LCOV - code coverage report
Current view: top level - lib - bitmap.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 30 363 8.3 %
Date: 2022-12-09 01:23:36 Functions: 2 47 4.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * lib/bitmap.c
       4             :  * Helper functions for bitmap.h.
       5             :  */
       6             : 
       7             : #include <linux/bitmap.h>
       8             : #include <linux/bitops.h>
       9             : #include <linux/bug.h>
      10             : #include <linux/ctype.h>
      11             : #include <linux/device.h>
      12             : #include <linux/errno.h>
      13             : #include <linux/export.h>
      14             : #include <linux/kernel.h>
      15             : #include <linux/mm.h>
      16             : #include <linux/slab.h>
      17             : #include <linux/string.h>
      18             : #include <linux/thread_info.h>
      19             : #include <linux/uaccess.h>
      20             : 
      21             : #include <asm/page.h>
      22             : 
      23             : #include "kstrtox.h"
      24             : 
      25             : /**
      26             :  * DOC: bitmap introduction
      27             :  *
      28             :  * bitmaps provide an array of bits, implemented using an
      29             :  * array of unsigned longs.  The number of valid bits in a
      30             :  * given bitmap does _not_ need to be an exact multiple of
      31             :  * BITS_PER_LONG.
      32             :  *
      33             :  * The possible unused bits in the last, partially used word
      34             :  * of a bitmap are 'don't care'.  The implementation makes
      35             :  * no particular effort to keep them zero.  It ensures that
      36             :  * their value will not affect the results of any operation.
      37             :  * The bitmap operations that return Boolean (bitmap_empty,
      38             :  * for example) or scalar (bitmap_weight, for example) results
      39             :  * carefully filter out these unused bits from impacting their
      40             :  * results.
      41             :  *
      42             :  * The byte ordering of bitmaps is more natural on little
      43             :  * endian architectures.  See the big-endian headers
      44             :  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
      45             :  * for the best explanations of this ordering.
      46             :  */
      47             : 
      48           0 : int __bitmap_equal(const unsigned long *bitmap1,
      49             :                 const unsigned long *bitmap2, unsigned int bits)
      50             : {
      51           0 :         unsigned int k, lim = bits/BITS_PER_LONG;
      52           0 :         for (k = 0; k < lim; ++k)
      53           0 :                 if (bitmap1[k] != bitmap2[k])
      54             :                         return 0;
      55             : 
      56           0 :         if (bits % BITS_PER_LONG)
      57           0 :                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
      58             :                         return 0;
      59             : 
      60           0 :         return 1;
      61             : }
      62             : EXPORT_SYMBOL(__bitmap_equal);
      63             : 
      64           0 : bool __bitmap_or_equal(const unsigned long *bitmap1,
      65             :                        const unsigned long *bitmap2,
      66             :                        const unsigned long *bitmap3,
      67             :                        unsigned int bits)
      68             : {
      69           0 :         unsigned int k, lim = bits / BITS_PER_LONG;
      70             :         unsigned long tmp;
      71             : 
      72           0 :         for (k = 0; k < lim; ++k) {
      73           0 :                 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
      74             :                         return false;
      75             :         }
      76             : 
      77           0 :         if (!(bits % BITS_PER_LONG))
      78             :                 return true;
      79             : 
      80           0 :         tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
      81           0 :         return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
      82             : }
      83             : 
      84           0 : void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
      85             : {
      86           0 :         unsigned int k, lim = BITS_TO_LONGS(bits);
      87           0 :         for (k = 0; k < lim; ++k)
      88           0 :                 dst[k] = ~src[k];
      89           0 : }
      90             : EXPORT_SYMBOL(__bitmap_complement);
      91             : 
      92             : /**
      93             :  * __bitmap_shift_right - logical right shift of the bits in a bitmap
      94             :  *   @dst : destination bitmap
      95             :  *   @src : source bitmap
      96             :  *   @shift : shift by this many bits
      97             :  *   @nbits : bitmap size, in bits
      98             :  *
      99             :  * Shifting right (dividing) means moving bits in the MS -> LS bit
     100             :  * direction.  Zeros are fed into the vacated MS positions and the
     101             :  * LS bits shifted off the bottom are lost.
     102             :  */
     103           0 : void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
     104             :                         unsigned shift, unsigned nbits)
     105             : {
     106           0 :         unsigned k, lim = BITS_TO_LONGS(nbits);
     107           0 :         unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
     108           0 :         unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
     109           0 :         for (k = 0; off + k < lim; ++k) {
     110             :                 unsigned long upper, lower;
     111             : 
     112             :                 /*
     113             :                  * If shift is not word aligned, take lower rem bits of
     114             :                  * word above and make them the top rem bits of result.
     115             :                  */
     116           0 :                 if (!rem || off + k + 1 >= lim)
     117             :                         upper = 0;
     118             :                 else {
     119           0 :                         upper = src[off + k + 1];
     120           0 :                         if (off + k + 1 == lim - 1)
     121           0 :                                 upper &= mask;
     122           0 :                         upper <<= (BITS_PER_LONG - rem);
     123             :                 }
     124           0 :                 lower = src[off + k];
     125           0 :                 if (off + k == lim - 1)
     126           0 :                         lower &= mask;
     127           0 :                 lower >>= rem;
     128           0 :                 dst[k] = lower | upper;
     129             :         }
     130           0 :         if (off)
     131           0 :                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
     132           0 : }
     133             : EXPORT_SYMBOL(__bitmap_shift_right);
     134             : 
     135             : 
     136             : /**
     137             :  * __bitmap_shift_left - logical left shift of the bits in a bitmap
     138             :  *   @dst : destination bitmap
     139             :  *   @src : source bitmap
     140             :  *   @shift : shift by this many bits
     141             :  *   @nbits : bitmap size, in bits
     142             :  *
     143             :  * Shifting left (multiplying) means moving bits in the LS -> MS
     144             :  * direction.  Zeros are fed into the vacated LS bit positions
     145             :  * and those MS bits shifted off the top are lost.
     146             :  */
     147             : 
     148           0 : void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
     149             :                         unsigned int shift, unsigned int nbits)
     150             : {
     151             :         int k;
     152           0 :         unsigned int lim = BITS_TO_LONGS(nbits);
     153           0 :         unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
     154           0 :         for (k = lim - off - 1; k >= 0; --k) {
     155             :                 unsigned long upper, lower;
     156             : 
     157             :                 /*
     158             :                  * If shift is not word aligned, take upper rem bits of
     159             :                  * word below and make them the bottom rem bits of result.
     160             :                  */
     161           0 :                 if (rem && k > 0)
     162           0 :                         lower = src[k - 1] >> (BITS_PER_LONG - rem);
     163             :                 else
     164             :                         lower = 0;
     165           0 :                 upper = src[k] << rem;
     166           0 :                 dst[k + off] = lower | upper;
     167             :         }
     168           0 :         if (off)
     169           0 :                 memset(dst, 0, off*sizeof(unsigned long));
     170           0 : }
     171             : EXPORT_SYMBOL(__bitmap_shift_left);
     172             : 
     173             : /**
     174             :  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
     175             :  * @dst: destination bitmap, might overlap with src
     176             :  * @src: source bitmap
     177             :  * @first: start bit of region to be removed
     178             :  * @cut: number of bits to remove
     179             :  * @nbits: bitmap size, in bits
     180             :  *
     181             :  * Set the n-th bit of @dst iff the n-th bit of @src is set and
     182             :  * n is less than @first, or the m-th bit of @src is set for any
     183             :  * m such that @first <= n < nbits, and m = n + @cut.
     184             :  *
     185             :  * In pictures, example for a big-endian 32-bit architecture:
     186             :  *
     187             :  * The @src bitmap is::
     188             :  *
     189             :  *   31                                   63
     190             :  *   |                                    |
     191             :  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
     192             :  *                   |  |              |                                    |
     193             :  *                  16  14             0                                   32
     194             :  *
     195             :  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
     196             :  *
     197             :  *   31                                   63
     198             :  *   |                                    |
     199             :  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
     200             :  *                      |              |                                    |
     201             :  *                      14 (bit 17     0                                   32
     202             :  *                          from @src)
     203             :  *
     204             :  * Note that @dst and @src might overlap partially or entirely.
     205             :  *
     206             :  * This is implemented in the obvious way, with a shift and carry
     207             :  * step for each moved bit. Optimisation is left as an exercise
     208             :  * for the compiler.
     209             :  */
     210           0 : void bitmap_cut(unsigned long *dst, const unsigned long *src,
     211             :                 unsigned int first, unsigned int cut, unsigned int nbits)
     212             : {
     213           0 :         unsigned int len = BITS_TO_LONGS(nbits);
     214           0 :         unsigned long keep = 0, carry;
     215             :         int i;
     216             : 
     217           0 :         if (first % BITS_PER_LONG) {
     218           0 :                 keep = src[first / BITS_PER_LONG] &
     219           0 :                        (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
     220             :         }
     221             : 
     222           0 :         memmove(dst, src, len * sizeof(*dst));
     223             : 
     224           0 :         while (cut--) {
     225           0 :                 for (i = first / BITS_PER_LONG; i < len; i++) {
     226           0 :                         if (i < len - 1)
     227           0 :                                 carry = dst[i + 1] & 1UL;
     228             :                         else
     229             :                                 carry = 0;
     230             : 
     231           0 :                         dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
     232             :                 }
     233             :         }
     234             : 
     235           0 :         dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
     236           0 :         dst[first / BITS_PER_LONG] |= keep;
     237           0 : }
     238             : EXPORT_SYMBOL(bitmap_cut);
     239             : 
     240           0 : int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
     241             :                                 const unsigned long *bitmap2, unsigned int bits)
     242             : {
     243             :         unsigned int k;
     244           0 :         unsigned int lim = bits/BITS_PER_LONG;
     245           0 :         unsigned long result = 0;
     246             : 
     247           0 :         for (k = 0; k < lim; k++)
     248           0 :                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
     249           0 :         if (bits % BITS_PER_LONG)
     250           0 :                 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
     251           0 :                            BITMAP_LAST_WORD_MASK(bits));
     252           0 :         return result != 0;
     253             : }
     254             : EXPORT_SYMBOL(__bitmap_and);
     255             : 
     256           0 : void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
     257             :                                 const unsigned long *bitmap2, unsigned int bits)
     258             : {
     259             :         unsigned int k;
     260           0 :         unsigned int nr = BITS_TO_LONGS(bits);
     261             : 
     262           0 :         for (k = 0; k < nr; k++)
     263           0 :                 dst[k] = bitmap1[k] | bitmap2[k];
     264           0 : }
     265             : EXPORT_SYMBOL(__bitmap_or);
     266             : 
     267           0 : void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
     268             :                                 const unsigned long *bitmap2, unsigned int bits)
     269             : {
     270             :         unsigned int k;
     271           0 :         unsigned int nr = BITS_TO_LONGS(bits);
     272             : 
     273           0 :         for (k = 0; k < nr; k++)
     274           0 :                 dst[k] = bitmap1[k] ^ bitmap2[k];
     275           0 : }
     276             : EXPORT_SYMBOL(__bitmap_xor);
     277             : 
     278           0 : int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
     279             :                                 const unsigned long *bitmap2, unsigned int bits)
     280             : {
     281             :         unsigned int k;
     282           0 :         unsigned int lim = bits/BITS_PER_LONG;
     283           0 :         unsigned long result = 0;
     284             : 
     285           0 :         for (k = 0; k < lim; k++)
     286           0 :                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
     287           0 :         if (bits % BITS_PER_LONG)
     288           0 :                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
     289           0 :                            BITMAP_LAST_WORD_MASK(bits));
     290           0 :         return result != 0;
     291             : }
     292             : EXPORT_SYMBOL(__bitmap_andnot);
     293             : 
     294           0 : void __bitmap_replace(unsigned long *dst,
     295             :                       const unsigned long *old, const unsigned long *new,
     296             :                       const unsigned long *mask, unsigned int nbits)
     297             : {
     298             :         unsigned int k;
     299           0 :         unsigned int nr = BITS_TO_LONGS(nbits);
     300             : 
     301           0 :         for (k = 0; k < nr; k++)
     302           0 :                 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
     303           0 : }
     304             : EXPORT_SYMBOL(__bitmap_replace);
     305             : 
     306           0 : int __bitmap_intersects(const unsigned long *bitmap1,
     307             :                         const unsigned long *bitmap2, unsigned int bits)
     308             : {
     309           0 :         unsigned int k, lim = bits/BITS_PER_LONG;
     310           0 :         for (k = 0; k < lim; ++k)
     311           0 :                 if (bitmap1[k] & bitmap2[k])
     312             :                         return 1;
     313             : 
     314           0 :         if (bits % BITS_PER_LONG)
     315           0 :                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
     316             :                         return 1;
     317           0 :         return 0;
     318             : }
     319             : EXPORT_SYMBOL(__bitmap_intersects);
     320             : 
     321           0 : int __bitmap_subset(const unsigned long *bitmap1,
     322             :                     const unsigned long *bitmap2, unsigned int bits)
     323             : {
     324           0 :         unsigned int k, lim = bits/BITS_PER_LONG;
     325           0 :         for (k = 0; k < lim; ++k)
     326           0 :                 if (bitmap1[k] & ~bitmap2[k])
     327             :                         return 0;
     328             : 
     329           0 :         if (bits % BITS_PER_LONG)
     330           0 :                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
     331             :                         return 0;
     332           0 :         return 1;
     333             : }
     334             : EXPORT_SYMBOL(__bitmap_subset);
     335             : 
     336           0 : int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
     337             : {
     338           0 :         unsigned int k, lim = bits/BITS_PER_LONG;
     339           0 :         int w = 0;
     340             : 
     341           0 :         for (k = 0; k < lim; k++)
     342           0 :                 w += hweight_long(bitmap[k]);
     343             : 
     344           0 :         if (bits % BITS_PER_LONG)
     345           0 :                 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
     346             : 
     347           0 :         return w;
     348             : }
     349             : EXPORT_SYMBOL(__bitmap_weight);
     350             : 
     351         238 : void __bitmap_set(unsigned long *map, unsigned int start, int len)
     352             : {
     353         238 :         unsigned long *p = map + BIT_WORD(start);
     354         238 :         const unsigned int size = start + len;
     355         238 :         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
     356         238 :         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
     357             : 
     358         493 :         while (len - bits_to_set >= 0) {
     359          17 :                 *p |= mask_to_set;
     360          17 :                 len -= bits_to_set;
     361          17 :                 bits_to_set = BITS_PER_LONG;
     362          17 :                 mask_to_set = ~0UL;
     363          17 :                 p++;
     364             :         }
     365         238 :         if (len) {
     366         225 :                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
     367         225 :                 *p |= mask_to_set;
     368             :         }
     369         238 : }
     370             : EXPORT_SYMBOL(__bitmap_set);
     371             : 
     372         238 : void __bitmap_clear(unsigned long *map, unsigned int start, int len)
     373             : {
     374         238 :         unsigned long *p = map + BIT_WORD(start);
     375         238 :         const unsigned int size = start + len;
     376         238 :         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
     377         238 :         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
     378             : 
     379         489 :         while (len - bits_to_clear >= 0) {
     380          13 :                 *p &= ~mask_to_clear;
     381          13 :                 len -= bits_to_clear;
     382          13 :                 bits_to_clear = BITS_PER_LONG;
     383          13 :                 mask_to_clear = ~0UL;
     384          13 :                 p++;
     385             :         }
     386         238 :         if (len) {
     387          71 :                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
     388          71 :                 *p &= ~mask_to_clear;
     389             :         }
     390         238 : }
     391             : EXPORT_SYMBOL(__bitmap_clear);
     392             : 
     393             : /**
     394             :  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
     395             :  * @map: The address to base the search on
     396             :  * @size: The bitmap size in bits
     397             :  * @start: The bitnumber to start searching at
     398             :  * @nr: The number of zeroed bits we're looking for
     399             :  * @align_mask: Alignment mask for zero area
     400             :  * @align_offset: Alignment offset for zero area.
     401             :  *
     402             :  * The @align_mask should be one less than a power of 2; the effect is that
     403             :  * the bit offset of all zero areas this function finds plus @align_offset
     404             :  * is multiple of that power of 2.
     405             :  */
     406           0 : unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
     407             :                                              unsigned long size,
     408             :                                              unsigned long start,
     409             :                                              unsigned int nr,
     410             :                                              unsigned long align_mask,
     411             :                                              unsigned long align_offset)
     412             : {
     413             :         unsigned long index, end, i;
     414             : again:
     415           0 :         index = find_next_zero_bit(map, size, start);
     416             : 
     417             :         /* Align allocation */
     418           0 :         index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
     419             : 
     420           0 :         end = index + nr;
     421           0 :         if (end > size)
     422             :                 return end;
     423           0 :         i = find_next_bit(map, end, index);
     424           0 :         if (i < end) {
     425           0 :                 start = i + 1;
     426           0 :                 goto again;
     427             :         }
     428             :         return index;
     429             : }
     430             : EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
     431             : 
     432             : /*
     433             :  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
     434             :  * second version by Paul Jackson, third by Joe Korty.
     435             :  */
     436             : 
     437             : /**
     438             :  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
     439             :  *
     440             :  * @ubuf: pointer to user buffer containing string.
     441             :  * @ulen: buffer size in bytes.  If string is smaller than this
     442             :  *    then it must be terminated with a \0.
     443             :  * @maskp: pointer to bitmap array that will contain result.
     444             :  * @nmaskbits: size of bitmap, in bits.
     445             :  */
     446           0 : int bitmap_parse_user(const char __user *ubuf,
     447             :                         unsigned int ulen, unsigned long *maskp,
     448             :                         int nmaskbits)
     449             : {
     450             :         char *buf;
     451             :         int ret;
     452             : 
     453           0 :         buf = memdup_user_nul(ubuf, ulen);
     454           0 :         if (IS_ERR(buf))
     455           0 :                 return PTR_ERR(buf);
     456             : 
     457           0 :         ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
     458             : 
     459           0 :         kfree(buf);
     460           0 :         return ret;
     461             : }
     462             : EXPORT_SYMBOL(bitmap_parse_user);
     463             : 
     464             : /**
     465             :  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
     466             :  * @list: indicates whether the bitmap must be list
     467             :  * @buf: page aligned buffer into which string is placed
     468             :  * @maskp: pointer to bitmap to convert
     469             :  * @nmaskbits: size of bitmap, in bits
     470             :  *
     471             :  * Output format is a comma-separated list of decimal numbers and
     472             :  * ranges if list is specified or hex digits grouped into comma-separated
     473             :  * sets of 8 digits/set. Returns the number of characters written to buf.
     474             :  *
     475             :  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
     476             :  * area and that sufficient storage remains at @buf to accommodate the
     477             :  * bitmap_print_to_pagebuf() output. Returns the number of characters
     478             :  * actually printed to @buf, excluding terminating '\0'.
     479             :  */
     480           0 : int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
     481             :                             int nmaskbits)
     482             : {
     483           0 :         ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
     484             : 
     485           0 :         return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
     486             :                       scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
     487             : }
     488             : EXPORT_SYMBOL(bitmap_print_to_pagebuf);
     489             : 
     490             : /**
     491             :  * bitmap_print_to_buf  - convert bitmap to list or hex format ASCII string
     492             :  * @list: indicates whether the bitmap must be list
     493             :  *      true:  print in decimal list format
     494             :  *      false: print in hexadecimal bitmask format
     495             :  * @buf: buffer into which string is placed
     496             :  * @maskp: pointer to bitmap to convert
     497             :  * @nmaskbits: size of bitmap, in bits
     498             :  * @off: in the string from which we are copying, We copy to @buf
     499             :  * @count: the maximum number of bytes to print
     500             :  */
     501           0 : static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp,
     502             :                 int nmaskbits, loff_t off, size_t count)
     503             : {
     504           0 :         const char *fmt = list ? "%*pbl\n" : "%*pb\n";
     505             :         ssize_t size;
     506             :         void *data;
     507             : 
     508           0 :         data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp);
     509           0 :         if (!data)
     510             :                 return -ENOMEM;
     511             : 
     512           0 :         size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1);
     513           0 :         kfree(data);
     514             : 
     515           0 :         return size;
     516             : }
     517             : 
     518             : /**
     519             :  * bitmap_print_bitmask_to_buf  - convert bitmap to hex bitmask format ASCII string
     520             :  * @buf: buffer into which string is placed
     521             :  * @maskp: pointer to bitmap to convert
     522             :  * @nmaskbits: size of bitmap, in bits
     523             :  * @off: in the string from which we are copying, We copy to @buf
     524             :  * @count: the maximum number of bytes to print
     525             :  *
     526             :  * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper
     527             :  * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal
     528             :  * bitmask and decimal list to userspace by sysfs ABI.
     529             :  * Drivers might be using a normal attribute for this kind of ABIs. A
     530             :  * normal attribute typically has show entry as below:
     531             :  * static ssize_t example_attribute_show(struct device *dev,
     532             :  *              struct device_attribute *attr, char *buf)
     533             :  * {
     534             :  *      ...
     535             :  *      return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max);
     536             :  * }
     537             :  * show entry of attribute has no offset and count parameters and this
     538             :  * means the file is limited to one page only.
     539             :  * bitmap_print_to_pagebuf() API works terribly well for this kind of
     540             :  * normal attribute with buf parameter and without offset, count:
     541             :  * bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
     542             :  *                         int nmaskbits)
     543             :  * {
     544             :  * }
     545             :  * The problem is once we have a large bitmap, we have a chance to get a
     546             :  * bitmask or list more than one page. Especially for list, it could be
     547             :  * as complex as 0,3,5,7,9,... We have no simple way to know it exact size.
     548             :  * It turns out bin_attribute is a way to break this limit. bin_attribute
     549             :  * has show entry as below:
     550             :  * static ssize_t
     551             :  * example_bin_attribute_show(struct file *filp, struct kobject *kobj,
     552             :  *              struct bin_attribute *attr, char *buf,
     553             :  *              loff_t offset, size_t count)
     554             :  * {
     555             :  *      ...
     556             :  * }
     557             :  * With the new offset and count parameters, this makes sysfs ABI be able
     558             :  * to support file size more than one page. For example, offset could be
     559             :  * >= 4096.
     560             :  * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their
     561             :  * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf()
     562             :  * make those drivers be able to support large bitmask and list after they
     563             :  * move to use bin_attribute. In result, we have to pass the corresponding
     564             :  * parameters such as off, count from bin_attribute show entry to this API.
     565             :  *
     566             :  * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf()
     567             :  * is similar with cpumap_print_to_pagebuf(),  the difference is that
     568             :  * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption
     569             :  * the destination buffer is exactly one page and won't be more than one page.
     570             :  * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other
     571             :  * hand, mainly serves bin_attribute which doesn't work with exact one page,
     572             :  * and it can break the size limit of converted decimal list and hexadecimal
     573             :  * bitmask.
     574             :  *
     575             :  * WARNING!
     576             :  *
     577             :  * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf().
     578             :  * It is intended to workaround sysfs limitations discussed above and should be
     579             :  * used carefully in general case for the following reasons:
     580             :  *  - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf().
     581             :  *  - Memory complexity is O(nbits), comparing to O(1) for snprintf().
     582             :  *  - @off and @count are NOT offset and number of bits to print.
     583             :  *  - If printing part of bitmap as list, the resulting string is not a correct
     584             :  *    list representation of bitmap. Particularly, some bits within or out of
     585             :  *    related interval may be erroneously set or unset. The format of the string
     586             :  *    may be broken, so bitmap_parselist-like parser may fail parsing it.
     587             :  *  - If printing the whole bitmap as list by parts, user must ensure the order
     588             :  *    of calls of the function such that the offset is incremented linearly.
     589             :  *  - If printing the whole bitmap as list by parts, user must keep bitmap
     590             :  *    unchanged between the very first and very last call. Otherwise concatenated
     591             :  *    result may be incorrect, and format may be broken.
     592             :  *
     593             :  * Returns the number of characters actually printed to @buf
     594             :  */
     595           0 : int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
     596             :                                 int nmaskbits, loff_t off, size_t count)
     597             : {
     598           0 :         return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count);
     599             : }
     600             : EXPORT_SYMBOL(bitmap_print_bitmask_to_buf);
     601             : 
     602             : /**
     603             :  * bitmap_print_list_to_buf  - convert bitmap to decimal list format ASCII string
     604             :  * @buf: buffer into which string is placed
     605             :  * @maskp: pointer to bitmap to convert
     606             :  * @nmaskbits: size of bitmap, in bits
     607             :  * @off: in the string from which we are copying, We copy to @buf
     608             :  * @count: the maximum number of bytes to print
     609             :  *
     610             :  * Everything is same with the above bitmap_print_bitmask_to_buf() except
     611             :  * the print format.
     612             :  */
     613           0 : int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
     614             :                              int nmaskbits, loff_t off, size_t count)
     615             : {
     616           0 :         return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count);
     617             : }
     618             : EXPORT_SYMBOL(bitmap_print_list_to_buf);
     619             : 
     620             : /*
     621             :  * Region 9-38:4/10 describes the following bitmap structure:
     622             :  * 0       9  12    18                  38           N
     623             :  * .........****......****......****..................
     624             :  *          ^  ^     ^                   ^           ^
     625             :  *      start  off   group_len         end       nbits
     626             :  */
     627             : struct region {
     628             :         unsigned int start;
     629             :         unsigned int off;
     630             :         unsigned int group_len;
     631             :         unsigned int end;
     632             :         unsigned int nbits;
     633             : };
     634             : 
     635           0 : static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
     636             : {
     637             :         unsigned int start;
     638             : 
     639           0 :         for (start = r->start; start <= r->end; start += r->group_len)
     640           0 :                 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
     641           0 : }
     642             : 
     643             : static int bitmap_check_region(const struct region *r)
     644             : {
     645           0 :         if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
     646             :                 return -EINVAL;
     647             : 
     648           0 :         if (r->end >= r->nbits)
     649             :                 return -ERANGE;
     650             : 
     651             :         return 0;
     652             : }
     653             : 
     654           0 : static const char *bitmap_getnum(const char *str, unsigned int *num,
     655             :                                  unsigned int lastbit)
     656             : {
     657             :         unsigned long long n;
     658             :         unsigned int len;
     659             : 
     660           0 :         if (str[0] == 'N') {
     661           0 :                 *num = lastbit;
     662           0 :                 return str + 1;
     663             :         }
     664             : 
     665           0 :         len = _parse_integer(str, 10, &n);
     666           0 :         if (!len)
     667             :                 return ERR_PTR(-EINVAL);
     668           0 :         if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
     669             :                 return ERR_PTR(-EOVERFLOW);
     670             : 
     671           0 :         *num = n;
     672           0 :         return str + len;
     673             : }
     674             : 
     675             : static inline bool end_of_str(char c)
     676             : {
     677           0 :         return c == '\0' || c == '\n';
     678             : }
     679             : 
     680             : static inline bool __end_of_region(char c)
     681             : {
     682           0 :         return isspace(c) || c == ',';
     683             : }
     684             : 
     685             : static inline bool end_of_region(char c)
     686             : {
     687           0 :         return __end_of_region(c) || end_of_str(c);
     688             : }
     689             : 
     690             : /*
     691             :  * The format allows commas and whitespaces at the beginning
     692             :  * of the region.
     693             :  */
     694             : static const char *bitmap_find_region(const char *str)
     695             : {
     696           0 :         while (__end_of_region(*str))
     697           0 :                 str++;
     698             : 
     699           0 :         return end_of_str(*str) ? NULL : str;
     700             : }
     701             : 
     702             : static const char *bitmap_find_region_reverse(const char *start, const char *end)
     703             : {
     704           0 :         while (start <= end && __end_of_region(*end))
     705           0 :                 end--;
     706             : 
     707             :         return end;
     708             : }
     709             : 
     710           0 : static const char *bitmap_parse_region(const char *str, struct region *r)
     711             : {
     712           0 :         unsigned int lastbit = r->nbits - 1;
     713             : 
     714           0 :         if (!strncasecmp(str, "all", 3)) {
     715           0 :                 r->start = 0;
     716           0 :                 r->end = lastbit;
     717           0 :                 str += 3;
     718             : 
     719           0 :                 goto check_pattern;
     720             :         }
     721             : 
     722           0 :         str = bitmap_getnum(str, &r->start, lastbit);
     723           0 :         if (IS_ERR(str))
     724             :                 return str;
     725             : 
     726           0 :         if (end_of_region(*str))
     727             :                 goto no_end;
     728             : 
     729           0 :         if (*str != '-')
     730             :                 return ERR_PTR(-EINVAL);
     731             : 
     732           0 :         str = bitmap_getnum(str + 1, &r->end, lastbit);
     733           0 :         if (IS_ERR(str))
     734             :                 return str;
     735             : 
     736             : check_pattern:
     737           0 :         if (end_of_region(*str))
     738             :                 goto no_pattern;
     739             : 
     740           0 :         if (*str != ':')
     741             :                 return ERR_PTR(-EINVAL);
     742             : 
     743           0 :         str = bitmap_getnum(str + 1, &r->off, lastbit);
     744           0 :         if (IS_ERR(str))
     745             :                 return str;
     746             : 
     747           0 :         if (*str != '/')
     748             :                 return ERR_PTR(-EINVAL);
     749             : 
     750           0 :         return bitmap_getnum(str + 1, &r->group_len, lastbit);
     751             : 
     752             : no_end:
     753           0 :         r->end = r->start;
     754             : no_pattern:
     755           0 :         r->off = r->end + 1;
     756           0 :         r->group_len = r->end + 1;
     757             : 
     758           0 :         return end_of_str(*str) ? NULL : str;
     759             : }
     760             : 
     761             : /**
     762             :  * bitmap_parselist - convert list format ASCII string to bitmap
     763             :  * @buf: read user string from this buffer; must be terminated
     764             :  *    with a \0 or \n.
     765             :  * @maskp: write resulting mask here
     766             :  * @nmaskbits: number of bits in mask to be written
     767             :  *
     768             :  * Input format is a comma-separated list of decimal numbers and
     769             :  * ranges.  Consecutively set bits are shown as two hyphen-separated
     770             :  * decimal numbers, the smallest and largest bit numbers set in
     771             :  * the range.
     772             :  * Optionally each range can be postfixed to denote that only parts of it
     773             :  * should be set. The range will divided to groups of specific size.
     774             :  * From each group will be used only defined amount of bits.
     775             :  * Syntax: range:used_size/group_size
     776             :  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
     777             :  * The value 'N' can be used as a dynamically substituted token for the
     778             :  * maximum allowed value; i.e (nmaskbits - 1).  Keep in mind that it is
     779             :  * dynamic, so if system changes cause the bitmap width to change, such
     780             :  * as more cores in a CPU list, then any ranges using N will also change.
     781             :  *
     782             :  * Returns: 0 on success, -errno on invalid input strings. Error values:
     783             :  *
     784             :  *   - ``-EINVAL``: wrong region format
     785             :  *   - ``-EINVAL``: invalid character in string
     786             :  *   - ``-ERANGE``: bit number specified too large for mask
     787             :  *   - ``-EOVERFLOW``: integer overflow in the input parameters
     788             :  */
     789           0 : int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
     790             : {
     791             :         struct region r;
     792             :         long ret;
     793             : 
     794           0 :         r.nbits = nmaskbits;
     795           0 :         bitmap_zero(maskp, r.nbits);
     796             : 
     797           0 :         while (buf) {
     798           0 :                 buf = bitmap_find_region(buf);
     799           0 :                 if (buf == NULL)
     800             :                         return 0;
     801             : 
     802           0 :                 buf = bitmap_parse_region(buf, &r);
     803           0 :                 if (IS_ERR(buf))
     804           0 :                         return PTR_ERR(buf);
     805             : 
     806           0 :                 ret = bitmap_check_region(&r);
     807           0 :                 if (ret)
     808             :                         return ret;
     809             : 
     810           0 :                 bitmap_set_region(&r, maskp);
     811             :         }
     812             : 
     813             :         return 0;
     814             : }
     815             : EXPORT_SYMBOL(bitmap_parselist);
     816             : 
     817             : 
     818             : /**
     819             :  * bitmap_parselist_user() - convert user buffer's list format ASCII
     820             :  * string to bitmap
     821             :  *
     822             :  * @ubuf: pointer to user buffer containing string.
     823             :  * @ulen: buffer size in bytes.  If string is smaller than this
     824             :  *    then it must be terminated with a \0.
     825             :  * @maskp: pointer to bitmap array that will contain result.
     826             :  * @nmaskbits: size of bitmap, in bits.
     827             :  *
     828             :  * Wrapper for bitmap_parselist(), providing it with user buffer.
     829             :  */
     830           0 : int bitmap_parselist_user(const char __user *ubuf,
     831             :                         unsigned int ulen, unsigned long *maskp,
     832             :                         int nmaskbits)
     833             : {
     834             :         char *buf;
     835             :         int ret;
     836             : 
     837           0 :         buf = memdup_user_nul(ubuf, ulen);
     838           0 :         if (IS_ERR(buf))
     839           0 :                 return PTR_ERR(buf);
     840             : 
     841           0 :         ret = bitmap_parselist(buf, maskp, nmaskbits);
     842             : 
     843           0 :         kfree(buf);
     844           0 :         return ret;
     845             : }
     846             : EXPORT_SYMBOL(bitmap_parselist_user);
     847             : 
     848           0 : static const char *bitmap_get_x32_reverse(const char *start,
     849             :                                         const char *end, u32 *num)
     850             : {
     851           0 :         u32 ret = 0;
     852             :         int c, i;
     853             : 
     854           0 :         for (i = 0; i < 32; i += 4) {
     855           0 :                 c = hex_to_bin(*end--);
     856           0 :                 if (c < 0)
     857             :                         return ERR_PTR(-EINVAL);
     858             : 
     859           0 :                 ret |= c << i;
     860             : 
     861           0 :                 if (start > end || __end_of_region(*end))
     862             :                         goto out;
     863             :         }
     864             : 
     865           0 :         if (hex_to_bin(*end--) >= 0)
     866             :                 return ERR_PTR(-EOVERFLOW);
     867             : out:
     868           0 :         *num = ret;
     869           0 :         return end;
     870             : }
     871             : 
     872             : /**
     873             :  * bitmap_parse - convert an ASCII hex string into a bitmap.
     874             :  * @start: pointer to buffer containing string.
     875             :  * @buflen: buffer size in bytes.  If string is smaller than this
     876             :  *    then it must be terminated with a \0 or \n. In that case,
     877             :  *    UINT_MAX may be provided instead of string length.
     878             :  * @maskp: pointer to bitmap array that will contain result.
     879             :  * @nmaskbits: size of bitmap, in bits.
     880             :  *
     881             :  * Commas group hex digits into chunks.  Each chunk defines exactly 32
     882             :  * bits of the resultant bitmask.  No chunk may specify a value larger
     883             :  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
     884             :  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
     885             :  * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
     886             :  * Leading, embedded and trailing whitespace accepted.
     887             :  */
     888           0 : int bitmap_parse(const char *start, unsigned int buflen,
     889             :                 unsigned long *maskp, int nmaskbits)
     890             : {
     891           0 :         const char *end = strnchrnul(start, buflen, '\n') - 1;
     892           0 :         int chunks = BITS_TO_U32(nmaskbits);
     893           0 :         u32 *bitmap = (u32 *)maskp;
     894             :         int unset_bit;
     895             :         int chunk;
     896             : 
     897           0 :         for (chunk = 0; ; chunk++) {
     898           0 :                 end = bitmap_find_region_reverse(start, end);
     899           0 :                 if (start > end)
     900             :                         break;
     901             : 
     902           0 :                 if (!chunks--)
     903             :                         return -EOVERFLOW;
     904             : 
     905             : #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
     906             :                 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
     907             : #else
     908           0 :                 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
     909             : #endif
     910           0 :                 if (IS_ERR(end))
     911           0 :                         return PTR_ERR(end);
     912             :         }
     913             : 
     914           0 :         unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
     915           0 :         if (unset_bit < nmaskbits) {
     916           0 :                 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
     917             :                 return 0;
     918             :         }
     919             : 
     920           0 :         if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
     921             :                 return -EOVERFLOW;
     922             : 
     923           0 :         return 0;
     924             : }
     925             : EXPORT_SYMBOL(bitmap_parse);
     926             : 
     927             : /**
     928             :  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
     929             :  *      @buf: pointer to a bitmap
     930             :  *      @pos: a bit position in @buf (0 <= @pos < @nbits)
     931             :  *      @nbits: number of valid bit positions in @buf
     932             :  *
     933             :  * Map the bit at position @pos in @buf (of length @nbits) to the
     934             :  * ordinal of which set bit it is.  If it is not set or if @pos
     935             :  * is not a valid bit position, map to -1.
     936             :  *
     937             :  * If for example, just bits 4 through 7 are set in @buf, then @pos
     938             :  * values 4 through 7 will get mapped to 0 through 3, respectively,
     939             :  * and other @pos values will get mapped to -1.  When @pos value 7
     940             :  * gets mapped to (returns) @ord value 3 in this example, that means
     941             :  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
     942             :  *
     943             :  * The bit positions 0 through @bits are valid positions in @buf.
     944             :  */
     945           0 : static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
     946             : {
     947           0 :         if (pos >= nbits || !test_bit(pos, buf))
     948             :                 return -1;
     949             : 
     950           0 :         return __bitmap_weight(buf, pos);
     951             : }
     952             : 
     953             : /**
     954             :  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
     955             :  *      @buf: pointer to bitmap
     956             :  *      @ord: ordinal bit position (n-th set bit, n >= 0)
     957             :  *      @nbits: number of valid bit positions in @buf
     958             :  *
     959             :  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
     960             :  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
     961             :  * >= weight(buf), returns @nbits.
     962             :  *
     963             :  * If for example, just bits 4 through 7 are set in @buf, then @ord
     964             :  * values 0 through 3 will get mapped to 4 through 7, respectively,
     965             :  * and all other @ord values returns @nbits.  When @ord value 3
     966             :  * gets mapped to (returns) @pos value 7 in this example, that means
     967             :  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
     968             :  *
     969             :  * The bit positions 0 through @nbits-1 are valid positions in @buf.
     970             :  */
     971           0 : unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
     972             : {
     973             :         unsigned int pos;
     974             : 
     975           0 :         for (pos = find_first_bit(buf, nbits);
     976           0 :              pos < nbits && ord;
     977           0 :              pos = find_next_bit(buf, nbits, pos + 1))
     978           0 :                 ord--;
     979             : 
     980           0 :         return pos;
     981             : }
     982             : 
     983             : /**
     984             :  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
     985             :  *      @dst: remapped result
     986             :  *      @src: subset to be remapped
     987             :  *      @old: defines domain of map
     988             :  *      @new: defines range of map
     989             :  *      @nbits: number of bits in each of these bitmaps
     990             :  *
     991             :  * Let @old and @new define a mapping of bit positions, such that
     992             :  * whatever position is held by the n-th set bit in @old is mapped
     993             :  * to the n-th set bit in @new.  In the more general case, allowing
     994             :  * for the possibility that the weight 'w' of @new is less than the
     995             :  * weight of @old, map the position of the n-th set bit in @old to
     996             :  * the position of the m-th set bit in @new, where m == n % w.
     997             :  *
     998             :  * If either of the @old and @new bitmaps are empty, or if @src and
     999             :  * @dst point to the same location, then this routine copies @src
    1000             :  * to @dst.
    1001             :  *
    1002             :  * The positions of unset bits in @old are mapped to themselves
    1003             :  * (the identify map).
    1004             :  *
    1005             :  * Apply the above specified mapping to @src, placing the result in
    1006             :  * @dst, clearing any bits previously set in @dst.
    1007             :  *
    1008             :  * For example, lets say that @old has bits 4 through 7 set, and
    1009             :  * @new has bits 12 through 15 set.  This defines the mapping of bit
    1010             :  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
    1011             :  * bit positions unchanged.  So if say @src comes into this routine
    1012             :  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
    1013             :  * 13 and 15 set.
    1014             :  */
    1015           0 : void bitmap_remap(unsigned long *dst, const unsigned long *src,
    1016             :                 const unsigned long *old, const unsigned long *new,
    1017             :                 unsigned int nbits)
    1018             : {
    1019             :         unsigned int oldbit, w;
    1020             : 
    1021           0 :         if (dst == src)         /* following doesn't handle inplace remaps */
    1022             :                 return;
    1023           0 :         bitmap_zero(dst, nbits);
    1024             : 
    1025           0 :         w = bitmap_weight(new, nbits);
    1026           0 :         for_each_set_bit(oldbit, src, nbits) {
    1027           0 :                 int n = bitmap_pos_to_ord(old, oldbit, nbits);
    1028             : 
    1029           0 :                 if (n < 0 || w == 0)
    1030           0 :                         set_bit(oldbit, dst);   /* identity map */
    1031             :                 else
    1032           0 :                         set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
    1033             :         }
    1034             : }
    1035             : EXPORT_SYMBOL(bitmap_remap);
    1036             : 
    1037             : /**
    1038             :  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
    1039             :  *      @oldbit: bit position to be mapped
    1040             :  *      @old: defines domain of map
    1041             :  *      @new: defines range of map
    1042             :  *      @bits: number of bits in each of these bitmaps
    1043             :  *
    1044             :  * Let @old and @new define a mapping of bit positions, such that
    1045             :  * whatever position is held by the n-th set bit in @old is mapped
    1046             :  * to the n-th set bit in @new.  In the more general case, allowing
    1047             :  * for the possibility that the weight 'w' of @new is less than the
    1048             :  * weight of @old, map the position of the n-th set bit in @old to
    1049             :  * the position of the m-th set bit in @new, where m == n % w.
    1050             :  *
    1051             :  * The positions of unset bits in @old are mapped to themselves
    1052             :  * (the identify map).
    1053             :  *
    1054             :  * Apply the above specified mapping to bit position @oldbit, returning
    1055             :  * the new bit position.
    1056             :  *
    1057             :  * For example, lets say that @old has bits 4 through 7 set, and
    1058             :  * @new has bits 12 through 15 set.  This defines the mapping of bit
    1059             :  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
    1060             :  * bit positions unchanged.  So if say @oldbit is 5, then this routine
    1061             :  * returns 13.
    1062             :  */
    1063           0 : int bitmap_bitremap(int oldbit, const unsigned long *old,
    1064             :                                 const unsigned long *new, int bits)
    1065             : {
    1066           0 :         int w = bitmap_weight(new, bits);
    1067           0 :         int n = bitmap_pos_to_ord(old, oldbit, bits);
    1068           0 :         if (n < 0 || w == 0)
    1069             :                 return oldbit;
    1070             :         else
    1071           0 :                 return bitmap_ord_to_pos(new, n % w, bits);
    1072             : }
    1073             : EXPORT_SYMBOL(bitmap_bitremap);
    1074             : 
    1075             : #ifdef CONFIG_NUMA
    1076             : /**
    1077             :  * bitmap_onto - translate one bitmap relative to another
    1078             :  *      @dst: resulting translated bitmap
    1079             :  *      @orig: original untranslated bitmap
    1080             :  *      @relmap: bitmap relative to which translated
    1081             :  *      @bits: number of bits in each of these bitmaps
    1082             :  *
    1083             :  * Set the n-th bit of @dst iff there exists some m such that the
    1084             :  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
    1085             :  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
    1086             :  * (If you understood the previous sentence the first time your
    1087             :  * read it, you're overqualified for your current job.)
    1088             :  *
    1089             :  * In other words, @orig is mapped onto (surjectively) @dst,
    1090             :  * using the map { <n, m> | the n-th bit of @relmap is the
    1091             :  * m-th set bit of @relmap }.
    1092             :  *
    1093             :  * Any set bits in @orig above bit number W, where W is the
    1094             :  * weight of (number of set bits in) @relmap are mapped nowhere.
    1095             :  * In particular, if for all bits m set in @orig, m >= W, then
    1096             :  * @dst will end up empty.  In situations where the possibility
    1097             :  * of such an empty result is not desired, one way to avoid it is
    1098             :  * to use the bitmap_fold() operator, below, to first fold the
    1099             :  * @orig bitmap over itself so that all its set bits x are in the
    1100             :  * range 0 <= x < W.  The bitmap_fold() operator does this by
    1101             :  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
    1102             :  *
    1103             :  * Example [1] for bitmap_onto():
    1104             :  *  Let's say @relmap has bits 30-39 set, and @orig has bits
    1105             :  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
    1106             :  *  @dst will have bits 31, 33, 35, 37 and 39 set.
    1107             :  *
    1108             :  *  When bit 0 is set in @orig, it means turn on the bit in
    1109             :  *  @dst corresponding to whatever is the first bit (if any)
    1110             :  *  that is turned on in @relmap.  Since bit 0 was off in the
    1111             :  *  above example, we leave off that bit (bit 30) in @dst.
    1112             :  *
    1113             :  *  When bit 1 is set in @orig (as in the above example), it
    1114             :  *  means turn on the bit in @dst corresponding to whatever
    1115             :  *  is the second bit that is turned on in @relmap.  The second
    1116             :  *  bit in @relmap that was turned on in the above example was
    1117             :  *  bit 31, so we turned on bit 31 in @dst.
    1118             :  *
    1119             :  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
    1120             :  *  because they were the 4th, 6th, 8th and 10th set bits
    1121             :  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
    1122             :  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
    1123             :  *
    1124             :  *  When bit 11 is set in @orig, it means turn on the bit in
    1125             :  *  @dst corresponding to whatever is the twelfth bit that is
    1126             :  *  turned on in @relmap.  In the above example, there were
    1127             :  *  only ten bits turned on in @relmap (30..39), so that bit
    1128             :  *  11 was set in @orig had no affect on @dst.
    1129             :  *
    1130             :  * Example [2] for bitmap_fold() + bitmap_onto():
    1131             :  *  Let's say @relmap has these ten bits set::
    1132             :  *
    1133             :  *              40 41 42 43 45 48 53 61 74 95
    1134             :  *
    1135             :  *  (for the curious, that's 40 plus the first ten terms of the
    1136             :  *  Fibonacci sequence.)
    1137             :  *
    1138             :  *  Further lets say we use the following code, invoking
    1139             :  *  bitmap_fold() then bitmap_onto, as suggested above to
    1140             :  *  avoid the possibility of an empty @dst result::
    1141             :  *
    1142             :  *      unsigned long *tmp;     // a temporary bitmap's bits
    1143             :  *
    1144             :  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
    1145             :  *      bitmap_onto(dst, tmp, relmap, bits);
    1146             :  *
    1147             :  *  Then this table shows what various values of @dst would be, for
    1148             :  *  various @orig's.  I list the zero-based positions of each set bit.
    1149             :  *  The tmp column shows the intermediate result, as computed by
    1150             :  *  using bitmap_fold() to fold the @orig bitmap modulo ten
    1151             :  *  (the weight of @relmap):
    1152             :  *
    1153             :  *      =============== ============== =================
    1154             :  *      @orig           tmp            @dst
    1155             :  *      0                0             40
    1156             :  *      1                1             41
    1157             :  *      9                9             95
    1158             :  *      10               0             40 [#f1]_
    1159             :  *      1 3 5 7          1 3 5 7       41 43 48 61
    1160             :  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
    1161             :  *      0 9 18 27        0 9 8 7       40 61 74 95
    1162             :  *      0 10 20 30       0             40
    1163             :  *      0 11 22 33       0 1 2 3       40 41 42 43
    1164             :  *      0 12 24 36       0 2 4 6       40 42 45 53
    1165             :  *      78 102 211       1 2 8         41 42 74 [#f1]_
    1166             :  *      =============== ============== =================
    1167             :  *
    1168             :  * .. [#f1]
    1169             :  *
    1170             :  *     For these marked lines, if we hadn't first done bitmap_fold()
    1171             :  *     into tmp, then the @dst result would have been empty.
    1172             :  *
    1173             :  * If either of @orig or @relmap is empty (no set bits), then @dst
    1174             :  * will be returned empty.
    1175             :  *
    1176             :  * If (as explained above) the only set bits in @orig are in positions
    1177             :  * m where m >= W, (where W is the weight of @relmap) then @dst will
    1178             :  * once again be returned empty.
    1179             :  *
    1180             :  * All bits in @dst not set by the above rule are cleared.
    1181             :  */
    1182             : void bitmap_onto(unsigned long *dst, const unsigned long *orig,
    1183             :                         const unsigned long *relmap, unsigned int bits)
    1184             : {
    1185             :         unsigned int n, m;      /* same meaning as in above comment */
    1186             : 
    1187             :         if (dst == orig)        /* following doesn't handle inplace mappings */
    1188             :                 return;
    1189             :         bitmap_zero(dst, bits);
    1190             : 
    1191             :         /*
    1192             :          * The following code is a more efficient, but less
    1193             :          * obvious, equivalent to the loop:
    1194             :          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
    1195             :          *              n = bitmap_ord_to_pos(orig, m, bits);
    1196             :          *              if (test_bit(m, orig))
    1197             :          *                      set_bit(n, dst);
    1198             :          *      }
    1199             :          */
    1200             : 
    1201             :         m = 0;
    1202             :         for_each_set_bit(n, relmap, bits) {
    1203             :                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
    1204             :                 if (test_bit(m, orig))
    1205             :                         set_bit(n, dst);
    1206             :                 m++;
    1207             :         }
    1208             : }
    1209             : 
    1210             : /**
    1211             :  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
    1212             :  *      @dst: resulting smaller bitmap
    1213             :  *      @orig: original larger bitmap
    1214             :  *      @sz: specified size
    1215             :  *      @nbits: number of bits in each of these bitmaps
    1216             :  *
    1217             :  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
    1218             :  * Clear all other bits in @dst.  See further the comment and
    1219             :  * Example [2] for bitmap_onto() for why and how to use this.
    1220             :  */
    1221             : void bitmap_fold(unsigned long *dst, const unsigned long *orig,
    1222             :                         unsigned int sz, unsigned int nbits)
    1223             : {
    1224             :         unsigned int oldbit;
    1225             : 
    1226             :         if (dst == orig)        /* following doesn't handle inplace mappings */
    1227             :                 return;
    1228             :         bitmap_zero(dst, nbits);
    1229             : 
    1230             :         for_each_set_bit(oldbit, orig, nbits)
    1231             :                 set_bit(oldbit % sz, dst);
    1232             : }
    1233             : #endif /* CONFIG_NUMA */
    1234             : 
    1235             : /*
    1236             :  * Common code for bitmap_*_region() routines.
    1237             :  *      bitmap: array of unsigned longs corresponding to the bitmap
    1238             :  *      pos: the beginning of the region
    1239             :  *      order: region size (log base 2 of number of bits)
    1240             :  *      reg_op: operation(s) to perform on that region of bitmap
    1241             :  *
    1242             :  * Can set, verify and/or release a region of bits in a bitmap,
    1243             :  * depending on which combination of REG_OP_* flag bits is set.
    1244             :  *
    1245             :  * A region of a bitmap is a sequence of bits in the bitmap, of
    1246             :  * some size '1 << order' (a power of two), aligned to that same
    1247             :  * '1 << order' power of two.
    1248             :  *
    1249             :  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
    1250             :  * Returns 0 in all other cases and reg_ops.
    1251             :  */
    1252             : 
    1253             : enum {
    1254             :         REG_OP_ISFREE,          /* true if region is all zero bits */
    1255             :         REG_OP_ALLOC,           /* set all bits in region */
    1256             :         REG_OP_RELEASE,         /* clear all bits in region */
    1257             : };
    1258             : 
    1259           0 : static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
    1260             : {
    1261             :         int nbits_reg;          /* number of bits in region */
    1262             :         int index;              /* index first long of region in bitmap */
    1263             :         int offset;             /* bit offset region in bitmap[index] */
    1264             :         int nlongs_reg;         /* num longs spanned by region in bitmap */
    1265             :         int nbitsinlong;        /* num bits of region in each spanned long */
    1266             :         unsigned long mask;     /* bitmask for one long of region */
    1267             :         int i;                  /* scans bitmap by longs */
    1268           0 :         int ret = 0;            /* return value */
    1269             : 
    1270             :         /*
    1271             :          * Either nlongs_reg == 1 (for small orders that fit in one long)
    1272             :          * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
    1273             :          */
    1274           0 :         nbits_reg = 1 << order;
    1275           0 :         index = pos / BITS_PER_LONG;
    1276           0 :         offset = pos - (index * BITS_PER_LONG);
    1277           0 :         nlongs_reg = BITS_TO_LONGS(nbits_reg);
    1278           0 :         nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
    1279             : 
    1280             :         /*
    1281             :          * Can't do "mask = (1UL << nbitsinlong) - 1", as that
    1282             :          * overflows if nbitsinlong == BITS_PER_LONG.
    1283             :          */
    1284           0 :         mask = (1UL << (nbitsinlong - 1));
    1285           0 :         mask += mask - 1;
    1286           0 :         mask <<= offset;
    1287             : 
    1288           0 :         switch (reg_op) {
    1289             :         case REG_OP_ISFREE:
    1290           0 :                 for (i = 0; i < nlongs_reg; i++) {
    1291           0 :                         if (bitmap[index + i] & mask)
    1292             :                                 goto done;
    1293             :                 }
    1294             :                 ret = 1;        /* all bits in region free (zero) */
    1295             :                 break;
    1296             : 
    1297             :         case REG_OP_ALLOC:
    1298           0 :                 for (i = 0; i < nlongs_reg; i++)
    1299           0 :                         bitmap[index + i] |= mask;
    1300             :                 break;
    1301             : 
    1302             :         case REG_OP_RELEASE:
    1303           0 :                 for (i = 0; i < nlongs_reg; i++)
    1304           0 :                         bitmap[index + i] &= ~mask;
    1305             :                 break;
    1306             :         }
    1307             : done:
    1308           0 :         return ret;
    1309             : }
    1310             : 
    1311             : /**
    1312             :  * bitmap_find_free_region - find a contiguous aligned mem region
    1313             :  *      @bitmap: array of unsigned longs corresponding to the bitmap
    1314             :  *      @bits: number of bits in the bitmap
    1315             :  *      @order: region size (log base 2 of number of bits) to find
    1316             :  *
    1317             :  * Find a region of free (zero) bits in a @bitmap of @bits bits and
    1318             :  * allocate them (set them to one).  Only consider regions of length
    1319             :  * a power (@order) of two, aligned to that power of two, which
    1320             :  * makes the search algorithm much faster.
    1321             :  *
    1322             :  * Return the bit offset in bitmap of the allocated region,
    1323             :  * or -errno on failure.
    1324             :  */
    1325           0 : int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
    1326             : {
    1327             :         unsigned int pos, end;          /* scans bitmap by regions of size order */
    1328             : 
    1329           0 :         for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
    1330           0 :                 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
    1331           0 :                         continue;
    1332           0 :                 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
    1333           0 :                 return pos;
    1334             :         }
    1335             :         return -ENOMEM;
    1336             : }
    1337             : EXPORT_SYMBOL(bitmap_find_free_region);
    1338             : 
    1339             : /**
    1340             :  * bitmap_release_region - release allocated bitmap region
    1341             :  *      @bitmap: array of unsigned longs corresponding to the bitmap
    1342             :  *      @pos: beginning of bit region to release
    1343             :  *      @order: region size (log base 2 of number of bits) to release
    1344             :  *
    1345             :  * This is the complement to __bitmap_find_free_region() and releases
    1346             :  * the found region (by clearing it in the bitmap).
    1347             :  *
    1348             :  * No return value.
    1349             :  */
    1350           0 : void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
    1351             : {
    1352           0 :         __reg_op(bitmap, pos, order, REG_OP_RELEASE);
    1353           0 : }
    1354             : EXPORT_SYMBOL(bitmap_release_region);
    1355             : 
    1356             : /**
    1357             :  * bitmap_allocate_region - allocate bitmap region
    1358             :  *      @bitmap: array of unsigned longs corresponding to the bitmap
    1359             :  *      @pos: beginning of bit region to allocate
    1360             :  *      @order: region size (log base 2 of number of bits) to allocate
    1361             :  *
    1362             :  * Allocate (set bits in) a specified region of a bitmap.
    1363             :  *
    1364             :  * Return 0 on success, or %-EBUSY if specified region wasn't
    1365             :  * free (not all bits were zero).
    1366             :  */
    1367           0 : int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
    1368             : {
    1369           0 :         if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
    1370             :                 return -EBUSY;
    1371           0 :         return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
    1372             : }
    1373             : EXPORT_SYMBOL(bitmap_allocate_region);
    1374             : 
    1375             : /**
    1376             :  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
    1377             :  * @dst:   destination buffer
    1378             :  * @src:   bitmap to copy
    1379             :  * @nbits: number of bits in the bitmap
    1380             :  *
    1381             :  * Require nbits % BITS_PER_LONG == 0.
    1382             :  */
    1383             : #ifdef __BIG_ENDIAN
    1384             : void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
    1385             : {
    1386             :         unsigned int i;
    1387             : 
    1388             :         for (i = 0; i < nbits/BITS_PER_LONG; i++) {
    1389             :                 if (BITS_PER_LONG == 64)
    1390             :                         dst[i] = cpu_to_le64(src[i]);
    1391             :                 else
    1392             :                         dst[i] = cpu_to_le32(src[i]);
    1393             :         }
    1394             : }
    1395             : EXPORT_SYMBOL(bitmap_copy_le);
    1396             : #endif
    1397             : 
    1398           0 : unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
    1399             : {
    1400           0 :         return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
    1401             :                              flags);
    1402             : }
    1403             : EXPORT_SYMBOL(bitmap_alloc);
    1404             : 
    1405           0 : unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
    1406             : {
    1407           0 :         return bitmap_alloc(nbits, flags | __GFP_ZERO);
    1408             : }
    1409             : EXPORT_SYMBOL(bitmap_zalloc);
    1410             : 
    1411           0 : unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
    1412             : {
    1413           0 :         return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
    1414             :                                   flags, node);
    1415             : }
    1416             : EXPORT_SYMBOL(bitmap_alloc_node);
    1417             : 
    1418           0 : unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
    1419             : {
    1420           0 :         return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
    1421             : }
    1422             : EXPORT_SYMBOL(bitmap_zalloc_node);
    1423             : 
    1424           0 : void bitmap_free(const unsigned long *bitmap)
    1425             : {
    1426           0 :         kfree(bitmap);
    1427           0 : }
    1428             : EXPORT_SYMBOL(bitmap_free);
    1429             : 
    1430           0 : static void devm_bitmap_free(void *data)
    1431             : {
    1432           0 :         unsigned long *bitmap = data;
    1433             : 
    1434           0 :         bitmap_free(bitmap);
    1435           0 : }
    1436             : 
    1437           0 : unsigned long *devm_bitmap_alloc(struct device *dev,
    1438             :                                  unsigned int nbits, gfp_t flags)
    1439             : {
    1440             :         unsigned long *bitmap;
    1441             :         int ret;
    1442             : 
    1443           0 :         bitmap = bitmap_alloc(nbits, flags);
    1444           0 :         if (!bitmap)
    1445             :                 return NULL;
    1446             : 
    1447           0 :         ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
    1448           0 :         if (ret)
    1449             :                 return NULL;
    1450             : 
    1451           0 :         return bitmap;
    1452             : }
    1453             : EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
    1454             : 
    1455           0 : unsigned long *devm_bitmap_zalloc(struct device *dev,
    1456             :                                   unsigned int nbits, gfp_t flags)
    1457             : {
    1458           0 :         return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
    1459             : }
    1460             : EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
    1461             : 
    1462             : #if BITS_PER_LONG == 64
    1463             : /**
    1464             :  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
    1465             :  *      @bitmap: array of unsigned longs, the destination bitmap
    1466             :  *      @buf: array of u32 (in host byte order), the source bitmap
    1467             :  *      @nbits: number of bits in @bitmap
    1468             :  */
    1469           0 : void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
    1470             : {
    1471             :         unsigned int i, halfwords;
    1472             : 
    1473           0 :         halfwords = DIV_ROUND_UP(nbits, 32);
    1474           0 :         for (i = 0; i < halfwords; i++) {
    1475           0 :                 bitmap[i/2] = (unsigned long) buf[i];
    1476           0 :                 if (++i < halfwords)
    1477           0 :                         bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
    1478             :         }
    1479             : 
    1480             :         /* Clear tail bits in last word beyond nbits. */
    1481           0 :         if (nbits % BITS_PER_LONG)
    1482           0 :                 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
    1483           0 : }
    1484             : EXPORT_SYMBOL(bitmap_from_arr32);
    1485             : 
    1486             : /**
    1487             :  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
    1488             :  *      @buf: array of u32 (in host byte order), the dest bitmap
    1489             :  *      @bitmap: array of unsigned longs, the source bitmap
    1490             :  *      @nbits: number of bits in @bitmap
    1491             :  */
    1492           0 : void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
    1493             : {
    1494             :         unsigned int i, halfwords;
    1495             : 
    1496           0 :         halfwords = DIV_ROUND_UP(nbits, 32);
    1497           0 :         for (i = 0; i < halfwords; i++) {
    1498           0 :                 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
    1499           0 :                 if (++i < halfwords)
    1500           0 :                         buf[i] = (u32) (bitmap[i/2] >> 32);
    1501             :         }
    1502             : 
    1503             :         /* Clear tail bits in last element of array beyond nbits. */
    1504           0 :         if (nbits % BITS_PER_LONG)
    1505           0 :                 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
    1506           0 : }
    1507             : EXPORT_SYMBOL(bitmap_to_arr32);
    1508             : 
    1509             : #endif

Generated by: LCOV version 1.14