LCOV - code coverage report
Current view: top level - kernel/time - timer.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 154 364 42.3 %
Date: 2022-12-09 01:23:36 Functions: 17 44 38.6 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  *  Kernel internal timers
       4             :  *
       5             :  *  Copyright (C) 1991, 1992  Linus Torvalds
       6             :  *
       7             :  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
       8             :  *
       9             :  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
      10             :  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
      11             :  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
      12             :  *              serialize accesses to xtime/lost_ticks).
      13             :  *                              Copyright (C) 1998  Andrea Arcangeli
      14             :  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
      15             :  *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
      16             :  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
      17             :  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
      18             :  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
      19             :  */
      20             : 
      21             : #include <linux/kernel_stat.h>
      22             : #include <linux/export.h>
      23             : #include <linux/interrupt.h>
      24             : #include <linux/percpu.h>
      25             : #include <linux/init.h>
      26             : #include <linux/mm.h>
      27             : #include <linux/swap.h>
      28             : #include <linux/pid_namespace.h>
      29             : #include <linux/notifier.h>
      30             : #include <linux/thread_info.h>
      31             : #include <linux/time.h>
      32             : #include <linux/jiffies.h>
      33             : #include <linux/posix-timers.h>
      34             : #include <linux/cpu.h>
      35             : #include <linux/syscalls.h>
      36             : #include <linux/delay.h>
      37             : #include <linux/tick.h>
      38             : #include <linux/kallsyms.h>
      39             : #include <linux/irq_work.h>
      40             : #include <linux/sched/signal.h>
      41             : #include <linux/sched/sysctl.h>
      42             : #include <linux/sched/nohz.h>
      43             : #include <linux/sched/debug.h>
      44             : #include <linux/slab.h>
      45             : #include <linux/compat.h>
      46             : #include <linux/random.h>
      47             : 
      48             : #include <linux/uaccess.h>
      49             : #include <asm/unistd.h>
      50             : #include <asm/div64.h>
      51             : #include <asm/timex.h>
      52             : #include <asm/io.h>
      53             : 
      54             : #include "tick-internal.h"
      55             : 
      56             : #define CREATE_TRACE_POINTS
      57             : #include <trace/events/timer.h>
      58             : 
      59             : __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
      60             : 
      61             : EXPORT_SYMBOL(jiffies_64);
      62             : 
      63             : /*
      64             :  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
      65             :  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
      66             :  * level has a different granularity.
      67             :  *
      68             :  * The level granularity is:            LVL_CLK_DIV ^ lvl
      69             :  * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
      70             :  *
      71             :  * The array level of a newly armed timer depends on the relative expiry
      72             :  * time. The farther the expiry time is away the higher the array level and
      73             :  * therefor the granularity becomes.
      74             :  *
      75             :  * Contrary to the original timer wheel implementation, which aims for 'exact'
      76             :  * expiry of the timers, this implementation removes the need for recascading
      77             :  * the timers into the lower array levels. The previous 'classic' timer wheel
      78             :  * implementation of the kernel already violated the 'exact' expiry by adding
      79             :  * slack to the expiry time to provide batched expiration. The granularity
      80             :  * levels provide implicit batching.
      81             :  *
      82             :  * This is an optimization of the original timer wheel implementation for the
      83             :  * majority of the timer wheel use cases: timeouts. The vast majority of
      84             :  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
      85             :  * the timeout expires it indicates that normal operation is disturbed, so it
      86             :  * does not matter much whether the timeout comes with a slight delay.
      87             :  *
      88             :  * The only exception to this are networking timers with a small expiry
      89             :  * time. They rely on the granularity. Those fit into the first wheel level,
      90             :  * which has HZ granularity.
      91             :  *
      92             :  * We don't have cascading anymore. timers with a expiry time above the
      93             :  * capacity of the last wheel level are force expired at the maximum timeout
      94             :  * value of the last wheel level. From data sampling we know that the maximum
      95             :  * value observed is 5 days (network connection tracking), so this should not
      96             :  * be an issue.
      97             :  *
      98             :  * The currently chosen array constants values are a good compromise between
      99             :  * array size and granularity.
     100             :  *
     101             :  * This results in the following granularity and range levels:
     102             :  *
     103             :  * HZ 1000 steps
     104             :  * Level Offset  Granularity            Range
     105             :  *  0      0         1 ms                0 ms -         63 ms
     106             :  *  1     64         8 ms               64 ms -        511 ms
     107             :  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
     108             :  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
     109             :  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
     110             :  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
     111             :  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
     112             :  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
     113             :  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
     114             :  *
     115             :  * HZ  300
     116             :  * Level Offset  Granularity            Range
     117             :  *  0      0         3 ms                0 ms -        210 ms
     118             :  *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
     119             :  *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
     120             :  *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
     121             :  *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
     122             :  *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
     123             :  *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
     124             :  *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
     125             :  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
     126             :  *
     127             :  * HZ  250
     128             :  * Level Offset  Granularity            Range
     129             :  *  0      0         4 ms                0 ms -        255 ms
     130             :  *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
     131             :  *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
     132             :  *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
     133             :  *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
     134             :  *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
     135             :  *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
     136             :  *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
     137             :  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
     138             :  *
     139             :  * HZ  100
     140             :  * Level Offset  Granularity            Range
     141             :  *  0      0         10 ms               0 ms -        630 ms
     142             :  *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
     143             :  *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
     144             :  *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
     145             :  *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
     146             :  *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
     147             :  *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
     148             :  *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
     149             :  */
     150             : 
     151             : /* Clock divisor for the next level */
     152             : #define LVL_CLK_SHIFT   3
     153             : #define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
     154             : #define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
     155             : #define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
     156             : #define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
     157             : 
     158             : /*
     159             :  * The time start value for each level to select the bucket at enqueue
     160             :  * time. We start from the last possible delta of the previous level
     161             :  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
     162             :  */
     163             : #define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
     164             : 
     165             : /* Size of each clock level */
     166             : #define LVL_BITS        6
     167             : #define LVL_SIZE        (1UL << LVL_BITS)
     168             : #define LVL_MASK        (LVL_SIZE - 1)
     169             : #define LVL_OFFS(n)     ((n) * LVL_SIZE)
     170             : 
     171             : /* Level depth */
     172             : #if HZ > 100
     173             : # define LVL_DEPTH      9
     174             : # else
     175             : # define LVL_DEPTH      8
     176             : #endif
     177             : 
     178             : /* The cutoff (max. capacity of the wheel) */
     179             : #define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
     180             : #define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
     181             : 
     182             : /*
     183             :  * The resulting wheel size. If NOHZ is configured we allocate two
     184             :  * wheels so we have a separate storage for the deferrable timers.
     185             :  */
     186             : #define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
     187             : 
     188             : #ifdef CONFIG_NO_HZ_COMMON
     189             : # define NR_BASES       2
     190             : # define BASE_STD       0
     191             : # define BASE_DEF       1
     192             : #else
     193             : # define NR_BASES       1
     194             : # define BASE_STD       0
     195             : # define BASE_DEF       0
     196             : #endif
     197             : 
     198             : struct timer_base {
     199             :         raw_spinlock_t          lock;
     200             :         struct timer_list       *running_timer;
     201             : #ifdef CONFIG_PREEMPT_RT
     202             :         spinlock_t              expiry_lock;
     203             :         atomic_t                timer_waiters;
     204             : #endif
     205             :         unsigned long           clk;
     206             :         unsigned long           next_expiry;
     207             :         unsigned int            cpu;
     208             :         bool                    next_expiry_recalc;
     209             :         bool                    is_idle;
     210             :         bool                    timers_pending;
     211             :         DECLARE_BITMAP(pending_map, WHEEL_SIZE);
     212             :         struct hlist_head       vectors[WHEEL_SIZE];
     213             : } ____cacheline_aligned;
     214             : 
     215             : static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
     216             : 
     217             : #ifdef CONFIG_NO_HZ_COMMON
     218             : 
     219             : static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
     220             : static DEFINE_MUTEX(timer_keys_mutex);
     221             : 
     222             : static void timer_update_keys(struct work_struct *work);
     223             : static DECLARE_WORK(timer_update_work, timer_update_keys);
     224             : 
     225             : #ifdef CONFIG_SMP
     226             : unsigned int sysctl_timer_migration = 1;
     227             : 
     228             : DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
     229             : 
     230             : static void timers_update_migration(void)
     231             : {
     232             :         if (sysctl_timer_migration && tick_nohz_active)
     233             :                 static_branch_enable(&timers_migration_enabled);
     234             :         else
     235             :                 static_branch_disable(&timers_migration_enabled);
     236             : }
     237             : #else
     238             : static inline void timers_update_migration(void) { }
     239             : #endif /* !CONFIG_SMP */
     240             : 
     241             : static void timer_update_keys(struct work_struct *work)
     242             : {
     243             :         mutex_lock(&timer_keys_mutex);
     244             :         timers_update_migration();
     245             :         static_branch_enable(&timers_nohz_active);
     246             :         mutex_unlock(&timer_keys_mutex);
     247             : }
     248             : 
     249             : void timers_update_nohz(void)
     250             : {
     251             :         schedule_work(&timer_update_work);
     252             : }
     253             : 
     254             : int timer_migration_handler(struct ctl_table *table, int write,
     255             :                             void *buffer, size_t *lenp, loff_t *ppos)
     256             : {
     257             :         int ret;
     258             : 
     259             :         mutex_lock(&timer_keys_mutex);
     260             :         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
     261             :         if (!ret && write)
     262             :                 timers_update_migration();
     263             :         mutex_unlock(&timer_keys_mutex);
     264             :         return ret;
     265             : }
     266             : 
     267             : static inline bool is_timers_nohz_active(void)
     268             : {
     269             :         return static_branch_unlikely(&timers_nohz_active);
     270             : }
     271             : #else
     272             : static inline bool is_timers_nohz_active(void) { return false; }
     273             : #endif /* NO_HZ_COMMON */
     274             : 
     275             : static unsigned long round_jiffies_common(unsigned long j, int cpu,
     276             :                 bool force_up)
     277             : {
     278             :         int rem;
     279           0 :         unsigned long original = j;
     280             : 
     281             :         /*
     282             :          * We don't want all cpus firing their timers at once hitting the
     283             :          * same lock or cachelines, so we skew each extra cpu with an extra
     284             :          * 3 jiffies. This 3 jiffies came originally from the mm/ code which
     285             :          * already did this.
     286             :          * The skew is done by adding 3*cpunr, then round, then subtract this
     287             :          * extra offset again.
     288             :          */
     289           0 :         j += cpu * 3;
     290             : 
     291           0 :         rem = j % HZ;
     292             : 
     293             :         /*
     294             :          * If the target jiffie is just after a whole second (which can happen
     295             :          * due to delays of the timer irq, long irq off times etc etc) then
     296             :          * we should round down to the whole second, not up. Use 1/4th second
     297             :          * as cutoff for this rounding as an extreme upper bound for this.
     298             :          * But never round down if @force_up is set.
     299             :          */
     300           0 :         if (rem < HZ/4 && !force_up) /* round down */
     301           0 :                 j = j - rem;
     302             :         else /* round up */
     303           0 :                 j = j - rem + HZ;
     304             : 
     305             :         /* now that we have rounded, subtract the extra skew again */
     306           0 :         j -= cpu * 3;
     307             : 
     308             :         /*
     309             :          * Make sure j is still in the future. Otherwise return the
     310             :          * unmodified value.
     311             :          */
     312           0 :         return time_is_after_jiffies(j) ? j : original;
     313             : }
     314             : 
     315             : /**
     316             :  * __round_jiffies - function to round jiffies to a full second
     317             :  * @j: the time in (absolute) jiffies that should be rounded
     318             :  * @cpu: the processor number on which the timeout will happen
     319             :  *
     320             :  * __round_jiffies() rounds an absolute time in the future (in jiffies)
     321             :  * up or down to (approximately) full seconds. This is useful for timers
     322             :  * for which the exact time they fire does not matter too much, as long as
     323             :  * they fire approximately every X seconds.
     324             :  *
     325             :  * By rounding these timers to whole seconds, all such timers will fire
     326             :  * at the same time, rather than at various times spread out. The goal
     327             :  * of this is to have the CPU wake up less, which saves power.
     328             :  *
     329             :  * The exact rounding is skewed for each processor to avoid all
     330             :  * processors firing at the exact same time, which could lead
     331             :  * to lock contention or spurious cache line bouncing.
     332             :  *
     333             :  * The return value is the rounded version of the @j parameter.
     334             :  */
     335           0 : unsigned long __round_jiffies(unsigned long j, int cpu)
     336             : {
     337           0 :         return round_jiffies_common(j, cpu, false);
     338             : }
     339             : EXPORT_SYMBOL_GPL(__round_jiffies);
     340             : 
     341             : /**
     342             :  * __round_jiffies_relative - function to round jiffies to a full second
     343             :  * @j: the time in (relative) jiffies that should be rounded
     344             :  * @cpu: the processor number on which the timeout will happen
     345             :  *
     346             :  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
     347             :  * up or down to (approximately) full seconds. This is useful for timers
     348             :  * for which the exact time they fire does not matter too much, as long as
     349             :  * they fire approximately every X seconds.
     350             :  *
     351             :  * By rounding these timers to whole seconds, all such timers will fire
     352             :  * at the same time, rather than at various times spread out. The goal
     353             :  * of this is to have the CPU wake up less, which saves power.
     354             :  *
     355             :  * The exact rounding is skewed for each processor to avoid all
     356             :  * processors firing at the exact same time, which could lead
     357             :  * to lock contention or spurious cache line bouncing.
     358             :  *
     359             :  * The return value is the rounded version of the @j parameter.
     360             :  */
     361           0 : unsigned long __round_jiffies_relative(unsigned long j, int cpu)
     362             : {
     363           0 :         unsigned long j0 = jiffies;
     364             : 
     365             :         /* Use j0 because jiffies might change while we run */
     366           0 :         return round_jiffies_common(j + j0, cpu, false) - j0;
     367             : }
     368             : EXPORT_SYMBOL_GPL(__round_jiffies_relative);
     369             : 
     370             : /**
     371             :  * round_jiffies - function to round jiffies to a full second
     372             :  * @j: the time in (absolute) jiffies that should be rounded
     373             :  *
     374             :  * round_jiffies() rounds an absolute time in the future (in jiffies)
     375             :  * up or down to (approximately) full seconds. This is useful for timers
     376             :  * for which the exact time they fire does not matter too much, as long as
     377             :  * they fire approximately every X seconds.
     378             :  *
     379             :  * By rounding these timers to whole seconds, all such timers will fire
     380             :  * at the same time, rather than at various times spread out. The goal
     381             :  * of this is to have the CPU wake up less, which saves power.
     382             :  *
     383             :  * The return value is the rounded version of the @j parameter.
     384             :  */
     385           0 : unsigned long round_jiffies(unsigned long j)
     386             : {
     387           0 :         return round_jiffies_common(j, raw_smp_processor_id(), false);
     388             : }
     389             : EXPORT_SYMBOL_GPL(round_jiffies);
     390             : 
     391             : /**
     392             :  * round_jiffies_relative - function to round jiffies to a full second
     393             :  * @j: the time in (relative) jiffies that should be rounded
     394             :  *
     395             :  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
     396             :  * up or down to (approximately) full seconds. This is useful for timers
     397             :  * for which the exact time they fire does not matter too much, as long as
     398             :  * they fire approximately every X seconds.
     399             :  *
     400             :  * By rounding these timers to whole seconds, all such timers will fire
     401             :  * at the same time, rather than at various times spread out. The goal
     402             :  * of this is to have the CPU wake up less, which saves power.
     403             :  *
     404             :  * The return value is the rounded version of the @j parameter.
     405             :  */
     406           0 : unsigned long round_jiffies_relative(unsigned long j)
     407             : {
     408           0 :         return __round_jiffies_relative(j, raw_smp_processor_id());
     409             : }
     410             : EXPORT_SYMBOL_GPL(round_jiffies_relative);
     411             : 
     412             : /**
     413             :  * __round_jiffies_up - function to round jiffies up to a full second
     414             :  * @j: the time in (absolute) jiffies that should be rounded
     415             :  * @cpu: the processor number on which the timeout will happen
     416             :  *
     417             :  * This is the same as __round_jiffies() except that it will never
     418             :  * round down.  This is useful for timeouts for which the exact time
     419             :  * of firing does not matter too much, as long as they don't fire too
     420             :  * early.
     421             :  */
     422           0 : unsigned long __round_jiffies_up(unsigned long j, int cpu)
     423             : {
     424           0 :         return round_jiffies_common(j, cpu, true);
     425             : }
     426             : EXPORT_SYMBOL_GPL(__round_jiffies_up);
     427             : 
     428             : /**
     429             :  * __round_jiffies_up_relative - function to round jiffies up to a full second
     430             :  * @j: the time in (relative) jiffies that should be rounded
     431             :  * @cpu: the processor number on which the timeout will happen
     432             :  *
     433             :  * This is the same as __round_jiffies_relative() except that it will never
     434             :  * round down.  This is useful for timeouts for which the exact time
     435             :  * of firing does not matter too much, as long as they don't fire too
     436             :  * early.
     437             :  */
     438           0 : unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
     439             : {
     440           0 :         unsigned long j0 = jiffies;
     441             : 
     442             :         /* Use j0 because jiffies might change while we run */
     443           0 :         return round_jiffies_common(j + j0, cpu, true) - j0;
     444             : }
     445             : EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
     446             : 
     447             : /**
     448             :  * round_jiffies_up - function to round jiffies up to a full second
     449             :  * @j: the time in (absolute) jiffies that should be rounded
     450             :  *
     451             :  * This is the same as round_jiffies() except that it will never
     452             :  * round down.  This is useful for timeouts for which the exact time
     453             :  * of firing does not matter too much, as long as they don't fire too
     454             :  * early.
     455             :  */
     456           0 : unsigned long round_jiffies_up(unsigned long j)
     457             : {
     458           0 :         return round_jiffies_common(j, raw_smp_processor_id(), true);
     459             : }
     460             : EXPORT_SYMBOL_GPL(round_jiffies_up);
     461             : 
     462             : /**
     463             :  * round_jiffies_up_relative - function to round jiffies up to a full second
     464             :  * @j: the time in (relative) jiffies that should be rounded
     465             :  *
     466             :  * This is the same as round_jiffies_relative() except that it will never
     467             :  * round down.  This is useful for timeouts for which the exact time
     468             :  * of firing does not matter too much, as long as they don't fire too
     469             :  * early.
     470             :  */
     471           0 : unsigned long round_jiffies_up_relative(unsigned long j)
     472             : {
     473           0 :         return __round_jiffies_up_relative(j, raw_smp_processor_id());
     474             : }
     475             : EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
     476             : 
     477             : 
     478             : static inline unsigned int timer_get_idx(struct timer_list *timer)
     479             : {
     480         193 :         return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
     481             : }
     482             : 
     483             : static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
     484             : {
     485         196 :         timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
     486          98 :                         idx << TIMER_ARRAYSHIFT;
     487             : }
     488             : 
     489             : /*
     490             :  * Helper function to calculate the array index for a given expiry
     491             :  * time.
     492             :  */
     493             : static inline unsigned calc_index(unsigned long expires, unsigned lvl,
     494             :                                   unsigned long *bucket_expiry)
     495             : {
     496             : 
     497             :         /*
     498             :          * The timer wheel has to guarantee that a timer does not fire
     499             :          * early. Early expiry can happen due to:
     500             :          * - Timer is armed at the edge of a tick
     501             :          * - Truncation of the expiry time in the outer wheel levels
     502             :          *
     503             :          * Round up with level granularity to prevent this.
     504             :          */
     505          98 :         expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
     506          98 :         *bucket_expiry = expires << LVL_SHIFT(lvl);
     507          98 :         return LVL_OFFS(lvl) + (expires & LVL_MASK);
     508             : }
     509             : 
     510          98 : static int calc_wheel_index(unsigned long expires, unsigned long clk,
     511             :                             unsigned long *bucket_expiry)
     512             : {
     513          98 :         unsigned long delta = expires - clk;
     514             :         unsigned int idx;
     515             : 
     516          98 :         if (delta < LVL_START(1)) {
     517           4 :                 idx = calc_index(expires, 0, bucket_expiry);
     518          94 :         } else if (delta < LVL_START(2)) {
     519           0 :                 idx = calc_index(expires, 1, bucket_expiry);
     520          94 :         } else if (delta < LVL_START(3)) {
     521           0 :                 idx = calc_index(expires, 2, bucket_expiry);
     522          94 :         } else if (delta < LVL_START(4)) {
     523          93 :                 idx = calc_index(expires, 3, bucket_expiry);
     524           1 :         } else if (delta < LVL_START(5)) {
     525           0 :                 idx = calc_index(expires, 4, bucket_expiry);
     526           1 :         } else if (delta < LVL_START(6)) {
     527           0 :                 idx = calc_index(expires, 5, bucket_expiry);
     528           1 :         } else if (delta < LVL_START(7)) {
     529           1 :                 idx = calc_index(expires, 6, bucket_expiry);
     530             :         } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
     531             :                 idx = calc_index(expires, 7, bucket_expiry);
     532           0 :         } else if ((long) delta < 0) {
     533           0 :                 idx = clk & LVL_MASK;
     534           0 :                 *bucket_expiry = clk;
     535             :         } else {
     536             :                 /*
     537             :                  * Force expire obscene large timeouts to expire at the
     538             :                  * capacity limit of the wheel.
     539             :                  */
     540           0 :                 if (delta >= WHEEL_TIMEOUT_CUTOFF)
     541           0 :                         expires = clk + WHEEL_TIMEOUT_MAX;
     542             : 
     543           0 :                 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
     544             :         }
     545          98 :         return idx;
     546             : }
     547             : 
     548             : static void
     549             : trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
     550             : {
     551             :         if (!is_timers_nohz_active())
     552             :                 return;
     553             : 
     554             :         /*
     555             :          * TODO: This wants some optimizing similar to the code below, but we
     556             :          * will do that when we switch from push to pull for deferrable timers.
     557             :          */
     558             :         if (timer->flags & TIMER_DEFERRABLE) {
     559             :                 if (tick_nohz_full_cpu(base->cpu))
     560             :                         wake_up_nohz_cpu(base->cpu);
     561             :                 return;
     562             :         }
     563             : 
     564             :         /*
     565             :          * We might have to IPI the remote CPU if the base is idle and the
     566             :          * timer is not deferrable. If the other CPU is on the way to idle
     567             :          * then it can't set base->is_idle as we hold the base lock:
     568             :          */
     569             :         if (base->is_idle)
     570             :                 wake_up_nohz_cpu(base->cpu);
     571             : }
     572             : 
     573             : /*
     574             :  * Enqueue the timer into the hash bucket, mark it pending in
     575             :  * the bitmap, store the index in the timer flags then wake up
     576             :  * the target CPU if needed.
     577             :  */
     578             : static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
     579             :                           unsigned int idx, unsigned long bucket_expiry)
     580             : {
     581             : 
     582         196 :         hlist_add_head(&timer->entry, base->vectors + idx);
     583         196 :         __set_bit(idx, base->pending_map);
     584         196 :         timer_set_idx(timer, idx);
     585             : 
     586          98 :         trace_timer_start(timer, timer->expires, timer->flags);
     587             : 
     588             :         /*
     589             :          * Check whether this is the new first expiring timer. The
     590             :          * effective expiry time of the timer is required here
     591             :          * (bucket_expiry) instead of timer->expires.
     592             :          */
     593          98 :         if (time_before(bucket_expiry, base->next_expiry)) {
     594             :                 /*
     595             :                  * Set the next expiry time and kick the CPU so it
     596             :                  * can reevaluate the wheel:
     597             :                  */
     598           2 :                 base->next_expiry = bucket_expiry;
     599           2 :                 base->timers_pending = true;
     600           2 :                 base->next_expiry_recalc = false;
     601           2 :                 trigger_dyntick_cpu(base, timer);
     602             :         }
     603             : }
     604             : 
     605          98 : static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
     606             : {
     607             :         unsigned long bucket_expiry;
     608             :         unsigned int idx;
     609             : 
     610          98 :         idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
     611         196 :         enqueue_timer(base, timer, idx, bucket_expiry);
     612          98 : }
     613             : 
     614             : #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
     615             : 
     616             : static const struct debug_obj_descr timer_debug_descr;
     617             : 
     618             : static void *timer_debug_hint(void *addr)
     619             : {
     620             :         return ((struct timer_list *) addr)->function;
     621             : }
     622             : 
     623             : static bool timer_is_static_object(void *addr)
     624             : {
     625             :         struct timer_list *timer = addr;
     626             : 
     627             :         return (timer->entry.pprev == NULL &&
     628             :                 timer->entry.next == TIMER_ENTRY_STATIC);
     629             : }
     630             : 
     631             : /*
     632             :  * fixup_init is called when:
     633             :  * - an active object is initialized
     634             :  */
     635             : static bool timer_fixup_init(void *addr, enum debug_obj_state state)
     636             : {
     637             :         struct timer_list *timer = addr;
     638             : 
     639             :         switch (state) {
     640             :         case ODEBUG_STATE_ACTIVE:
     641             :                 del_timer_sync(timer);
     642             :                 debug_object_init(timer, &timer_debug_descr);
     643             :                 return true;
     644             :         default:
     645             :                 return false;
     646             :         }
     647             : }
     648             : 
     649             : /* Stub timer callback for improperly used timers. */
     650             : static void stub_timer(struct timer_list *unused)
     651             : {
     652             :         WARN_ON(1);
     653             : }
     654             : 
     655             : /*
     656             :  * fixup_activate is called when:
     657             :  * - an active object is activated
     658             :  * - an unknown non-static object is activated
     659             :  */
     660             : static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
     661             : {
     662             :         struct timer_list *timer = addr;
     663             : 
     664             :         switch (state) {
     665             :         case ODEBUG_STATE_NOTAVAILABLE:
     666             :                 timer_setup(timer, stub_timer, 0);
     667             :                 return true;
     668             : 
     669             :         case ODEBUG_STATE_ACTIVE:
     670             :                 WARN_ON(1);
     671             :                 fallthrough;
     672             :         default:
     673             :                 return false;
     674             :         }
     675             : }
     676             : 
     677             : /*
     678             :  * fixup_free is called when:
     679             :  * - an active object is freed
     680             :  */
     681             : static bool timer_fixup_free(void *addr, enum debug_obj_state state)
     682             : {
     683             :         struct timer_list *timer = addr;
     684             : 
     685             :         switch (state) {
     686             :         case ODEBUG_STATE_ACTIVE:
     687             :                 del_timer_sync(timer);
     688             :                 debug_object_free(timer, &timer_debug_descr);
     689             :                 return true;
     690             :         default:
     691             :                 return false;
     692             :         }
     693             : }
     694             : 
     695             : /*
     696             :  * fixup_assert_init is called when:
     697             :  * - an untracked/uninit-ed object is found
     698             :  */
     699             : static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
     700             : {
     701             :         struct timer_list *timer = addr;
     702             : 
     703             :         switch (state) {
     704             :         case ODEBUG_STATE_NOTAVAILABLE:
     705             :                 timer_setup(timer, stub_timer, 0);
     706             :                 return true;
     707             :         default:
     708             :                 return false;
     709             :         }
     710             : }
     711             : 
     712             : static const struct debug_obj_descr timer_debug_descr = {
     713             :         .name                   = "timer_list",
     714             :         .debug_hint             = timer_debug_hint,
     715             :         .is_static_object       = timer_is_static_object,
     716             :         .fixup_init             = timer_fixup_init,
     717             :         .fixup_activate         = timer_fixup_activate,
     718             :         .fixup_free             = timer_fixup_free,
     719             :         .fixup_assert_init      = timer_fixup_assert_init,
     720             : };
     721             : 
     722             : static inline void debug_timer_init(struct timer_list *timer)
     723             : {
     724             :         debug_object_init(timer, &timer_debug_descr);
     725             : }
     726             : 
     727             : static inline void debug_timer_activate(struct timer_list *timer)
     728             : {
     729             :         debug_object_activate(timer, &timer_debug_descr);
     730             : }
     731             : 
     732             : static inline void debug_timer_deactivate(struct timer_list *timer)
     733             : {
     734             :         debug_object_deactivate(timer, &timer_debug_descr);
     735             : }
     736             : 
     737             : static inline void debug_timer_assert_init(struct timer_list *timer)
     738             : {
     739             :         debug_object_assert_init(timer, &timer_debug_descr);
     740             : }
     741             : 
     742             : static void do_init_timer(struct timer_list *timer,
     743             :                           void (*func)(struct timer_list *),
     744             :                           unsigned int flags,
     745             :                           const char *name, struct lock_class_key *key);
     746             : 
     747             : void init_timer_on_stack_key(struct timer_list *timer,
     748             :                              void (*func)(struct timer_list *),
     749             :                              unsigned int flags,
     750             :                              const char *name, struct lock_class_key *key)
     751             : {
     752             :         debug_object_init_on_stack(timer, &timer_debug_descr);
     753             :         do_init_timer(timer, func, flags, name, key);
     754             : }
     755             : EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
     756             : 
     757             : void destroy_timer_on_stack(struct timer_list *timer)
     758             : {
     759             :         debug_object_free(timer, &timer_debug_descr);
     760             : }
     761             : EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
     762             : 
     763             : #else
     764             : static inline void debug_timer_init(struct timer_list *timer) { }
     765             : static inline void debug_timer_activate(struct timer_list *timer) { }
     766             : static inline void debug_timer_deactivate(struct timer_list *timer) { }
     767             : static inline void debug_timer_assert_init(struct timer_list *timer) { }
     768             : #endif
     769             : 
     770             : static inline void debug_init(struct timer_list *timer)
     771             : {
     772         105 :         debug_timer_init(timer);
     773         105 :         trace_timer_init(timer);
     774             : }
     775             : 
     776             : static inline void debug_deactivate(struct timer_list *timer)
     777             : {
     778          95 :         debug_timer_deactivate(timer);
     779          95 :         trace_timer_cancel(timer);
     780             : }
     781             : 
     782             : static inline void debug_assert_init(struct timer_list *timer)
     783             : {
     784          95 :         debug_timer_assert_init(timer);
     785             : }
     786             : 
     787         105 : static void do_init_timer(struct timer_list *timer,
     788             :                           void (*func)(struct timer_list *),
     789             :                           unsigned int flags,
     790             :                           const char *name, struct lock_class_key *key)
     791             : {
     792         105 :         timer->entry.pprev = NULL;
     793         105 :         timer->function = func;
     794         105 :         if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
     795           0 :                 flags &= TIMER_INIT_FLAGS;
     796         105 :         timer->flags = flags | raw_smp_processor_id();
     797             :         lockdep_init_map(&timer->lockdep_map, name, key, 0);
     798         105 : }
     799             : 
     800             : /**
     801             :  * init_timer_key - initialize a timer
     802             :  * @timer: the timer to be initialized
     803             :  * @func: timer callback function
     804             :  * @flags: timer flags
     805             :  * @name: name of the timer
     806             :  * @key: lockdep class key of the fake lock used for tracking timer
     807             :  *       sync lock dependencies
     808             :  *
     809             :  * init_timer_key() must be done to a timer prior calling *any* of the
     810             :  * other timer functions.
     811             :  */
     812          10 : void init_timer_key(struct timer_list *timer,
     813             :                     void (*func)(struct timer_list *), unsigned int flags,
     814             :                     const char *name, struct lock_class_key *key)
     815             : {
     816         105 :         debug_init(timer);
     817         105 :         do_init_timer(timer, func, flags, name, key);
     818          10 : }
     819             : EXPORT_SYMBOL(init_timer_key);
     820             : 
     821             : static inline void detach_timer(struct timer_list *timer, bool clear_pending)
     822             : {
     823          95 :         struct hlist_node *entry = &timer->entry;
     824             : 
     825         190 :         debug_deactivate(timer);
     826             : 
     827          95 :         __hlist_del(entry);
     828          95 :         if (clear_pending)
     829          95 :                 entry->pprev = NULL;
     830          95 :         entry->next = LIST_POISON2;
     831             : }
     832             : 
     833         193 : static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
     834             :                              bool clear_pending)
     835             : {
     836         386 :         unsigned idx = timer_get_idx(timer);
     837             : 
     838         193 :         if (!timer_pending(timer))
     839             :                 return 0;
     840             : 
     841         190 :         if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
     842         190 :                 __clear_bit(idx, base->pending_map);
     843          95 :                 base->next_expiry_recalc = true;
     844             :         }
     845             : 
     846         190 :         detach_timer(timer, clear_pending);
     847          95 :         return 1;
     848             : }
     849             : 
     850             : static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
     851             : {
     852         193 :         struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
     853             : 
     854             :         /*
     855             :          * If the timer is deferrable and NO_HZ_COMMON is set then we need
     856             :          * to use the deferrable base.
     857             :          */
     858             :         if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
     859             :                 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
     860             :         return base;
     861             : }
     862             : 
     863             : static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
     864             : {
     865          98 :         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
     866             : 
     867             :         /*
     868             :          * If the timer is deferrable and NO_HZ_COMMON is set then we need
     869             :          * to use the deferrable base.
     870             :          */
     871             :         if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
     872             :                 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
     873             :         return base;
     874             : }
     875             : 
     876             : static inline struct timer_base *get_timer_base(u32 tflags)
     877             : {
     878         193 :         return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
     879             : }
     880             : 
     881             : static inline struct timer_base *
     882             : get_target_base(struct timer_base *base, unsigned tflags)
     883             : {
     884             : #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
     885             :         if (static_branch_likely(&timers_migration_enabled) &&
     886             :             !(tflags & TIMER_PINNED))
     887             :                 return get_timer_cpu_base(tflags, get_nohz_timer_target());
     888             : #endif
     889          98 :         return get_timer_this_cpu_base(tflags);
     890             : }
     891             : 
     892          98 : static inline void forward_timer_base(struct timer_base *base)
     893             : {
     894          98 :         unsigned long jnow = READ_ONCE(jiffies);
     895             : 
     896             :         /*
     897             :          * No need to forward if we are close enough below jiffies.
     898             :          * Also while executing timers, base->clk is 1 offset ahead
     899             :          * of jiffies to avoid endless requeuing to current jiffies.
     900             :          */
     901          98 :         if ((long)(jnow - base->clk) < 1)
     902             :                 return;
     903             : 
     904             :         /*
     905             :          * If the next expiry value is > jiffies, then we fast forward to
     906             :          * jiffies otherwise we forward to the next expiry value.
     907             :          */
     908           2 :         if (time_after(base->next_expiry, jnow)) {
     909           2 :                 base->clk = jnow;
     910             :         } else {
     911           0 :                 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
     912             :                         return;
     913           0 :                 base->clk = base->next_expiry;
     914             :         }
     915             : }
     916             : 
     917             : 
     918             : /*
     919             :  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
     920             :  * that all timers which are tied to this base are locked, and the base itself
     921             :  * is locked too.
     922             :  *
     923             :  * So __run_timers/migrate_timers can safely modify all timers which could
     924             :  * be found in the base->vectors array.
     925             :  *
     926             :  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
     927             :  * to wait until the migration is done.
     928             :  */
     929         193 : static struct timer_base *lock_timer_base(struct timer_list *timer,
     930             :                                           unsigned long *flags)
     931             :         __acquires(timer->base->lock)
     932             : {
     933             :         for (;;) {
     934             :                 struct timer_base *base;
     935             :                 u32 tf;
     936             : 
     937             :                 /*
     938             :                  * We need to use READ_ONCE() here, otherwise the compiler
     939             :                  * might re-read @tf between the check for TIMER_MIGRATING
     940             :                  * and spin_lock().
     941             :                  */
     942         193 :                 tf = READ_ONCE(timer->flags);
     943             : 
     944         193 :                 if (!(tf & TIMER_MIGRATING)) {
     945         386 :                         base = get_timer_base(tf);
     946         193 :                         raw_spin_lock_irqsave(&base->lock, *flags);
     947         193 :                         if (timer->flags == tf)
     948         193 :                                 return base;
     949           0 :                         raw_spin_unlock_irqrestore(&base->lock, *flags);
     950             :                 }
     951             :                 cpu_relax();
     952             :         }
     953             : }
     954             : 
     955             : #define MOD_TIMER_PENDING_ONLY          0x01
     956             : #define MOD_TIMER_REDUCE                0x02
     957             : #define MOD_TIMER_NOTPENDING            0x04
     958             : 
     959             : static inline int
     960          98 : __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
     961             : {
     962          98 :         unsigned long clk = 0, flags, bucket_expiry;
     963             :         struct timer_base *base, *new_base;
     964          98 :         unsigned int idx = UINT_MAX;
     965          98 :         int ret = 0;
     966             : 
     967          98 :         BUG_ON(!timer->function);
     968             : 
     969             :         /*
     970             :          * This is a common optimization triggered by the networking code - if
     971             :          * the timer is re-modified to have the same timeout or ends up in the
     972             :          * same array bucket then just return:
     973             :          */
     974         100 :         if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
     975             :                 /*
     976             :                  * The downside of this optimization is that it can result in
     977             :                  * larger granularity than you would get from adding a new
     978             :                  * timer with this expiry.
     979             :                  */
     980           0 :                 long diff = timer->expires - expires;
     981             : 
     982           0 :                 if (!diff)
     983             :                         return 1;
     984           0 :                 if (options & MOD_TIMER_REDUCE && diff <= 0)
     985             :                         return 1;
     986             : 
     987             :                 /*
     988             :                  * We lock timer base and calculate the bucket index right
     989             :                  * here. If the timer ends up in the same bucket, then we
     990             :                  * just update the expiry time and avoid the whole
     991             :                  * dequeue/enqueue dance.
     992             :                  */
     993           0 :                 base = lock_timer_base(timer, &flags);
     994           0 :                 forward_timer_base(base);
     995             : 
     996           0 :                 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
     997           0 :                     time_before_eq(timer->expires, expires)) {
     998             :                         ret = 1;
     999             :                         goto out_unlock;
    1000             :                 }
    1001             : 
    1002           0 :                 clk = base->clk;
    1003           0 :                 idx = calc_wheel_index(expires, clk, &bucket_expiry);
    1004             : 
    1005             :                 /*
    1006             :                  * Retrieve and compare the array index of the pending
    1007             :                  * timer. If it matches set the expiry to the new value so a
    1008             :                  * subsequent call will exit in the expires check above.
    1009             :                  */
    1010           0 :                 if (idx == timer_get_idx(timer)) {
    1011           0 :                         if (!(options & MOD_TIMER_REDUCE))
    1012           0 :                                 timer->expires = expires;
    1013           0 :                         else if (time_after(timer->expires, expires))
    1014           0 :                                 timer->expires = expires;
    1015             :                         ret = 1;
    1016             :                         goto out_unlock;
    1017             :                 }
    1018             :         } else {
    1019          98 :                 base = lock_timer_base(timer, &flags);
    1020          98 :                 forward_timer_base(base);
    1021             :         }
    1022             : 
    1023          98 :         ret = detach_if_pending(timer, base, false);
    1024          98 :         if (!ret && (options & MOD_TIMER_PENDING_ONLY))
    1025             :                 goto out_unlock;
    1026             : 
    1027         196 :         new_base = get_target_base(base, timer->flags);
    1028             : 
    1029          98 :         if (base != new_base) {
    1030             :                 /*
    1031             :                  * We are trying to schedule the timer on the new base.
    1032             :                  * However we can't change timer's base while it is running,
    1033             :                  * otherwise del_timer_sync() can't detect that the timer's
    1034             :                  * handler yet has not finished. This also guarantees that the
    1035             :                  * timer is serialized wrt itself.
    1036             :                  */
    1037           0 :                 if (likely(base->running_timer != timer)) {
    1038             :                         /* See the comment in lock_timer_base() */
    1039           0 :                         timer->flags |= TIMER_MIGRATING;
    1040             : 
    1041           0 :                         raw_spin_unlock(&base->lock);
    1042           0 :                         base = new_base;
    1043           0 :                         raw_spin_lock(&base->lock);
    1044           0 :                         WRITE_ONCE(timer->flags,
    1045             :                                    (timer->flags & ~TIMER_BASEMASK) | base->cpu);
    1046           0 :                         forward_timer_base(base);
    1047             :                 }
    1048             :         }
    1049             : 
    1050          98 :         debug_timer_activate(timer);
    1051             : 
    1052          98 :         timer->expires = expires;
    1053             :         /*
    1054             :          * If 'idx' was calculated above and the base time did not advance
    1055             :          * between calculating 'idx' and possibly switching the base, only
    1056             :          * enqueue_timer() is required. Otherwise we need to (re)calculate
    1057             :          * the wheel index via internal_add_timer().
    1058             :          */
    1059          98 :         if (idx != UINT_MAX && clk == base->clk)
    1060           0 :                 enqueue_timer(base, timer, idx, bucket_expiry);
    1061             :         else
    1062          98 :                 internal_add_timer(base, timer);
    1063             : 
    1064             : out_unlock:
    1065         196 :         raw_spin_unlock_irqrestore(&base->lock, flags);
    1066             : 
    1067          98 :         return ret;
    1068             : }
    1069             : 
    1070             : /**
    1071             :  * mod_timer_pending - modify a pending timer's timeout
    1072             :  * @timer: the pending timer to be modified
    1073             :  * @expires: new timeout in jiffies
    1074             :  *
    1075             :  * mod_timer_pending() is the same for pending timers as mod_timer(),
    1076             :  * but will not re-activate and modify already deleted timers.
    1077             :  *
    1078             :  * It is useful for unserialized use of timers.
    1079             :  */
    1080           0 : int mod_timer_pending(struct timer_list *timer, unsigned long expires)
    1081             : {
    1082           0 :         return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
    1083             : }
    1084             : EXPORT_SYMBOL(mod_timer_pending);
    1085             : 
    1086             : /**
    1087             :  * mod_timer - modify a timer's timeout
    1088             :  * @timer: the timer to be modified
    1089             :  * @expires: new timeout in jiffies
    1090             :  *
    1091             :  * mod_timer() is a more efficient way to update the expire field of an
    1092             :  * active timer (if the timer is inactive it will be activated)
    1093             :  *
    1094             :  * mod_timer(timer, expires) is equivalent to:
    1095             :  *
    1096             :  *     del_timer(timer); timer->expires = expires; add_timer(timer);
    1097             :  *
    1098             :  * Note that if there are multiple unserialized concurrent users of the
    1099             :  * same timer, then mod_timer() is the only safe way to modify the timeout,
    1100             :  * since add_timer() cannot modify an already running timer.
    1101             :  *
    1102             :  * The function returns whether it has modified a pending timer or not.
    1103             :  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
    1104             :  * active timer returns 1.)
    1105             :  */
    1106           2 : int mod_timer(struct timer_list *timer, unsigned long expires)
    1107             : {
    1108           2 :         return __mod_timer(timer, expires, 0);
    1109             : }
    1110             : EXPORT_SYMBOL(mod_timer);
    1111             : 
    1112             : /**
    1113             :  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
    1114             :  * @timer:      The timer to be modified
    1115             :  * @expires:    New timeout in jiffies
    1116             :  *
    1117             :  * timer_reduce() is very similar to mod_timer(), except that it will only
    1118             :  * modify a running timer if that would reduce the expiration time (it will
    1119             :  * start a timer that isn't running).
    1120             :  */
    1121           0 : int timer_reduce(struct timer_list *timer, unsigned long expires)
    1122             : {
    1123           0 :         return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
    1124             : }
    1125             : EXPORT_SYMBOL(timer_reduce);
    1126             : 
    1127             : /**
    1128             :  * add_timer - start a timer
    1129             :  * @timer: the timer to be added
    1130             :  *
    1131             :  * The kernel will do a ->function(@timer) callback from the
    1132             :  * timer interrupt at the ->expires point in the future. The
    1133             :  * current time is 'jiffies'.
    1134             :  *
    1135             :  * The timer's ->expires, ->function fields must be set prior calling this
    1136             :  * function.
    1137             :  *
    1138             :  * Timers with an ->expires field in the past will be executed in the next
    1139             :  * timer tick.
    1140             :  */
    1141           1 : void add_timer(struct timer_list *timer)
    1142             : {
    1143           1 :         BUG_ON(timer_pending(timer));
    1144           1 :         __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
    1145           1 : }
    1146             : EXPORT_SYMBOL(add_timer);
    1147             : 
    1148             : /**
    1149             :  * add_timer_on - start a timer on a particular CPU
    1150             :  * @timer: the timer to be added
    1151             :  * @cpu: the CPU to start it on
    1152             :  *
    1153             :  * This is not very scalable on SMP. Double adds are not possible.
    1154             :  */
    1155           0 : void add_timer_on(struct timer_list *timer, int cpu)
    1156             : {
    1157             :         struct timer_base *new_base, *base;
    1158             :         unsigned long flags;
    1159             : 
    1160           0 :         BUG_ON(timer_pending(timer) || !timer->function);
    1161             : 
    1162           0 :         new_base = get_timer_cpu_base(timer->flags, cpu);
    1163             : 
    1164             :         /*
    1165             :          * If @timer was on a different CPU, it should be migrated with the
    1166             :          * old base locked to prevent other operations proceeding with the
    1167             :          * wrong base locked.  See lock_timer_base().
    1168             :          */
    1169           0 :         base = lock_timer_base(timer, &flags);
    1170           0 :         if (base != new_base) {
    1171           0 :                 timer->flags |= TIMER_MIGRATING;
    1172             : 
    1173           0 :                 raw_spin_unlock(&base->lock);
    1174           0 :                 base = new_base;
    1175           0 :                 raw_spin_lock(&base->lock);
    1176           0 :                 WRITE_ONCE(timer->flags,
    1177             :                            (timer->flags & ~TIMER_BASEMASK) | cpu);
    1178             :         }
    1179           0 :         forward_timer_base(base);
    1180             : 
    1181           0 :         debug_timer_activate(timer);
    1182           0 :         internal_add_timer(base, timer);
    1183           0 :         raw_spin_unlock_irqrestore(&base->lock, flags);
    1184           0 : }
    1185             : EXPORT_SYMBOL_GPL(add_timer_on);
    1186             : 
    1187             : /**
    1188             :  * del_timer - deactivate a timer.
    1189             :  * @timer: the timer to be deactivated
    1190             :  *
    1191             :  * del_timer() deactivates a timer - this works on both active and inactive
    1192             :  * timers.
    1193             :  *
    1194             :  * The function returns whether it has deactivated a pending timer or not.
    1195             :  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
    1196             :  * active timer returns 1.)
    1197             :  */
    1198          95 : int del_timer(struct timer_list *timer)
    1199             : {
    1200             :         struct timer_base *base;
    1201             :         unsigned long flags;
    1202          95 :         int ret = 0;
    1203             : 
    1204         190 :         debug_assert_init(timer);
    1205             : 
    1206          95 :         if (timer_pending(timer)) {
    1207          95 :                 base = lock_timer_base(timer, &flags);
    1208          95 :                 ret = detach_if_pending(timer, base, true);
    1209         190 :                 raw_spin_unlock_irqrestore(&base->lock, flags);
    1210             :         }
    1211             : 
    1212          95 :         return ret;
    1213             : }
    1214             : EXPORT_SYMBOL(del_timer);
    1215             : 
    1216             : /**
    1217             :  * try_to_del_timer_sync - Try to deactivate a timer
    1218             :  * @timer: timer to delete
    1219             :  *
    1220             :  * This function tries to deactivate a timer. Upon successful (ret >= 0)
    1221             :  * exit the timer is not queued and the handler is not running on any CPU.
    1222             :  */
    1223           0 : int try_to_del_timer_sync(struct timer_list *timer)
    1224             : {
    1225             :         struct timer_base *base;
    1226             :         unsigned long flags;
    1227           0 :         int ret = -1;
    1228             : 
    1229           0 :         debug_assert_init(timer);
    1230             : 
    1231           0 :         base = lock_timer_base(timer, &flags);
    1232             : 
    1233           0 :         if (base->running_timer != timer)
    1234           0 :                 ret = detach_if_pending(timer, base, true);
    1235             : 
    1236           0 :         raw_spin_unlock_irqrestore(&base->lock, flags);
    1237             : 
    1238           0 :         return ret;
    1239             : }
    1240             : EXPORT_SYMBOL(try_to_del_timer_sync);
    1241             : 
    1242             : #ifdef CONFIG_PREEMPT_RT
    1243             : static __init void timer_base_init_expiry_lock(struct timer_base *base)
    1244             : {
    1245             :         spin_lock_init(&base->expiry_lock);
    1246             : }
    1247             : 
    1248             : static inline void timer_base_lock_expiry(struct timer_base *base)
    1249             : {
    1250             :         spin_lock(&base->expiry_lock);
    1251             : }
    1252             : 
    1253             : static inline void timer_base_unlock_expiry(struct timer_base *base)
    1254             : {
    1255             :         spin_unlock(&base->expiry_lock);
    1256             : }
    1257             : 
    1258             : /*
    1259             :  * The counterpart to del_timer_wait_running().
    1260             :  *
    1261             :  * If there is a waiter for base->expiry_lock, then it was waiting for the
    1262             :  * timer callback to finish. Drop expiry_lock and reacquire it. That allows
    1263             :  * the waiter to acquire the lock and make progress.
    1264             :  */
    1265             : static void timer_sync_wait_running(struct timer_base *base)
    1266             : {
    1267             :         if (atomic_read(&base->timer_waiters)) {
    1268             :                 raw_spin_unlock_irq(&base->lock);
    1269             :                 spin_unlock(&base->expiry_lock);
    1270             :                 spin_lock(&base->expiry_lock);
    1271             :                 raw_spin_lock_irq(&base->lock);
    1272             :         }
    1273             : }
    1274             : 
    1275             : /*
    1276             :  * This function is called on PREEMPT_RT kernels when the fast path
    1277             :  * deletion of a timer failed because the timer callback function was
    1278             :  * running.
    1279             :  *
    1280             :  * This prevents priority inversion, if the softirq thread on a remote CPU
    1281             :  * got preempted, and it prevents a life lock when the task which tries to
    1282             :  * delete a timer preempted the softirq thread running the timer callback
    1283             :  * function.
    1284             :  */
    1285             : static void del_timer_wait_running(struct timer_list *timer)
    1286             : {
    1287             :         u32 tf;
    1288             : 
    1289             :         tf = READ_ONCE(timer->flags);
    1290             :         if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
    1291             :                 struct timer_base *base = get_timer_base(tf);
    1292             : 
    1293             :                 /*
    1294             :                  * Mark the base as contended and grab the expiry lock,
    1295             :                  * which is held by the softirq across the timer
    1296             :                  * callback. Drop the lock immediately so the softirq can
    1297             :                  * expire the next timer. In theory the timer could already
    1298             :                  * be running again, but that's more than unlikely and just
    1299             :                  * causes another wait loop.
    1300             :                  */
    1301             :                 atomic_inc(&base->timer_waiters);
    1302             :                 spin_lock_bh(&base->expiry_lock);
    1303             :                 atomic_dec(&base->timer_waiters);
    1304             :                 spin_unlock_bh(&base->expiry_lock);
    1305             :         }
    1306             : }
    1307             : #else
    1308             : static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
    1309             : static inline void timer_base_lock_expiry(struct timer_base *base) { }
    1310             : static inline void timer_base_unlock_expiry(struct timer_base *base) { }
    1311             : static inline void timer_sync_wait_running(struct timer_base *base) { }
    1312             : static inline void del_timer_wait_running(struct timer_list *timer) { }
    1313             : #endif
    1314             : 
    1315             : #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
    1316             : /**
    1317             :  * del_timer_sync - deactivate a timer and wait for the handler to finish.
    1318             :  * @timer: the timer to be deactivated
    1319             :  *
    1320             :  * This function only differs from del_timer() on SMP: besides deactivating
    1321             :  * the timer it also makes sure the handler has finished executing on other
    1322             :  * CPUs.
    1323             :  *
    1324             :  * Synchronization rules: Callers must prevent restarting of the timer,
    1325             :  * otherwise this function is meaningless. It must not be called from
    1326             :  * interrupt contexts unless the timer is an irqsafe one. The caller must
    1327             :  * not hold locks which would prevent completion of the timer's
    1328             :  * handler. The timer's handler must not call add_timer_on(). Upon exit the
    1329             :  * timer is not queued and the handler is not running on any CPU.
    1330             :  *
    1331             :  * Note: For !irqsafe timers, you must not hold locks that are held in
    1332             :  *   interrupt context while calling this function. Even if the lock has
    1333             :  *   nothing to do with the timer in question.  Here's why::
    1334             :  *
    1335             :  *    CPU0                             CPU1
    1336             :  *    ----                             ----
    1337             :  *                                     <SOFTIRQ>
    1338             :  *                                       call_timer_fn();
    1339             :  *                                       base->running_timer = mytimer;
    1340             :  *    spin_lock_irq(somelock);
    1341             :  *                                     <IRQ>
    1342             :  *                                        spin_lock(somelock);
    1343             :  *    del_timer_sync(mytimer);
    1344             :  *    while (base->running_timer == mytimer);
    1345             :  *
    1346             :  * Now del_timer_sync() will never return and never release somelock.
    1347             :  * The interrupt on the other CPU is waiting to grab somelock but
    1348             :  * it has interrupted the softirq that CPU0 is waiting to finish.
    1349             :  *
    1350             :  * The function returns whether it has deactivated a pending timer or not.
    1351             :  */
    1352             : int del_timer_sync(struct timer_list *timer)
    1353             : {
    1354             :         int ret;
    1355             : 
    1356             : #ifdef CONFIG_LOCKDEP
    1357             :         unsigned long flags;
    1358             : 
    1359             :         /*
    1360             :          * If lockdep gives a backtrace here, please reference
    1361             :          * the synchronization rules above.
    1362             :          */
    1363             :         local_irq_save(flags);
    1364             :         lock_map_acquire(&timer->lockdep_map);
    1365             :         lock_map_release(&timer->lockdep_map);
    1366             :         local_irq_restore(flags);
    1367             : #endif
    1368             :         /*
    1369             :          * don't use it in hardirq context, because it
    1370             :          * could lead to deadlock.
    1371             :          */
    1372             :         WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
    1373             : 
    1374             :         /*
    1375             :          * Must be able to sleep on PREEMPT_RT because of the slowpath in
    1376             :          * del_timer_wait_running().
    1377             :          */
    1378             :         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
    1379             :                 lockdep_assert_preemption_enabled();
    1380             : 
    1381             :         do {
    1382             :                 ret = try_to_del_timer_sync(timer);
    1383             : 
    1384             :                 if (unlikely(ret < 0)) {
    1385             :                         del_timer_wait_running(timer);
    1386             :                         cpu_relax();
    1387             :                 }
    1388             :         } while (ret < 0);
    1389             : 
    1390             :         return ret;
    1391             : }
    1392             : EXPORT_SYMBOL(del_timer_sync);
    1393             : #endif
    1394             : 
    1395           0 : static void call_timer_fn(struct timer_list *timer,
    1396             :                           void (*fn)(struct timer_list *),
    1397             :                           unsigned long baseclk)
    1398             : {
    1399           0 :         int count = preempt_count();
    1400             : 
    1401             : #ifdef CONFIG_LOCKDEP
    1402             :         /*
    1403             :          * It is permissible to free the timer from inside the
    1404             :          * function that is called from it, this we need to take into
    1405             :          * account for lockdep too. To avoid bogus "held lock freed"
    1406             :          * warnings as well as problems when looking into
    1407             :          * timer->lockdep_map, make a copy and use that here.
    1408             :          */
    1409             :         struct lockdep_map lockdep_map;
    1410             : 
    1411             :         lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
    1412             : #endif
    1413             :         /*
    1414             :          * Couple the lock chain with the lock chain at
    1415             :          * del_timer_sync() by acquiring the lock_map around the fn()
    1416             :          * call here and in del_timer_sync().
    1417             :          */
    1418             :         lock_map_acquire(&lockdep_map);
    1419             : 
    1420           0 :         trace_timer_expire_entry(timer, baseclk);
    1421           0 :         fn(timer);
    1422           0 :         trace_timer_expire_exit(timer);
    1423             : 
    1424             :         lock_map_release(&lockdep_map);
    1425             : 
    1426           0 :         if (count != preempt_count()) {
    1427           0 :                 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
    1428             :                           fn, count, preempt_count());
    1429             :                 /*
    1430             :                  * Restore the preempt count. That gives us a decent
    1431             :                  * chance to survive and extract information. If the
    1432             :                  * callback kept a lock held, bad luck, but not worse
    1433             :                  * than the BUG() we had.
    1434             :                  */
    1435             :                 preempt_count_set(count);
    1436             :         }
    1437           0 : }
    1438             : 
    1439           0 : static void expire_timers(struct timer_base *base, struct hlist_head *head)
    1440             : {
    1441             :         /*
    1442             :          * This value is required only for tracing. base->clk was
    1443             :          * incremented directly before expire_timers was called. But expiry
    1444             :          * is related to the old base->clk value.
    1445             :          */
    1446           0 :         unsigned long baseclk = base->clk - 1;
    1447             : 
    1448           0 :         while (!hlist_empty(head)) {
    1449             :                 struct timer_list *timer;
    1450             :                 void (*fn)(struct timer_list *);
    1451             : 
    1452           0 :                 timer = hlist_entry(head->first, struct timer_list, entry);
    1453             : 
    1454           0 :                 base->running_timer = timer;
    1455           0 :                 detach_timer(timer, true);
    1456             : 
    1457           0 :                 fn = timer->function;
    1458             : 
    1459           0 :                 if (timer->flags & TIMER_IRQSAFE) {
    1460           0 :                         raw_spin_unlock(&base->lock);
    1461           0 :                         call_timer_fn(timer, fn, baseclk);
    1462           0 :                         raw_spin_lock(&base->lock);
    1463           0 :                         base->running_timer = NULL;
    1464             :                 } else {
    1465           0 :                         raw_spin_unlock_irq(&base->lock);
    1466           0 :                         call_timer_fn(timer, fn, baseclk);
    1467           0 :                         raw_spin_lock_irq(&base->lock);
    1468           0 :                         base->running_timer = NULL;
    1469           0 :                         timer_sync_wait_running(base);
    1470             :                 }
    1471             :         }
    1472           0 : }
    1473             : 
    1474           0 : static int collect_expired_timers(struct timer_base *base,
    1475             :                                   struct hlist_head *heads)
    1476             : {
    1477           0 :         unsigned long clk = base->clk = base->next_expiry;
    1478             :         struct hlist_head *vec;
    1479           0 :         int i, levels = 0;
    1480             :         unsigned int idx;
    1481             : 
    1482           0 :         for (i = 0; i < LVL_DEPTH; i++) {
    1483           0 :                 idx = (clk & LVL_MASK) + i * LVL_SIZE;
    1484             : 
    1485           0 :                 if (__test_and_clear_bit(idx, base->pending_map)) {
    1486           0 :                         vec = base->vectors + idx;
    1487           0 :                         hlist_move_list(vec, heads++);
    1488           0 :                         levels++;
    1489             :                 }
    1490             :                 /* Is it time to look at the next level? */
    1491           0 :                 if (clk & LVL_CLK_MASK)
    1492             :                         break;
    1493             :                 /* Shift clock for the next level granularity */
    1494           0 :                 clk >>= LVL_CLK_SHIFT;
    1495             :         }
    1496           0 :         return levels;
    1497             : }
    1498             : 
    1499             : /*
    1500             :  * Find the next pending bucket of a level. Search from level start (@offset)
    1501             :  * + @clk upwards and if nothing there, search from start of the level
    1502             :  * (@offset) up to @offset + clk.
    1503             :  */
    1504           0 : static int next_pending_bucket(struct timer_base *base, unsigned offset,
    1505             :                                unsigned clk)
    1506             : {
    1507           0 :         unsigned pos, start = offset + clk;
    1508           0 :         unsigned end = offset + LVL_SIZE;
    1509             : 
    1510           0 :         pos = find_next_bit(base->pending_map, end, start);
    1511           0 :         if (pos < end)
    1512           0 :                 return pos - start;
    1513             : 
    1514           0 :         pos = find_next_bit(base->pending_map, start, offset);
    1515           0 :         return pos < start ? pos + LVL_SIZE - start : -1;
    1516             : }
    1517             : 
    1518             : /*
    1519             :  * Search the first expiring timer in the various clock levels. Caller must
    1520             :  * hold base->lock.
    1521             :  */
    1522           0 : static unsigned long __next_timer_interrupt(struct timer_base *base)
    1523             : {
    1524             :         unsigned long clk, next, adj;
    1525           0 :         unsigned lvl, offset = 0;
    1526             : 
    1527           0 :         next = base->clk + NEXT_TIMER_MAX_DELTA;
    1528           0 :         clk = base->clk;
    1529           0 :         for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
    1530           0 :                 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
    1531           0 :                 unsigned long lvl_clk = clk & LVL_CLK_MASK;
    1532             : 
    1533           0 :                 if (pos >= 0) {
    1534           0 :                         unsigned long tmp = clk + (unsigned long) pos;
    1535             : 
    1536           0 :                         tmp <<= LVL_SHIFT(lvl);
    1537           0 :                         if (time_before(tmp, next))
    1538           0 :                                 next = tmp;
    1539             : 
    1540             :                         /*
    1541             :                          * If the next expiration happens before we reach
    1542             :                          * the next level, no need to check further.
    1543             :                          */
    1544           0 :                         if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
    1545             :                                 break;
    1546             :                 }
    1547             :                 /*
    1548             :                  * Clock for the next level. If the current level clock lower
    1549             :                  * bits are zero, we look at the next level as is. If not we
    1550             :                  * need to advance it by one because that's going to be the
    1551             :                  * next expiring bucket in that level. base->clk is the next
    1552             :                  * expiring jiffie. So in case of:
    1553             :                  *
    1554             :                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
    1555             :                  *  0    0    0    0    0    0
    1556             :                  *
    1557             :                  * we have to look at all levels @index 0. With
    1558             :                  *
    1559             :                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
    1560             :                  *  0    0    0    0    0    2
    1561             :                  *
    1562             :                  * LVL0 has the next expiring bucket @index 2. The upper
    1563             :                  * levels have the next expiring bucket @index 1.
    1564             :                  *
    1565             :                  * In case that the propagation wraps the next level the same
    1566             :                  * rules apply:
    1567             :                  *
    1568             :                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
    1569             :                  *  0    0    0    0    F    2
    1570             :                  *
    1571             :                  * So after looking at LVL0 we get:
    1572             :                  *
    1573             :                  * LVL5 LVL4 LVL3 LVL2 LVL1
    1574             :                  *  0    0    0    1    0
    1575             :                  *
    1576             :                  * So no propagation from LVL1 to LVL2 because that happened
    1577             :                  * with the add already, but then we need to propagate further
    1578             :                  * from LVL2 to LVL3.
    1579             :                  *
    1580             :                  * So the simple check whether the lower bits of the current
    1581             :                  * level are 0 or not is sufficient for all cases.
    1582             :                  */
    1583           0 :                 adj = lvl_clk ? 1 : 0;
    1584           0 :                 clk >>= LVL_CLK_SHIFT;
    1585           0 :                 clk += adj;
    1586             :         }
    1587             : 
    1588           0 :         base->next_expiry_recalc = false;
    1589           0 :         base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
    1590             : 
    1591           0 :         return next;
    1592             : }
    1593             : 
    1594             : #ifdef CONFIG_NO_HZ_COMMON
    1595             : /*
    1596             :  * Check, if the next hrtimer event is before the next timer wheel
    1597             :  * event:
    1598             :  */
    1599             : static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
    1600             : {
    1601             :         u64 nextevt = hrtimer_get_next_event();
    1602             : 
    1603             :         /*
    1604             :          * If high resolution timers are enabled
    1605             :          * hrtimer_get_next_event() returns KTIME_MAX.
    1606             :          */
    1607             :         if (expires <= nextevt)
    1608             :                 return expires;
    1609             : 
    1610             :         /*
    1611             :          * If the next timer is already expired, return the tick base
    1612             :          * time so the tick is fired immediately.
    1613             :          */
    1614             :         if (nextevt <= basem)
    1615             :                 return basem;
    1616             : 
    1617             :         /*
    1618             :          * Round up to the next jiffie. High resolution timers are
    1619             :          * off, so the hrtimers are expired in the tick and we need to
    1620             :          * make sure that this tick really expires the timer to avoid
    1621             :          * a ping pong of the nohz stop code.
    1622             :          *
    1623             :          * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
    1624             :          */
    1625             :         return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
    1626             : }
    1627             : 
    1628             : /**
    1629             :  * get_next_timer_interrupt - return the time (clock mono) of the next timer
    1630             :  * @basej:      base time jiffies
    1631             :  * @basem:      base time clock monotonic
    1632             :  *
    1633             :  * Returns the tick aligned clock monotonic time of the next pending
    1634             :  * timer or KTIME_MAX if no timer is pending.
    1635             :  */
    1636             : u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
    1637             : {
    1638             :         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
    1639             :         u64 expires = KTIME_MAX;
    1640             :         unsigned long nextevt;
    1641             : 
    1642             :         /*
    1643             :          * Pretend that there is no timer pending if the cpu is offline.
    1644             :          * Possible pending timers will be migrated later to an active cpu.
    1645             :          */
    1646             :         if (cpu_is_offline(smp_processor_id()))
    1647             :                 return expires;
    1648             : 
    1649             :         raw_spin_lock(&base->lock);
    1650             :         if (base->next_expiry_recalc)
    1651             :                 base->next_expiry = __next_timer_interrupt(base);
    1652             :         nextevt = base->next_expiry;
    1653             : 
    1654             :         /*
    1655             :          * We have a fresh next event. Check whether we can forward the
    1656             :          * base. We can only do that when @basej is past base->clk
    1657             :          * otherwise we might rewind base->clk.
    1658             :          */
    1659             :         if (time_after(basej, base->clk)) {
    1660             :                 if (time_after(nextevt, basej))
    1661             :                         base->clk = basej;
    1662             :                 else if (time_after(nextevt, base->clk))
    1663             :                         base->clk = nextevt;
    1664             :         }
    1665             : 
    1666             :         if (time_before_eq(nextevt, basej)) {
    1667             :                 expires = basem;
    1668             :                 base->is_idle = false;
    1669             :         } else {
    1670             :                 if (base->timers_pending)
    1671             :                         expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
    1672             :                 /*
    1673             :                  * If we expect to sleep more than a tick, mark the base idle.
    1674             :                  * Also the tick is stopped so any added timer must forward
    1675             :                  * the base clk itself to keep granularity small. This idle
    1676             :                  * logic is only maintained for the BASE_STD base, deferrable
    1677             :                  * timers may still see large granularity skew (by design).
    1678             :                  */
    1679             :                 if ((expires - basem) > TICK_NSEC)
    1680             :                         base->is_idle = true;
    1681             :         }
    1682             :         raw_spin_unlock(&base->lock);
    1683             : 
    1684             :         return cmp_next_hrtimer_event(basem, expires);
    1685             : }
    1686             : 
    1687             : /**
    1688             :  * timer_clear_idle - Clear the idle state of the timer base
    1689             :  *
    1690             :  * Called with interrupts disabled
    1691             :  */
    1692             : void timer_clear_idle(void)
    1693             : {
    1694             :         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
    1695             : 
    1696             :         /*
    1697             :          * We do this unlocked. The worst outcome is a remote enqueue sending
    1698             :          * a pointless IPI, but taking the lock would just make the window for
    1699             :          * sending the IPI a few instructions smaller for the cost of taking
    1700             :          * the lock in the exit from idle path.
    1701             :          */
    1702             :         base->is_idle = false;
    1703             : }
    1704             : #endif
    1705             : 
    1706             : /**
    1707             :  * __run_timers - run all expired timers (if any) on this CPU.
    1708             :  * @base: the timer vector to be processed.
    1709             :  */
    1710           0 : static inline void __run_timers(struct timer_base *base)
    1711             : {
    1712             :         struct hlist_head heads[LVL_DEPTH];
    1713             :         int levels;
    1714             : 
    1715           0 :         if (time_before(jiffies, base->next_expiry))
    1716           0 :                 return;
    1717             : 
    1718           0 :         timer_base_lock_expiry(base);
    1719           0 :         raw_spin_lock_irq(&base->lock);
    1720             : 
    1721           0 :         while (time_after_eq(jiffies, base->clk) &&
    1722           0 :                time_after_eq(jiffies, base->next_expiry)) {
    1723           0 :                 levels = collect_expired_timers(base, heads);
    1724             :                 /*
    1725             :                  * The two possible reasons for not finding any expired
    1726             :                  * timer at this clk are that all matching timers have been
    1727             :                  * dequeued or no timer has been queued since
    1728             :                  * base::next_expiry was set to base::clk +
    1729             :                  * NEXT_TIMER_MAX_DELTA.
    1730             :                  */
    1731           0 :                 WARN_ON_ONCE(!levels && !base->next_expiry_recalc
    1732             :                              && base->timers_pending);
    1733           0 :                 base->clk++;
    1734           0 :                 base->next_expiry = __next_timer_interrupt(base);
    1735             : 
    1736           0 :                 while (levels--)
    1737           0 :                         expire_timers(base, heads + levels);
    1738             :         }
    1739           0 :         raw_spin_unlock_irq(&base->lock);
    1740           0 :         timer_base_unlock_expiry(base);
    1741             : }
    1742             : 
    1743             : /*
    1744             :  * This function runs timers and the timer-tq in bottom half context.
    1745             :  */
    1746           0 : static __latent_entropy void run_timer_softirq(struct softirq_action *h)
    1747             : {
    1748           0 :         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
    1749             : 
    1750           0 :         __run_timers(base);
    1751             :         if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
    1752             :                 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
    1753           0 : }
    1754             : 
    1755             : /*
    1756             :  * Called by the local, per-CPU timer interrupt on SMP.
    1757             :  */
    1758          13 : static void run_local_timers(void)
    1759             : {
    1760          13 :         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
    1761             : 
    1762          13 :         hrtimer_run_queues();
    1763             :         /* Raise the softirq only if required. */
    1764          13 :         if (time_before(jiffies, base->next_expiry)) {
    1765             :                 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
    1766             :                         return;
    1767             :                 /* CPU is awake, so check the deferrable base. */
    1768             :                 base++;
    1769             :                 if (time_before(jiffies, base->next_expiry))
    1770             :                         return;
    1771             :         }
    1772           0 :         raise_softirq(TIMER_SOFTIRQ);
    1773             : }
    1774             : 
    1775             : /*
    1776             :  * Called from the timer interrupt handler to charge one tick to the current
    1777             :  * process.  user_tick is 1 if the tick is user time, 0 for system.
    1778             :  */
    1779          13 : void update_process_times(int user_tick)
    1780             : {
    1781          13 :         struct task_struct *p = current;
    1782             : 
    1783          26 :         PRANDOM_ADD_NOISE(jiffies, user_tick, p, 0);
    1784             : 
    1785             :         /* Note: this timer irq context must be accounted for as well. */
    1786          13 :         account_process_tick(p, user_tick);
    1787          13 :         run_local_timers();
    1788          13 :         rcu_sched_clock_irq(user_tick);
    1789             : #ifdef CONFIG_IRQ_WORK
    1790          13 :         if (in_irq())
    1791          13 :                 irq_work_tick();
    1792             : #endif
    1793          13 :         scheduler_tick();
    1794             :         if (IS_ENABLED(CONFIG_POSIX_TIMERS))
    1795          13 :                 run_posix_cpu_timers();
    1796          13 : }
    1797             : 
    1798             : /*
    1799             :  * Since schedule_timeout()'s timer is defined on the stack, it must store
    1800             :  * the target task on the stack as well.
    1801             :  */
    1802             : struct process_timer {
    1803             :         struct timer_list timer;
    1804             :         struct task_struct *task;
    1805             : };
    1806             : 
    1807           0 : static void process_timeout(struct timer_list *t)
    1808             : {
    1809           0 :         struct process_timer *timeout = from_timer(timeout, t, timer);
    1810             : 
    1811           0 :         wake_up_process(timeout->task);
    1812           0 : }
    1813             : 
    1814             : /**
    1815             :  * schedule_timeout - sleep until timeout
    1816             :  * @timeout: timeout value in jiffies
    1817             :  *
    1818             :  * Make the current task sleep until @timeout jiffies have elapsed.
    1819             :  * The function behavior depends on the current task state
    1820             :  * (see also set_current_state() description):
    1821             :  *
    1822             :  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
    1823             :  * at all. That happens because sched_submit_work() does nothing for
    1824             :  * tasks in %TASK_RUNNING state.
    1825             :  *
    1826             :  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
    1827             :  * pass before the routine returns unless the current task is explicitly
    1828             :  * woken up, (e.g. by wake_up_process()).
    1829             :  *
    1830             :  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
    1831             :  * delivered to the current task or the current task is explicitly woken
    1832             :  * up.
    1833             :  *
    1834             :  * The current task state is guaranteed to be %TASK_RUNNING when this
    1835             :  * routine returns.
    1836             :  *
    1837             :  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
    1838             :  * the CPU away without a bound on the timeout. In this case the return
    1839             :  * value will be %MAX_SCHEDULE_TIMEOUT.
    1840             :  *
    1841             :  * Returns 0 when the timer has expired otherwise the remaining time in
    1842             :  * jiffies will be returned. In all cases the return value is guaranteed
    1843             :  * to be non-negative.
    1844             :  */
    1845         204 : signed long __sched schedule_timeout(signed long timeout)
    1846             : {
    1847             :         struct process_timer timer;
    1848             :         unsigned long expire;
    1849             : 
    1850         204 :         switch (timeout)
    1851             :         {
    1852             :         case MAX_SCHEDULE_TIMEOUT:
    1853             :                 /*
    1854             :                  * These two special cases are useful to be comfortable
    1855             :                  * in the caller. Nothing more. We could take
    1856             :                  * MAX_SCHEDULE_TIMEOUT from one of the negative value
    1857             :                  * but I' d like to return a valid offset (>=0) to allow
    1858             :                  * the caller to do everything it want with the retval.
    1859             :                  */
    1860         109 :                 schedule();
    1861         109 :                 goto out;
    1862             :         default:
    1863             :                 /*
    1864             :                  * Another bit of PARANOID. Note that the retval will be
    1865             :                  * 0 since no piece of kernel is supposed to do a check
    1866             :                  * for a negative retval of schedule_timeout() (since it
    1867             :                  * should never happens anyway). You just have the printk()
    1868             :                  * that will tell you if something is gone wrong and where.
    1869             :                  */
    1870          95 :                 if (timeout < 0) {
    1871           0 :                         printk(KERN_ERR "schedule_timeout: wrong timeout "
    1872             :                                 "value %lx\n", timeout);
    1873           0 :                         dump_stack();
    1874           0 :                         __set_current_state(TASK_RUNNING);
    1875           0 :                         goto out;
    1876             :                 }
    1877             :         }
    1878             : 
    1879          95 :         expire = timeout + jiffies;
    1880             : 
    1881          95 :         timer.task = current;
    1882         190 :         timer_setup_on_stack(&timer.timer, process_timeout, 0);
    1883          95 :         __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
    1884          95 :         schedule();
    1885          93 :         del_singleshot_timer_sync(&timer.timer);
    1886             : 
    1887             :         /* Remove the timer from the object tracker */
    1888          93 :         destroy_timer_on_stack(&timer.timer);
    1889             : 
    1890          93 :         timeout = expire - jiffies;
    1891             : 
    1892             :  out:
    1893         202 :         return timeout < 0 ? 0 : timeout;
    1894             : }
    1895             : EXPORT_SYMBOL(schedule_timeout);
    1896             : 
    1897             : /*
    1898             :  * We can use __set_current_state() here because schedule_timeout() calls
    1899             :  * schedule() unconditionally.
    1900             :  */
    1901           0 : signed long __sched schedule_timeout_interruptible(signed long timeout)
    1902             : {
    1903           0 :         __set_current_state(TASK_INTERRUPTIBLE);
    1904           0 :         return schedule_timeout(timeout);
    1905             : }
    1906             : EXPORT_SYMBOL(schedule_timeout_interruptible);
    1907             : 
    1908           0 : signed long __sched schedule_timeout_killable(signed long timeout)
    1909             : {
    1910           0 :         __set_current_state(TASK_KILLABLE);
    1911           0 :         return schedule_timeout(timeout);
    1912             : }
    1913             : EXPORT_SYMBOL(schedule_timeout_killable);
    1914             : 
    1915           0 : signed long __sched schedule_timeout_uninterruptible(signed long timeout)
    1916             : {
    1917           0 :         __set_current_state(TASK_UNINTERRUPTIBLE);
    1918           0 :         return schedule_timeout(timeout);
    1919             : }
    1920             : EXPORT_SYMBOL(schedule_timeout_uninterruptible);
    1921             : 
    1922             : /*
    1923             :  * Like schedule_timeout_uninterruptible(), except this task will not contribute
    1924             :  * to load average.
    1925             :  */
    1926           0 : signed long __sched schedule_timeout_idle(signed long timeout)
    1927             : {
    1928           0 :         __set_current_state(TASK_IDLE);
    1929           0 :         return schedule_timeout(timeout);
    1930             : }
    1931             : EXPORT_SYMBOL(schedule_timeout_idle);
    1932             : 
    1933             : #ifdef CONFIG_HOTPLUG_CPU
    1934             : static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
    1935             : {
    1936             :         struct timer_list *timer;
    1937             :         int cpu = new_base->cpu;
    1938             : 
    1939             :         while (!hlist_empty(head)) {
    1940             :                 timer = hlist_entry(head->first, struct timer_list, entry);
    1941             :                 detach_timer(timer, false);
    1942             :                 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
    1943             :                 internal_add_timer(new_base, timer);
    1944             :         }
    1945             : }
    1946             : 
    1947             : int timers_prepare_cpu(unsigned int cpu)
    1948             : {
    1949             :         struct timer_base *base;
    1950             :         int b;
    1951             : 
    1952             :         for (b = 0; b < NR_BASES; b++) {
    1953             :                 base = per_cpu_ptr(&timer_bases[b], cpu);
    1954             :                 base->clk = jiffies;
    1955             :                 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
    1956             :                 base->timers_pending = false;
    1957             :                 base->is_idle = false;
    1958             :         }
    1959             :         return 0;
    1960             : }
    1961             : 
    1962             : int timers_dead_cpu(unsigned int cpu)
    1963             : {
    1964             :         struct timer_base *old_base;
    1965             :         struct timer_base *new_base;
    1966             :         int b, i;
    1967             : 
    1968             :         BUG_ON(cpu_online(cpu));
    1969             : 
    1970             :         for (b = 0; b < NR_BASES; b++) {
    1971             :                 old_base = per_cpu_ptr(&timer_bases[b], cpu);
    1972             :                 new_base = get_cpu_ptr(&timer_bases[b]);
    1973             :                 /*
    1974             :                  * The caller is globally serialized and nobody else
    1975             :                  * takes two locks at once, deadlock is not possible.
    1976             :                  */
    1977             :                 raw_spin_lock_irq(&new_base->lock);
    1978             :                 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
    1979             : 
    1980             :                 /*
    1981             :                  * The current CPUs base clock might be stale. Update it
    1982             :                  * before moving the timers over.
    1983             :                  */
    1984             :                 forward_timer_base(new_base);
    1985             : 
    1986             :                 BUG_ON(old_base->running_timer);
    1987             : 
    1988             :                 for (i = 0; i < WHEEL_SIZE; i++)
    1989             :                         migrate_timer_list(new_base, old_base->vectors + i);
    1990             : 
    1991             :                 raw_spin_unlock(&old_base->lock);
    1992             :                 raw_spin_unlock_irq(&new_base->lock);
    1993             :                 put_cpu_ptr(&timer_bases);
    1994             :         }
    1995             :         return 0;
    1996             : }
    1997             : 
    1998             : #endif /* CONFIG_HOTPLUG_CPU */
    1999             : 
    2000           1 : static void __init init_timer_cpu(int cpu)
    2001             : {
    2002             :         struct timer_base *base;
    2003             :         int i;
    2004             : 
    2005           2 :         for (i = 0; i < NR_BASES; i++) {
    2006           1 :                 base = per_cpu_ptr(&timer_bases[i], cpu);
    2007           1 :                 base->cpu = cpu;
    2008             :                 raw_spin_lock_init(&base->lock);
    2009           1 :                 base->clk = jiffies;
    2010           1 :                 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
    2011           1 :                 timer_base_init_expiry_lock(base);
    2012             :         }
    2013           1 : }
    2014             : 
    2015           1 : static void __init init_timer_cpus(void)
    2016             : {
    2017             :         int cpu;
    2018             : 
    2019           2 :         for_each_possible_cpu(cpu)
    2020           1 :                 init_timer_cpu(cpu);
    2021           1 : }
    2022             : 
    2023           1 : void __init init_timers(void)
    2024             : {
    2025           1 :         init_timer_cpus();
    2026             :         posix_cputimers_init_work();
    2027           1 :         open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
    2028           1 : }
    2029             : 
    2030             : /**
    2031             :  * msleep - sleep safely even with waitqueue interruptions
    2032             :  * @msecs: Time in milliseconds to sleep for
    2033             :  */
    2034           0 : void msleep(unsigned int msecs)
    2035             : {
    2036           0 :         unsigned long timeout = msecs_to_jiffies(msecs) + 1;
    2037             : 
    2038           0 :         while (timeout)
    2039           0 :                 timeout = schedule_timeout_uninterruptible(timeout);
    2040           0 : }
    2041             : 
    2042             : EXPORT_SYMBOL(msleep);
    2043             : 
    2044             : /**
    2045             :  * msleep_interruptible - sleep waiting for signals
    2046             :  * @msecs: Time in milliseconds to sleep for
    2047             :  */
    2048           0 : unsigned long msleep_interruptible(unsigned int msecs)
    2049             : {
    2050           0 :         unsigned long timeout = msecs_to_jiffies(msecs) + 1;
    2051             : 
    2052           0 :         while (timeout && !signal_pending(current))
    2053           0 :                 timeout = schedule_timeout_interruptible(timeout);
    2054           0 :         return jiffies_to_msecs(timeout);
    2055             : }
    2056             : 
    2057             : EXPORT_SYMBOL(msleep_interruptible);
    2058             : 
    2059             : /**
    2060             :  * usleep_range_state - Sleep for an approximate time in a given state
    2061             :  * @min:        Minimum time in usecs to sleep
    2062             :  * @max:        Maximum time in usecs to sleep
    2063             :  * @state:      State of the current task that will be while sleeping
    2064             :  *
    2065             :  * In non-atomic context where the exact wakeup time is flexible, use
    2066             :  * usleep_range_state() instead of udelay().  The sleep improves responsiveness
    2067             :  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
    2068             :  * power usage by allowing hrtimers to take advantage of an already-
    2069             :  * scheduled interrupt instead of scheduling a new one just for this sleep.
    2070             :  */
    2071           0 : void __sched usleep_range_state(unsigned long min, unsigned long max,
    2072             :                                 unsigned int state)
    2073             : {
    2074           0 :         ktime_t exp = ktime_add_us(ktime_get(), min);
    2075           0 :         u64 delta = (u64)(max - min) * NSEC_PER_USEC;
    2076             : 
    2077             :         for (;;) {
    2078           0 :                 __set_current_state(state);
    2079             :                 /* Do not return before the requested sleep time has elapsed */
    2080           0 :                 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
    2081             :                         break;
    2082             :         }
    2083           0 : }
    2084             : EXPORT_SYMBOL(usleep_range_state);

Generated by: LCOV version 1.14