
    1334             :          * the firing flag in each timer, so that a deletion attempt
    1335             :          * that gets the timer lock before we do will give it up and
    1336             :          * spin until we've taken care of that timer below.
    1337             :          */
    1338           0 :         unlock_task_sighand(tsk, &flags);
    1339             : 
    1340             :         /*
    1341             :          * Now that all the timers on our list have the firing flag,
    1342             :          * no one will touch their list entries but us.  We'll take
    1343             :          * each timer's lock before clearing its firing flag, so no
    1344             :          * timer call will interfere.
    1345             :          */
    1346           0 :         list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
    1347             :                 int cpu_firing;
    1348             : 
    1349             :                 /*
    1350             :                  * spin_lock() is sufficient here even independent of the
    1351             :                  * expiry context. If expiry happens in hard interrupt
    1352             :                  * context it's obvious. For task work context it's safe
    1353             :                  * because all other operations on timer::it_lock happen in
    1354             :                  * task context (syscall or exit).
    1355             :                  */
    1356           0 :                 spin_lock(&timer->it_lock);
    1357           0 :                 list_del_init(&timer->it.cpu.elist);
    1358           0 :                 cpu_firing = timer->it.cpu.firing;
    1359           0 :                 timer->it.cpu.firing = 0;
    1360             :                 /*
    1361             :                  * The firing flag is -1 if we collided with a reset
    1362             :                  * of the timer, which already reported this
    1363             :                  * almost-firing as an overrun.  So don't generate an event.
    1364             :                  */
    1365           0 :                 if (likely(cpu_firing >= 0))
    1366           0 :                         cpu_timer_fire(timer);
    1367           0 :                 spin_unlock(&timer->it_lock);
    1368             :         }
    1369             : }
    1370             : 
    1371             : /*
    1372             :  * This is called from the timer interrupt handler.  The irq handler has
    1373             :  * already updated our counts.  We need to check if any timers fire now.
    1374             :  * Interrupts are disabled.
    1375             :  */
    1376          13 : void run_posix_cpu_timers(void)
    1377             : {
    1378          13 :         struct task_struct *tsk = current;
    1379             : 
    1380             :         lockdep_assert_irqs_disabled();
    1381             : 
    1382             :         /*
    1383             :          * If the actual expiry is deferred to task work context and the
    1384             :          * work is already scheduled there is no point to do anything here.
    1385             :          */
    1386          13 :         if (posix_cpu_timers_work_scheduled(tsk))
    1387             :                 return;
    1388             : 
    1389             :         /*
    1390             :          * The fast path checks that there are no expired thread or thread
    1391             :          * group timers.  If that's so, just return.
    1392             :          */
    1393          13 :         if (!fastpath_timer_check(tsk))
    1394             :                 return;
    1395             : 
    1396             :         __run_posix_cpu_timers(tsk);
    1397             : }
    1398             : 
    1399             : /*
    1400             :  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
    1401             :  * The tsk->sighand->siglock must be held by the caller.
    1402             :  */
    1403           0 : void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
    1404             :                            u64 *newval, u64 *oldval)
    1405             : {
    1406             :         u64 now, *nextevt;
    1407             : 
    1408           0 :         if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
    1409             :                 return;
    1410             : 
    1411           0 :         nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
    1412           0 :         now = cpu_clock_sample_group(clkid, tsk, true);
    1413             : 
    1414           0 :         if (oldval) {
    1415             :                 /*
    1416             :                  * We are setting itimer. The *oldval is absolute and we update
    1417             :                  * it to be relative, *newval argument is relative and we update
    1418             :                  * it to be absolute.
    1419             :                  */
    1420           0 :                 if (*oldval) {
    1421           0 :                         if (*oldval <= now) {
    1422             :                                 /* Just about to fire. */
    1423           0 :                                 *oldval = TICK_NSEC;
    1424             :                         } else {
    1425           0 :                                 *oldval -= now;
    1426             :                         }
    1427             :                 }
    1428             : 
    1429           0 :                 if (*newval)
    1430           0 :                         *newval += now;
    1431             :         }
    1432             : 
    1433             :         /*
    1434             :          * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
    1435             :          * expiry cache is also used by RLIMIT_CPU!.
    1436             :          */
    1437           0 :         if (*newval < *nextevt)
    1438           0 :                 *nextevt = *newval;
    1439             : 
    1440             :         tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
    1441             : }
    1442             : 
    1443           0 : static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
    1444             :                             const struct timespec64 *rqtp)
    1445             : {
    1446             :         struct itimerspec64 it;
    1447             :         struct k_itimer timer;
    1448             :         u64 expires;
    1449             :         int error;
    1450             : 
    1451             :         /*
    1452             :          * Set up a temporary timer and then wait for it to go off.
    1453             :          */
    1454           0 :         memset(&timer, 0, sizeof timer);
    1455           0 :         spin_lock_init(&timer.it_lock);
    1456           0 :         timer.it_clock = which_clock;
    1457           0 :         timer.it_overrun = -1;
    1458           0 :         error = posix_cpu_timer_create(&timer);
    1459           0 :         timer.it_process = current;
    1460             : 
    1461           0 :         if (!error) {
    1462             :                 static struct itimerspec64 zero_it;
    1463             :                 struct restart_block *restart;
    1464             : 
    1465           0 :                 memset(&it, 0, sizeof(it));
    1466           0 :                 it.it_value = *rqtp;
    1467             : 
    1468           0 :                 spin_lock_irq(&timer.it_lock);
    1469           0 :                 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
    1470           0 :                 if (error) {
    1471           0 :                         spin_unlock_irq(&timer.it_lock);
    1472           0 :                         return error;
    1473             :                 }
    1474             : 
    1475           0 :                 while (!signal_pending(current)) {
    1476           0 :                         if (!cpu_timer_getexpires(&timer.it.cpu)) {
    1477             :                                 /*
    1478             :                                  * Our timer fired and was reset, below
    1479             :                                  * deletion can not fail.
    1480             :                                  */
    1481           0 :                                 posix_cpu_timer_del(&timer);
    1482           0 :                                 spin_unlock_irq(&timer.it_lock);
    1483           0 :                                 return 0;
    1484             :                         }
    1485             : 
    1486             :                         /*
    1487             :                          * Block until cpu_timer_fire (or a signal) wakes us.
    1488             :                          */
    1489           0 :                         __set_current_state(TASK_INTERRUPTIBLE);
    1490           0 :                         spin_unlock_irq(&timer.it_lock);
    1491           0 :                         schedule();
    1492             :                         spin_lock_irq(&timer.it_lock);
    1493             :                 }
    1494             : 
    1495             :                 /*
    1496             :                  * We were interrupted by a signal.
    1497             :                  */
    1498           0 :                 expires = cpu_timer_getexpires(&timer.it.cpu);
    1499           0 :                 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
    1500           0 :                 if (!error) {
    1501             :                         /*
    1502             :                          * Timer is now unarmed, deletion can not fail.
    1503             :                          */
    1504           0 :                         posix_cpu_timer_del(&timer);
    1505             :                 }
    1506             :                 spin_unlock_irq(&timer.it_lock);
    1507             : 
    1508           0 :                 while (error == TIMER_RETRY) {
    1509             :                         /*
    1510             :                          * We need to handle case when timer was or is in the
    1511             :                          * middle of firing. In other cases we already freed
    1512             :                          * resources.
    1513             :                          */
    1514           0 :                         spin_lock_irq(&timer.it_lock);
    1515           0 :                         error = posix_cpu_timer_del(&timer);
    1516             :                         spin_unlock_irq(&timer.it_lock);
    1517             :                 }
    1518             : 
    1519           0 :                 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
    1520             :                         /*
    1521             :                          * It actually did fire already.
    1522             :                          */
    1523             :                         return 0;
    1524             :                 }
    1525             : 
    1526           0 :                 error = -ERESTART_RESTARTBLOCK;
    1527             :                 /*
    1528             :                  * Report back to the user the time still remaining.
    1529             :                  */
    1530           0 :                 restart = &current->restart_block;
    1531           0 :                 restart->nanosleep.expires = expires;
    1532           0 :                 if (restart->nanosleep.type != TT_NONE)
    1533           0 :                         error = nanosleep_copyout(restart, &it.it_value);
    1534             :         }
    1535             : 
    1536             :         return error;
    1537             : }
    1538             : 
    1539             : static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
    1540             : 
    1541           0 : static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
    1542             :                             const struct timespec64 *rqtp)
    1543             : {
    1544           0 :         struct restart_block *restart_block = &current->restart_block;
    1545             :         int error;
    1546             : 
    1547             :         /*
    1548             :          * Diagnose required errors first.
    1549             :          */
    1550           0 :         if (CPUCLOCK_PERTHREAD(which_clock) &&
    1551           0 :             (CPUCLOCK_PID(which_clock) == 0 ||
    1552           0 :              CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
    1553             :                 return -EINVAL;
    1554             : 
    1555           0 :         error = do_cpu_nanosleep(which_clock, flags, rqtp);
    1556             : 
    1557           0 :         if (error == -ERESTART_RESTARTBLOCK) {
    1558             : 
    1559           0 :                 if (flags & TIMER_ABSTIME)
    1560             :                         return -ERESTARTNOHAND;
    1561             : 
    1562           0 :                 restart_block->nanosleep.clockid = which_clock;
    1563           0 :                 set_restart_fn(restart_block, posix_cpu_nsleep_restart);
    1564             :         }
    1565             :         return error;
    1566             : }
    1567             : 
    1568           0 : static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
    1569             : {
    1570           0 :         clockid_t which_clock = restart_block->nanosleep.clockid;
    1571             :         struct timespec64 t;
    1572             : 
    1573           0 :         t = ns_to_timespec64(restart_block->nanosleep.expires);
    1574             : 
    1575           0 :         return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
    1576             : }
    1577             : 
    1578             : #define PROCESS_CLOCK   make_process_cpuclock(0, CPUCLOCK_SCHED)
    1579             : #define THREAD_CLOCK    make_thread_cpuclock(0, CPUCLOCK_SCHED)
    1580             : 
    1581           0 : static int process_cpu_clock_getres(const clockid_t which_clock,
    1582             :                                     struct timespec64 *tp)
    1583             : {
    1584           0 :         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
    1585             : }
    1586           0 : static int process_cpu_clock_get(const clockid_t which_clock,
    1587             :                                  struct timespec64 *tp)
    1588             : {
    1589           0 :         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
    1590             : }
    1591           0 : static int process_cpu_timer_create(struct k_itimer *timer)
    1592             : {
    1593           0 :         timer->it_clock = PROCESS_CLOCK;
    1594           0 :         return posix_cpu_timer_create(timer);
    1595             : }
    1596           0 : static int process_cpu_nsleep(const clockid_t which_clock, int flags,
    1597             :                               const struct timespec64 *rqtp)
    1598             : {
    1599           0 :         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
    1600             : }
    1601           0 : static int thread_cpu_clock_getres(const clockid_t which_clock,
    1602             :                                    struct timespec64 *tp)
    1603             : {
    1604           0 :         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
    1605             : }
    1606           0 : static int thread_cpu_clock_get(const clockid_t which_clock,
    1607             :                                 struct timespec64 *tp)
    1608             : {
    1609           0 :         return posix_cpu_clock_get(THREAD_CLOCK, tp);
    1610             : }
    1611           0 : static int thread_cpu_timer_create(struct k_itimer *timer)
    1612             : {
    1613           0 :         timer->it_clock = THREAD_CLOCK;
    1614           0 :         return posix_cpu_timer_create(timer);
    1615             : }
    1616             : 
    1617             : const struct k_clock clock_posix_cpu = {
    1618             :         .clock_getres           = posix_cpu_clock_getres,
    1619             :         .clock_set              = posix_cpu_clock_set,
    1620             :         .clock_get_timespec     = posix_cpu_clock_get,
    1621             :         .timer_create           = posix_cpu_timer_create,
    1622             :         .nsleep                 = posix_cpu_nsleep,
    1623             :         .timer_set              = posix_cpu_timer_set,
    1624             :         .timer_del              = posix_cpu_timer_del,
    1625             :         .timer_get              = posix_cpu_timer_get,
    1626             :         .timer_rearm            = posix_cpu_timer_rearm,
    1627             : };
    1628             : 
    1629             : const struct k_clock clock_process = {
    1630             :         .clock_getres           = process_cpu_clock_getres,
    1631             :         .clock_get_timespec     = process_cpu_clock_get,
    1632             :         .timer_create           = process_cpu_timer_create,
    1633             :         .nsleep                 = process_cpu_nsleep,
    1634             : };
    1635             : 
    1636             : const struct k_clock clock_thread = {
    1637             :         .clock_getres           = thread_cpu_clock_getres,
    1638             :         .clock_get_timespec     = thread_cpu_clock_get,
    1639             :         .timer_create           = thread_cpu_timer_create,
    1640             : };

Generated by: LCOV version 1.14