Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * linux/mm/madvise.c
4 : *
5 : * Copyright (C) 1999 Linus Torvalds
6 : * Copyright (C) 2002 Christoph Hellwig
7 : */
8 :
9 : #include <linux/mman.h>
10 : #include <linux/pagemap.h>
11 : #include <linux/syscalls.h>
12 : #include <linux/mempolicy.h>
13 : #include <linux/page-isolation.h>
14 : #include <linux/page_idle.h>
15 : #include <linux/userfaultfd_k.h>
16 : #include <linux/hugetlb.h>
17 : #include <linux/falloc.h>
18 : #include <linux/fadvise.h>
19 : #include <linux/sched.h>
20 : #include <linux/sched/mm.h>
21 : #include <linux/mm_inline.h>
22 : #include <linux/string.h>
23 : #include <linux/uio.h>
24 : #include <linux/ksm.h>
25 : #include <linux/fs.h>
26 : #include <linux/file.h>
27 : #include <linux/blkdev.h>
28 : #include <linux/backing-dev.h>
29 : #include <linux/pagewalk.h>
30 : #include <linux/swap.h>
31 : #include <linux/swapops.h>
32 : #include <linux/shmem_fs.h>
33 : #include <linux/mmu_notifier.h>
34 :
35 : #include <asm/tlb.h>
36 :
37 : #include "internal.h"
38 :
39 : struct madvise_walk_private {
40 : struct mmu_gather *tlb;
41 : bool pageout;
42 : };
43 :
44 : /*
45 : * Any behaviour which results in changes to the vma->vm_flags needs to
46 : * take mmap_lock for writing. Others, which simply traverse vmas, need
47 : * to only take it for reading.
48 : */
49 : static int madvise_need_mmap_write(int behavior)
50 : {
51 : switch (behavior) {
52 : case MADV_REMOVE:
53 : case MADV_WILLNEED:
54 : case MADV_DONTNEED:
55 : case MADV_DONTNEED_LOCKED:
56 : case MADV_COLD:
57 : case MADV_PAGEOUT:
58 : case MADV_FREE:
59 : case MADV_POPULATE_READ:
60 : case MADV_POPULATE_WRITE:
61 : return 0;
62 : default:
63 : /* be safe, default to 1. list exceptions explicitly */
64 : return 1;
65 : }
66 : }
67 :
68 : #ifdef CONFIG_ANON_VMA_NAME
69 : struct anon_vma_name *anon_vma_name_alloc(const char *name)
70 : {
71 : struct anon_vma_name *anon_name;
72 : size_t count;
73 :
74 : /* Add 1 for NUL terminator at the end of the anon_name->name */
75 : count = strlen(name) + 1;
76 : anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
77 : if (anon_name) {
78 : kref_init(&anon_name->kref);
79 : memcpy(anon_name->name, name, count);
80 : }
81 :
82 : return anon_name;
83 : }
84 :
85 : void anon_vma_name_free(struct kref *kref)
86 : {
87 : struct anon_vma_name *anon_name =
88 : container_of(kref, struct anon_vma_name, kref);
89 : kfree(anon_name);
90 : }
91 :
92 : struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
93 : {
94 : mmap_assert_locked(vma->vm_mm);
95 :
96 : if (vma->vm_file)
97 : return NULL;
98 :
99 : return vma->anon_name;
100 : }
101 :
102 : /* mmap_lock should be write-locked */
103 : static int replace_anon_vma_name(struct vm_area_struct *vma,
104 : struct anon_vma_name *anon_name)
105 : {
106 : struct anon_vma_name *orig_name = anon_vma_name(vma);
107 :
108 : if (!anon_name) {
109 : vma->anon_name = NULL;
110 : anon_vma_name_put(orig_name);
111 : return 0;
112 : }
113 :
114 : if (anon_vma_name_eq(orig_name, anon_name))
115 : return 0;
116 :
117 : vma->anon_name = anon_vma_name_reuse(anon_name);
118 : anon_vma_name_put(orig_name);
119 :
120 : return 0;
121 : }
122 : #else /* CONFIG_ANON_VMA_NAME */
123 : static int replace_anon_vma_name(struct vm_area_struct *vma,
124 : struct anon_vma_name *anon_name)
125 : {
126 0 : if (anon_name)
127 : return -EINVAL;
128 :
129 : return 0;
130 : }
131 : #endif /* CONFIG_ANON_VMA_NAME */
132 : /*
133 : * Update the vm_flags on region of a vma, splitting it or merging it as
134 : * necessary. Must be called with mmap_sem held for writing;
135 : * Caller should ensure anon_name stability by raising its refcount even when
136 : * anon_name belongs to a valid vma because this function might free that vma.
137 : */
138 0 : static int madvise_update_vma(struct vm_area_struct *vma,
139 : struct vm_area_struct **prev, unsigned long start,
140 : unsigned long end, unsigned long new_flags,
141 : struct anon_vma_name *anon_name)
142 : {
143 0 : struct mm_struct *mm = vma->vm_mm;
144 : int error;
145 : pgoff_t pgoff;
146 :
147 0 : if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
148 0 : *prev = vma;
149 0 : return 0;
150 : }
151 :
152 0 : pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
153 0 : *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
154 : vma->vm_file, pgoff, vma_policy(vma),
155 : vma->vm_userfaultfd_ctx, anon_name);
156 0 : if (*prev) {
157 : vma = *prev;
158 : goto success;
159 : }
160 :
161 0 : *prev = vma;
162 :
163 0 : if (start != vma->vm_start) {
164 0 : if (unlikely(mm->map_count >= sysctl_max_map_count))
165 : return -ENOMEM;
166 0 : error = __split_vma(mm, vma, start, 1);
167 0 : if (error)
168 : return error;
169 : }
170 :
171 0 : if (end != vma->vm_end) {
172 0 : if (unlikely(mm->map_count >= sysctl_max_map_count))
173 : return -ENOMEM;
174 0 : error = __split_vma(mm, vma, end, 0);
175 0 : if (error)
176 : return error;
177 : }
178 :
179 : success:
180 : /*
181 : * vm_flags is protected by the mmap_lock held in write mode.
182 : */
183 0 : vma->vm_flags = new_flags;
184 0 : if (!vma->vm_file) {
185 0 : error = replace_anon_vma_name(vma, anon_name);
186 0 : if (error)
187 : return error;
188 : }
189 :
190 : return 0;
191 : }
192 :
193 : #ifdef CONFIG_SWAP
194 0 : static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
195 : unsigned long end, struct mm_walk *walk)
196 : {
197 : pte_t *orig_pte;
198 0 : struct vm_area_struct *vma = walk->private;
199 : unsigned long index;
200 :
201 0 : if (pmd_none_or_trans_huge_or_clear_bad(pmd))
202 : return 0;
203 :
204 0 : for (index = start; index != end; index += PAGE_SIZE) {
205 : pte_t pte;
206 : swp_entry_t entry;
207 : struct page *page;
208 : spinlock_t *ptl;
209 :
210 0 : orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
211 0 : pte = *(orig_pte + ((index - start) / PAGE_SIZE));
212 0 : pte_unmap_unlock(orig_pte, ptl);
213 :
214 0 : if (pte_present(pte) || pte_none(pte))
215 0 : continue;
216 0 : entry = pte_to_swp_entry(pte);
217 0 : if (unlikely(non_swap_entry(entry)))
218 0 : continue;
219 :
220 0 : page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
221 : vma, index, false);
222 0 : if (page)
223 0 : put_page(page);
224 : }
225 :
226 : return 0;
227 : }
228 :
229 : static const struct mm_walk_ops swapin_walk_ops = {
230 : .pmd_entry = swapin_walk_pmd_entry,
231 : };
232 :
233 0 : static void force_shm_swapin_readahead(struct vm_area_struct *vma,
234 : unsigned long start, unsigned long end,
235 : struct address_space *mapping)
236 : {
237 0 : XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
238 0 : pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
239 : struct page *page;
240 :
241 : rcu_read_lock();
242 0 : xas_for_each(&xas, page, end_index) {
243 : swp_entry_t swap;
244 :
245 0 : if (!xa_is_value(page))
246 0 : continue;
247 0 : xas_pause(&xas);
248 0 : rcu_read_unlock();
249 :
250 0 : swap = radix_to_swp_entry(page);
251 0 : page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
252 : NULL, 0, false);
253 0 : if (page)
254 0 : put_page(page);
255 :
256 : rcu_read_lock();
257 : }
258 : rcu_read_unlock();
259 :
260 0 : lru_add_drain(); /* Push any new pages onto the LRU now */
261 0 : }
262 : #endif /* CONFIG_SWAP */
263 :
264 : /*
265 : * Schedule all required I/O operations. Do not wait for completion.
266 : */
267 0 : static long madvise_willneed(struct vm_area_struct *vma,
268 : struct vm_area_struct **prev,
269 : unsigned long start, unsigned long end)
270 : {
271 0 : struct mm_struct *mm = vma->vm_mm;
272 0 : struct file *file = vma->vm_file;
273 : loff_t offset;
274 :
275 0 : *prev = vma;
276 : #ifdef CONFIG_SWAP
277 0 : if (!file) {
278 0 : walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
279 0 : lru_add_drain(); /* Push any new pages onto the LRU now */
280 0 : return 0;
281 : }
282 :
283 0 : if (shmem_mapping(file->f_mapping)) {
284 0 : force_shm_swapin_readahead(vma, start, end,
285 : file->f_mapping);
286 0 : return 0;
287 : }
288 : #else
289 : if (!file)
290 : return -EBADF;
291 : #endif
292 :
293 0 : if (IS_DAX(file_inode(file))) {
294 : /* no bad return value, but ignore advice */
295 : return 0;
296 : }
297 :
298 : /*
299 : * Filesystem's fadvise may need to take various locks. We need to
300 : * explicitly grab a reference because the vma (and hence the
301 : * vma's reference to the file) can go away as soon as we drop
302 : * mmap_lock.
303 : */
304 0 : *prev = NULL; /* tell sys_madvise we drop mmap_lock */
305 0 : get_file(file);
306 0 : offset = (loff_t)(start - vma->vm_start)
307 0 : + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
308 0 : mmap_read_unlock(mm);
309 0 : vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
310 0 : fput(file);
311 0 : mmap_read_lock(mm);
312 0 : return 0;
313 : }
314 :
315 0 : static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
316 : unsigned long addr, unsigned long end,
317 : struct mm_walk *walk)
318 : {
319 0 : struct madvise_walk_private *private = walk->private;
320 0 : struct mmu_gather *tlb = private->tlb;
321 0 : bool pageout = private->pageout;
322 0 : struct mm_struct *mm = tlb->mm;
323 0 : struct vm_area_struct *vma = walk->vma;
324 : pte_t *orig_pte, *pte, ptent;
325 : spinlock_t *ptl;
326 0 : struct page *page = NULL;
327 0 : LIST_HEAD(page_list);
328 :
329 0 : if (fatal_signal_pending(current))
330 : return -EINTR;
331 :
332 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
333 : if (pmd_trans_huge(*pmd)) {
334 : pmd_t orig_pmd;
335 : unsigned long next = pmd_addr_end(addr, end);
336 :
337 : tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
338 : ptl = pmd_trans_huge_lock(pmd, vma);
339 : if (!ptl)
340 : return 0;
341 :
342 : orig_pmd = *pmd;
343 : if (is_huge_zero_pmd(orig_pmd))
344 : goto huge_unlock;
345 :
346 : if (unlikely(!pmd_present(orig_pmd))) {
347 : VM_BUG_ON(thp_migration_supported() &&
348 : !is_pmd_migration_entry(orig_pmd));
349 : goto huge_unlock;
350 : }
351 :
352 : page = pmd_page(orig_pmd);
353 :
354 : /* Do not interfere with other mappings of this page */
355 : if (page_mapcount(page) != 1)
356 : goto huge_unlock;
357 :
358 : if (next - addr != HPAGE_PMD_SIZE) {
359 : int err;
360 :
361 : get_page(page);
362 : spin_unlock(ptl);
363 : lock_page(page);
364 : err = split_huge_page(page);
365 : unlock_page(page);
366 : put_page(page);
367 : if (!err)
368 : goto regular_page;
369 : return 0;
370 : }
371 :
372 : if (pmd_young(orig_pmd)) {
373 : pmdp_invalidate(vma, addr, pmd);
374 : orig_pmd = pmd_mkold(orig_pmd);
375 :
376 : set_pmd_at(mm, addr, pmd, orig_pmd);
377 : tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
378 : }
379 :
380 : ClearPageReferenced(page);
381 : test_and_clear_page_young(page);
382 : if (pageout) {
383 : if (!isolate_lru_page(page)) {
384 : if (PageUnevictable(page))
385 : putback_lru_page(page);
386 : else
387 : list_add(&page->lru, &page_list);
388 : }
389 : } else
390 : deactivate_page(page);
391 : huge_unlock:
392 : spin_unlock(ptl);
393 : if (pageout)
394 : reclaim_pages(&page_list);
395 : return 0;
396 : }
397 :
398 : regular_page:
399 : if (pmd_trans_unstable(pmd))
400 : return 0;
401 : #endif
402 0 : tlb_change_page_size(tlb, PAGE_SIZE);
403 0 : orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
404 0 : flush_tlb_batched_pending(mm);
405 : arch_enter_lazy_mmu_mode();
406 0 : for (; addr < end; pte++, addr += PAGE_SIZE) {
407 0 : ptent = *pte;
408 :
409 0 : if (pte_none(ptent))
410 0 : continue;
411 :
412 0 : if (!pte_present(ptent))
413 0 : continue;
414 :
415 0 : page = vm_normal_page(vma, addr, ptent);
416 0 : if (!page)
417 0 : continue;
418 :
419 : /*
420 : * Creating a THP page is expensive so split it only if we
421 : * are sure it's worth. Split it if we are only owner.
422 : */
423 0 : if (PageTransCompound(page)) {
424 : if (page_mapcount(page) != 1)
425 : break;
426 : get_page(page);
427 : if (!trylock_page(page)) {
428 : put_page(page);
429 : break;
430 : }
431 : pte_unmap_unlock(orig_pte, ptl);
432 : if (split_huge_page(page)) {
433 : unlock_page(page);
434 : put_page(page);
435 : pte_offset_map_lock(mm, pmd, addr, &ptl);
436 : break;
437 : }
438 : unlock_page(page);
439 : put_page(page);
440 : pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
441 : pte--;
442 : addr -= PAGE_SIZE;
443 : continue;
444 : }
445 :
446 : /* Do not interfere with other mappings of this page */
447 0 : if (page_mapcount(page) != 1)
448 0 : continue;
449 :
450 : VM_BUG_ON_PAGE(PageTransCompound(page), page);
451 :
452 0 : if (pte_young(ptent)) {
453 0 : ptent = ptep_get_and_clear_full(mm, addr, pte,
454 0 : tlb->fullmm);
455 0 : ptent = pte_mkold(ptent);
456 0 : set_pte_at(mm, addr, pte, ptent);
457 : tlb_remove_tlb_entry(tlb, pte, addr);
458 : }
459 :
460 : /*
461 : * We are deactivating a page for accelerating reclaiming.
462 : * VM couldn't reclaim the page unless we clear PG_young.
463 : * As a side effect, it makes confuse idle-page tracking
464 : * because they will miss recent referenced history.
465 : */
466 0 : ClearPageReferenced(page);
467 0 : test_and_clear_page_young(page);
468 0 : if (pageout) {
469 0 : if (!isolate_lru_page(page)) {
470 0 : if (PageUnevictable(page))
471 0 : putback_lru_page(page);
472 : else
473 0 : list_add(&page->lru, &page_list);
474 : }
475 : } else
476 0 : deactivate_page(page);
477 : }
478 :
479 : arch_leave_lazy_mmu_mode();
480 0 : pte_unmap_unlock(orig_pte, ptl);
481 0 : if (pageout)
482 0 : reclaim_pages(&page_list);
483 0 : cond_resched();
484 :
485 0 : return 0;
486 : }
487 :
488 : static const struct mm_walk_ops cold_walk_ops = {
489 : .pmd_entry = madvise_cold_or_pageout_pte_range,
490 : };
491 :
492 0 : static void madvise_cold_page_range(struct mmu_gather *tlb,
493 : struct vm_area_struct *vma,
494 : unsigned long addr, unsigned long end)
495 : {
496 0 : struct madvise_walk_private walk_private = {
497 : .pageout = false,
498 : .tlb = tlb,
499 : };
500 :
501 0 : tlb_start_vma(tlb, vma);
502 0 : walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
503 0 : tlb_end_vma(tlb, vma);
504 0 : }
505 :
506 : static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
507 : {
508 0 : return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
509 : }
510 :
511 0 : static long madvise_cold(struct vm_area_struct *vma,
512 : struct vm_area_struct **prev,
513 : unsigned long start_addr, unsigned long end_addr)
514 : {
515 0 : struct mm_struct *mm = vma->vm_mm;
516 : struct mmu_gather tlb;
517 :
518 0 : *prev = vma;
519 0 : if (!can_madv_lru_vma(vma))
520 : return -EINVAL;
521 :
522 0 : lru_add_drain();
523 0 : tlb_gather_mmu(&tlb, mm);
524 0 : madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
525 0 : tlb_finish_mmu(&tlb);
526 :
527 0 : return 0;
528 : }
529 :
530 0 : static void madvise_pageout_page_range(struct mmu_gather *tlb,
531 : struct vm_area_struct *vma,
532 : unsigned long addr, unsigned long end)
533 : {
534 0 : struct madvise_walk_private walk_private = {
535 : .pageout = true,
536 : .tlb = tlb,
537 : };
538 :
539 0 : tlb_start_vma(tlb, vma);
540 0 : walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
541 0 : tlb_end_vma(tlb, vma);
542 0 : }
543 :
544 0 : static inline bool can_do_pageout(struct vm_area_struct *vma)
545 : {
546 0 : if (vma_is_anonymous(vma))
547 : return true;
548 0 : if (!vma->vm_file)
549 : return false;
550 : /*
551 : * paging out pagecache only for non-anonymous mappings that correspond
552 : * to the files the calling process could (if tried) open for writing;
553 : * otherwise we'd be including shared non-exclusive mappings, which
554 : * opens a side channel.
555 : */
556 0 : return inode_owner_or_capable(&init_user_ns,
557 0 : file_inode(vma->vm_file)) ||
558 0 : file_permission(vma->vm_file, MAY_WRITE) == 0;
559 : }
560 :
561 0 : static long madvise_pageout(struct vm_area_struct *vma,
562 : struct vm_area_struct **prev,
563 : unsigned long start_addr, unsigned long end_addr)
564 : {
565 0 : struct mm_struct *mm = vma->vm_mm;
566 : struct mmu_gather tlb;
567 :
568 0 : *prev = vma;
569 0 : if (!can_madv_lru_vma(vma))
570 : return -EINVAL;
571 :
572 0 : if (!can_do_pageout(vma))
573 : return 0;
574 :
575 0 : lru_add_drain();
576 0 : tlb_gather_mmu(&tlb, mm);
577 0 : madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
578 0 : tlb_finish_mmu(&tlb);
579 :
580 0 : return 0;
581 : }
582 :
583 0 : static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
584 : unsigned long end, struct mm_walk *walk)
585 :
586 : {
587 0 : struct mmu_gather *tlb = walk->private;
588 0 : struct mm_struct *mm = tlb->mm;
589 0 : struct vm_area_struct *vma = walk->vma;
590 : spinlock_t *ptl;
591 : pte_t *orig_pte, *pte, ptent;
592 : struct page *page;
593 0 : int nr_swap = 0;
594 : unsigned long next;
595 :
596 0 : next = pmd_addr_end(addr, end);
597 0 : if (pmd_trans_huge(*pmd))
598 : if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
599 : goto next;
600 :
601 0 : if (pmd_trans_unstable(pmd))
602 : return 0;
603 :
604 0 : tlb_change_page_size(tlb, PAGE_SIZE);
605 0 : orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
606 0 : flush_tlb_batched_pending(mm);
607 : arch_enter_lazy_mmu_mode();
608 0 : for (; addr != end; pte++, addr += PAGE_SIZE) {
609 0 : ptent = *pte;
610 :
611 0 : if (pte_none(ptent))
612 0 : continue;
613 : /*
614 : * If the pte has swp_entry, just clear page table to
615 : * prevent swap-in which is more expensive rather than
616 : * (page allocation + zeroing).
617 : */
618 0 : if (!pte_present(ptent)) {
619 : swp_entry_t entry;
620 :
621 0 : entry = pte_to_swp_entry(ptent);
622 0 : if (non_swap_entry(entry))
623 0 : continue;
624 0 : nr_swap--;
625 0 : free_swap_and_cache(entry);
626 0 : pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
627 0 : continue;
628 : }
629 :
630 0 : page = vm_normal_page(vma, addr, ptent);
631 0 : if (!page)
632 0 : continue;
633 :
634 : /*
635 : * If pmd isn't transhuge but the page is THP and
636 : * is owned by only this process, split it and
637 : * deactivate all pages.
638 : */
639 0 : if (PageTransCompound(page)) {
640 : if (page_mapcount(page) != 1)
641 : goto out;
642 : get_page(page);
643 : if (!trylock_page(page)) {
644 : put_page(page);
645 : goto out;
646 : }
647 : pte_unmap_unlock(orig_pte, ptl);
648 : if (split_huge_page(page)) {
649 : unlock_page(page);
650 : put_page(page);
651 : pte_offset_map_lock(mm, pmd, addr, &ptl);
652 : goto out;
653 : }
654 : unlock_page(page);
655 : put_page(page);
656 : pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
657 : pte--;
658 : addr -= PAGE_SIZE;
659 : continue;
660 : }
661 :
662 : VM_BUG_ON_PAGE(PageTransCompound(page), page);
663 :
664 0 : if (PageSwapCache(page) || PageDirty(page)) {
665 0 : if (!trylock_page(page))
666 0 : continue;
667 : /*
668 : * If page is shared with others, we couldn't clear
669 : * PG_dirty of the page.
670 : */
671 0 : if (page_mapcount(page) != 1) {
672 0 : unlock_page(page);
673 0 : continue;
674 : }
675 :
676 0 : if (PageSwapCache(page) && !try_to_free_swap(page)) {
677 0 : unlock_page(page);
678 0 : continue;
679 : }
680 :
681 0 : ClearPageDirty(page);
682 0 : unlock_page(page);
683 : }
684 :
685 0 : if (pte_young(ptent) || pte_dirty(ptent)) {
686 : /*
687 : * Some of architecture(ex, PPC) don't update TLB
688 : * with set_pte_at and tlb_remove_tlb_entry so for
689 : * the portability, remap the pte with old|clean
690 : * after pte clearing.
691 : */
692 0 : ptent = ptep_get_and_clear_full(mm, addr, pte,
693 0 : tlb->fullmm);
694 :
695 0 : ptent = pte_mkold(ptent);
696 0 : ptent = pte_mkclean(ptent);
697 0 : set_pte_at(mm, addr, pte, ptent);
698 : tlb_remove_tlb_entry(tlb, pte, addr);
699 : }
700 0 : mark_page_lazyfree(page);
701 : }
702 : out:
703 0 : if (nr_swap) {
704 0 : if (current->mm == mm)
705 : sync_mm_rss(mm);
706 :
707 0 : add_mm_counter(mm, MM_SWAPENTS, nr_swap);
708 : }
709 : arch_leave_lazy_mmu_mode();
710 0 : pte_unmap_unlock(orig_pte, ptl);
711 0 : cond_resched();
712 : next:
713 : return 0;
714 : }
715 :
716 : static const struct mm_walk_ops madvise_free_walk_ops = {
717 : .pmd_entry = madvise_free_pte_range,
718 : };
719 :
720 0 : static int madvise_free_single_vma(struct vm_area_struct *vma,
721 : unsigned long start_addr, unsigned long end_addr)
722 : {
723 0 : struct mm_struct *mm = vma->vm_mm;
724 : struct mmu_notifier_range range;
725 : struct mmu_gather tlb;
726 :
727 : /* MADV_FREE works for only anon vma at the moment */
728 0 : if (!vma_is_anonymous(vma))
729 : return -EINVAL;
730 :
731 0 : range.start = max(vma->vm_start, start_addr);
732 0 : if (range.start >= vma->vm_end)
733 : return -EINVAL;
734 0 : range.end = min(vma->vm_end, end_addr);
735 0 : if (range.end <= vma->vm_start)
736 : return -EINVAL;
737 0 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
738 : range.start, range.end);
739 :
740 0 : lru_add_drain();
741 0 : tlb_gather_mmu(&tlb, mm);
742 0 : update_hiwater_rss(mm);
743 :
744 0 : mmu_notifier_invalidate_range_start(&range);
745 0 : tlb_start_vma(&tlb, vma);
746 0 : walk_page_range(vma->vm_mm, range.start, range.end,
747 : &madvise_free_walk_ops, &tlb);
748 0 : tlb_end_vma(&tlb, vma);
749 0 : mmu_notifier_invalidate_range_end(&range);
750 0 : tlb_finish_mmu(&tlb);
751 :
752 0 : return 0;
753 : }
754 :
755 : /*
756 : * Application no longer needs these pages. If the pages are dirty,
757 : * it's OK to just throw them away. The app will be more careful about
758 : * data it wants to keep. Be sure to free swap resources too. The
759 : * zap_page_range call sets things up for shrink_active_list to actually free
760 : * these pages later if no one else has touched them in the meantime,
761 : * although we could add these pages to a global reuse list for
762 : * shrink_active_list to pick up before reclaiming other pages.
763 : *
764 : * NB: This interface discards data rather than pushes it out to swap,
765 : * as some implementations do. This has performance implications for
766 : * applications like large transactional databases which want to discard
767 : * pages in anonymous maps after committing to backing store the data
768 : * that was kept in them. There is no reason to write this data out to
769 : * the swap area if the application is discarding it.
770 : *
771 : * An interface that causes the system to free clean pages and flush
772 : * dirty pages is already available as msync(MS_INVALIDATE).
773 : */
774 : static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
775 : unsigned long start, unsigned long end)
776 : {
777 0 : zap_page_range(vma, start, end - start);
778 : return 0;
779 : }
780 :
781 : static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
782 : unsigned long start,
783 : unsigned long *end,
784 : int behavior)
785 : {
786 0 : if (!is_vm_hugetlb_page(vma)) {
787 0 : unsigned int forbidden = VM_PFNMAP;
788 :
789 0 : if (behavior != MADV_DONTNEED_LOCKED)
790 0 : forbidden |= VM_LOCKED;
791 :
792 0 : return !(vma->vm_flags & forbidden);
793 : }
794 :
795 : if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
796 : return false;
797 : if (start & ~huge_page_mask(hstate_vma(vma)))
798 : return false;
799 :
800 : *end = ALIGN(*end, huge_page_size(hstate_vma(vma)));
801 : return true;
802 : }
803 :
804 0 : static long madvise_dontneed_free(struct vm_area_struct *vma,
805 : struct vm_area_struct **prev,
806 : unsigned long start, unsigned long end,
807 : int behavior)
808 : {
809 0 : struct mm_struct *mm = vma->vm_mm;
810 :
811 0 : *prev = vma;
812 0 : if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
813 : return -EINVAL;
814 :
815 0 : if (!userfaultfd_remove(vma, start, end)) {
816 : *prev = NULL; /* mmap_lock has been dropped, prev is stale */
817 :
818 : mmap_read_lock(mm);
819 : vma = find_vma(mm, start);
820 : if (!vma)
821 : return -ENOMEM;
822 : if (start < vma->vm_start) {
823 : /*
824 : * This "vma" under revalidation is the one
825 : * with the lowest vma->vm_start where start
826 : * is also < vma->vm_end. If start <
827 : * vma->vm_start it means an hole materialized
828 : * in the user address space within the
829 : * virtual range passed to MADV_DONTNEED
830 : * or MADV_FREE.
831 : */
832 : return -ENOMEM;
833 : }
834 : /*
835 : * Potential end adjustment for hugetlb vma is OK as
836 : * the check below keeps end within vma.
837 : */
838 : if (!madvise_dontneed_free_valid_vma(vma, start, &end,
839 : behavior))
840 : return -EINVAL;
841 : if (end > vma->vm_end) {
842 : /*
843 : * Don't fail if end > vma->vm_end. If the old
844 : * vma was split while the mmap_lock was
845 : * released the effect of the concurrent
846 : * operation may not cause madvise() to
847 : * have an undefined result. There may be an
848 : * adjacent next vma that we'll walk
849 : * next. userfaultfd_remove() will generate an
850 : * UFFD_EVENT_REMOVE repetition on the
851 : * end-vma->vm_end range, but the manager can
852 : * handle a repetition fine.
853 : */
854 : end = vma->vm_end;
855 : }
856 : VM_WARN_ON(start >= end);
857 : }
858 :
859 0 : if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
860 0 : return madvise_dontneed_single_vma(vma, start, end);
861 0 : else if (behavior == MADV_FREE)
862 0 : return madvise_free_single_vma(vma, start, end);
863 : else
864 : return -EINVAL;
865 : }
866 :
867 0 : static long madvise_populate(struct vm_area_struct *vma,
868 : struct vm_area_struct **prev,
869 : unsigned long start, unsigned long end,
870 : int behavior)
871 : {
872 0 : const bool write = behavior == MADV_POPULATE_WRITE;
873 0 : struct mm_struct *mm = vma->vm_mm;
874 : unsigned long tmp_end;
875 0 : int locked = 1;
876 : long pages;
877 :
878 0 : *prev = vma;
879 :
880 0 : while (start < end) {
881 : /*
882 : * We might have temporarily dropped the lock. For example,
883 : * our VMA might have been split.
884 : */
885 0 : if (!vma || start >= vma->vm_end) {
886 0 : vma = vma_lookup(mm, start);
887 0 : if (!vma)
888 : return -ENOMEM;
889 : }
890 :
891 0 : tmp_end = min_t(unsigned long, end, vma->vm_end);
892 : /* Populate (prefault) page tables readable/writable. */
893 0 : pages = faultin_vma_page_range(vma, start, tmp_end, write,
894 : &locked);
895 0 : if (!locked) {
896 0 : mmap_read_lock(mm);
897 0 : locked = 1;
898 0 : *prev = NULL;
899 0 : vma = NULL;
900 : }
901 0 : if (pages < 0) {
902 0 : switch (pages) {
903 : case -EINTR:
904 : return -EINTR;
905 : case -EINVAL: /* Incompatible mappings / permissions. */
906 0 : return -EINVAL;
907 : case -EHWPOISON:
908 0 : return -EHWPOISON;
909 : case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
910 0 : return -EFAULT;
911 : default:
912 0 : pr_warn_once("%s: unhandled return value: %ld\n",
913 : __func__, pages);
914 : fallthrough;
915 : case -ENOMEM:
916 : return -ENOMEM;
917 : }
918 : }
919 0 : start += pages * PAGE_SIZE;
920 : }
921 : return 0;
922 : }
923 :
924 : /*
925 : * Application wants to free up the pages and associated backing store.
926 : * This is effectively punching a hole into the middle of a file.
927 : */
928 0 : static long madvise_remove(struct vm_area_struct *vma,
929 : struct vm_area_struct **prev,
930 : unsigned long start, unsigned long end)
931 : {
932 : loff_t offset;
933 : int error;
934 : struct file *f;
935 0 : struct mm_struct *mm = vma->vm_mm;
936 :
937 0 : *prev = NULL; /* tell sys_madvise we drop mmap_lock */
938 :
939 0 : if (vma->vm_flags & VM_LOCKED)
940 : return -EINVAL;
941 :
942 0 : f = vma->vm_file;
943 :
944 0 : if (!f || !f->f_mapping || !f->f_mapping->host) {
945 : return -EINVAL;
946 : }
947 :
948 0 : if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
949 : return -EACCES;
950 :
951 0 : offset = (loff_t)(start - vma->vm_start)
952 0 : + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
953 :
954 : /*
955 : * Filesystem's fallocate may need to take i_rwsem. We need to
956 : * explicitly grab a reference because the vma (and hence the
957 : * vma's reference to the file) can go away as soon as we drop
958 : * mmap_lock.
959 : */
960 0 : get_file(f);
961 0 : if (userfaultfd_remove(vma, start, end)) {
962 : /* mmap_lock was not released by userfaultfd_remove() */
963 : mmap_read_unlock(mm);
964 : }
965 0 : error = vfs_fallocate(f,
966 : FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
967 0 : offset, end - start);
968 0 : fput(f);
969 0 : mmap_read_lock(mm);
970 0 : return error;
971 : }
972 :
973 : /*
974 : * Apply an madvise behavior to a region of a vma. madvise_update_vma
975 : * will handle splitting a vm area into separate areas, each area with its own
976 : * behavior.
977 : */
978 0 : static int madvise_vma_behavior(struct vm_area_struct *vma,
979 : struct vm_area_struct **prev,
980 : unsigned long start, unsigned long end,
981 : unsigned long behavior)
982 : {
983 : int error;
984 : struct anon_vma_name *anon_name;
985 0 : unsigned long new_flags = vma->vm_flags;
986 :
987 0 : switch (behavior) {
988 : case MADV_REMOVE:
989 0 : return madvise_remove(vma, prev, start, end);
990 : case MADV_WILLNEED:
991 0 : return madvise_willneed(vma, prev, start, end);
992 : case MADV_COLD:
993 0 : return madvise_cold(vma, prev, start, end);
994 : case MADV_PAGEOUT:
995 0 : return madvise_pageout(vma, prev, start, end);
996 : case MADV_FREE:
997 : case MADV_DONTNEED:
998 : case MADV_DONTNEED_LOCKED:
999 0 : return madvise_dontneed_free(vma, prev, start, end, behavior);
1000 : case MADV_POPULATE_READ:
1001 : case MADV_POPULATE_WRITE:
1002 0 : return madvise_populate(vma, prev, start, end, behavior);
1003 : case MADV_NORMAL:
1004 0 : new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1005 0 : break;
1006 : case MADV_SEQUENTIAL:
1007 0 : new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1008 0 : break;
1009 : case MADV_RANDOM:
1010 0 : new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1011 0 : break;
1012 : case MADV_DONTFORK:
1013 0 : new_flags |= VM_DONTCOPY;
1014 0 : break;
1015 : case MADV_DOFORK:
1016 0 : if (vma->vm_flags & VM_IO)
1017 : return -EINVAL;
1018 0 : new_flags &= ~VM_DONTCOPY;
1019 0 : break;
1020 : case MADV_WIPEONFORK:
1021 : /* MADV_WIPEONFORK is only supported on anonymous memory. */
1022 0 : if (vma->vm_file || vma->vm_flags & VM_SHARED)
1023 : return -EINVAL;
1024 0 : new_flags |= VM_WIPEONFORK;
1025 0 : break;
1026 : case MADV_KEEPONFORK:
1027 0 : new_flags &= ~VM_WIPEONFORK;
1028 0 : break;
1029 : case MADV_DONTDUMP:
1030 0 : new_flags |= VM_DONTDUMP;
1031 0 : break;
1032 : case MADV_DODUMP:
1033 0 : if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1034 : return -EINVAL;
1035 0 : new_flags &= ~VM_DONTDUMP;
1036 0 : break;
1037 : case MADV_MERGEABLE:
1038 : case MADV_UNMERGEABLE:
1039 : error = ksm_madvise(vma, start, end, behavior, &new_flags);
1040 : if (error)
1041 : goto out;
1042 : break;
1043 : case MADV_HUGEPAGE:
1044 : case MADV_NOHUGEPAGE:
1045 0 : error = hugepage_madvise(vma, &new_flags, behavior);
1046 : if (error)
1047 : goto out;
1048 : break;
1049 : }
1050 :
1051 0 : anon_name = anon_vma_name(vma);
1052 : anon_vma_name_get(anon_name);
1053 0 : error = madvise_update_vma(vma, prev, start, end, new_flags,
1054 : anon_name);
1055 : anon_vma_name_put(anon_name);
1056 :
1057 : out:
1058 : /*
1059 : * madvise() returns EAGAIN if kernel resources, such as
1060 : * slab, are temporarily unavailable.
1061 : */
1062 0 : if (error == -ENOMEM)
1063 0 : error = -EAGAIN;
1064 : return error;
1065 : }
1066 :
1067 : #ifdef CONFIG_MEMORY_FAILURE
1068 : /*
1069 : * Error injection support for memory error handling.
1070 : */
1071 : static int madvise_inject_error(int behavior,
1072 : unsigned long start, unsigned long end)
1073 : {
1074 : unsigned long size;
1075 :
1076 : if (!capable(CAP_SYS_ADMIN))
1077 : return -EPERM;
1078 :
1079 :
1080 : for (; start < end; start += size) {
1081 : unsigned long pfn;
1082 : struct page *page;
1083 : int ret;
1084 :
1085 : ret = get_user_pages_fast(start, 1, 0, &page);
1086 : if (ret != 1)
1087 : return ret;
1088 : pfn = page_to_pfn(page);
1089 :
1090 : /*
1091 : * When soft offlining hugepages, after migrating the page
1092 : * we dissolve it, therefore in the second loop "page" will
1093 : * no longer be a compound page.
1094 : */
1095 : size = page_size(compound_head(page));
1096 :
1097 : if (behavior == MADV_SOFT_OFFLINE) {
1098 : pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1099 : pfn, start);
1100 : ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1101 : } else {
1102 : pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1103 : pfn, start);
1104 : ret = memory_failure(pfn, MF_COUNT_INCREASED);
1105 : if (ret == -EOPNOTSUPP)
1106 : ret = 0;
1107 : }
1108 :
1109 : if (ret)
1110 : return ret;
1111 : }
1112 :
1113 : return 0;
1114 : }
1115 : #endif
1116 :
1117 : static bool
1118 : madvise_behavior_valid(int behavior)
1119 : {
1120 : switch (behavior) {
1121 : case MADV_DOFORK:
1122 : case MADV_DONTFORK:
1123 : case MADV_NORMAL:
1124 : case MADV_SEQUENTIAL:
1125 : case MADV_RANDOM:
1126 : case MADV_REMOVE:
1127 : case MADV_WILLNEED:
1128 : case MADV_DONTNEED:
1129 : case MADV_DONTNEED_LOCKED:
1130 : case MADV_FREE:
1131 : case MADV_COLD:
1132 : case MADV_PAGEOUT:
1133 : case MADV_POPULATE_READ:
1134 : case MADV_POPULATE_WRITE:
1135 : #ifdef CONFIG_KSM
1136 : case MADV_MERGEABLE:
1137 : case MADV_UNMERGEABLE:
1138 : #endif
1139 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1140 : case MADV_HUGEPAGE:
1141 : case MADV_NOHUGEPAGE:
1142 : #endif
1143 : case MADV_DONTDUMP:
1144 : case MADV_DODUMP:
1145 : case MADV_WIPEONFORK:
1146 : case MADV_KEEPONFORK:
1147 : #ifdef CONFIG_MEMORY_FAILURE
1148 : case MADV_SOFT_OFFLINE:
1149 : case MADV_HWPOISON:
1150 : #endif
1151 : return true;
1152 :
1153 : default:
1154 : return false;
1155 : }
1156 : }
1157 :
1158 : static bool
1159 : process_madvise_behavior_valid(int behavior)
1160 : {
1161 : switch (behavior) {
1162 : case MADV_COLD:
1163 : case MADV_PAGEOUT:
1164 : case MADV_WILLNEED:
1165 : return true;
1166 : default:
1167 : return false;
1168 : }
1169 : }
1170 :
1171 : /*
1172 : * Walk the vmas in range [start,end), and call the visit function on each one.
1173 : * The visit function will get start and end parameters that cover the overlap
1174 : * between the current vma and the original range. Any unmapped regions in the
1175 : * original range will result in this function returning -ENOMEM while still
1176 : * calling the visit function on all of the existing vmas in the range.
1177 : * Must be called with the mmap_lock held for reading or writing.
1178 : */
1179 : static
1180 0 : int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1181 : unsigned long end, unsigned long arg,
1182 : int (*visit)(struct vm_area_struct *vma,
1183 : struct vm_area_struct **prev, unsigned long start,
1184 : unsigned long end, unsigned long arg))
1185 : {
1186 : struct vm_area_struct *vma;
1187 : struct vm_area_struct *prev;
1188 : unsigned long tmp;
1189 0 : int unmapped_error = 0;
1190 :
1191 : /*
1192 : * If the interval [start,end) covers some unmapped address
1193 : * ranges, just ignore them, but return -ENOMEM at the end.
1194 : * - different from the way of handling in mlock etc.
1195 : */
1196 0 : vma = find_vma_prev(mm, start, &prev);
1197 0 : if (vma && start > vma->vm_start)
1198 0 : prev = vma;
1199 :
1200 : for (;;) {
1201 : int error;
1202 :
1203 : /* Still start < end. */
1204 0 : if (!vma)
1205 : return -ENOMEM;
1206 :
1207 : /* Here start < (end|vma->vm_end). */
1208 0 : if (start < vma->vm_start) {
1209 0 : unmapped_error = -ENOMEM;
1210 0 : start = vma->vm_start;
1211 0 : if (start >= end)
1212 : break;
1213 : }
1214 :
1215 : /* Here vma->vm_start <= start < (end|vma->vm_end) */
1216 0 : tmp = vma->vm_end;
1217 0 : if (end < tmp)
1218 0 : tmp = end;
1219 :
1220 : /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1221 0 : error = visit(vma, &prev, start, tmp, arg);
1222 0 : if (error)
1223 : return error;
1224 0 : start = tmp;
1225 0 : if (prev && start < prev->vm_end)
1226 0 : start = prev->vm_end;
1227 0 : if (start >= end)
1228 : break;
1229 0 : if (prev)
1230 0 : vma = prev->vm_next;
1231 : else /* madvise_remove dropped mmap_lock */
1232 0 : vma = find_vma(mm, start);
1233 : }
1234 :
1235 : return unmapped_error;
1236 : }
1237 :
1238 : #ifdef CONFIG_ANON_VMA_NAME
1239 : static int madvise_vma_anon_name(struct vm_area_struct *vma,
1240 : struct vm_area_struct **prev,
1241 : unsigned long start, unsigned long end,
1242 : unsigned long anon_name)
1243 : {
1244 : int error;
1245 :
1246 : /* Only anonymous mappings can be named */
1247 : if (vma->vm_file)
1248 : return -EBADF;
1249 :
1250 : error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1251 : (struct anon_vma_name *)anon_name);
1252 :
1253 : /*
1254 : * madvise() returns EAGAIN if kernel resources, such as
1255 : * slab, are temporarily unavailable.
1256 : */
1257 : if (error == -ENOMEM)
1258 : error = -EAGAIN;
1259 : return error;
1260 : }
1261 :
1262 : int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1263 : unsigned long len_in, struct anon_vma_name *anon_name)
1264 : {
1265 : unsigned long end;
1266 : unsigned long len;
1267 :
1268 : if (start & ~PAGE_MASK)
1269 : return -EINVAL;
1270 : len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1271 :
1272 : /* Check to see whether len was rounded up from small -ve to zero */
1273 : if (len_in && !len)
1274 : return -EINVAL;
1275 :
1276 : end = start + len;
1277 : if (end < start)
1278 : return -EINVAL;
1279 :
1280 : if (end == start)
1281 : return 0;
1282 :
1283 : return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1284 : madvise_vma_anon_name);
1285 : }
1286 : #endif /* CONFIG_ANON_VMA_NAME */
1287 : /*
1288 : * The madvise(2) system call.
1289 : *
1290 : * Applications can use madvise() to advise the kernel how it should
1291 : * handle paging I/O in this VM area. The idea is to help the kernel
1292 : * use appropriate read-ahead and caching techniques. The information
1293 : * provided is advisory only, and can be safely disregarded by the
1294 : * kernel without affecting the correct operation of the application.
1295 : *
1296 : * behavior values:
1297 : * MADV_NORMAL - the default behavior is to read clusters. This
1298 : * results in some read-ahead and read-behind.
1299 : * MADV_RANDOM - the system should read the minimum amount of data
1300 : * on any access, since it is unlikely that the appli-
1301 : * cation will need more than what it asks for.
1302 : * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1303 : * once, so they can be aggressively read ahead, and
1304 : * can be freed soon after they are accessed.
1305 : * MADV_WILLNEED - the application is notifying the system to read
1306 : * some pages ahead.
1307 : * MADV_DONTNEED - the application is finished with the given range,
1308 : * so the kernel can free resources associated with it.
1309 : * MADV_FREE - the application marks pages in the given range as lazy free,
1310 : * where actual purges are postponed until memory pressure happens.
1311 : * MADV_REMOVE - the application wants to free up the given range of
1312 : * pages and associated backing store.
1313 : * MADV_DONTFORK - omit this area from child's address space when forking:
1314 : * typically, to avoid COWing pages pinned by get_user_pages().
1315 : * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1316 : * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1317 : * range after a fork.
1318 : * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1319 : * MADV_HWPOISON - trigger memory error handler as if the given memory range
1320 : * were corrupted by unrecoverable hardware memory failure.
1321 : * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1322 : * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1323 : * this area with pages of identical content from other such areas.
1324 : * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1325 : * MADV_HUGEPAGE - the application wants to back the given range by transparent
1326 : * huge pages in the future. Existing pages might be coalesced and
1327 : * new pages might be allocated as THP.
1328 : * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1329 : * transparent huge pages so the existing pages will not be
1330 : * coalesced into THP and new pages will not be allocated as THP.
1331 : * MADV_DONTDUMP - the application wants to prevent pages in the given range
1332 : * from being included in its core dump.
1333 : * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1334 : * MADV_COLD - the application is not expected to use this memory soon,
1335 : * deactivate pages in this range so that they can be reclaimed
1336 : * easily if memory pressure happens.
1337 : * MADV_PAGEOUT - the application is not expected to use this memory soon,
1338 : * page out the pages in this range immediately.
1339 : * MADV_POPULATE_READ - populate (prefault) page tables readable by
1340 : * triggering read faults if required
1341 : * MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1342 : * triggering write faults if required
1343 : *
1344 : * return values:
1345 : * zero - success
1346 : * -EINVAL - start + len < 0, start is not page-aligned,
1347 : * "behavior" is not a valid value, or application
1348 : * is attempting to release locked or shared pages,
1349 : * or the specified address range includes file, Huge TLB,
1350 : * MAP_SHARED or VMPFNMAP range.
1351 : * -ENOMEM - addresses in the specified range are not currently
1352 : * mapped, or are outside the AS of the process.
1353 : * -EIO - an I/O error occurred while paging in data.
1354 : * -EBADF - map exists, but area maps something that isn't a file.
1355 : * -EAGAIN - a kernel resource was temporarily unavailable.
1356 : */
1357 0 : int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1358 : {
1359 : unsigned long end;
1360 : int error;
1361 : int write;
1362 : size_t len;
1363 : struct blk_plug plug;
1364 :
1365 0 : start = untagged_addr(start);
1366 :
1367 0 : if (!madvise_behavior_valid(behavior))
1368 : return -EINVAL;
1369 :
1370 0 : if (!PAGE_ALIGNED(start))
1371 : return -EINVAL;
1372 0 : len = PAGE_ALIGN(len_in);
1373 :
1374 : /* Check to see whether len was rounded up from small -ve to zero */
1375 0 : if (len_in && !len)
1376 : return -EINVAL;
1377 :
1378 0 : end = start + len;
1379 0 : if (end < start)
1380 : return -EINVAL;
1381 :
1382 0 : if (end == start)
1383 : return 0;
1384 :
1385 : #ifdef CONFIG_MEMORY_FAILURE
1386 : if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1387 : return madvise_inject_error(behavior, start, start + len_in);
1388 : #endif
1389 :
1390 0 : write = madvise_need_mmap_write(behavior);
1391 0 : if (write) {
1392 0 : if (mmap_write_lock_killable(mm))
1393 : return -EINTR;
1394 : } else {
1395 : mmap_read_lock(mm);
1396 : }
1397 :
1398 0 : blk_start_plug(&plug);
1399 0 : error = madvise_walk_vmas(mm, start, end, behavior,
1400 : madvise_vma_behavior);
1401 0 : blk_finish_plug(&plug);
1402 0 : if (write)
1403 : mmap_write_unlock(mm);
1404 : else
1405 : mmap_read_unlock(mm);
1406 :
1407 : return error;
1408 : }
1409 :
1410 0 : SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1411 : {
1412 0 : return do_madvise(current->mm, start, len_in, behavior);
1413 : }
1414 :
1415 0 : SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1416 : size_t, vlen, int, behavior, unsigned int, flags)
1417 : {
1418 : ssize_t ret;
1419 : struct iovec iovstack[UIO_FASTIOV], iovec;
1420 0 : struct iovec *iov = iovstack;
1421 : struct iov_iter iter;
1422 : struct task_struct *task;
1423 : struct mm_struct *mm;
1424 : size_t total_len;
1425 : unsigned int f_flags;
1426 :
1427 0 : if (flags != 0) {
1428 : ret = -EINVAL;
1429 : goto out;
1430 : }
1431 :
1432 0 : ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1433 0 : if (ret < 0)
1434 : goto out;
1435 :
1436 0 : task = pidfd_get_task(pidfd, &f_flags);
1437 0 : if (IS_ERR(task)) {
1438 0 : ret = PTR_ERR(task);
1439 0 : goto free_iov;
1440 : }
1441 :
1442 0 : if (!process_madvise_behavior_valid(behavior)) {
1443 : ret = -EINVAL;
1444 : goto release_task;
1445 : }
1446 :
1447 : /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1448 0 : mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1449 0 : if (IS_ERR_OR_NULL(mm)) {
1450 0 : ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1451 : goto release_task;
1452 : }
1453 :
1454 : /*
1455 : * Require CAP_SYS_NICE for influencing process performance. Note that
1456 : * only non-destructive hints are currently supported.
1457 : */
1458 0 : if (!capable(CAP_SYS_NICE)) {
1459 : ret = -EPERM;
1460 : goto release_mm;
1461 : }
1462 :
1463 0 : total_len = iov_iter_count(&iter);
1464 :
1465 0 : while (iov_iter_count(&iter)) {
1466 0 : iovec = iov_iter_iovec(&iter);
1467 0 : ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1468 : iovec.iov_len, behavior);
1469 0 : if (ret < 0)
1470 : break;
1471 0 : iov_iter_advance(&iter, iovec.iov_len);
1472 : }
1473 :
1474 0 : ret = (total_len - iov_iter_count(&iter)) ? : ret;
1475 :
1476 : release_mm:
1477 0 : mmput(mm);
1478 : release_task:
1479 0 : put_task_struct(task);
1480 : free_iov:
1481 0 : kfree(iov);
1482 : out:
1483 0 : return ret;
1484 : }
|