LCOV - code coverage report
Current view: top level - kernel - workqueue.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 663 1572 42.2 %
Date: 2022-12-09 01:23:36 Functions: 57 124 46.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * kernel/workqueue.c - generic async execution with shared worker pool
       4             :  *
       5             :  * Copyright (C) 2002           Ingo Molnar
       6             :  *
       7             :  *   Derived from the taskqueue/keventd code by:
       8             :  *     David Woodhouse <dwmw2@infradead.org>
       9             :  *     Andrew Morton
      10             :  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
      11             :  *     Theodore Ts'o <tytso@mit.edu>
      12             :  *
      13             :  * Made to use alloc_percpu by Christoph Lameter.
      14             :  *
      15             :  * Copyright (C) 2010           SUSE Linux Products GmbH
      16             :  * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
      17             :  *
      18             :  * This is the generic async execution mechanism.  Work items as are
      19             :  * executed in process context.  The worker pool is shared and
      20             :  * automatically managed.  There are two worker pools for each CPU (one for
      21             :  * normal work items and the other for high priority ones) and some extra
      22             :  * pools for workqueues which are not bound to any specific CPU - the
      23             :  * number of these backing pools is dynamic.
      24             :  *
      25             :  * Please read Documentation/core-api/workqueue.rst for details.
      26             :  */
      27             : 
      28             : #include <linux/export.h>
      29             : #include <linux/kernel.h>
      30             : #include <linux/sched.h>
      31             : #include <linux/init.h>
      32             : #include <linux/signal.h>
      33             : #include <linux/completion.h>
      34             : #include <linux/workqueue.h>
      35             : #include <linux/slab.h>
      36             : #include <linux/cpu.h>
      37             : #include <linux/notifier.h>
      38             : #include <linux/kthread.h>
      39             : #include <linux/hardirq.h>
      40             : #include <linux/mempolicy.h>
      41             : #include <linux/freezer.h>
      42             : #include <linux/debug_locks.h>
      43             : #include <linux/lockdep.h>
      44             : #include <linux/idr.h>
      45             : #include <linux/jhash.h>
      46             : #include <linux/hashtable.h>
      47             : #include <linux/rculist.h>
      48             : #include <linux/nodemask.h>
      49             : #include <linux/moduleparam.h>
      50             : #include <linux/uaccess.h>
      51             : #include <linux/sched/isolation.h>
      52             : #include <linux/nmi.h>
      53             : #include <linux/kvm_para.h>
      54             : 
      55             : #include "workqueue_internal.h"
      56             : 
      57             : enum {
      58             :         /*
      59             :          * worker_pool flags
      60             :          *
      61             :          * A bound pool is either associated or disassociated with its CPU.
      62             :          * While associated (!DISASSOCIATED), all workers are bound to the
      63             :          * CPU and none has %WORKER_UNBOUND set and concurrency management
      64             :          * is in effect.
      65             :          *
      66             :          * While DISASSOCIATED, the cpu may be offline and all workers have
      67             :          * %WORKER_UNBOUND set and concurrency management disabled, and may
      68             :          * be executing on any CPU.  The pool behaves as an unbound one.
      69             :          *
      70             :          * Note that DISASSOCIATED should be flipped only while holding
      71             :          * wq_pool_attach_mutex to avoid changing binding state while
      72             :          * worker_attach_to_pool() is in progress.
      73             :          */
      74             :         POOL_MANAGER_ACTIVE     = 1 << 0, /* being managed */
      75             :         POOL_DISASSOCIATED      = 1 << 2, /* cpu can't serve workers */
      76             : 
      77             :         /* worker flags */
      78             :         WORKER_DIE              = 1 << 1, /* die die die */
      79             :         WORKER_IDLE             = 1 << 2, /* is idle */
      80             :         WORKER_PREP             = 1 << 3, /* preparing to run works */
      81             :         WORKER_CPU_INTENSIVE    = 1 << 6, /* cpu intensive */
      82             :         WORKER_UNBOUND          = 1 << 7, /* worker is unbound */
      83             :         WORKER_REBOUND          = 1 << 8, /* worker was rebound */
      84             : 
      85             :         WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
      86             :                                   WORKER_UNBOUND | WORKER_REBOUND,
      87             : 
      88             :         NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
      89             : 
      90             :         UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
      91             :         BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
      92             : 
      93             :         MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
      94             :         IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
      95             : 
      96             :         MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
      97             :                                                 /* call for help after 10ms
      98             :                                                    (min two ticks) */
      99             :         MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
     100             :         CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
     101             : 
     102             :         /*
     103             :          * Rescue workers are used only on emergencies and shared by
     104             :          * all cpus.  Give MIN_NICE.
     105             :          */
     106             :         RESCUER_NICE_LEVEL      = MIN_NICE,
     107             :         HIGHPRI_NICE_LEVEL      = MIN_NICE,
     108             : 
     109             :         WQ_NAME_LEN             = 24,
     110             : };
     111             : 
     112             : /*
     113             :  * Structure fields follow one of the following exclusion rules.
     114             :  *
     115             :  * I: Modifiable by initialization/destruction paths and read-only for
     116             :  *    everyone else.
     117             :  *
     118             :  * P: Preemption protected.  Disabling preemption is enough and should
     119             :  *    only be modified and accessed from the local cpu.
     120             :  *
     121             :  * L: pool->lock protected.  Access with pool->lock held.
     122             :  *
     123             :  * X: During normal operation, modification requires pool->lock and should
     124             :  *    be done only from local cpu.  Either disabling preemption on local
     125             :  *    cpu or grabbing pool->lock is enough for read access.  If
     126             :  *    POOL_DISASSOCIATED is set, it's identical to L.
     127             :  *
     128             :  * A: wq_pool_attach_mutex protected.
     129             :  *
     130             :  * PL: wq_pool_mutex protected.
     131             :  *
     132             :  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
     133             :  *
     134             :  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
     135             :  *
     136             :  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
     137             :  *      RCU for reads.
     138             :  *
     139             :  * WQ: wq->mutex protected.
     140             :  *
     141             :  * WR: wq->mutex protected for writes.  RCU protected for reads.
     142             :  *
     143             :  * MD: wq_mayday_lock protected.
     144             :  */
     145             : 
     146             : /* struct worker is defined in workqueue_internal.h */
     147             : 
     148             : struct worker_pool {
     149             :         raw_spinlock_t          lock;           /* the pool lock */
     150             :         int                     cpu;            /* I: the associated cpu */
     151             :         int                     node;           /* I: the associated node ID */
     152             :         int                     id;             /* I: pool ID */
     153             :         unsigned int            flags;          /* X: flags */
     154             : 
     155             :         unsigned long           watchdog_ts;    /* L: watchdog timestamp */
     156             : 
     157             :         /*
     158             :          * The counter is incremented in a process context on the associated CPU
     159             :          * w/ preemption disabled, and decremented or reset in the same context
     160             :          * but w/ pool->lock held. The readers grab pool->lock and are
     161             :          * guaranteed to see if the counter reached zero.
     162             :          */
     163             :         int                     nr_running;
     164             : 
     165             :         struct list_head        worklist;       /* L: list of pending works */
     166             : 
     167             :         int                     nr_workers;     /* L: total number of workers */
     168             :         int                     nr_idle;        /* L: currently idle workers */
     169             : 
     170             :         struct list_head        idle_list;      /* L: list of idle workers */
     171             :         struct timer_list       idle_timer;     /* L: worker idle timeout */
     172             :         struct timer_list       mayday_timer;   /* L: SOS timer for workers */
     173             : 
     174             :         /* a workers is either on busy_hash or idle_list, or the manager */
     175             :         DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
     176             :                                                 /* L: hash of busy workers */
     177             : 
     178             :         struct worker           *manager;       /* L: purely informational */
     179             :         struct list_head        workers;        /* A: attached workers */
     180             :         struct completion       *detach_completion; /* all workers detached */
     181             : 
     182             :         struct ida              worker_ida;     /* worker IDs for task name */
     183             : 
     184             :         struct workqueue_attrs  *attrs;         /* I: worker attributes */
     185             :         struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
     186             :         int                     refcnt;         /* PL: refcnt for unbound pools */
     187             : 
     188             :         /*
     189             :          * Destruction of pool is RCU protected to allow dereferences
     190             :          * from get_work_pool().
     191             :          */
     192             :         struct rcu_head         rcu;
     193             : };
     194             : 
     195             : /*
     196             :  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
     197             :  * of work_struct->data are used for flags and the remaining high bits
     198             :  * point to the pwq; thus, pwqs need to be aligned at two's power of the
     199             :  * number of flag bits.
     200             :  */
     201             : struct pool_workqueue {
     202             :         struct worker_pool      *pool;          /* I: the associated pool */
     203             :         struct workqueue_struct *wq;            /* I: the owning workqueue */
     204             :         int                     work_color;     /* L: current color */
     205             :         int                     flush_color;    /* L: flushing color */
     206             :         int                     refcnt;         /* L: reference count */
     207             :         int                     nr_in_flight[WORK_NR_COLORS];
     208             :                                                 /* L: nr of in_flight works */
     209             : 
     210             :         /*
     211             :          * nr_active management and WORK_STRUCT_INACTIVE:
     212             :          *
     213             :          * When pwq->nr_active >= max_active, new work item is queued to
     214             :          * pwq->inactive_works instead of pool->worklist and marked with
     215             :          * WORK_STRUCT_INACTIVE.
     216             :          *
     217             :          * All work items marked with WORK_STRUCT_INACTIVE do not participate
     218             :          * in pwq->nr_active and all work items in pwq->inactive_works are
     219             :          * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
     220             :          * work items are in pwq->inactive_works.  Some of them are ready to
     221             :          * run in pool->worklist or worker->scheduled.  Those work itmes are
     222             :          * only struct wq_barrier which is used for flush_work() and should
     223             :          * not participate in pwq->nr_active.  For non-barrier work item, it
     224             :          * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
     225             :          */
     226             :         int                     nr_active;      /* L: nr of active works */
     227             :         int                     max_active;     /* L: max active works */
     228             :         struct list_head        inactive_works; /* L: inactive works */
     229             :         struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
     230             :         struct list_head        mayday_node;    /* MD: node on wq->maydays */
     231             : 
     232             :         /*
     233             :          * Release of unbound pwq is punted to system_wq.  See put_pwq()
     234             :          * and pwq_unbound_release_workfn() for details.  pool_workqueue
     235             :          * itself is also RCU protected so that the first pwq can be
     236             :          * determined without grabbing wq->mutex.
     237             :          */
     238             :         struct work_struct      unbound_release_work;
     239             :         struct rcu_head         rcu;
     240             : } __aligned(1 << WORK_STRUCT_FLAG_BITS);
     241             : 
     242             : /*
     243             :  * Structure used to wait for workqueue flush.
     244             :  */
     245             : struct wq_flusher {
     246             :         struct list_head        list;           /* WQ: list of flushers */
     247             :         int                     flush_color;    /* WQ: flush color waiting for */
     248             :         struct completion       done;           /* flush completion */
     249             : };
     250             : 
     251             : struct wq_device;
     252             : 
     253             : /*
     254             :  * The externally visible workqueue.  It relays the issued work items to
     255             :  * the appropriate worker_pool through its pool_workqueues.
     256             :  */
     257             : struct workqueue_struct {
     258             :         struct list_head        pwqs;           /* WR: all pwqs of this wq */
     259             :         struct list_head        list;           /* PR: list of all workqueues */
     260             : 
     261             :         struct mutex            mutex;          /* protects this wq */
     262             :         int                     work_color;     /* WQ: current work color */
     263             :         int                     flush_color;    /* WQ: current flush color */
     264             :         atomic_t                nr_pwqs_to_flush; /* flush in progress */
     265             :         struct wq_flusher       *first_flusher; /* WQ: first flusher */
     266             :         struct list_head        flusher_queue;  /* WQ: flush waiters */
     267             :         struct list_head        flusher_overflow; /* WQ: flush overflow list */
     268             : 
     269             :         struct list_head        maydays;        /* MD: pwqs requesting rescue */
     270             :         struct worker           *rescuer;       /* MD: rescue worker */
     271             : 
     272             :         int                     nr_drainers;    /* WQ: drain in progress */
     273             :         int                     saved_max_active; /* WQ: saved pwq max_active */
     274             : 
     275             :         struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
     276             :         struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
     277             : 
     278             : #ifdef CONFIG_SYSFS
     279             :         struct wq_device        *wq_dev;        /* I: for sysfs interface */
     280             : #endif
     281             : #ifdef CONFIG_LOCKDEP
     282             :         char                    *lock_name;
     283             :         struct lock_class_key   key;
     284             :         struct lockdep_map      lockdep_map;
     285             : #endif
     286             :         char                    name[WQ_NAME_LEN]; /* I: workqueue name */
     287             : 
     288             :         /*
     289             :          * Destruction of workqueue_struct is RCU protected to allow walking
     290             :          * the workqueues list without grabbing wq_pool_mutex.
     291             :          * This is used to dump all workqueues from sysrq.
     292             :          */
     293             :         struct rcu_head         rcu;
     294             : 
     295             :         /* hot fields used during command issue, aligned to cacheline */
     296             :         unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
     297             :         struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
     298             :         struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
     299             : };
     300             : 
     301             : static struct kmem_cache *pwq_cache;
     302             : 
     303             : static cpumask_var_t *wq_numa_possible_cpumask;
     304             :                                         /* possible CPUs of each node */
     305             : 
     306             : static bool wq_disable_numa;
     307             : module_param_named(disable_numa, wq_disable_numa, bool, 0444);
     308             : 
     309             : /* see the comment above the definition of WQ_POWER_EFFICIENT */
     310             : static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
     311             : module_param_named(power_efficient, wq_power_efficient, bool, 0444);
     312             : 
     313             : static bool wq_online;                  /* can kworkers be created yet? */
     314             : 
     315             : static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
     316             : 
     317             : /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
     318             : static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
     319             : 
     320             : static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
     321             : static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
     322             : static DEFINE_RAW_SPINLOCK(wq_mayday_lock);     /* protects wq->maydays list */
     323             : /* wait for manager to go away */
     324             : static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
     325             : 
     326             : static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
     327             : static bool workqueue_freezing;         /* PL: have wqs started freezing? */
     328             : 
     329             : /* PL: allowable cpus for unbound wqs and work items */
     330             : static cpumask_var_t wq_unbound_cpumask;
     331             : 
     332             : /* CPU where unbound work was last round robin scheduled from this CPU */
     333             : static DEFINE_PER_CPU(int, wq_rr_cpu_last);
     334             : 
     335             : /*
     336             :  * Local execution of unbound work items is no longer guaranteed.  The
     337             :  * following always forces round-robin CPU selection on unbound work items
     338             :  * to uncover usages which depend on it.
     339             :  */
     340             : #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
     341             : static bool wq_debug_force_rr_cpu = true;
     342             : #else
     343             : static bool wq_debug_force_rr_cpu = false;
     344             : #endif
     345             : module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
     346             : 
     347             : /* the per-cpu worker pools */
     348             : static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
     349             : 
     350             : static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
     351             : 
     352             : /* PL: hash of all unbound pools keyed by pool->attrs */
     353             : static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
     354             : 
     355             : /* I: attributes used when instantiating standard unbound pools on demand */
     356             : static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
     357             : 
     358             : /* I: attributes used when instantiating ordered pools on demand */
     359             : static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
     360             : 
     361             : struct workqueue_struct *system_wq __read_mostly;
     362             : EXPORT_SYMBOL(system_wq);
     363             : struct workqueue_struct *system_highpri_wq __read_mostly;
     364             : EXPORT_SYMBOL_GPL(system_highpri_wq);
     365             : struct workqueue_struct *system_long_wq __read_mostly;
     366             : EXPORT_SYMBOL_GPL(system_long_wq);
     367             : struct workqueue_struct *system_unbound_wq __read_mostly;
     368             : EXPORT_SYMBOL_GPL(system_unbound_wq);
     369             : struct workqueue_struct *system_freezable_wq __read_mostly;
     370             : EXPORT_SYMBOL_GPL(system_freezable_wq);
     371             : struct workqueue_struct *system_power_efficient_wq __read_mostly;
     372             : EXPORT_SYMBOL_GPL(system_power_efficient_wq);
     373             : struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
     374             : EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
     375             : 
     376             : static int worker_thread(void *__worker);
     377             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
     378             : static void show_pwq(struct pool_workqueue *pwq);
     379             : static void show_one_worker_pool(struct worker_pool *pool);
     380             : 
     381             : #define CREATE_TRACE_POINTS
     382             : #include <trace/events/workqueue.h>
     383             : 
     384             : #define assert_rcu_or_pool_mutex()                                      \
     385             :         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
     386             :                          !lockdep_is_held(&wq_pool_mutex),          \
     387             :                          "RCU or wq_pool_mutex should be held")
     388             : 
     389             : #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
     390             :         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
     391             :                          !lockdep_is_held(&wq->mutex) &&         \
     392             :                          !lockdep_is_held(&wq_pool_mutex),          \
     393             :                          "RCU, wq->mutex or wq_pool_mutex should be held")
     394             : 
     395             : #define for_each_cpu_worker_pool(pool, cpu)                             \
     396             :         for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];           \
     397             :              (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
     398             :              (pool)++)
     399             : 
     400             : /**
     401             :  * for_each_pool - iterate through all worker_pools in the system
     402             :  * @pool: iteration cursor
     403             :  * @pi: integer used for iteration
     404             :  *
     405             :  * This must be called either with wq_pool_mutex held or RCU read
     406             :  * locked.  If the pool needs to be used beyond the locking in effect, the
     407             :  * caller is responsible for guaranteeing that the pool stays online.
     408             :  *
     409             :  * The if/else clause exists only for the lockdep assertion and can be
     410             :  * ignored.
     411             :  */
     412             : #define for_each_pool(pool, pi)                                         \
     413             :         idr_for_each_entry(&worker_pool_idr, pool, pi)                      \
     414             :                 if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
     415             :                 else
     416             : 
     417             : /**
     418             :  * for_each_pool_worker - iterate through all workers of a worker_pool
     419             :  * @worker: iteration cursor
     420             :  * @pool: worker_pool to iterate workers of
     421             :  *
     422             :  * This must be called with wq_pool_attach_mutex.
     423             :  *
     424             :  * The if/else clause exists only for the lockdep assertion and can be
     425             :  * ignored.
     426             :  */
     427             : #define for_each_pool_worker(worker, pool)                              \
     428             :         list_for_each_entry((worker), &(pool)->workers, node)            \
     429             :                 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
     430             :                 else
     431             : 
     432             : /**
     433             :  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
     434             :  * @pwq: iteration cursor
     435             :  * @wq: the target workqueue
     436             :  *
     437             :  * This must be called either with wq->mutex held or RCU read locked.
     438             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     439             :  * responsible for guaranteeing that the pwq stays online.
     440             :  *
     441             :  * The if/else clause exists only for the lockdep assertion and can be
     442             :  * ignored.
     443             :  */
     444             : #define for_each_pwq(pwq, wq)                                           \
     445             :         list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,           \
     446             :                                  lockdep_is_held(&(wq->mutex)))
     447             : 
     448             : #ifdef CONFIG_DEBUG_OBJECTS_WORK
     449             : 
     450             : static const struct debug_obj_descr work_debug_descr;
     451             : 
     452             : static void *work_debug_hint(void *addr)
     453             : {
     454             :         return ((struct work_struct *) addr)->func;
     455             : }
     456             : 
     457             : static bool work_is_static_object(void *addr)
     458             : {
     459             :         struct work_struct *work = addr;
     460             : 
     461             :         return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
     462             : }
     463             : 
     464             : /*
     465             :  * fixup_init is called when:
     466             :  * - an active object is initialized
     467             :  */
     468             : static bool work_fixup_init(void *addr, enum debug_obj_state state)
     469             : {
     470             :         struct work_struct *work = addr;
     471             : 
     472             :         switch (state) {
     473             :         case ODEBUG_STATE_ACTIVE:
     474             :                 cancel_work_sync(work);
     475             :                 debug_object_init(work, &work_debug_descr);
     476             :                 return true;
     477             :         default:
     478             :                 return false;
     479             :         }
     480             : }
     481             : 
     482             : /*
     483             :  * fixup_free is called when:
     484             :  * - an active object is freed
     485             :  */
     486             : static bool work_fixup_free(void *addr, enum debug_obj_state state)
     487             : {
     488             :         struct work_struct *work = addr;
     489             : 
     490             :         switch (state) {
     491             :         case ODEBUG_STATE_ACTIVE:
     492             :                 cancel_work_sync(work);
     493             :                 debug_object_free(work, &work_debug_descr);
     494             :                 return true;
     495             :         default:
     496             :                 return false;
     497             :         }
     498             : }
     499             : 
     500             : static const struct debug_obj_descr work_debug_descr = {
     501             :         .name           = "work_struct",
     502             :         .debug_hint     = work_debug_hint,
     503             :         .is_static_object = work_is_static_object,
     504             :         .fixup_init     = work_fixup_init,
     505             :         .fixup_free     = work_fixup_free,
     506             : };
     507             : 
     508             : static inline void debug_work_activate(struct work_struct *work)
     509             : {
     510             :         debug_object_activate(work, &work_debug_descr);
     511             : }
     512             : 
     513             : static inline void debug_work_deactivate(struct work_struct *work)
     514             : {
     515             :         debug_object_deactivate(work, &work_debug_descr);
     516             : }
     517             : 
     518             : void __init_work(struct work_struct *work, int onstack)
     519             : {
     520             :         if (onstack)
     521             :                 debug_object_init_on_stack(work, &work_debug_descr);
     522             :         else
     523             :                 debug_object_init(work, &work_debug_descr);
     524             : }
     525             : EXPORT_SYMBOL_GPL(__init_work);
     526             : 
     527             : void destroy_work_on_stack(struct work_struct *work)
     528             : {
     529             :         debug_object_free(work, &work_debug_descr);
     530             : }
     531             : EXPORT_SYMBOL_GPL(destroy_work_on_stack);
     532             : 
     533             : void destroy_delayed_work_on_stack(struct delayed_work *work)
     534             : {
     535             :         destroy_timer_on_stack(&work->timer);
     536             :         debug_object_free(&work->work, &work_debug_descr);
     537             : }
     538             : EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
     539             : 
     540             : #else
     541             : static inline void debug_work_activate(struct work_struct *work) { }
     542             : static inline void debug_work_deactivate(struct work_struct *work) { }
     543             : #endif
     544             : 
     545             : /**
     546             :  * worker_pool_assign_id - allocate ID and assign it to @pool
     547             :  * @pool: the pool pointer of interest
     548             :  *
     549             :  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
     550             :  * successfully, -errno on failure.
     551             :  */
     552             : static int worker_pool_assign_id(struct worker_pool *pool)
     553             : {
     554             :         int ret;
     555             : 
     556             :         lockdep_assert_held(&wq_pool_mutex);
     557             : 
     558           3 :         ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
     559             :                         GFP_KERNEL);
     560           3 :         if (ret >= 0) {
     561           3 :                 pool->id = ret;
     562             :                 return 0;
     563             :         }
     564             :         return ret;
     565             : }
     566             : 
     567             : /**
     568             :  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
     569             :  * @wq: the target workqueue
     570             :  * @node: the node ID
     571             :  *
     572             :  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
     573             :  * read locked.
     574             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     575             :  * responsible for guaranteeing that the pwq stays online.
     576             :  *
     577             :  * Return: The unbound pool_workqueue for @node.
     578             :  */
     579             : static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
     580             :                                                   int node)
     581             : {
     582             :         assert_rcu_or_wq_mutex_or_pool_mutex(wq);
     583             : 
     584             :         /*
     585             :          * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
     586             :          * delayed item is pending.  The plan is to keep CPU -> NODE
     587             :          * mapping valid and stable across CPU on/offlines.  Once that
     588             :          * happens, this workaround can be removed.
     589             :          */
     590             :         if (unlikely(node == NUMA_NO_NODE))
     591             :                 return wq->dfl_pwq;
     592             : 
     593           2 :         return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
     594             : }
     595             : 
     596             : static unsigned int work_color_to_flags(int color)
     597             : {
     598           6 :         return color << WORK_STRUCT_COLOR_SHIFT;
     599             : }
     600             : 
     601             : static int get_work_color(unsigned long work_data)
     602             : {
     603          14 :         return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
     604             :                 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
     605             : }
     606             : 
     607             : static int work_next_color(int color)
     608             : {
     609           0 :         return (color + 1) % WORK_NR_COLORS;
     610             : }
     611             : 
     612             : /*
     613             :  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
     614             :  * contain the pointer to the queued pwq.  Once execution starts, the flag
     615             :  * is cleared and the high bits contain OFFQ flags and pool ID.
     616             :  *
     617             :  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
     618             :  * and clear_work_data() can be used to set the pwq, pool or clear
     619             :  * work->data.  These functions should only be called while the work is
     620             :  * owned - ie. while the PENDING bit is set.
     621             :  *
     622             :  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
     623             :  * corresponding to a work.  Pool is available once the work has been
     624             :  * queued anywhere after initialization until it is sync canceled.  pwq is
     625             :  * available only while the work item is queued.
     626             :  *
     627             :  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
     628             :  * canceled.  While being canceled, a work item may have its PENDING set
     629             :  * but stay off timer and worklist for arbitrarily long and nobody should
     630             :  * try to steal the PENDING bit.
     631             :  */
     632          12 : static inline void set_work_data(struct work_struct *work, unsigned long data,
     633             :                                  unsigned long flags)
     634             : {
     635          24 :         WARN_ON_ONCE(!work_pending(work));
     636          24 :         atomic_long_set(&work->data, data | flags | work_static(work));
     637          12 : }
     638             : 
     639             : static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
     640             :                          unsigned long extra_flags)
     641             : {
     642           6 :         set_work_data(work, (unsigned long)pwq,
     643             :                       WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
     644             : }
     645             : 
     646             : static void set_work_pool_and_keep_pending(struct work_struct *work,
     647             :                                            int pool_id)
     648             : {
     649           0 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
     650             :                       WORK_STRUCT_PENDING);
     651             : }
     652             : 
     653             : static void set_work_pool_and_clear_pending(struct work_struct *work,
     654             :                                             int pool_id)
     655             : {
     656             :         /*
     657             :          * The following wmb is paired with the implied mb in
     658             :          * test_and_set_bit(PENDING) and ensures all updates to @work made
     659             :          * here are visible to and precede any updates by the next PENDING
     660             :          * owner.
     661             :          */
     662           6 :         smp_wmb();
     663           6 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
     664             :         /*
     665             :          * The following mb guarantees that previous clear of a PENDING bit
     666             :          * will not be reordered with any speculative LOADS or STORES from
     667             :          * work->current_func, which is executed afterwards.  This possible
     668             :          * reordering can lead to a missed execution on attempt to queue
     669             :          * the same @work.  E.g. consider this case:
     670             :          *
     671             :          *   CPU#0                         CPU#1
     672             :          *   ----------------------------  --------------------------------
     673             :          *
     674             :          * 1  STORE event_indicated
     675             :          * 2  queue_work_on() {
     676             :          * 3    test_and_set_bit(PENDING)
     677             :          * 4 }                             set_..._and_clear_pending() {
     678             :          * 5                                 set_work_data() # clear bit
     679             :          * 6                                 smp_mb()
     680             :          * 7                               work->current_func() {
     681             :          * 8                                  LOAD event_indicated
     682             :          *                                 }
     683             :          *
     684             :          * Without an explicit full barrier speculative LOAD on line 8 can
     685             :          * be executed before CPU#0 does STORE on line 1.  If that happens,
     686             :          * CPU#0 observes the PENDING bit is still set and new execution of
     687             :          * a @work is not queued in a hope, that CPU#1 will eventually
     688             :          * finish the queued @work.  Meanwhile CPU#1 does not see
     689             :          * event_indicated is set, because speculative LOAD was executed
     690             :          * before actual STORE.
     691             :          */
     692           6 :         smp_mb();
     693             : }
     694             : 
     695             : static void clear_work_data(struct work_struct *work)
     696             : {
     697           0 :         smp_wmb();      /* see set_work_pool_and_clear_pending() */
     698           0 :         set_work_data(work, WORK_STRUCT_NO_POOL, 0);
     699             : }
     700             : 
     701             : static struct pool_workqueue *get_work_pwq(struct work_struct *work)
     702             : {
     703          20 :         unsigned long data = atomic_long_read(&work->data);
     704             : 
     705          10 :         if (data & WORK_STRUCT_PWQ)
     706           8 :                 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
     707             :         else
     708             :                 return NULL;
     709             : }
     710             : 
     711             : /**
     712             :  * get_work_pool - return the worker_pool a given work was associated with
     713             :  * @work: the work item of interest
     714             :  *
     715             :  * Pools are created and destroyed under wq_pool_mutex, and allows read
     716             :  * access under RCU read lock.  As such, this function should be
     717             :  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
     718             :  *
     719             :  * All fields of the returned pool are accessible as long as the above
     720             :  * mentioned locking is in effect.  If the returned pool needs to be used
     721             :  * beyond the critical section, the caller is responsible for ensuring the
     722             :  * returned pool is and stays online.
     723             :  *
     724             :  * Return: The worker_pool @work was last associated with.  %NULL if none.
     725             :  */
     726           8 : static struct worker_pool *get_work_pool(struct work_struct *work)
     727             : {
     728          16 :         unsigned long data = atomic_long_read(&work->data);
     729             :         int pool_id;
     730             : 
     731             :         assert_rcu_or_pool_mutex();
     732             : 
     733           8 :         if (data & WORK_STRUCT_PWQ)
     734           2 :                 return ((struct pool_workqueue *)
     735           4 :                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
     736             : 
     737           6 :         pool_id = data >> WORK_OFFQ_POOL_SHIFT;
     738           6 :         if (pool_id == WORK_OFFQ_POOL_NONE)
     739             :                 return NULL;
     740             : 
     741           3 :         return idr_find(&worker_pool_idr, pool_id);
     742             : }
     743             : 
     744             : /**
     745             :  * get_work_pool_id - return the worker pool ID a given work is associated with
     746             :  * @work: the work item of interest
     747             :  *
     748             :  * Return: The worker_pool ID @work was last associated with.
     749             :  * %WORK_OFFQ_POOL_NONE if none.
     750             :  */
     751             : static int get_work_pool_id(struct work_struct *work)
     752             : {
     753           0 :         unsigned long data = atomic_long_read(&work->data);
     754             : 
     755           0 :         if (data & WORK_STRUCT_PWQ)
     756           0 :                 return ((struct pool_workqueue *)
     757           0 :                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
     758             : 
     759           0 :         return data >> WORK_OFFQ_POOL_SHIFT;
     760             : }
     761             : 
     762           0 : static void mark_work_canceling(struct work_struct *work)
     763             : {
     764           0 :         unsigned long pool_id = get_work_pool_id(work);
     765             : 
     766           0 :         pool_id <<= WORK_OFFQ_POOL_SHIFT;
     767           0 :         set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
     768           0 : }
     769             : 
     770             : static bool work_is_canceling(struct work_struct *work)
     771             : {
     772           0 :         unsigned long data = atomic_long_read(&work->data);
     773             : 
     774           0 :         return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
     775             : }
     776             : 
     777             : /*
     778             :  * Policy functions.  These define the policies on how the global worker
     779             :  * pools are managed.  Unless noted otherwise, these functions assume that
     780             :  * they're being called with pool->lock held.
     781             :  */
     782             : 
     783             : static bool __need_more_worker(struct worker_pool *pool)
     784             : {
     785             :         return !pool->nr_running;
     786             : }
     787             : 
     788             : /*
     789             :  * Need to wake up a worker?  Called from anything but currently
     790             :  * running workers.
     791             :  *
     792             :  * Note that, because unbound workers never contribute to nr_running, this
     793             :  * function will always return %true for unbound pools as long as the
     794             :  * worklist isn't empty.
     795             :  */
     796             : static bool need_more_worker(struct worker_pool *pool)
     797             : {
     798          38 :         return !list_empty(&pool->worklist) && __need_more_worker(pool);
     799             : }
     800             : 
     801             : /* Can I start working?  Called from busy but !running workers. */
     802             : static bool may_start_working(struct worker_pool *pool)
     803             : {
     804             :         return pool->nr_idle;
     805             : }
     806             : 
     807             : /* Do I need to keep working?  Called from currently running workers. */
     808             : static bool keep_working(struct worker_pool *pool)
     809             : {
     810           8 :         return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
     811             : }
     812             : 
     813             : /* Do we need a new worker?  Called from manager. */
     814             : static bool need_to_create_worker(struct worker_pool *pool)
     815             : {
     816           2 :         return need_more_worker(pool) && !may_start_working(pool);
     817             : }
     818             : 
     819             : /* Do we have too many workers and should some go away? */
     820             : static bool too_many_workers(struct worker_pool *pool)
     821             : {
     822          14 :         bool managing = pool->flags & POOL_MANAGER_ACTIVE;
     823          14 :         int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
     824          14 :         int nr_busy = pool->nr_workers - nr_idle;
     825             : 
     826          14 :         return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
     827             : }
     828             : 
     829             : /*
     830             :  * Wake up functions.
     831             :  */
     832             : 
     833             : /* Return the first idle worker.  Called with pool->lock held. */
     834             : static struct worker *first_idle_worker(struct worker_pool *pool)
     835             : {
     836          12 :         if (unlikely(list_empty(&pool->idle_list)))
     837             :                 return NULL;
     838             : 
     839           6 :         return list_first_entry(&pool->idle_list, struct worker, entry);
     840             : }
     841             : 
     842             : /**
     843             :  * wake_up_worker - wake up an idle worker
     844             :  * @pool: worker pool to wake worker from
     845             :  *
     846             :  * Wake up the first idle worker of @pool.
     847             :  *
     848             :  * CONTEXT:
     849             :  * raw_spin_lock_irq(pool->lock).
     850             :  */
     851             : static void wake_up_worker(struct worker_pool *pool)
     852             : {
     853           6 :         struct worker *worker = first_idle_worker(pool);
     854             : 
     855           6 :         if (likely(worker))
     856           6 :                 wake_up_process(worker->task);
     857             : }
     858             : 
     859             : /**
     860             :  * wq_worker_running - a worker is running again
     861             :  * @task: task waking up
     862             :  *
     863             :  * This function is called when a worker returns from schedule()
     864             :  */
     865           6 : void wq_worker_running(struct task_struct *task)
     866             : {
     867           6 :         struct worker *worker = kthread_data(task);
     868             : 
     869           6 :         if (!worker->sleeping)
     870             :                 return;
     871             : 
     872             :         /*
     873             :          * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
     874             :          * and the nr_running increment below, we may ruin the nr_running reset
     875             :          * and leave with an unexpected pool->nr_running == 1 on the newly unbound
     876             :          * pool. Protect against such race.
     877             :          */
     878           0 :         preempt_disable();
     879           0 :         if (!(worker->flags & WORKER_NOT_RUNNING))
     880           0 :                 worker->pool->nr_running++;
     881           0 :         preempt_enable();
     882           0 :         worker->sleeping = 0;
     883             : }
     884             : 
     885             : /**
     886             :  * wq_worker_sleeping - a worker is going to sleep
     887             :  * @task: task going to sleep
     888             :  *
     889             :  * This function is called from schedule() when a busy worker is
     890             :  * going to sleep.
     891             :  */
     892          14 : void wq_worker_sleeping(struct task_struct *task)
     893             : {
     894          14 :         struct worker *worker = kthread_data(task);
     895             :         struct worker_pool *pool;
     896             : 
     897             :         /*
     898             :          * Rescuers, which may not have all the fields set up like normal
     899             :          * workers, also reach here, let's not access anything before
     900             :          * checking NOT_RUNNING.
     901             :          */
     902          14 :         if (worker->flags & WORKER_NOT_RUNNING)
     903             :                 return;
     904             : 
     905           0 :         pool = worker->pool;
     906             : 
     907             :         /* Return if preempted before wq_worker_running() was reached */
     908           0 :         if (worker->sleeping)
     909             :                 return;
     910             : 
     911           0 :         worker->sleeping = 1;
     912           0 :         raw_spin_lock_irq(&pool->lock);
     913             : 
     914             :         /*
     915             :          * Recheck in case unbind_workers() preempted us. We don't
     916             :          * want to decrement nr_running after the worker is unbound
     917             :          * and nr_running has been reset.
     918             :          */
     919           0 :         if (worker->flags & WORKER_NOT_RUNNING) {
     920           0 :                 raw_spin_unlock_irq(&pool->lock);
     921           0 :                 return;
     922             :         }
     923             : 
     924           0 :         pool->nr_running--;
     925           0 :         if (need_more_worker(pool))
     926             :                 wake_up_worker(pool);
     927           0 :         raw_spin_unlock_irq(&pool->lock);
     928             : }
     929             : 
     930             : /**
     931             :  * wq_worker_last_func - retrieve worker's last work function
     932             :  * @task: Task to retrieve last work function of.
     933             :  *
     934             :  * Determine the last function a worker executed. This is called from
     935             :  * the scheduler to get a worker's last known identity.
     936             :  *
     937             :  * CONTEXT:
     938             :  * raw_spin_lock_irq(rq->lock)
     939             :  *
     940             :  * This function is called during schedule() when a kworker is going
     941             :  * to sleep. It's used by psi to identify aggregation workers during
     942             :  * dequeuing, to allow periodic aggregation to shut-off when that
     943             :  * worker is the last task in the system or cgroup to go to sleep.
     944             :  *
     945             :  * As this function doesn't involve any workqueue-related locking, it
     946             :  * only returns stable values when called from inside the scheduler's
     947             :  * queuing and dequeuing paths, when @task, which must be a kworker,
     948             :  * is guaranteed to not be processing any works.
     949             :  *
     950             :  * Return:
     951             :  * The last work function %current executed as a worker, NULL if it
     952             :  * hasn't executed any work yet.
     953             :  */
     954           0 : work_func_t wq_worker_last_func(struct task_struct *task)
     955             : {
     956           0 :         struct worker *worker = kthread_data(task);
     957             : 
     958           0 :         return worker->last_func;
     959             : }
     960             : 
     961             : /**
     962             :  * worker_set_flags - set worker flags and adjust nr_running accordingly
     963             :  * @worker: self
     964             :  * @flags: flags to set
     965             :  *
     966             :  * Set @flags in @worker->flags and adjust nr_running accordingly.
     967             :  *
     968             :  * CONTEXT:
     969             :  * raw_spin_lock_irq(pool->lock)
     970             :  */
     971           4 : static inline void worker_set_flags(struct worker *worker, unsigned int flags)
     972             : {
     973           4 :         struct worker_pool *pool = worker->pool;
     974             : 
     975           8 :         WARN_ON_ONCE(worker->task != current);
     976             : 
     977             :         /* If transitioning into NOT_RUNNING, adjust nr_running. */
     978           8 :         if ((flags & WORKER_NOT_RUNNING) &&
     979           4 :             !(worker->flags & WORKER_NOT_RUNNING)) {
     980           2 :                 pool->nr_running--;
     981             :         }
     982             : 
     983           4 :         worker->flags |= flags;
     984           4 : }
     985             : 
     986             : /**
     987             :  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
     988             :  * @worker: self
     989             :  * @flags: flags to clear
     990             :  *
     991             :  * Clear @flags in @worker->flags and adjust nr_running accordingly.
     992             :  *
     993             :  * CONTEXT:
     994             :  * raw_spin_lock_irq(pool->lock)
     995             :  */
     996          13 : static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
     997             : {
     998          13 :         struct worker_pool *pool = worker->pool;
     999          13 :         unsigned int oflags = worker->flags;
    1000             : 
    1001          26 :         WARN_ON_ONCE(worker->task != current);
    1002             : 
    1003          13 :         worker->flags &= ~flags;
    1004             : 
    1005             :         /*
    1006             :          * If transitioning out of NOT_RUNNING, increment nr_running.  Note
    1007             :          * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
    1008             :          * of multiple flags, not a single flag.
    1009             :          */
    1010          13 :         if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
    1011           4 :                 if (!(worker->flags & WORKER_NOT_RUNNING))
    1012           2 :                         pool->nr_running++;
    1013          13 : }
    1014             : 
    1015             : /**
    1016             :  * find_worker_executing_work - find worker which is executing a work
    1017             :  * @pool: pool of interest
    1018             :  * @work: work to find worker for
    1019             :  *
    1020             :  * Find a worker which is executing @work on @pool by searching
    1021             :  * @pool->busy_hash which is keyed by the address of @work.  For a worker
    1022             :  * to match, its current execution should match the address of @work and
    1023             :  * its work function.  This is to avoid unwanted dependency between
    1024             :  * unrelated work executions through a work item being recycled while still
    1025             :  * being executed.
    1026             :  *
    1027             :  * This is a bit tricky.  A work item may be freed once its execution
    1028             :  * starts and nothing prevents the freed area from being recycled for
    1029             :  * another work item.  If the same work item address ends up being reused
    1030             :  * before the original execution finishes, workqueue will identify the
    1031             :  * recycled work item as currently executing and make it wait until the
    1032             :  * current execution finishes, introducing an unwanted dependency.
    1033             :  *
    1034             :  * This function checks the work item address and work function to avoid
    1035             :  * false positives.  Note that this isn't complete as one may construct a
    1036             :  * work function which can introduce dependency onto itself through a
    1037             :  * recycled work item.  Well, if somebody wants to shoot oneself in the
    1038             :  * foot that badly, there's only so much we can do, and if such deadlock
    1039             :  * actually occurs, it should be easy to locate the culprit work function.
    1040             :  *
    1041             :  * CONTEXT:
    1042             :  * raw_spin_lock_irq(pool->lock).
    1043             :  *
    1044             :  * Return:
    1045             :  * Pointer to worker which is executing @work if found, %NULL
    1046             :  * otherwise.
    1047             :  */
    1048             : static struct worker *find_worker_executing_work(struct worker_pool *pool,
    1049             :                                                  struct work_struct *work)
    1050             : {
    1051             :         struct worker *worker;
    1052             : 
    1053          16 :         hash_for_each_possible(pool->busy_hash, worker, hentry,
    1054             :                                (unsigned long)work)
    1055           0 :                 if (worker->current_work == work &&
    1056           0 :                     worker->current_func == work->func)
    1057             :                         return worker;
    1058             : 
    1059             :         return NULL;
    1060             : }
    1061             : 
    1062             : /**
    1063             :  * move_linked_works - move linked works to a list
    1064             :  * @work: start of series of works to be scheduled
    1065             :  * @head: target list to append @work to
    1066             :  * @nextp: out parameter for nested worklist walking
    1067             :  *
    1068             :  * Schedule linked works starting from @work to @head.  Work series to
    1069             :  * be scheduled starts at @work and includes any consecutive work with
    1070             :  * WORK_STRUCT_LINKED set in its predecessor.
    1071             :  *
    1072             :  * If @nextp is not NULL, it's updated to point to the next work of
    1073             :  * the last scheduled work.  This allows move_linked_works() to be
    1074             :  * nested inside outer list_for_each_entry_safe().
    1075             :  *
    1076             :  * CONTEXT:
    1077             :  * raw_spin_lock_irq(pool->lock).
    1078             :  */
    1079             : static void move_linked_works(struct work_struct *work, struct list_head *head,
    1080             :                               struct work_struct **nextp)
    1081             : {
    1082             :         struct work_struct *n;
    1083             : 
    1084             :         /*
    1085             :          * Linked worklist will always end before the end of the list,
    1086             :          * use NULL for list head.
    1087             :          */
    1088           4 :         list_for_each_entry_safe_from(work, n, NULL, entry) {
    1089           8 :                 list_move_tail(&work->entry, head);
    1090           4 :                 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
    1091             :                         break;
    1092             :         }
    1093             : 
    1094             :         /*
    1095             :          * If we're already inside safe list traversal and have moved
    1096             :          * multiple works to the scheduled queue, the next position
    1097             :          * needs to be updated.
    1098             :          */
    1099             :         if (nextp)
    1100             :                 *nextp = n;
    1101             : }
    1102             : 
    1103             : /**
    1104             :  * get_pwq - get an extra reference on the specified pool_workqueue
    1105             :  * @pwq: pool_workqueue to get
    1106             :  *
    1107             :  * Obtain an extra reference on @pwq.  The caller should guarantee that
    1108             :  * @pwq has positive refcnt and be holding the matching pool->lock.
    1109             :  */
    1110           6 : static void get_pwq(struct pool_workqueue *pwq)
    1111             : {
    1112             :         lockdep_assert_held(&pwq->pool->lock);
    1113           6 :         WARN_ON_ONCE(pwq->refcnt <= 0);
    1114           6 :         pwq->refcnt++;
    1115           6 : }
    1116             : 
    1117             : /**
    1118             :  * put_pwq - put a pool_workqueue reference
    1119             :  * @pwq: pool_workqueue to put
    1120             :  *
    1121             :  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
    1122             :  * destruction.  The caller should be holding the matching pool->lock.
    1123             :  */
    1124           6 : static void put_pwq(struct pool_workqueue *pwq)
    1125             : {
    1126             :         lockdep_assert_held(&pwq->pool->lock);
    1127           6 :         if (likely(--pwq->refcnt))
    1128             :                 return;
    1129           0 :         if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
    1130             :                 return;
    1131             :         /*
    1132             :          * @pwq can't be released under pool->lock, bounce to
    1133             :          * pwq_unbound_release_workfn().  This never recurses on the same
    1134             :          * pool->lock as this path is taken only for unbound workqueues and
    1135             :          * the release work item is scheduled on a per-cpu workqueue.  To
    1136             :          * avoid lockdep warning, unbound pool->locks are given lockdep
    1137             :          * subclass of 1 in get_unbound_pool().
    1138             :          */
    1139           0 :         schedule_work(&pwq->unbound_release_work);
    1140             : }
    1141             : 
    1142             : /**
    1143             :  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
    1144             :  * @pwq: pool_workqueue to put (can be %NULL)
    1145             :  *
    1146             :  * put_pwq() with locking.  This function also allows %NULL @pwq.
    1147             :  */
    1148           6 : static void put_pwq_unlocked(struct pool_workqueue *pwq)
    1149             : {
    1150           6 :         if (pwq) {
    1151             :                 /*
    1152             :                  * As both pwqs and pools are RCU protected, the
    1153             :                  * following lock operations are safe.
    1154             :                  */
    1155           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    1156           0 :                 put_pwq(pwq);
    1157           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    1158             :         }
    1159           6 : }
    1160             : 
    1161           0 : static void pwq_activate_inactive_work(struct work_struct *work)
    1162             : {
    1163           0 :         struct pool_workqueue *pwq = get_work_pwq(work);
    1164             : 
    1165           0 :         trace_workqueue_activate_work(work);
    1166           0 :         if (list_empty(&pwq->pool->worklist))
    1167           0 :                 pwq->pool->watchdog_ts = jiffies;
    1168           0 :         move_linked_works(work, &pwq->pool->worklist, NULL);
    1169           0 :         __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
    1170           0 :         pwq->nr_active++;
    1171           0 : }
    1172             : 
    1173             : static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
    1174             : {
    1175           0 :         struct work_struct *work = list_first_entry(&pwq->inactive_works,
    1176             :                                                     struct work_struct, entry);
    1177             : 
    1178           0 :         pwq_activate_inactive_work(work);
    1179             : }
    1180             : 
    1181             : /**
    1182             :  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
    1183             :  * @pwq: pwq of interest
    1184             :  * @work_data: work_data of work which left the queue
    1185             :  *
    1186             :  * A work either has completed or is removed from pending queue,
    1187             :  * decrement nr_in_flight of its pwq and handle workqueue flushing.
    1188             :  *
    1189             :  * CONTEXT:
    1190             :  * raw_spin_lock_irq(pool->lock).
    1191             :  */
    1192           6 : static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
    1193             : {
    1194           6 :         int color = get_work_color(work_data);
    1195             : 
    1196           6 :         if (!(work_data & WORK_STRUCT_INACTIVE)) {
    1197           4 :                 pwq->nr_active--;
    1198           8 :                 if (!list_empty(&pwq->inactive_works)) {
    1199             :                         /* one down, submit an inactive one */
    1200           0 :                         if (pwq->nr_active < pwq->max_active)
    1201           0 :                                 pwq_activate_first_inactive(pwq);
    1202             :                 }
    1203             :         }
    1204             : 
    1205           6 :         pwq->nr_in_flight[color]--;
    1206             : 
    1207             :         /* is flush in progress and are we at the flushing tip? */
    1208           6 :         if (likely(pwq->flush_color != color))
    1209             :                 goto out_put;
    1210             : 
    1211             :         /* are there still in-flight works? */
    1212           0 :         if (pwq->nr_in_flight[color])
    1213             :                 goto out_put;
    1214             : 
    1215             :         /* this pwq is done, clear flush_color */
    1216           0 :         pwq->flush_color = -1;
    1217             : 
    1218             :         /*
    1219             :          * If this was the last pwq, wake up the first flusher.  It
    1220             :          * will handle the rest.
    1221             :          */
    1222           0 :         if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
    1223           0 :                 complete(&pwq->wq->first_flusher->done);
    1224             : out_put:
    1225           6 :         put_pwq(pwq);
    1226           6 : }
    1227             : 
    1228             : /**
    1229             :  * try_to_grab_pending - steal work item from worklist and disable irq
    1230             :  * @work: work item to steal
    1231             :  * @is_dwork: @work is a delayed_work
    1232             :  * @flags: place to store irq state
    1233             :  *
    1234             :  * Try to grab PENDING bit of @work.  This function can handle @work in any
    1235             :  * stable state - idle, on timer or on worklist.
    1236             :  *
    1237             :  * Return:
    1238             :  *
    1239             :  *  ========    ================================================================
    1240             :  *  1           if @work was pending and we successfully stole PENDING
    1241             :  *  0           if @work was idle and we claimed PENDING
    1242             :  *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
    1243             :  *  -ENOENT     if someone else is canceling @work, this state may persist
    1244             :  *              for arbitrarily long
    1245             :  *  ========    ================================================================
    1246             :  *
    1247             :  * Note:
    1248             :  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
    1249             :  * interrupted while holding PENDING and @work off queue, irq must be
    1250             :  * disabled on entry.  This, combined with delayed_work->timer being
    1251             :  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
    1252             :  *
    1253             :  * On successful return, >= 0, irq is disabled and the caller is
    1254             :  * responsible for releasing it using local_irq_restore(*@flags).
    1255             :  *
    1256             :  * This function is safe to call from any context including IRQ handler.
    1257             :  */
    1258           0 : static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
    1259             :                                unsigned long *flags)
    1260             : {
    1261             :         struct worker_pool *pool;
    1262             :         struct pool_workqueue *pwq;
    1263             : 
    1264           0 :         local_irq_save(*flags);
    1265             : 
    1266             :         /* try to steal the timer if it exists */
    1267           0 :         if (is_dwork) {
    1268           0 :                 struct delayed_work *dwork = to_delayed_work(work);
    1269             : 
    1270             :                 /*
    1271             :                  * dwork->timer is irqsafe.  If del_timer() fails, it's
    1272             :                  * guaranteed that the timer is not queued anywhere and not
    1273             :                  * running on the local CPU.
    1274             :                  */
    1275           0 :                 if (likely(del_timer(&dwork->timer)))
    1276             :                         return 1;
    1277             :         }
    1278             : 
    1279             :         /* try to claim PENDING the normal way */
    1280           0 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
    1281             :                 return 0;
    1282             : 
    1283             :         rcu_read_lock();
    1284             :         /*
    1285             :          * The queueing is in progress, or it is already queued. Try to
    1286             :          * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
    1287             :          */
    1288           0 :         pool = get_work_pool(work);
    1289           0 :         if (!pool)
    1290             :                 goto fail;
    1291             : 
    1292           0 :         raw_spin_lock(&pool->lock);
    1293             :         /*
    1294             :          * work->data is guaranteed to point to pwq only while the work
    1295             :          * item is queued on pwq->wq, and both updating work->data to point
    1296             :          * to pwq on queueing and to pool on dequeueing are done under
    1297             :          * pwq->pool->lock.  This in turn guarantees that, if work->data
    1298             :          * points to pwq which is associated with a locked pool, the work
    1299             :          * item is currently queued on that pool.
    1300             :          */
    1301           0 :         pwq = get_work_pwq(work);
    1302           0 :         if (pwq && pwq->pool == pool) {
    1303           0 :                 debug_work_deactivate(work);
    1304             : 
    1305             :                 /*
    1306             :                  * A cancelable inactive work item must be in the
    1307             :                  * pwq->inactive_works since a queued barrier can't be
    1308             :                  * canceled (see the comments in insert_wq_barrier()).
    1309             :                  *
    1310             :                  * An inactive work item cannot be grabbed directly because
    1311             :                  * it might have linked barrier work items which, if left
    1312             :                  * on the inactive_works list, will confuse pwq->nr_active
    1313             :                  * management later on and cause stall.  Make sure the work
    1314             :                  * item is activated before grabbing.
    1315             :                  */
    1316           0 :                 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
    1317           0 :                         pwq_activate_inactive_work(work);
    1318             : 
    1319           0 :                 list_del_init(&work->entry);
    1320           0 :                 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
    1321             : 
    1322             :                 /* work->data points to pwq iff queued, point to pool */
    1323           0 :                 set_work_pool_and_keep_pending(work, pool->id);
    1324             : 
    1325           0 :                 raw_spin_unlock(&pool->lock);
    1326             :                 rcu_read_unlock();
    1327           0 :                 return 1;
    1328             :         }
    1329           0 :         raw_spin_unlock(&pool->lock);
    1330             : fail:
    1331             :         rcu_read_unlock();
    1332           0 :         local_irq_restore(*flags);
    1333           0 :         if (work_is_canceling(work))
    1334             :                 return -ENOENT;
    1335             :         cpu_relax();
    1336           0 :         return -EAGAIN;
    1337             : }
    1338             : 
    1339             : /**
    1340             :  * insert_work - insert a work into a pool
    1341             :  * @pwq: pwq @work belongs to
    1342             :  * @work: work to insert
    1343             :  * @head: insertion point
    1344             :  * @extra_flags: extra WORK_STRUCT_* flags to set
    1345             :  *
    1346             :  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
    1347             :  * work_struct flags.
    1348             :  *
    1349             :  * CONTEXT:
    1350             :  * raw_spin_lock_irq(pool->lock).
    1351             :  */
    1352           6 : static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
    1353             :                         struct list_head *head, unsigned int extra_flags)
    1354             : {
    1355           6 :         struct worker_pool *pool = pwq->pool;
    1356             : 
    1357             :         /* record the work call stack in order to print it in KASAN reports */
    1358           6 :         kasan_record_aux_stack_noalloc(work);
    1359             : 
    1360             :         /* we own @work, set data and link */
    1361          12 :         set_work_pwq(work, pwq, extra_flags);
    1362          12 :         list_add_tail(&work->entry, head);
    1363           6 :         get_pwq(pwq);
    1364             : 
    1365           6 :         if (__need_more_worker(pool))
    1366             :                 wake_up_worker(pool);
    1367           6 : }
    1368             : 
    1369             : /*
    1370             :  * Test whether @work is being queued from another work executing on the
    1371             :  * same workqueue.
    1372             :  */
    1373             : static bool is_chained_work(struct workqueue_struct *wq)
    1374             : {
    1375             :         struct worker *worker;
    1376             : 
    1377           0 :         worker = current_wq_worker();
    1378             :         /*
    1379             :          * Return %true iff I'm a worker executing a work item on @wq.  If
    1380             :          * I'm @worker, it's safe to dereference it without locking.
    1381             :          */
    1382           0 :         return worker && worker->current_pwq->wq == wq;
    1383             : }
    1384             : 
    1385             : /*
    1386             :  * When queueing an unbound work item to a wq, prefer local CPU if allowed
    1387             :  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
    1388             :  * avoid perturbing sensitive tasks.
    1389             :  */
    1390           2 : static int wq_select_unbound_cpu(int cpu)
    1391             : {
    1392             :         static bool printed_dbg_warning;
    1393             :         int new_cpu;
    1394             : 
    1395           2 :         if (likely(!wq_debug_force_rr_cpu)) {
    1396           2 :                 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
    1397             :                         return cpu;
    1398           0 :         } else if (!printed_dbg_warning) {
    1399           0 :                 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
    1400           0 :                 printed_dbg_warning = true;
    1401             :         }
    1402             : 
    1403           0 :         if (cpumask_empty(wq_unbound_cpumask))
    1404             :                 return cpu;
    1405             : 
    1406           0 :         new_cpu = __this_cpu_read(wq_rr_cpu_last);
    1407           0 :         new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
    1408           0 :         if (unlikely(new_cpu >= nr_cpu_ids)) {
    1409           0 :                 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
    1410             :                 if (unlikely(new_cpu >= nr_cpu_ids))
    1411             :                         return cpu;
    1412             :         }
    1413           0 :         __this_cpu_write(wq_rr_cpu_last, new_cpu);
    1414             : 
    1415           0 :         return new_cpu;
    1416             : }
    1417             : 
    1418           4 : static void __queue_work(int cpu, struct workqueue_struct *wq,
    1419             :                          struct work_struct *work)
    1420             : {
    1421             :         struct pool_workqueue *pwq;
    1422             :         struct worker_pool *last_pool;
    1423             :         struct list_head *worklist;
    1424             :         unsigned int work_flags;
    1425           4 :         unsigned int req_cpu = cpu;
    1426             : 
    1427             :         /*
    1428             :          * While a work item is PENDING && off queue, a task trying to
    1429             :          * steal the PENDING will busy-loop waiting for it to either get
    1430             :          * queued or lose PENDING.  Grabbing PENDING and queueing should
    1431             :          * happen with IRQ disabled.
    1432             :          */
    1433             :         lockdep_assert_irqs_disabled();
    1434             : 
    1435             : 
    1436             :         /* if draining, only works from the same workqueue are allowed */
    1437           4 :         if (unlikely(wq->flags & __WQ_DRAINING) &&
    1438           0 :             WARN_ON_ONCE(!is_chained_work(wq)))
    1439             :                 return;
    1440             :         rcu_read_lock();
    1441             : retry:
    1442             :         /* pwq which will be used unless @work is executing elsewhere */
    1443           4 :         if (wq->flags & WQ_UNBOUND) {
    1444           2 :                 if (req_cpu == WORK_CPU_UNBOUND)
    1445           2 :                         cpu = wq_select_unbound_cpu(raw_smp_processor_id());
    1446           2 :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    1447             :         } else {
    1448           2 :                 if (req_cpu == WORK_CPU_UNBOUND)
    1449           2 :                         cpu = raw_smp_processor_id();
    1450           2 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    1451             :         }
    1452             : 
    1453             :         /*
    1454             :          * If @work was previously on a different pool, it might still be
    1455             :          * running there, in which case the work needs to be queued on that
    1456             :          * pool to guarantee non-reentrancy.
    1457             :          */
    1458           4 :         last_pool = get_work_pool(work);
    1459           4 :         if (last_pool && last_pool != pwq->pool) {
    1460             :                 struct worker *worker;
    1461             : 
    1462           0 :                 raw_spin_lock(&last_pool->lock);
    1463             : 
    1464           0 :                 worker = find_worker_executing_work(last_pool, work);
    1465             : 
    1466           0 :                 if (worker && worker->current_pwq->wq == wq) {
    1467             :                         pwq = worker->current_pwq;
    1468             :                 } else {
    1469             :                         /* meh... not running there, queue here */
    1470           0 :                         raw_spin_unlock(&last_pool->lock);
    1471           0 :                         raw_spin_lock(&pwq->pool->lock);
    1472             :                 }
    1473             :         } else {
    1474           4 :                 raw_spin_lock(&pwq->pool->lock);
    1475             :         }
    1476             : 
    1477             :         /*
    1478             :          * pwq is determined and locked.  For unbound pools, we could have
    1479             :          * raced with pwq release and it could already be dead.  If its
    1480             :          * refcnt is zero, repeat pwq selection.  Note that pwqs never die
    1481             :          * without another pwq replacing it in the numa_pwq_tbl or while
    1482             :          * work items are executing on it, so the retrying is guaranteed to
    1483             :          * make forward-progress.
    1484             :          */
    1485           4 :         if (unlikely(!pwq->refcnt)) {
    1486           0 :                 if (wq->flags & WQ_UNBOUND) {
    1487           0 :                         raw_spin_unlock(&pwq->pool->lock);
    1488             :                         cpu_relax();
    1489             :                         goto retry;
    1490             :                 }
    1491             :                 /* oops */
    1492           0 :                 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
    1493             :                           wq->name, cpu);
    1494             :         }
    1495             : 
    1496             :         /* pwq determined, queue */
    1497           4 :         trace_workqueue_queue_work(req_cpu, pwq, work);
    1498             : 
    1499           8 :         if (WARN_ON(!list_empty(&work->entry)))
    1500             :                 goto out;
    1501             : 
    1502           4 :         pwq->nr_in_flight[pwq->work_color]++;
    1503           8 :         work_flags = work_color_to_flags(pwq->work_color);
    1504             : 
    1505           4 :         if (likely(pwq->nr_active < pwq->max_active)) {
    1506           4 :                 trace_workqueue_activate_work(work);
    1507           4 :                 pwq->nr_active++;
    1508           4 :                 worklist = &pwq->pool->worklist;
    1509           4 :                 if (list_empty(worklist))
    1510           4 :                         pwq->pool->watchdog_ts = jiffies;
    1511             :         } else {
    1512           0 :                 work_flags |= WORK_STRUCT_INACTIVE;
    1513           0 :                 worklist = &pwq->inactive_works;
    1514             :         }
    1515             : 
    1516           4 :         debug_work_activate(work);
    1517           4 :         insert_work(pwq, work, worklist, work_flags);
    1518             : 
    1519             : out:
    1520           4 :         raw_spin_unlock(&pwq->pool->lock);
    1521             :         rcu_read_unlock();
    1522             : }
    1523             : 
    1524             : /**
    1525             :  * queue_work_on - queue work on specific cpu
    1526             :  * @cpu: CPU number to execute work on
    1527             :  * @wq: workqueue to use
    1528             :  * @work: work to queue
    1529             :  *
    1530             :  * We queue the work to a specific CPU, the caller must ensure it
    1531             :  * can't go away.  Callers that fail to ensure that the specified
    1532             :  * CPU cannot go away will execute on a randomly chosen CPU.
    1533             :  *
    1534             :  * Return: %false if @work was already on a queue, %true otherwise.
    1535             :  */
    1536           5 : bool queue_work_on(int cpu, struct workqueue_struct *wq,
    1537             :                    struct work_struct *work)
    1538             : {
    1539           5 :         bool ret = false;
    1540             :         unsigned long flags;
    1541             : 
    1542           5 :         local_irq_save(flags);
    1543             : 
    1544          10 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1545           4 :                 __queue_work(cpu, wq, work);
    1546           4 :                 ret = true;
    1547             :         }
    1548             : 
    1549          10 :         local_irq_restore(flags);
    1550           5 :         return ret;
    1551             : }
    1552             : EXPORT_SYMBOL(queue_work_on);
    1553             : 
    1554             : /**
    1555             :  * workqueue_select_cpu_near - Select a CPU based on NUMA node
    1556             :  * @node: NUMA node ID that we want to select a CPU from
    1557             :  *
    1558             :  * This function will attempt to find a "random" cpu available on a given
    1559             :  * node. If there are no CPUs available on the given node it will return
    1560             :  * WORK_CPU_UNBOUND indicating that we should just schedule to any
    1561             :  * available CPU if we need to schedule this work.
    1562             :  */
    1563             : static int workqueue_select_cpu_near(int node)
    1564             : {
    1565             :         int cpu;
    1566             : 
    1567             :         /* No point in doing this if NUMA isn't enabled for workqueues */
    1568           0 :         if (!wq_numa_enabled)
    1569             :                 return WORK_CPU_UNBOUND;
    1570             : 
    1571             :         /* Delay binding to CPU if node is not valid or online */
    1572           0 :         if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
    1573             :                 return WORK_CPU_UNBOUND;
    1574             : 
    1575             :         /* Use local node/cpu if we are already there */
    1576             :         cpu = raw_smp_processor_id();
    1577             :         if (node == cpu_to_node(cpu))
    1578             :                 return cpu;
    1579             : 
    1580             :         /* Use "random" otherwise know as "first" online CPU of node */
    1581             :         cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
    1582             : 
    1583             :         /* If CPU is valid return that, otherwise just defer */
    1584             :         return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
    1585             : }
    1586             : 
    1587             : /**
    1588             :  * queue_work_node - queue work on a "random" cpu for a given NUMA node
    1589             :  * @node: NUMA node that we are targeting the work for
    1590             :  * @wq: workqueue to use
    1591             :  * @work: work to queue
    1592             :  *
    1593             :  * We queue the work to a "random" CPU within a given NUMA node. The basic
    1594             :  * idea here is to provide a way to somehow associate work with a given
    1595             :  * NUMA node.
    1596             :  *
    1597             :  * This function will only make a best effort attempt at getting this onto
    1598             :  * the right NUMA node. If no node is requested or the requested node is
    1599             :  * offline then we just fall back to standard queue_work behavior.
    1600             :  *
    1601             :  * Currently the "random" CPU ends up being the first available CPU in the
    1602             :  * intersection of cpu_online_mask and the cpumask of the node, unless we
    1603             :  * are running on the node. In that case we just use the current CPU.
    1604             :  *
    1605             :  * Return: %false if @work was already on a queue, %true otherwise.
    1606             :  */
    1607           0 : bool queue_work_node(int node, struct workqueue_struct *wq,
    1608             :                      struct work_struct *work)
    1609             : {
    1610             :         unsigned long flags;
    1611           0 :         bool ret = false;
    1612             : 
    1613             :         /*
    1614             :          * This current implementation is specific to unbound workqueues.
    1615             :          * Specifically we only return the first available CPU for a given
    1616             :          * node instead of cycling through individual CPUs within the node.
    1617             :          *
    1618             :          * If this is used with a per-cpu workqueue then the logic in
    1619             :          * workqueue_select_cpu_near would need to be updated to allow for
    1620             :          * some round robin type logic.
    1621             :          */
    1622           0 :         WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
    1623             : 
    1624           0 :         local_irq_save(flags);
    1625             : 
    1626           0 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1627           0 :                 int cpu = workqueue_select_cpu_near(node);
    1628             : 
    1629           0 :                 __queue_work(cpu, wq, work);
    1630           0 :                 ret = true;
    1631             :         }
    1632             : 
    1633           0 :         local_irq_restore(flags);
    1634           0 :         return ret;
    1635             : }
    1636             : EXPORT_SYMBOL_GPL(queue_work_node);
    1637             : 
    1638           0 : void delayed_work_timer_fn(struct timer_list *t)
    1639             : {
    1640           0 :         struct delayed_work *dwork = from_timer(dwork, t, timer);
    1641             : 
    1642             :         /* should have been called from irqsafe timer with irq already off */
    1643           0 :         __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    1644           0 : }
    1645             : EXPORT_SYMBOL(delayed_work_timer_fn);
    1646             : 
    1647           1 : static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
    1648             :                                 struct delayed_work *dwork, unsigned long delay)
    1649             : {
    1650           1 :         struct timer_list *timer = &dwork->timer;
    1651           1 :         struct work_struct *work = &dwork->work;
    1652             : 
    1653           1 :         WARN_ON_ONCE(!wq);
    1654           1 :         WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
    1655           1 :         WARN_ON_ONCE(timer_pending(timer));
    1656           2 :         WARN_ON_ONCE(!list_empty(&work->entry));
    1657             : 
    1658             :         /*
    1659             :          * If @delay is 0, queue @dwork->work immediately.  This is for
    1660             :          * both optimization and correctness.  The earliest @timer can
    1661             :          * expire is on the closest next tick and delayed_work users depend
    1662             :          * on that there's no such delay when @delay is 0.
    1663             :          */
    1664           1 :         if (!delay) {
    1665           0 :                 __queue_work(cpu, wq, &dwork->work);
    1666           0 :                 return;
    1667             :         }
    1668             : 
    1669           1 :         dwork->wq = wq;
    1670           1 :         dwork->cpu = cpu;
    1671           1 :         timer->expires = jiffies + delay;
    1672             : 
    1673           1 :         if (unlikely(cpu != WORK_CPU_UNBOUND))
    1674           0 :                 add_timer_on(timer, cpu);
    1675             :         else
    1676           1 :                 add_timer(timer);
    1677             : }
    1678             : 
    1679             : /**
    1680             :  * queue_delayed_work_on - queue work on specific CPU after delay
    1681             :  * @cpu: CPU number to execute work on
    1682             :  * @wq: workqueue to use
    1683             :  * @dwork: work to queue
    1684             :  * @delay: number of jiffies to wait before queueing
    1685             :  *
    1686             :  * Return: %false if @work was already on a queue, %true otherwise.  If
    1687             :  * @delay is zero and @dwork is idle, it will be scheduled for immediate
    1688             :  * execution.
    1689             :  */
    1690           1 : bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1691             :                            struct delayed_work *dwork, unsigned long delay)
    1692             : {
    1693           1 :         struct work_struct *work = &dwork->work;
    1694           1 :         bool ret = false;
    1695             :         unsigned long flags;
    1696             : 
    1697             :         /* read the comment in __queue_work() */
    1698           1 :         local_irq_save(flags);
    1699             : 
    1700           2 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1701           1 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1702           1 :                 ret = true;
    1703             :         }
    1704             : 
    1705           2 :         local_irq_restore(flags);
    1706           1 :         return ret;
    1707             : }
    1708             : EXPORT_SYMBOL(queue_delayed_work_on);
    1709             : 
    1710             : /**
    1711             :  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
    1712             :  * @cpu: CPU number to execute work on
    1713             :  * @wq: workqueue to use
    1714             :  * @dwork: work to queue
    1715             :  * @delay: number of jiffies to wait before queueing
    1716             :  *
    1717             :  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
    1718             :  * modify @dwork's timer so that it expires after @delay.  If @delay is
    1719             :  * zero, @work is guaranteed to be scheduled immediately regardless of its
    1720             :  * current state.
    1721             :  *
    1722             :  * Return: %false if @dwork was idle and queued, %true if @dwork was
    1723             :  * pending and its timer was modified.
    1724             :  *
    1725             :  * This function is safe to call from any context including IRQ handler.
    1726             :  * See try_to_grab_pending() for details.
    1727             :  */
    1728           0 : bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1729             :                          struct delayed_work *dwork, unsigned long delay)
    1730             : {
    1731             :         unsigned long flags;
    1732             :         int ret;
    1733             : 
    1734             :         do {
    1735           0 :                 ret = try_to_grab_pending(&dwork->work, true, &flags);
    1736           0 :         } while (unlikely(ret == -EAGAIN));
    1737             : 
    1738           0 :         if (likely(ret >= 0)) {
    1739           0 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1740           0 :                 local_irq_restore(flags);
    1741             :         }
    1742             : 
    1743             :         /* -ENOENT from try_to_grab_pending() becomes %true */
    1744           0 :         return ret;
    1745             : }
    1746             : EXPORT_SYMBOL_GPL(mod_delayed_work_on);
    1747             : 
    1748           0 : static void rcu_work_rcufn(struct rcu_head *rcu)
    1749             : {
    1750           0 :         struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
    1751             : 
    1752             :         /* read the comment in __queue_work() */
    1753             :         local_irq_disable();
    1754           0 :         __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
    1755             :         local_irq_enable();
    1756           0 : }
    1757             : 
    1758             : /**
    1759             :  * queue_rcu_work - queue work after a RCU grace period
    1760             :  * @wq: workqueue to use
    1761             :  * @rwork: work to queue
    1762             :  *
    1763             :  * Return: %false if @rwork was already pending, %true otherwise.  Note
    1764             :  * that a full RCU grace period is guaranteed only after a %true return.
    1765             :  * While @rwork is guaranteed to be executed after a %false return, the
    1766             :  * execution may happen before a full RCU grace period has passed.
    1767             :  */
    1768           0 : bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
    1769             : {
    1770           0 :         struct work_struct *work = &rwork->work;
    1771             : 
    1772           0 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1773           0 :                 rwork->wq = wq;
    1774           0 :                 call_rcu(&rwork->rcu, rcu_work_rcufn);
    1775           0 :                 return true;
    1776             :         }
    1777             : 
    1778             :         return false;
    1779             : }
    1780             : EXPORT_SYMBOL(queue_rcu_work);
    1781             : 
    1782             : /**
    1783             :  * worker_enter_idle - enter idle state
    1784             :  * @worker: worker which is entering idle state
    1785             :  *
    1786             :  * @worker is entering idle state.  Update stats and idle timer if
    1787             :  * necessary.
    1788             :  *
    1789             :  * LOCKING:
    1790             :  * raw_spin_lock_irq(pool->lock).
    1791             :  */
    1792          14 : static void worker_enter_idle(struct worker *worker)
    1793             : {
    1794          14 :         struct worker_pool *pool = worker->pool;
    1795             : 
    1796          28 :         if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
    1797          28 :             WARN_ON_ONCE(!list_empty(&worker->entry) &&
    1798             :                          (worker->hentry.next || worker->hentry.pprev)))
    1799             :                 return;
    1800             : 
    1801             :         /* can't use worker_set_flags(), also called from create_worker() */
    1802          14 :         worker->flags |= WORKER_IDLE;
    1803          14 :         pool->nr_idle++;
    1804          14 :         worker->last_active = jiffies;
    1805             : 
    1806             :         /* idle_list is LIFO */
    1807          28 :         list_add(&worker->entry, &pool->idle_list);
    1808             : 
    1809          28 :         if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
    1810           0 :                 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
    1811             : 
    1812             :         /* Sanity check nr_running. */
    1813          14 :         WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
    1814             : }
    1815             : 
    1816             : /**
    1817             :  * worker_leave_idle - leave idle state
    1818             :  * @worker: worker which is leaving idle state
    1819             :  *
    1820             :  * @worker is leaving idle state.  Update stats.
    1821             :  *
    1822             :  * LOCKING:
    1823             :  * raw_spin_lock_irq(pool->lock).
    1824             :  */
    1825           9 : static void worker_leave_idle(struct worker *worker)
    1826             : {
    1827           9 :         struct worker_pool *pool = worker->pool;
    1828             : 
    1829           9 :         if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
    1830             :                 return;
    1831           9 :         worker_clr_flags(worker, WORKER_IDLE);
    1832           9 :         pool->nr_idle--;
    1833           9 :         list_del_init(&worker->entry);
    1834             : }
    1835             : 
    1836           8 : static struct worker *alloc_worker(int node)
    1837             : {
    1838             :         struct worker *worker;
    1839             : 
    1840          16 :         worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
    1841           8 :         if (worker) {
    1842          16 :                 INIT_LIST_HEAD(&worker->entry);
    1843          16 :                 INIT_LIST_HEAD(&worker->scheduled);
    1844          16 :                 INIT_LIST_HEAD(&worker->node);
    1845             :                 /* on creation a worker is in !idle && prep state */
    1846           8 :                 worker->flags = WORKER_PREP;
    1847             :         }
    1848           8 :         return worker;
    1849             : }
    1850             : 
    1851             : /**
    1852             :  * worker_attach_to_pool() - attach a worker to a pool
    1853             :  * @worker: worker to be attached
    1854             :  * @pool: the target pool
    1855             :  *
    1856             :  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
    1857             :  * cpu-binding of @worker are kept coordinated with the pool across
    1858             :  * cpu-[un]hotplugs.
    1859             :  */
    1860           5 : static void worker_attach_to_pool(struct worker *worker,
    1861             :                                    struct worker_pool *pool)
    1862             : {
    1863           5 :         mutex_lock(&wq_pool_attach_mutex);
    1864             : 
    1865             :         /*
    1866             :          * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
    1867             :          * stable across this function.  See the comments above the flag
    1868             :          * definition for details.
    1869             :          */
    1870           5 :         if (pool->flags & POOL_DISASSOCIATED)
    1871           2 :                 worker->flags |= WORKER_UNBOUND;
    1872             :         else
    1873           3 :                 kthread_set_per_cpu(worker->task, pool->cpu);
    1874             : 
    1875           5 :         if (worker->rescue_wq)
    1876           0 :                 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
    1877             : 
    1878          10 :         list_add_tail(&worker->node, &pool->workers);
    1879           5 :         worker->pool = pool;
    1880             : 
    1881           5 :         mutex_unlock(&wq_pool_attach_mutex);
    1882           5 : }
    1883             : 
    1884             : /**
    1885             :  * worker_detach_from_pool() - detach a worker from its pool
    1886             :  * @worker: worker which is attached to its pool
    1887             :  *
    1888             :  * Undo the attaching which had been done in worker_attach_to_pool().  The
    1889             :  * caller worker shouldn't access to the pool after detached except it has
    1890             :  * other reference to the pool.
    1891             :  */
    1892           0 : static void worker_detach_from_pool(struct worker *worker)
    1893             : {
    1894           0 :         struct worker_pool *pool = worker->pool;
    1895           0 :         struct completion *detach_completion = NULL;
    1896             : 
    1897           0 :         mutex_lock(&wq_pool_attach_mutex);
    1898             : 
    1899           0 :         kthread_set_per_cpu(worker->task, -1);
    1900           0 :         list_del(&worker->node);
    1901           0 :         worker->pool = NULL;
    1902             : 
    1903           0 :         if (list_empty(&pool->workers))
    1904           0 :                 detach_completion = pool->detach_completion;
    1905           0 :         mutex_unlock(&wq_pool_attach_mutex);
    1906             : 
    1907             :         /* clear leftover flags without pool->lock after it is detached */
    1908           0 :         worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
    1909             : 
    1910           0 :         if (detach_completion)
    1911           0 :                 complete(detach_completion);
    1912           0 : }
    1913             : 
    1914             : /**
    1915             :  * create_worker - create a new workqueue worker
    1916             :  * @pool: pool the new worker will belong to
    1917             :  *
    1918             :  * Create and start a new worker which is attached to @pool.
    1919             :  *
    1920             :  * CONTEXT:
    1921             :  * Might sleep.  Does GFP_KERNEL allocations.
    1922             :  *
    1923             :  * Return:
    1924             :  * Pointer to the newly created worker.
    1925             :  */
    1926           5 : static struct worker *create_worker(struct worker_pool *pool)
    1927             : {
    1928             :         struct worker *worker;
    1929             :         int id;
    1930             :         char id_buf[16];
    1931             : 
    1932             :         /* ID is needed to determine kthread name */
    1933          10 :         id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
    1934           5 :         if (id < 0)
    1935             :                 return NULL;
    1936             : 
    1937           5 :         worker = alloc_worker(pool->node);
    1938           5 :         if (!worker)
    1939             :                 goto fail;
    1940             : 
    1941           5 :         worker->id = id;
    1942             : 
    1943           5 :         if (pool->cpu >= 0)
    1944           3 :                 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
    1945           3 :                          pool->attrs->nice < 0  ? "H" : "");
    1946             :         else
    1947           2 :                 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
    1948             : 
    1949           5 :         worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
    1950             :                                               "kworker/%s", id_buf);
    1951          10 :         if (IS_ERR(worker->task))
    1952             :                 goto fail;
    1953             : 
    1954           5 :         set_user_nice(worker->task, pool->attrs->nice);
    1955           5 :         kthread_bind_mask(worker->task, pool->attrs->cpumask);
    1956             : 
    1957             :         /* successful, attach the worker to the pool */
    1958           5 :         worker_attach_to_pool(worker, pool);
    1959             : 
    1960             :         /* start the newly created worker */
    1961           5 :         raw_spin_lock_irq(&pool->lock);
    1962           5 :         worker->pool->nr_workers++;
    1963           5 :         worker_enter_idle(worker);
    1964           5 :         wake_up_process(worker->task);
    1965           5 :         raw_spin_unlock_irq(&pool->lock);
    1966             : 
    1967           5 :         return worker;
    1968             : 
    1969             : fail:
    1970           0 :         ida_free(&pool->worker_ida, id);
    1971           0 :         kfree(worker);
    1972           0 :         return NULL;
    1973             : }
    1974             : 
    1975             : /**
    1976             :  * destroy_worker - destroy a workqueue worker
    1977             :  * @worker: worker to be destroyed
    1978             :  *
    1979             :  * Destroy @worker and adjust @pool stats accordingly.  The worker should
    1980             :  * be idle.
    1981             :  *
    1982             :  * CONTEXT:
    1983             :  * raw_spin_lock_irq(pool->lock).
    1984             :  */
    1985           0 : static void destroy_worker(struct worker *worker)
    1986             : {
    1987           0 :         struct worker_pool *pool = worker->pool;
    1988             : 
    1989             :         lockdep_assert_held(&pool->lock);
    1990             : 
    1991             :         /* sanity check frenzy */
    1992           0 :         if (WARN_ON(worker->current_work) ||
    1993           0 :             WARN_ON(!list_empty(&worker->scheduled)) ||
    1994           0 :             WARN_ON(!(worker->flags & WORKER_IDLE)))
    1995             :                 return;
    1996             : 
    1997           0 :         pool->nr_workers--;
    1998           0 :         pool->nr_idle--;
    1999             : 
    2000           0 :         list_del_init(&worker->entry);
    2001           0 :         worker->flags |= WORKER_DIE;
    2002           0 :         wake_up_process(worker->task);
    2003             : }
    2004             : 
    2005           0 : static void idle_worker_timeout(struct timer_list *t)
    2006             : {
    2007           0 :         struct worker_pool *pool = from_timer(pool, t, idle_timer);
    2008             : 
    2009           0 :         raw_spin_lock_irq(&pool->lock);
    2010             : 
    2011           0 :         while (too_many_workers(pool)) {
    2012             :                 struct worker *worker;
    2013             :                 unsigned long expires;
    2014             : 
    2015             :                 /* idle_list is kept in LIFO order, check the last one */
    2016           0 :                 worker = list_entry(pool->idle_list.prev, struct worker, entry);
    2017           0 :                 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
    2018             : 
    2019           0 :                 if (time_before(jiffies, expires)) {
    2020           0 :                         mod_timer(&pool->idle_timer, expires);
    2021           0 :                         break;
    2022             :                 }
    2023             : 
    2024           0 :                 destroy_worker(worker);
    2025             :         }
    2026             : 
    2027           0 :         raw_spin_unlock_irq(&pool->lock);
    2028           0 : }
    2029             : 
    2030           0 : static void send_mayday(struct work_struct *work)
    2031             : {
    2032           0 :         struct pool_workqueue *pwq = get_work_pwq(work);
    2033           0 :         struct workqueue_struct *wq = pwq->wq;
    2034             : 
    2035             :         lockdep_assert_held(&wq_mayday_lock);
    2036             : 
    2037           0 :         if (!wq->rescuer)
    2038             :                 return;
    2039             : 
    2040             :         /* mayday mayday mayday */
    2041           0 :         if (list_empty(&pwq->mayday_node)) {
    2042             :                 /*
    2043             :                  * If @pwq is for an unbound wq, its base ref may be put at
    2044             :                  * any time due to an attribute change.  Pin @pwq until the
    2045             :                  * rescuer is done with it.
    2046             :                  */
    2047           0 :                 get_pwq(pwq);
    2048           0 :                 list_add_tail(&pwq->mayday_node, &wq->maydays);
    2049           0 :                 wake_up_process(wq->rescuer->task);
    2050             :         }
    2051             : }
    2052             : 
    2053           0 : static void pool_mayday_timeout(struct timer_list *t)
    2054             : {
    2055           0 :         struct worker_pool *pool = from_timer(pool, t, mayday_timer);
    2056             :         struct work_struct *work;
    2057             : 
    2058           0 :         raw_spin_lock_irq(&pool->lock);
    2059           0 :         raw_spin_lock(&wq_mayday_lock);             /* for wq->maydays */
    2060             : 
    2061           0 :         if (need_to_create_worker(pool)) {
    2062             :                 /*
    2063             :                  * We've been trying to create a new worker but
    2064             :                  * haven't been successful.  We might be hitting an
    2065             :                  * allocation deadlock.  Send distress signals to
    2066             :                  * rescuers.
    2067             :                  */
    2068           0 :                 list_for_each_entry(work, &pool->worklist, entry)
    2069           0 :                         send_mayday(work);
    2070             :         }
    2071             : 
    2072           0 :         raw_spin_unlock(&wq_mayday_lock);
    2073           0 :         raw_spin_unlock_irq(&pool->lock);
    2074             : 
    2075           0 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
    2076           0 : }
    2077             : 
    2078             : /**
    2079             :  * maybe_create_worker - create a new worker if necessary
    2080             :  * @pool: pool to create a new worker for
    2081             :  *
    2082             :  * Create a new worker for @pool if necessary.  @pool is guaranteed to
    2083             :  * have at least one idle worker on return from this function.  If
    2084             :  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
    2085             :  * sent to all rescuers with works scheduled on @pool to resolve
    2086             :  * possible allocation deadlock.
    2087             :  *
    2088             :  * On return, need_to_create_worker() is guaranteed to be %false and
    2089             :  * may_start_working() %true.
    2090             :  *
    2091             :  * LOCKING:
    2092             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2093             :  * multiple times.  Does GFP_KERNEL allocations.  Called only from
    2094             :  * manager.
    2095             :  */
    2096           2 : static void maybe_create_worker(struct worker_pool *pool)
    2097             : __releases(&pool->lock)
    2098             : __acquires(&pool->lock)
    2099             : {
    2100             : restart:
    2101           2 :         raw_spin_unlock_irq(&pool->lock);
    2102             : 
    2103             :         /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
    2104           2 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
    2105             : 
    2106             :         while (true) {
    2107           2 :                 if (create_worker(pool) || !need_to_create_worker(pool))
    2108             :                         break;
    2109             : 
    2110           0 :                 schedule_timeout_interruptible(CREATE_COOLDOWN);
    2111             : 
    2112           0 :                 if (!need_to_create_worker(pool))
    2113             :                         break;
    2114             :         }
    2115             : 
    2116           2 :         del_timer_sync(&pool->mayday_timer);
    2117           2 :         raw_spin_lock_irq(&pool->lock);
    2118             :         /*
    2119             :          * This is necessary even after a new worker was just successfully
    2120             :          * created as @pool->lock was dropped and the new worker might have
    2121             :          * already become busy.
    2122             :          */
    2123           2 :         if (need_to_create_worker(pool))
    2124             :                 goto restart;
    2125           2 : }
    2126             : 
    2127             : /**
    2128             :  * manage_workers - manage worker pool
    2129             :  * @worker: self
    2130             :  *
    2131             :  * Assume the manager role and manage the worker pool @worker belongs
    2132             :  * to.  At any given time, there can be only zero or one manager per
    2133             :  * pool.  The exclusion is handled automatically by this function.
    2134             :  *
    2135             :  * The caller can safely start processing works on false return.  On
    2136             :  * true return, it's guaranteed that need_to_create_worker() is false
    2137             :  * and may_start_working() is true.
    2138             :  *
    2139             :  * CONTEXT:
    2140             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2141             :  * multiple times.  Does GFP_KERNEL allocations.
    2142             :  *
    2143             :  * Return:
    2144             :  * %false if the pool doesn't need management and the caller can safely
    2145             :  * start processing works, %true if management function was performed and
    2146             :  * the conditions that the caller verified before calling the function may
    2147             :  * no longer be true.
    2148             :  */
    2149           2 : static bool manage_workers(struct worker *worker)
    2150             : {
    2151           2 :         struct worker_pool *pool = worker->pool;
    2152             : 
    2153           2 :         if (pool->flags & POOL_MANAGER_ACTIVE)
    2154             :                 return false;
    2155             : 
    2156           2 :         pool->flags |= POOL_MANAGER_ACTIVE;
    2157           2 :         pool->manager = worker;
    2158             : 
    2159           2 :         maybe_create_worker(pool);
    2160             : 
    2161           2 :         pool->manager = NULL;
    2162           2 :         pool->flags &= ~POOL_MANAGER_ACTIVE;
    2163           2 :         rcuwait_wake_up(&manager_wait);
    2164           2 :         return true;
    2165             : }
    2166             : 
    2167             : /**
    2168             :  * process_one_work - process single work
    2169             :  * @worker: self
    2170             :  * @work: work to process
    2171             :  *
    2172             :  * Process @work.  This function contains all the logics necessary to
    2173             :  * process a single work including synchronization against and
    2174             :  * interaction with other workers on the same cpu, queueing and
    2175             :  * flushing.  As long as context requirement is met, any worker can
    2176             :  * call this function to process a work.
    2177             :  *
    2178             :  * CONTEXT:
    2179             :  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
    2180             :  */
    2181           6 : static void process_one_work(struct worker *worker, struct work_struct *work)
    2182             : __releases(&pool->lock)
    2183             : __acquires(&pool->lock)
    2184             : {
    2185           6 :         struct pool_workqueue *pwq = get_work_pwq(work);
    2186           6 :         struct worker_pool *pool = worker->pool;
    2187           6 :         bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
    2188             :         unsigned long work_data;
    2189             :         struct worker *collision;
    2190             : #ifdef CONFIG_LOCKDEP
    2191             :         /*
    2192             :          * It is permissible to free the struct work_struct from
    2193             :          * inside the function that is called from it, this we need to
    2194             :          * take into account for lockdep too.  To avoid bogus "held
    2195             :          * lock freed" warnings as well as problems when looking into
    2196             :          * work->lockdep_map, make a copy and use that here.
    2197             :          */
    2198             :         struct lockdep_map lockdep_map;
    2199             : 
    2200             :         lockdep_copy_map(&lockdep_map, &work->lockdep_map);
    2201             : #endif
    2202             :         /* ensure we're on the correct CPU */
    2203           6 :         WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
    2204             :                      raw_smp_processor_id() != pool->cpu);
    2205             : 
    2206             :         /*
    2207             :          * A single work shouldn't be executed concurrently by
    2208             :          * multiple workers on a single cpu.  Check whether anyone is
    2209             :          * already processing the work.  If so, defer the work to the
    2210             :          * currently executing one.
    2211             :          */
    2212           6 :         collision = find_worker_executing_work(pool, work);
    2213           6 :         if (unlikely(collision)) {
    2214           0 :                 move_linked_works(work, &collision->scheduled, NULL);
    2215             :                 return;
    2216             :         }
    2217             : 
    2218             :         /* claim and dequeue */
    2219           6 :         debug_work_deactivate(work);
    2220          12 :         hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
    2221           6 :         worker->current_work = work;
    2222           6 :         worker->current_func = work->func;
    2223           6 :         worker->current_pwq = pwq;
    2224           6 :         work_data = *work_data_bits(work);
    2225           6 :         worker->current_color = get_work_color(work_data);
    2226             : 
    2227             :         /*
    2228             :          * Record wq name for cmdline and debug reporting, may get
    2229             :          * overridden through set_worker_desc().
    2230             :          */
    2231           6 :         strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
    2232             : 
    2233          12 :         list_del_init(&work->entry);
    2234             : 
    2235             :         /*
    2236             :          * CPU intensive works don't participate in concurrency management.
    2237             :          * They're the scheduler's responsibility.  This takes @worker out
    2238             :          * of concurrency management and the next code block will chain
    2239             :          * execution of the pending work items.
    2240             :          */
    2241           6 :         if (unlikely(cpu_intensive))
    2242           0 :                 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
    2243             : 
    2244             :         /*
    2245             :          * Wake up another worker if necessary.  The condition is always
    2246             :          * false for normal per-cpu workers since nr_running would always
    2247             :          * be >= 1 at this point.  This is used to chain execution of the
    2248             :          * pending work items for WORKER_NOT_RUNNING workers such as the
    2249             :          * UNBOUND and CPU_INTENSIVE ones.
    2250             :          */
    2251           6 :         if (need_more_worker(pool))
    2252             :                 wake_up_worker(pool);
    2253             : 
    2254             :         /*
    2255             :          * Record the last pool and clear PENDING which should be the last
    2256             :          * update to @work.  Also, do this inside @pool->lock so that
    2257             :          * PENDING and queued state changes happen together while IRQ is
    2258             :          * disabled.
    2259             :          */
    2260          12 :         set_work_pool_and_clear_pending(work, pool->id);
    2261             : 
    2262           6 :         raw_spin_unlock_irq(&pool->lock);
    2263             : 
    2264             :         lock_map_acquire(&pwq->wq->lockdep_map);
    2265             :         lock_map_acquire(&lockdep_map);
    2266             :         /*
    2267             :          * Strictly speaking we should mark the invariant state without holding
    2268             :          * any locks, that is, before these two lock_map_acquire()'s.
    2269             :          *
    2270             :          * However, that would result in:
    2271             :          *
    2272             :          *   A(W1)
    2273             :          *   WFC(C)
    2274             :          *              A(W1)
    2275             :          *              C(C)
    2276             :          *
    2277             :          * Which would create W1->C->W1 dependencies, even though there is no
    2278             :          * actual deadlock possible. There are two solutions, using a
    2279             :          * read-recursive acquire on the work(queue) 'locks', but this will then
    2280             :          * hit the lockdep limitation on recursive locks, or simply discard
    2281             :          * these locks.
    2282             :          *
    2283             :          * AFAICT there is no possible deadlock scenario between the
    2284             :          * flush_work() and complete() primitives (except for single-threaded
    2285             :          * workqueues), so hiding them isn't a problem.
    2286             :          */
    2287           6 :         lockdep_invariant_state(true);
    2288           6 :         trace_workqueue_execute_start(work);
    2289           6 :         worker->current_func(work);
    2290             :         /*
    2291             :          * While we must be careful to not use "work" after this, the trace
    2292             :          * point will only record its address.
    2293             :          */
    2294           6 :         trace_workqueue_execute_end(work, worker->current_func);
    2295             :         lock_map_release(&lockdep_map);
    2296             :         lock_map_release(&pwq->wq->lockdep_map);
    2297             : 
    2298           6 :         if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
    2299           0 :                 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
    2300             :                        "     last function: %ps\n",
    2301             :                        current->comm, preempt_count(), task_pid_nr(current),
    2302             :                        worker->current_func);
    2303           0 :                 debug_show_held_locks(current);
    2304           0 :                 dump_stack();
    2305             :         }
    2306             : 
    2307             :         /*
    2308             :          * The following prevents a kworker from hogging CPU on !PREEMPTION
    2309             :          * kernels, where a requeueing work item waiting for something to
    2310             :          * happen could deadlock with stop_machine as such work item could
    2311             :          * indefinitely requeue itself while all other CPUs are trapped in
    2312             :          * stop_machine. At the same time, report a quiescent RCU state so
    2313             :          * the same condition doesn't freeze RCU.
    2314             :          */
    2315           6 :         cond_resched();
    2316             : 
    2317           6 :         raw_spin_lock_irq(&pool->lock);
    2318             : 
    2319             :         /* clear cpu intensive status */
    2320           6 :         if (unlikely(cpu_intensive))
    2321           0 :                 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
    2322             : 
    2323             :         /* tag the worker for identification in schedule() */
    2324           6 :         worker->last_func = worker->current_func;
    2325             : 
    2326             :         /* we're done with it, release */
    2327          12 :         hash_del(&worker->hentry);
    2328           6 :         worker->current_work = NULL;
    2329           6 :         worker->current_func = NULL;
    2330           6 :         worker->current_pwq = NULL;
    2331           6 :         worker->current_color = INT_MAX;
    2332           6 :         pwq_dec_nr_in_flight(pwq, work_data);
    2333             : }
    2334             : 
    2335             : /**
    2336             :  * process_scheduled_works - process scheduled works
    2337             :  * @worker: self
    2338             :  *
    2339             :  * Process all scheduled works.  Please note that the scheduled list
    2340             :  * may change while processing a work, so this function repeatedly
    2341             :  * fetches a work from the top and executes it.
    2342             :  *
    2343             :  * CONTEXT:
    2344             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2345             :  * multiple times.
    2346             :  */
    2347             : static void process_scheduled_works(struct worker *worker)
    2348             : {
    2349          12 :         while (!list_empty(&worker->scheduled)) {
    2350           4 :                 struct work_struct *work = list_first_entry(&worker->scheduled,
    2351             :                                                 struct work_struct, entry);
    2352           4 :                 process_one_work(worker, work);
    2353             :         }
    2354             : }
    2355             : 
    2356           8 : static void set_pf_worker(bool val)
    2357             : {
    2358           8 :         mutex_lock(&wq_pool_attach_mutex);
    2359           8 :         if (val)
    2360           8 :                 current->flags |= PF_WQ_WORKER;
    2361             :         else
    2362           0 :                 current->flags &= ~PF_WQ_WORKER;
    2363           8 :         mutex_unlock(&wq_pool_attach_mutex);
    2364           8 : }
    2365             : 
    2366             : /**
    2367             :  * worker_thread - the worker thread function
    2368             :  * @__worker: self
    2369             :  *
    2370             :  * The worker thread function.  All workers belong to a worker_pool -
    2371             :  * either a per-cpu one or dynamic unbound one.  These workers process all
    2372             :  * work items regardless of their specific target workqueue.  The only
    2373             :  * exception is work items which belong to workqueues with a rescuer which
    2374             :  * will be explained in rescuer_thread().
    2375             :  *
    2376             :  * Return: 0
    2377             :  */
    2378           5 : static int worker_thread(void *__worker)
    2379             : {
    2380           5 :         struct worker *worker = __worker;
    2381           5 :         struct worker_pool *pool = worker->pool;
    2382             : 
    2383             :         /* tell the scheduler that this is a workqueue worker */
    2384           5 :         set_pf_worker(true);
    2385             : woke_up:
    2386           9 :         raw_spin_lock_irq(&pool->lock);
    2387             : 
    2388             :         /* am I supposed to die? */
    2389           9 :         if (unlikely(worker->flags & WORKER_DIE)) {
    2390           0 :                 raw_spin_unlock_irq(&pool->lock);
    2391           0 :                 WARN_ON_ONCE(!list_empty(&worker->entry));
    2392           0 :                 set_pf_worker(false);
    2393             : 
    2394           0 :                 set_task_comm(worker->task, "kworker/dying");
    2395           0 :                 ida_free(&pool->worker_ida, worker->id);
    2396           0 :                 worker_detach_from_pool(worker);
    2397           0 :                 kfree(worker);
    2398           0 :                 return 0;
    2399             :         }
    2400             : 
    2401           9 :         worker_leave_idle(worker);
    2402             : recheck:
    2403             :         /* no more worker necessary? */
    2404          11 :         if (!need_more_worker(pool))
    2405             :                 goto sleep;
    2406             : 
    2407             :         /* do we need to manage? */
    2408           6 :         if (unlikely(!may_start_working(pool)) && manage_workers(worker))
    2409             :                 goto recheck;
    2410             : 
    2411             :         /*
    2412             :          * ->scheduled list can only be filled while a worker is
    2413             :          * preparing to process a work or actually processing it.
    2414             :          * Make sure nobody diddled with it while I was sleeping.
    2415             :          */
    2416           8 :         WARN_ON_ONCE(!list_empty(&worker->scheduled));
    2417             : 
    2418             :         /*
    2419             :          * Finish PREP stage.  We're guaranteed to have at least one idle
    2420             :          * worker or that someone else has already assumed the manager
    2421             :          * role.  This is where @worker starts participating in concurrency
    2422             :          * management if applicable and concurrency management is restored
    2423             :          * after being rebound.  See rebind_workers() for details.
    2424             :          */
    2425           4 :         worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
    2426             : 
    2427             :         do {
    2428           4 :                 struct work_struct *work =
    2429           4 :                         list_first_entry(&pool->worklist,
    2430             :                                          struct work_struct, entry);
    2431             : 
    2432           4 :                 pool->watchdog_ts = jiffies;
    2433             : 
    2434           4 :                 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
    2435             :                         /* optimization path, not strictly necessary */
    2436           2 :                         process_one_work(worker, work);
    2437           4 :                         if (unlikely(!list_empty(&worker->scheduled)))
    2438             :                                 process_scheduled_works(worker);
    2439             :                 } else {
    2440           2 :                         move_linked_works(work, &worker->scheduled, NULL);
    2441             :                         process_scheduled_works(worker);
    2442             :                 }
    2443           4 :         } while (keep_working(pool));
    2444             : 
    2445           4 :         worker_set_flags(worker, WORKER_PREP);
    2446             : sleep:
    2447             :         /*
    2448             :          * pool->lock is held and there's no work to process and no need to
    2449             :          * manage, sleep.  Workers are woken up only while holding
    2450             :          * pool->lock or from local cpu, so setting the current state
    2451             :          * before releasing pool->lock is enough to prevent losing any
    2452             :          * event.
    2453             :          */
    2454           9 :         worker_enter_idle(worker);
    2455           9 :         __set_current_state(TASK_IDLE);
    2456           9 :         raw_spin_unlock_irq(&pool->lock);
    2457           9 :         schedule();
    2458           4 :         goto woke_up;
    2459             : }
    2460             : 
    2461             : /**
    2462             :  * rescuer_thread - the rescuer thread function
    2463             :  * @__rescuer: self
    2464             :  *
    2465             :  * Workqueue rescuer thread function.  There's one rescuer for each
    2466             :  * workqueue which has WQ_MEM_RECLAIM set.
    2467             :  *
    2468             :  * Regular work processing on a pool may block trying to create a new
    2469             :  * worker which uses GFP_KERNEL allocation which has slight chance of
    2470             :  * developing into deadlock if some works currently on the same queue
    2471             :  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
    2472             :  * the problem rescuer solves.
    2473             :  *
    2474             :  * When such condition is possible, the pool summons rescuers of all
    2475             :  * workqueues which have works queued on the pool and let them process
    2476             :  * those works so that forward progress can be guaranteed.
    2477             :  *
    2478             :  * This should happen rarely.
    2479             :  *
    2480             :  * Return: 0
    2481             :  */
    2482           3 : static int rescuer_thread(void *__rescuer)
    2483             : {
    2484           3 :         struct worker *rescuer = __rescuer;
    2485           3 :         struct workqueue_struct *wq = rescuer->rescue_wq;
    2486           3 :         struct list_head *scheduled = &rescuer->scheduled;
    2487             :         bool should_stop;
    2488             : 
    2489           3 :         set_user_nice(current, RESCUER_NICE_LEVEL);
    2490             : 
    2491             :         /*
    2492             :          * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
    2493             :          * doesn't participate in concurrency management.
    2494             :          */
    2495           3 :         set_pf_worker(true);
    2496             : repeat:
    2497           3 :         set_current_state(TASK_IDLE);
    2498             : 
    2499             :         /*
    2500             :          * By the time the rescuer is requested to stop, the workqueue
    2501             :          * shouldn't have any work pending, but @wq->maydays may still have
    2502             :          * pwq(s) queued.  This can happen by non-rescuer workers consuming
    2503             :          * all the work items before the rescuer got to them.  Go through
    2504             :          * @wq->maydays processing before acting on should_stop so that the
    2505             :          * list is always empty on exit.
    2506             :          */
    2507           3 :         should_stop = kthread_should_stop();
    2508             : 
    2509             :         /* see whether any pwq is asking for help */
    2510           3 :         raw_spin_lock_irq(&wq_mayday_lock);
    2511             : 
    2512           9 :         while (!list_empty(&wq->maydays)) {
    2513           0 :                 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
    2514             :                                         struct pool_workqueue, mayday_node);
    2515           0 :                 struct worker_pool *pool = pwq->pool;
    2516             :                 struct work_struct *work, *n;
    2517           0 :                 bool first = true;
    2518             : 
    2519           0 :                 __set_current_state(TASK_RUNNING);
    2520           0 :                 list_del_init(&pwq->mayday_node);
    2521             : 
    2522           0 :                 raw_spin_unlock_irq(&wq_mayday_lock);
    2523             : 
    2524           0 :                 worker_attach_to_pool(rescuer, pool);
    2525             : 
    2526           0 :                 raw_spin_lock_irq(&pool->lock);
    2527             : 
    2528             :                 /*
    2529             :                  * Slurp in all works issued via this workqueue and
    2530             :                  * process'em.
    2531             :                  */
    2532           0 :                 WARN_ON_ONCE(!list_empty(scheduled));
    2533           0 :                 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
    2534           0 :                         if (get_work_pwq(work) == pwq) {
    2535           0 :                                 if (first)
    2536           0 :                                         pool->watchdog_ts = jiffies;
    2537             :                                 move_linked_works(work, scheduled, &n);
    2538             :                         }
    2539           0 :                         first = false;
    2540             :                 }
    2541             : 
    2542           0 :                 if (!list_empty(scheduled)) {
    2543           0 :                         process_scheduled_works(rescuer);
    2544             : 
    2545             :                         /*
    2546             :                          * The above execution of rescued work items could
    2547             :                          * have created more to rescue through
    2548             :                          * pwq_activate_first_inactive() or chained
    2549             :                          * queueing.  Let's put @pwq back on mayday list so
    2550             :                          * that such back-to-back work items, which may be
    2551             :                          * being used to relieve memory pressure, don't
    2552             :                          * incur MAYDAY_INTERVAL delay inbetween.
    2553             :                          */
    2554           0 :                         if (pwq->nr_active && need_to_create_worker(pool)) {
    2555           0 :                                 raw_spin_lock(&wq_mayday_lock);
    2556             :                                 /*
    2557             :                                  * Queue iff we aren't racing destruction
    2558             :                                  * and somebody else hasn't queued it already.
    2559             :                                  */
    2560           0 :                                 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
    2561           0 :                                         get_pwq(pwq);
    2562           0 :                                         list_add_tail(&pwq->mayday_node, &wq->maydays);
    2563             :                                 }
    2564           0 :                                 raw_spin_unlock(&wq_mayday_lock);
    2565             :                         }
    2566             :                 }
    2567             : 
    2568             :                 /*
    2569             :                  * Put the reference grabbed by send_mayday().  @pool won't
    2570             :                  * go away while we're still attached to it.
    2571             :                  */
    2572           0 :                 put_pwq(pwq);
    2573             : 
    2574             :                 /*
    2575             :                  * Leave this pool.  If need_more_worker() is %true, notify a
    2576             :                  * regular worker; otherwise, we end up with 0 concurrency
    2577             :                  * and stalling the execution.
    2578             :                  */
    2579           0 :                 if (need_more_worker(pool))
    2580             :                         wake_up_worker(pool);
    2581             : 
    2582           0 :                 raw_spin_unlock_irq(&pool->lock);
    2583             : 
    2584           0 :                 worker_detach_from_pool(rescuer);
    2585             : 
    2586           0 :                 raw_spin_lock_irq(&wq_mayday_lock);
    2587             :         }
    2588             : 
    2589           3 :         raw_spin_unlock_irq(&wq_mayday_lock);
    2590             : 
    2591           3 :         if (should_stop) {
    2592           0 :                 __set_current_state(TASK_RUNNING);
    2593           0 :                 set_pf_worker(false);
    2594           0 :                 return 0;
    2595             :         }
    2596             : 
    2597             :         /* rescuers should never participate in concurrency management */
    2598           3 :         WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
    2599           3 :         schedule();
    2600           0 :         goto repeat;
    2601             : }
    2602             : 
    2603             : /**
    2604             :  * check_flush_dependency - check for flush dependency sanity
    2605             :  * @target_wq: workqueue being flushed
    2606             :  * @target_work: work item being flushed (NULL for workqueue flushes)
    2607             :  *
    2608             :  * %current is trying to flush the whole @target_wq or @target_work on it.
    2609             :  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
    2610             :  * reclaiming memory or running on a workqueue which doesn't have
    2611             :  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
    2612             :  * a deadlock.
    2613             :  */
    2614           2 : static void check_flush_dependency(struct workqueue_struct *target_wq,
    2615             :                                    struct work_struct *target_work)
    2616             : {
    2617           2 :         work_func_t target_func = target_work ? target_work->func : NULL;
    2618             :         struct worker *worker;
    2619             : 
    2620           2 :         if (target_wq->flags & WQ_MEM_RECLAIM)
    2621             :                 return;
    2622             : 
    2623           2 :         worker = current_wq_worker();
    2624             : 
    2625           2 :         WARN_ONCE(current->flags & PF_MEMALLOC,
    2626             :                   "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
    2627             :                   current->pid, current->comm, target_wq->name, target_func);
    2628           2 :         WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
    2629             :                               (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
    2630             :                   "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
    2631             :                   worker->current_pwq->wq->name, worker->current_func,
    2632             :                   target_wq->name, target_func);
    2633             : }
    2634             : 
    2635             : struct wq_barrier {
    2636             :         struct work_struct      work;
    2637             :         struct completion       done;
    2638             :         struct task_struct      *task;  /* purely informational */
    2639             : };
    2640             : 
    2641           2 : static void wq_barrier_func(struct work_struct *work)
    2642             : {
    2643           2 :         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
    2644           2 :         complete(&barr->done);
    2645           2 : }
    2646             : 
    2647             : /**
    2648             :  * insert_wq_barrier - insert a barrier work
    2649             :  * @pwq: pwq to insert barrier into
    2650             :  * @barr: wq_barrier to insert
    2651             :  * @target: target work to attach @barr to
    2652             :  * @worker: worker currently executing @target, NULL if @target is not executing
    2653             :  *
    2654             :  * @barr is linked to @target such that @barr is completed only after
    2655             :  * @target finishes execution.  Please note that the ordering
    2656             :  * guarantee is observed only with respect to @target and on the local
    2657             :  * cpu.
    2658             :  *
    2659             :  * Currently, a queued barrier can't be canceled.  This is because
    2660             :  * try_to_grab_pending() can't determine whether the work to be
    2661             :  * grabbed is at the head of the queue and thus can't clear LINKED
    2662             :  * flag of the previous work while there must be a valid next work
    2663             :  * after a work with LINKED flag set.
    2664             :  *
    2665             :  * Note that when @worker is non-NULL, @target may be modified
    2666             :  * underneath us, so we can't reliably determine pwq from @target.
    2667             :  *
    2668             :  * CONTEXT:
    2669             :  * raw_spin_lock_irq(pool->lock).
    2670             :  */
    2671           2 : static void insert_wq_barrier(struct pool_workqueue *pwq,
    2672             :                               struct wq_barrier *barr,
    2673             :                               struct work_struct *target, struct worker *worker)
    2674             : {
    2675           2 :         unsigned int work_flags = 0;
    2676             :         unsigned int work_color;
    2677             :         struct list_head *head;
    2678             : 
    2679             :         /*
    2680             :          * debugobject calls are safe here even with pool->lock locked
    2681             :          * as we know for sure that this will not trigger any of the
    2682             :          * checks and call back into the fixup functions where we
    2683             :          * might deadlock.
    2684             :          */
    2685           4 :         INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
    2686           4 :         __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
    2687             : 
    2688           4 :         init_completion_map(&barr->done, &target->lockdep_map);
    2689             : 
    2690           2 :         barr->task = current;
    2691             : 
    2692             :         /* The barrier work item does not participate in pwq->nr_active. */
    2693           2 :         work_flags |= WORK_STRUCT_INACTIVE;
    2694             : 
    2695             :         /*
    2696             :          * If @target is currently being executed, schedule the
    2697             :          * barrier to the worker; otherwise, put it after @target.
    2698             :          */
    2699           2 :         if (worker) {
    2700           0 :                 head = worker->scheduled.next;
    2701           0 :                 work_color = worker->current_color;
    2702             :         } else {
    2703           2 :                 unsigned long *bits = work_data_bits(target);
    2704             : 
    2705           2 :                 head = target->entry.next;
    2706             :                 /* there can already be other linked works, inherit and set */
    2707           2 :                 work_flags |= *bits & WORK_STRUCT_LINKED;
    2708           4 :                 work_color = get_work_color(*bits);
    2709             :                 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
    2710             :         }
    2711             : 
    2712           2 :         pwq->nr_in_flight[work_color]++;
    2713           4 :         work_flags |= work_color_to_flags(work_color);
    2714             : 
    2715           2 :         debug_work_activate(&barr->work);
    2716           2 :         insert_work(pwq, &barr->work, head, work_flags);
    2717           2 : }
    2718             : 
    2719             : /**
    2720             :  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
    2721             :  * @wq: workqueue being flushed
    2722             :  * @flush_color: new flush color, < 0 for no-op
    2723             :  * @work_color: new work color, < 0 for no-op
    2724             :  *
    2725             :  * Prepare pwqs for workqueue flushing.
    2726             :  *
    2727             :  * If @flush_color is non-negative, flush_color on all pwqs should be
    2728             :  * -1.  If no pwq has in-flight commands at the specified color, all
    2729             :  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
    2730             :  * has in flight commands, its pwq->flush_color is set to
    2731             :  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
    2732             :  * wakeup logic is armed and %true is returned.
    2733             :  *
    2734             :  * The caller should have initialized @wq->first_flusher prior to
    2735             :  * calling this function with non-negative @flush_color.  If
    2736             :  * @flush_color is negative, no flush color update is done and %false
    2737             :  * is returned.
    2738             :  *
    2739             :  * If @work_color is non-negative, all pwqs should have the same
    2740             :  * work_color which is previous to @work_color and all will be
    2741             :  * advanced to @work_color.
    2742             :  *
    2743             :  * CONTEXT:
    2744             :  * mutex_lock(wq->mutex).
    2745             :  *
    2746             :  * Return:
    2747             :  * %true if @flush_color >= 0 and there's something to flush.  %false
    2748             :  * otherwise.
    2749             :  */
    2750           0 : static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
    2751             :                                       int flush_color, int work_color)
    2752             : {
    2753           0 :         bool wait = false;
    2754             :         struct pool_workqueue *pwq;
    2755             : 
    2756           0 :         if (flush_color >= 0) {
    2757           0 :                 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
    2758           0 :                 atomic_set(&wq->nr_pwqs_to_flush, 1);
    2759             :         }
    2760             : 
    2761           0 :         for_each_pwq(pwq, wq) {
    2762           0 :                 struct worker_pool *pool = pwq->pool;
    2763             : 
    2764           0 :                 raw_spin_lock_irq(&pool->lock);
    2765             : 
    2766           0 :                 if (flush_color >= 0) {
    2767           0 :                         WARN_ON_ONCE(pwq->flush_color != -1);
    2768             : 
    2769           0 :                         if (pwq->nr_in_flight[flush_color]) {
    2770           0 :                                 pwq->flush_color = flush_color;
    2771           0 :                                 atomic_inc(&wq->nr_pwqs_to_flush);
    2772           0 :                                 wait = true;
    2773             :                         }
    2774             :                 }
    2775             : 
    2776           0 :                 if (work_color >= 0) {
    2777           0 :                         WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
    2778           0 :                         pwq->work_color = work_color;
    2779             :                 }
    2780             : 
    2781           0 :                 raw_spin_unlock_irq(&pool->lock);
    2782             :         }
    2783             : 
    2784           0 :         if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
    2785           0 :                 complete(&wq->first_flusher->done);
    2786             : 
    2787           0 :         return wait;
    2788             : }
    2789             : 
    2790             : /**
    2791             :  * flush_workqueue - ensure that any scheduled work has run to completion.
    2792             :  * @wq: workqueue to flush
    2793             :  *
    2794             :  * This function sleeps until all work items which were queued on entry
    2795             :  * have finished execution, but it is not livelocked by new incoming ones.
    2796             :  */
    2797           0 : void flush_workqueue(struct workqueue_struct *wq)
    2798             : {
    2799           0 :         struct wq_flusher this_flusher = {
    2800             :                 .list = LIST_HEAD_INIT(this_flusher.list),
    2801             :                 .flush_color = -1,
    2802           0 :                 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
    2803             :         };
    2804             :         int next_color;
    2805             : 
    2806           0 :         if (WARN_ON(!wq_online))
    2807           0 :                 return;
    2808             : 
    2809             :         lock_map_acquire(&wq->lockdep_map);
    2810             :         lock_map_release(&wq->lockdep_map);
    2811             : 
    2812           0 :         mutex_lock(&wq->mutex);
    2813             : 
    2814             :         /*
    2815             :          * Start-to-wait phase
    2816             :          */
    2817           0 :         next_color = work_next_color(wq->work_color);
    2818             : 
    2819           0 :         if (next_color != wq->flush_color) {
    2820             :                 /*
    2821             :                  * Color space is not full.  The current work_color
    2822             :                  * becomes our flush_color and work_color is advanced
    2823             :                  * by one.
    2824             :                  */
    2825           0 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
    2826           0 :                 this_flusher.flush_color = wq->work_color;
    2827           0 :                 wq->work_color = next_color;
    2828             : 
    2829           0 :                 if (!wq->first_flusher) {
    2830             :                         /* no flush in progress, become the first flusher */
    2831           0 :                         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    2832             : 
    2833           0 :                         wq->first_flusher = &this_flusher;
    2834             : 
    2835           0 :                         if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
    2836             :                                                        wq->work_color)) {
    2837             :                                 /* nothing to flush, done */
    2838           0 :                                 wq->flush_color = next_color;
    2839           0 :                                 wq->first_flusher = NULL;
    2840           0 :                                 goto out_unlock;
    2841             :                         }
    2842             :                 } else {
    2843             :                         /* wait in queue */
    2844           0 :                         WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
    2845           0 :                         list_add_tail(&this_flusher.list, &wq->flusher_queue);
    2846           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    2847             :                 }
    2848             :         } else {
    2849             :                 /*
    2850             :                  * Oops, color space is full, wait on overflow queue.
    2851             :                  * The next flush completion will assign us
    2852             :                  * flush_color and transfer to flusher_queue.
    2853             :                  */
    2854           0 :                 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
    2855             :         }
    2856             : 
    2857           0 :         check_flush_dependency(wq, NULL);
    2858             : 
    2859           0 :         mutex_unlock(&wq->mutex);
    2860             : 
    2861           0 :         wait_for_completion(&this_flusher.done);
    2862             : 
    2863             :         /*
    2864             :          * Wake-up-and-cascade phase
    2865             :          *
    2866             :          * First flushers are responsible for cascading flushes and
    2867             :          * handling overflow.  Non-first flushers can simply return.
    2868             :          */
    2869           0 :         if (READ_ONCE(wq->first_flusher) != &this_flusher)
    2870             :                 return;
    2871             : 
    2872           0 :         mutex_lock(&wq->mutex);
    2873             : 
    2874             :         /* we might have raced, check again with mutex held */
    2875           0 :         if (wq->first_flusher != &this_flusher)
    2876             :                 goto out_unlock;
    2877             : 
    2878           0 :         WRITE_ONCE(wq->first_flusher, NULL);
    2879             : 
    2880           0 :         WARN_ON_ONCE(!list_empty(&this_flusher.list));
    2881           0 :         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    2882             : 
    2883           0 :         while (true) {
    2884             :                 struct wq_flusher *next, *tmp;
    2885             : 
    2886             :                 /* complete all the flushers sharing the current flush color */
    2887           0 :                 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
    2888           0 :                         if (next->flush_color != wq->flush_color)
    2889             :                                 break;
    2890           0 :                         list_del_init(&next->list);
    2891           0 :                         complete(&next->done);
    2892             :                 }
    2893             : 
    2894           0 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
    2895             :                              wq->flush_color != work_next_color(wq->work_color));
    2896             : 
    2897             :                 /* this flush_color is finished, advance by one */
    2898           0 :                 wq->flush_color = work_next_color(wq->flush_color);
    2899             : 
    2900             :                 /* one color has been freed, handle overflow queue */
    2901           0 :                 if (!list_empty(&wq->flusher_overflow)) {
    2902             :                         /*
    2903             :                          * Assign the same color to all overflowed
    2904             :                          * flushers, advance work_color and append to
    2905             :                          * flusher_queue.  This is the start-to-wait
    2906             :                          * phase for these overflowed flushers.
    2907             :                          */
    2908           0 :                         list_for_each_entry(tmp, &wq->flusher_overflow, list)
    2909           0 :                                 tmp->flush_color = wq->work_color;
    2910             : 
    2911           0 :                         wq->work_color = work_next_color(wq->work_color);
    2912             : 
    2913           0 :                         list_splice_tail_init(&wq->flusher_overflow,
    2914             :                                               &wq->flusher_queue);
    2915           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    2916             :                 }
    2917             : 
    2918           0 :                 if (list_empty(&wq->flusher_queue)) {
    2919           0 :                         WARN_ON_ONCE(wq->flush_color != wq->work_color);
    2920             :                         break;
    2921             :                 }
    2922             : 
    2923             :                 /*
    2924             :                  * Need to flush more colors.  Make the next flusher
    2925             :                  * the new first flusher and arm pwqs.
    2926             :                  */
    2927           0 :                 WARN_ON_ONCE(wq->flush_color == wq->work_color);
    2928           0 :                 WARN_ON_ONCE(wq->flush_color != next->flush_color);
    2929             : 
    2930           0 :                 list_del_init(&next->list);
    2931           0 :                 wq->first_flusher = next;
    2932             : 
    2933           0 :                 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
    2934             :                         break;
    2935             : 
    2936             :                 /*
    2937             :                  * Meh... this color is already done, clear first
    2938             :                  * flusher and repeat cascading.
    2939             :                  */
    2940           0 :                 wq->first_flusher = NULL;
    2941             :         }
    2942             : 
    2943             : out_unlock:
    2944           0 :         mutex_unlock(&wq->mutex);
    2945             : }
    2946             : EXPORT_SYMBOL(flush_workqueue);
    2947             : 
    2948             : /**
    2949             :  * drain_workqueue - drain a workqueue
    2950             :  * @wq: workqueue to drain
    2951             :  *
    2952             :  * Wait until the workqueue becomes empty.  While draining is in progress,
    2953             :  * only chain queueing is allowed.  IOW, only currently pending or running
    2954             :  * work items on @wq can queue further work items on it.  @wq is flushed
    2955             :  * repeatedly until it becomes empty.  The number of flushing is determined
    2956             :  * by the depth of chaining and should be relatively short.  Whine if it
    2957             :  * takes too long.
    2958             :  */
    2959           0 : void drain_workqueue(struct workqueue_struct *wq)
    2960             : {
    2961           0 :         unsigned int flush_cnt = 0;
    2962             :         struct pool_workqueue *pwq;
    2963             : 
    2964             :         /*
    2965             :          * __queue_work() needs to test whether there are drainers, is much
    2966             :          * hotter than drain_workqueue() and already looks at @wq->flags.
    2967             :          * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
    2968             :          */
    2969           0 :         mutex_lock(&wq->mutex);
    2970           0 :         if (!wq->nr_drainers++)
    2971           0 :                 wq->flags |= __WQ_DRAINING;
    2972           0 :         mutex_unlock(&wq->mutex);
    2973             : reflush:
    2974           0 :         flush_workqueue(wq);
    2975             : 
    2976           0 :         mutex_lock(&wq->mutex);
    2977             : 
    2978           0 :         for_each_pwq(pwq, wq) {
    2979             :                 bool drained;
    2980             : 
    2981           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    2982           0 :                 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
    2983           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    2984             : 
    2985           0 :                 if (drained)
    2986           0 :                         continue;
    2987             : 
    2988           0 :                 if (++flush_cnt == 10 ||
    2989           0 :                     (flush_cnt % 100 == 0 && flush_cnt <= 1000))
    2990           0 :                         pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
    2991             :                                 wq->name, __func__, flush_cnt);
    2992             : 
    2993           0 :                 mutex_unlock(&wq->mutex);
    2994           0 :                 goto reflush;
    2995             :         }
    2996             : 
    2997           0 :         if (!--wq->nr_drainers)
    2998           0 :                 wq->flags &= ~__WQ_DRAINING;
    2999           0 :         mutex_unlock(&wq->mutex);
    3000           0 : }
    3001             : EXPORT_SYMBOL_GPL(drain_workqueue);
    3002             : 
    3003           4 : static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
    3004             :                              bool from_cancel)
    3005             : {
    3006           4 :         struct worker *worker = NULL;
    3007             :         struct worker_pool *pool;
    3008             :         struct pool_workqueue *pwq;
    3009             : 
    3010             :         might_sleep();
    3011             : 
    3012             :         rcu_read_lock();
    3013           4 :         pool = get_work_pool(work);
    3014           4 :         if (!pool) {
    3015             :                 rcu_read_unlock();
    3016           0 :                 return false;
    3017             :         }
    3018             : 
    3019           4 :         raw_spin_lock_irq(&pool->lock);
    3020             :         /* see the comment in try_to_grab_pending() with the same code */
    3021           4 :         pwq = get_work_pwq(work);
    3022           4 :         if (pwq) {
    3023           2 :                 if (unlikely(pwq->pool != pool))
    3024             :                         goto already_gone;
    3025             :         } else {
    3026           2 :                 worker = find_worker_executing_work(pool, work);
    3027           2 :                 if (!worker)
    3028             :                         goto already_gone;
    3029           0 :                 pwq = worker->current_pwq;
    3030             :         }
    3031             : 
    3032           2 :         check_flush_dependency(pwq->wq, work);
    3033             : 
    3034           2 :         insert_wq_barrier(pwq, barr, work, worker);
    3035           2 :         raw_spin_unlock_irq(&pool->lock);
    3036             : 
    3037             :         /*
    3038             :          * Force a lock recursion deadlock when using flush_work() inside a
    3039             :          * single-threaded or rescuer equipped workqueue.
    3040             :          *
    3041             :          * For single threaded workqueues the deadlock happens when the work
    3042             :          * is after the work issuing the flush_work(). For rescuer equipped
    3043             :          * workqueues the deadlock happens when the rescuer stalls, blocking
    3044             :          * forward progress.
    3045             :          */
    3046             :         if (!from_cancel &&
    3047             :             (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
    3048             :                 lock_map_acquire(&pwq->wq->lockdep_map);
    3049             :                 lock_map_release(&pwq->wq->lockdep_map);
    3050             :         }
    3051             :         rcu_read_unlock();
    3052           2 :         return true;
    3053             : already_gone:
    3054           2 :         raw_spin_unlock_irq(&pool->lock);
    3055             :         rcu_read_unlock();
    3056           2 :         return false;
    3057             : }
    3058             : 
    3059           4 : static bool __flush_work(struct work_struct *work, bool from_cancel)
    3060             : {
    3061             :         struct wq_barrier barr;
    3062             : 
    3063           4 :         if (WARN_ON(!wq_online))
    3064             :                 return false;
    3065             : 
    3066           4 :         if (WARN_ON(!work->func))
    3067             :                 return false;
    3068             : 
    3069             :         if (!from_cancel) {
    3070             :                 lock_map_acquire(&work->lockdep_map);
    3071             :                 lock_map_release(&work->lockdep_map);
    3072             :         }
    3073             : 
    3074           4 :         if (start_flush_work(work, &barr, from_cancel)) {
    3075           2 :                 wait_for_completion(&barr.done);
    3076           2 :                 destroy_work_on_stack(&barr.work);
    3077           2 :                 return true;
    3078             :         } else {
    3079             :                 return false;
    3080             :         }
    3081             : }
    3082             : 
    3083             : /**
    3084             :  * flush_work - wait for a work to finish executing the last queueing instance
    3085             :  * @work: the work to flush
    3086             :  *
    3087             :  * Wait until @work has finished execution.  @work is guaranteed to be idle
    3088             :  * on return if it hasn't been requeued since flush started.
    3089             :  *
    3090             :  * Return:
    3091             :  * %true if flush_work() waited for the work to finish execution,
    3092             :  * %false if it was already idle.
    3093             :  */
    3094           4 : bool flush_work(struct work_struct *work)
    3095             : {
    3096           4 :         return __flush_work(work, false);
    3097             : }
    3098             : EXPORT_SYMBOL_GPL(flush_work);
    3099             : 
    3100             : struct cwt_wait {
    3101             :         wait_queue_entry_t              wait;
    3102             :         struct work_struct      *work;
    3103             : };
    3104             : 
    3105           0 : static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
    3106             : {
    3107           0 :         struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
    3108             : 
    3109           0 :         if (cwait->work != key)
    3110             :                 return 0;
    3111           0 :         return autoremove_wake_function(wait, mode, sync, key);
    3112             : }
    3113             : 
    3114           0 : static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
    3115             : {
    3116             :         static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
    3117             :         unsigned long flags;
    3118             :         int ret;
    3119             : 
    3120             :         do {
    3121           0 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    3122             :                 /*
    3123             :                  * If someone else is already canceling, wait for it to
    3124             :                  * finish.  flush_work() doesn't work for PREEMPT_NONE
    3125             :                  * because we may get scheduled between @work's completion
    3126             :                  * and the other canceling task resuming and clearing
    3127             :                  * CANCELING - flush_work() will return false immediately
    3128             :                  * as @work is no longer busy, try_to_grab_pending() will
    3129             :                  * return -ENOENT as @work is still being canceled and the
    3130             :                  * other canceling task won't be able to clear CANCELING as
    3131             :                  * we're hogging the CPU.
    3132             :                  *
    3133             :                  * Let's wait for completion using a waitqueue.  As this
    3134             :                  * may lead to the thundering herd problem, use a custom
    3135             :                  * wake function which matches @work along with exclusive
    3136             :                  * wait and wakeup.
    3137             :                  */
    3138           0 :                 if (unlikely(ret == -ENOENT)) {
    3139             :                         struct cwt_wait cwait;
    3140             : 
    3141           0 :                         init_wait(&cwait.wait);
    3142           0 :                         cwait.wait.func = cwt_wakefn;
    3143           0 :                         cwait.work = work;
    3144             : 
    3145           0 :                         prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
    3146             :                                                   TASK_UNINTERRUPTIBLE);
    3147           0 :                         if (work_is_canceling(work))
    3148           0 :                                 schedule();
    3149           0 :                         finish_wait(&cancel_waitq, &cwait.wait);
    3150             :                 }
    3151           0 :         } while (unlikely(ret < 0));
    3152             : 
    3153             :         /* tell other tasks trying to grab @work to back off */
    3154           0 :         mark_work_canceling(work);
    3155           0 :         local_irq_restore(flags);
    3156             : 
    3157             :         /*
    3158             :          * This allows canceling during early boot.  We know that @work
    3159             :          * isn't executing.
    3160             :          */
    3161           0 :         if (wq_online)
    3162           0 :                 __flush_work(work, true);
    3163             : 
    3164           0 :         clear_work_data(work);
    3165             : 
    3166             :         /*
    3167             :          * Paired with prepare_to_wait() above so that either
    3168             :          * waitqueue_active() is visible here or !work_is_canceling() is
    3169             :          * visible there.
    3170             :          */
    3171           0 :         smp_mb();
    3172           0 :         if (waitqueue_active(&cancel_waitq))
    3173           0 :                 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
    3174             : 
    3175           0 :         return ret;
    3176             : }
    3177             : 
    3178             : /**
    3179             :  * cancel_work_sync - cancel a work and wait for it to finish
    3180             :  * @work: the work to cancel
    3181             :  *
    3182             :  * Cancel @work and wait for its execution to finish.  This function
    3183             :  * can be used even if the work re-queues itself or migrates to
    3184             :  * another workqueue.  On return from this function, @work is
    3185             :  * guaranteed to be not pending or executing on any CPU.
    3186             :  *
    3187             :  * cancel_work_sync(&delayed_work->work) must not be used for
    3188             :  * delayed_work's.  Use cancel_delayed_work_sync() instead.
    3189             :  *
    3190             :  * The caller must ensure that the workqueue on which @work was last
    3191             :  * queued can't be destroyed before this function returns.
    3192             :  *
    3193             :  * Return:
    3194             :  * %true if @work was pending, %false otherwise.
    3195             :  */
    3196           0 : bool cancel_work_sync(struct work_struct *work)
    3197             : {
    3198           0 :         return __cancel_work_timer(work, false);
    3199             : }
    3200             : EXPORT_SYMBOL_GPL(cancel_work_sync);
    3201             : 
    3202             : /**
    3203             :  * flush_delayed_work - wait for a dwork to finish executing the last queueing
    3204             :  * @dwork: the delayed work to flush
    3205             :  *
    3206             :  * Delayed timer is cancelled and the pending work is queued for
    3207             :  * immediate execution.  Like flush_work(), this function only
    3208             :  * considers the last queueing instance of @dwork.
    3209             :  *
    3210             :  * Return:
    3211             :  * %true if flush_work() waited for the work to finish execution,
    3212             :  * %false if it was already idle.
    3213             :  */
    3214           0 : bool flush_delayed_work(struct delayed_work *dwork)
    3215             : {
    3216             :         local_irq_disable();
    3217           0 :         if (del_timer_sync(&dwork->timer))
    3218           0 :                 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    3219             :         local_irq_enable();
    3220           0 :         return flush_work(&dwork->work);
    3221             : }
    3222             : EXPORT_SYMBOL(flush_delayed_work);
    3223             : 
    3224             : /**
    3225             :  * flush_rcu_work - wait for a rwork to finish executing the last queueing
    3226             :  * @rwork: the rcu work to flush
    3227             :  *
    3228             :  * Return:
    3229             :  * %true if flush_rcu_work() waited for the work to finish execution,
    3230             :  * %false if it was already idle.
    3231             :  */
    3232           0 : bool flush_rcu_work(struct rcu_work *rwork)
    3233             : {
    3234           0 :         if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
    3235           0 :                 rcu_barrier();
    3236           0 :                 flush_work(&rwork->work);
    3237           0 :                 return true;
    3238             :         } else {
    3239           0 :                 return flush_work(&rwork->work);
    3240             :         }
    3241             : }
    3242             : EXPORT_SYMBOL(flush_rcu_work);
    3243             : 
    3244           0 : static bool __cancel_work(struct work_struct *work, bool is_dwork)
    3245             : {
    3246             :         unsigned long flags;
    3247             :         int ret;
    3248             : 
    3249             :         do {
    3250           0 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    3251           0 :         } while (unlikely(ret == -EAGAIN));
    3252             : 
    3253           0 :         if (unlikely(ret < 0))
    3254             :                 return false;
    3255             : 
    3256           0 :         set_work_pool_and_clear_pending(work, get_work_pool_id(work));
    3257           0 :         local_irq_restore(flags);
    3258           0 :         return ret;
    3259             : }
    3260             : 
    3261             : /*
    3262             :  * See cancel_delayed_work()
    3263             :  */
    3264           0 : bool cancel_work(struct work_struct *work)
    3265             : {
    3266           0 :         return __cancel_work(work, false);
    3267             : }
    3268             : EXPORT_SYMBOL(cancel_work);
    3269             : 
    3270             : /**
    3271             :  * cancel_delayed_work - cancel a delayed work
    3272             :  * @dwork: delayed_work to cancel
    3273             :  *
    3274             :  * Kill off a pending delayed_work.
    3275             :  *
    3276             :  * Return: %true if @dwork was pending and canceled; %false if it wasn't
    3277             :  * pending.
    3278             :  *
    3279             :  * Note:
    3280             :  * The work callback function may still be running on return, unless
    3281             :  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
    3282             :  * use cancel_delayed_work_sync() to wait on it.
    3283             :  *
    3284             :  * This function is safe to call from any context including IRQ handler.
    3285             :  */
    3286           0 : bool cancel_delayed_work(struct delayed_work *dwork)
    3287             : {
    3288           0 :         return __cancel_work(&dwork->work, true);
    3289             : }
    3290             : EXPORT_SYMBOL(cancel_delayed_work);
    3291             : 
    3292             : /**
    3293             :  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
    3294             :  * @dwork: the delayed work cancel
    3295             :  *
    3296             :  * This is cancel_work_sync() for delayed works.
    3297             :  *
    3298             :  * Return:
    3299             :  * %true if @dwork was pending, %false otherwise.
    3300             :  */
    3301           0 : bool cancel_delayed_work_sync(struct delayed_work *dwork)
    3302             : {
    3303           0 :         return __cancel_work_timer(&dwork->work, true);
    3304             : }
    3305             : EXPORT_SYMBOL(cancel_delayed_work_sync);
    3306             : 
    3307             : /**
    3308             :  * schedule_on_each_cpu - execute a function synchronously on each online CPU
    3309             :  * @func: the function to call
    3310             :  *
    3311             :  * schedule_on_each_cpu() executes @func on each online CPU using the
    3312             :  * system workqueue and blocks until all CPUs have completed.
    3313             :  * schedule_on_each_cpu() is very slow.
    3314             :  *
    3315             :  * Return:
    3316             :  * 0 on success, -errno on failure.
    3317             :  */
    3318           0 : int schedule_on_each_cpu(work_func_t func)
    3319             : {
    3320             :         int cpu;
    3321             :         struct work_struct __percpu *works;
    3322             : 
    3323           0 :         works = alloc_percpu(struct work_struct);
    3324           0 :         if (!works)
    3325             :                 return -ENOMEM;
    3326             : 
    3327             :         cpus_read_lock();
    3328             : 
    3329           0 :         for_each_online_cpu(cpu) {
    3330           0 :                 struct work_struct *work = per_cpu_ptr(works, cpu);
    3331             : 
    3332           0 :                 INIT_WORK(work, func);
    3333           0 :                 schedule_work_on(cpu, work);
    3334             :         }
    3335             : 
    3336           0 :         for_each_online_cpu(cpu)
    3337           0 :                 flush_work(per_cpu_ptr(works, cpu));
    3338             : 
    3339             :         cpus_read_unlock();
    3340           0 :         free_percpu(works);
    3341           0 :         return 0;
    3342             : }
    3343             : 
    3344             : /**
    3345             :  * execute_in_process_context - reliably execute the routine with user context
    3346             :  * @fn:         the function to execute
    3347             :  * @ew:         guaranteed storage for the execute work structure (must
    3348             :  *              be available when the work executes)
    3349             :  *
    3350             :  * Executes the function immediately if process context is available,
    3351             :  * otherwise schedules the function for delayed execution.
    3352             :  *
    3353             :  * Return:      0 - function was executed
    3354             :  *              1 - function was scheduled for execution
    3355             :  */
    3356           0 : int execute_in_process_context(work_func_t fn, struct execute_work *ew)
    3357             : {
    3358           0 :         if (!in_interrupt()) {
    3359           0 :                 fn(&ew->work);
    3360           0 :                 return 0;
    3361             :         }
    3362             : 
    3363           0 :         INIT_WORK(&ew->work, fn);
    3364           0 :         schedule_work(&ew->work);
    3365             : 
    3366           0 :         return 1;
    3367             : }
    3368             : EXPORT_SYMBOL_GPL(execute_in_process_context);
    3369             : 
    3370             : /**
    3371             :  * free_workqueue_attrs - free a workqueue_attrs
    3372             :  * @attrs: workqueue_attrs to free
    3373             :  *
    3374             :  * Undo alloc_workqueue_attrs().
    3375             :  */
    3376           0 : void free_workqueue_attrs(struct workqueue_attrs *attrs)
    3377             : {
    3378           3 :         if (attrs) {
    3379           6 :                 free_cpumask_var(attrs->cpumask);
    3380           6 :                 kfree(attrs);
    3381             :         }
    3382           0 : }
    3383             : 
    3384             : /**
    3385             :  * alloc_workqueue_attrs - allocate a workqueue_attrs
    3386             :  *
    3387             :  * Allocate a new workqueue_attrs, initialize with default settings and
    3388             :  * return it.
    3389             :  *
    3390             :  * Return: The allocated new workqueue_attr on success. %NULL on failure.
    3391             :  */
    3392          16 : struct workqueue_attrs *alloc_workqueue_attrs(void)
    3393             : {
    3394             :         struct workqueue_attrs *attrs;
    3395             : 
    3396          16 :         attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
    3397          16 :         if (!attrs)
    3398             :                 goto fail;
    3399          16 :         if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
    3400             :                 goto fail;
    3401             : 
    3402          32 :         cpumask_copy(attrs->cpumask, cpu_possible_mask);
    3403          16 :         return attrs;
    3404             : fail:
    3405             :         free_workqueue_attrs(attrs);
    3406             :         return NULL;
    3407             : }
    3408             : 
    3409             : static void copy_workqueue_attrs(struct workqueue_attrs *to,
    3410             :                                  const struct workqueue_attrs *from)
    3411             : {
    3412          13 :         to->nice = from->nice;
    3413          26 :         cpumask_copy(to->cpumask, from->cpumask);
    3414             :         /*
    3415             :          * Unlike hash and equality test, this function doesn't ignore
    3416             :          * ->no_numa as it is used for both pool and wq attrs.  Instead,
    3417             :          * get_unbound_pool() explicitly clears ->no_numa after copying.
    3418             :          */
    3419          13 :         to->no_numa = from->no_numa;
    3420             : }
    3421             : 
    3422             : /* hash value of the content of @attr */
    3423           3 : static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
    3424             : {
    3425           3 :         u32 hash = 0;
    3426             : 
    3427           6 :         hash = jhash_1word(attrs->nice, hash);
    3428           3 :         hash = jhash(cpumask_bits(attrs->cpumask),
    3429             :                      BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
    3430           3 :         return hash;
    3431             : }
    3432             : 
    3433             : /* content equality test */
    3434             : static bool wqattrs_equal(const struct workqueue_attrs *a,
    3435             :                           const struct workqueue_attrs *b)
    3436             : {
    3437           2 :         if (a->nice != b->nice)
    3438             :                 return false;
    3439           4 :         if (!cpumask_equal(a->cpumask, b->cpumask))
    3440             :                 return false;
    3441             :         return true;
    3442             : }
    3443             : 
    3444             : /**
    3445             :  * init_worker_pool - initialize a newly zalloc'd worker_pool
    3446             :  * @pool: worker_pool to initialize
    3447             :  *
    3448             :  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
    3449             :  *
    3450             :  * Return: 0 on success, -errno on failure.  Even on failure, all fields
    3451             :  * inside @pool proper are initialized and put_unbound_pool() can be called
    3452             :  * on @pool safely to release it.
    3453             :  */
    3454           3 : static int init_worker_pool(struct worker_pool *pool)
    3455             : {
    3456             :         raw_spin_lock_init(&pool->lock);
    3457           3 :         pool->id = -1;
    3458           3 :         pool->cpu = -1;
    3459           3 :         pool->node = NUMA_NO_NODE;
    3460           3 :         pool->flags |= POOL_DISASSOCIATED;
    3461           3 :         pool->watchdog_ts = jiffies;
    3462           6 :         INIT_LIST_HEAD(&pool->worklist);
    3463           6 :         INIT_LIST_HEAD(&pool->idle_list);
    3464           6 :         hash_init(pool->busy_hash);
    3465             : 
    3466           3 :         timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
    3467             : 
    3468           3 :         timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
    3469             : 
    3470           6 :         INIT_LIST_HEAD(&pool->workers);
    3471             : 
    3472           6 :         ida_init(&pool->worker_ida);
    3473           6 :         INIT_HLIST_NODE(&pool->hash_node);
    3474           3 :         pool->refcnt = 1;
    3475             : 
    3476             :         /* shouldn't fail above this point */
    3477           3 :         pool->attrs = alloc_workqueue_attrs();
    3478           3 :         if (!pool->attrs)
    3479             :                 return -ENOMEM;
    3480           3 :         return 0;
    3481             : }
    3482             : 
    3483             : #ifdef CONFIG_LOCKDEP
    3484             : static void wq_init_lockdep(struct workqueue_struct *wq)
    3485             : {
    3486             :         char *lock_name;
    3487             : 
    3488             :         lockdep_register_key(&wq->key);
    3489             :         lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
    3490             :         if (!lock_name)
    3491             :                 lock_name = wq->name;
    3492             : 
    3493             :         wq->lock_name = lock_name;
    3494             :         lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
    3495             : }
    3496             : 
    3497             : static void wq_unregister_lockdep(struct workqueue_struct *wq)
    3498             : {
    3499             :         lockdep_unregister_key(&wq->key);
    3500             : }
    3501             : 
    3502             : static void wq_free_lockdep(struct workqueue_struct *wq)
    3503             : {
    3504             :         if (wq->lock_name != wq->name)
    3505             :                 kfree(wq->lock_name);
    3506             : }
    3507             : #else
    3508             : static void wq_init_lockdep(struct workqueue_struct *wq)
    3509             : {
    3510             : }
    3511             : 
    3512             : static void wq_unregister_lockdep(struct workqueue_struct *wq)
    3513             : {
    3514             : }
    3515             : 
    3516             : static void wq_free_lockdep(struct workqueue_struct *wq)
    3517             : {
    3518             : }
    3519             : #endif
    3520             : 
    3521           0 : static void rcu_free_wq(struct rcu_head *rcu)
    3522             : {
    3523           0 :         struct workqueue_struct *wq =
    3524           0 :                 container_of(rcu, struct workqueue_struct, rcu);
    3525             : 
    3526           0 :         wq_free_lockdep(wq);
    3527             : 
    3528           0 :         if (!(wq->flags & WQ_UNBOUND))
    3529           0 :                 free_percpu(wq->cpu_pwqs);
    3530             :         else
    3531           0 :                 free_workqueue_attrs(wq->unbound_attrs);
    3532             : 
    3533           0 :         kfree(wq);
    3534           0 : }
    3535             : 
    3536           0 : static void rcu_free_pool(struct rcu_head *rcu)
    3537             : {
    3538           0 :         struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
    3539             : 
    3540           0 :         ida_destroy(&pool->worker_ida);
    3541           0 :         free_workqueue_attrs(pool->attrs);
    3542           0 :         kfree(pool);
    3543           0 : }
    3544             : 
    3545             : /* This returns with the lock held on success (pool manager is inactive). */
    3546             : static bool wq_manager_inactive(struct worker_pool *pool)
    3547             : {
    3548           0 :         raw_spin_lock_irq(&pool->lock);
    3549             : 
    3550           0 :         if (pool->flags & POOL_MANAGER_ACTIVE) {
    3551           0 :                 raw_spin_unlock_irq(&pool->lock);
    3552             :                 return false;
    3553             :         }
    3554             :         return true;
    3555             : }
    3556             : 
    3557             : /**
    3558             :  * put_unbound_pool - put a worker_pool
    3559             :  * @pool: worker_pool to put
    3560             :  *
    3561             :  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
    3562             :  * safe manner.  get_unbound_pool() calls this function on its failure path
    3563             :  * and this function should be able to release pools which went through,
    3564             :  * successfully or not, init_worker_pool().
    3565             :  *
    3566             :  * Should be called with wq_pool_mutex held.
    3567             :  */
    3568           0 : static void put_unbound_pool(struct worker_pool *pool)
    3569             : {
    3570           0 :         DECLARE_COMPLETION_ONSTACK(detach_completion);
    3571             :         struct worker *worker;
    3572             : 
    3573             :         lockdep_assert_held(&wq_pool_mutex);
    3574             : 
    3575           0 :         if (--pool->refcnt)
    3576           0 :                 return;
    3577             : 
    3578             :         /* sanity checks */
    3579           0 :         if (WARN_ON(!(pool->cpu < 0)) ||
    3580           0 :             WARN_ON(!list_empty(&pool->worklist)))
    3581             :                 return;
    3582             : 
    3583             :         /* release id and unhash */
    3584           0 :         if (pool->id >= 0)
    3585           0 :                 idr_remove(&worker_pool_idr, pool->id);
    3586           0 :         hash_del(&pool->hash_node);
    3587             : 
    3588             :         /*
    3589             :          * Become the manager and destroy all workers.  This prevents
    3590             :          * @pool's workers from blocking on attach_mutex.  We're the last
    3591             :          * manager and @pool gets freed with the flag set.
    3592             :          * Because of how wq_manager_inactive() works, we will hold the
    3593             :          * spinlock after a successful wait.
    3594             :          */
    3595           0 :         rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
    3596             :                            TASK_UNINTERRUPTIBLE);
    3597           0 :         pool->flags |= POOL_MANAGER_ACTIVE;
    3598             : 
    3599           0 :         while ((worker = first_idle_worker(pool)))
    3600           0 :                 destroy_worker(worker);
    3601           0 :         WARN_ON(pool->nr_workers || pool->nr_idle);
    3602           0 :         raw_spin_unlock_irq(&pool->lock);
    3603             : 
    3604           0 :         mutex_lock(&wq_pool_attach_mutex);
    3605           0 :         if (!list_empty(&pool->workers))
    3606           0 :                 pool->detach_completion = &detach_completion;
    3607           0 :         mutex_unlock(&wq_pool_attach_mutex);
    3608             : 
    3609           0 :         if (pool->detach_completion)
    3610           0 :                 wait_for_completion(pool->detach_completion);
    3611             : 
    3612             :         /* shut down the timers */
    3613           0 :         del_timer_sync(&pool->idle_timer);
    3614           0 :         del_timer_sync(&pool->mayday_timer);
    3615             : 
    3616             :         /* RCU protected to allow dereferences from get_work_pool() */
    3617           0 :         call_rcu(&pool->rcu, rcu_free_pool);
    3618             : }
    3619             : 
    3620             : /**
    3621             :  * get_unbound_pool - get a worker_pool with the specified attributes
    3622             :  * @attrs: the attributes of the worker_pool to get
    3623             :  *
    3624             :  * Obtain a worker_pool which has the same attributes as @attrs, bump the
    3625             :  * reference count and return it.  If there already is a matching
    3626             :  * worker_pool, it will be used; otherwise, this function attempts to
    3627             :  * create a new one.
    3628             :  *
    3629             :  * Should be called with wq_pool_mutex held.
    3630             :  *
    3631             :  * Return: On success, a worker_pool with the same attributes as @attrs.
    3632             :  * On failure, %NULL.
    3633             :  */
    3634           3 : static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
    3635             : {
    3636           3 :         u32 hash = wqattrs_hash(attrs);
    3637             :         struct worker_pool *pool;
    3638             :         int node;
    3639           3 :         int target_node = NUMA_NO_NODE;
    3640             : 
    3641             :         lockdep_assert_held(&wq_pool_mutex);
    3642             : 
    3643             :         /* do we already have a matching pool? */
    3644           3 :         hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
    3645           4 :                 if (wqattrs_equal(pool->attrs, attrs)) {
    3646           2 :                         pool->refcnt++;
    3647           2 :                         return pool;
    3648             :                 }
    3649             :         }
    3650             : 
    3651             :         /* if cpumask is contained inside a NUMA node, we belong to that node */
    3652           1 :         if (wq_numa_enabled) {
    3653           0 :                 for_each_node(node) {
    3654           0 :                         if (cpumask_subset(attrs->cpumask,
    3655           0 :                                            wq_numa_possible_cpumask[node])) {
    3656             :                                 target_node = node;
    3657             :                                 break;
    3658             :                         }
    3659             :                 }
    3660             :         }
    3661             : 
    3662             :         /* nope, create a new one */
    3663           1 :         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
    3664           1 :         if (!pool || init_worker_pool(pool) < 0)
    3665             :                 goto fail;
    3666             : 
    3667             :         lockdep_set_subclass(&pool->lock, 1);    /* see put_pwq() */
    3668           2 :         copy_workqueue_attrs(pool->attrs, attrs);
    3669           1 :         pool->node = target_node;
    3670             : 
    3671             :         /*
    3672             :          * no_numa isn't a worker_pool attribute, always clear it.  See
    3673             :          * 'struct workqueue_attrs' comments for detail.
    3674             :          */
    3675           1 :         pool->attrs->no_numa = false;
    3676             : 
    3677           1 :         if (worker_pool_assign_id(pool) < 0)
    3678             :                 goto fail;
    3679             : 
    3680             :         /* create and start the initial worker */
    3681           1 :         if (wq_online && !create_worker(pool))
    3682             :                 goto fail;
    3683             : 
    3684             :         /* install */
    3685           2 :         hash_add(unbound_pool_hash, &pool->hash_node, hash);
    3686             : 
    3687           1 :         return pool;
    3688             : fail:
    3689           0 :         if (pool)
    3690           0 :                 put_unbound_pool(pool);
    3691             :         return NULL;
    3692             : }
    3693             : 
    3694           0 : static void rcu_free_pwq(struct rcu_head *rcu)
    3695             : {
    3696           0 :         kmem_cache_free(pwq_cache,
    3697           0 :                         container_of(rcu, struct pool_workqueue, rcu));
    3698           0 : }
    3699             : 
    3700             : /*
    3701             :  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
    3702             :  * and needs to be destroyed.
    3703             :  */
    3704           0 : static void pwq_unbound_release_workfn(struct work_struct *work)
    3705             : {
    3706           0 :         struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
    3707             :                                                   unbound_release_work);
    3708           0 :         struct workqueue_struct *wq = pwq->wq;
    3709           0 :         struct worker_pool *pool = pwq->pool;
    3710           0 :         bool is_last = false;
    3711             : 
    3712             :         /*
    3713             :          * when @pwq is not linked, it doesn't hold any reference to the
    3714             :          * @wq, and @wq is invalid to access.
    3715             :          */
    3716           0 :         if (!list_empty(&pwq->pwqs_node)) {
    3717           0 :                 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
    3718             :                         return;
    3719             : 
    3720           0 :                 mutex_lock(&wq->mutex);
    3721           0 :                 list_del_rcu(&pwq->pwqs_node);
    3722           0 :                 is_last = list_empty(&wq->pwqs);
    3723           0 :                 mutex_unlock(&wq->mutex);
    3724             :         }
    3725             : 
    3726           0 :         mutex_lock(&wq_pool_mutex);
    3727           0 :         put_unbound_pool(pool);
    3728           0 :         mutex_unlock(&wq_pool_mutex);
    3729             : 
    3730           0 :         call_rcu(&pwq->rcu, rcu_free_pwq);
    3731             : 
    3732             :         /*
    3733             :          * If we're the last pwq going away, @wq is already dead and no one
    3734             :          * is gonna access it anymore.  Schedule RCU free.
    3735             :          */
    3736           0 :         if (is_last) {
    3737           0 :                 wq_unregister_lockdep(wq);
    3738           0 :                 call_rcu(&wq->rcu, rcu_free_wq);
    3739             :         }
    3740             : }
    3741             : 
    3742             : /**
    3743             :  * pwq_adjust_max_active - update a pwq's max_active to the current setting
    3744             :  * @pwq: target pool_workqueue
    3745             :  *
    3746             :  * If @pwq isn't freezing, set @pwq->max_active to the associated
    3747             :  * workqueue's saved_max_active and activate inactive work items
    3748             :  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
    3749             :  */
    3750          24 : static void pwq_adjust_max_active(struct pool_workqueue *pwq)
    3751             : {
    3752          24 :         struct workqueue_struct *wq = pwq->wq;
    3753          24 :         bool freezable = wq->flags & WQ_FREEZABLE;
    3754             :         unsigned long flags;
    3755             : 
    3756             :         /* for @wq->saved_max_active */
    3757             :         lockdep_assert_held(&wq->mutex);
    3758             : 
    3759             :         /* fast exit for non-freezable wqs */
    3760          24 :         if (!freezable && pwq->max_active == wq->saved_max_active)
    3761             :                 return;
    3762             : 
    3763             :         /* this function can be called during early boot w/ irq disabled */
    3764          15 :         raw_spin_lock_irqsave(&pwq->pool->lock, flags);
    3765             : 
    3766             :         /*
    3767             :          * During [un]freezing, the caller is responsible for ensuring that
    3768             :          * this function is called at least once after @workqueue_freezing
    3769             :          * is updated and visible.
    3770             :          */
    3771          15 :         if (!freezable || !workqueue_freezing) {
    3772          15 :                 bool kick = false;
    3773             : 
    3774          15 :                 pwq->max_active = wq->saved_max_active;
    3775             : 
    3776          45 :                 while (!list_empty(&pwq->inactive_works) &&
    3777           0 :                        pwq->nr_active < pwq->max_active) {
    3778           0 :                         pwq_activate_first_inactive(pwq);
    3779           0 :                         kick = true;
    3780             :                 }
    3781             : 
    3782             :                 /*
    3783             :                  * Need to kick a worker after thawed or an unbound wq's
    3784             :                  * max_active is bumped. In realtime scenarios, always kicking a
    3785             :                  * worker will cause interference on the isolated cpu cores, so
    3786             :                  * let's kick iff work items were activated.
    3787             :                  */
    3788          15 :                 if (kick)
    3789           0 :                         wake_up_worker(pwq->pool);
    3790             :         } else {
    3791           0 :                 pwq->max_active = 0;
    3792             :         }
    3793             : 
    3794          30 :         raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
    3795             : }
    3796             : 
    3797             : /* initialize newly allocated @pwq which is associated with @wq and @pool */
    3798          12 : static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
    3799             :                      struct worker_pool *pool)
    3800             : {
    3801          12 :         BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
    3802             : 
    3803          12 :         memset(pwq, 0, sizeof(*pwq));
    3804             : 
    3805          12 :         pwq->pool = pool;
    3806          12 :         pwq->wq = wq;
    3807          12 :         pwq->flush_color = -1;
    3808          12 :         pwq->refcnt = 1;
    3809          24 :         INIT_LIST_HEAD(&pwq->inactive_works);
    3810          24 :         INIT_LIST_HEAD(&pwq->pwqs_node);
    3811          24 :         INIT_LIST_HEAD(&pwq->mayday_node);
    3812          24 :         INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
    3813          12 : }
    3814             : 
    3815             : /* sync @pwq with the current state of its associated wq and link it */
    3816          15 : static void link_pwq(struct pool_workqueue *pwq)
    3817             : {
    3818          15 :         struct workqueue_struct *wq = pwq->wq;
    3819             : 
    3820             :         lockdep_assert_held(&wq->mutex);
    3821             : 
    3822             :         /* may be called multiple times, ignore if already linked */
    3823          30 :         if (!list_empty(&pwq->pwqs_node))
    3824             :                 return;
    3825             : 
    3826             :         /* set the matching work_color */
    3827          12 :         pwq->work_color = wq->work_color;
    3828             : 
    3829             :         /* sync max_active to the current setting */
    3830          12 :         pwq_adjust_max_active(pwq);
    3831             : 
    3832             :         /* link in @pwq */
    3833          12 :         list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
    3834             : }
    3835             : 
    3836             : /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
    3837           3 : static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
    3838             :                                         const struct workqueue_attrs *attrs)
    3839             : {
    3840             :         struct worker_pool *pool;
    3841             :         struct pool_workqueue *pwq;
    3842             : 
    3843             :         lockdep_assert_held(&wq_pool_mutex);
    3844             : 
    3845           3 :         pool = get_unbound_pool(attrs);
    3846           3 :         if (!pool)
    3847             :                 return NULL;
    3848             : 
    3849           6 :         pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
    3850           3 :         if (!pwq) {
    3851           0 :                 put_unbound_pool(pool);
    3852           0 :                 return NULL;
    3853             :         }
    3854             : 
    3855           3 :         init_pwq(pwq, wq, pool);
    3856           3 :         return pwq;
    3857             : }
    3858             : 
    3859             : /**
    3860             :  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
    3861             :  * @attrs: the wq_attrs of the default pwq of the target workqueue
    3862             :  * @node: the target NUMA node
    3863             :  * @cpu_going_down: if >= 0, the CPU to consider as offline
    3864             :  * @cpumask: outarg, the resulting cpumask
    3865             :  *
    3866             :  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
    3867             :  * @cpu_going_down is >= 0, that cpu is considered offline during
    3868             :  * calculation.  The result is stored in @cpumask.
    3869             :  *
    3870             :  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
    3871             :  * enabled and @node has online CPUs requested by @attrs, the returned
    3872             :  * cpumask is the intersection of the possible CPUs of @node and
    3873             :  * @attrs->cpumask.
    3874             :  *
    3875             :  * The caller is responsible for ensuring that the cpumask of @node stays
    3876             :  * stable.
    3877             :  *
    3878             :  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
    3879             :  * %false if equal.
    3880             :  */
    3881           3 : static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
    3882             :                                  int cpu_going_down, cpumask_t *cpumask)
    3883             : {
    3884           3 :         if (!wq_numa_enabled || attrs->no_numa)
    3885             :                 goto use_dfl;
    3886             : 
    3887             :         /* does @node have any online CPUs @attrs wants? */
    3888           0 :         cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
    3889           0 :         if (cpu_going_down >= 0)
    3890             :                 cpumask_clear_cpu(cpu_going_down, cpumask);
    3891             : 
    3892           0 :         if (cpumask_empty(cpumask))
    3893             :                 goto use_dfl;
    3894             : 
    3895             :         /* yeap, return possible CPUs in @node that @attrs wants */
    3896           0 :         cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
    3897             : 
    3898           0 :         if (cpumask_empty(cpumask)) {
    3899           0 :                 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
    3900             :                                 "possible intersect\n");
    3901             :                 return false;
    3902             :         }
    3903             : 
    3904           0 :         return !cpumask_equal(cpumask, attrs->cpumask);
    3905             : 
    3906             : use_dfl:
    3907           6 :         cpumask_copy(cpumask, attrs->cpumask);
    3908           3 :         return false;
    3909             : }
    3910             : 
    3911             : /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
    3912             : static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
    3913             :                                                    int node,
    3914             :                                                    struct pool_workqueue *pwq)
    3915             : {
    3916             :         struct pool_workqueue *old_pwq;
    3917             : 
    3918             :         lockdep_assert_held(&wq_pool_mutex);
    3919             :         lockdep_assert_held(&wq->mutex);
    3920             : 
    3921             :         /* link_pwq() can handle duplicate calls */
    3922           3 :         link_pwq(pwq);
    3923             : 
    3924           3 :         old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    3925           3 :         rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
    3926             :         return old_pwq;
    3927             : }
    3928             : 
    3929             : /* context to store the prepared attrs & pwqs before applying */
    3930             : struct apply_wqattrs_ctx {
    3931             :         struct workqueue_struct *wq;            /* target workqueue */
    3932             :         struct workqueue_attrs  *attrs;         /* attrs to apply */
    3933             :         struct list_head        list;           /* queued for batching commit */
    3934             :         struct pool_workqueue   *dfl_pwq;
    3935             :         struct pool_workqueue   *pwq_tbl[];
    3936             : };
    3937             : 
    3938             : /* free the resources after success or abort */
    3939           3 : static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
    3940             : {
    3941           3 :         if (ctx) {
    3942             :                 int node;
    3943             : 
    3944           3 :                 for_each_node(node)
    3945           3 :                         put_pwq_unlocked(ctx->pwq_tbl[node]);
    3946           3 :                 put_pwq_unlocked(ctx->dfl_pwq);
    3947             : 
    3948           6 :                 free_workqueue_attrs(ctx->attrs);
    3949             : 
    3950           3 :                 kfree(ctx);
    3951             :         }
    3952           3 : }
    3953             : 
    3954             : /* allocate the attrs and pwqs for later installation */
    3955             : static struct apply_wqattrs_ctx *
    3956           3 : apply_wqattrs_prepare(struct workqueue_struct *wq,
    3957             :                       const struct workqueue_attrs *attrs)
    3958             : {
    3959             :         struct apply_wqattrs_ctx *ctx;
    3960             :         struct workqueue_attrs *new_attrs, *tmp_attrs;
    3961             :         int node;
    3962             : 
    3963             :         lockdep_assert_held(&wq_pool_mutex);
    3964             : 
    3965           3 :         ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
    3966             : 
    3967           3 :         new_attrs = alloc_workqueue_attrs();
    3968           3 :         tmp_attrs = alloc_workqueue_attrs();
    3969           3 :         if (!ctx || !new_attrs || !tmp_attrs)
    3970             :                 goto out_free;
    3971             : 
    3972             :         /*
    3973             :          * Calculate the attrs of the default pwq.
    3974             :          * If the user configured cpumask doesn't overlap with the
    3975             :          * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
    3976             :          */
    3977           3 :         copy_workqueue_attrs(new_attrs, attrs);
    3978           6 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
    3979           6 :         if (unlikely(cpumask_empty(new_attrs->cpumask)))
    3980           0 :                 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
    3981             : 
    3982             :         /*
    3983             :          * We may create multiple pwqs with differing cpumasks.  Make a
    3984             :          * copy of @new_attrs which will be modified and used to obtain
    3985             :          * pools.
    3986             :          */
    3987           3 :         copy_workqueue_attrs(tmp_attrs, new_attrs);
    3988             : 
    3989             :         /*
    3990             :          * If something goes wrong during CPU up/down, we'll fall back to
    3991             :          * the default pwq covering whole @attrs->cpumask.  Always create
    3992             :          * it even if we don't use it immediately.
    3993             :          */
    3994           3 :         ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
    3995           3 :         if (!ctx->dfl_pwq)
    3996             :                 goto out_free;
    3997             : 
    3998           6 :         for_each_node(node) {
    3999           3 :                 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
    4000           0 :                         ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
    4001           0 :                         if (!ctx->pwq_tbl[node])
    4002             :                                 goto out_free;
    4003             :                 } else {
    4004           3 :                         ctx->dfl_pwq->refcnt++;
    4005           3 :                         ctx->pwq_tbl[node] = ctx->dfl_pwq;
    4006             :                 }
    4007             :         }
    4008             : 
    4009             :         /* save the user configured attrs and sanitize it. */
    4010           3 :         copy_workqueue_attrs(new_attrs, attrs);
    4011           6 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
    4012           3 :         ctx->attrs = new_attrs;
    4013             : 
    4014           3 :         ctx->wq = wq;
    4015           3 :         free_workqueue_attrs(tmp_attrs);
    4016           3 :         return ctx;
    4017             : 
    4018             : out_free:
    4019           0 :         free_workqueue_attrs(tmp_attrs);
    4020           0 :         free_workqueue_attrs(new_attrs);
    4021           0 :         apply_wqattrs_cleanup(ctx);
    4022           0 :         return NULL;
    4023             : }
    4024             : 
    4025             : /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
    4026           3 : static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
    4027             : {
    4028             :         int node;
    4029             : 
    4030             :         /* all pwqs have been created successfully, let's install'em */
    4031           3 :         mutex_lock(&ctx->wq->mutex);
    4032             : 
    4033           6 :         copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
    4034             : 
    4035             :         /* save the previous pwq and install the new one */
    4036           6 :         for_each_node(node)
    4037           6 :                 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
    4038             :                                                           ctx->pwq_tbl[node]);
    4039             : 
    4040             :         /* @dfl_pwq might not have been used, ensure it's linked */
    4041           3 :         link_pwq(ctx->dfl_pwq);
    4042           3 :         swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
    4043             : 
    4044           3 :         mutex_unlock(&ctx->wq->mutex);
    4045           3 : }
    4046             : 
    4047             : static void apply_wqattrs_lock(void)
    4048             : {
    4049             :         /* CPUs should stay stable across pwq creations and installations */
    4050             :         cpus_read_lock();
    4051           0 :         mutex_lock(&wq_pool_mutex);
    4052             : }
    4053             : 
    4054             : static void apply_wqattrs_unlock(void)
    4055             : {
    4056           0 :         mutex_unlock(&wq_pool_mutex);
    4057             :         cpus_read_unlock();
    4058             : }
    4059             : 
    4060           3 : static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
    4061             :                                         const struct workqueue_attrs *attrs)
    4062             : {
    4063             :         struct apply_wqattrs_ctx *ctx;
    4064             : 
    4065             :         /* only unbound workqueues can change attributes */
    4066           3 :         if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
    4067             :                 return -EINVAL;
    4068             : 
    4069             :         /* creating multiple pwqs breaks ordering guarantee */
    4070           6 :         if (!list_empty(&wq->pwqs)) {
    4071           0 :                 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    4072             :                         return -EINVAL;
    4073             : 
    4074           0 :                 wq->flags &= ~__WQ_ORDERED;
    4075             :         }
    4076             : 
    4077           3 :         ctx = apply_wqattrs_prepare(wq, attrs);
    4078           3 :         if (!ctx)
    4079             :                 return -ENOMEM;
    4080             : 
    4081             :         /* the ctx has been prepared successfully, let's commit it */
    4082           3 :         apply_wqattrs_commit(ctx);
    4083           3 :         apply_wqattrs_cleanup(ctx);
    4084             : 
    4085           3 :         return 0;
    4086             : }
    4087             : 
    4088             : /**
    4089             :  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
    4090             :  * @wq: the target workqueue
    4091             :  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
    4092             :  *
    4093             :  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
    4094             :  * machines, this function maps a separate pwq to each NUMA node with
    4095             :  * possibles CPUs in @attrs->cpumask so that work items are affine to the
    4096             :  * NUMA node it was issued on.  Older pwqs are released as in-flight work
    4097             :  * items finish.  Note that a work item which repeatedly requeues itself
    4098             :  * back-to-back will stay on its current pwq.
    4099             :  *
    4100             :  * Performs GFP_KERNEL allocations.
    4101             :  *
    4102             :  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
    4103             :  *
    4104             :  * Return: 0 on success and -errno on failure.
    4105             :  */
    4106           3 : int apply_workqueue_attrs(struct workqueue_struct *wq,
    4107             :                           const struct workqueue_attrs *attrs)
    4108             : {
    4109             :         int ret;
    4110             : 
    4111             :         lockdep_assert_cpus_held();
    4112             : 
    4113           3 :         mutex_lock(&wq_pool_mutex);
    4114           3 :         ret = apply_workqueue_attrs_locked(wq, attrs);
    4115           3 :         mutex_unlock(&wq_pool_mutex);
    4116             : 
    4117           3 :         return ret;
    4118             : }
    4119             : 
    4120             : /**
    4121             :  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
    4122             :  * @wq: the target workqueue
    4123             :  * @cpu: the CPU coming up or going down
    4124             :  * @online: whether @cpu is coming up or going down
    4125             :  *
    4126             :  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
    4127             :  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
    4128             :  * @wq accordingly.
    4129             :  *
    4130             :  * If NUMA affinity can't be adjusted due to memory allocation failure, it
    4131             :  * falls back to @wq->dfl_pwq which may not be optimal but is always
    4132             :  * correct.
    4133             :  *
    4134             :  * Note that when the last allowed CPU of a NUMA node goes offline for a
    4135             :  * workqueue with a cpumask spanning multiple nodes, the workers which were
    4136             :  * already executing the work items for the workqueue will lose their CPU
    4137             :  * affinity and may execute on any CPU.  This is similar to how per-cpu
    4138             :  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
    4139             :  * affinity, it's the user's responsibility to flush the work item from
    4140             :  * CPU_DOWN_PREPARE.
    4141             :  */
    4142           7 : static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
    4143             :                                    bool online)
    4144             : {
    4145           7 :         int node = cpu_to_node(cpu);
    4146           7 :         int cpu_off = online ? -1 : cpu;
    4147           7 :         struct pool_workqueue *old_pwq = NULL, *pwq;
    4148             :         struct workqueue_attrs *target_attrs;
    4149             :         cpumask_t *cpumask;
    4150             : 
    4151             :         lockdep_assert_held(&wq_pool_mutex);
    4152             : 
    4153           7 :         if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
    4154           0 :             wq->unbound_attrs->no_numa)
    4155             :                 return;
    4156             : 
    4157             :         /*
    4158             :          * We don't wanna alloc/free wq_attrs for each wq for each CPU.
    4159             :          * Let's use a preallocated one.  The following buf is protected by
    4160             :          * CPU hotplug exclusion.
    4161             :          */
    4162           0 :         target_attrs = wq_update_unbound_numa_attrs_buf;
    4163           0 :         cpumask = target_attrs->cpumask;
    4164             : 
    4165           0 :         copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
    4166           0 :         pwq = unbound_pwq_by_node(wq, node);
    4167             : 
    4168             :         /*
    4169             :          * Let's determine what needs to be done.  If the target cpumask is
    4170             :          * different from the default pwq's, we need to compare it to @pwq's
    4171             :          * and create a new one if they don't match.  If the target cpumask
    4172             :          * equals the default pwq's, the default pwq should be used.
    4173             :          */
    4174           0 :         if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
    4175           0 :                 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
    4176             :                         return;
    4177             :         } else {
    4178             :                 goto use_dfl_pwq;
    4179             :         }
    4180             : 
    4181             :         /* create a new pwq */
    4182           0 :         pwq = alloc_unbound_pwq(wq, target_attrs);
    4183           0 :         if (!pwq) {
    4184           0 :                 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
    4185             :                         wq->name);
    4186           0 :                 goto use_dfl_pwq;
    4187             :         }
    4188             : 
    4189             :         /* Install the new pwq. */
    4190           0 :         mutex_lock(&wq->mutex);
    4191           0 :         old_pwq = numa_pwq_tbl_install(wq, node, pwq);
    4192           0 :         goto out_unlock;
    4193             : 
    4194             : use_dfl_pwq:
    4195           0 :         mutex_lock(&wq->mutex);
    4196           0 :         raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
    4197           0 :         get_pwq(wq->dfl_pwq);
    4198           0 :         raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
    4199           0 :         old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
    4200             : out_unlock:
    4201           0 :         mutex_unlock(&wq->mutex);
    4202           0 :         put_pwq_unlocked(old_pwq);
    4203             : }
    4204             : 
    4205          12 : static int alloc_and_link_pwqs(struct workqueue_struct *wq)
    4206             : {
    4207          12 :         bool highpri = wq->flags & WQ_HIGHPRI;
    4208             :         int cpu, ret;
    4209             : 
    4210          12 :         if (!(wq->flags & WQ_UNBOUND)) {
    4211           9 :                 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
    4212           9 :                 if (!wq->cpu_pwqs)
    4213             :                         return -ENOMEM;
    4214             : 
    4215           9 :                 for_each_possible_cpu(cpu) {
    4216           9 :                         struct pool_workqueue *pwq =
    4217           9 :                                 per_cpu_ptr(wq->cpu_pwqs, cpu);
    4218           9 :                         struct worker_pool *cpu_pools =
    4219           9 :                                 per_cpu(cpu_worker_pools, cpu);
    4220             : 
    4221           9 :                         init_pwq(pwq, wq, &cpu_pools[highpri]);
    4222             : 
    4223           9 :                         mutex_lock(&wq->mutex);
    4224           9 :                         link_pwq(pwq);
    4225           9 :                         mutex_unlock(&wq->mutex);
    4226             :                 }
    4227             :                 return 0;
    4228             :         }
    4229             : 
    4230             :         cpus_read_lock();
    4231           3 :         if (wq->flags & __WQ_ORDERED) {
    4232           1 :                 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
    4233             :                 /* there should only be single pwq for ordering guarantee */
    4234           1 :                 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
    4235             :                               wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
    4236             :                      "ordering guarantee broken for workqueue %s\n", wq->name);
    4237             :         } else {
    4238           2 :                 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
    4239             :         }
    4240             :         cpus_read_unlock();
    4241             : 
    4242             :         return ret;
    4243             : }
    4244             : 
    4245          12 : static int wq_clamp_max_active(int max_active, unsigned int flags,
    4246             :                                const char *name)
    4247             : {
    4248          12 :         int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
    4249             : 
    4250          12 :         if (max_active < 1 || max_active > lim)
    4251           0 :                 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
    4252             :                         max_active, name, 1, lim);
    4253             : 
    4254          12 :         return clamp_val(max_active, 1, lim);
    4255             : }
    4256             : 
    4257             : /*
    4258             :  * Workqueues which may be used during memory reclaim should have a rescuer
    4259             :  * to guarantee forward progress.
    4260             :  */
    4261          12 : static int init_rescuer(struct workqueue_struct *wq)
    4262             : {
    4263             :         struct worker *rescuer;
    4264             :         int ret;
    4265             : 
    4266          12 :         if (!(wq->flags & WQ_MEM_RECLAIM))
    4267             :                 return 0;
    4268             : 
    4269           3 :         rescuer = alloc_worker(NUMA_NO_NODE);
    4270           3 :         if (!rescuer)
    4271             :                 return -ENOMEM;
    4272             : 
    4273           3 :         rescuer->rescue_wq = wq;
    4274           3 :         rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
    4275           6 :         if (IS_ERR(rescuer->task)) {
    4276           0 :                 ret = PTR_ERR(rescuer->task);
    4277           0 :                 kfree(rescuer);
    4278           0 :                 return ret;
    4279             :         }
    4280             : 
    4281           3 :         wq->rescuer = rescuer;
    4282           3 :         kthread_bind_mask(rescuer->task, cpu_possible_mask);
    4283           3 :         wake_up_process(rescuer->task);
    4284             : 
    4285           3 :         return 0;
    4286             : }
    4287             : 
    4288             : __printf(1, 4)
    4289          12 : struct workqueue_struct *alloc_workqueue(const char *fmt,
    4290             :                                          unsigned int flags,
    4291             :                                          int max_active, ...)
    4292             : {
    4293          12 :         size_t tbl_size = 0;
    4294             :         va_list args;
    4295             :         struct workqueue_struct *wq;
    4296             :         struct pool_workqueue *pwq;
    4297             : 
    4298             :         /*
    4299             :          * Unbound && max_active == 1 used to imply ordered, which is no
    4300             :          * longer the case on NUMA machines due to per-node pools.  While
    4301             :          * alloc_ordered_workqueue() is the right way to create an ordered
    4302             :          * workqueue, keep the previous behavior to avoid subtle breakages
    4303             :          * on NUMA.
    4304             :          */
    4305          12 :         if ((flags & WQ_UNBOUND) && max_active == 1)
    4306           1 :                 flags |= __WQ_ORDERED;
    4307             : 
    4308             :         /* see the comment above the definition of WQ_POWER_EFFICIENT */
    4309          12 :         if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
    4310           0 :                 flags |= WQ_UNBOUND;
    4311             : 
    4312             :         /* allocate wq and format name */
    4313          12 :         if (flags & WQ_UNBOUND)
    4314           3 :                 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
    4315             : 
    4316          12 :         wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
    4317          12 :         if (!wq)
    4318             :                 return NULL;
    4319             : 
    4320          12 :         if (flags & WQ_UNBOUND) {
    4321           3 :                 wq->unbound_attrs = alloc_workqueue_attrs();
    4322           3 :                 if (!wq->unbound_attrs)
    4323             :                         goto err_free_wq;
    4324             :         }
    4325             : 
    4326          12 :         va_start(args, max_active);
    4327          12 :         vsnprintf(wq->name, sizeof(wq->name), fmt, args);
    4328          12 :         va_end(args);
    4329             : 
    4330          12 :         max_active = max_active ?: WQ_DFL_ACTIVE;
    4331          12 :         max_active = wq_clamp_max_active(max_active, flags, wq->name);
    4332             : 
    4333             :         /* init wq */
    4334          12 :         wq->flags = flags;
    4335          12 :         wq->saved_max_active = max_active;
    4336          12 :         mutex_init(&wq->mutex);
    4337          24 :         atomic_set(&wq->nr_pwqs_to_flush, 0);
    4338          24 :         INIT_LIST_HEAD(&wq->pwqs);
    4339          24 :         INIT_LIST_HEAD(&wq->flusher_queue);
    4340          24 :         INIT_LIST_HEAD(&wq->flusher_overflow);
    4341          24 :         INIT_LIST_HEAD(&wq->maydays);
    4342             : 
    4343          12 :         wq_init_lockdep(wq);
    4344          24 :         INIT_LIST_HEAD(&wq->list);
    4345             : 
    4346          12 :         if (alloc_and_link_pwqs(wq) < 0)
    4347             :                 goto err_unreg_lockdep;
    4348             : 
    4349          12 :         if (wq_online && init_rescuer(wq) < 0)
    4350             :                 goto err_destroy;
    4351             : 
    4352          12 :         if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
    4353             :                 goto err_destroy;
    4354             : 
    4355             :         /*
    4356             :          * wq_pool_mutex protects global freeze state and workqueues list.
    4357             :          * Grab it, adjust max_active and add the new @wq to workqueues
    4358             :          * list.
    4359             :          */
    4360          12 :         mutex_lock(&wq_pool_mutex);
    4361             : 
    4362          12 :         mutex_lock(&wq->mutex);
    4363          24 :         for_each_pwq(pwq, wq)
    4364          12 :                 pwq_adjust_max_active(pwq);
    4365          12 :         mutex_unlock(&wq->mutex);
    4366             : 
    4367          24 :         list_add_tail_rcu(&wq->list, &workqueues);
    4368             : 
    4369          12 :         mutex_unlock(&wq_pool_mutex);
    4370             : 
    4371          12 :         return wq;
    4372             : 
    4373             : err_unreg_lockdep:
    4374             :         wq_unregister_lockdep(wq);
    4375             :         wq_free_lockdep(wq);
    4376             : err_free_wq:
    4377           0 :         free_workqueue_attrs(wq->unbound_attrs);
    4378           0 :         kfree(wq);
    4379           0 :         return NULL;
    4380             : err_destroy:
    4381           0 :         destroy_workqueue(wq);
    4382           0 :         return NULL;
    4383             : }
    4384             : EXPORT_SYMBOL_GPL(alloc_workqueue);
    4385             : 
    4386             : static bool pwq_busy(struct pool_workqueue *pwq)
    4387             : {
    4388             :         int i;
    4389             : 
    4390           0 :         for (i = 0; i < WORK_NR_COLORS; i++)
    4391           0 :                 if (pwq->nr_in_flight[i])
    4392             :                         return true;
    4393             : 
    4394           0 :         if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
    4395             :                 return true;
    4396           0 :         if (pwq->nr_active || !list_empty(&pwq->inactive_works))
    4397             :                 return true;
    4398             : 
    4399             :         return false;
    4400             : }
    4401             : 
    4402             : /**
    4403             :  * destroy_workqueue - safely terminate a workqueue
    4404             :  * @wq: target workqueue
    4405             :  *
    4406             :  * Safely destroy a workqueue. All work currently pending will be done first.
    4407             :  */
    4408           0 : void destroy_workqueue(struct workqueue_struct *wq)
    4409             : {
    4410             :         struct pool_workqueue *pwq;
    4411             :         int node;
    4412             : 
    4413             :         /*
    4414             :          * Remove it from sysfs first so that sanity check failure doesn't
    4415             :          * lead to sysfs name conflicts.
    4416             :          */
    4417           0 :         workqueue_sysfs_unregister(wq);
    4418             : 
    4419             :         /* drain it before proceeding with destruction */
    4420           0 :         drain_workqueue(wq);
    4421             : 
    4422             :         /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
    4423           0 :         if (wq->rescuer) {
    4424           0 :                 struct worker *rescuer = wq->rescuer;
    4425             : 
    4426             :                 /* this prevents new queueing */
    4427           0 :                 raw_spin_lock_irq(&wq_mayday_lock);
    4428           0 :                 wq->rescuer = NULL;
    4429           0 :                 raw_spin_unlock_irq(&wq_mayday_lock);
    4430             : 
    4431             :                 /* rescuer will empty maydays list before exiting */
    4432           0 :                 kthread_stop(rescuer->task);
    4433           0 :                 kfree(rescuer);
    4434             :         }
    4435             : 
    4436             :         /*
    4437             :          * Sanity checks - grab all the locks so that we wait for all
    4438             :          * in-flight operations which may do put_pwq().
    4439             :          */
    4440           0 :         mutex_lock(&wq_pool_mutex);
    4441           0 :         mutex_lock(&wq->mutex);
    4442           0 :         for_each_pwq(pwq, wq) {
    4443           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    4444           0 :                 if (WARN_ON(pwq_busy(pwq))) {
    4445           0 :                         pr_warn("%s: %s has the following busy pwq\n",
    4446             :                                 __func__, wq->name);
    4447           0 :                         show_pwq(pwq);
    4448           0 :                         raw_spin_unlock_irq(&pwq->pool->lock);
    4449           0 :                         mutex_unlock(&wq->mutex);
    4450           0 :                         mutex_unlock(&wq_pool_mutex);
    4451           0 :                         show_one_workqueue(wq);
    4452           0 :                         return;
    4453             :                 }
    4454           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    4455             :         }
    4456           0 :         mutex_unlock(&wq->mutex);
    4457             : 
    4458             :         /*
    4459             :          * wq list is used to freeze wq, remove from list after
    4460             :          * flushing is complete in case freeze races us.
    4461             :          */
    4462           0 :         list_del_rcu(&wq->list);
    4463           0 :         mutex_unlock(&wq_pool_mutex);
    4464             : 
    4465           0 :         if (!(wq->flags & WQ_UNBOUND)) {
    4466           0 :                 wq_unregister_lockdep(wq);
    4467             :                 /*
    4468             :                  * The base ref is never dropped on per-cpu pwqs.  Directly
    4469             :                  * schedule RCU free.
    4470             :                  */
    4471           0 :                 call_rcu(&wq->rcu, rcu_free_wq);
    4472             :         } else {
    4473             :                 /*
    4474             :                  * We're the sole accessor of @wq at this point.  Directly
    4475             :                  * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
    4476             :                  * @wq will be freed when the last pwq is released.
    4477             :                  */
    4478           0 :                 for_each_node(node) {
    4479           0 :                         pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    4480           0 :                         RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
    4481           0 :                         put_pwq_unlocked(pwq);
    4482             :                 }
    4483             : 
    4484             :                 /*
    4485             :                  * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
    4486             :                  * put.  Don't access it afterwards.
    4487             :                  */
    4488           0 :                 pwq = wq->dfl_pwq;
    4489           0 :                 wq->dfl_pwq = NULL;
    4490           0 :                 put_pwq_unlocked(pwq);
    4491             :         }
    4492             : }
    4493             : EXPORT_SYMBOL_GPL(destroy_workqueue);
    4494             : 
    4495             : /**
    4496             :  * workqueue_set_max_active - adjust max_active of a workqueue
    4497             :  * @wq: target workqueue
    4498             :  * @max_active: new max_active value.
    4499             :  *
    4500             :  * Set max_active of @wq to @max_active.
    4501             :  *
    4502             :  * CONTEXT:
    4503             :  * Don't call from IRQ context.
    4504             :  */
    4505           0 : void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
    4506             : {
    4507             :         struct pool_workqueue *pwq;
    4508             : 
    4509             :         /* disallow meddling with max_active for ordered workqueues */
    4510           0 :         if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    4511             :                 return;
    4512             : 
    4513           0 :         max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
    4514             : 
    4515           0 :         mutex_lock(&wq->mutex);
    4516             : 
    4517           0 :         wq->flags &= ~__WQ_ORDERED;
    4518           0 :         wq->saved_max_active = max_active;
    4519             : 
    4520           0 :         for_each_pwq(pwq, wq)
    4521           0 :                 pwq_adjust_max_active(pwq);
    4522             : 
    4523           0 :         mutex_unlock(&wq->mutex);
    4524             : }
    4525             : EXPORT_SYMBOL_GPL(workqueue_set_max_active);
    4526             : 
    4527             : /**
    4528             :  * current_work - retrieve %current task's work struct
    4529             :  *
    4530             :  * Determine if %current task is a workqueue worker and what it's working on.
    4531             :  * Useful to find out the context that the %current task is running in.
    4532             :  *
    4533             :  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
    4534             :  */
    4535           0 : struct work_struct *current_work(void)
    4536             : {
    4537           0 :         struct worker *worker = current_wq_worker();
    4538             : 
    4539           0 :         return worker ? worker->current_work : NULL;
    4540             : }
    4541             : EXPORT_SYMBOL(current_work);
    4542             : 
    4543             : /**
    4544             :  * current_is_workqueue_rescuer - is %current workqueue rescuer?
    4545             :  *
    4546             :  * Determine whether %current is a workqueue rescuer.  Can be used from
    4547             :  * work functions to determine whether it's being run off the rescuer task.
    4548             :  *
    4549             :  * Return: %true if %current is a workqueue rescuer. %false otherwise.
    4550             :  */
    4551           0 : bool current_is_workqueue_rescuer(void)
    4552             : {
    4553           0 :         struct worker *worker = current_wq_worker();
    4554             : 
    4555           0 :         return worker && worker->rescue_wq;
    4556             : }
    4557             : 
    4558             : /**
    4559             :  * workqueue_congested - test whether a workqueue is congested
    4560             :  * @cpu: CPU in question
    4561             :  * @wq: target workqueue
    4562             :  *
    4563             :  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
    4564             :  * no synchronization around this function and the test result is
    4565             :  * unreliable and only useful as advisory hints or for debugging.
    4566             :  *
    4567             :  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
    4568             :  * Note that both per-cpu and unbound workqueues may be associated with
    4569             :  * multiple pool_workqueues which have separate congested states.  A
    4570             :  * workqueue being congested on one CPU doesn't mean the workqueue is also
    4571             :  * contested on other CPUs / NUMA nodes.
    4572             :  *
    4573             :  * Return:
    4574             :  * %true if congested, %false otherwise.
    4575             :  */
    4576           0 : bool workqueue_congested(int cpu, struct workqueue_struct *wq)
    4577             : {
    4578             :         struct pool_workqueue *pwq;
    4579             :         bool ret;
    4580             : 
    4581             :         rcu_read_lock();
    4582           0 :         preempt_disable();
    4583             : 
    4584             :         if (cpu == WORK_CPU_UNBOUND)
    4585             :                 cpu = smp_processor_id();
    4586             : 
    4587           0 :         if (!(wq->flags & WQ_UNBOUND))
    4588           0 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    4589             :         else
    4590           0 :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    4591             : 
    4592           0 :         ret = !list_empty(&pwq->inactive_works);
    4593           0 :         preempt_enable();
    4594             :         rcu_read_unlock();
    4595             : 
    4596           0 :         return ret;
    4597             : }
    4598             : EXPORT_SYMBOL_GPL(workqueue_congested);
    4599             : 
    4600             : /**
    4601             :  * work_busy - test whether a work is currently pending or running
    4602             :  * @work: the work to be tested
    4603             :  *
    4604             :  * Test whether @work is currently pending or running.  There is no
    4605             :  * synchronization around this function and the test result is
    4606             :  * unreliable and only useful as advisory hints or for debugging.
    4607             :  *
    4608             :  * Return:
    4609             :  * OR'd bitmask of WORK_BUSY_* bits.
    4610             :  */
    4611           0 : unsigned int work_busy(struct work_struct *work)
    4612             : {
    4613             :         struct worker_pool *pool;
    4614             :         unsigned long flags;
    4615           0 :         unsigned int ret = 0;
    4616             : 
    4617           0 :         if (work_pending(work))
    4618           0 :                 ret |= WORK_BUSY_PENDING;
    4619             : 
    4620             :         rcu_read_lock();
    4621           0 :         pool = get_work_pool(work);
    4622           0 :         if (pool) {
    4623           0 :                 raw_spin_lock_irqsave(&pool->lock, flags);
    4624           0 :                 if (find_worker_executing_work(pool, work))
    4625           0 :                         ret |= WORK_BUSY_RUNNING;
    4626           0 :                 raw_spin_unlock_irqrestore(&pool->lock, flags);
    4627             :         }
    4628             :         rcu_read_unlock();
    4629             : 
    4630           0 :         return ret;
    4631             : }
    4632             : EXPORT_SYMBOL_GPL(work_busy);
    4633             : 
    4634             : /**
    4635             :  * set_worker_desc - set description for the current work item
    4636             :  * @fmt: printf-style format string
    4637             :  * @...: arguments for the format string
    4638             :  *
    4639             :  * This function can be called by a running work function to describe what
    4640             :  * the work item is about.  If the worker task gets dumped, this
    4641             :  * information will be printed out together to help debugging.  The
    4642             :  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
    4643             :  */
    4644           0 : void set_worker_desc(const char *fmt, ...)
    4645             : {
    4646           0 :         struct worker *worker = current_wq_worker();
    4647             :         va_list args;
    4648             : 
    4649           0 :         if (worker) {
    4650           0 :                 va_start(args, fmt);
    4651           0 :                 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
    4652           0 :                 va_end(args);
    4653             :         }
    4654           0 : }
    4655             : EXPORT_SYMBOL_GPL(set_worker_desc);
    4656             : 
    4657             : /**
    4658             :  * print_worker_info - print out worker information and description
    4659             :  * @log_lvl: the log level to use when printing
    4660             :  * @task: target task
    4661             :  *
    4662             :  * If @task is a worker and currently executing a work item, print out the
    4663             :  * name of the workqueue being serviced and worker description set with
    4664             :  * set_worker_desc() by the currently executing work item.
    4665             :  *
    4666             :  * This function can be safely called on any task as long as the
    4667             :  * task_struct itself is accessible.  While safe, this function isn't
    4668             :  * synchronized and may print out mixups or garbages of limited length.
    4669             :  */
    4670           1 : void print_worker_info(const char *log_lvl, struct task_struct *task)
    4671             : {
    4672           1 :         work_func_t *fn = NULL;
    4673           1 :         char name[WQ_NAME_LEN] = { };
    4674           1 :         char desc[WORKER_DESC_LEN] = { };
    4675           1 :         struct pool_workqueue *pwq = NULL;
    4676           1 :         struct workqueue_struct *wq = NULL;
    4677             :         struct worker *worker;
    4678             : 
    4679           1 :         if (!(task->flags & PF_WQ_WORKER))
    4680           1 :                 return;
    4681             : 
    4682             :         /*
    4683             :          * This function is called without any synchronization and @task
    4684             :          * could be in any state.  Be careful with dereferences.
    4685             :          */
    4686           0 :         worker = kthread_probe_data(task);
    4687             : 
    4688             :         /*
    4689             :          * Carefully copy the associated workqueue's workfn, name and desc.
    4690             :          * Keep the original last '\0' in case the original is garbage.
    4691             :          */
    4692           0 :         copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
    4693           0 :         copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
    4694           0 :         copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
    4695           0 :         copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
    4696           0 :         copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
    4697             : 
    4698           0 :         if (fn || name[0] || desc[0]) {
    4699           0 :                 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
    4700           0 :                 if (strcmp(name, desc))
    4701           0 :                         pr_cont(" (%s)", desc);
    4702           0 :                 pr_cont("\n");
    4703             :         }
    4704             : }
    4705             : 
    4706           0 : static void pr_cont_pool_info(struct worker_pool *pool)
    4707             : {
    4708           0 :         pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
    4709           0 :         if (pool->node != NUMA_NO_NODE)
    4710           0 :                 pr_cont(" node=%d", pool->node);
    4711           0 :         pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
    4712           0 : }
    4713             : 
    4714           0 : static void pr_cont_work(bool comma, struct work_struct *work)
    4715             : {
    4716           0 :         if (work->func == wq_barrier_func) {
    4717             :                 struct wq_barrier *barr;
    4718             : 
    4719           0 :                 barr = container_of(work, struct wq_barrier, work);
    4720             : 
    4721           0 :                 pr_cont("%s BAR(%d)", comma ? "," : "",
    4722             :                         task_pid_nr(barr->task));
    4723             :         } else {
    4724           0 :                 pr_cont("%s %ps", comma ? "," : "", work->func);
    4725             :         }
    4726           0 : }
    4727             : 
    4728           0 : static void show_pwq(struct pool_workqueue *pwq)
    4729             : {
    4730           0 :         struct worker_pool *pool = pwq->pool;
    4731             :         struct work_struct *work;
    4732             :         struct worker *worker;
    4733           0 :         bool has_in_flight = false, has_pending = false;
    4734             :         int bkt;
    4735             : 
    4736           0 :         pr_info("  pwq %d:", pool->id);
    4737           0 :         pr_cont_pool_info(pool);
    4738             : 
    4739           0 :         pr_cont(" active=%d/%d refcnt=%d%s\n",
    4740             :                 pwq->nr_active, pwq->max_active, pwq->refcnt,
    4741             :                 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
    4742             : 
    4743           0 :         hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    4744           0 :                 if (worker->current_pwq == pwq) {
    4745             :                         has_in_flight = true;
    4746             :                         break;
    4747             :                 }
    4748             :         }
    4749           0 :         if (has_in_flight) {
    4750           0 :                 bool comma = false;
    4751             : 
    4752           0 :                 pr_info("    in-flight:");
    4753           0 :                 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    4754           0 :                         if (worker->current_pwq != pwq)
    4755           0 :                                 continue;
    4756             : 
    4757           0 :                         pr_cont("%s %d%s:%ps", comma ? "," : "",
    4758             :                                 task_pid_nr(worker->task),
    4759             :                                 worker->rescue_wq ? "(RESCUER)" : "",
    4760             :                                 worker->current_func);
    4761           0 :                         list_for_each_entry(work, &worker->scheduled, entry)
    4762           0 :                                 pr_cont_work(false, work);
    4763             :                         comma = true;
    4764             :                 }
    4765           0 :                 pr_cont("\n");
    4766             :         }
    4767             : 
    4768           0 :         list_for_each_entry(work, &pool->worklist, entry) {
    4769           0 :                 if (get_work_pwq(work) == pwq) {
    4770             :                         has_pending = true;
    4771             :                         break;
    4772             :                 }
    4773             :         }
    4774           0 :         if (has_pending) {
    4775           0 :                 bool comma = false;
    4776             : 
    4777           0 :                 pr_info("    pending:");
    4778           0 :                 list_for_each_entry(work, &pool->worklist, entry) {
    4779           0 :                         if (get_work_pwq(work) != pwq)
    4780           0 :                                 continue;
    4781             : 
    4782           0 :                         pr_cont_work(comma, work);
    4783           0 :                         comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
    4784             :                 }
    4785           0 :                 pr_cont("\n");
    4786             :         }
    4787             : 
    4788           0 :         if (!list_empty(&pwq->inactive_works)) {
    4789           0 :                 bool comma = false;
    4790             : 
    4791           0 :                 pr_info("    inactive:");
    4792           0 :                 list_for_each_entry(work, &pwq->inactive_works, entry) {
    4793           0 :                         pr_cont_work(comma, work);
    4794           0 :                         comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
    4795             :                 }
    4796           0 :                 pr_cont("\n");
    4797             :         }
    4798           0 : }
    4799             : 
    4800             : /**
    4801             :  * show_one_workqueue - dump state of specified workqueue
    4802             :  * @wq: workqueue whose state will be printed
    4803             :  */
    4804           0 : void show_one_workqueue(struct workqueue_struct *wq)
    4805             : {
    4806             :         struct pool_workqueue *pwq;
    4807           0 :         bool idle = true;
    4808             :         unsigned long flags;
    4809             : 
    4810           0 :         for_each_pwq(pwq, wq) {
    4811           0 :                 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
    4812             :                         idle = false;
    4813             :                         break;
    4814             :                 }
    4815             :         }
    4816           0 :         if (idle) /* Nothing to print for idle workqueue */
    4817             :                 return;
    4818             : 
    4819           0 :         pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
    4820             : 
    4821           0 :         for_each_pwq(pwq, wq) {
    4822           0 :                 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
    4823           0 :                 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
    4824             :                         /*
    4825             :                          * Defer printing to avoid deadlocks in console
    4826             :                          * drivers that queue work while holding locks
    4827             :                          * also taken in their write paths.
    4828             :                          */
    4829           0 :                         printk_deferred_enter();
    4830           0 :                         show_pwq(pwq);
    4831           0 :                         printk_deferred_exit();
    4832             :                 }
    4833           0 :                 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
    4834             :                 /*
    4835             :                  * We could be printing a lot from atomic context, e.g.
    4836             :                  * sysrq-t -> show_all_workqueues(). Avoid triggering
    4837             :                  * hard lockup.
    4838             :                  */
    4839             :                 touch_nmi_watchdog();
    4840             :         }
    4841             : 
    4842             : }
    4843             : 
    4844             : /**
    4845             :  * show_one_worker_pool - dump state of specified worker pool
    4846             :  * @pool: worker pool whose state will be printed
    4847             :  */
    4848           0 : static void show_one_worker_pool(struct worker_pool *pool)
    4849             : {
    4850             :         struct worker *worker;
    4851           0 :         bool first = true;
    4852             :         unsigned long flags;
    4853             : 
    4854           0 :         raw_spin_lock_irqsave(&pool->lock, flags);
    4855           0 :         if (pool->nr_workers == pool->nr_idle)
    4856             :                 goto next_pool;
    4857             :         /*
    4858             :          * Defer printing to avoid deadlocks in console drivers that
    4859             :          * queue work while holding locks also taken in their write
    4860             :          * paths.
    4861             :          */
    4862           0 :         printk_deferred_enter();
    4863           0 :         pr_info("pool %d:", pool->id);
    4864           0 :         pr_cont_pool_info(pool);
    4865           0 :         pr_cont(" hung=%us workers=%d",
    4866             :                 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
    4867             :                 pool->nr_workers);
    4868           0 :         if (pool->manager)
    4869           0 :                 pr_cont(" manager: %d",
    4870             :                         task_pid_nr(pool->manager->task));
    4871           0 :         list_for_each_entry(worker, &pool->idle_list, entry) {
    4872           0 :                 pr_cont(" %s%d", first ? "idle: " : "",
    4873             :                         task_pid_nr(worker->task));
    4874           0 :                 first = false;
    4875             :         }
    4876           0 :         pr_cont("\n");
    4877           0 :         printk_deferred_exit();
    4878             : next_pool:
    4879           0 :         raw_spin_unlock_irqrestore(&pool->lock, flags);
    4880             :         /*
    4881             :          * We could be printing a lot from atomic context, e.g.
    4882             :          * sysrq-t -> show_all_workqueues(). Avoid triggering
    4883             :          * hard lockup.
    4884             :          */
    4885             :         touch_nmi_watchdog();
    4886             : 
    4887           0 : }
    4888             : 
    4889             : /**
    4890             :  * show_all_workqueues - dump workqueue state
    4891             :  *
    4892             :  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
    4893             :  * all busy workqueues and pools.
    4894             :  */
    4895           0 : void show_all_workqueues(void)
    4896             : {
    4897             :         struct workqueue_struct *wq;
    4898             :         struct worker_pool *pool;
    4899             :         int pi;
    4900             : 
    4901             :         rcu_read_lock();
    4902             : 
    4903           0 :         pr_info("Showing busy workqueues and worker pools:\n");
    4904             : 
    4905           0 :         list_for_each_entry_rcu(wq, &workqueues, list)
    4906           0 :                 show_one_workqueue(wq);
    4907             : 
    4908           0 :         for_each_pool(pool, pi)
    4909           0 :                 show_one_worker_pool(pool);
    4910             : 
    4911             :         rcu_read_unlock();
    4912           0 : }
    4913             : 
    4914             : /* used to show worker information through /proc/PID/{comm,stat,status} */
    4915           0 : void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
    4916             : {
    4917             :         int off;
    4918             : 
    4919             :         /* always show the actual comm */
    4920           0 :         off = strscpy(buf, task->comm, size);
    4921           0 :         if (off < 0)
    4922             :                 return;
    4923             : 
    4924             :         /* stabilize PF_WQ_WORKER and worker pool association */
    4925           0 :         mutex_lock(&wq_pool_attach_mutex);
    4926             : 
    4927           0 :         if (task->flags & PF_WQ_WORKER) {
    4928           0 :                 struct worker *worker = kthread_data(task);
    4929           0 :                 struct worker_pool *pool = worker->pool;
    4930             : 
    4931           0 :                 if (pool) {
    4932           0 :                         raw_spin_lock_irq(&pool->lock);
    4933             :                         /*
    4934             :                          * ->desc tracks information (wq name or
    4935             :                          * set_worker_desc()) for the latest execution.  If
    4936             :                          * current, prepend '+', otherwise '-'.
    4937             :                          */
    4938           0 :                         if (worker->desc[0] != '\0') {
    4939           0 :                                 if (worker->current_work)
    4940           0 :                                         scnprintf(buf + off, size - off, "+%s",
    4941           0 :                                                   worker->desc);
    4942             :                                 else
    4943           0 :                                         scnprintf(buf + off, size - off, "-%s",
    4944           0 :                                                   worker->desc);
    4945             :                         }
    4946           0 :                         raw_spin_unlock_irq(&pool->lock);
    4947             :                 }
    4948             :         }
    4949             : 
    4950           0 :         mutex_unlock(&wq_pool_attach_mutex);
    4951             : }
    4952             : 
    4953             : #ifdef CONFIG_SMP
    4954             : 
    4955             : /*
    4956             :  * CPU hotplug.
    4957             :  *
    4958             :  * There are two challenges in supporting CPU hotplug.  Firstly, there
    4959             :  * are a lot of assumptions on strong associations among work, pwq and
    4960             :  * pool which make migrating pending and scheduled works very
    4961             :  * difficult to implement without impacting hot paths.  Secondly,
    4962             :  * worker pools serve mix of short, long and very long running works making
    4963             :  * blocked draining impractical.
    4964             :  *
    4965             :  * This is solved by allowing the pools to be disassociated from the CPU
    4966             :  * running as an unbound one and allowing it to be reattached later if the
    4967             :  * cpu comes back online.
    4968             :  */
    4969             : 
    4970             : static void unbind_workers(int cpu)
    4971             : {
    4972             :         struct worker_pool *pool;
    4973             :         struct worker *worker;
    4974             : 
    4975             :         for_each_cpu_worker_pool(pool, cpu) {
    4976             :                 mutex_lock(&wq_pool_attach_mutex);
    4977             :                 raw_spin_lock_irq(&pool->lock);
    4978             : 
    4979             :                 /*
    4980             :                  * We've blocked all attach/detach operations. Make all workers
    4981             :                  * unbound and set DISASSOCIATED.  Before this, all workers
    4982             :                  * must be on the cpu.  After this, they may become diasporas.
    4983             :                  * And the preemption disabled section in their sched callbacks
    4984             :                  * are guaranteed to see WORKER_UNBOUND since the code here
    4985             :                  * is on the same cpu.
    4986             :                  */
    4987             :                 for_each_pool_worker(worker, pool)
    4988             :                         worker->flags |= WORKER_UNBOUND;
    4989             : 
    4990             :                 pool->flags |= POOL_DISASSOCIATED;
    4991             : 
    4992             :                 /*
    4993             :                  * The handling of nr_running in sched callbacks are disabled
    4994             :                  * now.  Zap nr_running.  After this, nr_running stays zero and
    4995             :                  * need_more_worker() and keep_working() are always true as
    4996             :                  * long as the worklist is not empty.  This pool now behaves as
    4997             :                  * an unbound (in terms of concurrency management) pool which
    4998             :                  * are served by workers tied to the pool.
    4999             :                  */
    5000             :                 pool->nr_running = 0;
    5001             : 
    5002             :                 /*
    5003             :                  * With concurrency management just turned off, a busy
    5004             :                  * worker blocking could lead to lengthy stalls.  Kick off
    5005             :                  * unbound chain execution of currently pending work items.
    5006             :                  */
    5007             :                 wake_up_worker(pool);
    5008             : 
    5009             :                 raw_spin_unlock_irq(&pool->lock);
    5010             : 
    5011             :                 for_each_pool_worker(worker, pool) {
    5012             :                         kthread_set_per_cpu(worker->task, -1);
    5013             :                         WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
    5014             :                 }
    5015             : 
    5016             :                 mutex_unlock(&wq_pool_attach_mutex);
    5017             :         }
    5018             : }
    5019             : 
    5020             : /**
    5021             :  * rebind_workers - rebind all workers of a pool to the associated CPU
    5022             :  * @pool: pool of interest
    5023             :  *
    5024             :  * @pool->cpu is coming online.  Rebind all workers to the CPU.
    5025             :  */
    5026             : static void rebind_workers(struct worker_pool *pool)
    5027             : {
    5028             :         struct worker *worker;
    5029             : 
    5030             :         lockdep_assert_held(&wq_pool_attach_mutex);
    5031             : 
    5032             :         /*
    5033             :          * Restore CPU affinity of all workers.  As all idle workers should
    5034             :          * be on the run-queue of the associated CPU before any local
    5035             :          * wake-ups for concurrency management happen, restore CPU affinity
    5036             :          * of all workers first and then clear UNBOUND.  As we're called
    5037             :          * from CPU_ONLINE, the following shouldn't fail.
    5038             :          */
    5039             :         for_each_pool_worker(worker, pool) {
    5040             :                 kthread_set_per_cpu(worker->task, pool->cpu);
    5041             :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
    5042             :                                                   pool->attrs->cpumask) < 0);
    5043             :         }
    5044             : 
    5045             :         raw_spin_lock_irq(&pool->lock);
    5046             : 
    5047             :         pool->flags &= ~POOL_DISASSOCIATED;
    5048             : 
    5049             :         for_each_pool_worker(worker, pool) {
    5050             :                 unsigned int worker_flags = worker->flags;
    5051             : 
    5052             :                 /*
    5053             :                  * We want to clear UNBOUND but can't directly call
    5054             :                  * worker_clr_flags() or adjust nr_running.  Atomically
    5055             :                  * replace UNBOUND with another NOT_RUNNING flag REBOUND.
    5056             :                  * @worker will clear REBOUND using worker_clr_flags() when
    5057             :                  * it initiates the next execution cycle thus restoring
    5058             :                  * concurrency management.  Note that when or whether
    5059             :                  * @worker clears REBOUND doesn't affect correctness.
    5060             :                  *
    5061             :                  * WRITE_ONCE() is necessary because @worker->flags may be
    5062             :                  * tested without holding any lock in
    5063             :                  * wq_worker_running().  Without it, NOT_RUNNING test may
    5064             :                  * fail incorrectly leading to premature concurrency
    5065             :                  * management operations.
    5066             :                  */
    5067             :                 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
    5068             :                 worker_flags |= WORKER_REBOUND;
    5069             :                 worker_flags &= ~WORKER_UNBOUND;
    5070             :                 WRITE_ONCE(worker->flags, worker_flags);
    5071             :         }
    5072             : 
    5073             :         raw_spin_unlock_irq(&pool->lock);
    5074             : }
    5075             : 
    5076             : /**
    5077             :  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
    5078             :  * @pool: unbound pool of interest
    5079             :  * @cpu: the CPU which is coming up
    5080             :  *
    5081             :  * An unbound pool may end up with a cpumask which doesn't have any online
    5082             :  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
    5083             :  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
    5084             :  * online CPU before, cpus_allowed of all its workers should be restored.
    5085             :  */
    5086             : static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
    5087             : {
    5088             :         static cpumask_t cpumask;
    5089             :         struct worker *worker;
    5090             : 
    5091             :         lockdep_assert_held(&wq_pool_attach_mutex);
    5092             : 
    5093             :         /* is @cpu allowed for @pool? */
    5094             :         if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
    5095             :                 return;
    5096             : 
    5097             :         cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
    5098             : 
    5099             :         /* as we're called from CPU_ONLINE, the following shouldn't fail */
    5100             :         for_each_pool_worker(worker, pool)
    5101             :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
    5102             : }
    5103             : 
    5104             : int workqueue_prepare_cpu(unsigned int cpu)
    5105             : {
    5106             :         struct worker_pool *pool;
    5107             : 
    5108             :         for_each_cpu_worker_pool(pool, cpu) {
    5109             :                 if (pool->nr_workers)
    5110             :                         continue;
    5111             :                 if (!create_worker(pool))
    5112             :                         return -ENOMEM;
    5113             :         }
    5114             :         return 0;
    5115             : }
    5116             : 
    5117             : int workqueue_online_cpu(unsigned int cpu)
    5118             : {
    5119             :         struct worker_pool *pool;
    5120             :         struct workqueue_struct *wq;
    5121             :         int pi;
    5122             : 
    5123             :         mutex_lock(&wq_pool_mutex);
    5124             : 
    5125             :         for_each_pool(pool, pi) {
    5126             :                 mutex_lock(&wq_pool_attach_mutex);
    5127             : 
    5128             :                 if (pool->cpu == cpu)
    5129             :                         rebind_workers(pool);
    5130             :                 else if (pool->cpu < 0)
    5131             :                         restore_unbound_workers_cpumask(pool, cpu);
    5132             : 
    5133             :                 mutex_unlock(&wq_pool_attach_mutex);
    5134             :         }
    5135             : 
    5136             :         /* update NUMA affinity of unbound workqueues */
    5137             :         list_for_each_entry(wq, &workqueues, list)
    5138             :                 wq_update_unbound_numa(wq, cpu, true);
    5139             : 
    5140             :         mutex_unlock(&wq_pool_mutex);
    5141             :         return 0;
    5142             : }
    5143             : 
    5144             : int workqueue_offline_cpu(unsigned int cpu)
    5145             : {
    5146             :         struct workqueue_struct *wq;
    5147             : 
    5148             :         /* unbinding per-cpu workers should happen on the local CPU */
    5149             :         if (WARN_ON(cpu != smp_processor_id()))
    5150             :                 return -1;
    5151             : 
    5152             :         unbind_workers(cpu);
    5153             : 
    5154             :         /* update NUMA affinity of unbound workqueues */
    5155             :         mutex_lock(&wq_pool_mutex);
    5156             :         list_for_each_entry(wq, &workqueues, list)
    5157             :                 wq_update_unbound_numa(wq, cpu, false);
    5158             :         mutex_unlock(&wq_pool_mutex);
    5159             : 
    5160             :         return 0;
    5161             : }
    5162             : 
    5163             : struct work_for_cpu {
    5164             :         struct work_struct work;
    5165             :         long (*fn)(void *);
    5166             :         void *arg;
    5167             :         long ret;
    5168             : };
    5169             : 
    5170             : static void work_for_cpu_fn(struct work_struct *work)
    5171             : {
    5172             :         struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
    5173             : 
    5174             :         wfc->ret = wfc->fn(wfc->arg);
    5175             : }
    5176             : 
    5177             : /**
    5178             :  * work_on_cpu - run a function in thread context on a particular cpu
    5179             :  * @cpu: the cpu to run on
    5180             :  * @fn: the function to run
    5181             :  * @arg: the function arg
    5182             :  *
    5183             :  * It is up to the caller to ensure that the cpu doesn't go offline.
    5184             :  * The caller must not hold any locks which would prevent @fn from completing.
    5185             :  *
    5186             :  * Return: The value @fn returns.
    5187             :  */
    5188             : long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
    5189             : {
    5190             :         struct work_for_cpu wfc = { .fn = fn, .arg = arg };
    5191             : 
    5192             :         INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
    5193             :         schedule_work_on(cpu, &wfc.work);
    5194             :         flush_work(&wfc.work);
    5195             :         destroy_work_on_stack(&wfc.work);
    5196             :         return wfc.ret;
    5197             : }
    5198             : EXPORT_SYMBOL_GPL(work_on_cpu);
    5199             : 
    5200             : /**
    5201             :  * work_on_cpu_safe - run a function in thread context on a particular cpu
    5202             :  * @cpu: the cpu to run on
    5203             :  * @fn:  the function to run
    5204             :  * @arg: the function argument
    5205             :  *
    5206             :  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
    5207             :  * any locks which would prevent @fn from completing.
    5208             :  *
    5209             :  * Return: The value @fn returns.
    5210             :  */
    5211             : long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
    5212             : {
    5213             :         long ret = -ENODEV;
    5214             : 
    5215             :         cpus_read_lock();
    5216             :         if (cpu_online(cpu))
    5217             :                 ret = work_on_cpu(cpu, fn, arg);
    5218             :         cpus_read_unlock();
    5219             :         return ret;
    5220             : }
    5221             : EXPORT_SYMBOL_GPL(work_on_cpu_safe);
    5222             : #endif /* CONFIG_SMP */
    5223             : 
    5224             : #ifdef CONFIG_FREEZER
    5225             : 
    5226             : /**
    5227             :  * freeze_workqueues_begin - begin freezing workqueues
    5228             :  *
    5229             :  * Start freezing workqueues.  After this function returns, all freezable
    5230             :  * workqueues will queue new works to their inactive_works list instead of
    5231             :  * pool->worklist.
    5232             :  *
    5233             :  * CONTEXT:
    5234             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    5235             :  */
    5236           0 : void freeze_workqueues_begin(void)
    5237             : {
    5238             :         struct workqueue_struct *wq;
    5239             :         struct pool_workqueue *pwq;
    5240             : 
    5241           0 :         mutex_lock(&wq_pool_mutex);
    5242             : 
    5243           0 :         WARN_ON_ONCE(workqueue_freezing);
    5244           0 :         workqueue_freezing = true;
    5245             : 
    5246           0 :         list_for_each_entry(wq, &workqueues, list) {
    5247           0 :                 mutex_lock(&wq->mutex);
    5248           0 :                 for_each_pwq(pwq, wq)
    5249           0 :                         pwq_adjust_max_active(pwq);
    5250           0 :                 mutex_unlock(&wq->mutex);
    5251             :         }
    5252             : 
    5253           0 :         mutex_unlock(&wq_pool_mutex);
    5254           0 : }
    5255             : 
    5256             : /**
    5257             :  * freeze_workqueues_busy - are freezable workqueues still busy?
    5258             :  *
    5259             :  * Check whether freezing is complete.  This function must be called
    5260             :  * between freeze_workqueues_begin() and thaw_workqueues().
    5261             :  *
    5262             :  * CONTEXT:
    5263             :  * Grabs and releases wq_pool_mutex.
    5264             :  *
    5265             :  * Return:
    5266             :  * %true if some freezable workqueues are still busy.  %false if freezing
    5267             :  * is complete.
    5268             :  */
    5269           0 : bool freeze_workqueues_busy(void)
    5270             : {
    5271           0 :         bool busy = false;
    5272             :         struct workqueue_struct *wq;
    5273             :         struct pool_workqueue *pwq;
    5274             : 
    5275           0 :         mutex_lock(&wq_pool_mutex);
    5276             : 
    5277           0 :         WARN_ON_ONCE(!workqueue_freezing);
    5278             : 
    5279           0 :         list_for_each_entry(wq, &workqueues, list) {
    5280           0 :                 if (!(wq->flags & WQ_FREEZABLE))
    5281           0 :                         continue;
    5282             :                 /*
    5283             :                  * nr_active is monotonically decreasing.  It's safe
    5284             :                  * to peek without lock.
    5285             :                  */
    5286             :                 rcu_read_lock();
    5287           0 :                 for_each_pwq(pwq, wq) {
    5288           0 :                         WARN_ON_ONCE(pwq->nr_active < 0);
    5289           0 :                         if (pwq->nr_active) {
    5290           0 :                                 busy = true;
    5291             :                                 rcu_read_unlock();
    5292             :                                 goto out_unlock;
    5293             :                         }
    5294             :                 }
    5295             :                 rcu_read_unlock();
    5296             :         }
    5297             : out_unlock:
    5298           0 :         mutex_unlock(&wq_pool_mutex);
    5299           0 :         return busy;
    5300             : }
    5301             : 
    5302             : /**
    5303             :  * thaw_workqueues - thaw workqueues
    5304             :  *
    5305             :  * Thaw workqueues.  Normal queueing is restored and all collected
    5306             :  * frozen works are transferred to their respective pool worklists.
    5307             :  *
    5308             :  * CONTEXT:
    5309             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    5310             :  */
    5311           0 : void thaw_workqueues(void)
    5312             : {
    5313             :         struct workqueue_struct *wq;
    5314             :         struct pool_workqueue *pwq;
    5315             : 
    5316           0 :         mutex_lock(&wq_pool_mutex);
    5317             : 
    5318           0 :         if (!workqueue_freezing)
    5319             :                 goto out_unlock;
    5320             : 
    5321           0 :         workqueue_freezing = false;
    5322             : 
    5323             :         /* restore max_active and repopulate worklist */
    5324           0 :         list_for_each_entry(wq, &workqueues, list) {
    5325           0 :                 mutex_lock(&wq->mutex);
    5326           0 :                 for_each_pwq(pwq, wq)
    5327           0 :                         pwq_adjust_max_active(pwq);
    5328           0 :                 mutex_unlock(&wq->mutex);
    5329             :         }
    5330             : 
    5331             : out_unlock:
    5332           0 :         mutex_unlock(&wq_pool_mutex);
    5333           0 : }
    5334             : #endif /* CONFIG_FREEZER */
    5335             : 
    5336           0 : static int workqueue_apply_unbound_cpumask(void)
    5337             : {
    5338           0 :         LIST_HEAD(ctxs);
    5339           0 :         int ret = 0;
    5340             :         struct workqueue_struct *wq;
    5341             :         struct apply_wqattrs_ctx *ctx, *n;
    5342             : 
    5343             :         lockdep_assert_held(&wq_pool_mutex);
    5344             : 
    5345           0 :         list_for_each_entry(wq, &workqueues, list) {
    5346           0 :                 if (!(wq->flags & WQ_UNBOUND))
    5347           0 :                         continue;
    5348             :                 /* creating multiple pwqs breaks ordering guarantee */
    5349           0 :                 if (wq->flags & __WQ_ORDERED)
    5350           0 :                         continue;
    5351             : 
    5352           0 :                 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
    5353           0 :                 if (!ctx) {
    5354             :                         ret = -ENOMEM;
    5355             :                         break;
    5356             :                 }
    5357             : 
    5358           0 :                 list_add_tail(&ctx->list, &ctxs);
    5359             :         }
    5360             : 
    5361           0 :         list_for_each_entry_safe(ctx, n, &ctxs, list) {
    5362           0 :                 if (!ret)
    5363           0 :                         apply_wqattrs_commit(ctx);
    5364           0 :                 apply_wqattrs_cleanup(ctx);
    5365             :         }
    5366             : 
    5367           0 :         return ret;
    5368             : }
    5369             : 
    5370             : /**
    5371             :  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
    5372             :  *  @cpumask: the cpumask to set
    5373             :  *
    5374             :  *  The low-level workqueues cpumask is a global cpumask that limits
    5375             :  *  the affinity of all unbound workqueues.  This function check the @cpumask
    5376             :  *  and apply it to all unbound workqueues and updates all pwqs of them.
    5377             :  *
    5378             :  *  Return:     0       - Success
    5379             :  *              -EINVAL - Invalid @cpumask
    5380             :  *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
    5381             :  */
    5382           0 : int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
    5383             : {
    5384           0 :         int ret = -EINVAL;
    5385             :         cpumask_var_t saved_cpumask;
    5386             : 
    5387             :         /*
    5388             :          * Not excluding isolated cpus on purpose.
    5389             :          * If the user wishes to include them, we allow that.
    5390             :          */
    5391           0 :         cpumask_and(cpumask, cpumask, cpu_possible_mask);
    5392           0 :         if (!cpumask_empty(cpumask)) {
    5393           0 :                 apply_wqattrs_lock();
    5394           0 :                 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
    5395             :                         ret = 0;
    5396             :                         goto out_unlock;
    5397             :                 }
    5398             : 
    5399           0 :                 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
    5400             :                         ret = -ENOMEM;
    5401             :                         goto out_unlock;
    5402             :                 }
    5403             : 
    5404             :                 /* save the old wq_unbound_cpumask. */
    5405           0 :                 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
    5406             : 
    5407             :                 /* update wq_unbound_cpumask at first and apply it to wqs. */
    5408           0 :                 cpumask_copy(wq_unbound_cpumask, cpumask);
    5409           0 :                 ret = workqueue_apply_unbound_cpumask();
    5410             : 
    5411             :                 /* restore the wq_unbound_cpumask when failed. */
    5412           0 :                 if (ret < 0)
    5413             :                         cpumask_copy(wq_unbound_cpumask, saved_cpumask);
    5414             : 
    5415             :                 free_cpumask_var(saved_cpumask);
    5416             : out_unlock:
    5417             :                 apply_wqattrs_unlock();
    5418             :         }
    5419             : 
    5420           0 :         return ret;
    5421             : }
    5422             : 
    5423             : #ifdef CONFIG_SYSFS
    5424             : /*
    5425             :  * Workqueues with WQ_SYSFS flag set is visible to userland via
    5426             :  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
    5427             :  * following attributes.
    5428             :  *
    5429             :  *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
    5430             :  *  max_active  RW int  : maximum number of in-flight work items
    5431             :  *
    5432             :  * Unbound workqueues have the following extra attributes.
    5433             :  *
    5434             :  *  pool_ids    RO int  : the associated pool IDs for each node
    5435             :  *  nice        RW int  : nice value of the workers
    5436             :  *  cpumask     RW mask : bitmask of allowed CPUs for the workers
    5437             :  *  numa        RW bool : whether enable NUMA affinity
    5438             :  */
    5439             : struct wq_device {
    5440             :         struct workqueue_struct         *wq;
    5441             :         struct device                   dev;
    5442             : };
    5443             : 
    5444             : static struct workqueue_struct *dev_to_wq(struct device *dev)
    5445             : {
    5446           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    5447             : 
    5448           0 :         return wq_dev->wq;
    5449             : }
    5450             : 
    5451           0 : static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
    5452             :                             char *buf)
    5453             : {
    5454           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5455             : 
    5456           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
    5457             : }
    5458             : static DEVICE_ATTR_RO(per_cpu);
    5459             : 
    5460           0 : static ssize_t max_active_show(struct device *dev,
    5461             :                                struct device_attribute *attr, char *buf)
    5462             : {
    5463           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5464             : 
    5465           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
    5466             : }
    5467             : 
    5468           0 : static ssize_t max_active_store(struct device *dev,
    5469             :                                 struct device_attribute *attr, const char *buf,
    5470             :                                 size_t count)
    5471             : {
    5472           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5473             :         int val;
    5474             : 
    5475           0 :         if (sscanf(buf, "%d", &val) != 1 || val <= 0)
    5476             :                 return -EINVAL;
    5477             : 
    5478           0 :         workqueue_set_max_active(wq, val);
    5479           0 :         return count;
    5480             : }
    5481             : static DEVICE_ATTR_RW(max_active);
    5482             : 
    5483             : static struct attribute *wq_sysfs_attrs[] = {
    5484             :         &dev_attr_per_cpu.attr,
    5485             :         &dev_attr_max_active.attr,
    5486             :         NULL,
    5487             : };
    5488             : ATTRIBUTE_GROUPS(wq_sysfs);
    5489             : 
    5490           0 : static ssize_t wq_pool_ids_show(struct device *dev,
    5491             :                                 struct device_attribute *attr, char *buf)
    5492             : {
    5493           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5494           0 :         const char *delim = "";
    5495           0 :         int node, written = 0;
    5496             : 
    5497             :         cpus_read_lock();
    5498             :         rcu_read_lock();
    5499           0 :         for_each_node(node) {
    5500           0 :                 written += scnprintf(buf + written, PAGE_SIZE - written,
    5501             :                                      "%s%d:%d", delim, node,
    5502           0 :                                      unbound_pwq_by_node(wq, node)->pool->id);
    5503           0 :                 delim = " ";
    5504             :         }
    5505           0 :         written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
    5506             :         rcu_read_unlock();
    5507             :         cpus_read_unlock();
    5508             : 
    5509           0 :         return written;
    5510             : }
    5511             : 
    5512           0 : static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
    5513             :                             char *buf)
    5514             : {
    5515           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5516             :         int written;
    5517             : 
    5518           0 :         mutex_lock(&wq->mutex);
    5519           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
    5520           0 :         mutex_unlock(&wq->mutex);
    5521             : 
    5522           0 :         return written;
    5523             : }
    5524             : 
    5525             : /* prepare workqueue_attrs for sysfs store operations */
    5526           0 : static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
    5527             : {
    5528             :         struct workqueue_attrs *attrs;
    5529             : 
    5530             :         lockdep_assert_held(&wq_pool_mutex);
    5531             : 
    5532           0 :         attrs = alloc_workqueue_attrs();
    5533           0 :         if (!attrs)
    5534             :                 return NULL;
    5535             : 
    5536           0 :         copy_workqueue_attrs(attrs, wq->unbound_attrs);
    5537           0 :         return attrs;
    5538             : }
    5539             : 
    5540           0 : static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
    5541             :                              const char *buf, size_t count)
    5542             : {
    5543           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5544             :         struct workqueue_attrs *attrs;
    5545           0 :         int ret = -ENOMEM;
    5546             : 
    5547             :         apply_wqattrs_lock();
    5548             : 
    5549           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5550           0 :         if (!attrs)
    5551             :                 goto out_unlock;
    5552             : 
    5553           0 :         if (sscanf(buf, "%d", &attrs->nice) == 1 &&
    5554           0 :             attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
    5555           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5556             :         else
    5557             :                 ret = -EINVAL;
    5558             : 
    5559             : out_unlock:
    5560           0 :         apply_wqattrs_unlock();
    5561           0 :         free_workqueue_attrs(attrs);
    5562           0 :         return ret ?: count;
    5563             : }
    5564             : 
    5565           0 : static ssize_t wq_cpumask_show(struct device *dev,
    5566             :                                struct device_attribute *attr, char *buf)
    5567             : {
    5568           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5569             :         int written;
    5570             : 
    5571           0 :         mutex_lock(&wq->mutex);
    5572           0 :         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
    5573           0 :                             cpumask_pr_args(wq->unbound_attrs->cpumask));
    5574           0 :         mutex_unlock(&wq->mutex);
    5575           0 :         return written;
    5576             : }
    5577             : 
    5578           0 : static ssize_t wq_cpumask_store(struct device *dev,
    5579             :                                 struct device_attribute *attr,
    5580             :                                 const char *buf, size_t count)
    5581             : {
    5582           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5583             :         struct workqueue_attrs *attrs;
    5584           0 :         int ret = -ENOMEM;
    5585             : 
    5586             :         apply_wqattrs_lock();
    5587             : 
    5588           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5589           0 :         if (!attrs)
    5590             :                 goto out_unlock;
    5591             : 
    5592           0 :         ret = cpumask_parse(buf, attrs->cpumask);
    5593           0 :         if (!ret)
    5594           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5595             : 
    5596             : out_unlock:
    5597           0 :         apply_wqattrs_unlock();
    5598           0 :         free_workqueue_attrs(attrs);
    5599           0 :         return ret ?: count;
    5600             : }
    5601             : 
    5602           0 : static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
    5603             :                             char *buf)
    5604             : {
    5605           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5606             :         int written;
    5607             : 
    5608           0 :         mutex_lock(&wq->mutex);
    5609           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n",
    5610           0 :                             !wq->unbound_attrs->no_numa);
    5611           0 :         mutex_unlock(&wq->mutex);
    5612             : 
    5613           0 :         return written;
    5614             : }
    5615             : 
    5616           0 : static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
    5617             :                              const char *buf, size_t count)
    5618             : {
    5619           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5620             :         struct workqueue_attrs *attrs;
    5621           0 :         int v, ret = -ENOMEM;
    5622             : 
    5623             :         apply_wqattrs_lock();
    5624             : 
    5625           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5626           0 :         if (!attrs)
    5627             :                 goto out_unlock;
    5628             : 
    5629           0 :         ret = -EINVAL;
    5630           0 :         if (sscanf(buf, "%d", &v) == 1) {
    5631           0 :                 attrs->no_numa = !v;
    5632           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5633             :         }
    5634             : 
    5635             : out_unlock:
    5636           0 :         apply_wqattrs_unlock();
    5637           0 :         free_workqueue_attrs(attrs);
    5638           0 :         return ret ?: count;
    5639             : }
    5640             : 
    5641             : static struct device_attribute wq_sysfs_unbound_attrs[] = {
    5642             :         __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
    5643             :         __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
    5644             :         __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
    5645             :         __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
    5646             :         __ATTR_NULL,
    5647             : };
    5648             : 
    5649             : static struct bus_type wq_subsys = {
    5650             :         .name                           = "workqueue",
    5651             :         .dev_groups                     = wq_sysfs_groups,
    5652             : };
    5653             : 
    5654           0 : static ssize_t wq_unbound_cpumask_show(struct device *dev,
    5655             :                 struct device_attribute *attr, char *buf)
    5656             : {
    5657             :         int written;
    5658             : 
    5659           0 :         mutex_lock(&wq_pool_mutex);
    5660           0 :         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
    5661             :                             cpumask_pr_args(wq_unbound_cpumask));
    5662           0 :         mutex_unlock(&wq_pool_mutex);
    5663             : 
    5664           0 :         return written;
    5665             : }
    5666             : 
    5667           0 : static ssize_t wq_unbound_cpumask_store(struct device *dev,
    5668             :                 struct device_attribute *attr, const char *buf, size_t count)
    5669             : {
    5670             :         cpumask_var_t cpumask;
    5671             :         int ret;
    5672             : 
    5673           0 :         if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
    5674             :                 return -ENOMEM;
    5675             : 
    5676           0 :         ret = cpumask_parse(buf, cpumask);
    5677           0 :         if (!ret)
    5678           0 :                 ret = workqueue_set_unbound_cpumask(cpumask);
    5679             : 
    5680           0 :         free_cpumask_var(cpumask);
    5681           0 :         return ret ? ret : count;
    5682             : }
    5683             : 
    5684             : static struct device_attribute wq_sysfs_cpumask_attr =
    5685             :         __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
    5686             :                wq_unbound_cpumask_store);
    5687             : 
    5688           1 : static int __init wq_sysfs_init(void)
    5689             : {
    5690             :         int err;
    5691             : 
    5692           1 :         err = subsys_virtual_register(&wq_subsys, NULL);
    5693           1 :         if (err)
    5694             :                 return err;
    5695             : 
    5696           1 :         return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
    5697             : }
    5698             : core_initcall(wq_sysfs_init);
    5699             : 
    5700           0 : static void wq_device_release(struct device *dev)
    5701             : {
    5702           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    5703             : 
    5704           0 :         kfree(wq_dev);
    5705           0 : }
    5706             : 
    5707             : /**
    5708             :  * workqueue_sysfs_register - make a workqueue visible in sysfs
    5709             :  * @wq: the workqueue to register
    5710             :  *
    5711             :  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
    5712             :  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
    5713             :  * which is the preferred method.
    5714             :  *
    5715             :  * Workqueue user should use this function directly iff it wants to apply
    5716             :  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
    5717             :  * apply_workqueue_attrs() may race against userland updating the
    5718             :  * attributes.
    5719             :  *
    5720             :  * Return: 0 on success, -errno on failure.
    5721             :  */
    5722           1 : int workqueue_sysfs_register(struct workqueue_struct *wq)
    5723             : {
    5724             :         struct wq_device *wq_dev;
    5725             :         int ret;
    5726             : 
    5727             :         /*
    5728             :          * Adjusting max_active or creating new pwqs by applying
    5729             :          * attributes breaks ordering guarantee.  Disallow exposing ordered
    5730             :          * workqueues.
    5731             :          */
    5732           1 :         if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    5733             :                 return -EINVAL;
    5734             : 
    5735           1 :         wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
    5736           1 :         if (!wq_dev)
    5737             :                 return -ENOMEM;
    5738             : 
    5739           1 :         wq_dev->wq = wq;
    5740           1 :         wq_dev->dev.bus = &wq_subsys;
    5741           1 :         wq_dev->dev.release = wq_device_release;
    5742           1 :         dev_set_name(&wq_dev->dev, "%s", wq->name);
    5743             : 
    5744             :         /*
    5745             :          * unbound_attrs are created separately.  Suppress uevent until
    5746             :          * everything is ready.
    5747             :          */
    5748           2 :         dev_set_uevent_suppress(&wq_dev->dev, true);
    5749             : 
    5750           1 :         ret = device_register(&wq_dev->dev);
    5751           1 :         if (ret) {
    5752           0 :                 put_device(&wq_dev->dev);
    5753           0 :                 wq->wq_dev = NULL;
    5754           0 :                 return ret;
    5755             :         }
    5756             : 
    5757           1 :         if (wq->flags & WQ_UNBOUND) {
    5758             :                 struct device_attribute *attr;
    5759             : 
    5760           4 :                 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
    5761           4 :                         ret = device_create_file(&wq_dev->dev, attr);
    5762           4 :                         if (ret) {
    5763           0 :                                 device_unregister(&wq_dev->dev);
    5764           0 :                                 wq->wq_dev = NULL;
    5765           0 :                                 return ret;
    5766             :                         }
    5767             :                 }
    5768             :         }
    5769             : 
    5770           2 :         dev_set_uevent_suppress(&wq_dev->dev, false);
    5771           1 :         kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
    5772           1 :         return 0;
    5773             : }
    5774             : 
    5775             : /**
    5776             :  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
    5777             :  * @wq: the workqueue to unregister
    5778             :  *
    5779             :  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
    5780             :  */
    5781             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
    5782             : {
    5783           0 :         struct wq_device *wq_dev = wq->wq_dev;
    5784             : 
    5785           0 :         if (!wq->wq_dev)
    5786             :                 return;
    5787             : 
    5788           0 :         wq->wq_dev = NULL;
    5789           0 :         device_unregister(&wq_dev->dev);
    5790             : }
    5791             : #else   /* CONFIG_SYSFS */
    5792             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
    5793             : #endif  /* CONFIG_SYSFS */
    5794             : 
    5795             : /*
    5796             :  * Workqueue watchdog.
    5797             :  *
    5798             :  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
    5799             :  * flush dependency, a concurrency managed work item which stays RUNNING
    5800             :  * indefinitely.  Workqueue stalls can be very difficult to debug as the
    5801             :  * usual warning mechanisms don't trigger and internal workqueue state is
    5802             :  * largely opaque.
    5803             :  *
    5804             :  * Workqueue watchdog monitors all worker pools periodically and dumps
    5805             :  * state if some pools failed to make forward progress for a while where
    5806             :  * forward progress is defined as the first item on ->worklist changing.
    5807             :  *
    5808             :  * This mechanism is controlled through the kernel parameter
    5809             :  * "workqueue.watchdog_thresh" which can be updated at runtime through the
    5810             :  * corresponding sysfs parameter file.
    5811             :  */
    5812             : #ifdef CONFIG_WQ_WATCHDOG
    5813             : 
    5814             : static unsigned long wq_watchdog_thresh = 30;
    5815             : static struct timer_list wq_watchdog_timer;
    5816             : 
    5817             : static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
    5818             : static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
    5819             : 
    5820             : static void wq_watchdog_reset_touched(void)
    5821             : {
    5822             :         int cpu;
    5823             : 
    5824             :         wq_watchdog_touched = jiffies;
    5825             :         for_each_possible_cpu(cpu)
    5826             :                 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
    5827             : }
    5828             : 
    5829             : static void wq_watchdog_timer_fn(struct timer_list *unused)
    5830             : {
    5831             :         unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
    5832             :         bool lockup_detected = false;
    5833             :         unsigned long now = jiffies;
    5834             :         struct worker_pool *pool;
    5835             :         int pi;
    5836             : 
    5837             :         if (!thresh)
    5838             :                 return;
    5839             : 
    5840             :         rcu_read_lock();
    5841             : 
    5842             :         for_each_pool(pool, pi) {
    5843             :                 unsigned long pool_ts, touched, ts;
    5844             : 
    5845             :                 if (list_empty(&pool->worklist))
    5846             :                         continue;
    5847             : 
    5848             :                 /*
    5849             :                  * If a virtual machine is stopped by the host it can look to
    5850             :                  * the watchdog like a stall.
    5851             :                  */
    5852             :                 kvm_check_and_clear_guest_paused();
    5853             : 
    5854             :                 /* get the latest of pool and touched timestamps */
    5855             :                 if (pool->cpu >= 0)
    5856             :                         touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
    5857             :                 else
    5858             :                         touched = READ_ONCE(wq_watchdog_touched);
    5859             :                 pool_ts = READ_ONCE(pool->watchdog_ts);
    5860             : 
    5861             :                 if (time_after(pool_ts, touched))
    5862             :                         ts = pool_ts;
    5863             :                 else
    5864             :                         ts = touched;
    5865             : 
    5866             :                 /* did we stall? */
    5867             :                 if (time_after(now, ts + thresh)) {
    5868             :                         lockup_detected = true;
    5869             :                         pr_emerg("BUG: workqueue lockup - pool");
    5870             :                         pr_cont_pool_info(pool);
    5871             :                         pr_cont(" stuck for %us!\n",
    5872             :                                 jiffies_to_msecs(now - pool_ts) / 1000);
    5873             :                 }
    5874             :         }
    5875             : 
    5876             :         rcu_read_unlock();
    5877             : 
    5878             :         if (lockup_detected)
    5879             :                 show_all_workqueues();
    5880             : 
    5881             :         wq_watchdog_reset_touched();
    5882             :         mod_timer(&wq_watchdog_timer, jiffies + thresh);
    5883             : }
    5884             : 
    5885             : notrace void wq_watchdog_touch(int cpu)
    5886             : {
    5887             :         if (cpu >= 0)
    5888             :                 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
    5889             : 
    5890             :         wq_watchdog_touched = jiffies;
    5891             : }
    5892             : 
    5893             : static void wq_watchdog_set_thresh(unsigned long thresh)
    5894             : {
    5895             :         wq_watchdog_thresh = 0;
    5896             :         del_timer_sync(&wq_watchdog_timer);
    5897             : 
    5898             :         if (thresh) {
    5899             :                 wq_watchdog_thresh = thresh;
    5900             :                 wq_watchdog_reset_touched();
    5901             :                 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
    5902             :         }
    5903             : }
    5904             : 
    5905             : static int wq_watchdog_param_set_thresh(const char *val,
    5906             :                                         const struct kernel_param *kp)
    5907             : {
    5908             :         unsigned long thresh;
    5909             :         int ret;
    5910             : 
    5911             :         ret = kstrtoul(val, 0, &thresh);
    5912             :         if (ret)
    5913             :                 return ret;
    5914             : 
    5915             :         if (system_wq)
    5916             :                 wq_watchdog_set_thresh(thresh);
    5917             :         else
    5918             :                 wq_watchdog_thresh = thresh;
    5919             : 
    5920             :         return 0;
    5921             : }
    5922             : 
    5923             : static const struct kernel_param_ops wq_watchdog_thresh_ops = {
    5924             :         .set    = wq_watchdog_param_set_thresh,
    5925             :         .get    = param_get_ulong,
    5926             : };
    5927             : 
    5928             : module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
    5929             :                 0644);
    5930             : 
    5931             : static void wq_watchdog_init(void)
    5932             : {
    5933             :         timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
    5934             :         wq_watchdog_set_thresh(wq_watchdog_thresh);
    5935             : }
    5936             : 
    5937             : #else   /* CONFIG_WQ_WATCHDOG */
    5938             : 
    5939             : static inline void wq_watchdog_init(void) { }
    5940             : 
    5941             : #endif  /* CONFIG_WQ_WATCHDOG */
    5942             : 
    5943             : static void __init wq_numa_init(void)
    5944             : {
    5945             :         cpumask_var_t *tbl;
    5946             :         int node, cpu;
    5947             : 
    5948           1 :         if (num_possible_nodes() <= 1)
    5949             :                 return;
    5950             : 
    5951             :         if (wq_disable_numa) {
    5952             :                 pr_info("workqueue: NUMA affinity support disabled\n");
    5953             :                 return;
    5954             :         }
    5955             : 
    5956             :         for_each_possible_cpu(cpu) {
    5957             :                 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
    5958             :                         pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
    5959             :                         return;
    5960             :                 }
    5961             :         }
    5962             : 
    5963             :         wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
    5964             :         BUG_ON(!wq_update_unbound_numa_attrs_buf);
    5965             : 
    5966             :         /*
    5967             :          * We want masks of possible CPUs of each node which isn't readily
    5968             :          * available.  Build one from cpu_to_node() which should have been
    5969             :          * fully initialized by now.
    5970             :          */
    5971             :         tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
    5972             :         BUG_ON(!tbl);
    5973             : 
    5974             :         for_each_node(node)
    5975             :                 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
    5976             :                                 node_online(node) ? node : NUMA_NO_NODE));
    5977             : 
    5978             :         for_each_possible_cpu(cpu) {
    5979             :                 node = cpu_to_node(cpu);
    5980             :                 cpumask_set_cpu(cpu, tbl[node]);
    5981             :         }
    5982             : 
    5983             :         wq_numa_possible_cpumask = tbl;
    5984             :         wq_numa_enabled = true;
    5985             : }
    5986             : 
    5987             : /**
    5988             :  * workqueue_init_early - early init for workqueue subsystem
    5989             :  *
    5990             :  * This is the first half of two-staged workqueue subsystem initialization
    5991             :  * and invoked as soon as the bare basics - memory allocation, cpumasks and
    5992             :  * idr are up.  It sets up all the data structures and system workqueues
    5993             :  * and allows early boot code to create workqueues and queue/cancel work
    5994             :  * items.  Actual work item execution starts only after kthreads can be
    5995             :  * created and scheduled right before early initcalls.
    5996             :  */
    5997           1 : void __init workqueue_init_early(void)
    5998             : {
    5999           1 :         int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
    6000             :         int i, cpu;
    6001             : 
    6002             :         BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
    6003             : 
    6004           1 :         BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
    6005           2 :         cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
    6006           2 :         cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
    6007             : 
    6008           1 :         pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
    6009             : 
    6010             :         /* initialize CPU pools */
    6011           2 :         for_each_possible_cpu(cpu) {
    6012             :                 struct worker_pool *pool;
    6013             : 
    6014             :                 i = 0;
    6015           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6016           2 :                         BUG_ON(init_worker_pool(pool));
    6017           2 :                         pool->cpu = cpu;
    6018           6 :                         cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
    6019           2 :                         pool->attrs->nice = std_nice[i++];
    6020           2 :                         pool->node = cpu_to_node(cpu);
    6021             : 
    6022             :                         /* alloc pool ID */
    6023           2 :                         mutex_lock(&wq_pool_mutex);
    6024           2 :                         BUG_ON(worker_pool_assign_id(pool));
    6025           2 :                         mutex_unlock(&wq_pool_mutex);
    6026             :                 }
    6027             :         }
    6028             : 
    6029             :         /* create default unbound and ordered wq attrs */
    6030           2 :         for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
    6031             :                 struct workqueue_attrs *attrs;
    6032             : 
    6033           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs()));
    6034           2 :                 attrs->nice = std_nice[i];
    6035           2 :                 unbound_std_wq_attrs[i] = attrs;
    6036             : 
    6037             :                 /*
    6038             :                  * An ordered wq should have only one pwq as ordering is
    6039             :                  * guaranteed by max_active which is enforced by pwqs.
    6040             :                  * Turn off NUMA so that dfl_pwq is used for all nodes.
    6041             :                  */
    6042           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs()));
    6043           2 :                 attrs->nice = std_nice[i];
    6044           2 :                 attrs->no_numa = true;
    6045           2 :                 ordered_wq_attrs[i] = attrs;
    6046             :         }
    6047             : 
    6048           1 :         system_wq = alloc_workqueue("events", 0, 0);
    6049           1 :         system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
    6050           1 :         system_long_wq = alloc_workqueue("events_long", 0, 0);
    6051           1 :         system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
    6052             :                                             WQ_UNBOUND_MAX_ACTIVE);
    6053           1 :         system_freezable_wq = alloc_workqueue("events_freezable",
    6054             :                                               WQ_FREEZABLE, 0);
    6055           1 :         system_power_efficient_wq = alloc_workqueue("events_power_efficient",
    6056             :                                               WQ_POWER_EFFICIENT, 0);
    6057           1 :         system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
    6058             :                                               WQ_FREEZABLE | WQ_POWER_EFFICIENT,
    6059             :                                               0);
    6060           1 :         BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
    6061             :                !system_unbound_wq || !system_freezable_wq ||
    6062             :                !system_power_efficient_wq ||
    6063             :                !system_freezable_power_efficient_wq);
    6064           1 : }
    6065             : 
    6066             : /**
    6067             :  * workqueue_init - bring workqueue subsystem fully online
    6068             :  *
    6069             :  * This is the latter half of two-staged workqueue subsystem initialization
    6070             :  * and invoked as soon as kthreads can be created and scheduled.
    6071             :  * Workqueues have been created and work items queued on them, but there
    6072             :  * are no kworkers executing the work items yet.  Populate the worker pools
    6073             :  * with the initial workers and enable future kworker creations.
    6074             :  */
    6075           1 : void __init workqueue_init(void)
    6076             : {
    6077             :         struct workqueue_struct *wq;
    6078             :         struct worker_pool *pool;
    6079             :         int cpu, bkt;
    6080             : 
    6081             :         /*
    6082             :          * It'd be simpler to initialize NUMA in workqueue_init_early() but
    6083             :          * CPU to node mapping may not be available that early on some
    6084             :          * archs such as power and arm64.  As per-cpu pools created
    6085             :          * previously could be missing node hint and unbound pools NUMA
    6086             :          * affinity, fix them up.
    6087             :          *
    6088             :          * Also, while iterating workqueues, create rescuers if requested.
    6089             :          */
    6090             :         wq_numa_init();
    6091             : 
    6092           1 :         mutex_lock(&wq_pool_mutex);
    6093             : 
    6094           2 :         for_each_possible_cpu(cpu) {
    6095           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6096           2 :                         pool->node = cpu_to_node(cpu);
    6097             :                 }
    6098             :         }
    6099             : 
    6100           8 :         list_for_each_entry(wq, &workqueues, list) {
    6101           7 :                 wq_update_unbound_numa(wq, smp_processor_id(), true);
    6102           7 :                 WARN(init_rescuer(wq),
    6103             :                      "workqueue: failed to create early rescuer for %s",
    6104             :                      wq->name);
    6105             :         }
    6106             : 
    6107           1 :         mutex_unlock(&wq_pool_mutex);
    6108             : 
    6109             :         /* create the initial workers */
    6110           2 :         for_each_online_cpu(cpu) {
    6111           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6112           2 :                         pool->flags &= ~POOL_DISASSOCIATED;
    6113           2 :                         BUG_ON(!create_worker(pool));
    6114             :                 }
    6115             :         }
    6116             : 
    6117          65 :         hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
    6118           1 :                 BUG_ON(!create_worker(pool));
    6119             : 
    6120           1 :         wq_online = true;
    6121             :         wq_watchdog_init();
    6122           1 : }

Generated by: LCOV version 1.14