LCOV - code coverage report
Current view: top level - mm - gup.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 0 537 0.0 %
Date: 2022-12-09 01:23:36 Functions: 0 42 0.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : #include <linux/kernel.h>
       3             : #include <linux/errno.h>
       4             : #include <linux/err.h>
       5             : #include <linux/spinlock.h>
       6             : 
       7             : #include <linux/mm.h>
       8             : #include <linux/memremap.h>
       9             : #include <linux/pagemap.h>
      10             : #include <linux/rmap.h>
      11             : #include <linux/swap.h>
      12             : #include <linux/swapops.h>
      13             : #include <linux/secretmem.h>
      14             : 
      15             : #include <linux/sched/signal.h>
      16             : #include <linux/rwsem.h>
      17             : #include <linux/hugetlb.h>
      18             : #include <linux/migrate.h>
      19             : #include <linux/mm_inline.h>
      20             : #include <linux/sched/mm.h>
      21             : 
      22             : #include <asm/mmu_context.h>
      23             : #include <asm/tlbflush.h>
      24             : 
      25             : #include "internal.h"
      26             : 
      27             : struct follow_page_context {
      28             :         struct dev_pagemap *pgmap;
      29             :         unsigned int page_mask;
      30             : };
      31             : 
      32             : /*
      33             :  * Return the folio with ref appropriately incremented,
      34             :  * or NULL if that failed.
      35             :  */
      36           0 : static inline struct folio *try_get_folio(struct page *page, int refs)
      37             : {
      38             :         struct folio *folio;
      39             : 
      40             : retry:
      41           0 :         folio = page_folio(page);
      42           0 :         if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
      43             :                 return NULL;
      44           0 :         if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
      45             :                 return NULL;
      46             : 
      47             :         /*
      48             :          * At this point we have a stable reference to the folio; but it
      49             :          * could be that between calling page_folio() and the refcount
      50             :          * increment, the folio was split, in which case we'd end up
      51             :          * holding a reference on a folio that has nothing to do with the page
      52             :          * we were given anymore.
      53             :          * So now that the folio is stable, recheck that the page still
      54             :          * belongs to this folio.
      55             :          */
      56           0 :         if (unlikely(page_folio(page) != folio)) {
      57             :                 folio_put_refs(folio, refs);
      58             :                 goto retry;
      59             :         }
      60             : 
      61             :         return folio;
      62             : }
      63             : 
      64             : /**
      65             :  * try_grab_folio() - Attempt to get or pin a folio.
      66             :  * @page:  pointer to page to be grabbed
      67             :  * @refs:  the value to (effectively) add to the folio's refcount
      68             :  * @flags: gup flags: these are the FOLL_* flag values.
      69             :  *
      70             :  * "grab" names in this file mean, "look at flags to decide whether to use
      71             :  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
      72             :  *
      73             :  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
      74             :  * same time. (That's true throughout the get_user_pages*() and
      75             :  * pin_user_pages*() APIs.) Cases:
      76             :  *
      77             :  *    FOLL_GET: folio's refcount will be incremented by @refs.
      78             :  *
      79             :  *    FOLL_PIN on large folios: folio's refcount will be incremented by
      80             :  *    @refs, and its compound_pincount will be incremented by @refs.
      81             :  *
      82             :  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
      83             :  *    @refs * GUP_PIN_COUNTING_BIAS.
      84             :  *
      85             :  * Return: The folio containing @page (with refcount appropriately
      86             :  * incremented) for success, or NULL upon failure. If neither FOLL_GET
      87             :  * nor FOLL_PIN was set, that's considered failure, and furthermore,
      88             :  * a likely bug in the caller, so a warning is also emitted.
      89             :  */
      90           0 : struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
      91             : {
      92           0 :         if (flags & FOLL_GET)
      93           0 :                 return try_get_folio(page, refs);
      94           0 :         else if (flags & FOLL_PIN) {
      95             :                 struct folio *folio;
      96             : 
      97             :                 /*
      98             :                  * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
      99             :                  * right zone, so fail and let the caller fall back to the slow
     100             :                  * path.
     101             :                  */
     102           0 :                 if (unlikely((flags & FOLL_LONGTERM) &&
     103             :                              !is_pinnable_page(page)))
     104             :                         return NULL;
     105             : 
     106             :                 /*
     107             :                  * CAUTION: Don't use compound_head() on the page before this
     108             :                  * point, the result won't be stable.
     109             :                  */
     110           0 :                 folio = try_get_folio(page, refs);
     111           0 :                 if (!folio)
     112             :                         return NULL;
     113             : 
     114             :                 /*
     115             :                  * When pinning a large folio, use an exact count to track it.
     116             :                  *
     117             :                  * However, be sure to *also* increment the normal folio
     118             :                  * refcount field at least once, so that the folio really
     119             :                  * is pinned.  That's why the refcount from the earlier
     120             :                  * try_get_folio() is left intact.
     121             :                  */
     122           0 :                 if (folio_test_large(folio))
     123           0 :                         atomic_add(refs, folio_pincount_ptr(folio));
     124             :                 else
     125           0 :                         folio_ref_add(folio,
     126           0 :                                         refs * (GUP_PIN_COUNTING_BIAS - 1));
     127           0 :                 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
     128             : 
     129           0 :                 return folio;
     130             :         }
     131             : 
     132           0 :         WARN_ON_ONCE(1);
     133             :         return NULL;
     134             : }
     135             : 
     136           0 : static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
     137             : {
     138           0 :         if (flags & FOLL_PIN) {
     139           0 :                 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
     140           0 :                 if (folio_test_large(folio))
     141           0 :                         atomic_sub(refs, folio_pincount_ptr(folio));
     142             :                 else
     143           0 :                         refs *= GUP_PIN_COUNTING_BIAS;
     144             :         }
     145             : 
     146           0 :         folio_put_refs(folio, refs);
     147           0 : }
     148             : 
     149             : /**
     150             :  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
     151             :  * @page:    pointer to page to be grabbed
     152             :  * @flags:   gup flags: these are the FOLL_* flag values.
     153             :  *
     154             :  * This might not do anything at all, depending on the flags argument.
     155             :  *
     156             :  * "grab" names in this file mean, "look at flags to decide whether to use
     157             :  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
     158             :  *
     159             :  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
     160             :  * time. Cases: please see the try_grab_folio() documentation, with
     161             :  * "refs=1".
     162             :  *
     163             :  * Return: true for success, or if no action was required (if neither FOLL_PIN
     164             :  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
     165             :  * FOLL_PIN was set, but the page could not be grabbed.
     166             :  */
     167           0 : bool __must_check try_grab_page(struct page *page, unsigned int flags)
     168             : {
     169           0 :         struct folio *folio = page_folio(page);
     170             : 
     171           0 :         WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
     172           0 :         if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
     173             :                 return false;
     174             : 
     175           0 :         if (flags & FOLL_GET)
     176             :                 folio_ref_inc(folio);
     177           0 :         else if (flags & FOLL_PIN) {
     178             :                 /*
     179             :                  * Similar to try_grab_folio(): be sure to *also*
     180             :                  * increment the normal page refcount field at least once,
     181             :                  * so that the page really is pinned.
     182             :                  */
     183           0 :                 if (folio_test_large(folio)) {
     184           0 :                         folio_ref_add(folio, 1);
     185           0 :                         atomic_add(1, folio_pincount_ptr(folio));
     186             :                 } else {
     187             :                         folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
     188             :                 }
     189             : 
     190           0 :                 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
     191             :         }
     192             : 
     193             :         return true;
     194             : }
     195             : 
     196             : /**
     197             :  * unpin_user_page() - release a dma-pinned page
     198             :  * @page:            pointer to page to be released
     199             :  *
     200             :  * Pages that were pinned via pin_user_pages*() must be released via either
     201             :  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
     202             :  * that such pages can be separately tracked and uniquely handled. In
     203             :  * particular, interactions with RDMA and filesystems need special handling.
     204             :  */
     205           0 : void unpin_user_page(struct page *page)
     206             : {
     207           0 :         gup_put_folio(page_folio(page), 1, FOLL_PIN);
     208           0 : }
     209             : EXPORT_SYMBOL(unpin_user_page);
     210             : 
     211           0 : static inline struct folio *gup_folio_range_next(struct page *start,
     212             :                 unsigned long npages, unsigned long i, unsigned int *ntails)
     213             : {
     214           0 :         struct page *next = nth_page(start, i);
     215           0 :         struct folio *folio = page_folio(next);
     216           0 :         unsigned int nr = 1;
     217             : 
     218           0 :         if (folio_test_large(folio))
     219           0 :                 nr = min_t(unsigned int, npages - i,
     220             :                            folio_nr_pages(folio) - folio_page_idx(folio, next));
     221             : 
     222           0 :         *ntails = nr;
     223           0 :         return folio;
     224             : }
     225             : 
     226           0 : static inline struct folio *gup_folio_next(struct page **list,
     227             :                 unsigned long npages, unsigned long i, unsigned int *ntails)
     228             : {
     229           0 :         struct folio *folio = page_folio(list[i]);
     230             :         unsigned int nr;
     231             : 
     232           0 :         for (nr = i + 1; nr < npages; nr++) {
     233           0 :                 if (page_folio(list[nr]) != folio)
     234             :                         break;
     235             :         }
     236             : 
     237           0 :         *ntails = nr - i;
     238           0 :         return folio;
     239             : }
     240             : 
     241             : /**
     242             :  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
     243             :  * @pages:  array of pages to be maybe marked dirty, and definitely released.
     244             :  * @npages: number of pages in the @pages array.
     245             :  * @make_dirty: whether to mark the pages dirty
     246             :  *
     247             :  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
     248             :  * variants called on that page.
     249             :  *
     250             :  * For each page in the @pages array, make that page (or its head page, if a
     251             :  * compound page) dirty, if @make_dirty is true, and if the page was previously
     252             :  * listed as clean. In any case, releases all pages using unpin_user_page(),
     253             :  * possibly via unpin_user_pages(), for the non-dirty case.
     254             :  *
     255             :  * Please see the unpin_user_page() documentation for details.
     256             :  *
     257             :  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
     258             :  * required, then the caller should a) verify that this is really correct,
     259             :  * because _lock() is usually required, and b) hand code it:
     260             :  * set_page_dirty_lock(), unpin_user_page().
     261             :  *
     262             :  */
     263           0 : void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
     264             :                                  bool make_dirty)
     265             : {
     266             :         unsigned long i;
     267             :         struct folio *folio;
     268             :         unsigned int nr;
     269             : 
     270           0 :         if (!make_dirty) {
     271           0 :                 unpin_user_pages(pages, npages);
     272           0 :                 return;
     273             :         }
     274             : 
     275           0 :         for (i = 0; i < npages; i += nr) {
     276           0 :                 folio = gup_folio_next(pages, npages, i, &nr);
     277             :                 /*
     278             :                  * Checking PageDirty at this point may race with
     279             :                  * clear_page_dirty_for_io(), but that's OK. Two key
     280             :                  * cases:
     281             :                  *
     282             :                  * 1) This code sees the page as already dirty, so it
     283             :                  * skips the call to set_page_dirty(). That could happen
     284             :                  * because clear_page_dirty_for_io() called
     285             :                  * page_mkclean(), followed by set_page_dirty().
     286             :                  * However, now the page is going to get written back,
     287             :                  * which meets the original intention of setting it
     288             :                  * dirty, so all is well: clear_page_dirty_for_io() goes
     289             :                  * on to call TestClearPageDirty(), and write the page
     290             :                  * back.
     291             :                  *
     292             :                  * 2) This code sees the page as clean, so it calls
     293             :                  * set_page_dirty(). The page stays dirty, despite being
     294             :                  * written back, so it gets written back again in the
     295             :                  * next writeback cycle. This is harmless.
     296             :                  */
     297           0 :                 if (!folio_test_dirty(folio)) {
     298           0 :                         folio_lock(folio);
     299           0 :                         folio_mark_dirty(folio);
     300           0 :                         folio_unlock(folio);
     301             :                 }
     302           0 :                 gup_put_folio(folio, nr, FOLL_PIN);
     303             :         }
     304             : }
     305             : EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
     306             : 
     307             : /**
     308             :  * unpin_user_page_range_dirty_lock() - release and optionally dirty
     309             :  * gup-pinned page range
     310             :  *
     311             :  * @page:  the starting page of a range maybe marked dirty, and definitely released.
     312             :  * @npages: number of consecutive pages to release.
     313             :  * @make_dirty: whether to mark the pages dirty
     314             :  *
     315             :  * "gup-pinned page range" refers to a range of pages that has had one of the
     316             :  * pin_user_pages() variants called on that page.
     317             :  *
     318             :  * For the page ranges defined by [page .. page+npages], make that range (or
     319             :  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
     320             :  * page range was previously listed as clean.
     321             :  *
     322             :  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
     323             :  * required, then the caller should a) verify that this is really correct,
     324             :  * because _lock() is usually required, and b) hand code it:
     325             :  * set_page_dirty_lock(), unpin_user_page().
     326             :  *
     327             :  */
     328           0 : void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
     329             :                                       bool make_dirty)
     330             : {
     331             :         unsigned long i;
     332             :         struct folio *folio;
     333             :         unsigned int nr;
     334             : 
     335           0 :         for (i = 0; i < npages; i += nr) {
     336           0 :                 folio = gup_folio_range_next(page, npages, i, &nr);
     337           0 :                 if (make_dirty && !folio_test_dirty(folio)) {
     338           0 :                         folio_lock(folio);
     339           0 :                         folio_mark_dirty(folio);
     340           0 :                         folio_unlock(folio);
     341             :                 }
     342           0 :                 gup_put_folio(folio, nr, FOLL_PIN);
     343             :         }
     344           0 : }
     345             : EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
     346             : 
     347             : /**
     348             :  * unpin_user_pages() - release an array of gup-pinned pages.
     349             :  * @pages:  array of pages to be marked dirty and released.
     350             :  * @npages: number of pages in the @pages array.
     351             :  *
     352             :  * For each page in the @pages array, release the page using unpin_user_page().
     353             :  *
     354             :  * Please see the unpin_user_page() documentation for details.
     355             :  */
     356           0 : void unpin_user_pages(struct page **pages, unsigned long npages)
     357             : {
     358             :         unsigned long i;
     359             :         struct folio *folio;
     360             :         unsigned int nr;
     361             : 
     362             :         /*
     363             :          * If this WARN_ON() fires, then the system *might* be leaking pages (by
     364             :          * leaving them pinned), but probably not. More likely, gup/pup returned
     365             :          * a hard -ERRNO error to the caller, who erroneously passed it here.
     366             :          */
     367           0 :         if (WARN_ON(IS_ERR_VALUE(npages)))
     368           0 :                 return;
     369             : 
     370           0 :         for (i = 0; i < npages; i += nr) {
     371           0 :                 folio = gup_folio_next(pages, npages, i, &nr);
     372           0 :                 gup_put_folio(folio, nr, FOLL_PIN);
     373             :         }
     374             : }
     375             : EXPORT_SYMBOL(unpin_user_pages);
     376             : 
     377             : /*
     378             :  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
     379             :  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
     380             :  * cache bouncing on large SMP machines for concurrent pinned gups.
     381             :  */
     382             : static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
     383             : {
     384           0 :         if (!test_bit(MMF_HAS_PINNED, mm_flags))
     385             :                 set_bit(MMF_HAS_PINNED, mm_flags);
     386             : }
     387             : 
     388             : #ifdef CONFIG_MMU
     389             : static struct page *no_page_table(struct vm_area_struct *vma,
     390             :                 unsigned int flags)
     391             : {
     392             :         /*
     393             :          * When core dumping an enormous anonymous area that nobody
     394             :          * has touched so far, we don't want to allocate unnecessary pages or
     395             :          * page tables.  Return error instead of NULL to skip handle_mm_fault,
     396             :          * then get_dump_page() will return NULL to leave a hole in the dump.
     397             :          * But we can only make this optimization where a hole would surely
     398             :          * be zero-filled if handle_mm_fault() actually did handle it.
     399             :          */
     400           0 :         if ((flags & FOLL_DUMP) &&
     401           0 :                         (vma_is_anonymous(vma) || !vma->vm_ops->fault))
     402             :                 return ERR_PTR(-EFAULT);
     403             :         return NULL;
     404             : }
     405             : 
     406           0 : static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
     407             :                 pte_t *pte, unsigned int flags)
     408             : {
     409           0 :         if (flags & FOLL_TOUCH) {
     410           0 :                 pte_t entry = *pte;
     411             : 
     412           0 :                 if (flags & FOLL_WRITE)
     413             :                         entry = pte_mkdirty(entry);
     414           0 :                 entry = pte_mkyoung(entry);
     415             : 
     416           0 :                 if (!pte_same(*pte, entry)) {
     417           0 :                         set_pte_at(vma->vm_mm, address, pte, entry);
     418             :                         update_mmu_cache(vma, address, pte);
     419             :                 }
     420             :         }
     421             : 
     422             :         /* Proper page table entry exists, but no corresponding struct page */
     423           0 :         return -EEXIST;
     424             : }
     425             : 
     426             : /*
     427             :  * FOLL_FORCE can write to even unwritable pte's, but only
     428             :  * after we've gone through a COW cycle and they are dirty.
     429             :  */
     430             : static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
     431             : {
     432           0 :         return pte_write(pte) ||
     433           0 :                 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
     434             : }
     435             : 
     436           0 : static struct page *follow_page_pte(struct vm_area_struct *vma,
     437             :                 unsigned long address, pmd_t *pmd, unsigned int flags,
     438             :                 struct dev_pagemap **pgmap)
     439             : {
     440           0 :         struct mm_struct *mm = vma->vm_mm;
     441             :         struct page *page;
     442             :         spinlock_t *ptl;
     443             :         pte_t *ptep, pte;
     444             :         int ret;
     445             : 
     446             :         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
     447           0 :         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
     448             :                          (FOLL_PIN | FOLL_GET)))
     449             :                 return ERR_PTR(-EINVAL);
     450             : retry:
     451           0 :         if (unlikely(pmd_bad(*pmd)))
     452             :                 return no_page_table(vma, flags);
     453             : 
     454           0 :         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
     455           0 :         pte = *ptep;
     456           0 :         if (!pte_present(pte)) {
     457             :                 swp_entry_t entry;
     458             :                 /*
     459             :                  * KSM's break_ksm() relies upon recognizing a ksm page
     460             :                  * even while it is being migrated, so for that case we
     461             :                  * need migration_entry_wait().
     462             :                  */
     463           0 :                 if (likely(!(flags & FOLL_MIGRATION)))
     464             :                         goto no_page;
     465           0 :                 if (pte_none(pte))
     466             :                         goto no_page;
     467           0 :                 entry = pte_to_swp_entry(pte);
     468           0 :                 if (!is_migration_entry(entry))
     469             :                         goto no_page;
     470           0 :                 pte_unmap_unlock(ptep, ptl);
     471           0 :                 migration_entry_wait(mm, pmd, address);
     472           0 :                 goto retry;
     473             :         }
     474             :         if ((flags & FOLL_NUMA) && pte_protnone(pte))
     475             :                 goto no_page;
     476           0 :         if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
     477           0 :                 pte_unmap_unlock(ptep, ptl);
     478             :                 return NULL;
     479             :         }
     480             : 
     481           0 :         page = vm_normal_page(vma, address, pte);
     482             :         if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
     483             :                 /*
     484             :                  * Only return device mapping pages in the FOLL_GET or FOLL_PIN
     485             :                  * case since they are only valid while holding the pgmap
     486             :                  * reference.
     487             :                  */
     488             :                 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
     489             :                 if (*pgmap)
     490             :                         page = pte_page(pte);
     491             :                 else
     492             :                         goto no_page;
     493           0 :         } else if (unlikely(!page)) {
     494           0 :                 if (flags & FOLL_DUMP) {
     495             :                         /* Avoid special (like zero) pages in core dumps */
     496             :                         page = ERR_PTR(-EFAULT);
     497             :                         goto out;
     498             :                 }
     499             : 
     500           0 :                 if (is_zero_pfn(pte_pfn(pte))) {
     501           0 :                         page = pte_page(pte);
     502             :                 } else {
     503           0 :                         ret = follow_pfn_pte(vma, address, ptep, flags);
     504           0 :                         page = ERR_PTR(ret);
     505             :                         goto out;
     506             :                 }
     507             :         }
     508             : 
     509             :         /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
     510           0 :         if (unlikely(!try_grab_page(page, flags))) {
     511             :                 page = ERR_PTR(-ENOMEM);
     512             :                 goto out;
     513             :         }
     514             :         /*
     515             :          * We need to make the page accessible if and only if we are going
     516             :          * to access its content (the FOLL_PIN case).  Please see
     517             :          * Documentation/core-api/pin_user_pages.rst for details.
     518             :          */
     519             :         if (flags & FOLL_PIN) {
     520             :                 ret = arch_make_page_accessible(page);
     521             :                 if (ret) {
     522             :                         unpin_user_page(page);
     523             :                         page = ERR_PTR(ret);
     524             :                         goto out;
     525             :                 }
     526             :         }
     527           0 :         if (flags & FOLL_TOUCH) {
     528           0 :                 if ((flags & FOLL_WRITE) &&
     529           0 :                     !pte_dirty(pte) && !PageDirty(page))
     530           0 :                         set_page_dirty(page);
     531             :                 /*
     532             :                  * pte_mkyoung() would be more correct here, but atomic care
     533             :                  * is needed to avoid losing the dirty bit: it is easier to use
     534             :                  * mark_page_accessed().
     535             :                  */
     536           0 :                 mark_page_accessed(page);
     537             :         }
     538             : out:
     539           0 :         pte_unmap_unlock(ptep, ptl);
     540             :         return page;
     541             : no_page:
     542           0 :         pte_unmap_unlock(ptep, ptl);
     543           0 :         if (!pte_none(pte))
     544             :                 return NULL;
     545             :         return no_page_table(vma, flags);
     546             : }
     547             : 
     548           0 : static struct page *follow_pmd_mask(struct vm_area_struct *vma,
     549             :                                     unsigned long address, pud_t *pudp,
     550             :                                     unsigned int flags,
     551             :                                     struct follow_page_context *ctx)
     552             : {
     553             :         pmd_t *pmd, pmdval;
     554             :         spinlock_t *ptl;
     555             :         struct page *page;
     556           0 :         struct mm_struct *mm = vma->vm_mm;
     557             : 
     558           0 :         pmd = pmd_offset(pudp, address);
     559             :         /*
     560             :          * The READ_ONCE() will stabilize the pmdval in a register or
     561             :          * on the stack so that it will stop changing under the code.
     562             :          */
     563           0 :         pmdval = READ_ONCE(*pmd);
     564           0 :         if (pmd_none(pmdval))
     565             :                 return no_page_table(vma, flags);
     566             :         if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
     567             :                 page = follow_huge_pmd(mm, address, pmd, flags);
     568             :                 if (page)
     569             :                         return page;
     570             :                 return no_page_table(vma, flags);
     571             :         }
     572             :         if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
     573             :                 page = follow_huge_pd(vma, address,
     574             :                                       __hugepd(pmd_val(pmdval)), flags,
     575             :                                       PMD_SHIFT);
     576             :                 if (page)
     577             :                         return page;
     578             :                 return no_page_table(vma, flags);
     579             :         }
     580             : retry:
     581           0 :         if (!pmd_present(pmdval)) {
     582             :                 /*
     583             :                  * Should never reach here, if thp migration is not supported;
     584             :                  * Otherwise, it must be a thp migration entry.
     585             :                  */
     586             :                 VM_BUG_ON(!thp_migration_supported() ||
     587             :                                   !is_pmd_migration_entry(pmdval));
     588             : 
     589           0 :                 if (likely(!(flags & FOLL_MIGRATION)))
     590             :                         return no_page_table(vma, flags);
     591             : 
     592           0 :                 pmd_migration_entry_wait(mm, pmd);
     593           0 :                 pmdval = READ_ONCE(*pmd);
     594             :                 /*
     595             :                  * MADV_DONTNEED may convert the pmd to null because
     596             :                  * mmap_lock is held in read mode
     597             :                  */
     598           0 :                 if (pmd_none(pmdval))
     599             :                         return no_page_table(vma, flags);
     600             :                 goto retry;
     601             :         }
     602           0 :         if (pmd_devmap(pmdval)) {
     603             :                 ptl = pmd_lock(mm, pmd);
     604             :                 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
     605             :                 spin_unlock(ptl);
     606             :                 if (page)
     607             :                         return page;
     608             :         }
     609           0 :         if (likely(!pmd_trans_huge(pmdval)))
     610           0 :                 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
     611             : 
     612             :         if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
     613             :                 return no_page_table(vma, flags);
     614             : 
     615             : retry_locked:
     616             :         ptl = pmd_lock(mm, pmd);
     617             :         if (unlikely(pmd_none(*pmd))) {
     618             :                 spin_unlock(ptl);
     619             :                 return no_page_table(vma, flags);
     620             :         }
     621             :         if (unlikely(!pmd_present(*pmd))) {
     622             :                 spin_unlock(ptl);
     623             :                 if (likely(!(flags & FOLL_MIGRATION)))
     624             :                         return no_page_table(vma, flags);
     625             :                 pmd_migration_entry_wait(mm, pmd);
     626             :                 goto retry_locked;
     627             :         }
     628             :         if (unlikely(!pmd_trans_huge(*pmd))) {
     629             :                 spin_unlock(ptl);
     630             :                 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
     631             :         }
     632             :         if (flags & FOLL_SPLIT_PMD) {
     633             :                 int ret;
     634             :                 page = pmd_page(*pmd);
     635             :                 if (is_huge_zero_page(page)) {
     636             :                         spin_unlock(ptl);
     637             :                         ret = 0;
     638             :                         split_huge_pmd(vma, pmd, address);
     639             :                         if (pmd_trans_unstable(pmd))
     640             :                                 ret = -EBUSY;
     641             :                 } else {
     642             :                         spin_unlock(ptl);
     643             :                         split_huge_pmd(vma, pmd, address);
     644             :                         ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
     645             :                 }
     646             : 
     647             :                 return ret ? ERR_PTR(ret) :
     648             :                         follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
     649             :         }
     650             :         page = follow_trans_huge_pmd(vma, address, pmd, flags);
     651             :         spin_unlock(ptl);
     652             :         ctx->page_mask = HPAGE_PMD_NR - 1;
     653             :         return page;
     654             : }
     655             : 
     656           0 : static struct page *follow_pud_mask(struct vm_area_struct *vma,
     657             :                                     unsigned long address, p4d_t *p4dp,
     658             :                                     unsigned int flags,
     659             :                                     struct follow_page_context *ctx)
     660             : {
     661             :         pud_t *pud;
     662             :         spinlock_t *ptl;
     663             :         struct page *page;
     664           0 :         struct mm_struct *mm = vma->vm_mm;
     665             : 
     666           0 :         pud = pud_offset(p4dp, address);
     667           0 :         if (pud_none(*pud))
     668             :                 return no_page_table(vma, flags);
     669             :         if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
     670             :                 page = follow_huge_pud(mm, address, pud, flags);
     671             :                 if (page)
     672             :                         return page;
     673             :                 return no_page_table(vma, flags);
     674             :         }
     675             :         if (is_hugepd(__hugepd(pud_val(*pud)))) {
     676             :                 page = follow_huge_pd(vma, address,
     677             :                                       __hugepd(pud_val(*pud)), flags,
     678             :                                       PUD_SHIFT);
     679             :                 if (page)
     680             :                         return page;
     681             :                 return no_page_table(vma, flags);
     682             :         }
     683             :         if (pud_devmap(*pud)) {
     684             :                 ptl = pud_lock(mm, pud);
     685             :                 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
     686             :                 spin_unlock(ptl);
     687             :                 if (page)
     688             :                         return page;
     689             :         }
     690           0 :         if (unlikely(pud_bad(*pud)))
     691             :                 return no_page_table(vma, flags);
     692             : 
     693           0 :         return follow_pmd_mask(vma, address, pud, flags, ctx);
     694             : }
     695             : 
     696             : static struct page *follow_p4d_mask(struct vm_area_struct *vma,
     697             :                                     unsigned long address, pgd_t *pgdp,
     698             :                                     unsigned int flags,
     699             :                                     struct follow_page_context *ctx)
     700             : {
     701             :         p4d_t *p4d;
     702             :         struct page *page;
     703             : 
     704           0 :         p4d = p4d_offset(pgdp, address);
     705             :         if (p4d_none(*p4d))
     706             :                 return no_page_table(vma, flags);
     707             :         BUILD_BUG_ON(p4d_huge(*p4d));
     708             :         if (unlikely(p4d_bad(*p4d)))
     709             :                 return no_page_table(vma, flags);
     710             : 
     711             :         if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
     712             :                 page = follow_huge_pd(vma, address,
     713             :                                       __hugepd(p4d_val(*p4d)), flags,
     714             :                                       P4D_SHIFT);
     715             :                 if (page)
     716             :                         return page;
     717             :                 return no_page_table(vma, flags);
     718             :         }
     719           0 :         return follow_pud_mask(vma, address, p4d, flags, ctx);
     720             : }
     721             : 
     722             : /**
     723             :  * follow_page_mask - look up a page descriptor from a user-virtual address
     724             :  * @vma: vm_area_struct mapping @address
     725             :  * @address: virtual address to look up
     726             :  * @flags: flags modifying lookup behaviour
     727             :  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
     728             :  *       pointer to output page_mask
     729             :  *
     730             :  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
     731             :  *
     732             :  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
     733             :  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
     734             :  *
     735             :  * On output, the @ctx->page_mask is set according to the size of the page.
     736             :  *
     737             :  * Return: the mapped (struct page *), %NULL if no mapping exists, or
     738             :  * an error pointer if there is a mapping to something not represented
     739             :  * by a page descriptor (see also vm_normal_page()).
     740             :  */
     741             : static struct page *follow_page_mask(struct vm_area_struct *vma,
     742             :                               unsigned long address, unsigned int flags,
     743             :                               struct follow_page_context *ctx)
     744             : {
     745             :         pgd_t *pgd;
     746             :         struct page *page;
     747           0 :         struct mm_struct *mm = vma->vm_mm;
     748             : 
     749           0 :         ctx->page_mask = 0;
     750             : 
     751             :         /* make this handle hugepd */
     752           0 :         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
     753           0 :         if (!IS_ERR(page)) {
     754             :                 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
     755             :                 return page;
     756             :         }
     757             : 
     758           0 :         pgd = pgd_offset(mm, address);
     759             : 
     760             :         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
     761             :                 return no_page_table(vma, flags);
     762             : 
     763             :         if (pgd_huge(*pgd)) {
     764             :                 page = follow_huge_pgd(mm, address, pgd, flags);
     765             :                 if (page)
     766             :                         return page;
     767             :                 return no_page_table(vma, flags);
     768             :         }
     769             :         if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
     770             :                 page = follow_huge_pd(vma, address,
     771             :                                       __hugepd(pgd_val(*pgd)), flags,
     772             :                                       PGDIR_SHIFT);
     773             :                 if (page)
     774             :                         return page;
     775             :                 return no_page_table(vma, flags);
     776             :         }
     777             : 
     778           0 :         return follow_p4d_mask(vma, address, pgd, flags, ctx);
     779             : }
     780             : 
     781           0 : struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
     782             :                          unsigned int foll_flags)
     783             : {
     784           0 :         struct follow_page_context ctx = { NULL };
     785             :         struct page *page;
     786             : 
     787           0 :         if (vma_is_secretmem(vma))
     788             :                 return NULL;
     789             : 
     790           0 :         page = follow_page_mask(vma, address, foll_flags, &ctx);
     791             :         if (ctx.pgmap)
     792             :                 put_dev_pagemap(ctx.pgmap);
     793             :         return page;
     794             : }
     795             : 
     796             : static int get_gate_page(struct mm_struct *mm, unsigned long address,
     797             :                 unsigned int gup_flags, struct vm_area_struct **vma,
     798             :                 struct page **page)
     799             : {
     800             :         pgd_t *pgd;
     801             :         p4d_t *p4d;
     802             :         pud_t *pud;
     803             :         pmd_t *pmd;
     804             :         pte_t *pte;
     805             :         int ret = -EFAULT;
     806             : 
     807             :         /* user gate pages are read-only */
     808             :         if (gup_flags & FOLL_WRITE)
     809             :                 return -EFAULT;
     810             :         if (address > TASK_SIZE)
     811             :                 pgd = pgd_offset_k(address);
     812             :         else
     813             :                 pgd = pgd_offset_gate(mm, address);
     814             :         if (pgd_none(*pgd))
     815             :                 return -EFAULT;
     816             :         p4d = p4d_offset(pgd, address);
     817             :         if (p4d_none(*p4d))
     818             :                 return -EFAULT;
     819             :         pud = pud_offset(p4d, address);
     820             :         if (pud_none(*pud))
     821             :                 return -EFAULT;
     822             :         pmd = pmd_offset(pud, address);
     823             :         if (!pmd_present(*pmd))
     824             :                 return -EFAULT;
     825             :         VM_BUG_ON(pmd_trans_huge(*pmd));
     826             :         pte = pte_offset_map(pmd, address);
     827             :         if (pte_none(*pte))
     828             :                 goto unmap;
     829             :         *vma = get_gate_vma(mm);
     830             :         if (!page)
     831             :                 goto out;
     832             :         *page = vm_normal_page(*vma, address, *pte);
     833             :         if (!*page) {
     834             :                 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
     835             :                         goto unmap;
     836             :                 *page = pte_page(*pte);
     837             :         }
     838             :         if (unlikely(!try_grab_page(*page, gup_flags))) {
     839             :                 ret = -ENOMEM;
     840             :                 goto unmap;
     841             :         }
     842             : out:
     843             :         ret = 0;
     844             : unmap:
     845             :         pte_unmap(pte);
     846             :         return ret;
     847             : }
     848             : 
     849             : /*
     850             :  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
     851             :  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
     852             :  * is, *@locked will be set to 0 and -EBUSY returned.
     853             :  */
     854           0 : static int faultin_page(struct vm_area_struct *vma,
     855             :                 unsigned long address, unsigned int *flags, int *locked)
     856             : {
     857           0 :         unsigned int fault_flags = 0;
     858             :         vm_fault_t ret;
     859             : 
     860           0 :         if (*flags & FOLL_NOFAULT)
     861             :                 return -EFAULT;
     862           0 :         if (*flags & FOLL_WRITE)
     863           0 :                 fault_flags |= FAULT_FLAG_WRITE;
     864           0 :         if (*flags & FOLL_REMOTE)
     865           0 :                 fault_flags |= FAULT_FLAG_REMOTE;
     866           0 :         if (locked)
     867           0 :                 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
     868           0 :         if (*flags & FOLL_NOWAIT)
     869           0 :                 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
     870           0 :         if (*flags & FOLL_TRIED) {
     871             :                 /*
     872             :                  * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
     873             :                  * can co-exist
     874             :                  */
     875           0 :                 fault_flags |= FAULT_FLAG_TRIED;
     876             :         }
     877             : 
     878           0 :         ret = handle_mm_fault(vma, address, fault_flags, NULL);
     879           0 :         if (ret & VM_FAULT_ERROR) {
     880           0 :                 int err = vm_fault_to_errno(ret, *flags);
     881             : 
     882           0 :                 if (err)
     883             :                         return err;
     884           0 :                 BUG();
     885             :         }
     886             : 
     887           0 :         if (ret & VM_FAULT_RETRY) {
     888           0 :                 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
     889           0 :                         *locked = 0;
     890             :                 return -EBUSY;
     891             :         }
     892             : 
     893             :         /*
     894             :          * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
     895             :          * necessary, even if maybe_mkwrite decided not to set pte_write. We
     896             :          * can thus safely do subsequent page lookups as if they were reads.
     897             :          * But only do so when looping for pte_write is futile: in some cases
     898             :          * userspace may also be wanting to write to the gotten user page,
     899             :          * which a read fault here might prevent (a readonly page might get
     900             :          * reCOWed by userspace write).
     901             :          */
     902           0 :         if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
     903           0 :                 *flags |= FOLL_COW;
     904             :         return 0;
     905             : }
     906             : 
     907           0 : static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
     908             : {
     909           0 :         vm_flags_t vm_flags = vma->vm_flags;
     910           0 :         int write = (gup_flags & FOLL_WRITE);
     911           0 :         int foreign = (gup_flags & FOLL_REMOTE);
     912             : 
     913           0 :         if (vm_flags & (VM_IO | VM_PFNMAP))
     914             :                 return -EFAULT;
     915             : 
     916           0 :         if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
     917             :                 return -EFAULT;
     918             : 
     919             :         if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
     920             :                 return -EOPNOTSUPP;
     921             : 
     922           0 :         if (vma_is_secretmem(vma))
     923             :                 return -EFAULT;
     924             : 
     925           0 :         if (write) {
     926           0 :                 if (!(vm_flags & VM_WRITE)) {
     927           0 :                         if (!(gup_flags & FOLL_FORCE))
     928             :                                 return -EFAULT;
     929             :                         /*
     930             :                          * We used to let the write,force case do COW in a
     931             :                          * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
     932             :                          * set a breakpoint in a read-only mapping of an
     933             :                          * executable, without corrupting the file (yet only
     934             :                          * when that file had been opened for writing!).
     935             :                          * Anon pages in shared mappings are surprising: now
     936             :                          * just reject it.
     937             :                          */
     938           0 :                         if (!is_cow_mapping(vm_flags))
     939             :                                 return -EFAULT;
     940             :                 }
     941           0 :         } else if (!(vm_flags & VM_READ)) {
     942           0 :                 if (!(gup_flags & FOLL_FORCE))
     943             :                         return -EFAULT;
     944             :                 /*
     945             :                  * Is there actually any vma we can reach here which does not
     946             :                  * have VM_MAYREAD set?
     947             :                  */
     948           0 :                 if (!(vm_flags & VM_MAYREAD))
     949             :                         return -EFAULT;
     950             :         }
     951             :         /*
     952             :          * gups are always data accesses, not instruction
     953             :          * fetches, so execute=false here
     954             :          */
     955           0 :         if (!arch_vma_access_permitted(vma, write, false, foreign))
     956             :                 return -EFAULT;
     957           0 :         return 0;
     958             : }
     959             : 
     960             : /**
     961             :  * __get_user_pages() - pin user pages in memory
     962             :  * @mm:         mm_struct of target mm
     963             :  * @start:      starting user address
     964             :  * @nr_pages:   number of pages from start to pin
     965             :  * @gup_flags:  flags modifying pin behaviour
     966             :  * @pages:      array that receives pointers to the pages pinned.
     967             :  *              Should be at least nr_pages long. Or NULL, if caller
     968             :  *              only intends to ensure the pages are faulted in.
     969             :  * @vmas:       array of pointers to vmas corresponding to each page.
     970             :  *              Or NULL if the caller does not require them.
     971             :  * @locked:     whether we're still with the mmap_lock held
     972             :  *
     973             :  * Returns either number of pages pinned (which may be less than the
     974             :  * number requested), or an error. Details about the return value:
     975             :  *
     976             :  * -- If nr_pages is 0, returns 0.
     977             :  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
     978             :  * -- If nr_pages is >0, and some pages were pinned, returns the number of
     979             :  *    pages pinned. Again, this may be less than nr_pages.
     980             :  * -- 0 return value is possible when the fault would need to be retried.
     981             :  *
     982             :  * The caller is responsible for releasing returned @pages, via put_page().
     983             :  *
     984             :  * @vmas are valid only as long as mmap_lock is held.
     985             :  *
     986             :  * Must be called with mmap_lock held.  It may be released.  See below.
     987             :  *
     988             :  * __get_user_pages walks a process's page tables and takes a reference to
     989             :  * each struct page that each user address corresponds to at a given
     990             :  * instant. That is, it takes the page that would be accessed if a user
     991             :  * thread accesses the given user virtual address at that instant.
     992             :  *
     993             :  * This does not guarantee that the page exists in the user mappings when
     994             :  * __get_user_pages returns, and there may even be a completely different
     995             :  * page there in some cases (eg. if mmapped pagecache has been invalidated
     996             :  * and subsequently re faulted). However it does guarantee that the page
     997             :  * won't be freed completely. And mostly callers simply care that the page
     998             :  * contains data that was valid *at some point in time*. Typically, an IO
     999             :  * or similar operation cannot guarantee anything stronger anyway because
    1000             :  * locks can't be held over the syscall boundary.
    1001             :  *
    1002             :  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
    1003             :  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
    1004             :  * appropriate) must be called after the page is finished with, and
    1005             :  * before put_page is called.
    1006             :  *
    1007             :  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
    1008             :  * released by an up_read().  That can happen if @gup_flags does not
    1009             :  * have FOLL_NOWAIT.
    1010             :  *
    1011             :  * A caller using such a combination of @locked and @gup_flags
    1012             :  * must therefore hold the mmap_lock for reading only, and recognize
    1013             :  * when it's been released.  Otherwise, it must be held for either
    1014             :  * reading or writing and will not be released.
    1015             :  *
    1016             :  * In most cases, get_user_pages or get_user_pages_fast should be used
    1017             :  * instead of __get_user_pages. __get_user_pages should be used only if
    1018             :  * you need some special @gup_flags.
    1019             :  */
    1020           0 : static long __get_user_pages(struct mm_struct *mm,
    1021             :                 unsigned long start, unsigned long nr_pages,
    1022             :                 unsigned int gup_flags, struct page **pages,
    1023             :                 struct vm_area_struct **vmas, int *locked)
    1024             : {
    1025           0 :         long ret = 0, i = 0;
    1026           0 :         struct vm_area_struct *vma = NULL;
    1027           0 :         struct follow_page_context ctx = { NULL };
    1028             : 
    1029           0 :         if (!nr_pages)
    1030             :                 return 0;
    1031             : 
    1032           0 :         start = untagged_addr(start);
    1033             : 
    1034             :         VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
    1035             : 
    1036             :         /*
    1037             :          * If FOLL_FORCE is set then do not force a full fault as the hinting
    1038             :          * fault information is unrelated to the reference behaviour of a task
    1039             :          * using the address space
    1040             :          */
    1041           0 :         if (!(gup_flags & FOLL_FORCE))
    1042           0 :                 gup_flags |= FOLL_NUMA;
    1043             : 
    1044             :         do {
    1045             :                 struct page *page;
    1046           0 :                 unsigned int foll_flags = gup_flags;
    1047             :                 unsigned int page_increm;
    1048             : 
    1049             :                 /* first iteration or cross vma bound */
    1050           0 :                 if (!vma || start >= vma->vm_end) {
    1051           0 :                         vma = find_extend_vma(mm, start);
    1052             :                         if (!vma && in_gate_area(mm, start)) {
    1053             :                                 ret = get_gate_page(mm, start & PAGE_MASK,
    1054             :                                                 gup_flags, &vma,
    1055             :                                                 pages ? &pages[i] : NULL);
    1056             :                                 if (ret)
    1057             :                                         goto out;
    1058             :                                 ctx.page_mask = 0;
    1059             :                                 goto next_page;
    1060             :                         }
    1061             : 
    1062           0 :                         if (!vma) {
    1063             :                                 ret = -EFAULT;
    1064             :                                 goto out;
    1065             :                         }
    1066           0 :                         ret = check_vma_flags(vma, gup_flags);
    1067           0 :                         if (ret)
    1068             :                                 goto out;
    1069             : 
    1070             :                         if (is_vm_hugetlb_page(vma)) {
    1071             :                                 i = follow_hugetlb_page(mm, vma, pages, vmas,
    1072             :                                                 &start, &nr_pages, i,
    1073             :                                                 gup_flags, locked);
    1074             :                                 if (locked && *locked == 0) {
    1075             :                                         /*
    1076             :                                          * We've got a VM_FAULT_RETRY
    1077             :                                          * and we've lost mmap_lock.
    1078             :                                          * We must stop here.
    1079             :                                          */
    1080             :                                         BUG_ON(gup_flags & FOLL_NOWAIT);
    1081             :                                         goto out;
    1082             :                                 }
    1083             :                                 continue;
    1084             :                         }
    1085             :                 }
    1086             : retry:
    1087             :                 /*
    1088             :                  * If we have a pending SIGKILL, don't keep faulting pages and
    1089             :                  * potentially allocating memory.
    1090             :                  */
    1091           0 :                 if (fatal_signal_pending(current)) {
    1092             :                         ret = -EINTR;
    1093             :                         goto out;
    1094             :                 }
    1095           0 :                 cond_resched();
    1096             : 
    1097           0 :                 page = follow_page_mask(vma, start, foll_flags, &ctx);
    1098           0 :                 if (!page) {
    1099           0 :                         ret = faultin_page(vma, start, &foll_flags, locked);
    1100           0 :                         switch (ret) {
    1101             :                         case 0:
    1102             :                                 goto retry;
    1103             :                         case -EBUSY:
    1104           0 :                                 ret = 0;
    1105             :                                 fallthrough;
    1106             :                         case -EFAULT:
    1107             :                         case -ENOMEM:
    1108             :                         case -EHWPOISON:
    1109             :                                 goto out;
    1110             :                         }
    1111           0 :                         BUG();
    1112           0 :                 } else if (PTR_ERR(page) == -EEXIST) {
    1113             :                         /*
    1114             :                          * Proper page table entry exists, but no corresponding
    1115             :                          * struct page. If the caller expects **pages to be
    1116             :                          * filled in, bail out now, because that can't be done
    1117             :                          * for this page.
    1118             :                          */
    1119           0 :                         if (pages) {
    1120             :                                 ret = PTR_ERR(page);
    1121             :                                 goto out;
    1122             :                         }
    1123             : 
    1124             :                         goto next_page;
    1125           0 :                 } else if (IS_ERR(page)) {
    1126             :                         ret = PTR_ERR(page);
    1127             :                         goto out;
    1128             :                 }
    1129           0 :                 if (pages) {
    1130           0 :                         pages[i] = page;
    1131           0 :                         flush_anon_page(vma, page, start);
    1132             :                         flush_dcache_page(page);
    1133           0 :                         ctx.page_mask = 0;
    1134             :                 }
    1135             : next_page:
    1136           0 :                 if (vmas) {
    1137           0 :                         vmas[i] = vma;
    1138           0 :                         ctx.page_mask = 0;
    1139             :                 }
    1140           0 :                 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
    1141           0 :                 if (page_increm > nr_pages)
    1142           0 :                         page_increm = nr_pages;
    1143           0 :                 i += page_increm;
    1144           0 :                 start += page_increm * PAGE_SIZE;
    1145           0 :                 nr_pages -= page_increm;
    1146           0 :         } while (nr_pages);
    1147             : out:
    1148             :         if (ctx.pgmap)
    1149             :                 put_dev_pagemap(ctx.pgmap);
    1150           0 :         return i ? i : ret;
    1151             : }
    1152             : 
    1153             : static bool vma_permits_fault(struct vm_area_struct *vma,
    1154             :                               unsigned int fault_flags)
    1155             : {
    1156           0 :         bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
    1157           0 :         bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
    1158           0 :         vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
    1159             : 
    1160           0 :         if (!(vm_flags & vma->vm_flags))
    1161             :                 return false;
    1162             : 
    1163             :         /*
    1164             :          * The architecture might have a hardware protection
    1165             :          * mechanism other than read/write that can deny access.
    1166             :          *
    1167             :          * gup always represents data access, not instruction
    1168             :          * fetches, so execute=false here:
    1169             :          */
    1170           0 :         if (!arch_vma_access_permitted(vma, write, false, foreign))
    1171             :                 return false;
    1172             : 
    1173             :         return true;
    1174             : }
    1175             : 
    1176             : /**
    1177             :  * fixup_user_fault() - manually resolve a user page fault
    1178             :  * @mm:         mm_struct of target mm
    1179             :  * @address:    user address
    1180             :  * @fault_flags:flags to pass down to handle_mm_fault()
    1181             :  * @unlocked:   did we unlock the mmap_lock while retrying, maybe NULL if caller
    1182             :  *              does not allow retry. If NULL, the caller must guarantee
    1183             :  *              that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
    1184             :  *
    1185             :  * This is meant to be called in the specific scenario where for locking reasons
    1186             :  * we try to access user memory in atomic context (within a pagefault_disable()
    1187             :  * section), this returns -EFAULT, and we want to resolve the user fault before
    1188             :  * trying again.
    1189             :  *
    1190             :  * Typically this is meant to be used by the futex code.
    1191             :  *
    1192             :  * The main difference with get_user_pages() is that this function will
    1193             :  * unconditionally call handle_mm_fault() which will in turn perform all the
    1194             :  * necessary SW fixup of the dirty and young bits in the PTE, while
    1195             :  * get_user_pages() only guarantees to update these in the struct page.
    1196             :  *
    1197             :  * This is important for some architectures where those bits also gate the
    1198             :  * access permission to the page because they are maintained in software.  On
    1199             :  * such architectures, gup() will not be enough to make a subsequent access
    1200             :  * succeed.
    1201             :  *
    1202             :  * This function will not return with an unlocked mmap_lock. So it has not the
    1203             :  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
    1204             :  */
    1205           0 : int fixup_user_fault(struct mm_struct *mm,
    1206             :                      unsigned long address, unsigned int fault_flags,
    1207             :                      bool *unlocked)
    1208             : {
    1209             :         struct vm_area_struct *vma;
    1210             :         vm_fault_t ret;
    1211             : 
    1212           0 :         address = untagged_addr(address);
    1213             : 
    1214           0 :         if (unlocked)
    1215           0 :                 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
    1216             : 
    1217             : retry:
    1218           0 :         vma = find_extend_vma(mm, address);
    1219           0 :         if (!vma || address < vma->vm_start)
    1220             :                 return -EFAULT;
    1221             : 
    1222           0 :         if (!vma_permits_fault(vma, fault_flags))
    1223             :                 return -EFAULT;
    1224             : 
    1225           0 :         if ((fault_flags & FAULT_FLAG_KILLABLE) &&
    1226           0 :             fatal_signal_pending(current))
    1227             :                 return -EINTR;
    1228             : 
    1229           0 :         ret = handle_mm_fault(vma, address, fault_flags, NULL);
    1230           0 :         if (ret & VM_FAULT_ERROR) {
    1231           0 :                 int err = vm_fault_to_errno(ret, 0);
    1232             : 
    1233           0 :                 if (err)
    1234             :                         return err;
    1235           0 :                 BUG();
    1236             :         }
    1237             : 
    1238           0 :         if (ret & VM_FAULT_RETRY) {
    1239           0 :                 mmap_read_lock(mm);
    1240           0 :                 *unlocked = true;
    1241           0 :                 fault_flags |= FAULT_FLAG_TRIED;
    1242           0 :                 goto retry;
    1243             :         }
    1244             : 
    1245             :         return 0;
    1246             : }
    1247             : EXPORT_SYMBOL_GPL(fixup_user_fault);
    1248             : 
    1249             : /*
    1250             :  * Please note that this function, unlike __get_user_pages will not
    1251             :  * return 0 for nr_pages > 0 without FOLL_NOWAIT
    1252             :  */
    1253             : static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
    1254             :                                                 unsigned long start,
    1255             :                                                 unsigned long nr_pages,
    1256             :                                                 struct page **pages,
    1257             :                                                 struct vm_area_struct **vmas,
    1258             :                                                 int *locked,
    1259             :                                                 unsigned int flags)
    1260             : {
    1261             :         long ret, pages_done;
    1262             :         bool lock_dropped;
    1263             : 
    1264           0 :         if (locked) {
    1265             :                 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
    1266           0 :                 BUG_ON(vmas);
    1267             :                 /* check caller initialized locked */
    1268           0 :                 BUG_ON(*locked != 1);
    1269             :         }
    1270             : 
    1271           0 :         if (flags & FOLL_PIN)
    1272           0 :                 mm_set_has_pinned_flag(&mm->flags);
    1273             : 
    1274             :         /*
    1275             :          * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
    1276             :          * is to set FOLL_GET if the caller wants pages[] filled in (but has
    1277             :          * carelessly failed to specify FOLL_GET), so keep doing that, but only
    1278             :          * for FOLL_GET, not for the newer FOLL_PIN.
    1279             :          *
    1280             :          * FOLL_PIN always expects pages to be non-null, but no need to assert
    1281             :          * that here, as any failures will be obvious enough.
    1282             :          */
    1283           0 :         if (pages && !(flags & FOLL_PIN))
    1284           0 :                 flags |= FOLL_GET;
    1285             : 
    1286           0 :         pages_done = 0;
    1287           0 :         lock_dropped = false;
    1288             :         for (;;) {
    1289           0 :                 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
    1290             :                                        vmas, locked);
    1291           0 :                 if (!locked)
    1292             :                         /* VM_FAULT_RETRY couldn't trigger, bypass */
    1293             :                         return ret;
    1294             : 
    1295             :                 /* VM_FAULT_RETRY cannot return errors */
    1296           0 :                 if (!*locked) {
    1297           0 :                         BUG_ON(ret < 0);
    1298           0 :                         BUG_ON(ret >= nr_pages);
    1299             :                 }
    1300             : 
    1301           0 :                 if (ret > 0) {
    1302           0 :                         nr_pages -= ret;
    1303           0 :                         pages_done += ret;
    1304           0 :                         if (!nr_pages)
    1305             :                                 break;
    1306             :                 }
    1307           0 :                 if (*locked) {
    1308             :                         /*
    1309             :                          * VM_FAULT_RETRY didn't trigger or it was a
    1310             :                          * FOLL_NOWAIT.
    1311             :                          */
    1312           0 :                         if (!pages_done)
    1313           0 :                                 pages_done = ret;
    1314             :                         break;
    1315             :                 }
    1316             :                 /*
    1317             :                  * VM_FAULT_RETRY triggered, so seek to the faulting offset.
    1318             :                  * For the prefault case (!pages) we only update counts.
    1319             :                  */
    1320           0 :                 if (likely(pages))
    1321           0 :                         pages += ret;
    1322           0 :                 start += ret << PAGE_SHIFT;
    1323           0 :                 lock_dropped = true;
    1324             : 
    1325             : retry:
    1326             :                 /*
    1327             :                  * Repeat on the address that fired VM_FAULT_RETRY
    1328             :                  * with both FAULT_FLAG_ALLOW_RETRY and
    1329             :                  * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
    1330             :                  * by fatal signals, so we need to check it before we
    1331             :                  * start trying again otherwise it can loop forever.
    1332             :                  */
    1333             : 
    1334           0 :                 if (fatal_signal_pending(current)) {
    1335           0 :                         if (!pages_done)
    1336           0 :                                 pages_done = -EINTR;
    1337             :                         break;
    1338             :                 }
    1339             : 
    1340           0 :                 ret = mmap_read_lock_killable(mm);
    1341           0 :                 if (ret) {
    1342           0 :                         BUG_ON(ret > 0);
    1343           0 :                         if (!pages_done)
    1344           0 :                                 pages_done = ret;
    1345             :                         break;
    1346             :                 }
    1347             : 
    1348           0 :                 *locked = 1;
    1349           0 :                 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
    1350             :                                        pages, NULL, locked);
    1351           0 :                 if (!*locked) {
    1352             :                         /* Continue to retry until we succeeded */
    1353           0 :                         BUG_ON(ret != 0);
    1354             :                         goto retry;
    1355             :                 }
    1356           0 :                 if (ret != 1) {
    1357           0 :                         BUG_ON(ret > 1);
    1358           0 :                         if (!pages_done)
    1359           0 :                                 pages_done = ret;
    1360             :                         break;
    1361             :                 }
    1362           0 :                 nr_pages--;
    1363           0 :                 pages_done++;
    1364           0 :                 if (!nr_pages)
    1365             :                         break;
    1366           0 :                 if (likely(pages))
    1367           0 :                         pages++;
    1368           0 :                 start += PAGE_SIZE;
    1369             :         }
    1370           0 :         if (lock_dropped && *locked) {
    1371             :                 /*
    1372             :                  * We must let the caller know we temporarily dropped the lock
    1373             :                  * and so the critical section protected by it was lost.
    1374             :                  */
    1375           0 :                 mmap_read_unlock(mm);
    1376           0 :                 *locked = 0;
    1377             :         }
    1378             :         return pages_done;
    1379             : }
    1380             : 
    1381             : /**
    1382             :  * populate_vma_page_range() -  populate a range of pages in the vma.
    1383             :  * @vma:   target vma
    1384             :  * @start: start address
    1385             :  * @end:   end address
    1386             :  * @locked: whether the mmap_lock is still held
    1387             :  *
    1388             :  * This takes care of mlocking the pages too if VM_LOCKED is set.
    1389             :  *
    1390             :  * Return either number of pages pinned in the vma, or a negative error
    1391             :  * code on error.
    1392             :  *
    1393             :  * vma->vm_mm->mmap_lock must be held.
    1394             :  *
    1395             :  * If @locked is NULL, it may be held for read or write and will
    1396             :  * be unperturbed.
    1397             :  *
    1398             :  * If @locked is non-NULL, it must held for read only and may be
    1399             :  * released.  If it's released, *@locked will be set to 0.
    1400             :  */
    1401           0 : long populate_vma_page_range(struct vm_area_struct *vma,
    1402             :                 unsigned long start, unsigned long end, int *locked)
    1403             : {
    1404           0 :         struct mm_struct *mm = vma->vm_mm;
    1405           0 :         unsigned long nr_pages = (end - start) / PAGE_SIZE;
    1406             :         int gup_flags;
    1407             :         long ret;
    1408             : 
    1409             :         VM_BUG_ON(!PAGE_ALIGNED(start));
    1410             :         VM_BUG_ON(!PAGE_ALIGNED(end));
    1411             :         VM_BUG_ON_VMA(start < vma->vm_start, vma);
    1412             :         VM_BUG_ON_VMA(end   > vma->vm_end, vma);
    1413           0 :         mmap_assert_locked(mm);
    1414             : 
    1415             :         /*
    1416             :          * Rightly or wrongly, the VM_LOCKONFAULT case has never used
    1417             :          * faultin_page() to break COW, so it has no work to do here.
    1418             :          */
    1419           0 :         if (vma->vm_flags & VM_LOCKONFAULT)
    1420           0 :                 return nr_pages;
    1421             : 
    1422           0 :         gup_flags = FOLL_TOUCH;
    1423             :         /*
    1424             :          * We want to touch writable mappings with a write fault in order
    1425             :          * to break COW, except for shared mappings because these don't COW
    1426             :          * and we would not want to dirty them for nothing.
    1427             :          */
    1428           0 :         if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
    1429           0 :                 gup_flags |= FOLL_WRITE;
    1430             : 
    1431             :         /*
    1432             :          * We want mlock to succeed for regions that have any permissions
    1433             :          * other than PROT_NONE.
    1434             :          */
    1435           0 :         if (vma_is_accessible(vma))
    1436           0 :                 gup_flags |= FOLL_FORCE;
    1437             : 
    1438             :         /*
    1439             :          * We made sure addr is within a VMA, so the following will
    1440             :          * not result in a stack expansion that recurses back here.
    1441             :          */
    1442           0 :         ret = __get_user_pages(mm, start, nr_pages, gup_flags,
    1443             :                                 NULL, NULL, locked);
    1444           0 :         lru_add_drain();
    1445           0 :         return ret;
    1446             : }
    1447             : 
    1448             : /*
    1449             :  * faultin_vma_page_range() - populate (prefault) page tables inside the
    1450             :  *                            given VMA range readable/writable
    1451             :  *
    1452             :  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
    1453             :  *
    1454             :  * @vma: target vma
    1455             :  * @start: start address
    1456             :  * @end: end address
    1457             :  * @write: whether to prefault readable or writable
    1458             :  * @locked: whether the mmap_lock is still held
    1459             :  *
    1460             :  * Returns either number of processed pages in the vma, or a negative error
    1461             :  * code on error (see __get_user_pages()).
    1462             :  *
    1463             :  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
    1464             :  * covered by the VMA.
    1465             :  *
    1466             :  * If @locked is NULL, it may be held for read or write and will be unperturbed.
    1467             :  *
    1468             :  * If @locked is non-NULL, it must held for read only and may be released.  If
    1469             :  * it's released, *@locked will be set to 0.
    1470             :  */
    1471           0 : long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
    1472             :                             unsigned long end, bool write, int *locked)
    1473             : {
    1474           0 :         struct mm_struct *mm = vma->vm_mm;
    1475           0 :         unsigned long nr_pages = (end - start) / PAGE_SIZE;
    1476             :         int gup_flags;
    1477             :         long ret;
    1478             : 
    1479             :         VM_BUG_ON(!PAGE_ALIGNED(start));
    1480             :         VM_BUG_ON(!PAGE_ALIGNED(end));
    1481             :         VM_BUG_ON_VMA(start < vma->vm_start, vma);
    1482             :         VM_BUG_ON_VMA(end > vma->vm_end, vma);
    1483           0 :         mmap_assert_locked(mm);
    1484             : 
    1485             :         /*
    1486             :          * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
    1487             :          *             the page dirty with FOLL_WRITE -- which doesn't make a
    1488             :          *             difference with !FOLL_FORCE, because the page is writable
    1489             :          *             in the page table.
    1490             :          * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
    1491             :          *                a poisoned page.
    1492             :          * !FOLL_FORCE: Require proper access permissions.
    1493             :          */
    1494           0 :         gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
    1495           0 :         if (write)
    1496           0 :                 gup_flags |= FOLL_WRITE;
    1497             : 
    1498             :         /*
    1499             :          * We want to report -EINVAL instead of -EFAULT for any permission
    1500             :          * problems or incompatible mappings.
    1501             :          */
    1502           0 :         if (check_vma_flags(vma, gup_flags))
    1503             :                 return -EINVAL;
    1504             : 
    1505           0 :         ret = __get_user_pages(mm, start, nr_pages, gup_flags,
    1506             :                                 NULL, NULL, locked);
    1507           0 :         lru_add_drain();
    1508           0 :         return ret;
    1509             : }
    1510             : 
    1511             : /*
    1512             :  * __mm_populate - populate and/or mlock pages within a range of address space.
    1513             :  *
    1514             :  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
    1515             :  * flags. VMAs must be already marked with the desired vm_flags, and
    1516             :  * mmap_lock must not be held.
    1517             :  */
    1518           0 : int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
    1519             : {
    1520           0 :         struct mm_struct *mm = current->mm;
    1521             :         unsigned long end, nstart, nend;
    1522           0 :         struct vm_area_struct *vma = NULL;
    1523           0 :         int locked = 0;
    1524           0 :         long ret = 0;
    1525             : 
    1526           0 :         end = start + len;
    1527             : 
    1528           0 :         for (nstart = start; nstart < end; nstart = nend) {
    1529             :                 /*
    1530             :                  * We want to fault in pages for [nstart; end) address range.
    1531             :                  * Find first corresponding VMA.
    1532             :                  */
    1533           0 :                 if (!locked) {
    1534           0 :                         locked = 1;
    1535           0 :                         mmap_read_lock(mm);
    1536           0 :                         vma = find_vma(mm, nstart);
    1537           0 :                 } else if (nstart >= vma->vm_end)
    1538           0 :                         vma = vma->vm_next;
    1539           0 :                 if (!vma || vma->vm_start >= end)
    1540             :                         break;
    1541             :                 /*
    1542             :                  * Set [nstart; nend) to intersection of desired address
    1543             :                  * range with the first VMA. Also, skip undesirable VMA types.
    1544             :                  */
    1545           0 :                 nend = min(end, vma->vm_end);
    1546           0 :                 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
    1547           0 :                         continue;
    1548           0 :                 if (nstart < vma->vm_start)
    1549           0 :                         nstart = vma->vm_start;
    1550             :                 /*
    1551             :                  * Now fault in a range of pages. populate_vma_page_range()
    1552             :                  * double checks the vma flags, so that it won't mlock pages
    1553             :                  * if the vma was already munlocked.
    1554             :                  */
    1555           0 :                 ret = populate_vma_page_range(vma, nstart, nend, &locked);
    1556           0 :                 if (ret < 0) {
    1557           0 :                         if (ignore_errors) {
    1558           0 :                                 ret = 0;
    1559           0 :                                 continue;       /* continue at next VMA */
    1560             :                         }
    1561             :                         break;
    1562             :                 }
    1563           0 :                 nend = nstart + ret * PAGE_SIZE;
    1564           0 :                 ret = 0;
    1565             :         }
    1566           0 :         if (locked)
    1567             :                 mmap_read_unlock(mm);
    1568           0 :         return ret;     /* 0 or negative error code */
    1569             : }
    1570             : #else /* CONFIG_MMU */
    1571             : static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
    1572             :                 unsigned long nr_pages, struct page **pages,
    1573             :                 struct vm_area_struct **vmas, int *locked,
    1574             :                 unsigned int foll_flags)
    1575             : {
    1576             :         struct vm_area_struct *vma;
    1577             :         unsigned long vm_flags;
    1578             :         long i;
    1579             : 
    1580             :         /* calculate required read or write permissions.
    1581             :          * If FOLL_FORCE is set, we only require the "MAY" flags.
    1582             :          */
    1583             :         vm_flags  = (foll_flags & FOLL_WRITE) ?
    1584             :                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
    1585             :         vm_flags &= (foll_flags & FOLL_FORCE) ?
    1586             :                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
    1587             : 
    1588             :         for (i = 0; i < nr_pages; i++) {
    1589             :                 vma = find_vma(mm, start);
    1590             :                 if (!vma)
    1591             :                         goto finish_or_fault;
    1592             : 
    1593             :                 /* protect what we can, including chardevs */
    1594             :                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
    1595             :                     !(vm_flags & vma->vm_flags))
    1596             :                         goto finish_or_fault;
    1597             : 
    1598             :                 if (pages) {
    1599             :                         pages[i] = virt_to_page(start);
    1600             :                         if (pages[i])
    1601             :                                 get_page(pages[i]);
    1602             :                 }
    1603             :                 if (vmas)
    1604             :                         vmas[i] = vma;
    1605             :                 start = (start + PAGE_SIZE) & PAGE_MASK;
    1606             :         }
    1607             : 
    1608             :         return i;
    1609             : 
    1610             : finish_or_fault:
    1611             :         return i ? : -EFAULT;
    1612             : }
    1613             : #endif /* !CONFIG_MMU */
    1614             : 
    1615             : /**
    1616             :  * fault_in_writeable - fault in userspace address range for writing
    1617             :  * @uaddr: start of address range
    1618             :  * @size: size of address range
    1619             :  *
    1620             :  * Returns the number of bytes not faulted in (like copy_to_user() and
    1621             :  * copy_from_user()).
    1622             :  */
    1623           0 : size_t fault_in_writeable(char __user *uaddr, size_t size)
    1624             : {
    1625           0 :         char __user *start = uaddr, *end;
    1626             : 
    1627           0 :         if (unlikely(size == 0))
    1628             :                 return 0;
    1629           0 :         if (!user_write_access_begin(uaddr, size))
    1630             :                 return size;
    1631           0 :         if (!PAGE_ALIGNED(uaddr)) {
    1632           0 :                 unsafe_put_user(0, uaddr, out);
    1633           0 :                 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
    1634             :         }
    1635           0 :         end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
    1636           0 :         if (unlikely(end < start))
    1637           0 :                 end = NULL;
    1638           0 :         while (uaddr != end) {
    1639           0 :                 unsafe_put_user(0, uaddr, out);
    1640           0 :                 uaddr += PAGE_SIZE;
    1641             :         }
    1642             : 
    1643             : out:
    1644             :         user_write_access_end();
    1645           0 :         if (size > uaddr - start)
    1646           0 :                 return size - (uaddr - start);
    1647             :         return 0;
    1648             : }
    1649             : EXPORT_SYMBOL(fault_in_writeable);
    1650             : 
    1651             : /*
    1652             :  * fault_in_safe_writeable - fault in an address range for writing
    1653             :  * @uaddr: start of address range
    1654             :  * @size: length of address range
    1655             :  *
    1656             :  * Faults in an address range for writing.  This is primarily useful when we
    1657             :  * already know that some or all of the pages in the address range aren't in
    1658             :  * memory.
    1659             :  *
    1660             :  * Unlike fault_in_writeable(), this function is non-destructive.
    1661             :  *
    1662             :  * Note that we don't pin or otherwise hold the pages referenced that we fault
    1663             :  * in.  There's no guarantee that they'll stay in memory for any duration of
    1664             :  * time.
    1665             :  *
    1666             :  * Returns the number of bytes not faulted in, like copy_to_user() and
    1667             :  * copy_from_user().
    1668             :  */
    1669           0 : size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
    1670             : {
    1671           0 :         unsigned long start = (unsigned long)uaddr, end;
    1672           0 :         struct mm_struct *mm = current->mm;
    1673           0 :         bool unlocked = false;
    1674             : 
    1675           0 :         if (unlikely(size == 0))
    1676             :                 return 0;
    1677           0 :         end = PAGE_ALIGN(start + size);
    1678           0 :         if (end < start)
    1679           0 :                 end = 0;
    1680             : 
    1681             :         mmap_read_lock(mm);
    1682             :         do {
    1683           0 :                 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
    1684             :                         break;
    1685           0 :                 start = (start + PAGE_SIZE) & PAGE_MASK;
    1686           0 :         } while (start != end);
    1687           0 :         mmap_read_unlock(mm);
    1688             : 
    1689           0 :         if (size > (unsigned long)uaddr - start)
    1690           0 :                 return size - ((unsigned long)uaddr - start);
    1691             :         return 0;
    1692             : }
    1693             : EXPORT_SYMBOL(fault_in_safe_writeable);
    1694             : 
    1695             : /**
    1696             :  * fault_in_readable - fault in userspace address range for reading
    1697             :  * @uaddr: start of user address range
    1698             :  * @size: size of user address range
    1699             :  *
    1700             :  * Returns the number of bytes not faulted in (like copy_to_user() and
    1701             :  * copy_from_user()).
    1702             :  */
    1703           0 : size_t fault_in_readable(const char __user *uaddr, size_t size)
    1704             : {
    1705           0 :         const char __user *start = uaddr, *end;
    1706             :         volatile char c;
    1707             : 
    1708           0 :         if (unlikely(size == 0))
    1709             :                 return 0;
    1710           0 :         if (!user_read_access_begin(uaddr, size))
    1711             :                 return size;
    1712           0 :         if (!PAGE_ALIGNED(uaddr)) {
    1713           0 :                 unsafe_get_user(c, uaddr, out);
    1714           0 :                 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
    1715             :         }
    1716           0 :         end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
    1717           0 :         if (unlikely(end < start))
    1718           0 :                 end = NULL;
    1719           0 :         while (uaddr != end) {
    1720           0 :                 unsafe_get_user(c, uaddr, out);
    1721           0 :                 uaddr += PAGE_SIZE;
    1722             :         }
    1723             : 
    1724             : out:
    1725             :         user_read_access_end();
    1726           0 :         (void)c;
    1727           0 :         if (size > uaddr - start)
    1728           0 :                 return size - (uaddr - start);
    1729             :         return 0;
    1730             : }
    1731             : EXPORT_SYMBOL(fault_in_readable);
    1732             : 
    1733             : /**
    1734             :  * get_dump_page() - pin user page in memory while writing it to core dump
    1735             :  * @addr: user address
    1736             :  *
    1737             :  * Returns struct page pointer of user page pinned for dump,
    1738             :  * to be freed afterwards by put_page().
    1739             :  *
    1740             :  * Returns NULL on any kind of failure - a hole must then be inserted into
    1741             :  * the corefile, to preserve alignment with its headers; and also returns
    1742             :  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
    1743             :  * allowing a hole to be left in the corefile to save disk space.
    1744             :  *
    1745             :  * Called without mmap_lock (takes and releases the mmap_lock by itself).
    1746             :  */
    1747             : #ifdef CONFIG_ELF_CORE
    1748           0 : struct page *get_dump_page(unsigned long addr)
    1749             : {
    1750           0 :         struct mm_struct *mm = current->mm;
    1751             :         struct page *page;
    1752           0 :         int locked = 1;
    1753             :         int ret;
    1754             : 
    1755           0 :         if (mmap_read_lock_killable(mm))
    1756             :                 return NULL;
    1757           0 :         ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
    1758             :                                       FOLL_FORCE | FOLL_DUMP | FOLL_GET);
    1759           0 :         if (locked)
    1760             :                 mmap_read_unlock(mm);
    1761           0 :         return (ret == 1) ? page : NULL;
    1762             : }
    1763             : #endif /* CONFIG_ELF_CORE */
    1764             : 
    1765             : #ifdef CONFIG_MIGRATION
    1766             : /*
    1767             :  * Check whether all pages are pinnable, if so return number of pages.  If some
    1768             :  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
    1769             :  * pages were migrated, or if some pages were not successfully isolated.
    1770             :  * Return negative error if migration fails.
    1771             :  */
    1772           0 : static long check_and_migrate_movable_pages(unsigned long nr_pages,
    1773             :                                             struct page **pages,
    1774             :                                             unsigned int gup_flags)
    1775             : {
    1776           0 :         unsigned long isolation_error_count = 0, i;
    1777           0 :         struct folio *prev_folio = NULL;
    1778           0 :         LIST_HEAD(movable_page_list);
    1779           0 :         bool drain_allow = true;
    1780           0 :         int ret = 0;
    1781             : 
    1782           0 :         for (i = 0; i < nr_pages; i++) {
    1783           0 :                 struct folio *folio = page_folio(pages[i]);
    1784             : 
    1785           0 :                 if (folio == prev_folio)
    1786           0 :                         continue;
    1787           0 :                 prev_folio = folio;
    1788             : 
    1789           0 :                 if (folio_is_pinnable(folio))
    1790           0 :                         continue;
    1791             : 
    1792             :                 /*
    1793             :                  * Try to move out any movable page before pinning the range.
    1794             :                  */
    1795           0 :                 if (folio_test_hugetlb(folio)) {
    1796             :                         if (!isolate_huge_page(&folio->page,
    1797             :                                                 &movable_page_list))
    1798             :                                 isolation_error_count++;
    1799             :                         continue;
    1800             :                 }
    1801             : 
    1802           0 :                 if (!folio_test_lru(folio) && drain_allow) {
    1803           0 :                         lru_add_drain_all();
    1804           0 :                         drain_allow = false;
    1805             :                 }
    1806             : 
    1807           0 :                 if (folio_isolate_lru(folio)) {
    1808           0 :                         isolation_error_count++;
    1809           0 :                         continue;
    1810             :                 }
    1811           0 :                 list_add_tail(&folio->lru, &movable_page_list);
    1812           0 :                 node_stat_mod_folio(folio,
    1813           0 :                                     NR_ISOLATED_ANON + folio_is_file_lru(folio),
    1814             :                                     folio_nr_pages(folio));
    1815             :         }
    1816             : 
    1817           0 :         if (!list_empty(&movable_page_list) || isolation_error_count)
    1818             :                 goto unpin_pages;
    1819             : 
    1820             :         /*
    1821             :          * If list is empty, and no isolation errors, means that all pages are
    1822             :          * in the correct zone.
    1823             :          */
    1824           0 :         return nr_pages;
    1825             : 
    1826             : unpin_pages:
    1827           0 :         if (gup_flags & FOLL_PIN) {
    1828           0 :                 unpin_user_pages(pages, nr_pages);
    1829             :         } else {
    1830           0 :                 for (i = 0; i < nr_pages; i++)
    1831           0 :                         put_page(pages[i]);
    1832             :         }
    1833             : 
    1834           0 :         if (!list_empty(&movable_page_list)) {
    1835           0 :                 struct migration_target_control mtc = {
    1836             :                         .nid = NUMA_NO_NODE,
    1837             :                         .gfp_mask = GFP_USER | __GFP_NOWARN,
    1838             :                 };
    1839             : 
    1840           0 :                 ret = migrate_pages(&movable_page_list, alloc_migration_target,
    1841             :                                     NULL, (unsigned long)&mtc, MIGRATE_SYNC,
    1842             :                                     MR_LONGTERM_PIN, NULL);
    1843           0 :                 if (ret > 0) /* number of pages not migrated */
    1844           0 :                         ret = -ENOMEM;
    1845             :         }
    1846             : 
    1847           0 :         if (ret && !list_empty(&movable_page_list))
    1848           0 :                 putback_movable_pages(&movable_page_list);
    1849           0 :         return ret;
    1850             : }
    1851             : #else
    1852             : static long check_and_migrate_movable_pages(unsigned long nr_pages,
    1853             :                                             struct page **pages,
    1854             :                                             unsigned int gup_flags)
    1855             : {
    1856             :         return nr_pages;
    1857             : }
    1858             : #endif /* CONFIG_MIGRATION */
    1859             : 
    1860             : /*
    1861             :  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
    1862             :  * allows us to process the FOLL_LONGTERM flag.
    1863             :  */
    1864           0 : static long __gup_longterm_locked(struct mm_struct *mm,
    1865             :                                   unsigned long start,
    1866             :                                   unsigned long nr_pages,
    1867             :                                   struct page **pages,
    1868             :                                   struct vm_area_struct **vmas,
    1869             :                                   unsigned int gup_flags)
    1870             : {
    1871             :         unsigned int flags;
    1872             :         long rc;
    1873             : 
    1874           0 :         if (!(gup_flags & FOLL_LONGTERM))
    1875           0 :                 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
    1876             :                                                NULL, gup_flags);
    1877           0 :         flags = memalloc_pin_save();
    1878             :         do {
    1879           0 :                 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
    1880             :                                              NULL, gup_flags);
    1881           0 :                 if (rc <= 0)
    1882             :                         break;
    1883           0 :                 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
    1884           0 :         } while (!rc);
    1885           0 :         memalloc_pin_restore(flags);
    1886             : 
    1887           0 :         return rc;
    1888             : }
    1889             : 
    1890           0 : static bool is_valid_gup_flags(unsigned int gup_flags)
    1891             : {
    1892             :         /*
    1893             :          * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
    1894             :          * never directly by the caller, so enforce that with an assertion:
    1895             :          */
    1896           0 :         if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
    1897             :                 return false;
    1898             :         /*
    1899             :          * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
    1900             :          * that is, FOLL_LONGTERM is a specific case, more restrictive case of
    1901             :          * FOLL_PIN.
    1902             :          */
    1903           0 :         if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
    1904             :                 return false;
    1905             : 
    1906           0 :         return true;
    1907             : }
    1908             : 
    1909             : #ifdef CONFIG_MMU
    1910           0 : static long __get_user_pages_remote(struct mm_struct *mm,
    1911             :                                     unsigned long start, unsigned long nr_pages,
    1912             :                                     unsigned int gup_flags, struct page **pages,
    1913             :                                     struct vm_area_struct **vmas, int *locked)
    1914             : {
    1915             :         /*
    1916             :          * Parts of FOLL_LONGTERM behavior are incompatible with
    1917             :          * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
    1918             :          * vmas. However, this only comes up if locked is set, and there are
    1919             :          * callers that do request FOLL_LONGTERM, but do not set locked. So,
    1920             :          * allow what we can.
    1921             :          */
    1922           0 :         if (gup_flags & FOLL_LONGTERM) {
    1923           0 :                 if (WARN_ON_ONCE(locked))
    1924             :                         return -EINVAL;
    1925             :                 /*
    1926             :                  * This will check the vmas (even if our vmas arg is NULL)
    1927             :                  * and return -ENOTSUPP if DAX isn't allowed in this case:
    1928             :                  */
    1929           0 :                 return __gup_longterm_locked(mm, start, nr_pages, pages,
    1930             :                                              vmas, gup_flags | FOLL_TOUCH |
    1931             :                                              FOLL_REMOTE);
    1932             :         }
    1933             : 
    1934           0 :         return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
    1935             :                                        locked,
    1936             :                                        gup_flags | FOLL_TOUCH | FOLL_REMOTE);
    1937             : }
    1938             : 
    1939             : /**
    1940             :  * get_user_pages_remote() - pin user pages in memory
    1941             :  * @mm:         mm_struct of target mm
    1942             :  * @start:      starting user address
    1943             :  * @nr_pages:   number of pages from start to pin
    1944             :  * @gup_flags:  flags modifying lookup behaviour
    1945             :  * @pages:      array that receives pointers to the pages pinned.
    1946             :  *              Should be at least nr_pages long. Or NULL, if caller
    1947             :  *              only intends to ensure the pages are faulted in.
    1948             :  * @vmas:       array of pointers to vmas corresponding to each page.
    1949             :  *              Or NULL if the caller does not require them.
    1950             :  * @locked:     pointer to lock flag indicating whether lock is held and
    1951             :  *              subsequently whether VM_FAULT_RETRY functionality can be
    1952             :  *              utilised. Lock must initially be held.
    1953             :  *
    1954             :  * Returns either number of pages pinned (which may be less than the
    1955             :  * number requested), or an error. Details about the return value:
    1956             :  *
    1957             :  * -- If nr_pages is 0, returns 0.
    1958             :  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
    1959             :  * -- If nr_pages is >0, and some pages were pinned, returns the number of
    1960             :  *    pages pinned. Again, this may be less than nr_pages.
    1961             :  *
    1962             :  * The caller is responsible for releasing returned @pages, via put_page().
    1963             :  *
    1964             :  * @vmas are valid only as long as mmap_lock is held.
    1965             :  *
    1966             :  * Must be called with mmap_lock held for read or write.
    1967             :  *
    1968             :  * get_user_pages_remote walks a process's page tables and takes a reference
    1969             :  * to each struct page that each user address corresponds to at a given
    1970             :  * instant. That is, it takes the page that would be accessed if a user
    1971             :  * thread accesses the given user virtual address at that instant.
    1972             :  *
    1973             :  * This does not guarantee that the page exists in the user mappings when
    1974             :  * get_user_pages_remote returns, and there may even be a completely different
    1975             :  * page there in some cases (eg. if mmapped pagecache has been invalidated
    1976             :  * and subsequently re faulted). However it does guarantee that the page
    1977             :  * won't be freed completely. And mostly callers simply care that the page
    1978             :  * contains data that was valid *at some point in time*. Typically, an IO
    1979             :  * or similar operation cannot guarantee anything stronger anyway because
    1980             :  * locks can't be held over the syscall boundary.
    1981             :  *
    1982             :  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
    1983             :  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
    1984             :  * be called after the page is finished with, and before put_page is called.
    1985             :  *
    1986             :  * get_user_pages_remote is typically used for fewer-copy IO operations,
    1987             :  * to get a handle on the memory by some means other than accesses
    1988             :  * via the user virtual addresses. The pages may be submitted for
    1989             :  * DMA to devices or accessed via their kernel linear mapping (via the
    1990             :  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
    1991             :  *
    1992             :  * See also get_user_pages_fast, for performance critical applications.
    1993             :  *
    1994             :  * get_user_pages_remote should be phased out in favor of
    1995             :  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
    1996             :  * should use get_user_pages_remote because it cannot pass
    1997             :  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
    1998             :  */
    1999           0 : long get_user_pages_remote(struct mm_struct *mm,
    2000             :                 unsigned long start, unsigned long nr_pages,
    2001             :                 unsigned int gup_flags, struct page **pages,
    2002             :                 struct vm_area_struct **vmas, int *locked)
    2003             : {
    2004           0 :         if (!is_valid_gup_flags(gup_flags))
    2005             :                 return -EINVAL;
    2006             : 
    2007           0 :         return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
    2008             :                                        pages, vmas, locked);
    2009             : }
    2010             : EXPORT_SYMBOL(get_user_pages_remote);
    2011             : 
    2012             : #else /* CONFIG_MMU */
    2013             : long get_user_pages_remote(struct mm_struct *mm,
    2014             :                            unsigned long start, unsigned long nr_pages,
    2015             :                            unsigned int gup_flags, struct page **pages,
    2016             :                            struct vm_area_struct **vmas, int *locked)
    2017             : {
    2018             :         return 0;
    2019             : }
    2020             : 
    2021             : static long __get_user_pages_remote(struct mm_struct *mm,
    2022             :                                     unsigned long start, unsigned long nr_pages,
    2023             :                                     unsigned int gup_flags, struct page **pages,
    2024             :                                     struct vm_area_struct **vmas, int *locked)
    2025             : {
    2026             :         return 0;
    2027             : }
    2028             : #endif /* !CONFIG_MMU */
    2029             : 
    2030             : /**
    2031             :  * get_user_pages() - pin user pages in memory
    2032             :  * @start:      starting user address
    2033             :  * @nr_pages:   number of pages from start to pin
    2034             :  * @gup_flags:  flags modifying lookup behaviour
    2035             :  * @pages:      array that receives pointers to the pages pinned.
    2036             :  *              Should be at least nr_pages long. Or NULL, if caller
    2037             :  *              only intends to ensure the pages are faulted in.
    2038             :  * @vmas:       array of pointers to vmas corresponding to each page.
    2039             :  *              Or NULL if the caller does not require them.
    2040             :  *
    2041             :  * This is the same as get_user_pages_remote(), just with a less-flexible
    2042             :  * calling convention where we assume that the mm being operated on belongs to
    2043             :  * the current task, and doesn't allow passing of a locked parameter.  We also
    2044             :  * obviously don't pass FOLL_REMOTE in here.
    2045             :  */
    2046           0 : long get_user_pages(unsigned long start, unsigned long nr_pages,
    2047             :                 unsigned int gup_flags, struct page **pages,
    2048             :                 struct vm_area_struct **vmas)
    2049             : {
    2050           0 :         if (!is_valid_gup_flags(gup_flags))
    2051             :                 return -EINVAL;
    2052             : 
    2053           0 :         return __gup_longterm_locked(current->mm, start, nr_pages,
    2054             :                                      pages, vmas, gup_flags | FOLL_TOUCH);
    2055             : }
    2056             : EXPORT_SYMBOL(get_user_pages);
    2057             : 
    2058             : /*
    2059             :  * get_user_pages_unlocked() is suitable to replace the form:
    2060             :  *
    2061             :  *      mmap_read_lock(mm);
    2062             :  *      get_user_pages(mm, ..., pages, NULL);
    2063             :  *      mmap_read_unlock(mm);
    2064             :  *
    2065             :  *  with:
    2066             :  *
    2067             :  *      get_user_pages_unlocked(mm, ..., pages);
    2068             :  *
    2069             :  * It is functionally equivalent to get_user_pages_fast so
    2070             :  * get_user_pages_fast should be used instead if specific gup_flags
    2071             :  * (e.g. FOLL_FORCE) are not required.
    2072             :  */
    2073           0 : long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
    2074             :                              struct page **pages, unsigned int gup_flags)
    2075             : {
    2076           0 :         struct mm_struct *mm = current->mm;
    2077           0 :         int locked = 1;
    2078             :         long ret;
    2079             : 
    2080             :         /*
    2081             :          * FIXME: Current FOLL_LONGTERM behavior is incompatible with
    2082             :          * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
    2083             :          * vmas.  As there are no users of this flag in this call we simply
    2084             :          * disallow this option for now.
    2085             :          */
    2086           0 :         if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
    2087             :                 return -EINVAL;
    2088             : 
    2089           0 :         mmap_read_lock(mm);
    2090           0 :         ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
    2091             :                                       &locked, gup_flags | FOLL_TOUCH);
    2092           0 :         if (locked)
    2093             :                 mmap_read_unlock(mm);
    2094             :         return ret;
    2095             : }
    2096             : EXPORT_SYMBOL(get_user_pages_unlocked);
    2097             : 
    2098             : /*
    2099             :  * Fast GUP
    2100             :  *
    2101             :  * get_user_pages_fast attempts to pin user pages by walking the page
    2102             :  * tables directly and avoids taking locks. Thus the walker needs to be
    2103             :  * protected from page table pages being freed from under it, and should
    2104             :  * block any THP splits.
    2105             :  *
    2106             :  * One way to achieve this is to have the walker disable interrupts, and
    2107             :  * rely on IPIs from the TLB flushing code blocking before the page table
    2108             :  * pages are freed. This is unsuitable for architectures that do not need
    2109             :  * to broadcast an IPI when invalidating TLBs.
    2110             :  *
    2111             :  * Another way to achieve this is to batch up page table containing pages
    2112             :  * belonging to more than one mm_user, then rcu_sched a callback to free those
    2113             :  * pages. Disabling interrupts will allow the fast_gup walker to both block
    2114             :  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
    2115             :  * (which is a relatively rare event). The code below adopts this strategy.
    2116             :  *
    2117             :  * Before activating this code, please be aware that the following assumptions
    2118             :  * are currently made:
    2119             :  *
    2120             :  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
    2121             :  *  free pages containing page tables or TLB flushing requires IPI broadcast.
    2122             :  *
    2123             :  *  *) ptes can be read atomically by the architecture.
    2124             :  *
    2125             :  *  *) access_ok is sufficient to validate userspace address ranges.
    2126             :  *
    2127             :  * The last two assumptions can be relaxed by the addition of helper functions.
    2128             :  *
    2129             :  * This code is based heavily on the PowerPC implementation by Nick Piggin.
    2130             :  */
    2131             : #ifdef CONFIG_HAVE_FAST_GUP
    2132             : 
    2133             : static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
    2134             :                                             unsigned int flags,
    2135             :                                             struct page **pages)
    2136             : {
    2137             :         while ((*nr) - nr_start) {
    2138             :                 struct page *page = pages[--(*nr)];
    2139             : 
    2140             :                 ClearPageReferenced(page);
    2141             :                 if (flags & FOLL_PIN)
    2142             :                         unpin_user_page(page);
    2143             :                 else
    2144             :                         put_page(page);
    2145             :         }
    2146             : }
    2147             : 
    2148             : #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
    2149             : static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
    2150             :                          unsigned int flags, struct page **pages, int *nr)
    2151             : {
    2152             :         struct dev_pagemap *pgmap = NULL;
    2153             :         int nr_start = *nr, ret = 0;
    2154             :         pte_t *ptep, *ptem;
    2155             : 
    2156             :         ptem = ptep = pte_offset_map(&pmd, addr);
    2157             :         do {
    2158             :                 pte_t pte = ptep_get_lockless(ptep);
    2159             :                 struct page *page;
    2160             :                 struct folio *folio;
    2161             : 
    2162             :                 /*
    2163             :                  * Similar to the PMD case below, NUMA hinting must take slow
    2164             :                  * path using the pte_protnone check.
    2165             :                  */
    2166             :                 if (pte_protnone(pte))
    2167             :                         goto pte_unmap;
    2168             : 
    2169             :                 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
    2170             :                         goto pte_unmap;
    2171             : 
    2172             :                 if (pte_devmap(pte)) {
    2173             :                         if (unlikely(flags & FOLL_LONGTERM))
    2174             :                                 goto pte_unmap;
    2175             : 
    2176             :                         pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
    2177             :                         if (unlikely(!pgmap)) {
    2178             :                                 undo_dev_pagemap(nr, nr_start, flags, pages);
    2179             :                                 goto pte_unmap;
    2180             :                         }
    2181             :                 } else if (pte_special(pte))
    2182             :                         goto pte_unmap;
    2183             : 
    2184             :                 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
    2185             :                 page = pte_page(pte);
    2186             : 
    2187             :                 folio = try_grab_folio(page, 1, flags);
    2188             :                 if (!folio)
    2189             :                         goto pte_unmap;
    2190             : 
    2191             :                 if (unlikely(page_is_secretmem(page))) {
    2192             :                         gup_put_folio(folio, 1, flags);
    2193             :                         goto pte_unmap;
    2194             :                 }
    2195             : 
    2196             :                 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
    2197             :                         gup_put_folio(folio, 1, flags);
    2198             :                         goto pte_unmap;
    2199             :                 }
    2200             : 
    2201             :                 /*
    2202             :                  * We need to make the page accessible if and only if we are
    2203             :                  * going to access its content (the FOLL_PIN case).  Please
    2204             :                  * see Documentation/core-api/pin_user_pages.rst for
    2205             :                  * details.
    2206             :                  */
    2207             :                 if (flags & FOLL_PIN) {
    2208             :                         ret = arch_make_page_accessible(page);
    2209             :                         if (ret) {
    2210             :                                 gup_put_folio(folio, 1, flags);
    2211             :                                 goto pte_unmap;
    2212             :                         }
    2213             :                 }
    2214             :                 folio_set_referenced(folio);
    2215             :                 pages[*nr] = page;
    2216             :                 (*nr)++;
    2217             :         } while (ptep++, addr += PAGE_SIZE, addr != end);
    2218             : 
    2219             :         ret = 1;
    2220             : 
    2221             : pte_unmap:
    2222             :         if (pgmap)
    2223             :                 put_dev_pagemap(pgmap);
    2224             :         pte_unmap(ptem);
    2225             :         return ret;
    2226             : }
    2227             : #else
    2228             : 
    2229             : /*
    2230             :  * If we can't determine whether or not a pte is special, then fail immediately
    2231             :  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
    2232             :  * to be special.
    2233             :  *
    2234             :  * For a futex to be placed on a THP tail page, get_futex_key requires a
    2235             :  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
    2236             :  * useful to have gup_huge_pmd even if we can't operate on ptes.
    2237             :  */
    2238             : static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
    2239             :                          unsigned int flags, struct page **pages, int *nr)
    2240             : {
    2241             :         return 0;
    2242             : }
    2243             : #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
    2244             : 
    2245             : #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
    2246             : static int __gup_device_huge(unsigned long pfn, unsigned long addr,
    2247             :                              unsigned long end, unsigned int flags,
    2248             :                              struct page **pages, int *nr)
    2249             : {
    2250             :         int nr_start = *nr;
    2251             :         struct dev_pagemap *pgmap = NULL;
    2252             : 
    2253             :         do {
    2254             :                 struct page *page = pfn_to_page(pfn);
    2255             : 
    2256             :                 pgmap = get_dev_pagemap(pfn, pgmap);
    2257             :                 if (unlikely(!pgmap)) {
    2258             :                         undo_dev_pagemap(nr, nr_start, flags, pages);
    2259             :                         break;
    2260             :                 }
    2261             :                 SetPageReferenced(page);
    2262             :                 pages[*nr] = page;
    2263             :                 if (unlikely(!try_grab_page(page, flags))) {
    2264             :                         undo_dev_pagemap(nr, nr_start, flags, pages);
    2265             :                         break;
    2266             :                 }
    2267             :                 (*nr)++;
    2268             :                 pfn++;
    2269             :         } while (addr += PAGE_SIZE, addr != end);
    2270             : 
    2271             :         put_dev_pagemap(pgmap);
    2272             :         return addr == end;
    2273             : }
    2274             : 
    2275             : static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
    2276             :                                  unsigned long end, unsigned int flags,
    2277             :                                  struct page **pages, int *nr)
    2278             : {
    2279             :         unsigned long fault_pfn;
    2280             :         int nr_start = *nr;
    2281             : 
    2282             :         fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
    2283             :         if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
    2284             :                 return 0;
    2285             : 
    2286             :         if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
    2287             :                 undo_dev_pagemap(nr, nr_start, flags, pages);
    2288             :                 return 0;
    2289             :         }
    2290             :         return 1;
    2291             : }
    2292             : 
    2293             : static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
    2294             :                                  unsigned long end, unsigned int flags,
    2295             :                                  struct page **pages, int *nr)
    2296             : {
    2297             :         unsigned long fault_pfn;
    2298             :         int nr_start = *nr;
    2299             : 
    2300             :         fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
    2301             :         if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
    2302             :                 return 0;
    2303             : 
    2304             :         if (unlikely(pud_val(orig) != pud_val(*pudp))) {
    2305             :                 undo_dev_pagemap(nr, nr_start, flags, pages);
    2306             :                 return 0;
    2307             :         }
    2308             :         return 1;
    2309             : }
    2310             : #else
    2311             : static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
    2312             :                                  unsigned long end, unsigned int flags,
    2313             :                                  struct page **pages, int *nr)
    2314             : {
    2315             :         BUILD_BUG();
    2316             :         return 0;
    2317             : }
    2318             : 
    2319             : static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
    2320             :                                  unsigned long end, unsigned int flags,
    2321             :                                  struct page **pages, int *nr)
    2322             : {
    2323             :         BUILD_BUG();
    2324             :         return 0;
    2325             : }
    2326             : #endif
    2327             : 
    2328             : static int record_subpages(struct page *page, unsigned long addr,
    2329             :                            unsigned long end, struct page **pages)
    2330             : {
    2331             :         int nr;
    2332             : 
    2333             :         for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
    2334             :                 pages[nr] = nth_page(page, nr);
    2335             : 
    2336             :         return nr;
    2337             : }
    2338             : 
    2339             : #ifdef CONFIG_ARCH_HAS_HUGEPD
    2340             : static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
    2341             :                                       unsigned long sz)
    2342             : {
    2343             :         unsigned long __boundary = (addr + sz) & ~(sz-1);
    2344             :         return (__boundary - 1 < end - 1) ? __boundary : end;
    2345             : }
    2346             : 
    2347             : static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
    2348             :                        unsigned long end, unsigned int flags,
    2349             :                        struct page **pages, int *nr)
    2350             : {
    2351             :         unsigned long pte_end;
    2352             :         struct page *page;
    2353             :         struct folio *folio;
    2354             :         pte_t pte;
    2355             :         int refs;
    2356             : 
    2357             :         pte_end = (addr + sz) & ~(sz-1);
    2358             :         if (pte_end < end)
    2359             :                 end = pte_end;
    2360             : 
    2361             :         pte = huge_ptep_get(ptep);
    2362             : 
    2363             :         if (!pte_access_permitted(pte, flags & FOLL_WRITE))
    2364             :                 return 0;
    2365             : 
    2366             :         /* hugepages are never "special" */
    2367             :         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
    2368             : 
    2369             :         page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
    2370             :         refs = record_subpages(page, addr, end, pages + *nr);
    2371             : 
    2372             :         folio = try_grab_folio(page, refs, flags);
    2373             :         if (!folio)
    2374             :                 return 0;
    2375             : 
    2376             :         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
    2377             :                 gup_put_folio(folio, refs, flags);
    2378             :                 return 0;
    2379             :         }
    2380             : 
    2381             :         *nr += refs;
    2382             :         folio_set_referenced(folio);
    2383             :         return 1;
    2384             : }
    2385             : 
    2386             : static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
    2387             :                 unsigned int pdshift, unsigned long end, unsigned int flags,
    2388             :                 struct page **pages, int *nr)
    2389             : {
    2390             :         pte_t *ptep;
    2391             :         unsigned long sz = 1UL << hugepd_shift(hugepd);
    2392             :         unsigned long next;
    2393             : 
    2394             :         ptep = hugepte_offset(hugepd, addr, pdshift);
    2395             :         do {
    2396             :                 next = hugepte_addr_end(addr, end, sz);
    2397             :                 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
    2398             :                         return 0;
    2399             :         } while (ptep++, addr = next, addr != end);
    2400             : 
    2401             :         return 1;
    2402             : }
    2403             : #else
    2404             : static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
    2405             :                 unsigned int pdshift, unsigned long end, unsigned int flags,
    2406             :                 struct page **pages, int *nr)
    2407             : {
    2408             :         return 0;
    2409             : }
    2410             : #endif /* CONFIG_ARCH_HAS_HUGEPD */
    2411             : 
    2412             : static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
    2413             :                         unsigned long end, unsigned int flags,
    2414             :                         struct page **pages, int *nr)
    2415             : {
    2416             :         struct page *page;
    2417             :         struct folio *folio;
    2418             :         int refs;
    2419             : 
    2420             :         if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
    2421             :                 return 0;
    2422             : 
    2423             :         if (pmd_devmap(orig)) {
    2424             :                 if (unlikely(flags & FOLL_LONGTERM))
    2425             :                         return 0;
    2426             :                 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
    2427             :                                              pages, nr);
    2428             :         }
    2429             : 
    2430             :         page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
    2431             :         refs = record_subpages(page, addr, end, pages + *nr);
    2432             : 
    2433             :         folio = try_grab_folio(page, refs, flags);
    2434             :         if (!folio)
    2435             :                 return 0;
    2436             : 
    2437             :         if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
    2438             :                 gup_put_folio(folio, refs, flags);
    2439             :                 return 0;
    2440             :         }
    2441             : 
    2442             :         *nr += refs;
    2443             :         folio_set_referenced(folio);
    2444             :         return 1;
    2445             : }
    2446             : 
    2447             : static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
    2448             :                         unsigned long end, unsigned int flags,
    2449             :                         struct page **pages, int *nr)
    2450             : {
    2451             :         struct page *page;
    2452             :         struct folio *folio;
    2453             :         int refs;
    2454             : 
    2455             :         if (!pud_access_permitted(orig, flags & FOLL_WRITE))
    2456             :                 return 0;
    2457             : 
    2458             :         if (pud_devmap(orig)) {
    2459             :                 if (unlikely(flags & FOLL_LONGTERM))
    2460             :                         return 0;
    2461             :                 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
    2462             :                                              pages, nr);
    2463             :         }
    2464             : 
    2465             :         page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
    2466             :         refs = record_subpages(page, addr, end, pages + *nr);
    2467             : 
    2468             :         folio = try_grab_folio(page, refs, flags);
    2469             :         if (!folio)
    2470             :                 return 0;
    2471             : 
    2472             :         if (unlikely(pud_val(orig) != pud_val(*pudp))) {
    2473             :                 gup_put_folio(folio, refs, flags);
    2474             :                 return 0;
    2475             :         }
    2476             : 
    2477             :         *nr += refs;
    2478             :         folio_set_referenced(folio);
    2479             :         return 1;
    2480             : }
    2481             : 
    2482             : static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
    2483             :                         unsigned long end, unsigned int flags,
    2484             :                         struct page **pages, int *nr)
    2485             : {
    2486             :         int refs;
    2487             :         struct page *page;
    2488             :         struct folio *folio;
    2489             : 
    2490             :         if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
    2491             :                 return 0;
    2492             : 
    2493             :         BUILD_BUG_ON(pgd_devmap(orig));
    2494             : 
    2495             :         page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
    2496             :         refs = record_subpages(page, addr, end, pages + *nr);
    2497             : 
    2498             :         folio = try_grab_folio(page, refs, flags);
    2499             :         if (!folio)
    2500             :                 return 0;
    2501             : 
    2502             :         if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
    2503             :                 gup_put_folio(folio, refs, flags);
    2504             :                 return 0;
    2505             :         }
    2506             : 
    2507             :         *nr += refs;
    2508             :         folio_set_referenced(folio);
    2509             :         return 1;
    2510             : }
    2511             : 
    2512             : static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
    2513             :                 unsigned int flags, struct page **pages, int *nr)
    2514             : {
    2515             :         unsigned long next;
    2516             :         pmd_t *pmdp;
    2517             : 
    2518             :         pmdp = pmd_offset_lockless(pudp, pud, addr);
    2519             :         do {
    2520             :                 pmd_t pmd = READ_ONCE(*pmdp);
    2521             : 
    2522             :                 next = pmd_addr_end(addr, end);
    2523             :                 if (!pmd_present(pmd))
    2524             :                         return 0;
    2525             : 
    2526             :                 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
    2527             :                              pmd_devmap(pmd))) {
    2528             :                         /*
    2529             :                          * NUMA hinting faults need to be handled in the GUP
    2530             :                          * slowpath for accounting purposes and so that they
    2531             :                          * can be serialised against THP migration.
    2532             :                          */
    2533             :                         if (pmd_protnone(pmd))
    2534             :                                 return 0;
    2535             : 
    2536             :                         if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
    2537             :                                 pages, nr))
    2538             :                                 return 0;
    2539             : 
    2540             :                 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
    2541             :                         /*
    2542             :                          * architecture have different format for hugetlbfs
    2543             :                          * pmd format and THP pmd format
    2544             :                          */
    2545             :                         if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
    2546             :                                          PMD_SHIFT, next, flags, pages, nr))
    2547             :                                 return 0;
    2548             :                 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
    2549             :                         return 0;
    2550             :         } while (pmdp++, addr = next, addr != end);
    2551             : 
    2552             :         return 1;
    2553             : }
    2554             : 
    2555             : static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
    2556             :                          unsigned int flags, struct page **pages, int *nr)
    2557             : {
    2558             :         unsigned long next;
    2559             :         pud_t *pudp;
    2560             : 
    2561             :         pudp = pud_offset_lockless(p4dp, p4d, addr);
    2562             :         do {
    2563             :                 pud_t pud = READ_ONCE(*pudp);
    2564             : 
    2565             :                 next = pud_addr_end(addr, end);
    2566             :                 if (unlikely(!pud_present(pud)))
    2567             :                         return 0;
    2568             :                 if (unlikely(pud_huge(pud))) {
    2569             :                         if (!gup_huge_pud(pud, pudp, addr, next, flags,
    2570             :                                           pages, nr))
    2571             :                                 return 0;
    2572             :                 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
    2573             :                         if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
    2574             :                                          PUD_SHIFT, next, flags, pages, nr))
    2575             :                                 return 0;
    2576             :                 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
    2577             :                         return 0;
    2578             :         } while (pudp++, addr = next, addr != end);
    2579             : 
    2580             :         return 1;
    2581             : }
    2582             : 
    2583             : static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
    2584             :                          unsigned int flags, struct page **pages, int *nr)
    2585             : {
    2586             :         unsigned long next;
    2587             :         p4d_t *p4dp;
    2588             : 
    2589             :         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
    2590             :         do {
    2591             :                 p4d_t p4d = READ_ONCE(*p4dp);
    2592             : 
    2593             :                 next = p4d_addr_end(addr, end);
    2594             :                 if (p4d_none(p4d))
    2595             :                         return 0;
    2596             :                 BUILD_BUG_ON(p4d_huge(p4d));
    2597             :                 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
    2598             :                         if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
    2599             :                                          P4D_SHIFT, next, flags, pages, nr))
    2600             :                                 return 0;
    2601             :                 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
    2602             :                         return 0;
    2603             :         } while (p4dp++, addr = next, addr != end);
    2604             : 
    2605             :         return 1;
    2606             : }
    2607             : 
    2608             : static void gup_pgd_range(unsigned long addr, unsigned long end,
    2609             :                 unsigned int flags, struct page **pages, int *nr)
    2610             : {
    2611             :         unsigned long next;
    2612             :         pgd_t *pgdp;
    2613             : 
    2614             :         pgdp = pgd_offset(current->mm, addr);
    2615             :         do {
    2616             :                 pgd_t pgd = READ_ONCE(*pgdp);
    2617             : 
    2618             :                 next = pgd_addr_end(addr, end);
    2619             :                 if (pgd_none(pgd))
    2620             :                         return;
    2621             :                 if (unlikely(pgd_huge(pgd))) {
    2622             :                         if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
    2623             :                                           pages, nr))
    2624             :                                 return;
    2625             :                 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
    2626             :                         if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
    2627             :                                          PGDIR_SHIFT, next, flags, pages, nr))
    2628             :                                 return;
    2629             :                 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
    2630             :                         return;
    2631             :         } while (pgdp++, addr = next, addr != end);
    2632             : }
    2633             : #else
    2634             : static inline void gup_pgd_range(unsigned long addr, unsigned long end,
    2635             :                 unsigned int flags, struct page **pages, int *nr)
    2636             : {
    2637             : }
    2638             : #endif /* CONFIG_HAVE_FAST_GUP */
    2639             : 
    2640             : #ifndef gup_fast_permitted
    2641             : /*
    2642             :  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
    2643             :  * we need to fall back to the slow version:
    2644             :  */
    2645             : static bool gup_fast_permitted(unsigned long start, unsigned long end)
    2646             : {
    2647             :         return true;
    2648             : }
    2649             : #endif
    2650             : 
    2651           0 : static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
    2652             :                                    unsigned int gup_flags, struct page **pages)
    2653             : {
    2654             :         int ret;
    2655             : 
    2656             :         /*
    2657             :          * FIXME: FOLL_LONGTERM does not work with
    2658             :          * get_user_pages_unlocked() (see comments in that function)
    2659             :          */
    2660           0 :         if (gup_flags & FOLL_LONGTERM) {
    2661           0 :                 mmap_read_lock(current->mm);
    2662           0 :                 ret = __gup_longterm_locked(current->mm,
    2663             :                                             start, nr_pages,
    2664             :                                             pages, NULL, gup_flags);
    2665           0 :                 mmap_read_unlock(current->mm);
    2666             :         } else {
    2667           0 :                 ret = get_user_pages_unlocked(start, nr_pages,
    2668             :                                               pages, gup_flags);
    2669             :         }
    2670             : 
    2671           0 :         return ret;
    2672             : }
    2673             : 
    2674             : static unsigned long lockless_pages_from_mm(unsigned long start,
    2675             :                                             unsigned long end,
    2676             :                                             unsigned int gup_flags,
    2677             :                                             struct page **pages)
    2678             : {
    2679             :         unsigned long flags;
    2680           0 :         int nr_pinned = 0;
    2681             :         unsigned seq;
    2682             : 
    2683             :         if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
    2684             :             !gup_fast_permitted(start, end))
    2685             :                 return 0;
    2686             : 
    2687             :         if (gup_flags & FOLL_PIN) {
    2688             :                 seq = raw_read_seqcount(&current->mm->write_protect_seq);
    2689             :                 if (seq & 1)
    2690             :                         return 0;
    2691             :         }
    2692             : 
    2693             :         /*
    2694             :          * Disable interrupts. The nested form is used, in order to allow full,
    2695             :          * general purpose use of this routine.
    2696             :          *
    2697             :          * With interrupts disabled, we block page table pages from being freed
    2698             :          * from under us. See struct mmu_table_batch comments in
    2699             :          * include/asm-generic/tlb.h for more details.
    2700             :          *
    2701             :          * We do not adopt an rcu_read_lock() here as we also want to block IPIs
    2702             :          * that come from THPs splitting.
    2703             :          */
    2704             :         local_irq_save(flags);
    2705             :         gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
    2706             :         local_irq_restore(flags);
    2707             : 
    2708             :         /*
    2709             :          * When pinning pages for DMA there could be a concurrent write protect
    2710             :          * from fork() via copy_page_range(), in this case always fail fast GUP.
    2711             :          */
    2712             :         if (gup_flags & FOLL_PIN) {
    2713             :                 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
    2714             :                         unpin_user_pages(pages, nr_pinned);
    2715             :                         return 0;
    2716             :                 }
    2717             :         }
    2718             :         return nr_pinned;
    2719             : }
    2720             : 
    2721           0 : static int internal_get_user_pages_fast(unsigned long start,
    2722             :                                         unsigned long nr_pages,
    2723             :                                         unsigned int gup_flags,
    2724             :                                         struct page **pages)
    2725             : {
    2726             :         unsigned long len, end;
    2727             :         unsigned long nr_pinned;
    2728             :         int ret;
    2729             : 
    2730           0 :         if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
    2731             :                                        FOLL_FORCE | FOLL_PIN | FOLL_GET |
    2732             :                                        FOLL_FAST_ONLY | FOLL_NOFAULT)))
    2733             :                 return -EINVAL;
    2734             : 
    2735           0 :         if (gup_flags & FOLL_PIN)
    2736           0 :                 mm_set_has_pinned_flag(&current->mm->flags);
    2737             : 
    2738           0 :         if (!(gup_flags & FOLL_FAST_ONLY))
    2739             :                 might_lock_read(&current->mm->mmap_lock);
    2740             : 
    2741           0 :         start = untagged_addr(start) & PAGE_MASK;
    2742           0 :         len = nr_pages << PAGE_SHIFT;
    2743           0 :         if (check_add_overflow(start, len, &end))
    2744             :                 return 0;
    2745           0 :         if (unlikely(!access_ok((void __user *)start, len)))
    2746             :                 return -EFAULT;
    2747             : 
    2748           0 :         nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
    2749           0 :         if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
    2750             :                 return nr_pinned;
    2751             : 
    2752             :         /* Slow path: try to get the remaining pages with get_user_pages */
    2753           0 :         start += nr_pinned << PAGE_SHIFT;
    2754           0 :         pages += nr_pinned;
    2755           0 :         ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
    2756             :                                       pages);
    2757             :         if (ret < 0) {
    2758             :                 /*
    2759             :                  * The caller has to unpin the pages we already pinned so
    2760             :                  * returning -errno is not an option
    2761             :                  */
    2762             :                 if (nr_pinned)
    2763             :                         return nr_pinned;
    2764             :                 return ret;
    2765             :         }
    2766             :         return ret + nr_pinned;
    2767             : }
    2768             : 
    2769             : /**
    2770             :  * get_user_pages_fast_only() - pin user pages in memory
    2771             :  * @start:      starting user address
    2772             :  * @nr_pages:   number of pages from start to pin
    2773             :  * @gup_flags:  flags modifying pin behaviour
    2774             :  * @pages:      array that receives pointers to the pages pinned.
    2775             :  *              Should be at least nr_pages long.
    2776             :  *
    2777             :  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
    2778             :  * the regular GUP.
    2779             :  * Note a difference with get_user_pages_fast: this always returns the
    2780             :  * number of pages pinned, 0 if no pages were pinned.
    2781             :  *
    2782             :  * If the architecture does not support this function, simply return with no
    2783             :  * pages pinned.
    2784             :  *
    2785             :  * Careful, careful! COW breaking can go either way, so a non-write
    2786             :  * access can get ambiguous page results. If you call this function without
    2787             :  * 'write' set, you'd better be sure that you're ok with that ambiguity.
    2788             :  */
    2789           0 : int get_user_pages_fast_only(unsigned long start, int nr_pages,
    2790             :                              unsigned int gup_flags, struct page **pages)
    2791             : {
    2792             :         int nr_pinned;
    2793             :         /*
    2794             :          * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
    2795             :          * because gup fast is always a "pin with a +1 page refcount" request.
    2796             :          *
    2797             :          * FOLL_FAST_ONLY is required in order to match the API description of
    2798             :          * this routine: no fall back to regular ("slow") GUP.
    2799             :          */
    2800           0 :         gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
    2801             : 
    2802           0 :         nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
    2803             :                                                  pages);
    2804             : 
    2805             :         /*
    2806             :          * As specified in the API description above, this routine is not
    2807             :          * allowed to return negative values. However, the common core
    2808             :          * routine internal_get_user_pages_fast() *can* return -errno.
    2809             :          * Therefore, correct for that here:
    2810             :          */
    2811           0 :         if (nr_pinned < 0)
    2812           0 :                 nr_pinned = 0;
    2813             : 
    2814           0 :         return nr_pinned;
    2815             : }
    2816             : EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
    2817             : 
    2818             : /**
    2819             :  * get_user_pages_fast() - pin user pages in memory
    2820             :  * @start:      starting user address
    2821             :  * @nr_pages:   number of pages from start to pin
    2822             :  * @gup_flags:  flags modifying pin behaviour
    2823             :  * @pages:      array that receives pointers to the pages pinned.
    2824             :  *              Should be at least nr_pages long.
    2825             :  *
    2826             :  * Attempt to pin user pages in memory without taking mm->mmap_lock.
    2827             :  * If not successful, it will fall back to taking the lock and
    2828             :  * calling get_user_pages().
    2829             :  *
    2830             :  * Returns number of pages pinned. This may be fewer than the number requested.
    2831             :  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
    2832             :  * -errno.
    2833             :  */
    2834           0 : int get_user_pages_fast(unsigned long start, int nr_pages,
    2835             :                         unsigned int gup_flags, struct page **pages)
    2836             : {
    2837           0 :         if (!is_valid_gup_flags(gup_flags))
    2838             :                 return -EINVAL;
    2839             : 
    2840             :         /*
    2841             :          * The caller may or may not have explicitly set FOLL_GET; either way is
    2842             :          * OK. However, internally (within mm/gup.c), gup fast variants must set
    2843             :          * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
    2844             :          * request.
    2845             :          */
    2846           0 :         gup_flags |= FOLL_GET;
    2847           0 :         return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
    2848             : }
    2849             : EXPORT_SYMBOL_GPL(get_user_pages_fast);
    2850             : 
    2851             : /**
    2852             :  * pin_user_pages_fast() - pin user pages in memory without taking locks
    2853             :  *
    2854             :  * @start:      starting user address
    2855             :  * @nr_pages:   number of pages from start to pin
    2856             :  * @gup_flags:  flags modifying pin behaviour
    2857             :  * @pages:      array that receives pointers to the pages pinned.
    2858             :  *              Should be at least nr_pages long.
    2859             :  *
    2860             :  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
    2861             :  * get_user_pages_fast() for documentation on the function arguments, because
    2862             :  * the arguments here are identical.
    2863             :  *
    2864             :  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
    2865             :  * see Documentation/core-api/pin_user_pages.rst for further details.
    2866             :  */
    2867           0 : int pin_user_pages_fast(unsigned long start, int nr_pages,
    2868             :                         unsigned int gup_flags, struct page **pages)
    2869             : {
    2870             :         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
    2871           0 :         if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    2872             :                 return -EINVAL;
    2873             : 
    2874           0 :         gup_flags |= FOLL_PIN;
    2875           0 :         return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
    2876             : }
    2877             : EXPORT_SYMBOL_GPL(pin_user_pages_fast);
    2878             : 
    2879             : /*
    2880             :  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
    2881             :  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
    2882             :  *
    2883             :  * The API rules are the same, too: no negative values may be returned.
    2884             :  */
    2885           0 : int pin_user_pages_fast_only(unsigned long start, int nr_pages,
    2886             :                              unsigned int gup_flags, struct page **pages)
    2887             : {
    2888             :         int nr_pinned;
    2889             : 
    2890             :         /*
    2891             :          * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
    2892             :          * rules require returning 0, rather than -errno:
    2893             :          */
    2894           0 :         if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    2895             :                 return 0;
    2896             :         /*
    2897             :          * FOLL_FAST_ONLY is required in order to match the API description of
    2898             :          * this routine: no fall back to regular ("slow") GUP.
    2899             :          */
    2900           0 :         gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
    2901           0 :         nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
    2902             :                                                  pages);
    2903             :         /*
    2904             :          * This routine is not allowed to return negative values. However,
    2905             :          * internal_get_user_pages_fast() *can* return -errno. Therefore,
    2906             :          * correct for that here:
    2907             :          */
    2908           0 :         if (nr_pinned < 0)
    2909           0 :                 nr_pinned = 0;
    2910             : 
    2911             :         return nr_pinned;
    2912             : }
    2913             : EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
    2914             : 
    2915             : /**
    2916             :  * pin_user_pages_remote() - pin pages of a remote process
    2917             :  *
    2918             :  * @mm:         mm_struct of target mm
    2919             :  * @start:      starting user address
    2920             :  * @nr_pages:   number of pages from start to pin
    2921             :  * @gup_flags:  flags modifying lookup behaviour
    2922             :  * @pages:      array that receives pointers to the pages pinned.
    2923             :  *              Should be at least nr_pages long. Or NULL, if caller
    2924             :  *              only intends to ensure the pages are faulted in.
    2925             :  * @vmas:       array of pointers to vmas corresponding to each page.
    2926             :  *              Or NULL if the caller does not require them.
    2927             :  * @locked:     pointer to lock flag indicating whether lock is held and
    2928             :  *              subsequently whether VM_FAULT_RETRY functionality can be
    2929             :  *              utilised. Lock must initially be held.
    2930             :  *
    2931             :  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
    2932             :  * get_user_pages_remote() for documentation on the function arguments, because
    2933             :  * the arguments here are identical.
    2934             :  *
    2935             :  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
    2936             :  * see Documentation/core-api/pin_user_pages.rst for details.
    2937             :  */
    2938           0 : long pin_user_pages_remote(struct mm_struct *mm,
    2939             :                            unsigned long start, unsigned long nr_pages,
    2940             :                            unsigned int gup_flags, struct page **pages,
    2941             :                            struct vm_area_struct **vmas, int *locked)
    2942             : {
    2943             :         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
    2944           0 :         if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    2945             :                 return -EINVAL;
    2946             : 
    2947           0 :         gup_flags |= FOLL_PIN;
    2948           0 :         return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
    2949             :                                        pages, vmas, locked);
    2950             : }
    2951             : EXPORT_SYMBOL(pin_user_pages_remote);
    2952             : 
    2953             : /**
    2954             :  * pin_user_pages() - pin user pages in memory for use by other devices
    2955             :  *
    2956             :  * @start:      starting user address
    2957             :  * @nr_pages:   number of pages from start to pin
    2958             :  * @gup_flags:  flags modifying lookup behaviour
    2959             :  * @pages:      array that receives pointers to the pages pinned.
    2960             :  *              Should be at least nr_pages long. Or NULL, if caller
    2961             :  *              only intends to ensure the pages are faulted in.
    2962             :  * @vmas:       array of pointers to vmas corresponding to each page.
    2963             :  *              Or NULL if the caller does not require them.
    2964             :  *
    2965             :  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
    2966             :  * FOLL_PIN is set.
    2967             :  *
    2968             :  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
    2969             :  * see Documentation/core-api/pin_user_pages.rst for details.
    2970             :  */
    2971           0 : long pin_user_pages(unsigned long start, unsigned long nr_pages,
    2972             :                     unsigned int gup_flags, struct page **pages,
    2973             :                     struct vm_area_struct **vmas)
    2974             : {
    2975             :         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
    2976           0 :         if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    2977             :                 return -EINVAL;
    2978             : 
    2979           0 :         gup_flags |= FOLL_PIN;
    2980           0 :         return __gup_longterm_locked(current->mm, start, nr_pages,
    2981             :                                      pages, vmas, gup_flags);
    2982             : }
    2983             : EXPORT_SYMBOL(pin_user_pages);
    2984             : 
    2985             : /*
    2986             :  * pin_user_pages_unlocked() is the FOLL_PIN variant of
    2987             :  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
    2988             :  * FOLL_PIN and rejects FOLL_GET.
    2989             :  */
    2990           0 : long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
    2991             :                              struct page **pages, unsigned int gup_flags)
    2992             : {
    2993             :         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
    2994           0 :         if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    2995             :                 return -EINVAL;
    2996             : 
    2997           0 :         gup_flags |= FOLL_PIN;
    2998           0 :         return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
    2999             : }
    3000             : EXPORT_SYMBOL(pin_user_pages_unlocked);

Generated by: LCOV version 1.14