Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0-or-later */
2 : /* internal.h: mm/ internal definitions
3 : *
4 : * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 : * Written by David Howells (dhowells@redhat.com)
6 : */
7 : #ifndef __MM_INTERNAL_H
8 : #define __MM_INTERNAL_H
9 :
10 : #include <linux/fs.h>
11 : #include <linux/mm.h>
12 : #include <linux/pagemap.h>
13 : #include <linux/rmap.h>
14 : #include <linux/tracepoint-defs.h>
15 :
16 : struct folio_batch;
17 :
18 : /*
19 : * The set of flags that only affect watermark checking and reclaim
20 : * behaviour. This is used by the MM to obey the caller constraints
21 : * about IO, FS and watermark checking while ignoring placement
22 : * hints such as HIGHMEM usage.
23 : */
24 : #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 : __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 : __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 : __GFP_ATOMIC|__GFP_NOLOCKDEP)
28 :
29 : /* The GFP flags allowed during early boot */
30 : #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31 :
32 : /* Control allocation cpuset and node placement constraints */
33 : #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34 :
35 : /* Do not use these with a slab allocator */
36 : #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37 :
38 : void page_writeback_init(void);
39 :
40 : static inline void *folio_raw_mapping(struct folio *folio)
41 : {
42 0 : unsigned long mapping = (unsigned long)folio->mapping;
43 :
44 0 : return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
45 : }
46 :
47 : void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
48 : int nr_throttled);
49 : static inline void acct_reclaim_writeback(struct folio *folio)
50 : {
51 0 : pg_data_t *pgdat = folio_pgdat(folio);
52 0 : int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
53 :
54 0 : if (nr_throttled)
55 0 : __acct_reclaim_writeback(pgdat, folio, nr_throttled);
56 : }
57 :
58 : static inline void wake_throttle_isolated(pg_data_t *pgdat)
59 : {
60 : wait_queue_head_t *wqh;
61 :
62 0 : wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
63 0 : if (waitqueue_active(wqh))
64 0 : wake_up(wqh);
65 : }
66 :
67 : vm_fault_t do_swap_page(struct vm_fault *vmf);
68 : void folio_rotate_reclaimable(struct folio *folio);
69 : bool __folio_end_writeback(struct folio *folio);
70 : void deactivate_file_folio(struct folio *folio);
71 :
72 : void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
73 : unsigned long floor, unsigned long ceiling);
74 : void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
75 :
76 : struct zap_details;
77 : void unmap_page_range(struct mmu_gather *tlb,
78 : struct vm_area_struct *vma,
79 : unsigned long addr, unsigned long end,
80 : struct zap_details *details);
81 :
82 : void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
83 : unsigned int order);
84 : void force_page_cache_ra(struct readahead_control *, unsigned long nr);
85 : static inline void force_page_cache_readahead(struct address_space *mapping,
86 : struct file *file, pgoff_t index, unsigned long nr_to_read)
87 : {
88 0 : DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
89 0 : force_page_cache_ra(&ractl, nr_to_read);
90 : }
91 :
92 : unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
93 : pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
94 : unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
95 : pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
96 : void filemap_free_folio(struct address_space *mapping, struct folio *folio);
97 : int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
98 : bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
99 : loff_t end);
100 : long invalidate_inode_page(struct page *page);
101 : unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
102 : pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
103 :
104 : /**
105 : * folio_evictable - Test whether a folio is evictable.
106 : * @folio: The folio to test.
107 : *
108 : * Test whether @folio is evictable -- i.e., should be placed on
109 : * active/inactive lists vs unevictable list.
110 : *
111 : * Reasons folio might not be evictable:
112 : * 1. folio's mapping marked unevictable
113 : * 2. One of the pages in the folio is part of an mlocked VMA
114 : */
115 0 : static inline bool folio_evictable(struct folio *folio)
116 : {
117 : bool ret;
118 :
119 : /* Prevent address_space of inode and swap cache from being freed */
120 : rcu_read_lock();
121 0 : ret = !mapping_unevictable(folio_mapping(folio)) &&
122 0 : !folio_test_mlocked(folio);
123 : rcu_read_unlock();
124 0 : return ret;
125 : }
126 :
127 0 : static inline bool page_evictable(struct page *page)
128 : {
129 : bool ret;
130 :
131 : /* Prevent address_space of inode and swap cache from being freed */
132 : rcu_read_lock();
133 0 : ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
134 : rcu_read_unlock();
135 0 : return ret;
136 : }
137 :
138 : /*
139 : * Turn a non-refcounted page (->_refcount == 0) into refcounted with
140 : * a count of one.
141 : */
142 : static inline void set_page_refcounted(struct page *page)
143 : {
144 : VM_BUG_ON_PAGE(PageTail(page), page);
145 : VM_BUG_ON_PAGE(page_ref_count(page), page);
146 543 : set_page_count(page, 1);
147 : }
148 :
149 : extern unsigned long highest_memmap_pfn;
150 :
151 : /*
152 : * Maximum number of reclaim retries without progress before the OOM
153 : * killer is consider the only way forward.
154 : */
155 : #define MAX_RECLAIM_RETRIES 16
156 :
157 : /*
158 : * in mm/early_ioremap.c
159 : */
160 : pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
161 : unsigned long size, pgprot_t prot);
162 :
163 : /*
164 : * in mm/vmscan.c:
165 : */
166 : int isolate_lru_page(struct page *page);
167 : int folio_isolate_lru(struct folio *folio);
168 : void putback_lru_page(struct page *page);
169 : void folio_putback_lru(struct folio *folio);
170 : extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
171 :
172 : /*
173 : * in mm/rmap.c:
174 : */
175 : extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
176 :
177 : /*
178 : * in mm/page_alloc.c
179 : */
180 :
181 : /*
182 : * Structure for holding the mostly immutable allocation parameters passed
183 : * between functions involved in allocations, including the alloc_pages*
184 : * family of functions.
185 : *
186 : * nodemask, migratetype and highest_zoneidx are initialized only once in
187 : * __alloc_pages() and then never change.
188 : *
189 : * zonelist, preferred_zone and highest_zoneidx are set first in
190 : * __alloc_pages() for the fast path, and might be later changed
191 : * in __alloc_pages_slowpath(). All other functions pass the whole structure
192 : * by a const pointer.
193 : */
194 : struct alloc_context {
195 : struct zonelist *zonelist;
196 : nodemask_t *nodemask;
197 : struct zoneref *preferred_zoneref;
198 : int migratetype;
199 :
200 : /*
201 : * highest_zoneidx represents highest usable zone index of
202 : * the allocation request. Due to the nature of the zone,
203 : * memory on lower zone than the highest_zoneidx will be
204 : * protected by lowmem_reserve[highest_zoneidx].
205 : *
206 : * highest_zoneidx is also used by reclaim/compaction to limit
207 : * the target zone since higher zone than this index cannot be
208 : * usable for this allocation request.
209 : */
210 : enum zone_type highest_zoneidx;
211 : bool spread_dirty_pages;
212 : };
213 :
214 : /*
215 : * Locate the struct page for both the matching buddy in our
216 : * pair (buddy1) and the combined O(n+1) page they form (page).
217 : *
218 : * 1) Any buddy B1 will have an order O twin B2 which satisfies
219 : * the following equation:
220 : * B2 = B1 ^ (1 << O)
221 : * For example, if the starting buddy (buddy2) is #8 its order
222 : * 1 buddy is #10:
223 : * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
224 : *
225 : * 2) Any buddy B will have an order O+1 parent P which
226 : * satisfies the following equation:
227 : * P = B & ~(1 << O)
228 : *
229 : * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
230 : */
231 : static inline unsigned long
232 : __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
233 : {
234 35 : return page_pfn ^ (1 << order);
235 : }
236 :
237 : extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
238 : unsigned long end_pfn, struct zone *zone);
239 :
240 : static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
241 : unsigned long end_pfn, struct zone *zone)
242 : {
243 0 : if (zone->contiguous)
244 0 : return pfn_to_page(start_pfn);
245 :
246 0 : return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
247 : }
248 :
249 : extern int __isolate_free_page(struct page *page, unsigned int order);
250 : extern void __putback_isolated_page(struct page *page, unsigned int order,
251 : int mt);
252 : extern void memblock_free_pages(struct page *page, unsigned long pfn,
253 : unsigned int order);
254 : extern void __free_pages_core(struct page *page, unsigned int order);
255 : extern void prep_compound_page(struct page *page, unsigned int order);
256 : extern void post_alloc_hook(struct page *page, unsigned int order,
257 : gfp_t gfp_flags);
258 : extern int user_min_free_kbytes;
259 :
260 : extern void free_unref_page(struct page *page, unsigned int order);
261 : extern void free_unref_page_list(struct list_head *list);
262 :
263 : extern void zone_pcp_update(struct zone *zone, int cpu_online);
264 : extern void zone_pcp_reset(struct zone *zone);
265 : extern void zone_pcp_disable(struct zone *zone);
266 : extern void zone_pcp_enable(struct zone *zone);
267 :
268 : extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
269 : phys_addr_t min_addr,
270 : int nid, bool exact_nid);
271 :
272 : #if defined CONFIG_COMPACTION || defined CONFIG_CMA
273 :
274 : /*
275 : * in mm/compaction.c
276 : */
277 : /*
278 : * compact_control is used to track pages being migrated and the free pages
279 : * they are being migrated to during memory compaction. The free_pfn starts
280 : * at the end of a zone and migrate_pfn begins at the start. Movable pages
281 : * are moved to the end of a zone during a compaction run and the run
282 : * completes when free_pfn <= migrate_pfn
283 : */
284 : struct compact_control {
285 : struct list_head freepages; /* List of free pages to migrate to */
286 : struct list_head migratepages; /* List of pages being migrated */
287 : unsigned int nr_freepages; /* Number of isolated free pages */
288 : unsigned int nr_migratepages; /* Number of pages to migrate */
289 : unsigned long free_pfn; /* isolate_freepages search base */
290 : /*
291 : * Acts as an in/out parameter to page isolation for migration.
292 : * isolate_migratepages uses it as a search base.
293 : * isolate_migratepages_block will update the value to the next pfn
294 : * after the last isolated one.
295 : */
296 : unsigned long migrate_pfn;
297 : unsigned long fast_start_pfn; /* a pfn to start linear scan from */
298 : struct zone *zone;
299 : unsigned long total_migrate_scanned;
300 : unsigned long total_free_scanned;
301 : unsigned short fast_search_fail;/* failures to use free list searches */
302 : short search_order; /* order to start a fast search at */
303 : const gfp_t gfp_mask; /* gfp mask of a direct compactor */
304 : int order; /* order a direct compactor needs */
305 : int migratetype; /* migratetype of direct compactor */
306 : const unsigned int alloc_flags; /* alloc flags of a direct compactor */
307 : const int highest_zoneidx; /* zone index of a direct compactor */
308 : enum migrate_mode mode; /* Async or sync migration mode */
309 : bool ignore_skip_hint; /* Scan blocks even if marked skip */
310 : bool no_set_skip_hint; /* Don't mark blocks for skipping */
311 : bool ignore_block_suitable; /* Scan blocks considered unsuitable */
312 : bool direct_compaction; /* False from kcompactd or /proc/... */
313 : bool proactive_compaction; /* kcompactd proactive compaction */
314 : bool whole_zone; /* Whole zone should/has been scanned */
315 : bool contended; /* Signal lock or sched contention */
316 : bool rescan; /* Rescanning the same pageblock */
317 : bool alloc_contig; /* alloc_contig_range allocation */
318 : };
319 :
320 : /*
321 : * Used in direct compaction when a page should be taken from the freelists
322 : * immediately when one is created during the free path.
323 : */
324 : struct capture_control {
325 : struct compact_control *cc;
326 : struct page *page;
327 : };
328 :
329 : unsigned long
330 : isolate_freepages_range(struct compact_control *cc,
331 : unsigned long start_pfn, unsigned long end_pfn);
332 : int
333 : isolate_migratepages_range(struct compact_control *cc,
334 : unsigned long low_pfn, unsigned long end_pfn);
335 : #endif
336 : int find_suitable_fallback(struct free_area *area, unsigned int order,
337 : int migratetype, bool only_stealable, bool *can_steal);
338 :
339 : /*
340 : * This function returns the order of a free page in the buddy system. In
341 : * general, page_zone(page)->lock must be held by the caller to prevent the
342 : * page from being allocated in parallel and returning garbage as the order.
343 : * If a caller does not hold page_zone(page)->lock, it must guarantee that the
344 : * page cannot be allocated or merged in parallel. Alternatively, it must
345 : * handle invalid values gracefully, and use buddy_order_unsafe() below.
346 : */
347 : static inline unsigned int buddy_order(struct page *page)
348 : {
349 : /* PageBuddy() must be checked by the caller */
350 18 : return page_private(page);
351 : }
352 :
353 : /*
354 : * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
355 : * PageBuddy() should be checked first by the caller to minimize race window,
356 : * and invalid values must be handled gracefully.
357 : *
358 : * READ_ONCE is used so that if the caller assigns the result into a local
359 : * variable and e.g. tests it for valid range before using, the compiler cannot
360 : * decide to remove the variable and inline the page_private(page) multiple
361 : * times, potentially observing different values in the tests and the actual
362 : * use of the result.
363 : */
364 : #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
365 :
366 : /*
367 : * These three helpers classifies VMAs for virtual memory accounting.
368 : */
369 :
370 : /*
371 : * Executable code area - executable, not writable, not stack
372 : */
373 : static inline bool is_exec_mapping(vm_flags_t flags)
374 : {
375 0 : return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
376 : }
377 :
378 : /*
379 : * Stack area - automatically grows in one direction
380 : *
381 : * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
382 : * do_mmap() forbids all other combinations.
383 : */
384 : static inline bool is_stack_mapping(vm_flags_t flags)
385 : {
386 0 : return (flags & VM_STACK) == VM_STACK;
387 : }
388 :
389 : /*
390 : * Data area - private, writable, not stack
391 : */
392 : static inline bool is_data_mapping(vm_flags_t flags)
393 : {
394 0 : return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
395 : }
396 :
397 : /* mm/util.c */
398 : void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
399 : struct vm_area_struct *prev);
400 : void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
401 : struct anon_vma *folio_anon_vma(struct folio *folio);
402 :
403 : #ifdef CONFIG_MMU
404 : void unmap_mapping_folio(struct folio *folio);
405 : extern long populate_vma_page_range(struct vm_area_struct *vma,
406 : unsigned long start, unsigned long end, int *locked);
407 : extern long faultin_vma_page_range(struct vm_area_struct *vma,
408 : unsigned long start, unsigned long end,
409 : bool write, int *locked);
410 : extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
411 : unsigned long len);
412 : /*
413 : * mlock_vma_page() and munlock_vma_page():
414 : * should be called with vma's mmap_lock held for read or write,
415 : * under page table lock for the pte/pmd being added or removed.
416 : *
417 : * mlock is usually called at the end of page_add_*_rmap(),
418 : * munlock at the end of page_remove_rmap(); but new anon
419 : * pages are managed by lru_cache_add_inactive_or_unevictable()
420 : * calling mlock_new_page().
421 : *
422 : * @compound is used to include pmd mappings of THPs, but filter out
423 : * pte mappings of THPs, which cannot be consistently counted: a pte
424 : * mapping of the THP head cannot be distinguished by the page alone.
425 : */
426 : void mlock_folio(struct folio *folio);
427 0 : static inline void mlock_vma_folio(struct folio *folio,
428 : struct vm_area_struct *vma, bool compound)
429 : {
430 : /*
431 : * The VM_SPECIAL check here serves two purposes.
432 : * 1) VM_IO check prevents migration from double-counting during mlock.
433 : * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
434 : * is never left set on a VM_SPECIAL vma, there is an interval while
435 : * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
436 : * still be set while VM_SPECIAL bits are added: so ignore it then.
437 : */
438 0 : if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
439 0 : (compound || !folio_test_large(folio)))
440 0 : mlock_folio(folio);
441 0 : }
442 :
443 : static inline void mlock_vma_page(struct page *page,
444 : struct vm_area_struct *vma, bool compound)
445 : {
446 0 : mlock_vma_folio(page_folio(page), vma, compound);
447 : }
448 :
449 : void munlock_page(struct page *page);
450 : static inline void munlock_vma_page(struct page *page,
451 : struct vm_area_struct *vma, bool compound)
452 : {
453 0 : if (unlikely(vma->vm_flags & VM_LOCKED) &&
454 : (compound || !PageTransCompound(page)))
455 0 : munlock_page(page);
456 : }
457 : void mlock_new_page(struct page *page);
458 : bool need_mlock_page_drain(int cpu);
459 : void mlock_page_drain_local(void);
460 : void mlock_page_drain_remote(int cpu);
461 :
462 : extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
463 :
464 : /*
465 : * At what user virtual address is page expected in vma?
466 : * Returns -EFAULT if all of the page is outside the range of vma.
467 : * If page is a compound head, the entire compound page is considered.
468 : */
469 : static inline unsigned long
470 0 : vma_address(struct page *page, struct vm_area_struct *vma)
471 : {
472 : pgoff_t pgoff;
473 : unsigned long address;
474 :
475 : VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
476 0 : pgoff = page_to_pgoff(page);
477 0 : if (pgoff >= vma->vm_pgoff) {
478 0 : address = vma->vm_start +
479 0 : ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
480 : /* Check for address beyond vma (or wrapped through 0?) */
481 0 : if (address < vma->vm_start || address >= vma->vm_end)
482 0 : address = -EFAULT;
483 0 : } else if (PageHead(page) &&
484 0 : pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) {
485 : /* Test above avoids possibility of wrap to 0 on 32-bit */
486 0 : address = vma->vm_start;
487 : } else {
488 : address = -EFAULT;
489 : }
490 0 : return address;
491 : }
492 :
493 : /*
494 : * Then at what user virtual address will none of the range be found in vma?
495 : * Assumes that vma_address() already returned a good starting address.
496 : */
497 : static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
498 : {
499 0 : struct vm_area_struct *vma = pvmw->vma;
500 : pgoff_t pgoff;
501 : unsigned long address;
502 :
503 : /* Common case, plus ->pgoff is invalid for KSM */
504 0 : if (pvmw->nr_pages == 1)
505 0 : return pvmw->address + PAGE_SIZE;
506 :
507 0 : pgoff = pvmw->pgoff + pvmw->nr_pages;
508 0 : address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
509 : /* Check for address beyond vma (or wrapped through 0?) */
510 0 : if (address < vma->vm_start || address > vma->vm_end)
511 0 : address = vma->vm_end;
512 : return address;
513 : }
514 :
515 0 : static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
516 : struct file *fpin)
517 : {
518 0 : int flags = vmf->flags;
519 :
520 0 : if (fpin)
521 : return fpin;
522 :
523 : /*
524 : * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
525 : * anything, so we only pin the file and drop the mmap_lock if only
526 : * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
527 : */
528 0 : if (fault_flag_allow_retry_first(flags) &&
529 0 : !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
530 0 : fpin = get_file(vmf->vma->vm_file);
531 0 : mmap_read_unlock(vmf->vma->vm_mm);
532 : }
533 : return fpin;
534 : }
535 : #else /* !CONFIG_MMU */
536 : static inline void unmap_mapping_folio(struct folio *folio) { }
537 : static inline void mlock_vma_page(struct page *page,
538 : struct vm_area_struct *vma, bool compound) { }
539 : static inline void munlock_vma_page(struct page *page,
540 : struct vm_area_struct *vma, bool compound) { }
541 : static inline void mlock_new_page(struct page *page) { }
542 : static inline bool need_mlock_page_drain(int cpu) { return false; }
543 : static inline void mlock_page_drain_local(void) { }
544 : static inline void mlock_page_drain_remote(int cpu) { }
545 : static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
546 : {
547 : }
548 : #endif /* !CONFIG_MMU */
549 :
550 : /*
551 : * Return the mem_map entry representing the 'offset' subpage within
552 : * the maximally aligned gigantic page 'base'. Handle any discontiguity
553 : * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
554 : */
555 : static inline struct page *mem_map_offset(struct page *base, int offset)
556 : {
557 : if (unlikely(offset >= MAX_ORDER_NR_PAGES))
558 : return nth_page(base, offset);
559 : return base + offset;
560 : }
561 :
562 : /*
563 : * Iterator over all subpages within the maximally aligned gigantic
564 : * page 'base'. Handle any discontiguity in the mem_map.
565 : */
566 : static inline struct page *mem_map_next(struct page *iter,
567 : struct page *base, int offset)
568 : {
569 : if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
570 : unsigned long pfn = page_to_pfn(base) + offset;
571 : if (!pfn_valid(pfn))
572 : return NULL;
573 : return pfn_to_page(pfn);
574 : }
575 : return iter + 1;
576 : }
577 :
578 : /* Memory initialisation debug and verification */
579 : enum mminit_level {
580 : MMINIT_WARNING,
581 : MMINIT_VERIFY,
582 : MMINIT_TRACE
583 : };
584 :
585 : #ifdef CONFIG_DEBUG_MEMORY_INIT
586 :
587 : extern int mminit_loglevel;
588 :
589 : #define mminit_dprintk(level, prefix, fmt, arg...) \
590 : do { \
591 : if (level < mminit_loglevel) { \
592 : if (level <= MMINIT_WARNING) \
593 : pr_warn("mminit::" prefix " " fmt, ##arg); \
594 : else \
595 : printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
596 : } \
597 : } while (0)
598 :
599 : extern void mminit_verify_pageflags_layout(void);
600 : extern void mminit_verify_zonelist(void);
601 : #else
602 :
603 : static inline void mminit_dprintk(enum mminit_level level,
604 : const char *prefix, const char *fmt, ...)
605 : {
606 : }
607 :
608 : static inline void mminit_verify_pageflags_layout(void)
609 : {
610 : }
611 :
612 : static inline void mminit_verify_zonelist(void)
613 : {
614 : }
615 : #endif /* CONFIG_DEBUG_MEMORY_INIT */
616 :
617 : #define NODE_RECLAIM_NOSCAN -2
618 : #define NODE_RECLAIM_FULL -1
619 : #define NODE_RECLAIM_SOME 0
620 : #define NODE_RECLAIM_SUCCESS 1
621 :
622 : #ifdef CONFIG_NUMA
623 : extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
624 : extern int find_next_best_node(int node, nodemask_t *used_node_mask);
625 : #else
626 : static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
627 : unsigned int order)
628 : {
629 : return NODE_RECLAIM_NOSCAN;
630 : }
631 : static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
632 : {
633 : return NUMA_NO_NODE;
634 : }
635 : #endif
636 :
637 : extern int hwpoison_filter(struct page *p);
638 :
639 : extern u32 hwpoison_filter_dev_major;
640 : extern u32 hwpoison_filter_dev_minor;
641 : extern u64 hwpoison_filter_flags_mask;
642 : extern u64 hwpoison_filter_flags_value;
643 : extern u64 hwpoison_filter_memcg;
644 : extern u32 hwpoison_filter_enable;
645 :
646 : extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
647 : unsigned long, unsigned long,
648 : unsigned long, unsigned long);
649 :
650 : extern void set_pageblock_order(void);
651 : unsigned int reclaim_clean_pages_from_list(struct zone *zone,
652 : struct list_head *page_list);
653 : /* The ALLOC_WMARK bits are used as an index to zone->watermark */
654 : #define ALLOC_WMARK_MIN WMARK_MIN
655 : #define ALLOC_WMARK_LOW WMARK_LOW
656 : #define ALLOC_WMARK_HIGH WMARK_HIGH
657 : #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
658 :
659 : /* Mask to get the watermark bits */
660 : #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
661 :
662 : /*
663 : * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
664 : * cannot assume a reduced access to memory reserves is sufficient for
665 : * !MMU
666 : */
667 : #ifdef CONFIG_MMU
668 : #define ALLOC_OOM 0x08
669 : #else
670 : #define ALLOC_OOM ALLOC_NO_WATERMARKS
671 : #endif
672 :
673 : #define ALLOC_HARDER 0x10 /* try to alloc harder */
674 : #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
675 : #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
676 : #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
677 : #ifdef CONFIG_ZONE_DMA32
678 : #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
679 : #else
680 : #define ALLOC_NOFRAGMENT 0x0
681 : #endif
682 : #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
683 :
684 : enum ttu_flags;
685 : struct tlbflush_unmap_batch;
686 :
687 :
688 : /*
689 : * only for MM internal work items which do not depend on
690 : * any allocations or locks which might depend on allocations
691 : */
692 : extern struct workqueue_struct *mm_percpu_wq;
693 :
694 : #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
695 : void try_to_unmap_flush(void);
696 : void try_to_unmap_flush_dirty(void);
697 : void flush_tlb_batched_pending(struct mm_struct *mm);
698 : #else
699 : static inline void try_to_unmap_flush(void)
700 : {
701 : }
702 : static inline void try_to_unmap_flush_dirty(void)
703 : {
704 : }
705 : static inline void flush_tlb_batched_pending(struct mm_struct *mm)
706 : {
707 : }
708 : #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
709 :
710 : extern const struct trace_print_flags pageflag_names[];
711 : extern const struct trace_print_flags vmaflag_names[];
712 : extern const struct trace_print_flags gfpflag_names[];
713 :
714 : static inline bool is_migrate_highatomic(enum migratetype migratetype)
715 : {
716 : return migratetype == MIGRATE_HIGHATOMIC;
717 : }
718 :
719 0 : static inline bool is_migrate_highatomic_page(struct page *page)
720 : {
721 0 : return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
722 : }
723 :
724 : void setup_zone_pageset(struct zone *zone);
725 :
726 : struct migration_target_control {
727 : int nid; /* preferred node id */
728 : nodemask_t *nmask;
729 : gfp_t gfp_mask;
730 : };
731 :
732 : /*
733 : * mm/vmalloc.c
734 : */
735 : #ifdef CONFIG_MMU
736 : int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
737 : pgprot_t prot, struct page **pages, unsigned int page_shift);
738 : #else
739 : static inline
740 : int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
741 : pgprot_t prot, struct page **pages, unsigned int page_shift)
742 : {
743 : return -EINVAL;
744 : }
745 : #endif
746 :
747 : void vunmap_range_noflush(unsigned long start, unsigned long end);
748 :
749 : int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
750 : unsigned long addr, int page_nid, int *flags);
751 :
752 : void free_zone_device_page(struct page *page);
753 :
754 : /*
755 : * mm/gup.c
756 : */
757 : struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
758 :
759 : DECLARE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
760 :
761 : #endif /* __MM_INTERNAL_H */
|