Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/mm/filemap.c
4 : *
5 : * Copyright (C) 1994-1999 Linus Torvalds
6 : */
7 :
8 : /*
9 : * This file handles the generic file mmap semantics used by
10 : * most "normal" filesystems (but you don't /have/ to use this:
11 : * the NFS filesystem used to do this differently, for example)
12 : */
13 : #include <linux/export.h>
14 : #include <linux/compiler.h>
15 : #include <linux/dax.h>
16 : #include <linux/fs.h>
17 : #include <linux/sched/signal.h>
18 : #include <linux/uaccess.h>
19 : #include <linux/capability.h>
20 : #include <linux/kernel_stat.h>
21 : #include <linux/gfp.h>
22 : #include <linux/mm.h>
23 : #include <linux/swap.h>
24 : #include <linux/swapops.h>
25 : #include <linux/mman.h>
26 : #include <linux/pagemap.h>
27 : #include <linux/file.h>
28 : #include <linux/uio.h>
29 : #include <linux/error-injection.h>
30 : #include <linux/hash.h>
31 : #include <linux/writeback.h>
32 : #include <linux/backing-dev.h>
33 : #include <linux/pagevec.h>
34 : #include <linux/security.h>
35 : #include <linux/cpuset.h>
36 : #include <linux/hugetlb.h>
37 : #include <linux/memcontrol.h>
38 : #include <linux/shmem_fs.h>
39 : #include <linux/rmap.h>
40 : #include <linux/delayacct.h>
41 : #include <linux/psi.h>
42 : #include <linux/ramfs.h>
43 : #include <linux/page_idle.h>
44 : #include <linux/migrate.h>
45 : #include <asm/pgalloc.h>
46 : #include <asm/tlbflush.h>
47 : #include "internal.h"
48 :
49 : #define CREATE_TRACE_POINTS
50 : #include <trace/events/filemap.h>
51 :
52 : /*
53 : * FIXME: remove all knowledge of the buffer layer from the core VM
54 : */
55 : #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 :
57 : #include <asm/mman.h>
58 :
59 : /*
60 : * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 : * though.
62 : *
63 : * Shared mappings now work. 15.8.1995 Bruno.
64 : *
65 : * finished 'unifying' the page and buffer cache and SMP-threaded the
66 : * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 : *
68 : * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 : */
70 :
71 : /*
72 : * Lock ordering:
73 : *
74 : * ->i_mmap_rwsem (truncate_pagecache)
75 : * ->private_lock (__free_pte->block_dirty_folio)
76 : * ->swap_lock (exclusive_swap_page, others)
77 : * ->i_pages lock
78 : *
79 : * ->i_rwsem
80 : * ->invalidate_lock (acquired by fs in truncate path)
81 : * ->i_mmap_rwsem (truncate->unmap_mapping_range)
82 : *
83 : * ->mmap_lock
84 : * ->i_mmap_rwsem
85 : * ->page_table_lock or pte_lock (various, mainly in memory.c)
86 : * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
87 : *
88 : * ->mmap_lock
89 : * ->invalidate_lock (filemap_fault)
90 : * ->lock_page (filemap_fault, access_process_vm)
91 : *
92 : * ->i_rwsem (generic_perform_write)
93 : * ->mmap_lock (fault_in_readable->do_page_fault)
94 : *
95 : * bdi->wb.list_lock
96 : * sb_lock (fs/fs-writeback.c)
97 : * ->i_pages lock (__sync_single_inode)
98 : *
99 : * ->i_mmap_rwsem
100 : * ->anon_vma.lock (vma_adjust)
101 : *
102 : * ->anon_vma.lock
103 : * ->page_table_lock or pte_lock (anon_vma_prepare and various)
104 : *
105 : * ->page_table_lock or pte_lock
106 : * ->swap_lock (try_to_unmap_one)
107 : * ->private_lock (try_to_unmap_one)
108 : * ->i_pages lock (try_to_unmap_one)
109 : * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 : * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
111 : * ->private_lock (page_remove_rmap->set_page_dirty)
112 : * ->i_pages lock (page_remove_rmap->set_page_dirty)
113 : * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
114 : * ->inode->i_lock (page_remove_rmap->set_page_dirty)
115 : * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
116 : * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
117 : * ->inode->i_lock (zap_pte_range->set_page_dirty)
118 : * ->private_lock (zap_pte_range->block_dirty_folio)
119 : *
120 : * ->i_mmap_rwsem
121 : * ->tasklist_lock (memory_failure, collect_procs_ao)
122 : */
123 :
124 0 : static void page_cache_delete(struct address_space *mapping,
125 : struct folio *folio, void *shadow)
126 : {
127 0 : XA_STATE(xas, &mapping->i_pages, folio->index);
128 0 : long nr = 1;
129 :
130 0 : mapping_set_update(&xas, mapping);
131 :
132 : /* hugetlb pages are represented by a single entry in the xarray */
133 0 : if (!folio_test_hugetlb(folio)) {
134 0 : xas_set_order(&xas, folio->index, folio_order(folio));
135 0 : nr = folio_nr_pages(folio);
136 : }
137 :
138 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139 :
140 0 : xas_store(&xas, shadow);
141 0 : xas_init_marks(&xas);
142 :
143 0 : folio->mapping = NULL;
144 : /* Leave page->index set: truncation lookup relies upon it */
145 0 : mapping->nrpages -= nr;
146 0 : }
147 :
148 0 : static void filemap_unaccount_folio(struct address_space *mapping,
149 : struct folio *folio)
150 : {
151 : long nr;
152 :
153 : VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 0 : if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 0 : pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 : current->comm, folio_pfn(folio));
157 0 : dump_page(&folio->page, "still mapped when deleted");
158 0 : dump_stack();
159 0 : add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160 :
161 0 : if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 0 : int mapcount = page_mapcount(&folio->page);
163 :
164 0 : if (folio_ref_count(folio) >= mapcount + 2) {
165 : /*
166 : * All vmas have already been torn down, so it's
167 : * a good bet that actually the page is unmapped
168 : * and we'd rather not leak it: if we're wrong,
169 : * another bad page check should catch it later.
170 : */
171 0 : page_mapcount_reset(&folio->page);
172 : folio_ref_sub(folio, mapcount);
173 : }
174 : }
175 : }
176 :
177 : /* hugetlb folios do not participate in page cache accounting. */
178 0 : if (folio_test_hugetlb(folio))
179 : return;
180 :
181 0 : nr = folio_nr_pages(folio);
182 :
183 0 : __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 0 : if (folio_test_swapbacked(folio)) {
185 0 : __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 0 : if (folio_test_pmd_mappable(folio))
187 : __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 : } else if (folio_test_pmd_mappable(folio)) {
189 : __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 : filemap_nr_thps_dec(mapping);
191 : }
192 :
193 : /*
194 : * At this point folio must be either written or cleaned by
195 : * truncate. Dirty folio here signals a bug and loss of
196 : * unwritten data - on ordinary filesystems.
197 : *
198 : * But it's harmless on in-memory filesystems like tmpfs; and can
199 : * occur when a driver which did get_user_pages() sets page dirty
200 : * before putting it, while the inode is being finally evicted.
201 : *
202 : * Below fixes dirty accounting after removing the folio entirely
203 : * but leaves the dirty flag set: it has no effect for truncated
204 : * folio and anyway will be cleared before returning folio to
205 : * buddy allocator.
206 : */
207 0 : if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 : mapping_can_writeback(mapping)))
209 0 : folio_account_cleaned(folio, inode_to_wb(mapping->host));
210 : }
211 :
212 : /*
213 : * Delete a page from the page cache and free it. Caller has to make
214 : * sure the page is locked and that nobody else uses it - or that usage
215 : * is safe. The caller must hold the i_pages lock.
216 : */
217 0 : void __filemap_remove_folio(struct folio *folio, void *shadow)
218 : {
219 0 : struct address_space *mapping = folio->mapping;
220 :
221 0 : trace_mm_filemap_delete_from_page_cache(folio);
222 0 : filemap_unaccount_folio(mapping, folio);
223 0 : page_cache_delete(mapping, folio, shadow);
224 0 : }
225 :
226 0 : void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 : {
228 : void (*freepage)(struct page *);
229 0 : int refs = 1;
230 :
231 0 : freepage = mapping->a_ops->freepage;
232 0 : if (freepage)
233 0 : freepage(&folio->page);
234 :
235 0 : if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 0 : refs = folio_nr_pages(folio);
237 0 : folio_put_refs(folio, refs);
238 0 : }
239 :
240 : /**
241 : * filemap_remove_folio - Remove folio from page cache.
242 : * @folio: The folio.
243 : *
244 : * This must be called only on folios that are locked and have been
245 : * verified to be in the page cache. It will never put the folio into
246 : * the free list because the caller has a reference on the page.
247 : */
248 0 : void filemap_remove_folio(struct folio *folio)
249 : {
250 0 : struct address_space *mapping = folio->mapping;
251 :
252 0 : BUG_ON(!folio_test_locked(folio));
253 0 : spin_lock(&mapping->host->i_lock);
254 0 : xa_lock_irq(&mapping->i_pages);
255 0 : __filemap_remove_folio(folio, NULL);
256 0 : xa_unlock_irq(&mapping->i_pages);
257 0 : if (mapping_shrinkable(mapping))
258 0 : inode_add_lru(mapping->host);
259 0 : spin_unlock(&mapping->host->i_lock);
260 :
261 0 : filemap_free_folio(mapping, folio);
262 0 : }
263 :
264 : /*
265 : * page_cache_delete_batch - delete several folios from page cache
266 : * @mapping: the mapping to which folios belong
267 : * @fbatch: batch of folios to delete
268 : *
269 : * The function walks over mapping->i_pages and removes folios passed in
270 : * @fbatch from the mapping. The function expects @fbatch to be sorted
271 : * by page index and is optimised for it to be dense.
272 : * It tolerates holes in @fbatch (mapping entries at those indices are not
273 : * modified).
274 : *
275 : * The function expects the i_pages lock to be held.
276 : */
277 0 : static void page_cache_delete_batch(struct address_space *mapping,
278 : struct folio_batch *fbatch)
279 : {
280 0 : XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 0 : long total_pages = 0;
282 0 : int i = 0;
283 : struct folio *folio;
284 :
285 0 : mapping_set_update(&xas, mapping);
286 0 : xas_for_each(&xas, folio, ULONG_MAX) {
287 0 : if (i >= folio_batch_count(fbatch))
288 : break;
289 :
290 : /* A swap/dax/shadow entry got inserted? Skip it. */
291 0 : if (xa_is_value(folio))
292 0 : continue;
293 : /*
294 : * A page got inserted in our range? Skip it. We have our
295 : * pages locked so they are protected from being removed.
296 : * If we see a page whose index is higher than ours, it
297 : * means our page has been removed, which shouldn't be
298 : * possible because we're holding the PageLock.
299 : */
300 0 : if (folio != fbatch->folios[i]) {
301 : VM_BUG_ON_FOLIO(folio->index >
302 : fbatch->folios[i]->index, folio);
303 0 : continue;
304 : }
305 :
306 0 : WARN_ON_ONCE(!folio_test_locked(folio));
307 :
308 0 : folio->mapping = NULL;
309 : /* Leave folio->index set: truncation lookup relies on it */
310 :
311 0 : i++;
312 0 : xas_store(&xas, NULL);
313 0 : total_pages += folio_nr_pages(folio);
314 : }
315 0 : mapping->nrpages -= total_pages;
316 0 : }
317 :
318 0 : void delete_from_page_cache_batch(struct address_space *mapping,
319 : struct folio_batch *fbatch)
320 : {
321 : int i;
322 :
323 0 : if (!folio_batch_count(fbatch))
324 : return;
325 :
326 0 : spin_lock(&mapping->host->i_lock);
327 0 : xa_lock_irq(&mapping->i_pages);
328 0 : for (i = 0; i < folio_batch_count(fbatch); i++) {
329 0 : struct folio *folio = fbatch->folios[i];
330 :
331 0 : trace_mm_filemap_delete_from_page_cache(folio);
332 0 : filemap_unaccount_folio(mapping, folio);
333 : }
334 0 : page_cache_delete_batch(mapping, fbatch);
335 0 : xa_unlock_irq(&mapping->i_pages);
336 0 : if (mapping_shrinkable(mapping))
337 0 : inode_add_lru(mapping->host);
338 0 : spin_unlock(&mapping->host->i_lock);
339 :
340 0 : for (i = 0; i < folio_batch_count(fbatch); i++)
341 0 : filemap_free_folio(mapping, fbatch->folios[i]);
342 : }
343 :
344 0 : int filemap_check_errors(struct address_space *mapping)
345 : {
346 0 : int ret = 0;
347 : /* Check for outstanding write errors */
348 0 : if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 0 : test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 0 : ret = -ENOSPC;
351 0 : if (test_bit(AS_EIO, &mapping->flags) &&
352 0 : test_and_clear_bit(AS_EIO, &mapping->flags))
353 0 : ret = -EIO;
354 0 : return ret;
355 : }
356 : EXPORT_SYMBOL(filemap_check_errors);
357 :
358 : static int filemap_check_and_keep_errors(struct address_space *mapping)
359 : {
360 : /* Check for outstanding write errors */
361 0 : if (test_bit(AS_EIO, &mapping->flags))
362 : return -EIO;
363 0 : if (test_bit(AS_ENOSPC, &mapping->flags))
364 : return -ENOSPC;
365 : return 0;
366 : }
367 :
368 : /**
369 : * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 : * @mapping: address space structure to write
371 : * @wbc: the writeback_control controlling the writeout
372 : *
373 : * Call writepages on the mapping using the provided wbc to control the
374 : * writeout.
375 : *
376 : * Return: %0 on success, negative error code otherwise.
377 : */
378 0 : int filemap_fdatawrite_wbc(struct address_space *mapping,
379 : struct writeback_control *wbc)
380 : {
381 : int ret;
382 :
383 0 : if (!mapping_can_writeback(mapping) ||
384 0 : !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 : return 0;
386 :
387 0 : wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 0 : ret = do_writepages(mapping, wbc);
389 0 : wbc_detach_inode(wbc);
390 0 : return ret;
391 : }
392 : EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393 :
394 : /**
395 : * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 : * @mapping: address space structure to write
397 : * @start: offset in bytes where the range starts
398 : * @end: offset in bytes where the range ends (inclusive)
399 : * @sync_mode: enable synchronous operation
400 : *
401 : * Start writeback against all of a mapping's dirty pages that lie
402 : * within the byte offsets <start, end> inclusive.
403 : *
404 : * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 : * opposed to a regular memory cleansing writeback. The difference between
406 : * these two operations is that if a dirty page/buffer is encountered, it must
407 : * be waited upon, and not just skipped over.
408 : *
409 : * Return: %0 on success, negative error code otherwise.
410 : */
411 0 : int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 : loff_t end, int sync_mode)
413 : {
414 0 : struct writeback_control wbc = {
415 : .sync_mode = sync_mode,
416 : .nr_to_write = LONG_MAX,
417 : .range_start = start,
418 : .range_end = end,
419 : };
420 :
421 0 : return filemap_fdatawrite_wbc(mapping, &wbc);
422 : }
423 :
424 : static inline int __filemap_fdatawrite(struct address_space *mapping,
425 : int sync_mode)
426 : {
427 0 : return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428 : }
429 :
430 0 : int filemap_fdatawrite(struct address_space *mapping)
431 : {
432 0 : return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 : }
434 : EXPORT_SYMBOL(filemap_fdatawrite);
435 :
436 0 : int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 : loff_t end)
438 : {
439 0 : return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 : }
441 : EXPORT_SYMBOL(filemap_fdatawrite_range);
442 :
443 : /**
444 : * filemap_flush - mostly a non-blocking flush
445 : * @mapping: target address_space
446 : *
447 : * This is a mostly non-blocking flush. Not suitable for data-integrity
448 : * purposes - I/O may not be started against all dirty pages.
449 : *
450 : * Return: %0 on success, negative error code otherwise.
451 : */
452 0 : int filemap_flush(struct address_space *mapping)
453 : {
454 0 : return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455 : }
456 : EXPORT_SYMBOL(filemap_flush);
457 :
458 : /**
459 : * filemap_range_has_page - check if a page exists in range.
460 : * @mapping: address space within which to check
461 : * @start_byte: offset in bytes where the range starts
462 : * @end_byte: offset in bytes where the range ends (inclusive)
463 : *
464 : * Find at least one page in the range supplied, usually used to check if
465 : * direct writing in this range will trigger a writeback.
466 : *
467 : * Return: %true if at least one page exists in the specified range,
468 : * %false otherwise.
469 : */
470 0 : bool filemap_range_has_page(struct address_space *mapping,
471 : loff_t start_byte, loff_t end_byte)
472 : {
473 : struct page *page;
474 0 : XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 0 : pgoff_t max = end_byte >> PAGE_SHIFT;
476 :
477 0 : if (end_byte < start_byte)
478 : return false;
479 :
480 : rcu_read_lock();
481 : for (;;) {
482 0 : page = xas_find(&xas, max);
483 0 : if (xas_retry(&xas, page))
484 0 : continue;
485 : /* Shadow entries don't count */
486 0 : if (xa_is_value(page))
487 0 : continue;
488 : /*
489 : * We don't need to try to pin this page; we're about to
490 : * release the RCU lock anyway. It is enough to know that
491 : * there was a page here recently.
492 : */
493 : break;
494 : }
495 : rcu_read_unlock();
496 :
497 0 : return page != NULL;
498 : }
499 : EXPORT_SYMBOL(filemap_range_has_page);
500 :
501 0 : static void __filemap_fdatawait_range(struct address_space *mapping,
502 : loff_t start_byte, loff_t end_byte)
503 : {
504 0 : pgoff_t index = start_byte >> PAGE_SHIFT;
505 0 : pgoff_t end = end_byte >> PAGE_SHIFT;
506 : struct pagevec pvec;
507 : int nr_pages;
508 :
509 0 : if (end_byte < start_byte)
510 0 : return;
511 :
512 0 : pagevec_init(&pvec);
513 0 : while (index <= end) {
514 : unsigned i;
515 :
516 0 : nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 : end, PAGECACHE_TAG_WRITEBACK);
518 0 : if (!nr_pages)
519 : break;
520 :
521 0 : for (i = 0; i < nr_pages; i++) {
522 0 : struct page *page = pvec.pages[i];
523 :
524 0 : wait_on_page_writeback(page);
525 0 : ClearPageError(page);
526 : }
527 0 : pagevec_release(&pvec);
528 0 : cond_resched();
529 : }
530 : }
531 :
532 : /**
533 : * filemap_fdatawait_range - wait for writeback to complete
534 : * @mapping: address space structure to wait for
535 : * @start_byte: offset in bytes where the range starts
536 : * @end_byte: offset in bytes where the range ends (inclusive)
537 : *
538 : * Walk the list of under-writeback pages of the given address space
539 : * in the given range and wait for all of them. Check error status of
540 : * the address space and return it.
541 : *
542 : * Since the error status of the address space is cleared by this function,
543 : * callers are responsible for checking the return value and handling and/or
544 : * reporting the error.
545 : *
546 : * Return: error status of the address space.
547 : */
548 0 : int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 : loff_t end_byte)
550 : {
551 0 : __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 0 : return filemap_check_errors(mapping);
553 : }
554 : EXPORT_SYMBOL(filemap_fdatawait_range);
555 :
556 : /**
557 : * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558 : * @mapping: address space structure to wait for
559 : * @start_byte: offset in bytes where the range starts
560 : * @end_byte: offset in bytes where the range ends (inclusive)
561 : *
562 : * Walk the list of under-writeback pages of the given address space in the
563 : * given range and wait for all of them. Unlike filemap_fdatawait_range(),
564 : * this function does not clear error status of the address space.
565 : *
566 : * Use this function if callers don't handle errors themselves. Expected
567 : * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
568 : * fsfreeze(8)
569 : */
570 0 : int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 : loff_t start_byte, loff_t end_byte)
572 : {
573 0 : __filemap_fdatawait_range(mapping, start_byte, end_byte);
574 0 : return filemap_check_and_keep_errors(mapping);
575 : }
576 : EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
577 :
578 : /**
579 : * file_fdatawait_range - wait for writeback to complete
580 : * @file: file pointing to address space structure to wait for
581 : * @start_byte: offset in bytes where the range starts
582 : * @end_byte: offset in bytes where the range ends (inclusive)
583 : *
584 : * Walk the list of under-writeback pages of the address space that file
585 : * refers to, in the given range and wait for all of them. Check error
586 : * status of the address space vs. the file->f_wb_err cursor and return it.
587 : *
588 : * Since the error status of the file is advanced by this function,
589 : * callers are responsible for checking the return value and handling and/or
590 : * reporting the error.
591 : *
592 : * Return: error status of the address space vs. the file->f_wb_err cursor.
593 : */
594 0 : int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
595 : {
596 0 : struct address_space *mapping = file->f_mapping;
597 :
598 0 : __filemap_fdatawait_range(mapping, start_byte, end_byte);
599 0 : return file_check_and_advance_wb_err(file);
600 : }
601 : EXPORT_SYMBOL(file_fdatawait_range);
602 :
603 : /**
604 : * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605 : * @mapping: address space structure to wait for
606 : *
607 : * Walk the list of under-writeback pages of the given address space
608 : * and wait for all of them. Unlike filemap_fdatawait(), this function
609 : * does not clear error status of the address space.
610 : *
611 : * Use this function if callers don't handle errors themselves. Expected
612 : * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
613 : * fsfreeze(8)
614 : *
615 : * Return: error status of the address space.
616 : */
617 0 : int filemap_fdatawait_keep_errors(struct address_space *mapping)
618 : {
619 0 : __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 0 : return filemap_check_and_keep_errors(mapping);
621 : }
622 : EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
623 :
624 : /* Returns true if writeback might be needed or already in progress. */
625 : static bool mapping_needs_writeback(struct address_space *mapping)
626 : {
627 : return mapping->nrpages;
628 : }
629 :
630 0 : bool filemap_range_has_writeback(struct address_space *mapping,
631 : loff_t start_byte, loff_t end_byte)
632 : {
633 0 : XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
634 0 : pgoff_t max = end_byte >> PAGE_SHIFT;
635 : struct page *page;
636 :
637 0 : if (end_byte < start_byte)
638 : return false;
639 :
640 : rcu_read_lock();
641 0 : xas_for_each(&xas, page, max) {
642 0 : if (xas_retry(&xas, page))
643 0 : continue;
644 0 : if (xa_is_value(page))
645 0 : continue;
646 0 : if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
647 : break;
648 : }
649 : rcu_read_unlock();
650 0 : return page != NULL;
651 : }
652 : EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
653 :
654 : /**
655 : * filemap_write_and_wait_range - write out & wait on a file range
656 : * @mapping: the address_space for the pages
657 : * @lstart: offset in bytes where the range starts
658 : * @lend: offset in bytes where the range ends (inclusive)
659 : *
660 : * Write out and wait upon file offsets lstart->lend, inclusive.
661 : *
662 : * Note that @lend is inclusive (describes the last byte to be written) so
663 : * that this function can be used to write to the very end-of-file (end = -1).
664 : *
665 : * Return: error status of the address space.
666 : */
667 0 : int filemap_write_and_wait_range(struct address_space *mapping,
668 : loff_t lstart, loff_t lend)
669 : {
670 0 : int err = 0;
671 :
672 0 : if (mapping_needs_writeback(mapping)) {
673 0 : err = __filemap_fdatawrite_range(mapping, lstart, lend,
674 : WB_SYNC_ALL);
675 : /*
676 : * Even if the above returned error, the pages may be
677 : * written partially (e.g. -ENOSPC), so we wait for it.
678 : * But the -EIO is special case, it may indicate the worst
679 : * thing (e.g. bug) happened, so we avoid waiting for it.
680 : */
681 0 : if (err != -EIO) {
682 0 : int err2 = filemap_fdatawait_range(mapping,
683 : lstart, lend);
684 0 : if (!err)
685 0 : err = err2;
686 : } else {
687 : /* Clear any previously stored errors */
688 0 : filemap_check_errors(mapping);
689 : }
690 : } else {
691 0 : err = filemap_check_errors(mapping);
692 : }
693 0 : return err;
694 : }
695 : EXPORT_SYMBOL(filemap_write_and_wait_range);
696 :
697 0 : void __filemap_set_wb_err(struct address_space *mapping, int err)
698 : {
699 0 : errseq_t eseq = errseq_set(&mapping->wb_err, err);
700 :
701 0 : trace_filemap_set_wb_err(mapping, eseq);
702 0 : }
703 : EXPORT_SYMBOL(__filemap_set_wb_err);
704 :
705 : /**
706 : * file_check_and_advance_wb_err - report wb error (if any) that was previously
707 : * and advance wb_err to current one
708 : * @file: struct file on which the error is being reported
709 : *
710 : * When userland calls fsync (or something like nfsd does the equivalent), we
711 : * want to report any writeback errors that occurred since the last fsync (or
712 : * since the file was opened if there haven't been any).
713 : *
714 : * Grab the wb_err from the mapping. If it matches what we have in the file,
715 : * then just quickly return 0. The file is all caught up.
716 : *
717 : * If it doesn't match, then take the mapping value, set the "seen" flag in
718 : * it and try to swap it into place. If it works, or another task beat us
719 : * to it with the new value, then update the f_wb_err and return the error
720 : * portion. The error at this point must be reported via proper channels
721 : * (a'la fsync, or NFS COMMIT operation, etc.).
722 : *
723 : * While we handle mapping->wb_err with atomic operations, the f_wb_err
724 : * value is protected by the f_lock since we must ensure that it reflects
725 : * the latest value swapped in for this file descriptor.
726 : *
727 : * Return: %0 on success, negative error code otherwise.
728 : */
729 0 : int file_check_and_advance_wb_err(struct file *file)
730 : {
731 0 : int err = 0;
732 0 : errseq_t old = READ_ONCE(file->f_wb_err);
733 0 : struct address_space *mapping = file->f_mapping;
734 :
735 : /* Locklessly handle the common case where nothing has changed */
736 0 : if (errseq_check(&mapping->wb_err, old)) {
737 : /* Something changed, must use slow path */
738 0 : spin_lock(&file->f_lock);
739 0 : old = file->f_wb_err;
740 0 : err = errseq_check_and_advance(&mapping->wb_err,
741 : &file->f_wb_err);
742 0 : trace_file_check_and_advance_wb_err(file, old);
743 0 : spin_unlock(&file->f_lock);
744 : }
745 :
746 : /*
747 : * We're mostly using this function as a drop in replacement for
748 : * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
749 : * that the legacy code would have had on these flags.
750 : */
751 0 : clear_bit(AS_EIO, &mapping->flags);
752 0 : clear_bit(AS_ENOSPC, &mapping->flags);
753 0 : return err;
754 : }
755 : EXPORT_SYMBOL(file_check_and_advance_wb_err);
756 :
757 : /**
758 : * file_write_and_wait_range - write out & wait on a file range
759 : * @file: file pointing to address_space with pages
760 : * @lstart: offset in bytes where the range starts
761 : * @lend: offset in bytes where the range ends (inclusive)
762 : *
763 : * Write out and wait upon file offsets lstart->lend, inclusive.
764 : *
765 : * Note that @lend is inclusive (describes the last byte to be written) so
766 : * that this function can be used to write to the very end-of-file (end = -1).
767 : *
768 : * After writing out and waiting on the data, we check and advance the
769 : * f_wb_err cursor to the latest value, and return any errors detected there.
770 : *
771 : * Return: %0 on success, negative error code otherwise.
772 : */
773 0 : int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
774 : {
775 0 : int err = 0, err2;
776 0 : struct address_space *mapping = file->f_mapping;
777 :
778 0 : if (mapping_needs_writeback(mapping)) {
779 0 : err = __filemap_fdatawrite_range(mapping, lstart, lend,
780 : WB_SYNC_ALL);
781 : /* See comment of filemap_write_and_wait() */
782 0 : if (err != -EIO)
783 0 : __filemap_fdatawait_range(mapping, lstart, lend);
784 : }
785 0 : err2 = file_check_and_advance_wb_err(file);
786 0 : if (!err)
787 0 : err = err2;
788 0 : return err;
789 : }
790 : EXPORT_SYMBOL(file_write_and_wait_range);
791 :
792 : /**
793 : * replace_page_cache_page - replace a pagecache page with a new one
794 : * @old: page to be replaced
795 : * @new: page to replace with
796 : *
797 : * This function replaces a page in the pagecache with a new one. On
798 : * success it acquires the pagecache reference for the new page and
799 : * drops it for the old page. Both the old and new pages must be
800 : * locked. This function does not add the new page to the LRU, the
801 : * caller must do that.
802 : *
803 : * The remove + add is atomic. This function cannot fail.
804 : */
805 0 : void replace_page_cache_page(struct page *old, struct page *new)
806 : {
807 0 : struct folio *fold = page_folio(old);
808 0 : struct folio *fnew = page_folio(new);
809 0 : struct address_space *mapping = old->mapping;
810 0 : void (*freepage)(struct page *) = mapping->a_ops->freepage;
811 0 : pgoff_t offset = old->index;
812 0 : XA_STATE(xas, &mapping->i_pages, offset);
813 :
814 : VM_BUG_ON_PAGE(!PageLocked(old), old);
815 : VM_BUG_ON_PAGE(!PageLocked(new), new);
816 : VM_BUG_ON_PAGE(new->mapping, new);
817 :
818 0 : get_page(new);
819 0 : new->mapping = mapping;
820 0 : new->index = offset;
821 :
822 0 : mem_cgroup_migrate(fold, fnew);
823 :
824 0 : xas_lock_irq(&xas);
825 0 : xas_store(&xas, new);
826 :
827 0 : old->mapping = NULL;
828 : /* hugetlb pages do not participate in page cache accounting. */
829 0 : if (!PageHuge(old))
830 0 : __dec_lruvec_page_state(old, NR_FILE_PAGES);
831 0 : if (!PageHuge(new))
832 0 : __inc_lruvec_page_state(new, NR_FILE_PAGES);
833 0 : if (PageSwapBacked(old))
834 0 : __dec_lruvec_page_state(old, NR_SHMEM);
835 0 : if (PageSwapBacked(new))
836 0 : __inc_lruvec_page_state(new, NR_SHMEM);
837 0 : xas_unlock_irq(&xas);
838 0 : if (freepage)
839 0 : freepage(old);
840 0 : put_page(old);
841 0 : }
842 : EXPORT_SYMBOL_GPL(replace_page_cache_page);
843 :
844 0 : noinline int __filemap_add_folio(struct address_space *mapping,
845 : struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846 : {
847 0 : XA_STATE(xas, &mapping->i_pages, index);
848 0 : int huge = folio_test_hugetlb(folio);
849 0 : bool charged = false;
850 0 : long nr = 1;
851 :
852 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 : VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
854 0 : mapping_set_update(&xas, mapping);
855 :
856 : if (!huge) {
857 0 : int error = mem_cgroup_charge(folio, NULL, gfp);
858 : VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
859 : if (error)
860 : return error;
861 0 : charged = true;
862 0 : xas_set_order(&xas, index, folio_order(folio));
863 0 : nr = folio_nr_pages(folio);
864 : }
865 :
866 0 : gfp &= GFP_RECLAIM_MASK;
867 0 : folio_ref_add(folio, nr);
868 0 : folio->mapping = mapping;
869 0 : folio->index = xas.xa_index;
870 :
871 : do {
872 0 : unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 0 : void *entry, *old = NULL;
874 :
875 0 : if (order > folio_order(folio))
876 : xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 : order, gfp);
878 0 : xas_lock_irq(&xas);
879 0 : xas_for_each_conflict(&xas, entry) {
880 0 : old = entry;
881 0 : if (!xa_is_value(entry)) {
882 0 : xas_set_err(&xas, -EEXIST);
883 : goto unlock;
884 : }
885 : }
886 :
887 0 : if (old) {
888 0 : if (shadowp)
889 0 : *shadowp = old;
890 : /* entry may have been split before we acquired lock */
891 0 : order = xa_get_order(xas.xa, xas.xa_index);
892 : if (order > folio_order(folio)) {
893 : /* How to handle large swap entries? */
894 : BUG_ON(shmem_mapping(mapping));
895 : xas_split(&xas, old, order);
896 : xas_reset(&xas);
897 : }
898 : }
899 :
900 0 : xas_store(&xas, folio);
901 0 : if (xas_error(&xas))
902 : goto unlock;
903 :
904 0 : mapping->nrpages += nr;
905 :
906 : /* hugetlb pages do not participate in page cache accounting */
907 : if (!huge) {
908 0 : __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 0 : if (folio_test_pmd_mappable(folio))
910 : __lruvec_stat_mod_folio(folio,
911 : NR_FILE_THPS, nr);
912 : }
913 : unlock:
914 0 : xas_unlock_irq(&xas);
915 0 : } while (xas_nomem(&xas, gfp));
916 :
917 0 : if (xas_error(&xas))
918 : goto error;
919 :
920 : trace_mm_filemap_add_to_page_cache(folio);
921 : return 0;
922 : error:
923 : if (charged)
924 : mem_cgroup_uncharge(folio);
925 0 : folio->mapping = NULL;
926 : /* Leave page->index set: truncation relies upon it */
927 0 : folio_put_refs(folio, nr);
928 0 : return xas_error(&xas);
929 : }
930 : ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
931 :
932 : /**
933 : * add_to_page_cache_locked - add a locked page to the pagecache
934 : * @page: page to add
935 : * @mapping: the page's address_space
936 : * @offset: page index
937 : * @gfp_mask: page allocation mode
938 : *
939 : * This function is used to add a page to the pagecache. It must be locked.
940 : * This function does not add the page to the LRU. The caller must do that.
941 : *
942 : * Return: %0 on success, negative error code otherwise.
943 : */
944 0 : int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
945 : pgoff_t offset, gfp_t gfp_mask)
946 : {
947 0 : return __filemap_add_folio(mapping, page_folio(page), offset,
948 : gfp_mask, NULL);
949 : }
950 : EXPORT_SYMBOL(add_to_page_cache_locked);
951 :
952 0 : int filemap_add_folio(struct address_space *mapping, struct folio *folio,
953 : pgoff_t index, gfp_t gfp)
954 : {
955 0 : void *shadow = NULL;
956 : int ret;
957 :
958 0 : __folio_set_locked(folio);
959 0 : ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
960 0 : if (unlikely(ret))
961 : __folio_clear_locked(folio);
962 : else {
963 : /*
964 : * The folio might have been evicted from cache only
965 : * recently, in which case it should be activated like
966 : * any other repeatedly accessed folio.
967 : * The exception is folios getting rewritten; evicting other
968 : * data from the working set, only to cache data that will
969 : * get overwritten with something else, is a waste of memory.
970 : */
971 0 : WARN_ON_ONCE(folio_test_active(folio));
972 0 : if (!(gfp & __GFP_WRITE) && shadow)
973 0 : workingset_refault(folio, shadow);
974 0 : folio_add_lru(folio);
975 : }
976 0 : return ret;
977 : }
978 : EXPORT_SYMBOL_GPL(filemap_add_folio);
979 :
980 : #ifdef CONFIG_NUMA
981 : struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
982 : {
983 : int n;
984 : struct folio *folio;
985 :
986 : if (cpuset_do_page_mem_spread()) {
987 : unsigned int cpuset_mems_cookie;
988 : do {
989 : cpuset_mems_cookie = read_mems_allowed_begin();
990 : n = cpuset_mem_spread_node();
991 : folio = __folio_alloc_node(gfp, order, n);
992 : } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
993 :
994 : return folio;
995 : }
996 : return folio_alloc(gfp, order);
997 : }
998 : EXPORT_SYMBOL(filemap_alloc_folio);
999 : #endif
1000 :
1001 : /*
1002 : * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1003 : *
1004 : * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1005 : *
1006 : * @mapping1: the first mapping to lock
1007 : * @mapping2: the second mapping to lock
1008 : */
1009 0 : void filemap_invalidate_lock_two(struct address_space *mapping1,
1010 : struct address_space *mapping2)
1011 : {
1012 0 : if (mapping1 > mapping2)
1013 0 : swap(mapping1, mapping2);
1014 0 : if (mapping1)
1015 0 : down_write(&mapping1->invalidate_lock);
1016 0 : if (mapping2 && mapping1 != mapping2)
1017 0 : down_write_nested(&mapping2->invalidate_lock, 1);
1018 0 : }
1019 : EXPORT_SYMBOL(filemap_invalidate_lock_two);
1020 :
1021 : /*
1022 : * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1023 : *
1024 : * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1025 : *
1026 : * @mapping1: the first mapping to unlock
1027 : * @mapping2: the second mapping to unlock
1028 : */
1029 0 : void filemap_invalidate_unlock_two(struct address_space *mapping1,
1030 : struct address_space *mapping2)
1031 : {
1032 0 : if (mapping1)
1033 0 : up_write(&mapping1->invalidate_lock);
1034 0 : if (mapping2 && mapping1 != mapping2)
1035 0 : up_write(&mapping2->invalidate_lock);
1036 0 : }
1037 : EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1038 :
1039 : /*
1040 : * In order to wait for pages to become available there must be
1041 : * waitqueues associated with pages. By using a hash table of
1042 : * waitqueues where the bucket discipline is to maintain all
1043 : * waiters on the same queue and wake all when any of the pages
1044 : * become available, and for the woken contexts to check to be
1045 : * sure the appropriate page became available, this saves space
1046 : * at a cost of "thundering herd" phenomena during rare hash
1047 : * collisions.
1048 : */
1049 : #define PAGE_WAIT_TABLE_BITS 8
1050 : #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1051 : static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1052 :
1053 : static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1054 : {
1055 0 : return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1056 : }
1057 :
1058 1 : void __init pagecache_init(void)
1059 : {
1060 : int i;
1061 :
1062 257 : for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1063 256 : init_waitqueue_head(&folio_wait_table[i]);
1064 :
1065 1 : page_writeback_init();
1066 1 : }
1067 :
1068 : /*
1069 : * The page wait code treats the "wait->flags" somewhat unusually, because
1070 : * we have multiple different kinds of waits, not just the usual "exclusive"
1071 : * one.
1072 : *
1073 : * We have:
1074 : *
1075 : * (a) no special bits set:
1076 : *
1077 : * We're just waiting for the bit to be released, and when a waker
1078 : * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1079 : * and remove it from the wait queue.
1080 : *
1081 : * Simple and straightforward.
1082 : *
1083 : * (b) WQ_FLAG_EXCLUSIVE:
1084 : *
1085 : * The waiter is waiting to get the lock, and only one waiter should
1086 : * be woken up to avoid any thundering herd behavior. We'll set the
1087 : * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1088 : *
1089 : * This is the traditional exclusive wait.
1090 : *
1091 : * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1092 : *
1093 : * The waiter is waiting to get the bit, and additionally wants the
1094 : * lock to be transferred to it for fair lock behavior. If the lock
1095 : * cannot be taken, we stop walking the wait queue without waking
1096 : * the waiter.
1097 : *
1098 : * This is the "fair lock handoff" case, and in addition to setting
1099 : * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1100 : * that it now has the lock.
1101 : */
1102 0 : static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1103 : {
1104 : unsigned int flags;
1105 0 : struct wait_page_key *key = arg;
1106 0 : struct wait_page_queue *wait_page
1107 0 : = container_of(wait, struct wait_page_queue, wait);
1108 :
1109 0 : if (!wake_page_match(wait_page, key))
1110 : return 0;
1111 :
1112 : /*
1113 : * If it's a lock handoff wait, we get the bit for it, and
1114 : * stop walking (and do not wake it up) if we can't.
1115 : */
1116 0 : flags = wait->flags;
1117 0 : if (flags & WQ_FLAG_EXCLUSIVE) {
1118 0 : if (test_bit(key->bit_nr, &key->folio->flags))
1119 : return -1;
1120 0 : if (flags & WQ_FLAG_CUSTOM) {
1121 0 : if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1122 : return -1;
1123 0 : flags |= WQ_FLAG_DONE;
1124 : }
1125 : }
1126 :
1127 : /*
1128 : * We are holding the wait-queue lock, but the waiter that
1129 : * is waiting for this will be checking the flags without
1130 : * any locking.
1131 : *
1132 : * So update the flags atomically, and wake up the waiter
1133 : * afterwards to avoid any races. This store-release pairs
1134 : * with the load-acquire in folio_wait_bit_common().
1135 : */
1136 0 : smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1137 0 : wake_up_state(wait->private, mode);
1138 :
1139 : /*
1140 : * Ok, we have successfully done what we're waiting for,
1141 : * and we can unconditionally remove the wait entry.
1142 : *
1143 : * Note that this pairs with the "finish_wait()" in the
1144 : * waiter, and has to be the absolute last thing we do.
1145 : * After this list_del_init(&wait->entry) the wait entry
1146 : * might be de-allocated and the process might even have
1147 : * exited.
1148 : */
1149 0 : list_del_init_careful(&wait->entry);
1150 0 : return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1151 : }
1152 :
1153 0 : static void folio_wake_bit(struct folio *folio, int bit_nr)
1154 : {
1155 0 : wait_queue_head_t *q = folio_waitqueue(folio);
1156 : struct wait_page_key key;
1157 : unsigned long flags;
1158 : wait_queue_entry_t bookmark;
1159 :
1160 0 : key.folio = folio;
1161 0 : key.bit_nr = bit_nr;
1162 0 : key.page_match = 0;
1163 :
1164 0 : bookmark.flags = 0;
1165 0 : bookmark.private = NULL;
1166 0 : bookmark.func = NULL;
1167 0 : INIT_LIST_HEAD(&bookmark.entry);
1168 :
1169 0 : spin_lock_irqsave(&q->lock, flags);
1170 0 : __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1171 :
1172 0 : while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1173 : /*
1174 : * Take a breather from holding the lock,
1175 : * allow pages that finish wake up asynchronously
1176 : * to acquire the lock and remove themselves
1177 : * from wait queue
1178 : */
1179 0 : spin_unlock_irqrestore(&q->lock, flags);
1180 : cpu_relax();
1181 0 : spin_lock_irqsave(&q->lock, flags);
1182 0 : __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1183 : }
1184 :
1185 : /*
1186 : * It's possible to miss clearing waiters here, when we woke our page
1187 : * waiters, but the hashed waitqueue has waiters for other pages on it.
1188 : * That's okay, it's a rare case. The next waker will clear it.
1189 : *
1190 : * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1191 : * other), the flag may be cleared in the course of freeing the page;
1192 : * but that is not required for correctness.
1193 : */
1194 0 : if (!waitqueue_active(q) || !key.page_match)
1195 : folio_clear_waiters(folio);
1196 :
1197 0 : spin_unlock_irqrestore(&q->lock, flags);
1198 0 : }
1199 :
1200 : static void folio_wake(struct folio *folio, int bit)
1201 : {
1202 0 : if (!folio_test_waiters(folio))
1203 : return;
1204 0 : folio_wake_bit(folio, bit);
1205 : }
1206 :
1207 : /*
1208 : * A choice of three behaviors for folio_wait_bit_common():
1209 : */
1210 : enum behavior {
1211 : EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1212 : * __folio_lock() waiting on then setting PG_locked.
1213 : */
1214 : SHARED, /* Hold ref to page and check the bit when woken, like
1215 : * folio_wait_writeback() waiting on PG_writeback.
1216 : */
1217 : DROP, /* Drop ref to page before wait, no check when woken,
1218 : * like folio_put_wait_locked() on PG_locked.
1219 : */
1220 : };
1221 :
1222 : /*
1223 : * Attempt to check (or get) the folio flag, and mark us done
1224 : * if successful.
1225 : */
1226 0 : static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1227 : struct wait_queue_entry *wait)
1228 : {
1229 0 : if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1230 0 : if (test_and_set_bit(bit_nr, &folio->flags))
1231 : return false;
1232 0 : } else if (test_bit(bit_nr, &folio->flags))
1233 : return false;
1234 :
1235 0 : wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1236 : return true;
1237 : }
1238 :
1239 : /* How many times do we accept lock stealing from under a waiter? */
1240 : int sysctl_page_lock_unfairness = 5;
1241 :
1242 0 : static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1243 : int state, enum behavior behavior)
1244 : {
1245 0 : wait_queue_head_t *q = folio_waitqueue(folio);
1246 0 : int unfairness = sysctl_page_lock_unfairness;
1247 : struct wait_page_queue wait_page;
1248 0 : wait_queue_entry_t *wait = &wait_page.wait;
1249 0 : bool thrashing = false;
1250 0 : bool delayacct = false;
1251 : unsigned long pflags;
1252 :
1253 0 : if (bit_nr == PG_locked &&
1254 0 : !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1255 0 : if (!folio_test_swapbacked(folio)) {
1256 : delayacct_thrashing_start();
1257 : delayacct = true;
1258 : }
1259 : psi_memstall_enter(&pflags);
1260 : thrashing = true;
1261 : }
1262 :
1263 0 : init_wait(wait);
1264 0 : wait->func = wake_page_function;
1265 0 : wait_page.folio = folio;
1266 0 : wait_page.bit_nr = bit_nr;
1267 :
1268 : repeat:
1269 0 : wait->flags = 0;
1270 0 : if (behavior == EXCLUSIVE) {
1271 0 : wait->flags = WQ_FLAG_EXCLUSIVE;
1272 0 : if (--unfairness < 0)
1273 0 : wait->flags |= WQ_FLAG_CUSTOM;
1274 : }
1275 :
1276 : /*
1277 : * Do one last check whether we can get the
1278 : * page bit synchronously.
1279 : *
1280 : * Do the folio_set_waiters() marking before that
1281 : * to let any waker we _just_ missed know they
1282 : * need to wake us up (otherwise they'll never
1283 : * even go to the slow case that looks at the
1284 : * page queue), and add ourselves to the wait
1285 : * queue if we need to sleep.
1286 : *
1287 : * This part needs to be done under the queue
1288 : * lock to avoid races.
1289 : */
1290 0 : spin_lock_irq(&q->lock);
1291 0 : folio_set_waiters(folio);
1292 0 : if (!folio_trylock_flag(folio, bit_nr, wait))
1293 : __add_wait_queue_entry_tail(q, wait);
1294 0 : spin_unlock_irq(&q->lock);
1295 :
1296 : /*
1297 : * From now on, all the logic will be based on
1298 : * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1299 : * see whether the page bit testing has already
1300 : * been done by the wake function.
1301 : *
1302 : * We can drop our reference to the folio.
1303 : */
1304 0 : if (behavior == DROP)
1305 : folio_put(folio);
1306 :
1307 : /*
1308 : * Note that until the "finish_wait()", or until
1309 : * we see the WQ_FLAG_WOKEN flag, we need to
1310 : * be very careful with the 'wait->flags', because
1311 : * we may race with a waker that sets them.
1312 : */
1313 0 : for (;;) {
1314 : unsigned int flags;
1315 :
1316 0 : set_current_state(state);
1317 :
1318 : /* Loop until we've been woken or interrupted */
1319 0 : flags = smp_load_acquire(&wait->flags);
1320 0 : if (!(flags & WQ_FLAG_WOKEN)) {
1321 0 : if (signal_pending_state(state, current))
1322 : break;
1323 :
1324 0 : io_schedule();
1325 0 : continue;
1326 : }
1327 :
1328 : /* If we were non-exclusive, we're done */
1329 0 : if (behavior != EXCLUSIVE)
1330 : break;
1331 :
1332 : /* If the waker got the lock for us, we're done */
1333 0 : if (flags & WQ_FLAG_DONE)
1334 : break;
1335 :
1336 : /*
1337 : * Otherwise, if we're getting the lock, we need to
1338 : * try to get it ourselves.
1339 : *
1340 : * And if that fails, we'll have to retry this all.
1341 : */
1342 0 : if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1343 : goto repeat;
1344 :
1345 0 : wait->flags |= WQ_FLAG_DONE;
1346 0 : break;
1347 : }
1348 :
1349 : /*
1350 : * If a signal happened, this 'finish_wait()' may remove the last
1351 : * waiter from the wait-queues, but the folio waiters bit will remain
1352 : * set. That's ok. The next wakeup will take care of it, and trying
1353 : * to do it here would be difficult and prone to races.
1354 : */
1355 0 : finish_wait(q, wait);
1356 :
1357 : if (thrashing) {
1358 : if (delayacct)
1359 : delayacct_thrashing_end();
1360 : psi_memstall_leave(&pflags);
1361 : }
1362 :
1363 : /*
1364 : * NOTE! The wait->flags weren't stable until we've done the
1365 : * 'finish_wait()', and we could have exited the loop above due
1366 : * to a signal, and had a wakeup event happen after the signal
1367 : * test but before the 'finish_wait()'.
1368 : *
1369 : * So only after the finish_wait() can we reliably determine
1370 : * if we got woken up or not, so we can now figure out the final
1371 : * return value based on that state without races.
1372 : *
1373 : * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1374 : * waiter, but an exclusive one requires WQ_FLAG_DONE.
1375 : */
1376 0 : if (behavior == EXCLUSIVE)
1377 0 : return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1378 :
1379 0 : return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1380 : }
1381 :
1382 : #ifdef CONFIG_MIGRATION
1383 : /**
1384 : * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1385 : * @entry: migration swap entry.
1386 : * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1387 : * for pte entries, pass NULL for pmd entries.
1388 : * @ptl: already locked ptl. This function will drop the lock.
1389 : *
1390 : * Wait for a migration entry referencing the given page to be removed. This is
1391 : * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1392 : * this can be called without taking a reference on the page. Instead this
1393 : * should be called while holding the ptl for the migration entry referencing
1394 : * the page.
1395 : *
1396 : * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1397 : *
1398 : * This follows the same logic as folio_wait_bit_common() so see the comments
1399 : * there.
1400 : */
1401 0 : void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1402 : spinlock_t *ptl)
1403 : {
1404 : struct wait_page_queue wait_page;
1405 0 : wait_queue_entry_t *wait = &wait_page.wait;
1406 0 : bool thrashing = false;
1407 0 : bool delayacct = false;
1408 : unsigned long pflags;
1409 : wait_queue_head_t *q;
1410 0 : struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1411 :
1412 0 : q = folio_waitqueue(folio);
1413 0 : if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1414 0 : if (!folio_test_swapbacked(folio)) {
1415 : delayacct_thrashing_start();
1416 : delayacct = true;
1417 : }
1418 : psi_memstall_enter(&pflags);
1419 : thrashing = true;
1420 : }
1421 :
1422 0 : init_wait(wait);
1423 0 : wait->func = wake_page_function;
1424 0 : wait_page.folio = folio;
1425 0 : wait_page.bit_nr = PG_locked;
1426 : wait->flags = 0;
1427 :
1428 0 : spin_lock_irq(&q->lock);
1429 0 : folio_set_waiters(folio);
1430 0 : if (!folio_trylock_flag(folio, PG_locked, wait))
1431 : __add_wait_queue_entry_tail(q, wait);
1432 0 : spin_unlock_irq(&q->lock);
1433 :
1434 : /*
1435 : * If a migration entry exists for the page the migration path must hold
1436 : * a valid reference to the page, and it must take the ptl to remove the
1437 : * migration entry. So the page is valid until the ptl is dropped.
1438 : */
1439 0 : if (ptep)
1440 : pte_unmap_unlock(ptep, ptl);
1441 : else
1442 : spin_unlock(ptl);
1443 :
1444 0 : for (;;) {
1445 : unsigned int flags;
1446 :
1447 0 : set_current_state(TASK_UNINTERRUPTIBLE);
1448 :
1449 : /* Loop until we've been woken or interrupted */
1450 0 : flags = smp_load_acquire(&wait->flags);
1451 0 : if (!(flags & WQ_FLAG_WOKEN)) {
1452 0 : if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1453 : break;
1454 :
1455 0 : io_schedule();
1456 0 : continue;
1457 : }
1458 : break;
1459 : }
1460 :
1461 0 : finish_wait(q, wait);
1462 :
1463 : if (thrashing) {
1464 : if (delayacct)
1465 : delayacct_thrashing_end();
1466 : psi_memstall_leave(&pflags);
1467 : }
1468 0 : }
1469 : #endif
1470 :
1471 0 : void folio_wait_bit(struct folio *folio, int bit_nr)
1472 : {
1473 0 : folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1474 0 : }
1475 : EXPORT_SYMBOL(folio_wait_bit);
1476 :
1477 0 : int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1478 : {
1479 0 : return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1480 : }
1481 : EXPORT_SYMBOL(folio_wait_bit_killable);
1482 :
1483 : /**
1484 : * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1485 : * @folio: The folio to wait for.
1486 : * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1487 : *
1488 : * The caller should hold a reference on @folio. They expect the page to
1489 : * become unlocked relatively soon, but do not wish to hold up migration
1490 : * (for example) by holding the reference while waiting for the folio to
1491 : * come unlocked. After this function returns, the caller should not
1492 : * dereference @folio.
1493 : *
1494 : * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1495 : */
1496 0 : int folio_put_wait_locked(struct folio *folio, int state)
1497 : {
1498 0 : return folio_wait_bit_common(folio, PG_locked, state, DROP);
1499 : }
1500 :
1501 : /**
1502 : * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1503 : * @folio: Folio defining the wait queue of interest
1504 : * @waiter: Waiter to add to the queue
1505 : *
1506 : * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1507 : */
1508 0 : void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1509 : {
1510 0 : wait_queue_head_t *q = folio_waitqueue(folio);
1511 : unsigned long flags;
1512 :
1513 0 : spin_lock_irqsave(&q->lock, flags);
1514 0 : __add_wait_queue_entry_tail(q, waiter);
1515 0 : folio_set_waiters(folio);
1516 0 : spin_unlock_irqrestore(&q->lock, flags);
1517 0 : }
1518 : EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1519 :
1520 : #ifndef clear_bit_unlock_is_negative_byte
1521 :
1522 : /*
1523 : * PG_waiters is the high bit in the same byte as PG_lock.
1524 : *
1525 : * On x86 (and on many other architectures), we can clear PG_lock and
1526 : * test the sign bit at the same time. But if the architecture does
1527 : * not support that special operation, we just do this all by hand
1528 : * instead.
1529 : *
1530 : * The read of PG_waiters has to be after (or concurrently with) PG_locked
1531 : * being cleared, but a memory barrier should be unnecessary since it is
1532 : * in the same byte as PG_locked.
1533 : */
1534 : static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1535 : {
1536 : clear_bit_unlock(nr, mem);
1537 : /* smp_mb__after_atomic(); */
1538 : return test_bit(PG_waiters, mem);
1539 : }
1540 :
1541 : #endif
1542 :
1543 : /**
1544 : * folio_unlock - Unlock a locked folio.
1545 : * @folio: The folio.
1546 : *
1547 : * Unlocks the folio and wakes up any thread sleeping on the page lock.
1548 : *
1549 : * Context: May be called from interrupt or process context. May not be
1550 : * called from NMI context.
1551 : */
1552 0 : void folio_unlock(struct folio *folio)
1553 : {
1554 : /* Bit 7 allows x86 to check the byte's sign bit */
1555 : BUILD_BUG_ON(PG_waiters != 7);
1556 : BUILD_BUG_ON(PG_locked > 7);
1557 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1558 0 : if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1559 0 : folio_wake_bit(folio, PG_locked);
1560 0 : }
1561 : EXPORT_SYMBOL(folio_unlock);
1562 :
1563 : /**
1564 : * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1565 : * @folio: The folio.
1566 : *
1567 : * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1568 : * it. The folio reference held for PG_private_2 being set is released.
1569 : *
1570 : * This is, for example, used when a netfs folio is being written to a local
1571 : * disk cache, thereby allowing writes to the cache for the same folio to be
1572 : * serialised.
1573 : */
1574 0 : void folio_end_private_2(struct folio *folio)
1575 : {
1576 : VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1577 0 : clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1578 0 : folio_wake_bit(folio, PG_private_2);
1579 0 : folio_put(folio);
1580 0 : }
1581 : EXPORT_SYMBOL(folio_end_private_2);
1582 :
1583 : /**
1584 : * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1585 : * @folio: The folio to wait on.
1586 : *
1587 : * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1588 : */
1589 0 : void folio_wait_private_2(struct folio *folio)
1590 : {
1591 0 : while (folio_test_private_2(folio))
1592 : folio_wait_bit(folio, PG_private_2);
1593 0 : }
1594 : EXPORT_SYMBOL(folio_wait_private_2);
1595 :
1596 : /**
1597 : * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1598 : * @folio: The folio to wait on.
1599 : *
1600 : * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1601 : * fatal signal is received by the calling task.
1602 : *
1603 : * Return:
1604 : * - 0 if successful.
1605 : * - -EINTR if a fatal signal was encountered.
1606 : */
1607 0 : int folio_wait_private_2_killable(struct folio *folio)
1608 : {
1609 0 : int ret = 0;
1610 :
1611 0 : while (folio_test_private_2(folio)) {
1612 0 : ret = folio_wait_bit_killable(folio, PG_private_2);
1613 0 : if (ret < 0)
1614 : break;
1615 : }
1616 :
1617 0 : return ret;
1618 : }
1619 : EXPORT_SYMBOL(folio_wait_private_2_killable);
1620 :
1621 : /**
1622 : * folio_end_writeback - End writeback against a folio.
1623 : * @folio: The folio.
1624 : */
1625 0 : void folio_end_writeback(struct folio *folio)
1626 : {
1627 : /*
1628 : * folio_test_clear_reclaim() could be used here but it is an
1629 : * atomic operation and overkill in this particular case. Failing
1630 : * to shuffle a folio marked for immediate reclaim is too mild
1631 : * a gain to justify taking an atomic operation penalty at the
1632 : * end of every folio writeback.
1633 : */
1634 0 : if (folio_test_reclaim(folio)) {
1635 0 : folio_clear_reclaim(folio);
1636 0 : folio_rotate_reclaimable(folio);
1637 : }
1638 :
1639 : /*
1640 : * Writeback does not hold a folio reference of its own, relying
1641 : * on truncation to wait for the clearing of PG_writeback.
1642 : * But here we must make sure that the folio is not freed and
1643 : * reused before the folio_wake().
1644 : */
1645 0 : folio_get(folio);
1646 0 : if (!__folio_end_writeback(folio))
1647 0 : BUG();
1648 :
1649 0 : smp_mb__after_atomic();
1650 0 : folio_wake(folio, PG_writeback);
1651 0 : acct_reclaim_writeback(folio);
1652 0 : folio_put(folio);
1653 0 : }
1654 : EXPORT_SYMBOL(folio_end_writeback);
1655 :
1656 : /*
1657 : * After completing I/O on a page, call this routine to update the page
1658 : * flags appropriately
1659 : */
1660 0 : void page_endio(struct page *page, bool is_write, int err)
1661 : {
1662 0 : if (!is_write) {
1663 0 : if (!err) {
1664 : SetPageUptodate(page);
1665 : } else {
1666 0 : ClearPageUptodate(page);
1667 : SetPageError(page);
1668 : }
1669 0 : unlock_page(page);
1670 : } else {
1671 0 : if (err) {
1672 : struct address_space *mapping;
1673 :
1674 0 : SetPageError(page);
1675 0 : mapping = page_mapping(page);
1676 0 : if (mapping)
1677 0 : mapping_set_error(mapping, err);
1678 : }
1679 0 : end_page_writeback(page);
1680 : }
1681 0 : }
1682 : EXPORT_SYMBOL_GPL(page_endio);
1683 :
1684 : /**
1685 : * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1686 : * @folio: The folio to lock
1687 : */
1688 0 : void __folio_lock(struct folio *folio)
1689 : {
1690 0 : folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1691 : EXCLUSIVE);
1692 0 : }
1693 : EXPORT_SYMBOL(__folio_lock);
1694 :
1695 0 : int __folio_lock_killable(struct folio *folio)
1696 : {
1697 0 : return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1698 : EXCLUSIVE);
1699 : }
1700 : EXPORT_SYMBOL_GPL(__folio_lock_killable);
1701 :
1702 0 : static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1703 : {
1704 0 : struct wait_queue_head *q = folio_waitqueue(folio);
1705 0 : int ret = 0;
1706 :
1707 0 : wait->folio = folio;
1708 0 : wait->bit_nr = PG_locked;
1709 :
1710 0 : spin_lock_irq(&q->lock);
1711 0 : __add_wait_queue_entry_tail(q, &wait->wait);
1712 0 : folio_set_waiters(folio);
1713 0 : ret = !folio_trylock(folio);
1714 : /*
1715 : * If we were successful now, we know we're still on the
1716 : * waitqueue as we're still under the lock. This means it's
1717 : * safe to remove and return success, we know the callback
1718 : * isn't going to trigger.
1719 : */
1720 0 : if (!ret)
1721 0 : __remove_wait_queue(q, &wait->wait);
1722 : else
1723 : ret = -EIOCBQUEUED;
1724 0 : spin_unlock_irq(&q->lock);
1725 0 : return ret;
1726 : }
1727 :
1728 : /*
1729 : * Return values:
1730 : * true - folio is locked; mmap_lock is still held.
1731 : * false - folio is not locked.
1732 : * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1733 : * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1734 : * which case mmap_lock is still held.
1735 : *
1736 : * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1737 : * with the folio locked and the mmap_lock unperturbed.
1738 : */
1739 0 : bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1740 : unsigned int flags)
1741 : {
1742 0 : if (fault_flag_allow_retry_first(flags)) {
1743 : /*
1744 : * CAUTION! In this case, mmap_lock is not released
1745 : * even though return 0.
1746 : */
1747 0 : if (flags & FAULT_FLAG_RETRY_NOWAIT)
1748 : return false;
1749 :
1750 0 : mmap_read_unlock(mm);
1751 0 : if (flags & FAULT_FLAG_KILLABLE)
1752 0 : folio_wait_locked_killable(folio);
1753 : else
1754 : folio_wait_locked(folio);
1755 : return false;
1756 : }
1757 0 : if (flags & FAULT_FLAG_KILLABLE) {
1758 : bool ret;
1759 :
1760 0 : ret = __folio_lock_killable(folio);
1761 0 : if (ret) {
1762 0 : mmap_read_unlock(mm);
1763 0 : return false;
1764 : }
1765 : } else {
1766 : __folio_lock(folio);
1767 : }
1768 :
1769 : return true;
1770 : }
1771 :
1772 : /**
1773 : * page_cache_next_miss() - Find the next gap in the page cache.
1774 : * @mapping: Mapping.
1775 : * @index: Index.
1776 : * @max_scan: Maximum range to search.
1777 : *
1778 : * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1779 : * gap with the lowest index.
1780 : *
1781 : * This function may be called under the rcu_read_lock. However, this will
1782 : * not atomically search a snapshot of the cache at a single point in time.
1783 : * For example, if a gap is created at index 5, then subsequently a gap is
1784 : * created at index 10, page_cache_next_miss covering both indices may
1785 : * return 10 if called under the rcu_read_lock.
1786 : *
1787 : * Return: The index of the gap if found, otherwise an index outside the
1788 : * range specified (in which case 'return - index >= max_scan' will be true).
1789 : * In the rare case of index wrap-around, 0 will be returned.
1790 : */
1791 0 : pgoff_t page_cache_next_miss(struct address_space *mapping,
1792 : pgoff_t index, unsigned long max_scan)
1793 : {
1794 0 : XA_STATE(xas, &mapping->i_pages, index);
1795 :
1796 0 : while (max_scan--) {
1797 0 : void *entry = xas_next(&xas);
1798 0 : if (!entry || xa_is_value(entry))
1799 : break;
1800 0 : if (xas.xa_index == 0)
1801 : break;
1802 : }
1803 :
1804 0 : return xas.xa_index;
1805 : }
1806 : EXPORT_SYMBOL(page_cache_next_miss);
1807 :
1808 : /**
1809 : * page_cache_prev_miss() - Find the previous gap in the page cache.
1810 : * @mapping: Mapping.
1811 : * @index: Index.
1812 : * @max_scan: Maximum range to search.
1813 : *
1814 : * Search the range [max(index - max_scan + 1, 0), index] for the
1815 : * gap with the highest index.
1816 : *
1817 : * This function may be called under the rcu_read_lock. However, this will
1818 : * not atomically search a snapshot of the cache at a single point in time.
1819 : * For example, if a gap is created at index 10, then subsequently a gap is
1820 : * created at index 5, page_cache_prev_miss() covering both indices may
1821 : * return 5 if called under the rcu_read_lock.
1822 : *
1823 : * Return: The index of the gap if found, otherwise an index outside the
1824 : * range specified (in which case 'index - return >= max_scan' will be true).
1825 : * In the rare case of wrap-around, ULONG_MAX will be returned.
1826 : */
1827 0 : pgoff_t page_cache_prev_miss(struct address_space *mapping,
1828 : pgoff_t index, unsigned long max_scan)
1829 : {
1830 0 : XA_STATE(xas, &mapping->i_pages, index);
1831 :
1832 0 : while (max_scan--) {
1833 0 : void *entry = xas_prev(&xas);
1834 0 : if (!entry || xa_is_value(entry))
1835 : break;
1836 0 : if (xas.xa_index == ULONG_MAX)
1837 : break;
1838 : }
1839 :
1840 0 : return xas.xa_index;
1841 : }
1842 : EXPORT_SYMBOL(page_cache_prev_miss);
1843 :
1844 : /*
1845 : * Lockless page cache protocol:
1846 : * On the lookup side:
1847 : * 1. Load the folio from i_pages
1848 : * 2. Increment the refcount if it's not zero
1849 : * 3. If the folio is not found by xas_reload(), put the refcount and retry
1850 : *
1851 : * On the removal side:
1852 : * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1853 : * B. Remove the page from i_pages
1854 : * C. Return the page to the page allocator
1855 : *
1856 : * This means that any page may have its reference count temporarily
1857 : * increased by a speculative page cache (or fast GUP) lookup as it can
1858 : * be allocated by another user before the RCU grace period expires.
1859 : * Because the refcount temporarily acquired here may end up being the
1860 : * last refcount on the page, any page allocation must be freeable by
1861 : * folio_put().
1862 : */
1863 :
1864 : /*
1865 : * mapping_get_entry - Get a page cache entry.
1866 : * @mapping: the address_space to search
1867 : * @index: The page cache index.
1868 : *
1869 : * Looks up the page cache entry at @mapping & @index. If it is a folio,
1870 : * it is returned with an increased refcount. If it is a shadow entry
1871 : * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1872 : * it is returned without further action.
1873 : *
1874 : * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1875 : */
1876 0 : static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1877 : {
1878 0 : XA_STATE(xas, &mapping->i_pages, index);
1879 : struct folio *folio;
1880 :
1881 : rcu_read_lock();
1882 : repeat:
1883 0 : xas_reset(&xas);
1884 0 : folio = xas_load(&xas);
1885 0 : if (xas_retry(&xas, folio))
1886 : goto repeat;
1887 : /*
1888 : * A shadow entry of a recently evicted page, or a swap entry from
1889 : * shmem/tmpfs. Return it without attempting to raise page count.
1890 : */
1891 0 : if (!folio || xa_is_value(folio))
1892 : goto out;
1893 :
1894 0 : if (!folio_try_get_rcu(folio))
1895 : goto repeat;
1896 :
1897 0 : if (unlikely(folio != xas_reload(&xas))) {
1898 : folio_put(folio);
1899 : goto repeat;
1900 : }
1901 : out:
1902 : rcu_read_unlock();
1903 :
1904 0 : return folio;
1905 : }
1906 :
1907 : /**
1908 : * __filemap_get_folio - Find and get a reference to a folio.
1909 : * @mapping: The address_space to search.
1910 : * @index: The page index.
1911 : * @fgp_flags: %FGP flags modify how the folio is returned.
1912 : * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1913 : *
1914 : * Looks up the page cache entry at @mapping & @index.
1915 : *
1916 : * @fgp_flags can be zero or more of these flags:
1917 : *
1918 : * * %FGP_ACCESSED - The folio will be marked accessed.
1919 : * * %FGP_LOCK - The folio is returned locked.
1920 : * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1921 : * instead of allocating a new folio to replace it.
1922 : * * %FGP_CREAT - If no page is present then a new page is allocated using
1923 : * @gfp and added to the page cache and the VM's LRU list.
1924 : * The page is returned locked and with an increased refcount.
1925 : * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1926 : * page is already in cache. If the page was allocated, unlock it before
1927 : * returning so the caller can do the same dance.
1928 : * * %FGP_WRITE - The page will be written to by the caller.
1929 : * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1930 : * * %FGP_NOWAIT - Don't get blocked by page lock.
1931 : * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1932 : *
1933 : * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1934 : * if the %GFP flags specified for %FGP_CREAT are atomic.
1935 : *
1936 : * If there is a page cache page, it is returned with an increased refcount.
1937 : *
1938 : * Return: The found folio or %NULL otherwise.
1939 : */
1940 0 : struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1941 : int fgp_flags, gfp_t gfp)
1942 : {
1943 : struct folio *folio;
1944 :
1945 : repeat:
1946 0 : folio = mapping_get_entry(mapping, index);
1947 0 : if (xa_is_value(folio)) {
1948 0 : if (fgp_flags & FGP_ENTRY)
1949 : return folio;
1950 : folio = NULL;
1951 : }
1952 0 : if (!folio)
1953 : goto no_page;
1954 :
1955 0 : if (fgp_flags & FGP_LOCK) {
1956 0 : if (fgp_flags & FGP_NOWAIT) {
1957 0 : if (!folio_trylock(folio)) {
1958 : folio_put(folio);
1959 : return NULL;
1960 : }
1961 : } else {
1962 0 : folio_lock(folio);
1963 : }
1964 :
1965 : /* Has the page been truncated? */
1966 0 : if (unlikely(folio->mapping != mapping)) {
1967 0 : folio_unlock(folio);
1968 : folio_put(folio);
1969 : goto repeat;
1970 : }
1971 : VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1972 : }
1973 :
1974 0 : if (fgp_flags & FGP_ACCESSED)
1975 0 : folio_mark_accessed(folio);
1976 : else if (fgp_flags & FGP_WRITE) {
1977 : /* Clear idle flag for buffer write */
1978 : if (folio_test_idle(folio))
1979 : folio_clear_idle(folio);
1980 : }
1981 :
1982 0 : if (fgp_flags & FGP_STABLE)
1983 0 : folio_wait_stable(folio);
1984 : no_page:
1985 0 : if (!folio && (fgp_flags & FGP_CREAT)) {
1986 : int err;
1987 0 : if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1988 0 : gfp |= __GFP_WRITE;
1989 0 : if (fgp_flags & FGP_NOFS)
1990 0 : gfp &= ~__GFP_FS;
1991 :
1992 0 : folio = filemap_alloc_folio(gfp, 0);
1993 0 : if (!folio)
1994 : return NULL;
1995 :
1996 0 : if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1997 0 : fgp_flags |= FGP_LOCK;
1998 :
1999 : /* Init accessed so avoid atomic mark_page_accessed later */
2000 0 : if (fgp_flags & FGP_ACCESSED)
2001 : __folio_set_referenced(folio);
2002 :
2003 0 : err = filemap_add_folio(mapping, folio, index, gfp);
2004 0 : if (unlikely(err)) {
2005 0 : folio_put(folio);
2006 0 : folio = NULL;
2007 0 : if (err == -EEXIST)
2008 : goto repeat;
2009 : }
2010 :
2011 : /*
2012 : * filemap_add_folio locks the page, and for mmap
2013 : * we expect an unlocked page.
2014 : */
2015 0 : if (folio && (fgp_flags & FGP_FOR_MMAP))
2016 : folio_unlock(folio);
2017 : }
2018 :
2019 : return folio;
2020 : }
2021 : EXPORT_SYMBOL(__filemap_get_folio);
2022 :
2023 0 : static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2024 : xa_mark_t mark)
2025 : {
2026 : struct folio *folio;
2027 :
2028 : retry:
2029 0 : if (mark == XA_PRESENT)
2030 0 : folio = xas_find(xas, max);
2031 : else
2032 0 : folio = xas_find_marked(xas, max, mark);
2033 :
2034 0 : if (xas_retry(xas, folio))
2035 : goto retry;
2036 : /*
2037 : * A shadow entry of a recently evicted page, a swap
2038 : * entry from shmem/tmpfs or a DAX entry. Return it
2039 : * without attempting to raise page count.
2040 : */
2041 0 : if (!folio || xa_is_value(folio))
2042 : return folio;
2043 :
2044 0 : if (!folio_try_get_rcu(folio))
2045 : goto reset;
2046 :
2047 0 : if (unlikely(folio != xas_reload(xas))) {
2048 : folio_put(folio);
2049 : goto reset;
2050 : }
2051 :
2052 : return folio;
2053 : reset:
2054 0 : xas_reset(xas);
2055 : goto retry;
2056 : }
2057 :
2058 : /**
2059 : * find_get_entries - gang pagecache lookup
2060 : * @mapping: The address_space to search
2061 : * @start: The starting page cache index
2062 : * @end: The final page index (inclusive).
2063 : * @fbatch: Where the resulting entries are placed.
2064 : * @indices: The cache indices corresponding to the entries in @entries
2065 : *
2066 : * find_get_entries() will search for and return a batch of entries in
2067 : * the mapping. The entries are placed in @fbatch. find_get_entries()
2068 : * takes a reference on any actual folios it returns.
2069 : *
2070 : * The entries have ascending indexes. The indices may not be consecutive
2071 : * due to not-present entries or large folios.
2072 : *
2073 : * Any shadow entries of evicted folios, or swap entries from
2074 : * shmem/tmpfs, are included in the returned array.
2075 : *
2076 : * Return: The number of entries which were found.
2077 : */
2078 0 : unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2079 : pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2080 : {
2081 0 : XA_STATE(xas, &mapping->i_pages, start);
2082 : struct folio *folio;
2083 :
2084 : rcu_read_lock();
2085 0 : while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2086 0 : indices[fbatch->nr] = xas.xa_index;
2087 0 : if (!folio_batch_add(fbatch, folio))
2088 : break;
2089 : }
2090 : rcu_read_unlock();
2091 :
2092 0 : return folio_batch_count(fbatch);
2093 : }
2094 :
2095 : /**
2096 : * find_lock_entries - Find a batch of pagecache entries.
2097 : * @mapping: The address_space to search.
2098 : * @start: The starting page cache index.
2099 : * @end: The final page index (inclusive).
2100 : * @fbatch: Where the resulting entries are placed.
2101 : * @indices: The cache indices of the entries in @fbatch.
2102 : *
2103 : * find_lock_entries() will return a batch of entries from @mapping.
2104 : * Swap, shadow and DAX entries are included. Folios are returned
2105 : * locked and with an incremented refcount. Folios which are locked
2106 : * by somebody else or under writeback are skipped. Folios which are
2107 : * partially outside the range are not returned.
2108 : *
2109 : * The entries have ascending indexes. The indices may not be consecutive
2110 : * due to not-present entries, large folios, folios which could not be
2111 : * locked or folios under writeback.
2112 : *
2113 : * Return: The number of entries which were found.
2114 : */
2115 0 : unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2116 : pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2117 : {
2118 0 : XA_STATE(xas, &mapping->i_pages, start);
2119 : struct folio *folio;
2120 :
2121 : rcu_read_lock();
2122 0 : while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2123 0 : if (!xa_is_value(folio)) {
2124 0 : if (folio->index < start)
2125 : goto put;
2126 0 : if (folio->index + folio_nr_pages(folio) - 1 > end)
2127 : goto put;
2128 0 : if (!folio_trylock(folio))
2129 : goto put;
2130 0 : if (folio->mapping != mapping ||
2131 0 : folio_test_writeback(folio))
2132 : goto unlock;
2133 : VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2134 : folio);
2135 : }
2136 0 : indices[fbatch->nr] = xas.xa_index;
2137 0 : if (!folio_batch_add(fbatch, folio))
2138 : break;
2139 0 : continue;
2140 : unlock:
2141 : folio_unlock(folio);
2142 : put:
2143 : folio_put(folio);
2144 : }
2145 : rcu_read_unlock();
2146 :
2147 0 : return folio_batch_count(fbatch);
2148 : }
2149 :
2150 : static inline
2151 : bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2152 : {
2153 0 : if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2154 : return false;
2155 0 : if (index >= max)
2156 : return false;
2157 0 : return index < folio->index + folio_nr_pages(folio) - 1;
2158 : }
2159 :
2160 : /**
2161 : * find_get_pages_range - gang pagecache lookup
2162 : * @mapping: The address_space to search
2163 : * @start: The starting page index
2164 : * @end: The final page index (inclusive)
2165 : * @nr_pages: The maximum number of pages
2166 : * @pages: Where the resulting pages are placed
2167 : *
2168 : * find_get_pages_range() will search for and return a group of up to @nr_pages
2169 : * pages in the mapping starting at index @start and up to index @end
2170 : * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2171 : * a reference against the returned pages.
2172 : *
2173 : * The search returns a group of mapping-contiguous pages with ascending
2174 : * indexes. There may be holes in the indices due to not-present pages.
2175 : * We also update @start to index the next page for the traversal.
2176 : *
2177 : * Return: the number of pages which were found. If this number is
2178 : * smaller than @nr_pages, the end of specified range has been
2179 : * reached.
2180 : */
2181 0 : unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2182 : pgoff_t end, unsigned int nr_pages,
2183 : struct page **pages)
2184 : {
2185 0 : XA_STATE(xas, &mapping->i_pages, *start);
2186 : struct folio *folio;
2187 0 : unsigned ret = 0;
2188 :
2189 0 : if (unlikely(!nr_pages))
2190 : return 0;
2191 :
2192 : rcu_read_lock();
2193 0 : while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2194 : /* Skip over shadow, swap and DAX entries */
2195 0 : if (xa_is_value(folio))
2196 0 : continue;
2197 :
2198 : again:
2199 0 : pages[ret] = folio_file_page(folio, xas.xa_index);
2200 0 : if (++ret == nr_pages) {
2201 0 : *start = xas.xa_index + 1;
2202 0 : goto out;
2203 : }
2204 0 : if (folio_more_pages(folio, xas.xa_index, end)) {
2205 0 : xas.xa_index++;
2206 : folio_ref_inc(folio);
2207 : goto again;
2208 : }
2209 : }
2210 :
2211 : /*
2212 : * We come here when there is no page beyond @end. We take care to not
2213 : * overflow the index @start as it confuses some of the callers. This
2214 : * breaks the iteration when there is a page at index -1 but that is
2215 : * already broken anyway.
2216 : */
2217 0 : if (end == (pgoff_t)-1)
2218 0 : *start = (pgoff_t)-1;
2219 : else
2220 0 : *start = end + 1;
2221 : out:
2222 : rcu_read_unlock();
2223 :
2224 0 : return ret;
2225 : }
2226 :
2227 : /**
2228 : * find_get_pages_contig - gang contiguous pagecache lookup
2229 : * @mapping: The address_space to search
2230 : * @index: The starting page index
2231 : * @nr_pages: The maximum number of pages
2232 : * @pages: Where the resulting pages are placed
2233 : *
2234 : * find_get_pages_contig() works exactly like find_get_pages_range(),
2235 : * except that the returned number of pages are guaranteed to be
2236 : * contiguous.
2237 : *
2238 : * Return: the number of pages which were found.
2239 : */
2240 0 : unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2241 : unsigned int nr_pages, struct page **pages)
2242 : {
2243 0 : XA_STATE(xas, &mapping->i_pages, index);
2244 : struct folio *folio;
2245 0 : unsigned int ret = 0;
2246 :
2247 0 : if (unlikely(!nr_pages))
2248 : return 0;
2249 :
2250 : rcu_read_lock();
2251 0 : for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2252 0 : if (xas_retry(&xas, folio))
2253 0 : continue;
2254 : /*
2255 : * If the entry has been swapped out, we can stop looking.
2256 : * No current caller is looking for DAX entries.
2257 : */
2258 0 : if (xa_is_value(folio))
2259 : break;
2260 :
2261 0 : if (!folio_try_get_rcu(folio))
2262 : goto retry;
2263 :
2264 0 : if (unlikely(folio != xas_reload(&xas)))
2265 : goto put_page;
2266 :
2267 : again:
2268 0 : pages[ret] = folio_file_page(folio, xas.xa_index);
2269 0 : if (++ret == nr_pages)
2270 : break;
2271 0 : if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2272 0 : xas.xa_index++;
2273 : folio_ref_inc(folio);
2274 : goto again;
2275 : }
2276 0 : continue;
2277 : put_page:
2278 : folio_put(folio);
2279 : retry:
2280 0 : xas_reset(&xas);
2281 : }
2282 : rcu_read_unlock();
2283 0 : return ret;
2284 : }
2285 : EXPORT_SYMBOL(find_get_pages_contig);
2286 :
2287 : /**
2288 : * find_get_pages_range_tag - Find and return head pages matching @tag.
2289 : * @mapping: the address_space to search
2290 : * @index: the starting page index
2291 : * @end: The final page index (inclusive)
2292 : * @tag: the tag index
2293 : * @nr_pages: the maximum number of pages
2294 : * @pages: where the resulting pages are placed
2295 : *
2296 : * Like find_get_pages_range(), except we only return head pages which are
2297 : * tagged with @tag. @index is updated to the index immediately after the
2298 : * last page we return, ready for the next iteration.
2299 : *
2300 : * Return: the number of pages which were found.
2301 : */
2302 0 : unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2303 : pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2304 : struct page **pages)
2305 : {
2306 0 : XA_STATE(xas, &mapping->i_pages, *index);
2307 : struct folio *folio;
2308 0 : unsigned ret = 0;
2309 :
2310 0 : if (unlikely(!nr_pages))
2311 : return 0;
2312 :
2313 : rcu_read_lock();
2314 0 : while ((folio = find_get_entry(&xas, end, tag))) {
2315 : /*
2316 : * Shadow entries should never be tagged, but this iteration
2317 : * is lockless so there is a window for page reclaim to evict
2318 : * a page we saw tagged. Skip over it.
2319 : */
2320 0 : if (xa_is_value(folio))
2321 0 : continue;
2322 :
2323 0 : pages[ret] = &folio->page;
2324 0 : if (++ret == nr_pages) {
2325 0 : *index = folio->index + folio_nr_pages(folio);
2326 0 : goto out;
2327 : }
2328 : }
2329 :
2330 : /*
2331 : * We come here when we got to @end. We take care to not overflow the
2332 : * index @index as it confuses some of the callers. This breaks the
2333 : * iteration when there is a page at index -1 but that is already
2334 : * broken anyway.
2335 : */
2336 0 : if (end == (pgoff_t)-1)
2337 0 : *index = (pgoff_t)-1;
2338 : else
2339 0 : *index = end + 1;
2340 : out:
2341 : rcu_read_unlock();
2342 :
2343 0 : return ret;
2344 : }
2345 : EXPORT_SYMBOL(find_get_pages_range_tag);
2346 :
2347 : /*
2348 : * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2349 : * a _large_ part of the i/o request. Imagine the worst scenario:
2350 : *
2351 : * ---R__________________________________________B__________
2352 : * ^ reading here ^ bad block(assume 4k)
2353 : *
2354 : * read(R) => miss => readahead(R...B) => media error => frustrating retries
2355 : * => failing the whole request => read(R) => read(R+1) =>
2356 : * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2357 : * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2358 : * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2359 : *
2360 : * It is going insane. Fix it by quickly scaling down the readahead size.
2361 : */
2362 : static void shrink_readahead_size_eio(struct file_ra_state *ra)
2363 : {
2364 0 : ra->ra_pages /= 4;
2365 : }
2366 :
2367 : /*
2368 : * filemap_get_read_batch - Get a batch of folios for read
2369 : *
2370 : * Get a batch of folios which represent a contiguous range of bytes in
2371 : * the file. No exceptional entries will be returned. If @index is in
2372 : * the middle of a folio, the entire folio will be returned. The last
2373 : * folio in the batch may have the readahead flag set or the uptodate flag
2374 : * clear so that the caller can take the appropriate action.
2375 : */
2376 0 : static void filemap_get_read_batch(struct address_space *mapping,
2377 : pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2378 : {
2379 0 : XA_STATE(xas, &mapping->i_pages, index);
2380 : struct folio *folio;
2381 :
2382 : rcu_read_lock();
2383 0 : for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2384 0 : if (xas_retry(&xas, folio))
2385 0 : continue;
2386 0 : if (xas.xa_index > max || xa_is_value(folio))
2387 : break;
2388 0 : if (!folio_try_get_rcu(folio))
2389 : goto retry;
2390 :
2391 0 : if (unlikely(folio != xas_reload(&xas)))
2392 : goto put_folio;
2393 :
2394 0 : if (!folio_batch_add(fbatch, folio))
2395 : break;
2396 0 : if (!folio_test_uptodate(folio))
2397 : break;
2398 0 : if (folio_test_readahead(folio))
2399 : break;
2400 0 : xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2401 0 : continue;
2402 : put_folio:
2403 : folio_put(folio);
2404 : retry:
2405 0 : xas_reset(&xas);
2406 : }
2407 : rcu_read_unlock();
2408 0 : }
2409 :
2410 0 : static int filemap_read_folio(struct file *file, struct address_space *mapping,
2411 : struct folio *folio)
2412 : {
2413 : int error;
2414 :
2415 : /*
2416 : * A previous I/O error may have been due to temporary failures,
2417 : * eg. multipath errors. PG_error will be set again if readpage
2418 : * fails.
2419 : */
2420 0 : folio_clear_error(folio);
2421 : /* Start the actual read. The read will unlock the page. */
2422 0 : error = mapping->a_ops->readpage(file, &folio->page);
2423 0 : if (error)
2424 : return error;
2425 :
2426 0 : error = folio_wait_locked_killable(folio);
2427 0 : if (error)
2428 : return error;
2429 0 : if (folio_test_uptodate(folio))
2430 : return 0;
2431 0 : shrink_readahead_size_eio(&file->f_ra);
2432 : return -EIO;
2433 : }
2434 :
2435 0 : static bool filemap_range_uptodate(struct address_space *mapping,
2436 : loff_t pos, struct iov_iter *iter, struct folio *folio)
2437 : {
2438 : int count;
2439 :
2440 0 : if (folio_test_uptodate(folio))
2441 : return true;
2442 : /* pipes can't handle partially uptodate pages */
2443 0 : if (iov_iter_is_pipe(iter))
2444 : return false;
2445 0 : if (!mapping->a_ops->is_partially_uptodate)
2446 : return false;
2447 0 : if (mapping->host->i_blkbits >= folio_shift(folio))
2448 : return false;
2449 :
2450 0 : count = iter->count;
2451 0 : if (folio_pos(folio) > pos) {
2452 0 : count -= folio_pos(folio) - pos;
2453 0 : pos = 0;
2454 : } else {
2455 0 : pos -= folio_pos(folio);
2456 : }
2457 :
2458 0 : return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2459 : }
2460 :
2461 0 : static int filemap_update_page(struct kiocb *iocb,
2462 : struct address_space *mapping, struct iov_iter *iter,
2463 : struct folio *folio)
2464 : {
2465 : int error;
2466 :
2467 0 : if (iocb->ki_flags & IOCB_NOWAIT) {
2468 0 : if (!filemap_invalidate_trylock_shared(mapping))
2469 : return -EAGAIN;
2470 : } else {
2471 : filemap_invalidate_lock_shared(mapping);
2472 : }
2473 :
2474 0 : if (!folio_trylock(folio)) {
2475 0 : error = -EAGAIN;
2476 0 : if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2477 : goto unlock_mapping;
2478 0 : if (!(iocb->ki_flags & IOCB_WAITQ)) {
2479 0 : filemap_invalidate_unlock_shared(mapping);
2480 : /*
2481 : * This is where we usually end up waiting for a
2482 : * previously submitted readahead to finish.
2483 : */
2484 0 : folio_put_wait_locked(folio, TASK_KILLABLE);
2485 0 : return AOP_TRUNCATED_PAGE;
2486 : }
2487 0 : error = __folio_lock_async(folio, iocb->ki_waitq);
2488 0 : if (error)
2489 : goto unlock_mapping;
2490 : }
2491 :
2492 0 : error = AOP_TRUNCATED_PAGE;
2493 0 : if (!folio->mapping)
2494 : goto unlock;
2495 :
2496 0 : error = 0;
2497 0 : if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2498 : goto unlock;
2499 :
2500 0 : error = -EAGAIN;
2501 0 : if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2502 : goto unlock;
2503 :
2504 0 : error = filemap_read_folio(iocb->ki_filp, mapping, folio);
2505 0 : goto unlock_mapping;
2506 : unlock:
2507 : folio_unlock(folio);
2508 : unlock_mapping:
2509 0 : filemap_invalidate_unlock_shared(mapping);
2510 0 : if (error == AOP_TRUNCATED_PAGE)
2511 : folio_put(folio);
2512 : return error;
2513 : }
2514 :
2515 0 : static int filemap_create_folio(struct file *file,
2516 : struct address_space *mapping, pgoff_t index,
2517 : struct folio_batch *fbatch)
2518 : {
2519 : struct folio *folio;
2520 : int error;
2521 :
2522 0 : folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2523 0 : if (!folio)
2524 : return -ENOMEM;
2525 :
2526 : /*
2527 : * Protect against truncate / hole punch. Grabbing invalidate_lock
2528 : * here assures we cannot instantiate and bring uptodate new
2529 : * pagecache folios after evicting page cache during truncate
2530 : * and before actually freeing blocks. Note that we could
2531 : * release invalidate_lock after inserting the folio into
2532 : * the page cache as the locked folio would then be enough to
2533 : * synchronize with hole punching. But there are code paths
2534 : * such as filemap_update_page() filling in partially uptodate
2535 : * pages or ->readahead() that need to hold invalidate_lock
2536 : * while mapping blocks for IO so let's hold the lock here as
2537 : * well to keep locking rules simple.
2538 : */
2539 0 : filemap_invalidate_lock_shared(mapping);
2540 0 : error = filemap_add_folio(mapping, folio, index,
2541 : mapping_gfp_constraint(mapping, GFP_KERNEL));
2542 0 : if (error == -EEXIST)
2543 0 : error = AOP_TRUNCATED_PAGE;
2544 0 : if (error)
2545 : goto error;
2546 :
2547 0 : error = filemap_read_folio(file, mapping, folio);
2548 0 : if (error)
2549 : goto error;
2550 :
2551 0 : filemap_invalidate_unlock_shared(mapping);
2552 0 : folio_batch_add(fbatch, folio);
2553 0 : return 0;
2554 : error:
2555 0 : filemap_invalidate_unlock_shared(mapping);
2556 : folio_put(folio);
2557 : return error;
2558 : }
2559 :
2560 0 : static int filemap_readahead(struct kiocb *iocb, struct file *file,
2561 : struct address_space *mapping, struct folio *folio,
2562 : pgoff_t last_index)
2563 : {
2564 0 : DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2565 :
2566 0 : if (iocb->ki_flags & IOCB_NOIO)
2567 : return -EAGAIN;
2568 0 : page_cache_async_ra(&ractl, folio, last_index - folio->index);
2569 : return 0;
2570 : }
2571 :
2572 0 : static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2573 : struct folio_batch *fbatch)
2574 : {
2575 0 : struct file *filp = iocb->ki_filp;
2576 0 : struct address_space *mapping = filp->f_mapping;
2577 0 : struct file_ra_state *ra = &filp->f_ra;
2578 0 : pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2579 : pgoff_t last_index;
2580 : struct folio *folio;
2581 0 : int err = 0;
2582 :
2583 0 : last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2584 : retry:
2585 0 : if (fatal_signal_pending(current))
2586 : return -EINTR;
2587 :
2588 0 : filemap_get_read_batch(mapping, index, last_index, fbatch);
2589 0 : if (!folio_batch_count(fbatch)) {
2590 0 : if (iocb->ki_flags & IOCB_NOIO)
2591 : return -EAGAIN;
2592 0 : page_cache_sync_readahead(mapping, ra, filp, index,
2593 : last_index - index);
2594 0 : filemap_get_read_batch(mapping, index, last_index, fbatch);
2595 : }
2596 0 : if (!folio_batch_count(fbatch)) {
2597 0 : if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2598 : return -EAGAIN;
2599 0 : err = filemap_create_folio(filp, mapping,
2600 0 : iocb->ki_pos >> PAGE_SHIFT, fbatch);
2601 0 : if (err == AOP_TRUNCATED_PAGE)
2602 : goto retry;
2603 : return err;
2604 : }
2605 :
2606 0 : folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2607 0 : if (folio_test_readahead(folio)) {
2608 0 : err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2609 0 : if (err)
2610 : goto err;
2611 : }
2612 0 : if (!folio_test_uptodate(folio)) {
2613 0 : if ((iocb->ki_flags & IOCB_WAITQ) &&
2614 0 : folio_batch_count(fbatch) > 1)
2615 0 : iocb->ki_flags |= IOCB_NOWAIT;
2616 0 : err = filemap_update_page(iocb, mapping, iter, folio);
2617 0 : if (err)
2618 : goto err;
2619 : }
2620 :
2621 : return 0;
2622 : err:
2623 0 : if (err < 0)
2624 : folio_put(folio);
2625 0 : if (likely(--fbatch->nr))
2626 : return 0;
2627 0 : if (err == AOP_TRUNCATED_PAGE)
2628 : goto retry;
2629 : return err;
2630 : }
2631 :
2632 : /**
2633 : * filemap_read - Read data from the page cache.
2634 : * @iocb: The iocb to read.
2635 : * @iter: Destination for the data.
2636 : * @already_read: Number of bytes already read by the caller.
2637 : *
2638 : * Copies data from the page cache. If the data is not currently present,
2639 : * uses the readahead and readpage address_space operations to fetch it.
2640 : *
2641 : * Return: Total number of bytes copied, including those already read by
2642 : * the caller. If an error happens before any bytes are copied, returns
2643 : * a negative error number.
2644 : */
2645 0 : ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2646 : ssize_t already_read)
2647 : {
2648 0 : struct file *filp = iocb->ki_filp;
2649 0 : struct file_ra_state *ra = &filp->f_ra;
2650 0 : struct address_space *mapping = filp->f_mapping;
2651 0 : struct inode *inode = mapping->host;
2652 : struct folio_batch fbatch;
2653 0 : int i, error = 0;
2654 : bool writably_mapped;
2655 : loff_t isize, end_offset;
2656 :
2657 0 : if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2658 : return 0;
2659 0 : if (unlikely(!iov_iter_count(iter)))
2660 : return 0;
2661 :
2662 0 : iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2663 0 : folio_batch_init(&fbatch);
2664 :
2665 : do {
2666 0 : cond_resched();
2667 :
2668 : /*
2669 : * If we've already successfully copied some data, then we
2670 : * can no longer safely return -EIOCBQUEUED. Hence mark
2671 : * an async read NOWAIT at that point.
2672 : */
2673 0 : if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2674 0 : iocb->ki_flags |= IOCB_NOWAIT;
2675 :
2676 0 : if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2677 : break;
2678 :
2679 0 : error = filemap_get_pages(iocb, iter, &fbatch);
2680 0 : if (error < 0)
2681 : break;
2682 :
2683 : /*
2684 : * i_size must be checked after we know the pages are Uptodate.
2685 : *
2686 : * Checking i_size after the check allows us to calculate
2687 : * the correct value for "nr", which means the zero-filled
2688 : * part of the page is not copied back to userspace (unless
2689 : * another truncate extends the file - this is desired though).
2690 : */
2691 0 : isize = i_size_read(inode);
2692 0 : if (unlikely(iocb->ki_pos >= isize))
2693 : goto put_folios;
2694 0 : end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2695 :
2696 : /*
2697 : * Once we start copying data, we don't want to be touching any
2698 : * cachelines that might be contended:
2699 : */
2700 0 : writably_mapped = mapping_writably_mapped(mapping);
2701 :
2702 : /*
2703 : * When a sequential read accesses a page several times, only
2704 : * mark it as accessed the first time.
2705 : */
2706 0 : if (iocb->ki_pos >> PAGE_SHIFT !=
2707 0 : ra->prev_pos >> PAGE_SHIFT)
2708 0 : folio_mark_accessed(fbatch.folios[0]);
2709 :
2710 0 : for (i = 0; i < folio_batch_count(&fbatch); i++) {
2711 0 : struct folio *folio = fbatch.folios[i];
2712 0 : size_t fsize = folio_size(folio);
2713 0 : size_t offset = iocb->ki_pos & (fsize - 1);
2714 0 : size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2715 : fsize - offset);
2716 : size_t copied;
2717 :
2718 0 : if (end_offset < folio_pos(folio))
2719 : break;
2720 0 : if (i > 0)
2721 0 : folio_mark_accessed(folio);
2722 : /*
2723 : * If users can be writing to this folio using arbitrary
2724 : * virtual addresses, take care of potential aliasing
2725 : * before reading the folio on the kernel side.
2726 : */
2727 : if (writably_mapped)
2728 : flush_dcache_folio(folio);
2729 :
2730 0 : copied = copy_folio_to_iter(folio, offset, bytes, iter);
2731 :
2732 0 : already_read += copied;
2733 0 : iocb->ki_pos += copied;
2734 0 : ra->prev_pos = iocb->ki_pos;
2735 :
2736 0 : if (copied < bytes) {
2737 : error = -EFAULT;
2738 : break;
2739 : }
2740 : }
2741 : put_folios:
2742 0 : for (i = 0; i < folio_batch_count(&fbatch); i++)
2743 0 : folio_put(fbatch.folios[i]);
2744 0 : folio_batch_init(&fbatch);
2745 0 : } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2746 :
2747 0 : file_accessed(filp);
2748 :
2749 0 : return already_read ? already_read : error;
2750 : }
2751 : EXPORT_SYMBOL_GPL(filemap_read);
2752 :
2753 : /**
2754 : * generic_file_read_iter - generic filesystem read routine
2755 : * @iocb: kernel I/O control block
2756 : * @iter: destination for the data read
2757 : *
2758 : * This is the "read_iter()" routine for all filesystems
2759 : * that can use the page cache directly.
2760 : *
2761 : * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2762 : * be returned when no data can be read without waiting for I/O requests
2763 : * to complete; it doesn't prevent readahead.
2764 : *
2765 : * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2766 : * requests shall be made for the read or for readahead. When no data
2767 : * can be read, -EAGAIN shall be returned. When readahead would be
2768 : * triggered, a partial, possibly empty read shall be returned.
2769 : *
2770 : * Return:
2771 : * * number of bytes copied, even for partial reads
2772 : * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2773 : */
2774 : ssize_t
2775 0 : generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2776 : {
2777 0 : size_t count = iov_iter_count(iter);
2778 0 : ssize_t retval = 0;
2779 :
2780 0 : if (!count)
2781 : return 0; /* skip atime */
2782 :
2783 0 : if (iocb->ki_flags & IOCB_DIRECT) {
2784 0 : struct file *file = iocb->ki_filp;
2785 0 : struct address_space *mapping = file->f_mapping;
2786 0 : struct inode *inode = mapping->host;
2787 :
2788 0 : if (iocb->ki_flags & IOCB_NOWAIT) {
2789 0 : if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2790 0 : iocb->ki_pos + count - 1))
2791 : return -EAGAIN;
2792 : } else {
2793 0 : retval = filemap_write_and_wait_range(mapping,
2794 : iocb->ki_pos,
2795 0 : iocb->ki_pos + count - 1);
2796 0 : if (retval < 0)
2797 : return retval;
2798 : }
2799 :
2800 0 : file_accessed(file);
2801 :
2802 0 : retval = mapping->a_ops->direct_IO(iocb, iter);
2803 0 : if (retval >= 0) {
2804 0 : iocb->ki_pos += retval;
2805 0 : count -= retval;
2806 : }
2807 0 : if (retval != -EIOCBQUEUED)
2808 0 : iov_iter_revert(iter, count - iov_iter_count(iter));
2809 :
2810 : /*
2811 : * Btrfs can have a short DIO read if we encounter
2812 : * compressed extents, so if there was an error, or if
2813 : * we've already read everything we wanted to, or if
2814 : * there was a short read because we hit EOF, go ahead
2815 : * and return. Otherwise fallthrough to buffered io for
2816 : * the rest of the read. Buffered reads will not work for
2817 : * DAX files, so don't bother trying.
2818 : */
2819 0 : if (retval < 0 || !count || IS_DAX(inode))
2820 : return retval;
2821 0 : if (iocb->ki_pos >= i_size_read(inode))
2822 : return retval;
2823 : }
2824 :
2825 0 : return filemap_read(iocb, iter, retval);
2826 : }
2827 : EXPORT_SYMBOL(generic_file_read_iter);
2828 :
2829 0 : static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2830 : struct address_space *mapping, struct folio *folio,
2831 : loff_t start, loff_t end, bool seek_data)
2832 : {
2833 0 : const struct address_space_operations *ops = mapping->a_ops;
2834 0 : size_t offset, bsz = i_blocksize(mapping->host);
2835 :
2836 0 : if (xa_is_value(folio) || folio_test_uptodate(folio))
2837 0 : return seek_data ? start : end;
2838 0 : if (!ops->is_partially_uptodate)
2839 0 : return seek_data ? end : start;
2840 :
2841 0 : xas_pause(xas);
2842 : rcu_read_unlock();
2843 0 : folio_lock(folio);
2844 0 : if (unlikely(folio->mapping != mapping))
2845 : goto unlock;
2846 :
2847 0 : offset = offset_in_folio(folio, start) & ~(bsz - 1);
2848 :
2849 : do {
2850 0 : if (ops->is_partially_uptodate(folio, offset, bsz) ==
2851 : seek_data)
2852 : break;
2853 0 : start = (start + bsz) & ~(bsz - 1);
2854 0 : offset += bsz;
2855 0 : } while (offset < folio_size(folio));
2856 : unlock:
2857 0 : folio_unlock(folio);
2858 : rcu_read_lock();
2859 0 : return start;
2860 : }
2861 :
2862 : static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2863 : {
2864 0 : if (xa_is_value(folio))
2865 : return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2866 0 : return folio_size(folio);
2867 : }
2868 :
2869 : /**
2870 : * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2871 : * @mapping: Address space to search.
2872 : * @start: First byte to consider.
2873 : * @end: Limit of search (exclusive).
2874 : * @whence: Either SEEK_HOLE or SEEK_DATA.
2875 : *
2876 : * If the page cache knows which blocks contain holes and which blocks
2877 : * contain data, your filesystem can use this function to implement
2878 : * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2879 : * entirely memory-based such as tmpfs, and filesystems which support
2880 : * unwritten extents.
2881 : *
2882 : * Return: The requested offset on success, or -ENXIO if @whence specifies
2883 : * SEEK_DATA and there is no data after @start. There is an implicit hole
2884 : * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2885 : * and @end contain data.
2886 : */
2887 0 : loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2888 : loff_t end, int whence)
2889 : {
2890 0 : XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2891 0 : pgoff_t max = (end - 1) >> PAGE_SHIFT;
2892 0 : bool seek_data = (whence == SEEK_DATA);
2893 : struct folio *folio;
2894 :
2895 0 : if (end <= start)
2896 : return -ENXIO;
2897 :
2898 : rcu_read_lock();
2899 0 : while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2900 0 : loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2901 : size_t seek_size;
2902 :
2903 0 : if (start < pos) {
2904 0 : if (!seek_data)
2905 : goto unlock;
2906 : start = pos;
2907 : }
2908 :
2909 0 : seek_size = seek_folio_size(&xas, folio);
2910 0 : pos = round_up((u64)pos + 1, seek_size);
2911 0 : start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2912 : seek_data);
2913 0 : if (start < pos)
2914 : goto unlock;
2915 0 : if (start >= end)
2916 : break;
2917 0 : if (seek_size > PAGE_SIZE)
2918 0 : xas_set(&xas, pos >> PAGE_SHIFT);
2919 0 : if (!xa_is_value(folio))
2920 : folio_put(folio);
2921 : }
2922 0 : if (seek_data)
2923 0 : start = -ENXIO;
2924 : unlock:
2925 : rcu_read_unlock();
2926 0 : if (folio && !xa_is_value(folio))
2927 : folio_put(folio);
2928 0 : if (start > end)
2929 : return end;
2930 0 : return start;
2931 : }
2932 :
2933 : #ifdef CONFIG_MMU
2934 : #define MMAP_LOTSAMISS (100)
2935 : /*
2936 : * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2937 : * @vmf - the vm_fault for this fault.
2938 : * @folio - the folio to lock.
2939 : * @fpin - the pointer to the file we may pin (or is already pinned).
2940 : *
2941 : * This works similar to lock_folio_or_retry in that it can drop the
2942 : * mmap_lock. It differs in that it actually returns the folio locked
2943 : * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2944 : * to drop the mmap_lock then fpin will point to the pinned file and
2945 : * needs to be fput()'ed at a later point.
2946 : */
2947 0 : static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2948 : struct file **fpin)
2949 : {
2950 0 : if (folio_trylock(folio))
2951 : return 1;
2952 :
2953 : /*
2954 : * NOTE! This will make us return with VM_FAULT_RETRY, but with
2955 : * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2956 : * is supposed to work. We have way too many special cases..
2957 : */
2958 0 : if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2959 : return 0;
2960 :
2961 0 : *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2962 0 : if (vmf->flags & FAULT_FLAG_KILLABLE) {
2963 0 : if (__folio_lock_killable(folio)) {
2964 : /*
2965 : * We didn't have the right flags to drop the mmap_lock,
2966 : * but all fault_handlers only check for fatal signals
2967 : * if we return VM_FAULT_RETRY, so we need to drop the
2968 : * mmap_lock here and return 0 if we don't have a fpin.
2969 : */
2970 0 : if (*fpin == NULL)
2971 0 : mmap_read_unlock(vmf->vma->vm_mm);
2972 : return 0;
2973 : }
2974 : } else
2975 : __folio_lock(folio);
2976 :
2977 : return 1;
2978 : }
2979 :
2980 : /*
2981 : * Synchronous readahead happens when we don't even find a page in the page
2982 : * cache at all. We don't want to perform IO under the mmap sem, so if we have
2983 : * to drop the mmap sem we return the file that was pinned in order for us to do
2984 : * that. If we didn't pin a file then we return NULL. The file that is
2985 : * returned needs to be fput()'ed when we're done with it.
2986 : */
2987 0 : static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2988 : {
2989 0 : struct file *file = vmf->vma->vm_file;
2990 0 : struct file_ra_state *ra = &file->f_ra;
2991 0 : struct address_space *mapping = file->f_mapping;
2992 0 : DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2993 0 : struct file *fpin = NULL;
2994 : unsigned int mmap_miss;
2995 :
2996 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2997 : /* Use the readahead code, even if readahead is disabled */
2998 : if (vmf->vma->vm_flags & VM_HUGEPAGE) {
2999 : fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3000 : ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3001 : ra->size = HPAGE_PMD_NR;
3002 : /*
3003 : * Fetch two PMD folios, so we get the chance to actually
3004 : * readahead, unless we've been told not to.
3005 : */
3006 : if (!(vmf->vma->vm_flags & VM_RAND_READ))
3007 : ra->size *= 2;
3008 : ra->async_size = HPAGE_PMD_NR;
3009 : page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3010 : return fpin;
3011 : }
3012 : #endif
3013 :
3014 : /* If we don't want any read-ahead, don't bother */
3015 0 : if (vmf->vma->vm_flags & VM_RAND_READ)
3016 : return fpin;
3017 0 : if (!ra->ra_pages)
3018 : return fpin;
3019 :
3020 0 : if (vmf->vma->vm_flags & VM_SEQ_READ) {
3021 0 : fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3022 0 : page_cache_sync_ra(&ractl, ra->ra_pages);
3023 0 : return fpin;
3024 : }
3025 :
3026 : /* Avoid banging the cache line if not needed */
3027 0 : mmap_miss = READ_ONCE(ra->mmap_miss);
3028 0 : if (mmap_miss < MMAP_LOTSAMISS * 10)
3029 0 : WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3030 :
3031 : /*
3032 : * Do we miss much more than hit in this file? If so,
3033 : * stop bothering with read-ahead. It will only hurt.
3034 : */
3035 0 : if (mmap_miss > MMAP_LOTSAMISS)
3036 : return fpin;
3037 :
3038 : /*
3039 : * mmap read-around
3040 : */
3041 0 : fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3042 0 : ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3043 0 : ra->size = ra->ra_pages;
3044 0 : ra->async_size = ra->ra_pages / 4;
3045 0 : ractl._index = ra->start;
3046 0 : page_cache_ra_order(&ractl, ra, 0);
3047 0 : return fpin;
3048 : }
3049 :
3050 : /*
3051 : * Asynchronous readahead happens when we find the page and PG_readahead,
3052 : * so we want to possibly extend the readahead further. We return the file that
3053 : * was pinned if we have to drop the mmap_lock in order to do IO.
3054 : */
3055 0 : static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3056 : struct folio *folio)
3057 : {
3058 0 : struct file *file = vmf->vma->vm_file;
3059 0 : struct file_ra_state *ra = &file->f_ra;
3060 0 : DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3061 0 : struct file *fpin = NULL;
3062 : unsigned int mmap_miss;
3063 :
3064 : /* If we don't want any read-ahead, don't bother */
3065 0 : if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3066 : return fpin;
3067 :
3068 0 : mmap_miss = READ_ONCE(ra->mmap_miss);
3069 0 : if (mmap_miss)
3070 0 : WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3071 :
3072 0 : if (folio_test_readahead(folio)) {
3073 0 : fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3074 0 : page_cache_async_ra(&ractl, folio, ra->ra_pages);
3075 : }
3076 : return fpin;
3077 : }
3078 :
3079 : /**
3080 : * filemap_fault - read in file data for page fault handling
3081 : * @vmf: struct vm_fault containing details of the fault
3082 : *
3083 : * filemap_fault() is invoked via the vma operations vector for a
3084 : * mapped memory region to read in file data during a page fault.
3085 : *
3086 : * The goto's are kind of ugly, but this streamlines the normal case of having
3087 : * it in the page cache, and handles the special cases reasonably without
3088 : * having a lot of duplicated code.
3089 : *
3090 : * vma->vm_mm->mmap_lock must be held on entry.
3091 : *
3092 : * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3093 : * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3094 : *
3095 : * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3096 : * has not been released.
3097 : *
3098 : * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3099 : *
3100 : * Return: bitwise-OR of %VM_FAULT_ codes.
3101 : */
3102 0 : vm_fault_t filemap_fault(struct vm_fault *vmf)
3103 : {
3104 : int error;
3105 0 : struct file *file = vmf->vma->vm_file;
3106 0 : struct file *fpin = NULL;
3107 0 : struct address_space *mapping = file->f_mapping;
3108 0 : struct inode *inode = mapping->host;
3109 0 : pgoff_t max_idx, index = vmf->pgoff;
3110 : struct folio *folio;
3111 0 : vm_fault_t ret = 0;
3112 0 : bool mapping_locked = false;
3113 :
3114 0 : max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3115 0 : if (unlikely(index >= max_idx))
3116 : return VM_FAULT_SIGBUS;
3117 :
3118 : /*
3119 : * Do we have something in the page cache already?
3120 : */
3121 0 : folio = filemap_get_folio(mapping, index);
3122 0 : if (likely(folio)) {
3123 : /*
3124 : * We found the page, so try async readahead before waiting for
3125 : * the lock.
3126 : */
3127 0 : if (!(vmf->flags & FAULT_FLAG_TRIED))
3128 0 : fpin = do_async_mmap_readahead(vmf, folio);
3129 0 : if (unlikely(!folio_test_uptodate(folio))) {
3130 0 : filemap_invalidate_lock_shared(mapping);
3131 0 : mapping_locked = true;
3132 : }
3133 : } else {
3134 : /* No page in the page cache at all */
3135 0 : count_vm_event(PGMAJFAULT);
3136 0 : count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3137 0 : ret = VM_FAULT_MAJOR;
3138 0 : fpin = do_sync_mmap_readahead(vmf);
3139 : retry_find:
3140 : /*
3141 : * See comment in filemap_create_folio() why we need
3142 : * invalidate_lock
3143 : */
3144 0 : if (!mapping_locked) {
3145 0 : filemap_invalidate_lock_shared(mapping);
3146 0 : mapping_locked = true;
3147 : }
3148 0 : folio = __filemap_get_folio(mapping, index,
3149 : FGP_CREAT|FGP_FOR_MMAP,
3150 : vmf->gfp_mask);
3151 0 : if (!folio) {
3152 0 : if (fpin)
3153 : goto out_retry;
3154 0 : filemap_invalidate_unlock_shared(mapping);
3155 0 : return VM_FAULT_OOM;
3156 : }
3157 : }
3158 :
3159 0 : if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3160 : goto out_retry;
3161 :
3162 : /* Did it get truncated? */
3163 0 : if (unlikely(folio->mapping != mapping)) {
3164 0 : folio_unlock(folio);
3165 : folio_put(folio);
3166 : goto retry_find;
3167 : }
3168 : VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3169 :
3170 : /*
3171 : * We have a locked page in the page cache, now we need to check
3172 : * that it's up-to-date. If not, it is going to be due to an error.
3173 : */
3174 0 : if (unlikely(!folio_test_uptodate(folio))) {
3175 : /*
3176 : * The page was in cache and uptodate and now it is not.
3177 : * Strange but possible since we didn't hold the page lock all
3178 : * the time. Let's drop everything get the invalidate lock and
3179 : * try again.
3180 : */
3181 0 : if (!mapping_locked) {
3182 0 : folio_unlock(folio);
3183 : folio_put(folio);
3184 : goto retry_find;
3185 : }
3186 : goto page_not_uptodate;
3187 : }
3188 :
3189 : /*
3190 : * We've made it this far and we had to drop our mmap_lock, now is the
3191 : * time to return to the upper layer and have it re-find the vma and
3192 : * redo the fault.
3193 : */
3194 0 : if (fpin) {
3195 : folio_unlock(folio);
3196 : goto out_retry;
3197 : }
3198 0 : if (mapping_locked)
3199 : filemap_invalidate_unlock_shared(mapping);
3200 :
3201 : /*
3202 : * Found the page and have a reference on it.
3203 : * We must recheck i_size under page lock.
3204 : */
3205 0 : max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3206 0 : if (unlikely(index >= max_idx)) {
3207 0 : folio_unlock(folio);
3208 : folio_put(folio);
3209 : return VM_FAULT_SIGBUS;
3210 : }
3211 :
3212 0 : vmf->page = folio_file_page(folio, index);
3213 0 : return ret | VM_FAULT_LOCKED;
3214 :
3215 : page_not_uptodate:
3216 : /*
3217 : * Umm, take care of errors if the page isn't up-to-date.
3218 : * Try to re-read it _once_. We do this synchronously,
3219 : * because there really aren't any performance issues here
3220 : * and we need to check for errors.
3221 : */
3222 0 : fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3223 0 : error = filemap_read_folio(file, mapping, folio);
3224 0 : if (fpin)
3225 : goto out_retry;
3226 0 : folio_put(folio);
3227 :
3228 0 : if (!error || error == AOP_TRUNCATED_PAGE)
3229 : goto retry_find;
3230 0 : filemap_invalidate_unlock_shared(mapping);
3231 :
3232 0 : return VM_FAULT_SIGBUS;
3233 :
3234 : out_retry:
3235 : /*
3236 : * We dropped the mmap_lock, we need to return to the fault handler to
3237 : * re-find the vma and come back and find our hopefully still populated
3238 : * page.
3239 : */
3240 0 : if (folio)
3241 : folio_put(folio);
3242 0 : if (mapping_locked)
3243 : filemap_invalidate_unlock_shared(mapping);
3244 0 : if (fpin)
3245 0 : fput(fpin);
3246 0 : return ret | VM_FAULT_RETRY;
3247 : }
3248 : EXPORT_SYMBOL(filemap_fault);
3249 :
3250 : static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3251 : {
3252 0 : struct mm_struct *mm = vmf->vma->vm_mm;
3253 :
3254 : /* Huge page is mapped? No need to proceed. */
3255 0 : if (pmd_trans_huge(*vmf->pmd)) {
3256 : unlock_page(page);
3257 : put_page(page);
3258 : return true;
3259 : }
3260 :
3261 0 : if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3262 : vm_fault_t ret = do_set_pmd(vmf, page);
3263 : if (!ret) {
3264 : /* The page is mapped successfully, reference consumed. */
3265 : unlock_page(page);
3266 : return true;
3267 : }
3268 : }
3269 :
3270 0 : if (pmd_none(*vmf->pmd))
3271 0 : pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3272 :
3273 : /* See comment in handle_pte_fault() */
3274 0 : if (pmd_devmap_trans_unstable(vmf->pmd)) {
3275 : unlock_page(page);
3276 : put_page(page);
3277 : return true;
3278 : }
3279 :
3280 : return false;
3281 : }
3282 :
3283 0 : static struct folio *next_uptodate_page(struct folio *folio,
3284 : struct address_space *mapping,
3285 : struct xa_state *xas, pgoff_t end_pgoff)
3286 : {
3287 : unsigned long max_idx;
3288 :
3289 : do {
3290 0 : if (!folio)
3291 : return NULL;
3292 0 : if (xas_retry(xas, folio))
3293 0 : continue;
3294 0 : if (xa_is_value(folio))
3295 0 : continue;
3296 0 : if (folio_test_locked(folio))
3297 0 : continue;
3298 0 : if (!folio_try_get_rcu(folio))
3299 : continue;
3300 : /* Has the page moved or been split? */
3301 0 : if (unlikely(folio != xas_reload(xas)))
3302 : goto skip;
3303 0 : if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3304 : goto skip;
3305 0 : if (!folio_trylock(folio))
3306 : goto skip;
3307 0 : if (folio->mapping != mapping)
3308 : goto unlock;
3309 0 : if (!folio_test_uptodate(folio))
3310 : goto unlock;
3311 0 : max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3312 0 : if (xas->xa_index >= max_idx)
3313 : goto unlock;
3314 : return folio;
3315 : unlock:
3316 : folio_unlock(folio);
3317 : skip:
3318 : folio_put(folio);
3319 0 : } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3320 :
3321 : return NULL;
3322 : }
3323 :
3324 0 : static inline struct folio *first_map_page(struct address_space *mapping,
3325 : struct xa_state *xas,
3326 : pgoff_t end_pgoff)
3327 : {
3328 0 : return next_uptodate_page(xas_find(xas, end_pgoff),
3329 : mapping, xas, end_pgoff);
3330 : }
3331 :
3332 0 : static inline struct folio *next_map_page(struct address_space *mapping,
3333 : struct xa_state *xas,
3334 : pgoff_t end_pgoff)
3335 : {
3336 0 : return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3337 : mapping, xas, end_pgoff);
3338 : }
3339 :
3340 0 : vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3341 : pgoff_t start_pgoff, pgoff_t end_pgoff)
3342 : {
3343 0 : struct vm_area_struct *vma = vmf->vma;
3344 0 : struct file *file = vma->vm_file;
3345 0 : struct address_space *mapping = file->f_mapping;
3346 0 : pgoff_t last_pgoff = start_pgoff;
3347 : unsigned long addr;
3348 0 : XA_STATE(xas, &mapping->i_pages, start_pgoff);
3349 : struct folio *folio;
3350 : struct page *page;
3351 0 : unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3352 0 : vm_fault_t ret = 0;
3353 :
3354 : rcu_read_lock();
3355 0 : folio = first_map_page(mapping, &xas, end_pgoff);
3356 0 : if (!folio)
3357 : goto out;
3358 :
3359 0 : if (filemap_map_pmd(vmf, &folio->page)) {
3360 : ret = VM_FAULT_NOPAGE;
3361 : goto out;
3362 : }
3363 :
3364 0 : addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3365 0 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3366 : do {
3367 : again:
3368 0 : page = folio_file_page(folio, xas.xa_index);
3369 : if (PageHWPoison(page))
3370 : goto unlock;
3371 :
3372 0 : if (mmap_miss > 0)
3373 0 : mmap_miss--;
3374 :
3375 0 : addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3376 0 : vmf->pte += xas.xa_index - last_pgoff;
3377 0 : last_pgoff = xas.xa_index;
3378 :
3379 0 : if (!pte_none(*vmf->pte))
3380 : goto unlock;
3381 :
3382 : /* We're about to handle the fault */
3383 0 : if (vmf->address == addr)
3384 0 : ret = VM_FAULT_NOPAGE;
3385 :
3386 0 : do_set_pte(vmf, page, addr);
3387 : /* no need to invalidate: a not-present page won't be cached */
3388 : update_mmu_cache(vma, addr, vmf->pte);
3389 0 : if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3390 0 : xas.xa_index++;
3391 : folio_ref_inc(folio);
3392 : goto again;
3393 : }
3394 0 : folio_unlock(folio);
3395 0 : continue;
3396 : unlock:
3397 0 : if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3398 0 : xas.xa_index++;
3399 0 : goto again;
3400 : }
3401 0 : folio_unlock(folio);
3402 : folio_put(folio);
3403 0 : } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3404 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3405 : out:
3406 : rcu_read_unlock();
3407 0 : WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3408 0 : return ret;
3409 : }
3410 : EXPORT_SYMBOL(filemap_map_pages);
3411 :
3412 0 : vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3413 : {
3414 0 : struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3415 0 : struct folio *folio = page_folio(vmf->page);
3416 0 : vm_fault_t ret = VM_FAULT_LOCKED;
3417 :
3418 0 : sb_start_pagefault(mapping->host->i_sb);
3419 0 : file_update_time(vmf->vma->vm_file);
3420 0 : folio_lock(folio);
3421 0 : if (folio->mapping != mapping) {
3422 : folio_unlock(folio);
3423 : ret = VM_FAULT_NOPAGE;
3424 : goto out;
3425 : }
3426 : /*
3427 : * We mark the folio dirty already here so that when freeze is in
3428 : * progress, we are guaranteed that writeback during freezing will
3429 : * see the dirty folio and writeprotect it again.
3430 : */
3431 0 : folio_mark_dirty(folio);
3432 0 : folio_wait_stable(folio);
3433 : out:
3434 0 : sb_end_pagefault(mapping->host->i_sb);
3435 0 : return ret;
3436 : }
3437 :
3438 : const struct vm_operations_struct generic_file_vm_ops = {
3439 : .fault = filemap_fault,
3440 : .map_pages = filemap_map_pages,
3441 : .page_mkwrite = filemap_page_mkwrite,
3442 : };
3443 :
3444 : /* This is used for a general mmap of a disk file */
3445 :
3446 0 : int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3447 : {
3448 0 : struct address_space *mapping = file->f_mapping;
3449 :
3450 0 : if (!mapping->a_ops->readpage)
3451 : return -ENOEXEC;
3452 0 : file_accessed(file);
3453 0 : vma->vm_ops = &generic_file_vm_ops;
3454 0 : return 0;
3455 : }
3456 :
3457 : /*
3458 : * This is for filesystems which do not implement ->writepage.
3459 : */
3460 0 : int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3461 : {
3462 0 : if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3463 : return -EINVAL;
3464 : return generic_file_mmap(file, vma);
3465 : }
3466 : #else
3467 : vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3468 : {
3469 : return VM_FAULT_SIGBUS;
3470 : }
3471 : int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3472 : {
3473 : return -ENOSYS;
3474 : }
3475 : int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3476 : {
3477 : return -ENOSYS;
3478 : }
3479 : #endif /* CONFIG_MMU */
3480 :
3481 : EXPORT_SYMBOL(filemap_page_mkwrite);
3482 : EXPORT_SYMBOL(generic_file_mmap);
3483 : EXPORT_SYMBOL(generic_file_readonly_mmap);
3484 :
3485 0 : static struct folio *do_read_cache_folio(struct address_space *mapping,
3486 : pgoff_t index, filler_t filler, void *data, gfp_t gfp)
3487 : {
3488 : struct folio *folio;
3489 : int err;
3490 : repeat:
3491 0 : folio = filemap_get_folio(mapping, index);
3492 0 : if (!folio) {
3493 0 : folio = filemap_alloc_folio(gfp, 0);
3494 0 : if (!folio)
3495 : return ERR_PTR(-ENOMEM);
3496 0 : err = filemap_add_folio(mapping, folio, index, gfp);
3497 0 : if (unlikely(err)) {
3498 0 : folio_put(folio);
3499 0 : if (err == -EEXIST)
3500 : goto repeat;
3501 : /* Presumably ENOMEM for xarray node */
3502 0 : return ERR_PTR(err);
3503 : }
3504 :
3505 : filler:
3506 0 : if (filler)
3507 0 : err = filler(data, &folio->page);
3508 : else
3509 0 : err = mapping->a_ops->readpage(data, &folio->page);
3510 :
3511 0 : if (err < 0) {
3512 0 : folio_put(folio);
3513 0 : return ERR_PTR(err);
3514 : }
3515 :
3516 0 : folio_wait_locked(folio);
3517 0 : if (!folio_test_uptodate(folio)) {
3518 : folio_put(folio);
3519 : return ERR_PTR(-EIO);
3520 : }
3521 :
3522 : goto out;
3523 : }
3524 0 : if (folio_test_uptodate(folio))
3525 : goto out;
3526 :
3527 0 : if (!folio_trylock(folio)) {
3528 : folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3529 : goto repeat;
3530 : }
3531 :
3532 : /* Folio was truncated from mapping */
3533 0 : if (!folio->mapping) {
3534 0 : folio_unlock(folio);
3535 : folio_put(folio);
3536 : goto repeat;
3537 : }
3538 :
3539 : /* Someone else locked and filled the page in a very small window */
3540 0 : if (folio_test_uptodate(folio)) {
3541 : folio_unlock(folio);
3542 : goto out;
3543 : }
3544 :
3545 : /*
3546 : * A previous I/O error may have been due to temporary
3547 : * failures.
3548 : * Clear page error before actual read, PG_error will be
3549 : * set again if read page fails.
3550 : */
3551 : folio_clear_error(folio);
3552 : goto filler;
3553 :
3554 : out:
3555 0 : folio_mark_accessed(folio);
3556 0 : return folio;
3557 : }
3558 :
3559 : /**
3560 : * read_cache_folio - read into page cache, fill it if needed
3561 : * @mapping: the page's address_space
3562 : * @index: the page index
3563 : * @filler: function to perform the read
3564 : * @data: first arg to filler(data, page) function, often left as NULL
3565 : *
3566 : * Read into the page cache. If a page already exists, and PageUptodate() is
3567 : * not set, try to fill the page and wait for it to become unlocked.
3568 : *
3569 : * If the page does not get brought uptodate, return -EIO.
3570 : *
3571 : * The function expects mapping->invalidate_lock to be already held.
3572 : *
3573 : * Return: up to date page on success, ERR_PTR() on failure.
3574 : */
3575 0 : struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3576 : filler_t filler, void *data)
3577 : {
3578 0 : return do_read_cache_folio(mapping, index, filler, data,
3579 : mapping_gfp_mask(mapping));
3580 : }
3581 : EXPORT_SYMBOL(read_cache_folio);
3582 :
3583 0 : static struct page *do_read_cache_page(struct address_space *mapping,
3584 : pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3585 : {
3586 : struct folio *folio;
3587 :
3588 0 : folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3589 0 : if (IS_ERR(folio))
3590 0 : return &folio->page;
3591 0 : return folio_file_page(folio, index);
3592 : }
3593 :
3594 0 : struct page *read_cache_page(struct address_space *mapping,
3595 : pgoff_t index, filler_t *filler, void *data)
3596 : {
3597 0 : return do_read_cache_page(mapping, index, filler, data,
3598 : mapping_gfp_mask(mapping));
3599 : }
3600 : EXPORT_SYMBOL(read_cache_page);
3601 :
3602 : /**
3603 : * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3604 : * @mapping: the page's address_space
3605 : * @index: the page index
3606 : * @gfp: the page allocator flags to use if allocating
3607 : *
3608 : * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3609 : * any new page allocations done using the specified allocation flags.
3610 : *
3611 : * If the page does not get brought uptodate, return -EIO.
3612 : *
3613 : * The function expects mapping->invalidate_lock to be already held.
3614 : *
3615 : * Return: up to date page on success, ERR_PTR() on failure.
3616 : */
3617 0 : struct page *read_cache_page_gfp(struct address_space *mapping,
3618 : pgoff_t index,
3619 : gfp_t gfp)
3620 : {
3621 0 : return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3622 : }
3623 : EXPORT_SYMBOL(read_cache_page_gfp);
3624 :
3625 0 : int pagecache_write_begin(struct file *file, struct address_space *mapping,
3626 : loff_t pos, unsigned len, unsigned flags,
3627 : struct page **pagep, void **fsdata)
3628 : {
3629 0 : const struct address_space_operations *aops = mapping->a_ops;
3630 :
3631 0 : return aops->write_begin(file, mapping, pos, len, flags,
3632 : pagep, fsdata);
3633 : }
3634 : EXPORT_SYMBOL(pagecache_write_begin);
3635 :
3636 0 : int pagecache_write_end(struct file *file, struct address_space *mapping,
3637 : loff_t pos, unsigned len, unsigned copied,
3638 : struct page *page, void *fsdata)
3639 : {
3640 0 : const struct address_space_operations *aops = mapping->a_ops;
3641 :
3642 0 : return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3643 : }
3644 : EXPORT_SYMBOL(pagecache_write_end);
3645 :
3646 : /*
3647 : * Warn about a page cache invalidation failure during a direct I/O write.
3648 : */
3649 0 : void dio_warn_stale_pagecache(struct file *filp)
3650 : {
3651 : static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3652 : char pathname[128];
3653 : char *path;
3654 :
3655 0 : errseq_set(&filp->f_mapping->wb_err, -EIO);
3656 0 : if (__ratelimit(&_rs)) {
3657 0 : path = file_path(filp, pathname, sizeof(pathname));
3658 0 : if (IS_ERR(path))
3659 0 : path = "(unknown)";
3660 0 : pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3661 0 : pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3662 : current->comm);
3663 : }
3664 0 : }
3665 :
3666 : ssize_t
3667 0 : generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3668 : {
3669 0 : struct file *file = iocb->ki_filp;
3670 0 : struct address_space *mapping = file->f_mapping;
3671 0 : struct inode *inode = mapping->host;
3672 0 : loff_t pos = iocb->ki_pos;
3673 : ssize_t written;
3674 : size_t write_len;
3675 : pgoff_t end;
3676 :
3677 0 : write_len = iov_iter_count(from);
3678 0 : end = (pos + write_len - 1) >> PAGE_SHIFT;
3679 :
3680 0 : if (iocb->ki_flags & IOCB_NOWAIT) {
3681 : /* If there are pages to writeback, return */
3682 0 : if (filemap_range_has_page(file->f_mapping, pos,
3683 : pos + write_len - 1))
3684 : return -EAGAIN;
3685 : } else {
3686 0 : written = filemap_write_and_wait_range(mapping, pos,
3687 : pos + write_len - 1);
3688 0 : if (written)
3689 : goto out;
3690 : }
3691 :
3692 : /*
3693 : * After a write we want buffered reads to be sure to go to disk to get
3694 : * the new data. We invalidate clean cached page from the region we're
3695 : * about to write. We do this *before* the write so that we can return
3696 : * without clobbering -EIOCBQUEUED from ->direct_IO().
3697 : */
3698 0 : written = invalidate_inode_pages2_range(mapping,
3699 0 : pos >> PAGE_SHIFT, end);
3700 : /*
3701 : * If a page can not be invalidated, return 0 to fall back
3702 : * to buffered write.
3703 : */
3704 0 : if (written) {
3705 0 : if (written == -EBUSY)
3706 : return 0;
3707 : goto out;
3708 : }
3709 :
3710 0 : written = mapping->a_ops->direct_IO(iocb, from);
3711 :
3712 : /*
3713 : * Finally, try again to invalidate clean pages which might have been
3714 : * cached by non-direct readahead, or faulted in by get_user_pages()
3715 : * if the source of the write was an mmap'ed region of the file
3716 : * we're writing. Either one is a pretty crazy thing to do,
3717 : * so we don't support it 100%. If this invalidation
3718 : * fails, tough, the write still worked...
3719 : *
3720 : * Most of the time we do not need this since dio_complete() will do
3721 : * the invalidation for us. However there are some file systems that
3722 : * do not end up with dio_complete() being called, so let's not break
3723 : * them by removing it completely.
3724 : *
3725 : * Noticeable example is a blkdev_direct_IO().
3726 : *
3727 : * Skip invalidation for async writes or if mapping has no pages.
3728 : */
3729 0 : if (written > 0 && mapping->nrpages &&
3730 0 : invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3731 0 : dio_warn_stale_pagecache(file);
3732 :
3733 0 : if (written > 0) {
3734 0 : pos += written;
3735 0 : write_len -= written;
3736 0 : if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3737 0 : i_size_write(inode, pos);
3738 : mark_inode_dirty(inode);
3739 : }
3740 0 : iocb->ki_pos = pos;
3741 : }
3742 0 : if (written != -EIOCBQUEUED)
3743 0 : iov_iter_revert(from, write_len - iov_iter_count(from));
3744 : out:
3745 : return written;
3746 : }
3747 : EXPORT_SYMBOL(generic_file_direct_write);
3748 :
3749 0 : ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3750 : {
3751 0 : struct file *file = iocb->ki_filp;
3752 0 : loff_t pos = iocb->ki_pos;
3753 0 : struct address_space *mapping = file->f_mapping;
3754 0 : const struct address_space_operations *a_ops = mapping->a_ops;
3755 0 : long status = 0;
3756 0 : ssize_t written = 0;
3757 0 : unsigned int flags = 0;
3758 :
3759 : do {
3760 : struct page *page;
3761 : unsigned long offset; /* Offset into pagecache page */
3762 : unsigned long bytes; /* Bytes to write to page */
3763 : size_t copied; /* Bytes copied from user */
3764 : void *fsdata;
3765 :
3766 0 : offset = (pos & (PAGE_SIZE - 1));
3767 0 : bytes = min_t(unsigned long, PAGE_SIZE - offset,
3768 : iov_iter_count(i));
3769 :
3770 : again:
3771 : /*
3772 : * Bring in the user page that we will copy from _first_.
3773 : * Otherwise there's a nasty deadlock on copying from the
3774 : * same page as we're writing to, without it being marked
3775 : * up-to-date.
3776 : */
3777 0 : if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3778 : status = -EFAULT;
3779 0 : break;
3780 : }
3781 :
3782 0 : if (fatal_signal_pending(current)) {
3783 : status = -EINTR;
3784 : break;
3785 : }
3786 :
3787 0 : status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3788 : &page, &fsdata);
3789 0 : if (unlikely(status < 0))
3790 : break;
3791 :
3792 0 : if (mapping_writably_mapped(mapping))
3793 : flush_dcache_page(page);
3794 :
3795 0 : copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3796 0 : flush_dcache_page(page);
3797 :
3798 0 : status = a_ops->write_end(file, mapping, pos, bytes, copied,
3799 : page, fsdata);
3800 0 : if (unlikely(status != copied)) {
3801 0 : iov_iter_revert(i, copied - max(status, 0L));
3802 0 : if (unlikely(status < 0))
3803 : break;
3804 : }
3805 0 : cond_resched();
3806 :
3807 0 : if (unlikely(status == 0)) {
3808 : /*
3809 : * A short copy made ->write_end() reject the
3810 : * thing entirely. Might be memory poisoning
3811 : * halfway through, might be a race with munmap,
3812 : * might be severe memory pressure.
3813 : */
3814 0 : if (copied)
3815 0 : bytes = copied;
3816 : goto again;
3817 : }
3818 0 : pos += status;
3819 0 : written += status;
3820 :
3821 0 : balance_dirty_pages_ratelimited(mapping);
3822 0 : } while (iov_iter_count(i));
3823 :
3824 0 : return written ? written : status;
3825 : }
3826 : EXPORT_SYMBOL(generic_perform_write);
3827 :
3828 : /**
3829 : * __generic_file_write_iter - write data to a file
3830 : * @iocb: IO state structure (file, offset, etc.)
3831 : * @from: iov_iter with data to write
3832 : *
3833 : * This function does all the work needed for actually writing data to a
3834 : * file. It does all basic checks, removes SUID from the file, updates
3835 : * modification times and calls proper subroutines depending on whether we
3836 : * do direct IO or a standard buffered write.
3837 : *
3838 : * It expects i_rwsem to be grabbed unless we work on a block device or similar
3839 : * object which does not need locking at all.
3840 : *
3841 : * This function does *not* take care of syncing data in case of O_SYNC write.
3842 : * A caller has to handle it. This is mainly due to the fact that we want to
3843 : * avoid syncing under i_rwsem.
3844 : *
3845 : * Return:
3846 : * * number of bytes written, even for truncated writes
3847 : * * negative error code if no data has been written at all
3848 : */
3849 0 : ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3850 : {
3851 0 : struct file *file = iocb->ki_filp;
3852 0 : struct address_space *mapping = file->f_mapping;
3853 0 : struct inode *inode = mapping->host;
3854 0 : ssize_t written = 0;
3855 : ssize_t err;
3856 : ssize_t status;
3857 :
3858 : /* We can write back this queue in page reclaim */
3859 0 : current->backing_dev_info = inode_to_bdi(inode);
3860 0 : err = file_remove_privs(file);
3861 0 : if (err)
3862 : goto out;
3863 :
3864 0 : err = file_update_time(file);
3865 0 : if (err)
3866 : goto out;
3867 :
3868 0 : if (iocb->ki_flags & IOCB_DIRECT) {
3869 : loff_t pos, endbyte;
3870 :
3871 0 : written = generic_file_direct_write(iocb, from);
3872 : /*
3873 : * If the write stopped short of completing, fall back to
3874 : * buffered writes. Some filesystems do this for writes to
3875 : * holes, for example. For DAX files, a buffered write will
3876 : * not succeed (even if it did, DAX does not handle dirty
3877 : * page-cache pages correctly).
3878 : */
3879 0 : if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3880 : goto out;
3881 :
3882 0 : pos = iocb->ki_pos;
3883 0 : status = generic_perform_write(iocb, from);
3884 : /*
3885 : * If generic_perform_write() returned a synchronous error
3886 : * then we want to return the number of bytes which were
3887 : * direct-written, or the error code if that was zero. Note
3888 : * that this differs from normal direct-io semantics, which
3889 : * will return -EFOO even if some bytes were written.
3890 : */
3891 0 : if (unlikely(status < 0)) {
3892 : err = status;
3893 : goto out;
3894 : }
3895 : /*
3896 : * We need to ensure that the page cache pages are written to
3897 : * disk and invalidated to preserve the expected O_DIRECT
3898 : * semantics.
3899 : */
3900 0 : endbyte = pos + status - 1;
3901 0 : err = filemap_write_and_wait_range(mapping, pos, endbyte);
3902 0 : if (err == 0) {
3903 0 : iocb->ki_pos = endbyte + 1;
3904 0 : written += status;
3905 0 : invalidate_mapping_pages(mapping,
3906 0 : pos >> PAGE_SHIFT,
3907 0 : endbyte >> PAGE_SHIFT);
3908 : } else {
3909 : /*
3910 : * We don't know how much we wrote, so just return
3911 : * the number of bytes which were direct-written
3912 : */
3913 : }
3914 : } else {
3915 0 : written = generic_perform_write(iocb, from);
3916 0 : if (likely(written > 0))
3917 0 : iocb->ki_pos += written;
3918 : }
3919 : out:
3920 0 : current->backing_dev_info = NULL;
3921 0 : return written ? written : err;
3922 : }
3923 : EXPORT_SYMBOL(__generic_file_write_iter);
3924 :
3925 : /**
3926 : * generic_file_write_iter - write data to a file
3927 : * @iocb: IO state structure
3928 : * @from: iov_iter with data to write
3929 : *
3930 : * This is a wrapper around __generic_file_write_iter() to be used by most
3931 : * filesystems. It takes care of syncing the file in case of O_SYNC file
3932 : * and acquires i_rwsem as needed.
3933 : * Return:
3934 : * * negative error code if no data has been written at all of
3935 : * vfs_fsync_range() failed for a synchronous write
3936 : * * number of bytes written, even for truncated writes
3937 : */
3938 0 : ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3939 : {
3940 0 : struct file *file = iocb->ki_filp;
3941 0 : struct inode *inode = file->f_mapping->host;
3942 : ssize_t ret;
3943 :
3944 0 : inode_lock(inode);
3945 0 : ret = generic_write_checks(iocb, from);
3946 0 : if (ret > 0)
3947 0 : ret = __generic_file_write_iter(iocb, from);
3948 0 : inode_unlock(inode);
3949 :
3950 0 : if (ret > 0)
3951 0 : ret = generic_write_sync(iocb, ret);
3952 0 : return ret;
3953 : }
3954 : EXPORT_SYMBOL(generic_file_write_iter);
3955 :
3956 : /**
3957 : * filemap_release_folio() - Release fs-specific metadata on a folio.
3958 : * @folio: The folio which the kernel is trying to free.
3959 : * @gfp: Memory allocation flags (and I/O mode).
3960 : *
3961 : * The address_space is trying to release any data attached to a folio
3962 : * (presumably at folio->private).
3963 : *
3964 : * This will also be called if the private_2 flag is set on a page,
3965 : * indicating that the folio has other metadata associated with it.
3966 : *
3967 : * The @gfp argument specifies whether I/O may be performed to release
3968 : * this page (__GFP_IO), and whether the call may block
3969 : * (__GFP_RECLAIM & __GFP_FS).
3970 : *
3971 : * Return: %true if the release was successful, otherwise %false.
3972 : */
3973 0 : bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3974 : {
3975 0 : struct address_space * const mapping = folio->mapping;
3976 :
3977 0 : BUG_ON(!folio_test_locked(folio));
3978 0 : if (folio_test_writeback(folio))
3979 : return false;
3980 :
3981 0 : if (mapping && mapping->a_ops->releasepage)
3982 0 : return mapping->a_ops->releasepage(&folio->page, gfp);
3983 0 : return try_to_free_buffers(&folio->page);
3984 : }
3985 : EXPORT_SYMBOL(filemap_release_folio);
|