LCOV - code coverage report
Current view: top level - mm - memblock.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 295 576 51.2 %
Date: 2022-12-09 01:23:36 Functions: 31 69 44.9 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-or-later
       2             : /*
       3             :  * Procedures for maintaining information about logical memory blocks.
       4             :  *
       5             :  * Peter Bergner, IBM Corp.     June 2001.
       6             :  * Copyright (C) 2001 Peter Bergner.
       7             :  */
       8             : 
       9             : #include <linux/kernel.h>
      10             : #include <linux/slab.h>
      11             : #include <linux/init.h>
      12             : #include <linux/bitops.h>
      13             : #include <linux/poison.h>
      14             : #include <linux/pfn.h>
      15             : #include <linux/debugfs.h>
      16             : #include <linux/kmemleak.h>
      17             : #include <linux/seq_file.h>
      18             : #include <linux/memblock.h>
      19             : 
      20             : #include <asm/sections.h>
      21             : #include <linux/io.h>
      22             : 
      23             : #include "internal.h"
      24             : 
      25             : #define INIT_MEMBLOCK_REGIONS                   128
      26             : #define INIT_PHYSMEM_REGIONS                    4
      27             : 
      28             : #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
      29             : # define INIT_MEMBLOCK_RESERVED_REGIONS         INIT_MEMBLOCK_REGIONS
      30             : #endif
      31             : 
      32             : /**
      33             :  * DOC: memblock overview
      34             :  *
      35             :  * Memblock is a method of managing memory regions during the early
      36             :  * boot period when the usual kernel memory allocators are not up and
      37             :  * running.
      38             :  *
      39             :  * Memblock views the system memory as collections of contiguous
      40             :  * regions. There are several types of these collections:
      41             :  *
      42             :  * * ``memory`` - describes the physical memory available to the
      43             :  *   kernel; this may differ from the actual physical memory installed
      44             :  *   in the system, for instance when the memory is restricted with
      45             :  *   ``mem=`` command line parameter
      46             :  * * ``reserved`` - describes the regions that were allocated
      47             :  * * ``physmem`` - describes the actual physical memory available during
      48             :  *   boot regardless of the possible restrictions and memory hot(un)plug;
      49             :  *   the ``physmem`` type is only available on some architectures.
      50             :  *
      51             :  * Each region is represented by struct memblock_region that
      52             :  * defines the region extents, its attributes and NUMA node id on NUMA
      53             :  * systems. Every memory type is described by the struct memblock_type
      54             :  * which contains an array of memory regions along with
      55             :  * the allocator metadata. The "memory" and "reserved" types are nicely
      56             :  * wrapped with struct memblock. This structure is statically
      57             :  * initialized at build time. The region arrays are initially sized to
      58             :  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
      59             :  * for "reserved". The region array for "physmem" is initially sized to
      60             :  * %INIT_PHYSMEM_REGIONS.
      61             :  * The memblock_allow_resize() enables automatic resizing of the region
      62             :  * arrays during addition of new regions. This feature should be used
      63             :  * with care so that memory allocated for the region array will not
      64             :  * overlap with areas that should be reserved, for example initrd.
      65             :  *
      66             :  * The early architecture setup should tell memblock what the physical
      67             :  * memory layout is by using memblock_add() or memblock_add_node()
      68             :  * functions. The first function does not assign the region to a NUMA
      69             :  * node and it is appropriate for UMA systems. Yet, it is possible to
      70             :  * use it on NUMA systems as well and assign the region to a NUMA node
      71             :  * later in the setup process using memblock_set_node(). The
      72             :  * memblock_add_node() performs such an assignment directly.
      73             :  *
      74             :  * Once memblock is setup the memory can be allocated using one of the
      75             :  * API variants:
      76             :  *
      77             :  * * memblock_phys_alloc*() - these functions return the **physical**
      78             :  *   address of the allocated memory
      79             :  * * memblock_alloc*() - these functions return the **virtual** address
      80             :  *   of the allocated memory.
      81             :  *
      82             :  * Note, that both API variants use implicit assumptions about allowed
      83             :  * memory ranges and the fallback methods. Consult the documentation
      84             :  * of memblock_alloc_internal() and memblock_alloc_range_nid()
      85             :  * functions for more elaborate description.
      86             :  *
      87             :  * As the system boot progresses, the architecture specific mem_init()
      88             :  * function frees all the memory to the buddy page allocator.
      89             :  *
      90             :  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
      91             :  * memblock data structures (except "physmem") will be discarded after the
      92             :  * system initialization completes.
      93             :  */
      94             : 
      95             : #ifndef CONFIG_NUMA
      96             : struct pglist_data __refdata contig_page_data;
      97             : EXPORT_SYMBOL(contig_page_data);
      98             : #endif
      99             : 
     100             : unsigned long max_low_pfn;
     101             : unsigned long min_low_pfn;
     102             : unsigned long max_pfn;
     103             : unsigned long long max_possible_pfn;
     104             : 
     105             : static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
     106             : static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
     107             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
     108             : static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
     109             : #endif
     110             : 
     111             : struct memblock memblock __initdata_memblock = {
     112             :         .memory.regions         = memblock_memory_init_regions,
     113             :         .memory.cnt             = 1,    /* empty dummy entry */
     114             :         .memory.max             = INIT_MEMBLOCK_REGIONS,
     115             :         .memory.name            = "memory",
     116             : 
     117             :         .reserved.regions       = memblock_reserved_init_regions,
     118             :         .reserved.cnt           = 1,    /* empty dummy entry */
     119             :         .reserved.max           = INIT_MEMBLOCK_RESERVED_REGIONS,
     120             :         .reserved.name          = "reserved",
     121             : 
     122             :         .bottom_up              = false,
     123             :         .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
     124             : };
     125             : 
     126             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
     127             : struct memblock_type physmem = {
     128             :         .regions                = memblock_physmem_init_regions,
     129             :         .cnt                    = 1,    /* empty dummy entry */
     130             :         .max                    = INIT_PHYSMEM_REGIONS,
     131             :         .name                   = "physmem",
     132             : };
     133             : #endif
     134             : 
     135             : /*
     136             :  * keep a pointer to &memblock.memory in the text section to use it in
     137             :  * __next_mem_range() and its helpers.
     138             :  *  For architectures that do not keep memblock data after init, this
     139             :  * pointer will be reset to NULL at memblock_discard()
     140             :  */
     141             : static __refdata struct memblock_type *memblock_memory = &memblock.memory;
     142             : 
     143             : #define for_each_memblock_type(i, memblock_type, rgn)                   \
     144             :         for (i = 0, rgn = &memblock_type->regions[0];                    \
     145             :              i < memblock_type->cnt;                                      \
     146             :              i++, rgn = &memblock_type->regions[i])
     147             : 
     148             : #define memblock_dbg(fmt, ...)                                          \
     149             :         do {                                                            \
     150             :                 if (memblock_debug)                                     \
     151             :                         pr_info(fmt, ##__VA_ARGS__);                    \
     152             :         } while (0)
     153             : 
     154             : static int memblock_debug __initdata_memblock;
     155             : static bool system_has_some_mirror __initdata_memblock = false;
     156             : static int memblock_can_resize __initdata_memblock;
     157             : static int memblock_memory_in_slab __initdata_memblock = 0;
     158             : static int memblock_reserved_in_slab __initdata_memblock = 0;
     159             : 
     160          21 : static enum memblock_flags __init_memblock choose_memblock_flags(void)
     161             : {
     162          21 :         return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
     163             : }
     164             : 
     165             : /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
     166             : static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
     167             : {
     168          27 :         return *size = min(*size, PHYS_ADDR_MAX - base);
     169             : }
     170             : 
     171             : /*
     172             :  * Address comparison utilities
     173             :  */
     174             : static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
     175             :                                        phys_addr_t base2, phys_addr_t size2)
     176             : {
     177           0 :         return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
     178             : }
     179             : 
     180           0 : bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
     181             :                                         phys_addr_t base, phys_addr_t size)
     182             : {
     183             :         unsigned long i;
     184             : 
     185           0 :         memblock_cap_size(base, &size);
     186             : 
     187           0 :         for (i = 0; i < type->cnt; i++)
     188           0 :                 if (memblock_addrs_overlap(base, size, type->regions[i].base,
     189           0 :                                            type->regions[i].size))
     190             :                         break;
     191           0 :         return i < type->cnt;
     192             : }
     193             : 
     194             : /**
     195             :  * __memblock_find_range_bottom_up - find free area utility in bottom-up
     196             :  * @start: start of candidate range
     197             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     198             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     199             :  * @size: size of free area to find
     200             :  * @align: alignment of free area to find
     201             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     202             :  * @flags: pick from blocks based on memory attributes
     203             :  *
     204             :  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
     205             :  *
     206             :  * Return:
     207             :  * Found address on success, 0 on failure.
     208             :  */
     209             : static phys_addr_t __init_memblock
     210           0 : __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
     211             :                                 phys_addr_t size, phys_addr_t align, int nid,
     212             :                                 enum memblock_flags flags)
     213             : {
     214             :         phys_addr_t this_start, this_end, cand;
     215             :         u64 i;
     216             : 
     217           0 :         for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
     218           0 :                 this_start = clamp(this_start, start, end);
     219           0 :                 this_end = clamp(this_end, start, end);
     220             : 
     221           0 :                 cand = round_up(this_start, align);
     222           0 :                 if (cand < this_end && this_end - cand >= size)
     223             :                         return cand;
     224             :         }
     225             : 
     226             :         return 0;
     227             : }
     228             : 
     229             : /**
     230             :  * __memblock_find_range_top_down - find free area utility, in top-down
     231             :  * @start: start of candidate range
     232             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     233             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     234             :  * @size: size of free area to find
     235             :  * @align: alignment of free area to find
     236             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     237             :  * @flags: pick from blocks based on memory attributes
     238             :  *
     239             :  * Utility called from memblock_find_in_range_node(), find free area top-down.
     240             :  *
     241             :  * Return:
     242             :  * Found address on success, 0 on failure.
     243             :  */
     244             : static phys_addr_t __init_memblock
     245          21 : __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
     246             :                                phys_addr_t size, phys_addr_t align, int nid,
     247             :                                enum memblock_flags flags)
     248             : {
     249             :         phys_addr_t this_start, this_end, cand;
     250             :         u64 i;
     251             : 
     252         124 :         for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
     253             :                                         NULL) {
     254         124 :                 this_start = clamp(this_start, start, end);
     255         124 :                 this_end = clamp(this_end, start, end);
     256             : 
     257         124 :                 if (this_end < size)
     258           0 :                         continue;
     259             : 
     260         124 :                 cand = round_down(this_end - size, align);
     261         124 :                 if (cand >= this_start)
     262             :                         return cand;
     263             :         }
     264             : 
     265             :         return 0;
     266             : }
     267             : 
     268             : /**
     269             :  * memblock_find_in_range_node - find free area in given range and node
     270             :  * @size: size of free area to find
     271             :  * @align: alignment of free area to find
     272             :  * @start: start of candidate range
     273             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     274             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     275             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     276             :  * @flags: pick from blocks based on memory attributes
     277             :  *
     278             :  * Find @size free area aligned to @align in the specified range and node.
     279             :  *
     280             :  * Return:
     281             :  * Found address on success, 0 on failure.
     282             :  */
     283          21 : static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
     284             :                                         phys_addr_t align, phys_addr_t start,
     285             :                                         phys_addr_t end, int nid,
     286             :                                         enum memblock_flags flags)
     287             : {
     288             :         /* pump up @end */
     289          21 :         if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
     290             :             end == MEMBLOCK_ALLOC_NOLEAKTRACE)
     291          18 :                 end = memblock.current_limit;
     292             : 
     293             :         /* avoid allocating the first page */
     294          21 :         start = max_t(phys_addr_t, start, PAGE_SIZE);
     295          21 :         end = max(start, end);
     296             : 
     297          21 :         if (memblock_bottom_up())
     298           0 :                 return __memblock_find_range_bottom_up(start, end, size, align,
     299             :                                                        nid, flags);
     300             :         else
     301          21 :                 return __memblock_find_range_top_down(start, end, size, align,
     302             :                                                       nid, flags);
     303             : }
     304             : 
     305             : /**
     306             :  * memblock_find_in_range - find free area in given range
     307             :  * @start: start of candidate range
     308             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     309             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     310             :  * @size: size of free area to find
     311             :  * @align: alignment of free area to find
     312             :  *
     313             :  * Find @size free area aligned to @align in the specified range.
     314             :  *
     315             :  * Return:
     316             :  * Found address on success, 0 on failure.
     317             :  */
     318           0 : static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
     319             :                                         phys_addr_t end, phys_addr_t size,
     320             :                                         phys_addr_t align)
     321             : {
     322             :         phys_addr_t ret;
     323           0 :         enum memblock_flags flags = choose_memblock_flags();
     324             : 
     325             : again:
     326           0 :         ret = memblock_find_in_range_node(size, align, start, end,
     327             :                                             NUMA_NO_NODE, flags);
     328             : 
     329           0 :         if (!ret && (flags & MEMBLOCK_MIRROR)) {
     330           0 :                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
     331             :                         &size);
     332           0 :                 flags &= ~MEMBLOCK_MIRROR;
     333           0 :                 goto again;
     334             :         }
     335             : 
     336           0 :         return ret;
     337             : }
     338             : 
     339           3 : static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
     340             : {
     341           3 :         type->total_size -= type->regions[r].size;
     342           3 :         memmove(&type->regions[r], &type->regions[r + 1],
     343           3 :                 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
     344           3 :         type->cnt--;
     345             : 
     346             :         /* Special case for empty arrays */
     347           3 :         if (type->cnt == 0) {
     348           0 :                 WARN_ON(type->total_size != 0);
     349           0 :                 type->cnt = 1;
     350           0 :                 type->regions[0].base = 0;
     351           0 :                 type->regions[0].size = 0;
     352           0 :                 type->regions[0].flags = 0;
     353           0 :                 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
     354             :         }
     355           3 : }
     356             : 
     357             : #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
     358             : /**
     359             :  * memblock_discard - discard memory and reserved arrays if they were allocated
     360             :  */
     361           1 : void __init memblock_discard(void)
     362             : {
     363             :         phys_addr_t addr, size;
     364             : 
     365           1 :         if (memblock.reserved.regions != memblock_reserved_init_regions) {
     366           0 :                 addr = __pa(memblock.reserved.regions);
     367           0 :                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
     368             :                                   memblock.reserved.max);
     369           0 :                 if (memblock_reserved_in_slab)
     370           0 :                         kfree(memblock.reserved.regions);
     371             :                 else
     372           0 :                         memblock_free_late(addr, size);
     373             :         }
     374             : 
     375           1 :         if (memblock.memory.regions != memblock_memory_init_regions) {
     376           0 :                 addr = __pa(memblock.memory.regions);
     377           0 :                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
     378             :                                   memblock.memory.max);
     379           0 :                 if (memblock_memory_in_slab)
     380           0 :                         kfree(memblock.memory.regions);
     381             :                 else
     382           0 :                         memblock_free_late(addr, size);
     383             :         }
     384             : 
     385           1 :         memblock_memory = NULL;
     386           1 : }
     387             : #endif
     388             : 
     389             : /**
     390             :  * memblock_double_array - double the size of the memblock regions array
     391             :  * @type: memblock type of the regions array being doubled
     392             :  * @new_area_start: starting address of memory range to avoid overlap with
     393             :  * @new_area_size: size of memory range to avoid overlap with
     394             :  *
     395             :  * Double the size of the @type regions array. If memblock is being used to
     396             :  * allocate memory for a new reserved regions array and there is a previously
     397             :  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
     398             :  * waiting to be reserved, ensure the memory used by the new array does
     399             :  * not overlap.
     400             :  *
     401             :  * Return:
     402             :  * 0 on success, -1 on failure.
     403             :  */
     404           0 : static int __init_memblock memblock_double_array(struct memblock_type *type,
     405             :                                                 phys_addr_t new_area_start,
     406             :                                                 phys_addr_t new_area_size)
     407             : {
     408             :         struct memblock_region *new_array, *old_array;
     409             :         phys_addr_t old_alloc_size, new_alloc_size;
     410             :         phys_addr_t old_size, new_size, addr, new_end;
     411           0 :         int use_slab = slab_is_available();
     412             :         int *in_slab;
     413             : 
     414             :         /* We don't allow resizing until we know about the reserved regions
     415             :          * of memory that aren't suitable for allocation
     416             :          */
     417           0 :         if (!memblock_can_resize)
     418             :                 return -1;
     419             : 
     420             :         /* Calculate new doubled size */
     421           0 :         old_size = type->max * sizeof(struct memblock_region);
     422           0 :         new_size = old_size << 1;
     423             :         /*
     424             :          * We need to allocated new one align to PAGE_SIZE,
     425             :          *   so we can free them completely later.
     426             :          */
     427           0 :         old_alloc_size = PAGE_ALIGN(old_size);
     428           0 :         new_alloc_size = PAGE_ALIGN(new_size);
     429             : 
     430             :         /* Retrieve the slab flag */
     431           0 :         if (type == &memblock.memory)
     432             :                 in_slab = &memblock_memory_in_slab;
     433             :         else
     434           0 :                 in_slab = &memblock_reserved_in_slab;
     435             : 
     436             :         /* Try to find some space for it */
     437           0 :         if (use_slab) {
     438           0 :                 new_array = kmalloc(new_size, GFP_KERNEL);
     439           0 :                 addr = new_array ? __pa(new_array) : 0;
     440             :         } else {
     441             :                 /* only exclude range when trying to double reserved.regions */
     442           0 :                 if (type != &memblock.reserved)
     443           0 :                         new_area_start = new_area_size = 0;
     444             : 
     445           0 :                 addr = memblock_find_in_range(new_area_start + new_area_size,
     446             :                                                 memblock.current_limit,
     447             :                                                 new_alloc_size, PAGE_SIZE);
     448           0 :                 if (!addr && new_area_size)
     449           0 :                         addr = memblock_find_in_range(0,
     450           0 :                                 min(new_area_start, memblock.current_limit),
     451             :                                 new_alloc_size, PAGE_SIZE);
     452             : 
     453           0 :                 new_array = addr ? __va(addr) : NULL;
     454             :         }
     455           0 :         if (!addr) {
     456           0 :                 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
     457             :                        type->name, type->max, type->max * 2);
     458           0 :                 return -1;
     459             :         }
     460             : 
     461           0 :         new_end = addr + new_size - 1;
     462           0 :         memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
     463             :                         type->name, type->max * 2, &addr, &new_end);
     464             : 
     465             :         /*
     466             :          * Found space, we now need to move the array over before we add the
     467             :          * reserved region since it may be our reserved array itself that is
     468             :          * full.
     469             :          */
     470           0 :         memcpy(new_array, type->regions, old_size);
     471           0 :         memset(new_array + type->max, 0, old_size);
     472           0 :         old_array = type->regions;
     473           0 :         type->regions = new_array;
     474           0 :         type->max <<= 1;
     475             : 
     476             :         /* Free old array. We needn't free it if the array is the static one */
     477           0 :         if (*in_slab)
     478           0 :                 kfree(old_array);
     479           0 :         else if (old_array != memblock_memory_init_regions &&
     480             :                  old_array != memblock_reserved_init_regions)
     481           0 :                 memblock_free(old_array, old_alloc_size);
     482             : 
     483             :         /*
     484             :          * Reserve the new array if that comes from the memblock.  Otherwise, we
     485             :          * needn't do it
     486             :          */
     487           0 :         if (!use_slab)
     488           0 :                 BUG_ON(memblock_reserve(addr, new_alloc_size));
     489             : 
     490             :         /* Update slab flag */
     491           0 :         *in_slab = use_slab;
     492             : 
     493           0 :         return 0;
     494             : }
     495             : 
     496             : /**
     497             :  * memblock_merge_regions - merge neighboring compatible regions
     498             :  * @type: memblock type to scan
     499             :  *
     500             :  * Scan @type and merge neighboring compatible regions.
     501             :  */
     502          22 : static void __init_memblock memblock_merge_regions(struct memblock_type *type)
     503             : {
     504             :         int i = 0;
     505             : 
     506             :         /* cnt never goes below 1 */
     507         179 :         while (i < type->cnt - 1) {
     508         157 :                 struct memblock_region *this = &type->regions[i];
     509         157 :                 struct memblock_region *next = &type->regions[i + 1];
     510             : 
     511         157 :                 if (this->base + this->size != next->base ||
     512           9 :                     memblock_get_region_node(this) !=
     513          18 :                     memblock_get_region_node(next) ||
     514           9 :                     this->flags != next->flags) {
     515         148 :                         BUG_ON(this->base + this->size > next->base);
     516         148 :                         i++;
     517         148 :                         continue;
     518             :                 }
     519             : 
     520           9 :                 this->size += next->size;
     521             :                 /* move forward from next + 1, index of which is i + 2 */
     522           9 :                 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
     523           9 :                 type->cnt--;
     524             :         }
     525          22 : }
     526             : 
     527             : /**
     528             :  * memblock_insert_region - insert new memblock region
     529             :  * @type:       memblock type to insert into
     530             :  * @idx:        index for the insertion point
     531             :  * @base:       base address of the new region
     532             :  * @size:       size of the new region
     533             :  * @nid:        node id of the new region
     534             :  * @flags:      flags of the new region
     535             :  *
     536             :  * Insert new memblock region [@base, @base + @size) into @type at @idx.
     537             :  * @type must already have extra room to accommodate the new region.
     538             :  */
     539          24 : static void __init_memblock memblock_insert_region(struct memblock_type *type,
     540             :                                                    int idx, phys_addr_t base,
     541             :                                                    phys_addr_t size,
     542             :                                                    int nid,
     543             :                                                    enum memblock_flags flags)
     544             : {
     545          24 :         struct memblock_region *rgn = &type->regions[idx];
     546             : 
     547          24 :         BUG_ON(type->cnt >= type->max);
     548          24 :         memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
     549          24 :         rgn->base = base;
     550          24 :         rgn->size = size;
     551          24 :         rgn->flags = flags;
     552          24 :         memblock_set_region_node(rgn, nid);
     553          24 :         type->cnt++;
     554          24 :         type->total_size += size;
     555          24 : }
     556             : 
     557             : /**
     558             :  * memblock_add_range - add new memblock region
     559             :  * @type: memblock type to add new region into
     560             :  * @base: base address of the new region
     561             :  * @size: size of the new region
     562             :  * @nid: nid of the new region
     563             :  * @flags: flags of the new region
     564             :  *
     565             :  * Add new memblock region [@base, @base + @size) into @type.  The new region
     566             :  * is allowed to overlap with existing ones - overlaps don't affect already
     567             :  * existing regions.  @type is guaranteed to be minimal (all neighbouring
     568             :  * compatible regions are merged) after the addition.
     569             :  *
     570             :  * Return:
     571             :  * 0 on success, -errno on failure.
     572             :  */
     573          23 : static int __init_memblock memblock_add_range(struct memblock_type *type,
     574             :                                 phys_addr_t base, phys_addr_t size,
     575             :                                 int nid, enum memblock_flags flags)
     576             : {
     577          23 :         bool insert = false;
     578          23 :         phys_addr_t obase = base;
     579          23 :         phys_addr_t end = base + memblock_cap_size(base, &size);
     580             :         int idx, nr_new;
     581             :         struct memblock_region *rgn;
     582             : 
     583          23 :         if (!size)
     584             :                 return 0;
     585             : 
     586             :         /* special case for empty array */
     587          23 :         if (type->regions[0].size == 0) {
     588           2 :                 WARN_ON(type->cnt != 1 || type->total_size);
     589           2 :                 type->regions[0].base = base;
     590           2 :                 type->regions[0].size = size;
     591           2 :                 type->regions[0].flags = flags;
     592           2 :                 memblock_set_region_node(&type->regions[0], nid);
     593           2 :                 type->total_size = size;
     594             :                 return 0;
     595             :         }
     596             : repeat:
     597             :         /*
     598             :          * The following is executed twice.  Once with %false @insert and
     599             :          * then with %true.  The first counts the number of regions needed
     600             :          * to accommodate the new area.  The second actually inserts them.
     601             :          */
     602          42 :         base = obase;
     603          42 :         nr_new = 0;
     604             : 
     605         110 :         for_each_memblock_type(idx, type, rgn) {
     606         108 :                 phys_addr_t rbase = rgn->base;
     607         108 :                 phys_addr_t rend = rbase + rgn->size;
     608             : 
     609         108 :                 if (rbase >= end)
     610             :                         break;
     611          68 :                 if (rend <= base)
     612          68 :                         continue;
     613             :                 /*
     614             :                  * @rgn overlaps.  If it separates the lower part of new
     615             :                  * area, insert that portion.
     616             :                  */
     617           0 :                 if (rbase > base) {
     618             : #ifdef CONFIG_NUMA
     619             :                         WARN_ON(nid != memblock_get_region_node(rgn));
     620             : #endif
     621           0 :                         WARN_ON(flags != rgn->flags);
     622           0 :                         nr_new++;
     623           0 :                         if (insert)
     624           0 :                                 memblock_insert_region(type, idx++, base,
     625             :                                                        rbase - base, nid,
     626             :                                                        flags);
     627             :                 }
     628             :                 /* area below @rend is dealt with, forget about it */
     629           0 :                 base = min(rend, end);
     630             :         }
     631             : 
     632             :         /* insert the remaining portion */
     633          42 :         if (base < end) {
     634          42 :                 nr_new++;
     635          42 :                 if (insert)
     636          21 :                         memblock_insert_region(type, idx, base, end - base,
     637             :                                                nid, flags);
     638             :         }
     639             : 
     640          42 :         if (!nr_new)
     641             :                 return 0;
     642             : 
     643             :         /*
     644             :          * If this was the first round, resize array and repeat for actual
     645             :          * insertions; otherwise, merge and return.
     646             :          */
     647          42 :         if (!insert) {
     648          21 :                 while (type->cnt + nr_new > type->max)
     649           0 :                         if (memblock_double_array(type, obase, size) < 0)
     650             :                                 return -ENOMEM;
     651             :                 insert = true;
     652             :                 goto repeat;
     653             :         } else {
     654          21 :                 memblock_merge_regions(type);
     655             :                 return 0;
     656             :         }
     657             : }
     658             : 
     659             : /**
     660             :  * memblock_add_node - add new memblock region within a NUMA node
     661             :  * @base: base address of the new region
     662             :  * @size: size of the new region
     663             :  * @nid: nid of the new region
     664             :  * @flags: flags of the new region
     665             :  *
     666             :  * Add new memblock region [@base, @base + @size) to the "memory"
     667             :  * type. See memblock_add_range() description for mode details
     668             :  *
     669             :  * Return:
     670             :  * 0 on success, -errno on failure.
     671             :  */
     672           0 : int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
     673             :                                       int nid, enum memblock_flags flags)
     674             : {
     675           0 :         phys_addr_t end = base + size - 1;
     676             : 
     677           0 :         memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
     678             :                      &base, &end, nid, flags, (void *)_RET_IP_);
     679             : 
     680           0 :         return memblock_add_range(&memblock.memory, base, size, nid, flags);
     681             : }
     682             : 
     683             : /**
     684             :  * memblock_add - add new memblock region
     685             :  * @base: base address of the new region
     686             :  * @size: size of the new region
     687             :  *
     688             :  * Add new memblock region [@base, @base + @size) to the "memory"
     689             :  * type. See memblock_add_range() description for mode details
     690             :  *
     691             :  * Return:
     692             :  * 0 on success, -errno on failure.
     693             :  */
     694           1 : int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
     695             : {
     696           1 :         phys_addr_t end = base + size - 1;
     697             : 
     698           1 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     699             :                      &base, &end, (void *)_RET_IP_);
     700             : 
     701           1 :         return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
     702             : }
     703             : 
     704             : /**
     705             :  * memblock_isolate_range - isolate given range into disjoint memblocks
     706             :  * @type: memblock type to isolate range for
     707             :  * @base: base of range to isolate
     708             :  * @size: size of range to isolate
     709             :  * @start_rgn: out parameter for the start of isolated region
     710             :  * @end_rgn: out parameter for the end of isolated region
     711             :  *
     712             :  * Walk @type and ensure that regions don't cross the boundaries defined by
     713             :  * [@base, @base + @size).  Crossing regions are split at the boundaries,
     714             :  * which may create at most two more regions.  The index of the first
     715             :  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
     716             :  *
     717             :  * Return:
     718             :  * 0 on success, -errno on failure.
     719             :  */
     720           4 : static int __init_memblock memblock_isolate_range(struct memblock_type *type,
     721             :                                         phys_addr_t base, phys_addr_t size,
     722             :                                         int *start_rgn, int *end_rgn)
     723             : {
     724           4 :         phys_addr_t end = base + memblock_cap_size(base, &size);
     725             :         int idx;
     726             :         struct memblock_region *rgn;
     727             : 
     728           4 :         *start_rgn = *end_rgn = 0;
     729             : 
     730           4 :         if (!size)
     731             :                 return 0;
     732             : 
     733             :         /* we'll create at most two more regions */
     734           4 :         while (type->cnt + 2 > type->max)
     735           0 :                 if (memblock_double_array(type, base, size) < 0)
     736             :                         return -ENOMEM;
     737             : 
     738          15 :         for_each_memblock_type(idx, type, rgn) {
     739          14 :                 phys_addr_t rbase = rgn->base;
     740          14 :                 phys_addr_t rend = rbase + rgn->size;
     741             : 
     742          14 :                 if (rbase >= end)
     743             :                         break;
     744          11 :                 if (rend <= base)
     745           4 :                         continue;
     746             : 
     747           7 :                 if (rbase < base) {
     748             :                         /*
     749             :                          * @rgn intersects from below.  Split and continue
     750             :                          * to process the next region - the new top half.
     751             :                          */
     752           2 :                         rgn->base = base;
     753           2 :                         rgn->size -= base - rbase;
     754           2 :                         type->total_size -= base - rbase;
     755           2 :                         memblock_insert_region(type, idx, rbase, base - rbase,
     756             :                                                memblock_get_region_node(rgn),
     757             :                                                rgn->flags);
     758           5 :                 } else if (rend > end) {
     759             :                         /*
     760             :                          * @rgn intersects from above.  Split and redo the
     761             :                          * current region - the new bottom half.
     762             :                          */
     763           1 :                         rgn->base = end;
     764           1 :                         rgn->size -= end - rbase;
     765           1 :                         type->total_size -= end - rbase;
     766           1 :                         memblock_insert_region(type, idx--, rbase, end - rbase,
     767             :                                                memblock_get_region_node(rgn),
     768             :                                                rgn->flags);
     769             :                 } else {
     770             :                         /* @rgn is fully contained, record it */
     771           4 :                         if (!*end_rgn)
     772           4 :                                 *start_rgn = idx;
     773           4 :                         *end_rgn = idx + 1;
     774             :                 }
     775             :         }
     776             : 
     777             :         return 0;
     778             : }
     779             : 
     780           3 : static int __init_memblock memblock_remove_range(struct memblock_type *type,
     781             :                                           phys_addr_t base, phys_addr_t size)
     782             : {
     783             :         int start_rgn, end_rgn;
     784             :         int i, ret;
     785             : 
     786           3 :         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
     787           3 :         if (ret)
     788             :                 return ret;
     789             : 
     790           6 :         for (i = end_rgn - 1; i >= start_rgn; i--)
     791           3 :                 memblock_remove_region(type, i);
     792             :         return 0;
     793             : }
     794             : 
     795           0 : int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
     796             : {
     797           0 :         phys_addr_t end = base + size - 1;
     798             : 
     799           0 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     800             :                      &base, &end, (void *)_RET_IP_);
     801             : 
     802           0 :         return memblock_remove_range(&memblock.memory, base, size);
     803             : }
     804             : 
     805             : /**
     806             :  * memblock_free - free boot memory allocation
     807             :  * @ptr: starting address of the  boot memory allocation
     808             :  * @size: size of the boot memory block in bytes
     809             :  *
     810             :  * Free boot memory block previously allocated by memblock_alloc_xx() API.
     811             :  * The freeing memory will not be released to the buddy allocator.
     812             :  */
     813           3 : void __init_memblock memblock_free(void *ptr, size_t size)
     814             : {
     815           3 :         if (ptr)
     816           3 :                 memblock_phys_free(__pa(ptr), size);
     817           3 : }
     818             : 
     819             : /**
     820             :  * memblock_phys_free - free boot memory block
     821             :  * @base: phys starting address of the  boot memory block
     822             :  * @size: size of the boot memory block in bytes
     823             :  *
     824             :  * Free boot memory block previously allocated by memblock_alloc_xx() API.
     825             :  * The freeing memory will not be released to the buddy allocator.
     826             :  */
     827           3 : int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
     828             : {
     829           3 :         phys_addr_t end = base + size - 1;
     830             : 
     831           3 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     832             :                      &base, &end, (void *)_RET_IP_);
     833             : 
     834           3 :         kmemleak_free_part_phys(base, size);
     835           3 :         return memblock_remove_range(&memblock.reserved, base, size);
     836             : }
     837             : 
     838          22 : int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
     839             : {
     840          22 :         phys_addr_t end = base + size - 1;
     841             : 
     842          22 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     843             :                      &base, &end, (void *)_RET_IP_);
     844             : 
     845          22 :         return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
     846             : }
     847             : 
     848             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
     849             : int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
     850             : {
     851             :         phys_addr_t end = base + size - 1;
     852             : 
     853             :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     854             :                      &base, &end, (void *)_RET_IP_);
     855             : 
     856             :         return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
     857             : }
     858             : #endif
     859             : 
     860             : /**
     861             :  * memblock_setclr_flag - set or clear flag for a memory region
     862             :  * @base: base address of the region
     863             :  * @size: size of the region
     864             :  * @set: set or clear the flag
     865             :  * @flag: the flag to update
     866             :  *
     867             :  * This function isolates region [@base, @base + @size), and sets/clears flag
     868             :  *
     869             :  * Return: 0 on success, -errno on failure.
     870             :  */
     871           1 : static int __init_memblock memblock_setclr_flag(phys_addr_t base,
     872             :                                 phys_addr_t size, int set, int flag)
     873             : {
     874           1 :         struct memblock_type *type = &memblock.memory;
     875             :         int i, ret, start_rgn, end_rgn;
     876             : 
     877           1 :         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
     878           1 :         if (ret)
     879             :                 return ret;
     880             : 
     881           2 :         for (i = start_rgn; i < end_rgn; i++) {
     882           1 :                 struct memblock_region *r = &type->regions[i];
     883             : 
     884           1 :                 if (set)
     885           0 :                         r->flags |= flag;
     886             :                 else
     887           1 :                         r->flags &= ~flag;
     888             :         }
     889             : 
     890           1 :         memblock_merge_regions(type);
     891           1 :         return 0;
     892             : }
     893             : 
     894             : /**
     895             :  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
     896             :  * @base: the base phys addr of the region
     897             :  * @size: the size of the region
     898             :  *
     899             :  * Return: 0 on success, -errno on failure.
     900             :  */
     901           0 : int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
     902             : {
     903           0 :         return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
     904             : }
     905             : 
     906             : /**
     907             :  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
     908             :  * @base: the base phys addr of the region
     909             :  * @size: the size of the region
     910             :  *
     911             :  * Return: 0 on success, -errno on failure.
     912             :  */
     913           1 : int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
     914             : {
     915           1 :         return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
     916             : }
     917             : 
     918             : /**
     919             :  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
     920             :  * @base: the base phys addr of the region
     921             :  * @size: the size of the region
     922             :  *
     923             :  * Return: 0 on success, -errno on failure.
     924             :  */
     925           0 : int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
     926             : {
     927           0 :         system_has_some_mirror = true;
     928             : 
     929           0 :         return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
     930             : }
     931             : 
     932             : /**
     933             :  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
     934             :  * @base: the base phys addr of the region
     935             :  * @size: the size of the region
     936             :  *
     937             :  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
     938             :  * direct mapping of the physical memory. These regions will still be
     939             :  * covered by the memory map. The struct page representing NOMAP memory
     940             :  * frames in the memory map will be PageReserved()
     941             :  *
     942             :  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
     943             :  * memblock, the caller must inform kmemleak to ignore that memory
     944             :  *
     945             :  * Return: 0 on success, -errno on failure.
     946             :  */
     947           0 : int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
     948             : {
     949           0 :         return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
     950             : }
     951             : 
     952             : /**
     953             :  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
     954             :  * @base: the base phys addr of the region
     955             :  * @size: the size of the region
     956             :  *
     957             :  * Return: 0 on success, -errno on failure.
     958             :  */
     959           0 : int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
     960             : {
     961           0 :         return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
     962             : }
     963             : 
     964         150 : static bool should_skip_region(struct memblock_type *type,
     965             :                                struct memblock_region *m,
     966             :                                int nid, int flags)
     967             : {
     968         150 :         int m_nid = memblock_get_region_node(m);
     969             : 
     970             :         /* we never skip regions when iterating memblock.reserved or physmem */
     971         150 :         if (type != memblock_memory)
     972             :                 return false;
     973             : 
     974             :         /* only memory regions are associated with nodes, check it */
     975         137 :         if (nid != NUMA_NO_NODE && nid != m_nid)
     976             :                 return true;
     977             : 
     978             :         /* skip hotpluggable memory regions if needed */
     979             :         if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
     980             :             !(flags & MEMBLOCK_HOTPLUG))
     981             :                 return true;
     982             : 
     983             :         /* if we want mirror memory skip non-mirror memory regions */
     984         137 :         if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
     985             :                 return true;
     986             : 
     987             :         /* skip nomap memory unless we were asked for it explicitly */
     988         274 :         if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
     989             :                 return true;
     990             : 
     991             :         /* skip driver-managed memory unless we were asked for it explicitly */
     992         274 :         if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
     993             :                 return true;
     994             : 
     995             :         return false;
     996             : }
     997             : 
     998             : /**
     999             :  * __next_mem_range - next function for for_each_free_mem_range() etc.
    1000             :  * @idx: pointer to u64 loop variable
    1001             :  * @nid: node selector, %NUMA_NO_NODE for all nodes
    1002             :  * @flags: pick from blocks based on memory attributes
    1003             :  * @type_a: pointer to memblock_type from where the range is taken
    1004             :  * @type_b: pointer to memblock_type which excludes memory from being taken
    1005             :  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
    1006             :  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
    1007             :  * @out_nid: ptr to int for nid of the range, can be %NULL
    1008             :  *
    1009             :  * Find the first area from *@idx which matches @nid, fill the out
    1010             :  * parameters, and update *@idx for the next iteration.  The lower 32bit of
    1011             :  * *@idx contains index into type_a and the upper 32bit indexes the
    1012             :  * areas before each region in type_b.  For example, if type_b regions
    1013             :  * look like the following,
    1014             :  *
    1015             :  *      0:[0-16), 1:[32-48), 2:[128-130)
    1016             :  *
    1017             :  * The upper 32bit indexes the following regions.
    1018             :  *
    1019             :  *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
    1020             :  *
    1021             :  * As both region arrays are sorted, the function advances the two indices
    1022             :  * in lockstep and returns each intersection.
    1023             :  */
    1024          27 : void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
    1025             :                       struct memblock_type *type_a,
    1026             :                       struct memblock_type *type_b, phys_addr_t *out_start,
    1027             :                       phys_addr_t *out_end, int *out_nid)
    1028             : {
    1029          27 :         int idx_a = *idx & 0xffffffff;
    1030          27 :         int idx_b = *idx >> 32;
    1031             : 
    1032          27 :         if (WARN_ONCE(nid == MAX_NUMNODES,
    1033             :         "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    1034           0 :                 nid = NUMA_NO_NODE;
    1035             : 
    1036           1 :         for (; idx_a < type_a->cnt; idx_a++) {
    1037          26 :                 struct memblock_region *m = &type_a->regions[idx_a];
    1038             : 
    1039          26 :                 phys_addr_t m_start = m->base;
    1040          26 :                 phys_addr_t m_end = m->base + m->size;
    1041          26 :                 int         m_nid = memblock_get_region_node(m);
    1042             : 
    1043          26 :                 if (should_skip_region(type_a, m, nid, flags))
    1044           0 :                         continue;
    1045             : 
    1046          26 :                 if (!type_b) {
    1047          13 :                         if (out_start)
    1048          13 :                                 *out_start = m_start;
    1049          13 :                         if (out_end)
    1050          13 :                                 *out_end = m_end;
    1051          13 :                         if (out_nid)
    1052           0 :                                 *out_nid = m_nid;
    1053          13 :                         idx_a++;
    1054          13 :                         *idx = (u32)idx_a | (u64)idx_b << 32;
    1055          13 :                         return;
    1056             :                 }
    1057             : 
    1058             :                 /* scan areas before each reservation */
    1059           1 :                 for (; idx_b < type_b->cnt + 1; idx_b++) {
    1060             :                         struct memblock_region *r;
    1061             :                         phys_addr_t r_start;
    1062             :                         phys_addr_t r_end;
    1063             : 
    1064          14 :                         r = &type_b->regions[idx_b];
    1065          14 :                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
    1066          14 :                         r_end = idx_b < type_b->cnt ?
    1067          14 :                                 r->base : PHYS_ADDR_MAX;
    1068             : 
    1069             :                         /*
    1070             :                          * if idx_b advanced past idx_a,
    1071             :                          * break out to advance idx_a
    1072             :                          */
    1073          14 :                         if (r_start >= m_end)
    1074             :                                 break;
    1075             :                         /* if the two regions intersect, we're done */
    1076          13 :                         if (m_start < r_end) {
    1077          12 :                                 if (out_start)
    1078          12 :                                         *out_start =
    1079          12 :                                                 max(m_start, r_start);
    1080          12 :                                 if (out_end)
    1081          12 :                                         *out_end = min(m_end, r_end);
    1082          12 :                                 if (out_nid)
    1083           0 :                                         *out_nid = m_nid;
    1084             :                                 /*
    1085             :                                  * The region which ends first is
    1086             :                                  * advanced for the next iteration.
    1087             :                                  */
    1088          12 :                                 if (m_end <= r_end)
    1089           0 :                                         idx_a++;
    1090             :                                 else
    1091          12 :                                         idx_b++;
    1092          12 :                                 *idx = (u32)idx_a | (u64)idx_b << 32;
    1093          12 :                                 return;
    1094             :                         }
    1095             :                 }
    1096             :         }
    1097             : 
    1098             :         /* signal end of iteration */
    1099           2 :         *idx = ULLONG_MAX;
    1100             : }
    1101             : 
    1102             : /**
    1103             :  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
    1104             :  *
    1105             :  * @idx: pointer to u64 loop variable
    1106             :  * @nid: node selector, %NUMA_NO_NODE for all nodes
    1107             :  * @flags: pick from blocks based on memory attributes
    1108             :  * @type_a: pointer to memblock_type from where the range is taken
    1109             :  * @type_b: pointer to memblock_type which excludes memory from being taken
    1110             :  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
    1111             :  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
    1112             :  * @out_nid: ptr to int for nid of the range, can be %NULL
    1113             :  *
    1114             :  * Finds the next range from type_a which is not marked as unsuitable
    1115             :  * in type_b.
    1116             :  *
    1117             :  * Reverse of __next_mem_range().
    1118             :  */
    1119         124 : void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
    1120             :                                           enum memblock_flags flags,
    1121             :                                           struct memblock_type *type_a,
    1122             :                                           struct memblock_type *type_b,
    1123             :                                           phys_addr_t *out_start,
    1124             :                                           phys_addr_t *out_end, int *out_nid)
    1125             : {
    1126         124 :         int idx_a = *idx & 0xffffffff;
    1127         124 :         int idx_b = *idx >> 32;
    1128             : 
    1129         124 :         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    1130           0 :                 nid = NUMA_NO_NODE;
    1131             : 
    1132         124 :         if (*idx == (u64)ULLONG_MAX) {
    1133          21 :                 idx_a = type_a->cnt - 1;
    1134          21 :                 if (type_b != NULL)
    1135          21 :                         idx_b = type_b->cnt;
    1136             :                 else
    1137             :                         idx_b = 0;
    1138             :         }
    1139             : 
    1140           0 :         for (; idx_a >= 0; idx_a--) {
    1141         124 :                 struct memblock_region *m = &type_a->regions[idx_a];
    1142             : 
    1143         124 :                 phys_addr_t m_start = m->base;
    1144         124 :                 phys_addr_t m_end = m->base + m->size;
    1145         124 :                 int m_nid = memblock_get_region_node(m);
    1146             : 
    1147         124 :                 if (should_skip_region(type_a, m, nid, flags))
    1148           0 :                         continue;
    1149             : 
    1150         124 :                 if (!type_b) {
    1151           0 :                         if (out_start)
    1152           0 :                                 *out_start = m_start;
    1153           0 :                         if (out_end)
    1154           0 :                                 *out_end = m_end;
    1155           0 :                         if (out_nid)
    1156           0 :                                 *out_nid = m_nid;
    1157           0 :                         idx_a--;
    1158           0 :                         *idx = (u32)idx_a | (u64)idx_b << 32;
    1159           0 :                         return;
    1160             :                 }
    1161             : 
    1162             :                 /* scan areas before each reservation */
    1163          20 :                 for (; idx_b >= 0; idx_b--) {
    1164             :                         struct memblock_region *r;
    1165             :                         phys_addr_t r_start;
    1166             :                         phys_addr_t r_end;
    1167             : 
    1168         144 :                         r = &type_b->regions[idx_b];
    1169         144 :                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
    1170         288 :                         r_end = idx_b < type_b->cnt ?
    1171         144 :                                 r->base : PHYS_ADDR_MAX;
    1172             :                         /*
    1173             :                          * if idx_b advanced past idx_a,
    1174             :                          * break out to advance idx_a
    1175             :                          */
    1176             : 
    1177         144 :                         if (r_end <= m_start)
    1178             :                                 break;
    1179             :                         /* if the two regions intersect, we're done */
    1180         144 :                         if (m_end > r_start) {
    1181         124 :                                 if (out_start)
    1182         124 :                                         *out_start = max(m_start, r_start);
    1183         124 :                                 if (out_end)
    1184         124 :                                         *out_end = min(m_end, r_end);
    1185         124 :                                 if (out_nid)
    1186           0 :                                         *out_nid = m_nid;
    1187         124 :                                 if (m_start >= r_start)
    1188           0 :                                         idx_a--;
    1189             :                                 else
    1190         124 :                                         idx_b--;
    1191         124 :                                 *idx = (u32)idx_a | (u64)idx_b << 32;
    1192         124 :                                 return;
    1193             :                         }
    1194             :                 }
    1195             :         }
    1196             :         /* signal end of iteration */
    1197           0 :         *idx = ULLONG_MAX;
    1198             : }
    1199             : 
    1200             : /*
    1201             :  * Common iterator interface used to define for_each_mem_pfn_range().
    1202             :  */
    1203          12 : void __init_memblock __next_mem_pfn_range(int *idx, int nid,
    1204             :                                 unsigned long *out_start_pfn,
    1205             :                                 unsigned long *out_end_pfn, int *out_nid)
    1206             : {
    1207          12 :         struct memblock_type *type = &memblock.memory;
    1208             :         struct memblock_region *r;
    1209             :         int r_nid;
    1210             : 
    1211          24 :         while (++*idx < type->cnt) {
    1212           6 :                 r = &type->regions[*idx];
    1213           6 :                 r_nid = memblock_get_region_node(r);
    1214             : 
    1215           6 :                 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
    1216           0 :                         continue;
    1217           6 :                 if (nid == MAX_NUMNODES || nid == r_nid)
    1218             :                         break;
    1219             :         }
    1220          12 :         if (*idx >= type->cnt) {
    1221           6 :                 *idx = -1;
    1222           6 :                 return;
    1223             :         }
    1224             : 
    1225           6 :         if (out_start_pfn)
    1226           6 :                 *out_start_pfn = PFN_UP(r->base);
    1227           6 :         if (out_end_pfn)
    1228           6 :                 *out_end_pfn = PFN_DOWN(r->base + r->size);
    1229           6 :         if (out_nid)
    1230           3 :                 *out_nid = r_nid;
    1231             : }
    1232             : 
    1233             : /**
    1234             :  * memblock_set_node - set node ID on memblock regions
    1235             :  * @base: base of area to set node ID for
    1236             :  * @size: size of area to set node ID for
    1237             :  * @type: memblock type to set node ID for
    1238             :  * @nid: node ID to set
    1239             :  *
    1240             :  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
    1241             :  * Regions which cross the area boundaries are split as necessary.
    1242             :  *
    1243             :  * Return:
    1244             :  * 0 on success, -errno on failure.
    1245             :  */
    1246           0 : int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
    1247             :                                       struct memblock_type *type, int nid)
    1248             : {
    1249             : #ifdef CONFIG_NUMA
    1250             :         int start_rgn, end_rgn;
    1251             :         int i, ret;
    1252             : 
    1253             :         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
    1254             :         if (ret)
    1255             :                 return ret;
    1256             : 
    1257             :         for (i = start_rgn; i < end_rgn; i++)
    1258             :                 memblock_set_region_node(&type->regions[i], nid);
    1259             : 
    1260             :         memblock_merge_regions(type);
    1261             : #endif
    1262           0 :         return 0;
    1263             : }
    1264             : 
    1265             : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    1266             : /**
    1267             :  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
    1268             :  *
    1269             :  * @idx: pointer to u64 loop variable
    1270             :  * @zone: zone in which all of the memory blocks reside
    1271             :  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
    1272             :  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
    1273             :  *
    1274             :  * This function is meant to be a zone/pfn specific wrapper for the
    1275             :  * for_each_mem_range type iterators. Specifically they are used in the
    1276             :  * deferred memory init routines and as such we were duplicating much of
    1277             :  * this logic throughout the code. So instead of having it in multiple
    1278             :  * locations it seemed like it would make more sense to centralize this to
    1279             :  * one new iterator that does everything they need.
    1280             :  */
    1281             : void __init_memblock
    1282             : __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
    1283             :                              unsigned long *out_spfn, unsigned long *out_epfn)
    1284             : {
    1285             :         int zone_nid = zone_to_nid(zone);
    1286             :         phys_addr_t spa, epa;
    1287             : 
    1288             :         __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
    1289             :                          &memblock.memory, &memblock.reserved,
    1290             :                          &spa, &epa, NULL);
    1291             : 
    1292             :         while (*idx != U64_MAX) {
    1293             :                 unsigned long epfn = PFN_DOWN(epa);
    1294             :                 unsigned long spfn = PFN_UP(spa);
    1295             : 
    1296             :                 /*
    1297             :                  * Verify the end is at least past the start of the zone and
    1298             :                  * that we have at least one PFN to initialize.
    1299             :                  */
    1300             :                 if (zone->zone_start_pfn < epfn && spfn < epfn) {
    1301             :                         /* if we went too far just stop searching */
    1302             :                         if (zone_end_pfn(zone) <= spfn) {
    1303             :                                 *idx = U64_MAX;
    1304             :                                 break;
    1305             :                         }
    1306             : 
    1307             :                         if (out_spfn)
    1308             :                                 *out_spfn = max(zone->zone_start_pfn, spfn);
    1309             :                         if (out_epfn)
    1310             :                                 *out_epfn = min(zone_end_pfn(zone), epfn);
    1311             : 
    1312             :                         return;
    1313             :                 }
    1314             : 
    1315             :                 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
    1316             :                                  &memblock.memory, &memblock.reserved,
    1317             :                                  &spa, &epa, NULL);
    1318             :         }
    1319             : 
    1320             :         /* signal end of iteration */
    1321             :         if (out_spfn)
    1322             :                 *out_spfn = ULONG_MAX;
    1323             :         if (out_epfn)
    1324             :                 *out_epfn = 0;
    1325             : }
    1326             : 
    1327             : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
    1328             : 
    1329             : /**
    1330             :  * memblock_alloc_range_nid - allocate boot memory block
    1331             :  * @size: size of memory block to be allocated in bytes
    1332             :  * @align: alignment of the region and block's size
    1333             :  * @start: the lower bound of the memory region to allocate (phys address)
    1334             :  * @end: the upper bound of the memory region to allocate (phys address)
    1335             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1336             :  * @exact_nid: control the allocation fall back to other nodes
    1337             :  *
    1338             :  * The allocation is performed from memory region limited by
    1339             :  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
    1340             :  *
    1341             :  * If the specified node can not hold the requested memory and @exact_nid
    1342             :  * is false, the allocation falls back to any node in the system.
    1343             :  *
    1344             :  * For systems with memory mirroring, the allocation is attempted first
    1345             :  * from the regions with mirroring enabled and then retried from any
    1346             :  * memory region.
    1347             :  *
    1348             :  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
    1349             :  * allocated boot memory block, so that it is never reported as leaks.
    1350             :  *
    1351             :  * Return:
    1352             :  * Physical address of allocated memory block on success, %0 on failure.
    1353             :  */
    1354          21 : phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
    1355             :                                         phys_addr_t align, phys_addr_t start,
    1356             :                                         phys_addr_t end, int nid,
    1357             :                                         bool exact_nid)
    1358             : {
    1359          21 :         enum memblock_flags flags = choose_memblock_flags();
    1360             :         phys_addr_t found;
    1361             : 
    1362          21 :         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    1363           0 :                 nid = NUMA_NO_NODE;
    1364             : 
    1365          21 :         if (!align) {
    1366             :                 /* Can't use WARNs this early in boot on powerpc */
    1367           0 :                 dump_stack();
    1368           0 :                 align = SMP_CACHE_BYTES;
    1369             :         }
    1370             : 
    1371             : again:
    1372          21 :         found = memblock_find_in_range_node(size, align, start, end, nid,
    1373             :                                             flags);
    1374          21 :         if (found && !memblock_reserve(found, size))
    1375             :                 goto done;
    1376             : 
    1377           0 :         if (nid != NUMA_NO_NODE && !exact_nid) {
    1378           0 :                 found = memblock_find_in_range_node(size, align, start,
    1379             :                                                     end, NUMA_NO_NODE,
    1380             :                                                     flags);
    1381           0 :                 if (found && !memblock_reserve(found, size))
    1382             :                         goto done;
    1383             :         }
    1384             : 
    1385           0 :         if (flags & MEMBLOCK_MIRROR) {
    1386           0 :                 flags &= ~MEMBLOCK_MIRROR;
    1387           0 :                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
    1388             :                         &size);
    1389           0 :                 goto again;
    1390             :         }
    1391             : 
    1392             :         return 0;
    1393             : 
    1394             : done:
    1395             :         /*
    1396             :          * Skip kmemleak for those places like kasan_init() and
    1397             :          * early_pgtable_alloc() due to high volume.
    1398             :          */
    1399             :         if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
    1400             :                 /*
    1401             :                  * The min_count is set to 0 so that memblock allocated
    1402             :                  * blocks are never reported as leaks. This is because many
    1403             :                  * of these blocks are only referred via the physical
    1404             :                  * address which is not looked up by kmemleak.
    1405             :                  */
    1406             :                 kmemleak_alloc_phys(found, size, 0, 0);
    1407             : 
    1408             :         return found;
    1409             : }
    1410             : 
    1411             : /**
    1412             :  * memblock_phys_alloc_range - allocate a memory block inside specified range
    1413             :  * @size: size of memory block to be allocated in bytes
    1414             :  * @align: alignment of the region and block's size
    1415             :  * @start: the lower bound of the memory region to allocate (physical address)
    1416             :  * @end: the upper bound of the memory region to allocate (physical address)
    1417             :  *
    1418             :  * Allocate @size bytes in the between @start and @end.
    1419             :  *
    1420             :  * Return: physical address of the allocated memory block on success,
    1421             :  * %0 on failure.
    1422             :  */
    1423           0 : phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
    1424             :                                              phys_addr_t align,
    1425             :                                              phys_addr_t start,
    1426             :                                              phys_addr_t end)
    1427             : {
    1428           0 :         memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
    1429             :                      __func__, (u64)size, (u64)align, &start, &end,
    1430             :                      (void *)_RET_IP_);
    1431           0 :         return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
    1432             :                                         false);
    1433             : }
    1434             : 
    1435             : /**
    1436             :  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
    1437             :  * @size: size of memory block to be allocated in bytes
    1438             :  * @align: alignment of the region and block's size
    1439             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1440             :  *
    1441             :  * Allocates memory block from the specified NUMA node. If the node
    1442             :  * has no available memory, attempts to allocated from any node in the
    1443             :  * system.
    1444             :  *
    1445             :  * Return: physical address of the allocated memory block on success,
    1446             :  * %0 on failure.
    1447             :  */
    1448           0 : phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
    1449             : {
    1450           0 :         return memblock_alloc_range_nid(size, align, 0,
    1451             :                                         MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
    1452             : }
    1453             : 
    1454             : /**
    1455             :  * memblock_alloc_internal - allocate boot memory block
    1456             :  * @size: size of memory block to be allocated in bytes
    1457             :  * @align: alignment of the region and block's size
    1458             :  * @min_addr: the lower bound of the memory region to allocate (phys address)
    1459             :  * @max_addr: the upper bound of the memory region to allocate (phys address)
    1460             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1461             :  * @exact_nid: control the allocation fall back to other nodes
    1462             :  *
    1463             :  * Allocates memory block using memblock_alloc_range_nid() and
    1464             :  * converts the returned physical address to virtual.
    1465             :  *
    1466             :  * The @min_addr limit is dropped if it can not be satisfied and the allocation
    1467             :  * will fall back to memory below @min_addr. Other constraints, such
    1468             :  * as node and mirrored memory will be handled again in
    1469             :  * memblock_alloc_range_nid().
    1470             :  *
    1471             :  * Return:
    1472             :  * Virtual address of allocated memory block on success, NULL on failure.
    1473             :  */
    1474          21 : static void * __init memblock_alloc_internal(
    1475             :                                 phys_addr_t size, phys_addr_t align,
    1476             :                                 phys_addr_t min_addr, phys_addr_t max_addr,
    1477             :                                 int nid, bool exact_nid)
    1478             : {
    1479             :         phys_addr_t alloc;
    1480             : 
    1481             :         /*
    1482             :          * Detect any accidental use of these APIs after slab is ready, as at
    1483             :          * this moment memblock may be deinitialized already and its
    1484             :          * internal data may be destroyed (after execution of memblock_free_all)
    1485             :          */
    1486          21 :         if (WARN_ON_ONCE(slab_is_available()))
    1487           0 :                 return kzalloc_node(size, GFP_NOWAIT, nid);
    1488             : 
    1489          21 :         if (max_addr > memblock.current_limit)
    1490           0 :                 max_addr = memblock.current_limit;
    1491             : 
    1492          21 :         alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
    1493             :                                         exact_nid);
    1494             : 
    1495             :         /* retry allocation without lower limit */
    1496          21 :         if (!alloc && min_addr)
    1497           0 :                 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
    1498             :                                                 exact_nid);
    1499             : 
    1500          21 :         if (!alloc)
    1501             :                 return NULL;
    1502             : 
    1503          21 :         return phys_to_virt(alloc);
    1504             : }
    1505             : 
    1506             : /**
    1507             :  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
    1508             :  * without zeroing memory
    1509             :  * @size: size of memory block to be allocated in bytes
    1510             :  * @align: alignment of the region and block's size
    1511             :  * @min_addr: the lower bound of the memory region from where the allocation
    1512             :  *        is preferred (phys address)
    1513             :  * @max_addr: the upper bound of the memory region from where the allocation
    1514             :  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
    1515             :  *            allocate only from memory limited by memblock.current_limit value
    1516             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1517             :  *
    1518             :  * Public function, provides additional debug information (including caller
    1519             :  * info), if enabled. Does not zero allocated memory.
    1520             :  *
    1521             :  * Return:
    1522             :  * Virtual address of allocated memory block on success, NULL on failure.
    1523             :  */
    1524           0 : void * __init memblock_alloc_exact_nid_raw(
    1525             :                         phys_addr_t size, phys_addr_t align,
    1526             :                         phys_addr_t min_addr, phys_addr_t max_addr,
    1527             :                         int nid)
    1528             : {
    1529           0 :         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
    1530             :                      __func__, (u64)size, (u64)align, nid, &min_addr,
    1531             :                      &max_addr, (void *)_RET_IP_);
    1532             : 
    1533           0 :         return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
    1534             :                                        true);
    1535             : }
    1536             : 
    1537             : /**
    1538             :  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
    1539             :  * memory and without panicking
    1540             :  * @size: size of memory block to be allocated in bytes
    1541             :  * @align: alignment of the region and block's size
    1542             :  * @min_addr: the lower bound of the memory region from where the allocation
    1543             :  *        is preferred (phys address)
    1544             :  * @max_addr: the upper bound of the memory region from where the allocation
    1545             :  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
    1546             :  *            allocate only from memory limited by memblock.current_limit value
    1547             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1548             :  *
    1549             :  * Public function, provides additional debug information (including caller
    1550             :  * info), if enabled. Does not zero allocated memory, does not panic if request
    1551             :  * cannot be satisfied.
    1552             :  *
    1553             :  * Return:
    1554             :  * Virtual address of allocated memory block on success, NULL on failure.
    1555             :  */
    1556           1 : void * __init memblock_alloc_try_nid_raw(
    1557             :                         phys_addr_t size, phys_addr_t align,
    1558             :                         phys_addr_t min_addr, phys_addr_t max_addr,
    1559             :                         int nid)
    1560             : {
    1561           1 :         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
    1562             :                      __func__, (u64)size, (u64)align, nid, &min_addr,
    1563             :                      &max_addr, (void *)_RET_IP_);
    1564             : 
    1565           1 :         return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
    1566             :                                        false);
    1567             : }
    1568             : 
    1569             : /**
    1570             :  * memblock_alloc_try_nid - allocate boot memory block
    1571             :  * @size: size of memory block to be allocated in bytes
    1572             :  * @align: alignment of the region and block's size
    1573             :  * @min_addr: the lower bound of the memory region from where the allocation
    1574             :  *        is preferred (phys address)
    1575             :  * @max_addr: the upper bound of the memory region from where the allocation
    1576             :  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
    1577             :  *            allocate only from memory limited by memblock.current_limit value
    1578             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1579             :  *
    1580             :  * Public function, provides additional debug information (including caller
    1581             :  * info), if enabled. This function zeroes the allocated memory.
    1582             :  *
    1583             :  * Return:
    1584             :  * Virtual address of allocated memory block on success, NULL on failure.
    1585             :  */
    1586          20 : void * __init memblock_alloc_try_nid(
    1587             :                         phys_addr_t size, phys_addr_t align,
    1588             :                         phys_addr_t min_addr, phys_addr_t max_addr,
    1589             :                         int nid)
    1590             : {
    1591             :         void *ptr;
    1592             : 
    1593          20 :         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
    1594             :                      __func__, (u64)size, (u64)align, nid, &min_addr,
    1595             :                      &max_addr, (void *)_RET_IP_);
    1596          20 :         ptr = memblock_alloc_internal(size, align,
    1597             :                                            min_addr, max_addr, nid, false);
    1598          20 :         if (ptr)
    1599          20 :                 memset(ptr, 0, size);
    1600             : 
    1601          20 :         return ptr;
    1602             : }
    1603             : 
    1604             : /**
    1605             :  * memblock_free_late - free pages directly to buddy allocator
    1606             :  * @base: phys starting address of the  boot memory block
    1607             :  * @size: size of the boot memory block in bytes
    1608             :  *
    1609             :  * This is only useful when the memblock allocator has already been torn
    1610             :  * down, but we are still initializing the system.  Pages are released directly
    1611             :  * to the buddy allocator.
    1612             :  */
    1613           0 : void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
    1614             : {
    1615             :         phys_addr_t cursor, end;
    1616             : 
    1617           0 :         end = base + size - 1;
    1618           0 :         memblock_dbg("%s: [%pa-%pa] %pS\n",
    1619             :                      __func__, &base, &end, (void *)_RET_IP_);
    1620           0 :         kmemleak_free_part_phys(base, size);
    1621           0 :         cursor = PFN_UP(base);
    1622           0 :         end = PFN_DOWN(base + size);
    1623             : 
    1624           0 :         for (; cursor < end; cursor++) {
    1625           0 :                 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
    1626             :                 totalram_pages_inc();
    1627             :         }
    1628           0 : }
    1629             : 
    1630             : /*
    1631             :  * Remaining API functions
    1632             :  */
    1633             : 
    1634           0 : phys_addr_t __init_memblock memblock_phys_mem_size(void)
    1635             : {
    1636           0 :         return memblock.memory.total_size;
    1637             : }
    1638             : 
    1639           0 : phys_addr_t __init_memblock memblock_reserved_size(void)
    1640             : {
    1641           0 :         return memblock.reserved.total_size;
    1642             : }
    1643             : 
    1644             : /* lowest address */
    1645           1 : phys_addr_t __init_memblock memblock_start_of_DRAM(void)
    1646             : {
    1647           1 :         return memblock.memory.regions[0].base;
    1648             : }
    1649             : 
    1650           0 : phys_addr_t __init_memblock memblock_end_of_DRAM(void)
    1651             : {
    1652           0 :         int idx = memblock.memory.cnt - 1;
    1653             : 
    1654           0 :         return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
    1655             : }
    1656             : 
    1657           0 : static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
    1658             : {
    1659           0 :         phys_addr_t max_addr = PHYS_ADDR_MAX;
    1660             :         struct memblock_region *r;
    1661             : 
    1662             :         /*
    1663             :          * translate the memory @limit size into the max address within one of
    1664             :          * the memory memblock regions, if the @limit exceeds the total size
    1665             :          * of those regions, max_addr will keep original value PHYS_ADDR_MAX
    1666             :          */
    1667           0 :         for_each_mem_region(r) {
    1668           0 :                 if (limit <= r->size) {
    1669           0 :                         max_addr = r->base + limit;
    1670           0 :                         break;
    1671             :                 }
    1672           0 :                 limit -= r->size;
    1673             :         }
    1674             : 
    1675           0 :         return max_addr;
    1676             : }
    1677             : 
    1678           0 : void __init memblock_enforce_memory_limit(phys_addr_t limit)
    1679             : {
    1680             :         phys_addr_t max_addr;
    1681             : 
    1682           0 :         if (!limit)
    1683             :                 return;
    1684             : 
    1685           0 :         max_addr = __find_max_addr(limit);
    1686             : 
    1687             :         /* @limit exceeds the total size of the memory, do nothing */
    1688           0 :         if (max_addr == PHYS_ADDR_MAX)
    1689             :                 return;
    1690             : 
    1691             :         /* truncate both memory and reserved regions */
    1692           0 :         memblock_remove_range(&memblock.memory, max_addr,
    1693             :                               PHYS_ADDR_MAX);
    1694           0 :         memblock_remove_range(&memblock.reserved, max_addr,
    1695             :                               PHYS_ADDR_MAX);
    1696             : }
    1697             : 
    1698           0 : void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
    1699             : {
    1700             :         int start_rgn, end_rgn;
    1701             :         int i, ret;
    1702             : 
    1703           0 :         if (!size)
    1704           0 :                 return;
    1705             : 
    1706           0 :         if (!memblock_memory->total_size) {
    1707           0 :                 pr_warn("%s: No memory registered yet\n", __func__);
    1708           0 :                 return;
    1709             :         }
    1710             : 
    1711           0 :         ret = memblock_isolate_range(&memblock.memory, base, size,
    1712             :                                                 &start_rgn, &end_rgn);
    1713           0 :         if (ret)
    1714             :                 return;
    1715             : 
    1716             :         /* remove all the MAP regions */
    1717           0 :         for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
    1718           0 :                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
    1719           0 :                         memblock_remove_region(&memblock.memory, i);
    1720             : 
    1721           0 :         for (i = start_rgn - 1; i >= 0; i--)
    1722           0 :                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
    1723           0 :                         memblock_remove_region(&memblock.memory, i);
    1724             : 
    1725             :         /* truncate the reserved regions */
    1726           0 :         memblock_remove_range(&memblock.reserved, 0, base);
    1727           0 :         memblock_remove_range(&memblock.reserved,
    1728             :                         base + size, PHYS_ADDR_MAX);
    1729             : }
    1730             : 
    1731           0 : void __init memblock_mem_limit_remove_map(phys_addr_t limit)
    1732             : {
    1733             :         phys_addr_t max_addr;
    1734             : 
    1735           0 :         if (!limit)
    1736             :                 return;
    1737             : 
    1738           0 :         max_addr = __find_max_addr(limit);
    1739             : 
    1740             :         /* @limit exceeds the total size of the memory, do nothing */
    1741           0 :         if (max_addr == PHYS_ADDR_MAX)
    1742             :                 return;
    1743             : 
    1744           0 :         memblock_cap_memory_range(0, max_addr);
    1745             : }
    1746             : 
    1747           0 : static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
    1748             : {
    1749           0 :         unsigned int left = 0, right = type->cnt;
    1750             : 
    1751             :         do {
    1752           0 :                 unsigned int mid = (right + left) / 2;
    1753             : 
    1754           0 :                 if (addr < type->regions[mid].base)
    1755             :                         right = mid;
    1756           0 :                 else if (addr >= (type->regions[mid].base +
    1757           0 :                                   type->regions[mid].size))
    1758           0 :                         left = mid + 1;
    1759             :                 else
    1760           0 :                         return mid;
    1761           0 :         } while (left < right);
    1762             :         return -1;
    1763             : }
    1764             : 
    1765           0 : bool __init_memblock memblock_is_reserved(phys_addr_t addr)
    1766             : {
    1767           0 :         return memblock_search(&memblock.reserved, addr) != -1;
    1768             : }
    1769             : 
    1770           0 : bool __init_memblock memblock_is_memory(phys_addr_t addr)
    1771             : {
    1772           0 :         return memblock_search(&memblock.memory, addr) != -1;
    1773             : }
    1774             : 
    1775           0 : bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
    1776             : {
    1777           0 :         int i = memblock_search(&memblock.memory, addr);
    1778             : 
    1779           0 :         if (i == -1)
    1780             :                 return false;
    1781           0 :         return !memblock_is_nomap(&memblock.memory.regions[i]);
    1782             : }
    1783             : 
    1784           0 : int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
    1785             :                          unsigned long *start_pfn, unsigned long *end_pfn)
    1786             : {
    1787           0 :         struct memblock_type *type = &memblock.memory;
    1788           0 :         int mid = memblock_search(type, PFN_PHYS(pfn));
    1789             : 
    1790           0 :         if (mid == -1)
    1791             :                 return -1;
    1792             : 
    1793           0 :         *start_pfn = PFN_DOWN(type->regions[mid].base);
    1794           0 :         *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
    1795             : 
    1796           0 :         return memblock_get_region_node(&type->regions[mid]);
    1797             : }
    1798             : 
    1799             : /**
    1800             :  * memblock_is_region_memory - check if a region is a subset of memory
    1801             :  * @base: base of region to check
    1802             :  * @size: size of region to check
    1803             :  *
    1804             :  * Check if the region [@base, @base + @size) is a subset of a memory block.
    1805             :  *
    1806             :  * Return:
    1807             :  * 0 if false, non-zero if true
    1808             :  */
    1809           0 : bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
    1810             : {
    1811           0 :         int idx = memblock_search(&memblock.memory, base);
    1812           0 :         phys_addr_t end = base + memblock_cap_size(base, &size);
    1813             : 
    1814           0 :         if (idx == -1)
    1815             :                 return false;
    1816           0 :         return (memblock.memory.regions[idx].base +
    1817           0 :                  memblock.memory.regions[idx].size) >= end;
    1818             : }
    1819             : 
    1820             : /**
    1821             :  * memblock_is_region_reserved - check if a region intersects reserved memory
    1822             :  * @base: base of region to check
    1823             :  * @size: size of region to check
    1824             :  *
    1825             :  * Check if the region [@base, @base + @size) intersects a reserved
    1826             :  * memory block.
    1827             :  *
    1828             :  * Return:
    1829             :  * True if they intersect, false if not.
    1830             :  */
    1831           0 : bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
    1832             : {
    1833           0 :         return memblock_overlaps_region(&memblock.reserved, base, size);
    1834             : }
    1835             : 
    1836           0 : void __init_memblock memblock_trim_memory(phys_addr_t align)
    1837             : {
    1838             :         phys_addr_t start, end, orig_start, orig_end;
    1839             :         struct memblock_region *r;
    1840             : 
    1841           0 :         for_each_mem_region(r) {
    1842           0 :                 orig_start = r->base;
    1843           0 :                 orig_end = r->base + r->size;
    1844           0 :                 start = round_up(orig_start, align);
    1845           0 :                 end = round_down(orig_end, align);
    1846             : 
    1847           0 :                 if (start == orig_start && end == orig_end)
    1848           0 :                         continue;
    1849             : 
    1850           0 :                 if (start < end) {
    1851           0 :                         r->base = start;
    1852           0 :                         r->size = end - start;
    1853             :                 } else {
    1854           0 :                         memblock_remove_region(&memblock.memory,
    1855           0 :                                                r - memblock.memory.regions);
    1856           0 :                         r--;
    1857             :                 }
    1858             :         }
    1859           0 : }
    1860             : 
    1861           0 : void __init_memblock memblock_set_current_limit(phys_addr_t limit)
    1862             : {
    1863           0 :         memblock.current_limit = limit;
    1864           0 : }
    1865             : 
    1866           0 : phys_addr_t __init_memblock memblock_get_current_limit(void)
    1867             : {
    1868           0 :         return memblock.current_limit;
    1869             : }
    1870             : 
    1871           0 : static void __init_memblock memblock_dump(struct memblock_type *type)
    1872             : {
    1873             :         phys_addr_t base, end, size;
    1874             :         enum memblock_flags flags;
    1875             :         int idx;
    1876             :         struct memblock_region *rgn;
    1877             : 
    1878           0 :         pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
    1879             : 
    1880           0 :         for_each_memblock_type(idx, type, rgn) {
    1881           0 :                 char nid_buf[32] = "";
    1882             : 
    1883           0 :                 base = rgn->base;
    1884           0 :                 size = rgn->size;
    1885           0 :                 end = base + size - 1;
    1886           0 :                 flags = rgn->flags;
    1887             : #ifdef CONFIG_NUMA
    1888             :                 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
    1889             :                         snprintf(nid_buf, sizeof(nid_buf), " on node %d",
    1890             :                                  memblock_get_region_node(rgn));
    1891             : #endif
    1892           0 :                 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
    1893             :                         type->name, idx, &base, &end, &size, nid_buf, flags);
    1894             :         }
    1895           0 : }
    1896             : 
    1897           0 : static void __init_memblock __memblock_dump_all(void)
    1898             : {
    1899           0 :         pr_info("MEMBLOCK configuration:\n");
    1900           0 :         pr_info(" memory size = %pa reserved size = %pa\n",
    1901             :                 &memblock.memory.total_size,
    1902             :                 &memblock.reserved.total_size);
    1903             : 
    1904           0 :         memblock_dump(&memblock.memory);
    1905           0 :         memblock_dump(&memblock.reserved);
    1906             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    1907             :         memblock_dump(&physmem);
    1908             : #endif
    1909           0 : }
    1910             : 
    1911           0 : void __init_memblock memblock_dump_all(void)
    1912             : {
    1913           0 :         if (memblock_debug)
    1914           0 :                 __memblock_dump_all();
    1915           0 : }
    1916             : 
    1917           0 : void __init memblock_allow_resize(void)
    1918             : {
    1919           0 :         memblock_can_resize = 1;
    1920           0 : }
    1921             : 
    1922           0 : static int __init early_memblock(char *p)
    1923             : {
    1924           0 :         if (p && strstr(p, "debug"))
    1925           0 :                 memblock_debug = 1;
    1926           0 :         return 0;
    1927             : }
    1928             : early_param("memblock", early_memblock);
    1929             : 
    1930             : static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
    1931             : {
    1932             :         struct page *start_pg, *end_pg;
    1933             :         phys_addr_t pg, pgend;
    1934             : 
    1935             :         /*
    1936             :          * Convert start_pfn/end_pfn to a struct page pointer.
    1937             :          */
    1938             :         start_pg = pfn_to_page(start_pfn - 1) + 1;
    1939             :         end_pg = pfn_to_page(end_pfn - 1) + 1;
    1940             : 
    1941             :         /*
    1942             :          * Convert to physical addresses, and round start upwards and end
    1943             :          * downwards.
    1944             :          */
    1945             :         pg = PAGE_ALIGN(__pa(start_pg));
    1946             :         pgend = __pa(end_pg) & PAGE_MASK;
    1947             : 
    1948             :         /*
    1949             :          * If there are free pages between these, free the section of the
    1950             :          * memmap array.
    1951             :          */
    1952             :         if (pg < pgend)
    1953             :                 memblock_phys_free(pg, pgend - pg);
    1954             : }
    1955             : 
    1956             : /*
    1957             :  * The mem_map array can get very big.  Free the unused area of the memory map.
    1958             :  */
    1959             : static void __init free_unused_memmap(void)
    1960             : {
    1961           1 :         unsigned long start, end, prev_end = 0;
    1962             :         int i;
    1963             : 
    1964             :         if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
    1965             :             IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
    1966             :                 return;
    1967             : 
    1968             :         /*
    1969             :          * This relies on each bank being in address order.
    1970             :          * The banks are sorted previously in bootmem_init().
    1971             :          */
    1972             :         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
    1973             : #ifdef CONFIG_SPARSEMEM
    1974             :                 /*
    1975             :                  * Take care not to free memmap entries that don't exist
    1976             :                  * due to SPARSEMEM sections which aren't present.
    1977             :                  */
    1978             :                 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
    1979             : #endif
    1980             :                 /*
    1981             :                  * Align down here since many operations in VM subsystem
    1982             :                  * presume that there are no holes in the memory map inside
    1983             :                  * a pageblock
    1984             :                  */
    1985             :                 start = round_down(start, pageblock_nr_pages);
    1986             : 
    1987             :                 /*
    1988             :                  * If we had a previous bank, and there is a space
    1989             :                  * between the current bank and the previous, free it.
    1990             :                  */
    1991             :                 if (prev_end && prev_end < start)
    1992             :                         free_memmap(prev_end, start);
    1993             : 
    1994             :                 /*
    1995             :                  * Align up here since many operations in VM subsystem
    1996             :                  * presume that there are no holes in the memory map inside
    1997             :                  * a pageblock
    1998             :                  */
    1999             :                 prev_end = ALIGN(end, pageblock_nr_pages);
    2000             :         }
    2001             : 
    2002             : #ifdef CONFIG_SPARSEMEM
    2003             :         if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
    2004             :                 prev_end = ALIGN(end, pageblock_nr_pages);
    2005             :                 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
    2006             :         }
    2007             : #endif
    2008             : }
    2009             : 
    2010           2 : static void __init __free_pages_memory(unsigned long start, unsigned long end)
    2011             : {
    2012             :         int order;
    2013             : 
    2014         259 :         while (start < end) {
    2015         510 :                 order = min(MAX_ORDER - 1UL, __ffs(start));
    2016             : 
    2017         521 :                 while (start + (1UL << order) > end)
    2018          11 :                         order--;
    2019             : 
    2020         255 :                 memblock_free_pages(pfn_to_page(start), start, order);
    2021             : 
    2022         255 :                 start += (1UL << order);
    2023             :         }
    2024           2 : }
    2025             : 
    2026          12 : static unsigned long __init __free_memory_core(phys_addr_t start,
    2027             :                                  phys_addr_t end)
    2028             : {
    2029          12 :         unsigned long start_pfn = PFN_UP(start);
    2030          12 :         unsigned long end_pfn = min_t(unsigned long,
    2031             :                                       PFN_DOWN(end), max_low_pfn);
    2032             : 
    2033          12 :         if (start_pfn >= end_pfn)
    2034             :                 return 0;
    2035             : 
    2036           2 :         __free_pages_memory(start_pfn, end_pfn);
    2037             : 
    2038           2 :         return end_pfn - start_pfn;
    2039             : }
    2040             : 
    2041           1 : static void __init memmap_init_reserved_pages(void)
    2042             : {
    2043             :         struct memblock_region *region;
    2044             :         phys_addr_t start, end;
    2045             :         u64 i;
    2046             : 
    2047             :         /* initialize struct pages for the reserved regions */
    2048          14 :         for_each_reserved_mem_range(i, &start, &end)
    2049          13 :                 reserve_bootmem_region(start, end);
    2050             : 
    2051             :         /* and also treat struct pages for the NOMAP regions as PageReserved */
    2052           2 :         for_each_mem_region(region) {
    2053           2 :                 if (memblock_is_nomap(region)) {
    2054           0 :                         start = region->base;
    2055           0 :                         end = start + region->size;
    2056           0 :                         reserve_bootmem_region(start, end);
    2057             :                 }
    2058             :         }
    2059           1 : }
    2060             : 
    2061           1 : static unsigned long __init free_low_memory_core_early(void)
    2062             : {
    2063           1 :         unsigned long count = 0;
    2064             :         phys_addr_t start, end;
    2065             :         u64 i;
    2066             : 
    2067           1 :         memblock_clear_hotplug(0, -1);
    2068             : 
    2069           1 :         memmap_init_reserved_pages();
    2070             : 
    2071             :         /*
    2072             :          * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
    2073             :          *  because in some case like Node0 doesn't have RAM installed
    2074             :          *  low ram will be on Node1
    2075             :          */
    2076          13 :         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
    2077             :                                 NULL)
    2078          12 :                 count += __free_memory_core(start, end);
    2079             : 
    2080           1 :         return count;
    2081             : }
    2082             : 
    2083             : static int reset_managed_pages_done __initdata;
    2084             : 
    2085           0 : void reset_node_managed_pages(pg_data_t *pgdat)
    2086             : {
    2087             :         struct zone *z;
    2088             : 
    2089           3 :         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
    2090           4 :                 atomic_long_set(&z->managed_pages, 0);
    2091           0 : }
    2092             : 
    2093           1 : void __init reset_all_zones_managed_pages(void)
    2094             : {
    2095             :         struct pglist_data *pgdat;
    2096             : 
    2097           1 :         if (reset_managed_pages_done)
    2098             :                 return;
    2099             : 
    2100           2 :         for_each_online_pgdat(pgdat)
    2101           1 :                 reset_node_managed_pages(pgdat);
    2102             : 
    2103           1 :         reset_managed_pages_done = 1;
    2104             : }
    2105             : 
    2106             : /**
    2107             :  * memblock_free_all - release free pages to the buddy allocator
    2108             :  */
    2109           1 : void __init memblock_free_all(void)
    2110             : {
    2111             :         unsigned long pages;
    2112             : 
    2113             :         free_unused_memmap();
    2114           1 :         reset_all_zones_managed_pages();
    2115             : 
    2116           1 :         pages = free_low_memory_core_early();
    2117           2 :         totalram_pages_add(pages);
    2118           1 : }
    2119             : 
    2120             : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
    2121             : 
    2122             : static int memblock_debug_show(struct seq_file *m, void *private)
    2123             : {
    2124             :         struct memblock_type *type = m->private;
    2125             :         struct memblock_region *reg;
    2126             :         int i;
    2127             :         phys_addr_t end;
    2128             : 
    2129             :         for (i = 0; i < type->cnt; i++) {
    2130             :                 reg = &type->regions[i];
    2131             :                 end = reg->base + reg->size - 1;
    2132             : 
    2133             :                 seq_printf(m, "%4d: ", i);
    2134             :                 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
    2135             :         }
    2136             :         return 0;
    2137             : }
    2138             : DEFINE_SHOW_ATTRIBUTE(memblock_debug);
    2139             : 
    2140             : static int __init memblock_init_debugfs(void)
    2141             : {
    2142             :         struct dentry *root = debugfs_create_dir("memblock", NULL);
    2143             : 
    2144             :         debugfs_create_file("memory", 0444, root,
    2145             :                             &memblock.memory, &memblock_debug_fops);
    2146             :         debugfs_create_file("reserved", 0444, root,
    2147             :                             &memblock.reserved, &memblock_debug_fops);
    2148             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    2149             :         debugfs_create_file("physmem", 0444, root, &physmem,
    2150             :                             &memblock_debug_fops);
    2151             : #endif
    2152             : 
    2153             :         return 0;
    2154             : }
    2155             : __initcall(memblock_init_debugfs);
    2156             : 
    2157             : #endif /* CONFIG_DEBUG_FS */

Generated by: LCOV version 1.14