LCOV - code coverage report
Current view: top level - mm - memory.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 23 1400 1.6 %
Date: 2022-12-09 01:23:36 Functions: 3 99 3.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  linux/mm/memory.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
       6             :  */
       7             : 
       8             : /*
       9             :  * demand-loading started 01.12.91 - seems it is high on the list of
      10             :  * things wanted, and it should be easy to implement. - Linus
      11             :  */
      12             : 
      13             : /*
      14             :  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
      15             :  * pages started 02.12.91, seems to work. - Linus.
      16             :  *
      17             :  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
      18             :  * would have taken more than the 6M I have free, but it worked well as
      19             :  * far as I could see.
      20             :  *
      21             :  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
      22             :  */
      23             : 
      24             : /*
      25             :  * Real VM (paging to/from disk) started 18.12.91. Much more work and
      26             :  * thought has to go into this. Oh, well..
      27             :  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
      28             :  *              Found it. Everything seems to work now.
      29             :  * 20.12.91  -  Ok, making the swap-device changeable like the root.
      30             :  */
      31             : 
      32             : /*
      33             :  * 05.04.94  -  Multi-page memory management added for v1.1.
      34             :  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
      35             :  *
      36             :  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
      37             :  *              (Gerhard.Wichert@pdb.siemens.de)
      38             :  *
      39             :  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
      40             :  */
      41             : 
      42             : #include <linux/kernel_stat.h>
      43             : #include <linux/mm.h>
      44             : #include <linux/mm_inline.h>
      45             : #include <linux/sched/mm.h>
      46             : #include <linux/sched/coredump.h>
      47             : #include <linux/sched/numa_balancing.h>
      48             : #include <linux/sched/task.h>
      49             : #include <linux/hugetlb.h>
      50             : #include <linux/mman.h>
      51             : #include <linux/swap.h>
      52             : #include <linux/highmem.h>
      53             : #include <linux/pagemap.h>
      54             : #include <linux/memremap.h>
      55             : #include <linux/ksm.h>
      56             : #include <linux/rmap.h>
      57             : #include <linux/export.h>
      58             : #include <linux/delayacct.h>
      59             : #include <linux/init.h>
      60             : #include <linux/pfn_t.h>
      61             : #include <linux/writeback.h>
      62             : #include <linux/memcontrol.h>
      63             : #include <linux/mmu_notifier.h>
      64             : #include <linux/swapops.h>
      65             : #include <linux/elf.h>
      66             : #include <linux/gfp.h>
      67             : #include <linux/migrate.h>
      68             : #include <linux/string.h>
      69             : #include <linux/debugfs.h>
      70             : #include <linux/userfaultfd_k.h>
      71             : #include <linux/dax.h>
      72             : #include <linux/oom.h>
      73             : #include <linux/numa.h>
      74             : #include <linux/perf_event.h>
      75             : #include <linux/ptrace.h>
      76             : #include <linux/vmalloc.h>
      77             : 
      78             : #include <trace/events/kmem.h>
      79             : 
      80             : #include <asm/io.h>
      81             : #include <asm/mmu_context.h>
      82             : #include <asm/pgalloc.h>
      83             : #include <linux/uaccess.h>
      84             : #include <asm/tlb.h>
      85             : #include <asm/tlbflush.h>
      86             : 
      87             : #include "pgalloc-track.h"
      88             : #include "internal.h"
      89             : 
      90             : #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
      91             : #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
      92             : #endif
      93             : 
      94             : #ifndef CONFIG_NUMA
      95             : unsigned long max_mapnr;
      96             : EXPORT_SYMBOL(max_mapnr);
      97             : 
      98             : struct page *mem_map;
      99             : EXPORT_SYMBOL(mem_map);
     100             : #endif
     101             : 
     102             : /*
     103             :  * A number of key systems in x86 including ioremap() rely on the assumption
     104             :  * that high_memory defines the upper bound on direct map memory, then end
     105             :  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
     106             :  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
     107             :  * and ZONE_HIGHMEM.
     108             :  */
     109             : void *high_memory;
     110             : EXPORT_SYMBOL(high_memory);
     111             : 
     112             : /*
     113             :  * Randomize the address space (stacks, mmaps, brk, etc.).
     114             :  *
     115             :  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
     116             :  *   as ancient (libc5 based) binaries can segfault. )
     117             :  */
     118             : int randomize_va_space __read_mostly =
     119             : #ifdef CONFIG_COMPAT_BRK
     120             :                                         1;
     121             : #else
     122             :                                         2;
     123             : #endif
     124             : 
     125             : #ifndef arch_faults_on_old_pte
     126             : static inline bool arch_faults_on_old_pte(void)
     127             : {
     128             :         /*
     129             :          * Those arches which don't have hw access flag feature need to
     130             :          * implement their own helper. By default, "true" means pagefault
     131             :          * will be hit on old pte.
     132             :          */
     133             :         return true;
     134             : }
     135             : #endif
     136             : 
     137             : #ifndef arch_wants_old_prefaulted_pte
     138             : static inline bool arch_wants_old_prefaulted_pte(void)
     139             : {
     140             :         /*
     141             :          * Transitioning a PTE from 'old' to 'young' can be expensive on
     142             :          * some architectures, even if it's performed in hardware. By
     143             :          * default, "false" means prefaulted entries will be 'young'.
     144             :          */
     145             :         return false;
     146             : }
     147             : #endif
     148             : 
     149           0 : static int __init disable_randmaps(char *s)
     150             : {
     151           0 :         randomize_va_space = 0;
     152           0 :         return 1;
     153             : }
     154             : __setup("norandmaps", disable_randmaps);
     155             : 
     156             : unsigned long zero_pfn __read_mostly;
     157             : EXPORT_SYMBOL(zero_pfn);
     158             : 
     159             : unsigned long highest_memmap_pfn __read_mostly;
     160             : 
     161             : /*
     162             :  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
     163             :  */
     164           1 : static int __init init_zero_pfn(void)
     165             : {
     166           2 :         zero_pfn = page_to_pfn(ZERO_PAGE(0));
     167           1 :         return 0;
     168             : }
     169             : early_initcall(init_zero_pfn);
     170             : 
     171           0 : void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
     172             : {
     173           0 :         trace_rss_stat(mm, member, count);
     174           0 : }
     175             : 
     176             : #if defined(SPLIT_RSS_COUNTING)
     177             : 
     178             : void sync_mm_rss(struct mm_struct *mm)
     179             : {
     180             :         int i;
     181             : 
     182             :         for (i = 0; i < NR_MM_COUNTERS; i++) {
     183             :                 if (current->rss_stat.count[i]) {
     184             :                         add_mm_counter(mm, i, current->rss_stat.count[i]);
     185             :                         current->rss_stat.count[i] = 0;
     186             :                 }
     187             :         }
     188             :         current->rss_stat.events = 0;
     189             : }
     190             : 
     191             : static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
     192             : {
     193             :         struct task_struct *task = current;
     194             : 
     195             :         if (likely(task->mm == mm))
     196             :                 task->rss_stat.count[member] += val;
     197             :         else
     198             :                 add_mm_counter(mm, member, val);
     199             : }
     200             : #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
     201             : #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
     202             : 
     203             : /* sync counter once per 64 page faults */
     204             : #define TASK_RSS_EVENTS_THRESH  (64)
     205             : static void check_sync_rss_stat(struct task_struct *task)
     206             : {
     207             :         if (unlikely(task != current))
     208             :                 return;
     209             :         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
     210             :                 sync_mm_rss(task->mm);
     211             : }
     212             : #else /* SPLIT_RSS_COUNTING */
     213             : 
     214             : #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
     215             : #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
     216             : 
     217             : static void check_sync_rss_stat(struct task_struct *task)
     218             : {
     219             : }
     220             : 
     221             : #endif /* SPLIT_RSS_COUNTING */
     222             : 
     223             : /*
     224             :  * Note: this doesn't free the actual pages themselves. That
     225             :  * has been handled earlier when unmapping all the memory regions.
     226             :  */
     227           0 : static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
     228             :                            unsigned long addr)
     229             : {
     230           0 :         pgtable_t token = pmd_pgtable(*pmd);
     231           0 :         pmd_clear(pmd);
     232           0 :         pte_free_tlb(tlb, token, addr);
     233           0 :         mm_dec_nr_ptes(tlb->mm);
     234           0 : }
     235             : 
     236           0 : static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
     237             :                                 unsigned long addr, unsigned long end,
     238             :                                 unsigned long floor, unsigned long ceiling)
     239             : {
     240             :         pmd_t *pmd;
     241             :         unsigned long next;
     242             :         unsigned long start;
     243             : 
     244           0 :         start = addr;
     245           0 :         pmd = pmd_offset(pud, addr);
     246             :         do {
     247           0 :                 next = pmd_addr_end(addr, end);
     248           0 :                 if (pmd_none_or_clear_bad(pmd))
     249           0 :                         continue;
     250           0 :                 free_pte_range(tlb, pmd, addr);
     251           0 :         } while (pmd++, addr = next, addr != end);
     252             : 
     253           0 :         start &= PUD_MASK;
     254           0 :         if (start < floor)
     255             :                 return;
     256           0 :         if (ceiling) {
     257           0 :                 ceiling &= PUD_MASK;
     258           0 :                 if (!ceiling)
     259             :                         return;
     260             :         }
     261           0 :         if (end - 1 > ceiling - 1)
     262             :                 return;
     263             : 
     264           0 :         pmd = pmd_offset(pud, start);
     265           0 :         pud_clear(pud);
     266           0 :         pmd_free_tlb(tlb, pmd, start);
     267           0 :         mm_dec_nr_pmds(tlb->mm);
     268             : }
     269             : 
     270           0 : static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
     271             :                                 unsigned long addr, unsigned long end,
     272             :                                 unsigned long floor, unsigned long ceiling)
     273             : {
     274             :         pud_t *pud;
     275             :         unsigned long next;
     276             :         unsigned long start;
     277             : 
     278           0 :         start = addr;
     279           0 :         pud = pud_offset(p4d, addr);
     280             :         do {
     281           0 :                 next = pud_addr_end(addr, end);
     282           0 :                 if (pud_none_or_clear_bad(pud))
     283           0 :                         continue;
     284           0 :                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
     285           0 :         } while (pud++, addr = next, addr != end);
     286             : 
     287           0 :         start &= P4D_MASK;
     288             :         if (start < floor)
     289             :                 return;
     290             :         if (ceiling) {
     291             :                 ceiling &= P4D_MASK;
     292             :                 if (!ceiling)
     293             :                         return;
     294             :         }
     295             :         if (end - 1 > ceiling - 1)
     296             :                 return;
     297             : 
     298             :         pud = pud_offset(p4d, start);
     299             :         p4d_clear(p4d);
     300             :         pud_free_tlb(tlb, pud, start);
     301             :         mm_dec_nr_puds(tlb->mm);
     302             : }
     303             : 
     304             : static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
     305             :                                 unsigned long addr, unsigned long end,
     306             :                                 unsigned long floor, unsigned long ceiling)
     307             : {
     308             :         p4d_t *p4d;
     309             :         unsigned long next;
     310             :         unsigned long start;
     311             : 
     312           0 :         start = addr;
     313           0 :         p4d = p4d_offset(pgd, addr);
     314             :         do {
     315           0 :                 next = p4d_addr_end(addr, end);
     316           0 :                 if (p4d_none_or_clear_bad(p4d))
     317             :                         continue;
     318           0 :                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
     319           0 :         } while (p4d++, addr = next, addr != end);
     320             : 
     321           0 :         start &= PGDIR_MASK;
     322             :         if (start < floor)
     323             :                 return;
     324             :         if (ceiling) {
     325             :                 ceiling &= PGDIR_MASK;
     326             :                 if (!ceiling)
     327             :                         return;
     328             :         }
     329             :         if (end - 1 > ceiling - 1)
     330             :                 return;
     331             : 
     332             :         p4d = p4d_offset(pgd, start);
     333             :         pgd_clear(pgd);
     334             :         p4d_free_tlb(tlb, p4d, start);
     335             : }
     336             : 
     337             : /*
     338             :  * This function frees user-level page tables of a process.
     339             :  */
     340           0 : void free_pgd_range(struct mmu_gather *tlb,
     341             :                         unsigned long addr, unsigned long end,
     342             :                         unsigned long floor, unsigned long ceiling)
     343             : {
     344             :         pgd_t *pgd;
     345             :         unsigned long next;
     346             : 
     347             :         /*
     348             :          * The next few lines have given us lots of grief...
     349             :          *
     350             :          * Why are we testing PMD* at this top level?  Because often
     351             :          * there will be no work to do at all, and we'd prefer not to
     352             :          * go all the way down to the bottom just to discover that.
     353             :          *
     354             :          * Why all these "- 1"s?  Because 0 represents both the bottom
     355             :          * of the address space and the top of it (using -1 for the
     356             :          * top wouldn't help much: the masks would do the wrong thing).
     357             :          * The rule is that addr 0 and floor 0 refer to the bottom of
     358             :          * the address space, but end 0 and ceiling 0 refer to the top
     359             :          * Comparisons need to use "end - 1" and "ceiling - 1" (though
     360             :          * that end 0 case should be mythical).
     361             :          *
     362             :          * Wherever addr is brought up or ceiling brought down, we must
     363             :          * be careful to reject "the opposite 0" before it confuses the
     364             :          * subsequent tests.  But what about where end is brought down
     365             :          * by PMD_SIZE below? no, end can't go down to 0 there.
     366             :          *
     367             :          * Whereas we round start (addr) and ceiling down, by different
     368             :          * masks at different levels, in order to test whether a table
     369             :          * now has no other vmas using it, so can be freed, we don't
     370             :          * bother to round floor or end up - the tests don't need that.
     371             :          */
     372             : 
     373           0 :         addr &= PMD_MASK;
     374           0 :         if (addr < floor) {
     375           0 :                 addr += PMD_SIZE;
     376           0 :                 if (!addr)
     377             :                         return;
     378             :         }
     379           0 :         if (ceiling) {
     380           0 :                 ceiling &= PMD_MASK;
     381           0 :                 if (!ceiling)
     382             :                         return;
     383             :         }
     384           0 :         if (end - 1 > ceiling - 1)
     385           0 :                 end -= PMD_SIZE;
     386           0 :         if (addr > end - 1)
     387             :                 return;
     388             :         /*
     389             :          * We add page table cache pages with PAGE_SIZE,
     390             :          * (see pte_free_tlb()), flush the tlb if we need
     391             :          */
     392           0 :         tlb_change_page_size(tlb, PAGE_SIZE);
     393           0 :         pgd = pgd_offset(tlb->mm, addr);
     394             :         do {
     395           0 :                 next = pgd_addr_end(addr, end);
     396           0 :                 if (pgd_none_or_clear_bad(pgd))
     397             :                         continue;
     398             :                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
     399           0 :         } while (pgd++, addr = next, addr != end);
     400             : }
     401             : 
     402           0 : void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
     403             :                 unsigned long floor, unsigned long ceiling)
     404             : {
     405           0 :         while (vma) {
     406           0 :                 struct vm_area_struct *next = vma->vm_next;
     407           0 :                 unsigned long addr = vma->vm_start;
     408             : 
     409             :                 /*
     410             :                  * Hide vma from rmap and truncate_pagecache before freeing
     411             :                  * pgtables
     412             :                  */
     413           0 :                 unlink_anon_vmas(vma);
     414           0 :                 unlink_file_vma(vma);
     415             : 
     416           0 :                 if (is_vm_hugetlb_page(vma)) {
     417             :                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
     418             :                                 floor, next ? next->vm_start : ceiling);
     419             :                 } else {
     420             :                         /*
     421             :                          * Optimization: gather nearby vmas into one call down
     422             :                          */
     423           0 :                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
     424           0 :                                && !is_vm_hugetlb_page(next)) {
     425           0 :                                 vma = next;
     426           0 :                                 next = vma->vm_next;
     427           0 :                                 unlink_anon_vmas(vma);
     428           0 :                                 unlink_file_vma(vma);
     429             :                         }
     430           0 :                         free_pgd_range(tlb, addr, vma->vm_end,
     431             :                                 floor, next ? next->vm_start : ceiling);
     432             :                 }
     433           0 :                 vma = next;
     434             :         }
     435           0 : }
     436             : 
     437           0 : void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
     438             : {
     439           0 :         spinlock_t *ptl = pmd_lock(mm, pmd);
     440             : 
     441           0 :         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
     442           0 :                 mm_inc_nr_ptes(mm);
     443             :                 /*
     444             :                  * Ensure all pte setup (eg. pte page lock and page clearing) are
     445             :                  * visible before the pte is made visible to other CPUs by being
     446             :                  * put into page tables.
     447             :                  *
     448             :                  * The other side of the story is the pointer chasing in the page
     449             :                  * table walking code (when walking the page table without locking;
     450             :                  * ie. most of the time). Fortunately, these data accesses consist
     451             :                  * of a chain of data-dependent loads, meaning most CPUs (alpha
     452             :                  * being the notable exception) will already guarantee loads are
     453             :                  * seen in-order. See the alpha page table accessors for the
     454             :                  * smp_rmb() barriers in page table walking code.
     455             :                  */
     456           0 :                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
     457           0 :                 pmd_populate(mm, pmd, *pte);
     458           0 :                 *pte = NULL;
     459             :         }
     460           0 :         spin_unlock(ptl);
     461           0 : }
     462             : 
     463           0 : int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
     464             : {
     465           0 :         pgtable_t new = pte_alloc_one(mm);
     466           0 :         if (!new)
     467             :                 return -ENOMEM;
     468             : 
     469           0 :         pmd_install(mm, pmd, &new);
     470           0 :         if (new)
     471           0 :                 pte_free(mm, new);
     472             :         return 0;
     473             : }
     474             : 
     475           1 : int __pte_alloc_kernel(pmd_t *pmd)
     476             : {
     477           2 :         pte_t *new = pte_alloc_one_kernel(&init_mm);
     478           1 :         if (!new)
     479             :                 return -ENOMEM;
     480             : 
     481           1 :         spin_lock(&init_mm.page_table_lock);
     482           1 :         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
     483           1 :                 smp_wmb(); /* See comment in pmd_install() */
     484           2 :                 pmd_populate_kernel(&init_mm, pmd, new);
     485           1 :                 new = NULL;
     486             :         }
     487           1 :         spin_unlock(&init_mm.page_table_lock);
     488           1 :         if (new)
     489           0 :                 pte_free_kernel(&init_mm, new);
     490             :         return 0;
     491             : }
     492             : 
     493             : static inline void init_rss_vec(int *rss)
     494             : {
     495           0 :         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
     496             : }
     497             : 
     498             : static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
     499             : {
     500             :         int i;
     501             : 
     502           0 :         if (current->mm == mm)
     503             :                 sync_mm_rss(mm);
     504           0 :         for (i = 0; i < NR_MM_COUNTERS; i++)
     505           0 :                 if (rss[i])
     506           0 :                         add_mm_counter(mm, i, rss[i]);
     507             : }
     508             : 
     509             : /*
     510             :  * This function is called to print an error when a bad pte
     511             :  * is found. For example, we might have a PFN-mapped pte in
     512             :  * a region that doesn't allow it.
     513             :  *
     514             :  * The calling function must still handle the error.
     515             :  */
     516           0 : static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
     517             :                           pte_t pte, struct page *page)
     518             : {
     519           0 :         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
     520           0 :         p4d_t *p4d = p4d_offset(pgd, addr);
     521           0 :         pud_t *pud = pud_offset(p4d, addr);
     522           0 :         pmd_t *pmd = pmd_offset(pud, addr);
     523             :         struct address_space *mapping;
     524             :         pgoff_t index;
     525             :         static unsigned long resume;
     526             :         static unsigned long nr_shown;
     527             :         static unsigned long nr_unshown;
     528             : 
     529             :         /*
     530             :          * Allow a burst of 60 reports, then keep quiet for that minute;
     531             :          * or allow a steady drip of one report per second.
     532             :          */
     533           0 :         if (nr_shown == 60) {
     534           0 :                 if (time_before(jiffies, resume)) {
     535           0 :                         nr_unshown++;
     536           0 :                         return;
     537             :                 }
     538           0 :                 if (nr_unshown) {
     539           0 :                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
     540             :                                  nr_unshown);
     541           0 :                         nr_unshown = 0;
     542             :                 }
     543           0 :                 nr_shown = 0;
     544             :         }
     545           0 :         if (nr_shown++ == 0)
     546           0 :                 resume = jiffies + 60 * HZ;
     547             : 
     548           0 :         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
     549           0 :         index = linear_page_index(vma, addr);
     550             : 
     551           0 :         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
     552             :                  current->comm,
     553             :                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
     554           0 :         if (page)
     555           0 :                 dump_page(page, "bad pte");
     556           0 :         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
     557             :                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
     558           0 :         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
     559             :                  vma->vm_file,
     560             :                  vma->vm_ops ? vma->vm_ops->fault : NULL,
     561             :                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
     562             :                  mapping ? mapping->a_ops->readpage : NULL);
     563           0 :         dump_stack();
     564           0 :         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
     565             : }
     566             : 
     567             : /*
     568             :  * vm_normal_page -- This function gets the "struct page" associated with a pte.
     569             :  *
     570             :  * "Special" mappings do not wish to be associated with a "struct page" (either
     571             :  * it doesn't exist, or it exists but they don't want to touch it). In this
     572             :  * case, NULL is returned here. "Normal" mappings do have a struct page.
     573             :  *
     574             :  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
     575             :  * pte bit, in which case this function is trivial. Secondly, an architecture
     576             :  * may not have a spare pte bit, which requires a more complicated scheme,
     577             :  * described below.
     578             :  *
     579             :  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
     580             :  * special mapping (even if there are underlying and valid "struct pages").
     581             :  * COWed pages of a VM_PFNMAP are always normal.
     582             :  *
     583             :  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
     584             :  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
     585             :  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
     586             :  * mapping will always honor the rule
     587             :  *
     588             :  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
     589             :  *
     590             :  * And for normal mappings this is false.
     591             :  *
     592             :  * This restricts such mappings to be a linear translation from virtual address
     593             :  * to pfn. To get around this restriction, we allow arbitrary mappings so long
     594             :  * as the vma is not a COW mapping; in that case, we know that all ptes are
     595             :  * special (because none can have been COWed).
     596             :  *
     597             :  *
     598             :  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
     599             :  *
     600             :  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
     601             :  * page" backing, however the difference is that _all_ pages with a struct
     602             :  * page (that is, those where pfn_valid is true) are refcounted and considered
     603             :  * normal pages by the VM. The disadvantage is that pages are refcounted
     604             :  * (which can be slower and simply not an option for some PFNMAP users). The
     605             :  * advantage is that we don't have to follow the strict linearity rule of
     606             :  * PFNMAP mappings in order to support COWable mappings.
     607             :  *
     608             :  */
     609           0 : struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
     610             :                             pte_t pte)
     611             : {
     612           0 :         unsigned long pfn = pte_pfn(pte);
     613             : 
     614             :         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
     615             :                 if (likely(!pte_special(pte)))
     616             :                         goto check_pfn;
     617             :                 if (vma->vm_ops && vma->vm_ops->find_special_page)
     618             :                         return vma->vm_ops->find_special_page(vma, addr);
     619             :                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
     620             :                         return NULL;
     621             :                 if (is_zero_pfn(pfn))
     622             :                         return NULL;
     623             :                 if (pte_devmap(pte))
     624             :                         return NULL;
     625             : 
     626             :                 print_bad_pte(vma, addr, pte, NULL);
     627             :                 return NULL;
     628             :         }
     629             : 
     630             :         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
     631             : 
     632           0 :         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
     633           0 :                 if (vma->vm_flags & VM_MIXEDMAP) {
     634           0 :                         if (!pfn_valid(pfn))
     635             :                                 return NULL;
     636             :                         goto out;
     637             :                 } else {
     638             :                         unsigned long off;
     639           0 :                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
     640           0 :                         if (pfn == vma->vm_pgoff + off)
     641             :                                 return NULL;
     642           0 :                         if (!is_cow_mapping(vma->vm_flags))
     643             :                                 return NULL;
     644             :                 }
     645             :         }
     646             : 
     647           0 :         if (is_zero_pfn(pfn))
     648             :                 return NULL;
     649             : 
     650             : check_pfn:
     651           0 :         if (unlikely(pfn > highest_memmap_pfn)) {
     652           0 :                 print_bad_pte(vma, addr, pte, NULL);
     653           0 :                 return NULL;
     654             :         }
     655             : 
     656             :         /*
     657             :          * NOTE! We still have PageReserved() pages in the page tables.
     658             :          * eg. VDSO mappings can cause them to exist.
     659             :          */
     660             : out:
     661           0 :         return pfn_to_page(pfn);
     662             : }
     663             : 
     664             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     665             : struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
     666             :                                 pmd_t pmd)
     667             : {
     668             :         unsigned long pfn = pmd_pfn(pmd);
     669             : 
     670             :         /*
     671             :          * There is no pmd_special() but there may be special pmds, e.g.
     672             :          * in a direct-access (dax) mapping, so let's just replicate the
     673             :          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
     674             :          */
     675             :         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
     676             :                 if (vma->vm_flags & VM_MIXEDMAP) {
     677             :                         if (!pfn_valid(pfn))
     678             :                                 return NULL;
     679             :                         goto out;
     680             :                 } else {
     681             :                         unsigned long off;
     682             :                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
     683             :                         if (pfn == vma->vm_pgoff + off)
     684             :                                 return NULL;
     685             :                         if (!is_cow_mapping(vma->vm_flags))
     686             :                                 return NULL;
     687             :                 }
     688             :         }
     689             : 
     690             :         if (pmd_devmap(pmd))
     691             :                 return NULL;
     692             :         if (is_huge_zero_pmd(pmd))
     693             :                 return NULL;
     694             :         if (unlikely(pfn > highest_memmap_pfn))
     695             :                 return NULL;
     696             : 
     697             :         /*
     698             :          * NOTE! We still have PageReserved() pages in the page tables.
     699             :          * eg. VDSO mappings can cause them to exist.
     700             :          */
     701             : out:
     702             :         return pfn_to_page(pfn);
     703             : }
     704             : #endif
     705             : 
     706             : static void restore_exclusive_pte(struct vm_area_struct *vma,
     707             :                                   struct page *page, unsigned long address,
     708             :                                   pte_t *ptep)
     709             : {
     710             :         pte_t pte;
     711             :         swp_entry_t entry;
     712             : 
     713             :         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
     714             :         if (pte_swp_soft_dirty(*ptep))
     715             :                 pte = pte_mksoft_dirty(pte);
     716             : 
     717             :         entry = pte_to_swp_entry(*ptep);
     718             :         if (pte_swp_uffd_wp(*ptep))
     719             :                 pte = pte_mkuffd_wp(pte);
     720             :         else if (is_writable_device_exclusive_entry(entry))
     721             :                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
     722             : 
     723             :         /*
     724             :          * No need to take a page reference as one was already
     725             :          * created when the swap entry was made.
     726             :          */
     727             :         if (PageAnon(page))
     728             :                 page_add_anon_rmap(page, vma, address, false);
     729             :         else
     730             :                 /*
     731             :                  * Currently device exclusive access only supports anonymous
     732             :                  * memory so the entry shouldn't point to a filebacked page.
     733             :                  */
     734             :                 WARN_ON_ONCE(!PageAnon(page));
     735             : 
     736             :         set_pte_at(vma->vm_mm, address, ptep, pte);
     737             : 
     738             :         /*
     739             :          * No need to invalidate - it was non-present before. However
     740             :          * secondary CPUs may have mappings that need invalidating.
     741             :          */
     742             :         update_mmu_cache(vma, address, ptep);
     743             : }
     744             : 
     745             : /*
     746             :  * Tries to restore an exclusive pte if the page lock can be acquired without
     747             :  * sleeping.
     748             :  */
     749             : static int
     750             : try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
     751             :                         unsigned long addr)
     752             : {
     753             :         swp_entry_t entry = pte_to_swp_entry(*src_pte);
     754             :         struct page *page = pfn_swap_entry_to_page(entry);
     755             : 
     756             :         if (trylock_page(page)) {
     757             :                 restore_exclusive_pte(vma, page, addr, src_pte);
     758             :                 unlock_page(page);
     759             :                 return 0;
     760             :         }
     761             : 
     762             :         return -EBUSY;
     763             : }
     764             : 
     765             : /*
     766             :  * copy one vm_area from one task to the other. Assumes the page tables
     767             :  * already present in the new task to be cleared in the whole range
     768             :  * covered by this vma.
     769             :  */
     770             : 
     771             : static unsigned long
     772           0 : copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
     773             :                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
     774             :                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
     775             : {
     776           0 :         unsigned long vm_flags = dst_vma->vm_flags;
     777           0 :         pte_t pte = *src_pte;
     778             :         struct page *page;
     779           0 :         swp_entry_t entry = pte_to_swp_entry(pte);
     780             : 
     781           0 :         if (likely(!non_swap_entry(entry))) {
     782           0 :                 if (swap_duplicate(entry) < 0)
     783             :                         return -EIO;
     784             : 
     785             :                 /* make sure dst_mm is on swapoff's mmlist. */
     786           0 :                 if (unlikely(list_empty(&dst_mm->mmlist))) {
     787           0 :                         spin_lock(&mmlist_lock);
     788           0 :                         if (list_empty(&dst_mm->mmlist))
     789           0 :                                 list_add(&dst_mm->mmlist,
     790             :                                                 &src_mm->mmlist);
     791             :                         spin_unlock(&mmlist_lock);
     792             :                 }
     793           0 :                 rss[MM_SWAPENTS]++;
     794           0 :         } else if (is_migration_entry(entry)) {
     795           0 :                 page = pfn_swap_entry_to_page(entry);
     796             : 
     797           0 :                 rss[mm_counter(page)]++;
     798             : 
     799           0 :                 if (is_writable_migration_entry(entry) &&
     800           0 :                                 is_cow_mapping(vm_flags)) {
     801             :                         /*
     802             :                          * COW mappings require pages in both
     803             :                          * parent and child to be set to read.
     804             :                          */
     805           0 :                         entry = make_readable_migration_entry(
     806             :                                                         swp_offset(entry));
     807           0 :                         pte = swp_entry_to_pte(entry);
     808           0 :                         if (pte_swp_soft_dirty(*src_pte))
     809             :                                 pte = pte_swp_mksoft_dirty(pte);
     810             :                         if (pte_swp_uffd_wp(*src_pte))
     811             :                                 pte = pte_swp_mkuffd_wp(pte);
     812           0 :                         set_pte_at(src_mm, addr, src_pte, pte);
     813             :                 }
     814             :         } else if (is_device_private_entry(entry)) {
     815             :                 page = pfn_swap_entry_to_page(entry);
     816             : 
     817             :                 /*
     818             :                  * Update rss count even for unaddressable pages, as
     819             :                  * they should treated just like normal pages in this
     820             :                  * respect.
     821             :                  *
     822             :                  * We will likely want to have some new rss counters
     823             :                  * for unaddressable pages, at some point. But for now
     824             :                  * keep things as they are.
     825             :                  */
     826             :                 get_page(page);
     827             :                 rss[mm_counter(page)]++;
     828             :                 page_dup_rmap(page, false);
     829             : 
     830             :                 /*
     831             :                  * We do not preserve soft-dirty information, because so
     832             :                  * far, checkpoint/restore is the only feature that
     833             :                  * requires that. And checkpoint/restore does not work
     834             :                  * when a device driver is involved (you cannot easily
     835             :                  * save and restore device driver state).
     836             :                  */
     837             :                 if (is_writable_device_private_entry(entry) &&
     838             :                     is_cow_mapping(vm_flags)) {
     839             :                         entry = make_readable_device_private_entry(
     840             :                                                         swp_offset(entry));
     841             :                         pte = swp_entry_to_pte(entry);
     842             :                         if (pte_swp_uffd_wp(*src_pte))
     843             :                                 pte = pte_swp_mkuffd_wp(pte);
     844             :                         set_pte_at(src_mm, addr, src_pte, pte);
     845             :                 }
     846             :         } else if (is_device_exclusive_entry(entry)) {
     847             :                 /*
     848             :                  * Make device exclusive entries present by restoring the
     849             :                  * original entry then copying as for a present pte. Device
     850             :                  * exclusive entries currently only support private writable
     851             :                  * (ie. COW) mappings.
     852             :                  */
     853             :                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
     854             :                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
     855             :                         return -EBUSY;
     856             :                 return -ENOENT;
     857             :         }
     858           0 :         if (!userfaultfd_wp(dst_vma))
     859             :                 pte = pte_swp_clear_uffd_wp(pte);
     860           0 :         set_pte_at(dst_mm, addr, dst_pte, pte);
     861             :         return 0;
     862             : }
     863             : 
     864             : /*
     865             :  * Copy a present and normal page if necessary.
     866             :  *
     867             :  * NOTE! The usual case is that this doesn't need to do
     868             :  * anything, and can just return a positive value. That
     869             :  * will let the caller know that it can just increase
     870             :  * the page refcount and re-use the pte the traditional
     871             :  * way.
     872             :  *
     873             :  * But _if_ we need to copy it because it needs to be
     874             :  * pinned in the parent (and the child should get its own
     875             :  * copy rather than just a reference to the same page),
     876             :  * we'll do that here and return zero to let the caller
     877             :  * know we're done.
     878             :  *
     879             :  * And if we need a pre-allocated page but don't yet have
     880             :  * one, return a negative error to let the preallocation
     881             :  * code know so that it can do so outside the page table
     882             :  * lock.
     883             :  */
     884             : static inline int
     885           0 : copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
     886             :                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
     887             :                   struct page **prealloc, pte_t pte, struct page *page)
     888             : {
     889             :         struct page *new_page;
     890             : 
     891             :         /*
     892             :          * What we want to do is to check whether this page may
     893             :          * have been pinned by the parent process.  If so,
     894             :          * instead of wrprotect the pte on both sides, we copy
     895             :          * the page immediately so that we'll always guarantee
     896             :          * the pinned page won't be randomly replaced in the
     897             :          * future.
     898             :          *
     899             :          * The page pinning checks are just "has this mm ever
     900             :          * seen pinning", along with the (inexact) check of
     901             :          * the page count. That might give false positives for
     902             :          * for pinning, but it will work correctly.
     903             :          */
     904           0 :         if (likely(!page_needs_cow_for_dma(src_vma, page)))
     905             :                 return 1;
     906             : 
     907           0 :         new_page = *prealloc;
     908           0 :         if (!new_page)
     909             :                 return -EAGAIN;
     910             : 
     911             :         /*
     912             :          * We have a prealloc page, all good!  Take it
     913             :          * over and copy the page & arm it.
     914             :          */
     915           0 :         *prealloc = NULL;
     916           0 :         copy_user_highpage(new_page, page, addr, src_vma);
     917           0 :         __SetPageUptodate(new_page);
     918           0 :         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
     919           0 :         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
     920           0 :         rss[mm_counter(new_page)]++;
     921             : 
     922             :         /* All done, just insert the new page copy in the child */
     923           0 :         pte = mk_pte(new_page, dst_vma->vm_page_prot);
     924           0 :         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
     925           0 :         if (userfaultfd_pte_wp(dst_vma, *src_pte))
     926             :                 /* Uffd-wp needs to be delivered to dest pte as well */
     927             :                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
     928           0 :         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
     929             :         return 0;
     930             : }
     931             : 
     932             : /*
     933             :  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
     934             :  * is required to copy this pte.
     935             :  */
     936             : static inline int
     937           0 : copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
     938             :                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
     939             :                  struct page **prealloc)
     940             : {
     941           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
     942           0 :         unsigned long vm_flags = src_vma->vm_flags;
     943           0 :         pte_t pte = *src_pte;
     944             :         struct page *page;
     945             : 
     946           0 :         page = vm_normal_page(src_vma, addr, pte);
     947           0 :         if (page) {
     948             :                 int retval;
     949             : 
     950           0 :                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
     951             :                                            addr, rss, prealloc, pte, page);
     952           0 :                 if (retval <= 0)
     953             :                         return retval;
     954             : 
     955           0 :                 get_page(page);
     956           0 :                 page_dup_rmap(page, false);
     957           0 :                 rss[mm_counter(page)]++;
     958             :         }
     959             : 
     960             :         /*
     961             :          * If it's a COW mapping, write protect it both
     962             :          * in the parent and the child
     963             :          */
     964           0 :         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
     965           0 :                 ptep_set_wrprotect(src_mm, addr, src_pte);
     966             :                 pte = pte_wrprotect(pte);
     967             :         }
     968             : 
     969             :         /*
     970             :          * If it's a shared mapping, mark it clean in
     971             :          * the child
     972             :          */
     973           0 :         if (vm_flags & VM_SHARED)
     974             :                 pte = pte_mkclean(pte);
     975           0 :         pte = pte_mkold(pte);
     976             : 
     977           0 :         if (!userfaultfd_wp(dst_vma))
     978             :                 pte = pte_clear_uffd_wp(pte);
     979             : 
     980           0 :         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
     981             :         return 0;
     982             : }
     983             : 
     984             : static inline struct page *
     985             : page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
     986             :                    unsigned long addr)
     987             : {
     988             :         struct page *new_page;
     989             : 
     990           0 :         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
     991           0 :         if (!new_page)
     992             :                 return NULL;
     993             : 
     994             :         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
     995             :                 put_page(new_page);
     996             :                 return NULL;
     997             :         }
     998             :         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
     999             : 
    1000             :         return new_page;
    1001             : }
    1002             : 
    1003             : static int
    1004           0 : copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
    1005             :                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
    1006             :                unsigned long end)
    1007             : {
    1008           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1009           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1010             :         pte_t *orig_src_pte, *orig_dst_pte;
    1011             :         pte_t *src_pte, *dst_pte;
    1012             :         spinlock_t *src_ptl, *dst_ptl;
    1013           0 :         int progress, ret = 0;
    1014             :         int rss[NR_MM_COUNTERS];
    1015           0 :         swp_entry_t entry = (swp_entry_t){0};
    1016           0 :         struct page *prealloc = NULL;
    1017             : 
    1018             : again:
    1019           0 :         progress = 0;
    1020           0 :         init_rss_vec(rss);
    1021             : 
    1022           0 :         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
    1023           0 :         if (!dst_pte) {
    1024             :                 ret = -ENOMEM;
    1025             :                 goto out;
    1026             :         }
    1027           0 :         src_pte = pte_offset_map(src_pmd, addr);
    1028           0 :         src_ptl = pte_lockptr(src_mm, src_pmd);
    1029           0 :         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
    1030           0 :         orig_src_pte = src_pte;
    1031           0 :         orig_dst_pte = dst_pte;
    1032             :         arch_enter_lazy_mmu_mode();
    1033             : 
    1034             :         do {
    1035             :                 /*
    1036             :                  * We are holding two locks at this point - either of them
    1037             :                  * could generate latencies in another task on another CPU.
    1038             :                  */
    1039           0 :                 if (progress >= 32) {
    1040           0 :                         progress = 0;
    1041           0 :                         if (need_resched() ||
    1042             :                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
    1043             :                                 break;
    1044             :                 }
    1045           0 :                 if (pte_none(*src_pte)) {
    1046           0 :                         progress++;
    1047           0 :                         continue;
    1048             :                 }
    1049           0 :                 if (unlikely(!pte_present(*src_pte))) {
    1050           0 :                         ret = copy_nonpresent_pte(dst_mm, src_mm,
    1051             :                                                   dst_pte, src_pte,
    1052             :                                                   dst_vma, src_vma,
    1053             :                                                   addr, rss);
    1054           0 :                         if (ret == -EIO) {
    1055             :                                 entry = pte_to_swp_entry(*src_pte);
    1056             :                                 break;
    1057           0 :                         } else if (ret == -EBUSY) {
    1058             :                                 break;
    1059           0 :                         } else if (!ret) {
    1060           0 :                                 progress += 8;
    1061           0 :                                 continue;
    1062             :                         }
    1063             : 
    1064             :                         /*
    1065             :                          * Device exclusive entry restored, continue by copying
    1066             :                          * the now present pte.
    1067             :                          */
    1068           0 :                         WARN_ON_ONCE(ret != -ENOENT);
    1069             :                 }
    1070             :                 /* copy_present_pte() will clear `*prealloc' if consumed */
    1071           0 :                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
    1072             :                                        addr, rss, &prealloc);
    1073             :                 /*
    1074             :                  * If we need a pre-allocated page for this pte, drop the
    1075             :                  * locks, allocate, and try again.
    1076             :                  */
    1077           0 :                 if (unlikely(ret == -EAGAIN))
    1078             :                         break;
    1079           0 :                 if (unlikely(prealloc)) {
    1080             :                         /*
    1081             :                          * pre-alloc page cannot be reused by next time so as
    1082             :                          * to strictly follow mempolicy (e.g., alloc_page_vma()
    1083             :                          * will allocate page according to address).  This
    1084             :                          * could only happen if one pinned pte changed.
    1085             :                          */
    1086           0 :                         put_page(prealloc);
    1087           0 :                         prealloc = NULL;
    1088             :                 }
    1089           0 :                 progress += 8;
    1090           0 :         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
    1091             : 
    1092             :         arch_leave_lazy_mmu_mode();
    1093           0 :         spin_unlock(src_ptl);
    1094             :         pte_unmap(orig_src_pte);
    1095           0 :         add_mm_rss_vec(dst_mm, rss);
    1096           0 :         pte_unmap_unlock(orig_dst_pte, dst_ptl);
    1097           0 :         cond_resched();
    1098             : 
    1099           0 :         if (ret == -EIO) {
    1100             :                 VM_WARN_ON_ONCE(!entry.val);
    1101           0 :                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
    1102             :                         ret = -ENOMEM;
    1103             :                         goto out;
    1104             :                 }
    1105           0 :                 entry.val = 0;
    1106           0 :         } else if (ret == -EBUSY) {
    1107             :                 goto out;
    1108           0 :         } else if (ret ==  -EAGAIN) {
    1109           0 :                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
    1110           0 :                 if (!prealloc)
    1111             :                         return -ENOMEM;
    1112             :         } else if (ret) {
    1113             :                 VM_WARN_ON_ONCE(1);
    1114             :         }
    1115             : 
    1116             :         /* We've captured and resolved the error. Reset, try again. */
    1117           0 :         ret = 0;
    1118             : 
    1119           0 :         if (addr != end)
    1120             :                 goto again;
    1121             : out:
    1122           0 :         if (unlikely(prealloc))
    1123           0 :                 put_page(prealloc);
    1124             :         return ret;
    1125             : }
    1126             : 
    1127             : static inline int
    1128           0 : copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
    1129             :                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
    1130             :                unsigned long end)
    1131             : {
    1132           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1133           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1134             :         pmd_t *src_pmd, *dst_pmd;
    1135             :         unsigned long next;
    1136             : 
    1137           0 :         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
    1138           0 :         if (!dst_pmd)
    1139             :                 return -ENOMEM;
    1140           0 :         src_pmd = pmd_offset(src_pud, addr);
    1141             :         do {
    1142           0 :                 next = pmd_addr_end(addr, end);
    1143           0 :                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
    1144           0 :                         || pmd_devmap(*src_pmd)) {
    1145             :                         int err;
    1146             :                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
    1147             :                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
    1148             :                                             addr, dst_vma, src_vma);
    1149             :                         if (err == -ENOMEM)
    1150             :                                 return -ENOMEM;
    1151             :                         if (!err)
    1152             :                                 continue;
    1153             :                         /* fall through */
    1154             :                 }
    1155           0 :                 if (pmd_none_or_clear_bad(src_pmd))
    1156           0 :                         continue;
    1157           0 :                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
    1158             :                                    addr, next))
    1159             :                         return -ENOMEM;
    1160           0 :         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
    1161             :         return 0;
    1162             : }
    1163             : 
    1164             : static inline int
    1165           0 : copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
    1166             :                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
    1167             :                unsigned long end)
    1168             : {
    1169           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1170           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1171             :         pud_t *src_pud, *dst_pud;
    1172             :         unsigned long next;
    1173             : 
    1174           0 :         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
    1175           0 :         if (!dst_pud)
    1176             :                 return -ENOMEM;
    1177           0 :         src_pud = pud_offset(src_p4d, addr);
    1178             :         do {
    1179           0 :                 next = pud_addr_end(addr, end);
    1180           0 :                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
    1181             :                         int err;
    1182             : 
    1183             :                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
    1184             :                         err = copy_huge_pud(dst_mm, src_mm,
    1185             :                                             dst_pud, src_pud, addr, src_vma);
    1186             :                         if (err == -ENOMEM)
    1187             :                                 return -ENOMEM;
    1188             :                         if (!err)
    1189             :                                 continue;
    1190             :                         /* fall through */
    1191             :                 }
    1192           0 :                 if (pud_none_or_clear_bad(src_pud))
    1193           0 :                         continue;
    1194           0 :                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
    1195             :                                    addr, next))
    1196             :                         return -ENOMEM;
    1197           0 :         } while (dst_pud++, src_pud++, addr = next, addr != end);
    1198           0 :         return 0;
    1199             : }
    1200             : 
    1201             : static inline int
    1202             : copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
    1203             :                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
    1204             :                unsigned long end)
    1205             : {
    1206           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1207             :         p4d_t *src_p4d, *dst_p4d;
    1208             :         unsigned long next;
    1209             : 
    1210           0 :         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
    1211           0 :         if (!dst_p4d)
    1212             :                 return -ENOMEM;
    1213           0 :         src_p4d = p4d_offset(src_pgd, addr);
    1214             :         do {
    1215           0 :                 next = p4d_addr_end(addr, end);
    1216           0 :                 if (p4d_none_or_clear_bad(src_p4d))
    1217             :                         continue;
    1218           0 :                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
    1219             :                                    addr, next))
    1220             :                         return -ENOMEM;
    1221           0 :         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
    1222             :         return 0;
    1223             : }
    1224             : 
    1225             : int
    1226           0 : copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
    1227             : {
    1228             :         pgd_t *src_pgd, *dst_pgd;
    1229             :         unsigned long next;
    1230           0 :         unsigned long addr = src_vma->vm_start;
    1231           0 :         unsigned long end = src_vma->vm_end;
    1232           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1233           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1234             :         struct mmu_notifier_range range;
    1235             :         bool is_cow;
    1236             :         int ret;
    1237             : 
    1238             :         /*
    1239             :          * Don't copy ptes where a page fault will fill them correctly.
    1240             :          * Fork becomes much lighter when there are big shared or private
    1241             :          * readonly mappings. The tradeoff is that copy_page_range is more
    1242             :          * efficient than faulting.
    1243             :          */
    1244           0 :         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
    1245           0 :             !src_vma->anon_vma)
    1246             :                 return 0;
    1247             : 
    1248           0 :         if (is_vm_hugetlb_page(src_vma))
    1249             :                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
    1250             : 
    1251             :         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
    1252             :                 /*
    1253             :                  * We do not free on error cases below as remove_vma
    1254             :                  * gets called on error from higher level routine
    1255             :                  */
    1256             :                 ret = track_pfn_copy(src_vma);
    1257             :                 if (ret)
    1258             :                         return ret;
    1259             :         }
    1260             : 
    1261             :         /*
    1262             :          * We need to invalidate the secondary MMU mappings only when
    1263             :          * there could be a permission downgrade on the ptes of the
    1264             :          * parent mm. And a permission downgrade will only happen if
    1265             :          * is_cow_mapping() returns true.
    1266             :          */
    1267           0 :         is_cow = is_cow_mapping(src_vma->vm_flags);
    1268             : 
    1269           0 :         if (is_cow) {
    1270           0 :                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
    1271             :                                         0, src_vma, src_mm, addr, end);
    1272           0 :                 mmu_notifier_invalidate_range_start(&range);
    1273             :                 /*
    1274             :                  * Disabling preemption is not needed for the write side, as
    1275             :                  * the read side doesn't spin, but goes to the mmap_lock.
    1276             :                  *
    1277             :                  * Use the raw variant of the seqcount_t write API to avoid
    1278             :                  * lockdep complaining about preemptibility.
    1279             :                  */
    1280           0 :                 mmap_assert_write_locked(src_mm);
    1281           0 :                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
    1282             :         }
    1283             : 
    1284           0 :         ret = 0;
    1285           0 :         dst_pgd = pgd_offset(dst_mm, addr);
    1286           0 :         src_pgd = pgd_offset(src_mm, addr);
    1287             :         do {
    1288           0 :                 next = pgd_addr_end(addr, end);
    1289           0 :                 if (pgd_none_or_clear_bad(src_pgd))
    1290             :                         continue;
    1291           0 :                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
    1292             :                                             addr, next))) {
    1293             :                         ret = -ENOMEM;
    1294             :                         break;
    1295             :                 }
    1296           0 :         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
    1297             : 
    1298           0 :         if (is_cow) {
    1299           0 :                 raw_write_seqcount_end(&src_mm->write_protect_seq);
    1300           0 :                 mmu_notifier_invalidate_range_end(&range);
    1301             :         }
    1302             :         return ret;
    1303             : }
    1304             : 
    1305             : /*
    1306             :  * Parameter block passed down to zap_pte_range in exceptional cases.
    1307             :  */
    1308             : struct zap_details {
    1309             :         struct folio *single_folio;     /* Locked folio to be unmapped */
    1310             :         bool even_cows;                 /* Zap COWed private pages too? */
    1311             : };
    1312             : 
    1313             : /* Whether we should zap all COWed (private) pages too */
    1314             : static inline bool should_zap_cows(struct zap_details *details)
    1315             : {
    1316             :         /* By default, zap all pages */
    1317           0 :         if (!details)
    1318             :                 return true;
    1319             : 
    1320             :         /* Or, we zap COWed pages only if the caller wants to */
    1321           0 :         return details->even_cows;
    1322             : }
    1323             : 
    1324             : /* Decides whether we should zap this page with the page pointer specified */
    1325           0 : static inline bool should_zap_page(struct zap_details *details, struct page *page)
    1326             : {
    1327             :         /* If we can make a decision without *page.. */
    1328           0 :         if (should_zap_cows(details))
    1329             :                 return true;
    1330             : 
    1331             :         /* E.g. the caller passes NULL for the case of a zero page */
    1332           0 :         if (!page)
    1333             :                 return true;
    1334             : 
    1335             :         /* Otherwise we should only zap non-anon pages */
    1336           0 :         return !PageAnon(page);
    1337             : }
    1338             : 
    1339           0 : static unsigned long zap_pte_range(struct mmu_gather *tlb,
    1340             :                                 struct vm_area_struct *vma, pmd_t *pmd,
    1341             :                                 unsigned long addr, unsigned long end,
    1342             :                                 struct zap_details *details)
    1343             : {
    1344           0 :         struct mm_struct *mm = tlb->mm;
    1345           0 :         int force_flush = 0;
    1346             :         int rss[NR_MM_COUNTERS];
    1347             :         spinlock_t *ptl;
    1348             :         pte_t *start_pte;
    1349             :         pte_t *pte;
    1350             :         swp_entry_t entry;
    1351             : 
    1352           0 :         tlb_change_page_size(tlb, PAGE_SIZE);
    1353             : again:
    1354           0 :         init_rss_vec(rss);
    1355           0 :         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
    1356           0 :         pte = start_pte;
    1357           0 :         flush_tlb_batched_pending(mm);
    1358             :         arch_enter_lazy_mmu_mode();
    1359             :         do {
    1360           0 :                 pte_t ptent = *pte;
    1361             :                 struct page *page;
    1362             : 
    1363           0 :                 if (pte_none(ptent))
    1364           0 :                         continue;
    1365             : 
    1366           0 :                 if (need_resched())
    1367             :                         break;
    1368             : 
    1369           0 :                 if (pte_present(ptent)) {
    1370           0 :                         page = vm_normal_page(vma, addr, ptent);
    1371           0 :                         if (unlikely(!should_zap_page(details, page)))
    1372           0 :                                 continue;
    1373           0 :                         ptent = ptep_get_and_clear_full(mm, addr, pte,
    1374           0 :                                                         tlb->fullmm);
    1375           0 :                         tlb_remove_tlb_entry(tlb, pte, addr);
    1376           0 :                         if (unlikely(!page))
    1377           0 :                                 continue;
    1378             : 
    1379           0 :                         if (!PageAnon(page)) {
    1380           0 :                                 if (pte_dirty(ptent)) {
    1381           0 :                                         force_flush = 1;
    1382           0 :                                         set_page_dirty(page);
    1383             :                                 }
    1384           0 :                                 if (pte_young(ptent) &&
    1385           0 :                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
    1386           0 :                                         mark_page_accessed(page);
    1387             :                         }
    1388           0 :                         rss[mm_counter(page)]--;
    1389           0 :                         page_remove_rmap(page, vma, false);
    1390           0 :                         if (unlikely(page_mapcount(page) < 0))
    1391           0 :                                 print_bad_pte(vma, addr, ptent, page);
    1392           0 :                         if (unlikely(__tlb_remove_page(tlb, page))) {
    1393             :                                 force_flush = 1;
    1394             :                                 addr += PAGE_SIZE;
    1395             :                                 break;
    1396             :                         }
    1397           0 :                         continue;
    1398             :                 }
    1399             : 
    1400           0 :                 entry = pte_to_swp_entry(ptent);
    1401           0 :                 if (is_device_private_entry(entry) ||
    1402           0 :                     is_device_exclusive_entry(entry)) {
    1403             :                         page = pfn_swap_entry_to_page(entry);
    1404             :                         if (unlikely(!should_zap_page(details, page)))
    1405             :                                 continue;
    1406             :                         rss[mm_counter(page)]--;
    1407             :                         if (is_device_private_entry(entry))
    1408             :                                 page_remove_rmap(page, vma, false);
    1409             :                         put_page(page);
    1410           0 :                 } else if (!non_swap_entry(entry)) {
    1411             :                         /* Genuine swap entry, hence a private anon page */
    1412           0 :                         if (!should_zap_cows(details))
    1413           0 :                                 continue;
    1414           0 :                         rss[MM_SWAPENTS]--;
    1415           0 :                         if (unlikely(!free_swap_and_cache(entry)))
    1416           0 :                                 print_bad_pte(vma, addr, ptent, NULL);
    1417           0 :                 } else if (is_migration_entry(entry)) {
    1418           0 :                         page = pfn_swap_entry_to_page(entry);
    1419           0 :                         if (!should_zap_page(details, page))
    1420           0 :                                 continue;
    1421           0 :                         rss[mm_counter(page)]--;
    1422           0 :                 } else if (is_hwpoison_entry(entry)) {
    1423             :                         if (!should_zap_cows(details))
    1424             :                                 continue;
    1425             :                 } else {
    1426             :                         /* We should have covered all the swap entry types */
    1427           0 :                         WARN_ON_ONCE(1);
    1428             :                 }
    1429           0 :                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
    1430           0 :         } while (pte++, addr += PAGE_SIZE, addr != end);
    1431             : 
    1432           0 :         add_mm_rss_vec(mm, rss);
    1433             :         arch_leave_lazy_mmu_mode();
    1434             : 
    1435             :         /* Do the actual TLB flush before dropping ptl */
    1436           0 :         if (force_flush)
    1437           0 :                 tlb_flush_mmu_tlbonly(tlb);
    1438           0 :         pte_unmap_unlock(start_pte, ptl);
    1439             : 
    1440             :         /*
    1441             :          * If we forced a TLB flush (either due to running out of
    1442             :          * batch buffers or because we needed to flush dirty TLB
    1443             :          * entries before releasing the ptl), free the batched
    1444             :          * memory too. Restart if we didn't do everything.
    1445             :          */
    1446           0 :         if (force_flush) {
    1447           0 :                 force_flush = 0;
    1448           0 :                 tlb_flush_mmu(tlb);
    1449             :         }
    1450             : 
    1451           0 :         if (addr != end) {
    1452           0 :                 cond_resched();
    1453           0 :                 goto again;
    1454             :         }
    1455             : 
    1456           0 :         return addr;
    1457             : }
    1458             : 
    1459           0 : static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
    1460             :                                 struct vm_area_struct *vma, pud_t *pud,
    1461             :                                 unsigned long addr, unsigned long end,
    1462             :                                 struct zap_details *details)
    1463             : {
    1464             :         pmd_t *pmd;
    1465             :         unsigned long next;
    1466             : 
    1467           0 :         pmd = pmd_offset(pud, addr);
    1468             :         do {
    1469           0 :                 next = pmd_addr_end(addr, end);
    1470           0 :                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
    1471             :                         if (next - addr != HPAGE_PMD_SIZE)
    1472             :                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
    1473             :                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
    1474             :                                 goto next;
    1475             :                         /* fall through */
    1476             :                 } else if (details && details->single_folio &&
    1477             :                            folio_test_pmd_mappable(details->single_folio) &&
    1478             :                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
    1479             :                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
    1480             :                         /*
    1481             :                          * Take and drop THP pmd lock so that we cannot return
    1482             :                          * prematurely, while zap_huge_pmd() has cleared *pmd,
    1483             :                          * but not yet decremented compound_mapcount().
    1484             :                          */
    1485             :                         spin_unlock(ptl);
    1486             :                 }
    1487             : 
    1488             :                 /*
    1489             :                  * Here there can be other concurrent MADV_DONTNEED or
    1490             :                  * trans huge page faults running, and if the pmd is
    1491             :                  * none or trans huge it can change under us. This is
    1492             :                  * because MADV_DONTNEED holds the mmap_lock in read
    1493             :                  * mode.
    1494             :                  */
    1495           0 :                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
    1496             :                         goto next;
    1497           0 :                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
    1498             : next:
    1499           0 :                 cond_resched();
    1500           0 :         } while (pmd++, addr = next, addr != end);
    1501             : 
    1502           0 :         return addr;
    1503             : }
    1504             : 
    1505           0 : static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
    1506             :                                 struct vm_area_struct *vma, p4d_t *p4d,
    1507             :                                 unsigned long addr, unsigned long end,
    1508             :                                 struct zap_details *details)
    1509             : {
    1510             :         pud_t *pud;
    1511             :         unsigned long next;
    1512             : 
    1513           0 :         pud = pud_offset(p4d, addr);
    1514             :         do {
    1515           0 :                 next = pud_addr_end(addr, end);
    1516           0 :                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
    1517             :                         if (next - addr != HPAGE_PUD_SIZE) {
    1518             :                                 mmap_assert_locked(tlb->mm);
    1519             :                                 split_huge_pud(vma, pud, addr);
    1520             :                         } else if (zap_huge_pud(tlb, vma, pud, addr))
    1521             :                                 goto next;
    1522             :                         /* fall through */
    1523             :                 }
    1524           0 :                 if (pud_none_or_clear_bad(pud))
    1525           0 :                         continue;
    1526           0 :                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
    1527             : next:
    1528           0 :                 cond_resched();
    1529           0 :         } while (pud++, addr = next, addr != end);
    1530             : 
    1531           0 :         return addr;
    1532             : }
    1533             : 
    1534             : static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
    1535             :                                 struct vm_area_struct *vma, pgd_t *pgd,
    1536             :                                 unsigned long addr, unsigned long end,
    1537             :                                 struct zap_details *details)
    1538             : {
    1539             :         p4d_t *p4d;
    1540             :         unsigned long next;
    1541             : 
    1542             :         p4d = p4d_offset(pgd, addr);
    1543             :         do {
    1544           0 :                 next = p4d_addr_end(addr, end);
    1545           0 :                 if (p4d_none_or_clear_bad(p4d))
    1546             :                         continue;
    1547           0 :                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
    1548           0 :         } while (p4d++, addr = next, addr != end);
    1549             : 
    1550             :         return addr;
    1551             : }
    1552             : 
    1553           0 : void unmap_page_range(struct mmu_gather *tlb,
    1554             :                              struct vm_area_struct *vma,
    1555             :                              unsigned long addr, unsigned long end,
    1556             :                              struct zap_details *details)
    1557             : {
    1558             :         pgd_t *pgd;
    1559             :         unsigned long next;
    1560             : 
    1561           0 :         BUG_ON(addr >= end);
    1562           0 :         tlb_start_vma(tlb, vma);
    1563           0 :         pgd = pgd_offset(vma->vm_mm, addr);
    1564             :         do {
    1565           0 :                 next = pgd_addr_end(addr, end);
    1566           0 :                 if (pgd_none_or_clear_bad(pgd))
    1567             :                         continue;
    1568           0 :                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
    1569           0 :         } while (pgd++, addr = next, addr != end);
    1570           0 :         tlb_end_vma(tlb, vma);
    1571           0 : }
    1572             : 
    1573             : 
    1574           0 : static void unmap_single_vma(struct mmu_gather *tlb,
    1575             :                 struct vm_area_struct *vma, unsigned long start_addr,
    1576             :                 unsigned long end_addr,
    1577             :                 struct zap_details *details)
    1578             : {
    1579           0 :         unsigned long start = max(vma->vm_start, start_addr);
    1580             :         unsigned long end;
    1581             : 
    1582           0 :         if (start >= vma->vm_end)
    1583             :                 return;
    1584           0 :         end = min(vma->vm_end, end_addr);
    1585           0 :         if (end <= vma->vm_start)
    1586             :                 return;
    1587             : 
    1588             :         if (vma->vm_file)
    1589             :                 uprobe_munmap(vma, start, end);
    1590             : 
    1591             :         if (unlikely(vma->vm_flags & VM_PFNMAP))
    1592             :                 untrack_pfn(vma, 0, 0);
    1593             : 
    1594           0 :         if (start != end) {
    1595           0 :                 if (unlikely(is_vm_hugetlb_page(vma))) {
    1596             :                         /*
    1597             :                          * It is undesirable to test vma->vm_file as it
    1598             :                          * should be non-null for valid hugetlb area.
    1599             :                          * However, vm_file will be NULL in the error
    1600             :                          * cleanup path of mmap_region. When
    1601             :                          * hugetlbfs ->mmap method fails,
    1602             :                          * mmap_region() nullifies vma->vm_file
    1603             :                          * before calling this function to clean up.
    1604             :                          * Since no pte has actually been setup, it is
    1605             :                          * safe to do nothing in this case.
    1606             :                          */
    1607             :                         if (vma->vm_file) {
    1608             :                                 i_mmap_lock_write(vma->vm_file->f_mapping);
    1609             :                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
    1610             :                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
    1611             :                         }
    1612             :                 } else
    1613           0 :                         unmap_page_range(tlb, vma, start, end, details);
    1614             :         }
    1615             : }
    1616             : 
    1617             : /**
    1618             :  * unmap_vmas - unmap a range of memory covered by a list of vma's
    1619             :  * @tlb: address of the caller's struct mmu_gather
    1620             :  * @vma: the starting vma
    1621             :  * @start_addr: virtual address at which to start unmapping
    1622             :  * @end_addr: virtual address at which to end unmapping
    1623             :  *
    1624             :  * Unmap all pages in the vma list.
    1625             :  *
    1626             :  * Only addresses between `start' and `end' will be unmapped.
    1627             :  *
    1628             :  * The VMA list must be sorted in ascending virtual address order.
    1629             :  *
    1630             :  * unmap_vmas() assumes that the caller will flush the whole unmapped address
    1631             :  * range after unmap_vmas() returns.  So the only responsibility here is to
    1632             :  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
    1633             :  * drops the lock and schedules.
    1634             :  */
    1635           0 : void unmap_vmas(struct mmu_gather *tlb,
    1636             :                 struct vm_area_struct *vma, unsigned long start_addr,
    1637             :                 unsigned long end_addr)
    1638             : {
    1639             :         struct mmu_notifier_range range;
    1640             : 
    1641             :         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
    1642             :                                 start_addr, end_addr);
    1643             :         mmu_notifier_invalidate_range_start(&range);
    1644           0 :         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
    1645           0 :                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
    1646           0 :         mmu_notifier_invalidate_range_end(&range);
    1647           0 : }
    1648             : 
    1649             : /**
    1650             :  * zap_page_range - remove user pages in a given range
    1651             :  * @vma: vm_area_struct holding the applicable pages
    1652             :  * @start: starting address of pages to zap
    1653             :  * @size: number of bytes to zap
    1654             :  *
    1655             :  * Caller must protect the VMA list
    1656             :  */
    1657           0 : void zap_page_range(struct vm_area_struct *vma, unsigned long start,
    1658             :                 unsigned long size)
    1659             : {
    1660             :         struct mmu_notifier_range range;
    1661             :         struct mmu_gather tlb;
    1662             : 
    1663           0 :         lru_add_drain();
    1664           0 :         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
    1665             :                                 start, start + size);
    1666           0 :         tlb_gather_mmu(&tlb, vma->vm_mm);
    1667           0 :         update_hiwater_rss(vma->vm_mm);
    1668             :         mmu_notifier_invalidate_range_start(&range);
    1669           0 :         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
    1670           0 :                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
    1671           0 :         mmu_notifier_invalidate_range_end(&range);
    1672           0 :         tlb_finish_mmu(&tlb);
    1673           0 : }
    1674             : 
    1675             : /**
    1676             :  * zap_page_range_single - remove user pages in a given range
    1677             :  * @vma: vm_area_struct holding the applicable pages
    1678             :  * @address: starting address of pages to zap
    1679             :  * @size: number of bytes to zap
    1680             :  * @details: details of shared cache invalidation
    1681             :  *
    1682             :  * The range must fit into one VMA.
    1683             :  */
    1684           0 : static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
    1685             :                 unsigned long size, struct zap_details *details)
    1686             : {
    1687             :         struct mmu_notifier_range range;
    1688             :         struct mmu_gather tlb;
    1689             : 
    1690           0 :         lru_add_drain();
    1691           0 :         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
    1692             :                                 address, address + size);
    1693           0 :         tlb_gather_mmu(&tlb, vma->vm_mm);
    1694           0 :         update_hiwater_rss(vma->vm_mm);
    1695           0 :         mmu_notifier_invalidate_range_start(&range);
    1696           0 :         unmap_single_vma(&tlb, vma, address, range.end, details);
    1697           0 :         mmu_notifier_invalidate_range_end(&range);
    1698           0 :         tlb_finish_mmu(&tlb);
    1699           0 : }
    1700             : 
    1701             : /**
    1702             :  * zap_vma_ptes - remove ptes mapping the vma
    1703             :  * @vma: vm_area_struct holding ptes to be zapped
    1704             :  * @address: starting address of pages to zap
    1705             :  * @size: number of bytes to zap
    1706             :  *
    1707             :  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
    1708             :  *
    1709             :  * The entire address range must be fully contained within the vma.
    1710             :  *
    1711             :  */
    1712           0 : void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
    1713             :                 unsigned long size)
    1714             : {
    1715           0 :         if (!range_in_vma(vma, address, address + size) ||
    1716           0 :                         !(vma->vm_flags & VM_PFNMAP))
    1717             :                 return;
    1718             : 
    1719           0 :         zap_page_range_single(vma, address, size, NULL);
    1720             : }
    1721             : EXPORT_SYMBOL_GPL(zap_vma_ptes);
    1722             : 
    1723           0 : static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
    1724             : {
    1725             :         pgd_t *pgd;
    1726             :         p4d_t *p4d;
    1727             :         pud_t *pud;
    1728             :         pmd_t *pmd;
    1729             : 
    1730           0 :         pgd = pgd_offset(mm, addr);
    1731           0 :         p4d = p4d_alloc(mm, pgd, addr);
    1732           0 :         if (!p4d)
    1733             :                 return NULL;
    1734           0 :         pud = pud_alloc(mm, p4d, addr);
    1735             :         if (!pud)
    1736             :                 return NULL;
    1737           0 :         pmd = pmd_alloc(mm, pud, addr);
    1738           0 :         if (!pmd)
    1739             :                 return NULL;
    1740             : 
    1741             :         VM_BUG_ON(pmd_trans_huge(*pmd));
    1742           0 :         return pmd;
    1743             : }
    1744             : 
    1745           0 : pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
    1746             :                         spinlock_t **ptl)
    1747             : {
    1748           0 :         pmd_t *pmd = walk_to_pmd(mm, addr);
    1749             : 
    1750           0 :         if (!pmd)
    1751             :                 return NULL;
    1752           0 :         return pte_alloc_map_lock(mm, pmd, addr, ptl);
    1753             : }
    1754             : 
    1755           0 : static int validate_page_before_insert(struct page *page)
    1756             : {
    1757           0 :         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
    1758             :                 return -EINVAL;
    1759             :         flush_dcache_page(page);
    1760             :         return 0;
    1761             : }
    1762             : 
    1763           0 : static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
    1764             :                         unsigned long addr, struct page *page, pgprot_t prot)
    1765             : {
    1766           0 :         if (!pte_none(*pte))
    1767             :                 return -EBUSY;
    1768             :         /* Ok, finally just insert the thing.. */
    1769           0 :         get_page(page);
    1770           0 :         inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
    1771           0 :         page_add_file_rmap(page, vma, false);
    1772           0 :         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
    1773             :         return 0;
    1774             : }
    1775             : 
    1776             : /*
    1777             :  * This is the old fallback for page remapping.
    1778             :  *
    1779             :  * For historical reasons, it only allows reserved pages. Only
    1780             :  * old drivers should use this, and they needed to mark their
    1781             :  * pages reserved for the old functions anyway.
    1782             :  */
    1783           0 : static int insert_page(struct vm_area_struct *vma, unsigned long addr,
    1784             :                         struct page *page, pgprot_t prot)
    1785             : {
    1786             :         int retval;
    1787             :         pte_t *pte;
    1788             :         spinlock_t *ptl;
    1789             : 
    1790           0 :         retval = validate_page_before_insert(page);
    1791           0 :         if (retval)
    1792             :                 goto out;
    1793           0 :         retval = -ENOMEM;
    1794           0 :         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
    1795           0 :         if (!pte)
    1796             :                 goto out;
    1797           0 :         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
    1798           0 :         pte_unmap_unlock(pte, ptl);
    1799             : out:
    1800           0 :         return retval;
    1801             : }
    1802             : 
    1803             : #ifdef pte_index
    1804           0 : static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
    1805             :                         unsigned long addr, struct page *page, pgprot_t prot)
    1806             : {
    1807             :         int err;
    1808             : 
    1809           0 :         if (!page_count(page))
    1810             :                 return -EINVAL;
    1811           0 :         err = validate_page_before_insert(page);
    1812           0 :         if (err)
    1813             :                 return err;
    1814           0 :         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
    1815             : }
    1816             : 
    1817             : /* insert_pages() amortizes the cost of spinlock operations
    1818             :  * when inserting pages in a loop. Arch *must* define pte_index.
    1819             :  */
    1820           0 : static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
    1821             :                         struct page **pages, unsigned long *num, pgprot_t prot)
    1822             : {
    1823           0 :         pmd_t *pmd = NULL;
    1824             :         pte_t *start_pte, *pte;
    1825             :         spinlock_t *pte_lock;
    1826           0 :         struct mm_struct *const mm = vma->vm_mm;
    1827           0 :         unsigned long curr_page_idx = 0;
    1828           0 :         unsigned long remaining_pages_total = *num;
    1829             :         unsigned long pages_to_write_in_pmd;
    1830             :         int ret;
    1831             : more:
    1832           0 :         ret = -EFAULT;
    1833           0 :         pmd = walk_to_pmd(mm, addr);
    1834           0 :         if (!pmd)
    1835             :                 goto out;
    1836             : 
    1837           0 :         pages_to_write_in_pmd = min_t(unsigned long,
    1838             :                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
    1839             : 
    1840             :         /* Allocate the PTE if necessary; takes PMD lock once only. */
    1841           0 :         ret = -ENOMEM;
    1842           0 :         if (pte_alloc(mm, pmd))
    1843             :                 goto out;
    1844             : 
    1845           0 :         while (pages_to_write_in_pmd) {
    1846           0 :                 int pte_idx = 0;
    1847           0 :                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
    1848             : 
    1849           0 :                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
    1850           0 :                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
    1851           0 :                         int err = insert_page_in_batch_locked(vma, pte,
    1852           0 :                                 addr, pages[curr_page_idx], prot);
    1853           0 :                         if (unlikely(err)) {
    1854           0 :                                 pte_unmap_unlock(start_pte, pte_lock);
    1855           0 :                                 ret = err;
    1856           0 :                                 remaining_pages_total -= pte_idx;
    1857           0 :                                 goto out;
    1858             :                         }
    1859           0 :                         addr += PAGE_SIZE;
    1860           0 :                         ++curr_page_idx;
    1861             :                 }
    1862           0 :                 pte_unmap_unlock(start_pte, pte_lock);
    1863           0 :                 pages_to_write_in_pmd -= batch_size;
    1864           0 :                 remaining_pages_total -= batch_size;
    1865             :         }
    1866           0 :         if (remaining_pages_total)
    1867             :                 goto more;
    1868             :         ret = 0;
    1869             : out:
    1870           0 :         *num = remaining_pages_total;
    1871           0 :         return ret;
    1872             : }
    1873             : #endif  /* ifdef pte_index */
    1874             : 
    1875             : /**
    1876             :  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
    1877             :  * @vma: user vma to map to
    1878             :  * @addr: target start user address of these pages
    1879             :  * @pages: source kernel pages
    1880             :  * @num: in: number of pages to map. out: number of pages that were *not*
    1881             :  * mapped. (0 means all pages were successfully mapped).
    1882             :  *
    1883             :  * Preferred over vm_insert_page() when inserting multiple pages.
    1884             :  *
    1885             :  * In case of error, we may have mapped a subset of the provided
    1886             :  * pages. It is the caller's responsibility to account for this case.
    1887             :  *
    1888             :  * The same restrictions apply as in vm_insert_page().
    1889             :  */
    1890           0 : int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
    1891             :                         struct page **pages, unsigned long *num)
    1892             : {
    1893             : #ifdef pte_index
    1894           0 :         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
    1895             : 
    1896           0 :         if (addr < vma->vm_start || end_addr >= vma->vm_end)
    1897             :                 return -EFAULT;
    1898           0 :         if (!(vma->vm_flags & VM_MIXEDMAP)) {
    1899           0 :                 BUG_ON(mmap_read_trylock(vma->vm_mm));
    1900           0 :                 BUG_ON(vma->vm_flags & VM_PFNMAP);
    1901           0 :                 vma->vm_flags |= VM_MIXEDMAP;
    1902             :         }
    1903             :         /* Defer page refcount checking till we're about to map that page. */
    1904           0 :         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
    1905             : #else
    1906             :         unsigned long idx = 0, pgcount = *num;
    1907             :         int err = -EINVAL;
    1908             : 
    1909             :         for (; idx < pgcount; ++idx) {
    1910             :                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
    1911             :                 if (err)
    1912             :                         break;
    1913             :         }
    1914             :         *num = pgcount - idx;
    1915             :         return err;
    1916             : #endif  /* ifdef pte_index */
    1917             : }
    1918             : EXPORT_SYMBOL(vm_insert_pages);
    1919             : 
    1920             : /**
    1921             :  * vm_insert_page - insert single page into user vma
    1922             :  * @vma: user vma to map to
    1923             :  * @addr: target user address of this page
    1924             :  * @page: source kernel page
    1925             :  *
    1926             :  * This allows drivers to insert individual pages they've allocated
    1927             :  * into a user vma.
    1928             :  *
    1929             :  * The page has to be a nice clean _individual_ kernel allocation.
    1930             :  * If you allocate a compound page, you need to have marked it as
    1931             :  * such (__GFP_COMP), or manually just split the page up yourself
    1932             :  * (see split_page()).
    1933             :  *
    1934             :  * NOTE! Traditionally this was done with "remap_pfn_range()" which
    1935             :  * took an arbitrary page protection parameter. This doesn't allow
    1936             :  * that. Your vma protection will have to be set up correctly, which
    1937             :  * means that if you want a shared writable mapping, you'd better
    1938             :  * ask for a shared writable mapping!
    1939             :  *
    1940             :  * The page does not need to be reserved.
    1941             :  *
    1942             :  * Usually this function is called from f_op->mmap() handler
    1943             :  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
    1944             :  * Caller must set VM_MIXEDMAP on vma if it wants to call this
    1945             :  * function from other places, for example from page-fault handler.
    1946             :  *
    1947             :  * Return: %0 on success, negative error code otherwise.
    1948             :  */
    1949           0 : int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
    1950             :                         struct page *page)
    1951             : {
    1952           0 :         if (addr < vma->vm_start || addr >= vma->vm_end)
    1953             :                 return -EFAULT;
    1954           0 :         if (!page_count(page))
    1955             :                 return -EINVAL;
    1956           0 :         if (!(vma->vm_flags & VM_MIXEDMAP)) {
    1957           0 :                 BUG_ON(mmap_read_trylock(vma->vm_mm));
    1958           0 :                 BUG_ON(vma->vm_flags & VM_PFNMAP);
    1959           0 :                 vma->vm_flags |= VM_MIXEDMAP;
    1960             :         }
    1961           0 :         return insert_page(vma, addr, page, vma->vm_page_prot);
    1962             : }
    1963             : EXPORT_SYMBOL(vm_insert_page);
    1964             : 
    1965             : /*
    1966             :  * __vm_map_pages - maps range of kernel pages into user vma
    1967             :  * @vma: user vma to map to
    1968             :  * @pages: pointer to array of source kernel pages
    1969             :  * @num: number of pages in page array
    1970             :  * @offset: user's requested vm_pgoff
    1971             :  *
    1972             :  * This allows drivers to map range of kernel pages into a user vma.
    1973             :  *
    1974             :  * Return: 0 on success and error code otherwise.
    1975             :  */
    1976           0 : static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
    1977             :                                 unsigned long num, unsigned long offset)
    1978             : {
    1979           0 :         unsigned long count = vma_pages(vma);
    1980           0 :         unsigned long uaddr = vma->vm_start;
    1981             :         int ret, i;
    1982             : 
    1983             :         /* Fail if the user requested offset is beyond the end of the object */
    1984           0 :         if (offset >= num)
    1985             :                 return -ENXIO;
    1986             : 
    1987             :         /* Fail if the user requested size exceeds available object size */
    1988           0 :         if (count > num - offset)
    1989             :                 return -ENXIO;
    1990             : 
    1991           0 :         for (i = 0; i < count; i++) {
    1992           0 :                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
    1993           0 :                 if (ret < 0)
    1994             :                         return ret;
    1995           0 :                 uaddr += PAGE_SIZE;
    1996             :         }
    1997             : 
    1998             :         return 0;
    1999             : }
    2000             : 
    2001             : /**
    2002             :  * vm_map_pages - maps range of kernel pages starts with non zero offset
    2003             :  * @vma: user vma to map to
    2004             :  * @pages: pointer to array of source kernel pages
    2005             :  * @num: number of pages in page array
    2006             :  *
    2007             :  * Maps an object consisting of @num pages, catering for the user's
    2008             :  * requested vm_pgoff
    2009             :  *
    2010             :  * If we fail to insert any page into the vma, the function will return
    2011             :  * immediately leaving any previously inserted pages present.  Callers
    2012             :  * from the mmap handler may immediately return the error as their caller
    2013             :  * will destroy the vma, removing any successfully inserted pages. Other
    2014             :  * callers should make their own arrangements for calling unmap_region().
    2015             :  *
    2016             :  * Context: Process context. Called by mmap handlers.
    2017             :  * Return: 0 on success and error code otherwise.
    2018             :  */
    2019           0 : int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
    2020             :                                 unsigned long num)
    2021             : {
    2022           0 :         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
    2023             : }
    2024             : EXPORT_SYMBOL(vm_map_pages);
    2025             : 
    2026             : /**
    2027             :  * vm_map_pages_zero - map range of kernel pages starts with zero offset
    2028             :  * @vma: user vma to map to
    2029             :  * @pages: pointer to array of source kernel pages
    2030             :  * @num: number of pages in page array
    2031             :  *
    2032             :  * Similar to vm_map_pages(), except that it explicitly sets the offset
    2033             :  * to 0. This function is intended for the drivers that did not consider
    2034             :  * vm_pgoff.
    2035             :  *
    2036             :  * Context: Process context. Called by mmap handlers.
    2037             :  * Return: 0 on success and error code otherwise.
    2038             :  */
    2039           0 : int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
    2040             :                                 unsigned long num)
    2041             : {
    2042           0 :         return __vm_map_pages(vma, pages, num, 0);
    2043             : }
    2044             : EXPORT_SYMBOL(vm_map_pages_zero);
    2045             : 
    2046           0 : static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    2047             :                         pfn_t pfn, pgprot_t prot, bool mkwrite)
    2048             : {
    2049           0 :         struct mm_struct *mm = vma->vm_mm;
    2050             :         pte_t *pte, entry;
    2051             :         spinlock_t *ptl;
    2052             : 
    2053           0 :         pte = get_locked_pte(mm, addr, &ptl);
    2054           0 :         if (!pte)
    2055             :                 return VM_FAULT_OOM;
    2056           0 :         if (!pte_none(*pte)) {
    2057           0 :                 if (mkwrite) {
    2058             :                         /*
    2059             :                          * For read faults on private mappings the PFN passed
    2060             :                          * in may not match the PFN we have mapped if the
    2061             :                          * mapped PFN is a writeable COW page.  In the mkwrite
    2062             :                          * case we are creating a writable PTE for a shared
    2063             :                          * mapping and we expect the PFNs to match. If they
    2064             :                          * don't match, we are likely racing with block
    2065             :                          * allocation and mapping invalidation so just skip the
    2066             :                          * update.
    2067             :                          */
    2068           0 :                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
    2069           0 :                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
    2070             :                                 goto out_unlock;
    2071             :                         }
    2072           0 :                         entry = pte_mkyoung(*pte);
    2073           0 :                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    2074           0 :                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
    2075             :                                 update_mmu_cache(vma, addr, pte);
    2076             :                 }
    2077             :                 goto out_unlock;
    2078             :         }
    2079             : 
    2080             :         /* Ok, finally just insert the thing.. */
    2081           0 :         if (pfn_t_devmap(pfn))
    2082             :                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
    2083             :         else
    2084           0 :                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
    2085             : 
    2086           0 :         if (mkwrite) {
    2087           0 :                 entry = pte_mkyoung(entry);
    2088           0 :                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    2089             :         }
    2090             : 
    2091           0 :         set_pte_at(mm, addr, pte, entry);
    2092             :         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
    2093             : 
    2094             : out_unlock:
    2095           0 :         pte_unmap_unlock(pte, ptl);
    2096           0 :         return VM_FAULT_NOPAGE;
    2097             : }
    2098             : 
    2099             : /**
    2100             :  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
    2101             :  * @vma: user vma to map to
    2102             :  * @addr: target user address of this page
    2103             :  * @pfn: source kernel pfn
    2104             :  * @pgprot: pgprot flags for the inserted page
    2105             :  *
    2106             :  * This is exactly like vmf_insert_pfn(), except that it allows drivers
    2107             :  * to override pgprot on a per-page basis.
    2108             :  *
    2109             :  * This only makes sense for IO mappings, and it makes no sense for
    2110             :  * COW mappings.  In general, using multiple vmas is preferable;
    2111             :  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
    2112             :  * impractical.
    2113             :  *
    2114             :  * See vmf_insert_mixed_prot() for a discussion of the implication of using
    2115             :  * a value of @pgprot different from that of @vma->vm_page_prot.
    2116             :  *
    2117             :  * Context: Process context.  May allocate using %GFP_KERNEL.
    2118             :  * Return: vm_fault_t value.
    2119             :  */
    2120           0 : vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
    2121             :                         unsigned long pfn, pgprot_t pgprot)
    2122             : {
    2123             :         /*
    2124             :          * Technically, architectures with pte_special can avoid all these
    2125             :          * restrictions (same for remap_pfn_range).  However we would like
    2126             :          * consistency in testing and feature parity among all, so we should
    2127             :          * try to keep these invariants in place for everybody.
    2128             :          */
    2129           0 :         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
    2130           0 :         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
    2131             :                                                 (VM_PFNMAP|VM_MIXEDMAP));
    2132           0 :         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
    2133           0 :         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
    2134             : 
    2135           0 :         if (addr < vma->vm_start || addr >= vma->vm_end)
    2136             :                 return VM_FAULT_SIGBUS;
    2137             : 
    2138           0 :         if (!pfn_modify_allowed(pfn, pgprot))
    2139             :                 return VM_FAULT_SIGBUS;
    2140             : 
    2141           0 :         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
    2142             : 
    2143           0 :         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
    2144             :                         false);
    2145             : }
    2146             : EXPORT_SYMBOL(vmf_insert_pfn_prot);
    2147             : 
    2148             : /**
    2149             :  * vmf_insert_pfn - insert single pfn into user vma
    2150             :  * @vma: user vma to map to
    2151             :  * @addr: target user address of this page
    2152             :  * @pfn: source kernel pfn
    2153             :  *
    2154             :  * Similar to vm_insert_page, this allows drivers to insert individual pages
    2155             :  * they've allocated into a user vma. Same comments apply.
    2156             :  *
    2157             :  * This function should only be called from a vm_ops->fault handler, and
    2158             :  * in that case the handler should return the result of this function.
    2159             :  *
    2160             :  * vma cannot be a COW mapping.
    2161             :  *
    2162             :  * As this is called only for pages that do not currently exist, we
    2163             :  * do not need to flush old virtual caches or the TLB.
    2164             :  *
    2165             :  * Context: Process context.  May allocate using %GFP_KERNEL.
    2166             :  * Return: vm_fault_t value.
    2167             :  */
    2168           0 : vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    2169             :                         unsigned long pfn)
    2170             : {
    2171           0 :         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
    2172             : }
    2173             : EXPORT_SYMBOL(vmf_insert_pfn);
    2174             : 
    2175             : static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
    2176             : {
    2177             :         /* these checks mirror the abort conditions in vm_normal_page */
    2178           0 :         if (vma->vm_flags & VM_MIXEDMAP)
    2179             :                 return true;
    2180           0 :         if (pfn_t_devmap(pfn))
    2181             :                 return true;
    2182           0 :         if (pfn_t_special(pfn))
    2183             :                 return true;
    2184           0 :         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
    2185             :                 return true;
    2186             :         return false;
    2187             : }
    2188             : 
    2189           0 : static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
    2190             :                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
    2191             :                 bool mkwrite)
    2192             : {
    2193             :         int err;
    2194             : 
    2195           0 :         BUG_ON(!vm_mixed_ok(vma, pfn));
    2196             : 
    2197           0 :         if (addr < vma->vm_start || addr >= vma->vm_end)
    2198             :                 return VM_FAULT_SIGBUS;
    2199             : 
    2200           0 :         track_pfn_insert(vma, &pgprot, pfn);
    2201             : 
    2202           0 :         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
    2203             :                 return VM_FAULT_SIGBUS;
    2204             : 
    2205             :         /*
    2206             :          * If we don't have pte special, then we have to use the pfn_valid()
    2207             :          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
    2208             :          * refcount the page if pfn_valid is true (hence insert_page rather
    2209             :          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
    2210             :          * without pte special, it would there be refcounted as a normal page.
    2211             :          */
    2212             :         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
    2213           0 :             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
    2214             :                 struct page *page;
    2215             : 
    2216             :                 /*
    2217             :                  * At this point we are committed to insert_page()
    2218             :                  * regardless of whether the caller specified flags that
    2219             :                  * result in pfn_t_has_page() == false.
    2220             :                  */
    2221           0 :                 page = pfn_to_page(pfn_t_to_pfn(pfn));
    2222           0 :                 err = insert_page(vma, addr, page, pgprot);
    2223             :         } else {
    2224           0 :                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
    2225             :         }
    2226             : 
    2227           0 :         if (err == -ENOMEM)
    2228             :                 return VM_FAULT_OOM;
    2229           0 :         if (err < 0 && err != -EBUSY)
    2230             :                 return VM_FAULT_SIGBUS;
    2231             : 
    2232           0 :         return VM_FAULT_NOPAGE;
    2233             : }
    2234             : 
    2235             : /**
    2236             :  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
    2237             :  * @vma: user vma to map to
    2238             :  * @addr: target user address of this page
    2239             :  * @pfn: source kernel pfn
    2240             :  * @pgprot: pgprot flags for the inserted page
    2241             :  *
    2242             :  * This is exactly like vmf_insert_mixed(), except that it allows drivers
    2243             :  * to override pgprot on a per-page basis.
    2244             :  *
    2245             :  * Typically this function should be used by drivers to set caching- and
    2246             :  * encryption bits different than those of @vma->vm_page_prot, because
    2247             :  * the caching- or encryption mode may not be known at mmap() time.
    2248             :  * This is ok as long as @vma->vm_page_prot is not used by the core vm
    2249             :  * to set caching and encryption bits for those vmas (except for COW pages).
    2250             :  * This is ensured by core vm only modifying these page table entries using
    2251             :  * functions that don't touch caching- or encryption bits, using pte_modify()
    2252             :  * if needed. (See for example mprotect()).
    2253             :  * Also when new page-table entries are created, this is only done using the
    2254             :  * fault() callback, and never using the value of vma->vm_page_prot,
    2255             :  * except for page-table entries that point to anonymous pages as the result
    2256             :  * of COW.
    2257             :  *
    2258             :  * Context: Process context.  May allocate using %GFP_KERNEL.
    2259             :  * Return: vm_fault_t value.
    2260             :  */
    2261           0 : vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
    2262             :                                  pfn_t pfn, pgprot_t pgprot)
    2263             : {
    2264           0 :         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
    2265             : }
    2266             : EXPORT_SYMBOL(vmf_insert_mixed_prot);
    2267             : 
    2268           0 : vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
    2269             :                 pfn_t pfn)
    2270             : {
    2271           0 :         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
    2272             : }
    2273             : EXPORT_SYMBOL(vmf_insert_mixed);
    2274             : 
    2275             : /*
    2276             :  *  If the insertion of PTE failed because someone else already added a
    2277             :  *  different entry in the mean time, we treat that as success as we assume
    2278             :  *  the same entry was actually inserted.
    2279             :  */
    2280           0 : vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
    2281             :                 unsigned long addr, pfn_t pfn)
    2282             : {
    2283           0 :         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
    2284             : }
    2285             : EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
    2286             : 
    2287             : /*
    2288             :  * maps a range of physical memory into the requested pages. the old
    2289             :  * mappings are removed. any references to nonexistent pages results
    2290             :  * in null mappings (currently treated as "copy-on-access")
    2291             :  */
    2292           0 : static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
    2293             :                         unsigned long addr, unsigned long end,
    2294             :                         unsigned long pfn, pgprot_t prot)
    2295             : {
    2296             :         pte_t *pte, *mapped_pte;
    2297             :         spinlock_t *ptl;
    2298           0 :         int err = 0;
    2299             : 
    2300           0 :         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
    2301           0 :         if (!pte)
    2302             :                 return -ENOMEM;
    2303             :         arch_enter_lazy_mmu_mode();
    2304             :         do {
    2305           0 :                 BUG_ON(!pte_none(*pte));
    2306           0 :                 if (!pfn_modify_allowed(pfn, prot)) {
    2307             :                         err = -EACCES;
    2308             :                         break;
    2309             :                 }
    2310           0 :                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
    2311           0 :                 pfn++;
    2312           0 :         } while (pte++, addr += PAGE_SIZE, addr != end);
    2313             :         arch_leave_lazy_mmu_mode();
    2314           0 :         pte_unmap_unlock(mapped_pte, ptl);
    2315           0 :         return err;
    2316             : }
    2317             : 
    2318           0 : static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
    2319             :                         unsigned long addr, unsigned long end,
    2320             :                         unsigned long pfn, pgprot_t prot)
    2321             : {
    2322             :         pmd_t *pmd;
    2323             :         unsigned long next;
    2324             :         int err;
    2325             : 
    2326           0 :         pfn -= addr >> PAGE_SHIFT;
    2327           0 :         pmd = pmd_alloc(mm, pud, addr);
    2328           0 :         if (!pmd)
    2329             :                 return -ENOMEM;
    2330             :         VM_BUG_ON(pmd_trans_huge(*pmd));
    2331             :         do {
    2332           0 :                 next = pmd_addr_end(addr, end);
    2333           0 :                 err = remap_pte_range(mm, pmd, addr, next,
    2334           0 :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2335           0 :                 if (err)
    2336             :                         return err;
    2337           0 :         } while (pmd++, addr = next, addr != end);
    2338             :         return 0;
    2339             : }
    2340             : 
    2341             : static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
    2342             :                         unsigned long addr, unsigned long end,
    2343             :                         unsigned long pfn, pgprot_t prot)
    2344             : {
    2345             :         pud_t *pud;
    2346             :         unsigned long next;
    2347             :         int err;
    2348             : 
    2349           0 :         pfn -= addr >> PAGE_SHIFT;
    2350           0 :         pud = pud_alloc(mm, p4d, addr);
    2351             :         if (!pud)
    2352             :                 return -ENOMEM;
    2353             :         do {
    2354           0 :                 next = pud_addr_end(addr, end);
    2355           0 :                 err = remap_pmd_range(mm, pud, addr, next,
    2356             :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2357           0 :                 if (err)
    2358             :                         return err;
    2359           0 :         } while (pud++, addr = next, addr != end);
    2360             :         return 0;
    2361             : }
    2362             : 
    2363           0 : static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
    2364             :                         unsigned long addr, unsigned long end,
    2365             :                         unsigned long pfn, pgprot_t prot)
    2366             : {
    2367             :         p4d_t *p4d;
    2368             :         unsigned long next;
    2369             :         int err;
    2370             : 
    2371           0 :         pfn -= addr >> PAGE_SHIFT;
    2372           0 :         p4d = p4d_alloc(mm, pgd, addr);
    2373           0 :         if (!p4d)
    2374             :                 return -ENOMEM;
    2375             :         do {
    2376           0 :                 next = p4d_addr_end(addr, end);
    2377           0 :                 err = remap_pud_range(mm, p4d, addr, next,
    2378             :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2379           0 :                 if (err)
    2380             :                         return err;
    2381           0 :         } while (p4d++, addr = next, addr != end);
    2382           0 :         return 0;
    2383             : }
    2384             : 
    2385             : /*
    2386             :  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
    2387             :  * must have pre-validated the caching bits of the pgprot_t.
    2388             :  */
    2389           0 : int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
    2390             :                 unsigned long pfn, unsigned long size, pgprot_t prot)
    2391             : {
    2392             :         pgd_t *pgd;
    2393             :         unsigned long next;
    2394           0 :         unsigned long end = addr + PAGE_ALIGN(size);
    2395           0 :         struct mm_struct *mm = vma->vm_mm;
    2396             :         int err;
    2397             : 
    2398           0 :         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
    2399             :                 return -EINVAL;
    2400             : 
    2401             :         /*
    2402             :          * Physically remapped pages are special. Tell the
    2403             :          * rest of the world about it:
    2404             :          *   VM_IO tells people not to look at these pages
    2405             :          *      (accesses can have side effects).
    2406             :          *   VM_PFNMAP tells the core MM that the base pages are just
    2407             :          *      raw PFN mappings, and do not have a "struct page" associated
    2408             :          *      with them.
    2409             :          *   VM_DONTEXPAND
    2410             :          *      Disable vma merging and expanding with mremap().
    2411             :          *   VM_DONTDUMP
    2412             :          *      Omit vma from core dump, even when VM_IO turned off.
    2413             :          *
    2414             :          * There's a horrible special case to handle copy-on-write
    2415             :          * behaviour that some programs depend on. We mark the "original"
    2416             :          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
    2417             :          * See vm_normal_page() for details.
    2418             :          */
    2419           0 :         if (is_cow_mapping(vma->vm_flags)) {
    2420           0 :                 if (addr != vma->vm_start || end != vma->vm_end)
    2421             :                         return -EINVAL;
    2422           0 :                 vma->vm_pgoff = pfn;
    2423             :         }
    2424             : 
    2425           0 :         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
    2426             : 
    2427           0 :         BUG_ON(addr >= end);
    2428           0 :         pfn -= addr >> PAGE_SHIFT;
    2429           0 :         pgd = pgd_offset(mm, addr);
    2430           0 :         flush_cache_range(vma, addr, end);
    2431             :         do {
    2432           0 :                 next = pgd_addr_end(addr, end);
    2433           0 :                 err = remap_p4d_range(mm, pgd, addr, next,
    2434           0 :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2435           0 :                 if (err)
    2436             :                         return err;
    2437           0 :         } while (pgd++, addr = next, addr != end);
    2438             : 
    2439             :         return 0;
    2440             : }
    2441             : 
    2442             : /**
    2443             :  * remap_pfn_range - remap kernel memory to userspace
    2444             :  * @vma: user vma to map to
    2445             :  * @addr: target page aligned user address to start at
    2446             :  * @pfn: page frame number of kernel physical memory address
    2447             :  * @size: size of mapping area
    2448             :  * @prot: page protection flags for this mapping
    2449             :  *
    2450             :  * Note: this is only safe if the mm semaphore is held when called.
    2451             :  *
    2452             :  * Return: %0 on success, negative error code otherwise.
    2453             :  */
    2454           0 : int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
    2455             :                     unsigned long pfn, unsigned long size, pgprot_t prot)
    2456             : {
    2457             :         int err;
    2458             : 
    2459           0 :         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
    2460             :         if (err)
    2461             :                 return -EINVAL;
    2462             : 
    2463           0 :         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
    2464             :         if (err)
    2465             :                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
    2466             :         return err;
    2467             : }
    2468             : EXPORT_SYMBOL(remap_pfn_range);
    2469             : 
    2470             : /**
    2471             :  * vm_iomap_memory - remap memory to userspace
    2472             :  * @vma: user vma to map to
    2473             :  * @start: start of the physical memory to be mapped
    2474             :  * @len: size of area
    2475             :  *
    2476             :  * This is a simplified io_remap_pfn_range() for common driver use. The
    2477             :  * driver just needs to give us the physical memory range to be mapped,
    2478             :  * we'll figure out the rest from the vma information.
    2479             :  *
    2480             :  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
    2481             :  * whatever write-combining details or similar.
    2482             :  *
    2483             :  * Return: %0 on success, negative error code otherwise.
    2484             :  */
    2485           0 : int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
    2486             : {
    2487             :         unsigned long vm_len, pfn, pages;
    2488             : 
    2489             :         /* Check that the physical memory area passed in looks valid */
    2490           0 :         if (start + len < start)
    2491             :                 return -EINVAL;
    2492             :         /*
    2493             :          * You *really* shouldn't map things that aren't page-aligned,
    2494             :          * but we've historically allowed it because IO memory might
    2495             :          * just have smaller alignment.
    2496             :          */
    2497           0 :         len += start & ~PAGE_MASK;
    2498           0 :         pfn = start >> PAGE_SHIFT;
    2499           0 :         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
    2500           0 :         if (pfn + pages < pfn)
    2501             :                 return -EINVAL;
    2502             : 
    2503             :         /* We start the mapping 'vm_pgoff' pages into the area */
    2504           0 :         if (vma->vm_pgoff > pages)
    2505             :                 return -EINVAL;
    2506           0 :         pfn += vma->vm_pgoff;
    2507           0 :         pages -= vma->vm_pgoff;
    2508             : 
    2509             :         /* Can we fit all of the mapping? */
    2510           0 :         vm_len = vma->vm_end - vma->vm_start;
    2511           0 :         if (vm_len >> PAGE_SHIFT > pages)
    2512             :                 return -EINVAL;
    2513             : 
    2514             :         /* Ok, let it rip */
    2515           0 :         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
    2516             : }
    2517             : EXPORT_SYMBOL(vm_iomap_memory);
    2518             : 
    2519           0 : static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
    2520             :                                      unsigned long addr, unsigned long end,
    2521             :                                      pte_fn_t fn, void *data, bool create,
    2522             :                                      pgtbl_mod_mask *mask)
    2523             : {
    2524             :         pte_t *pte, *mapped_pte;
    2525           0 :         int err = 0;
    2526             :         spinlock_t *ptl;
    2527             : 
    2528           0 :         if (create) {
    2529           0 :                 mapped_pte = pte = (mm == &init_mm) ?
    2530           0 :                         pte_alloc_kernel_track(pmd, addr, mask) :
    2531           0 :                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
    2532           0 :                 if (!pte)
    2533             :                         return -ENOMEM;
    2534             :         } else {
    2535             :                 mapped_pte = pte = (mm == &init_mm) ?
    2536           0 :                         pte_offset_kernel(pmd, addr) :
    2537           0 :                         pte_offset_map_lock(mm, pmd, addr, &ptl);
    2538             :         }
    2539             : 
    2540           0 :         BUG_ON(pmd_huge(*pmd));
    2541             : 
    2542             :         arch_enter_lazy_mmu_mode();
    2543             : 
    2544           0 :         if (fn) {
    2545             :                 do {
    2546           0 :                         if (create || !pte_none(*pte)) {
    2547           0 :                                 err = fn(pte++, addr, data);
    2548           0 :                                 if (err)
    2549             :                                         break;
    2550             :                         }
    2551           0 :                 } while (addr += PAGE_SIZE, addr != end);
    2552             :         }
    2553           0 :         *mask |= PGTBL_PTE_MODIFIED;
    2554             : 
    2555             :         arch_leave_lazy_mmu_mode();
    2556             : 
    2557           0 :         if (mm != &init_mm)
    2558           0 :                 pte_unmap_unlock(mapped_pte, ptl);
    2559             :         return err;
    2560             : }
    2561             : 
    2562           0 : static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
    2563             :                                      unsigned long addr, unsigned long end,
    2564             :                                      pte_fn_t fn, void *data, bool create,
    2565             :                                      pgtbl_mod_mask *mask)
    2566             : {
    2567             :         pmd_t *pmd;
    2568             :         unsigned long next;
    2569           0 :         int err = 0;
    2570             : 
    2571           0 :         BUG_ON(pud_huge(*pud));
    2572             : 
    2573           0 :         if (create) {
    2574           0 :                 pmd = pmd_alloc_track(mm, pud, addr, mask);
    2575           0 :                 if (!pmd)
    2576             :                         return -ENOMEM;
    2577             :         } else {
    2578           0 :                 pmd = pmd_offset(pud, addr);
    2579             :         }
    2580             :         do {
    2581           0 :                 next = pmd_addr_end(addr, end);
    2582           0 :                 if (pmd_none(*pmd) && !create)
    2583           0 :                         continue;
    2584           0 :                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
    2585             :                         return -EINVAL;
    2586           0 :                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
    2587           0 :                         if (!create)
    2588           0 :                                 continue;
    2589           0 :                         pmd_clear_bad(pmd);
    2590             :                 }
    2591           0 :                 err = apply_to_pte_range(mm, pmd, addr, next,
    2592             :                                          fn, data, create, mask);
    2593           0 :                 if (err)
    2594             :                         break;
    2595           0 :         } while (pmd++, addr = next, addr != end);
    2596             : 
    2597             :         return err;
    2598             : }
    2599             : 
    2600           0 : static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
    2601             :                                      unsigned long addr, unsigned long end,
    2602             :                                      pte_fn_t fn, void *data, bool create,
    2603             :                                      pgtbl_mod_mask *mask)
    2604             : {
    2605             :         pud_t *pud;
    2606             :         unsigned long next;
    2607           0 :         int err = 0;
    2608             : 
    2609           0 :         if (create) {
    2610           0 :                 pud = pud_alloc_track(mm, p4d, addr, mask);
    2611           0 :                 if (!pud)
    2612             :                         return -ENOMEM;
    2613             :         } else {
    2614             :                 pud = pud_offset(p4d, addr);
    2615             :         }
    2616             :         do {
    2617           0 :                 next = pud_addr_end(addr, end);
    2618           0 :                 if (pud_none(*pud) && !create)
    2619           0 :                         continue;
    2620           0 :                 if (WARN_ON_ONCE(pud_leaf(*pud)))
    2621             :                         return -EINVAL;
    2622           0 :                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
    2623           0 :                         if (!create)
    2624           0 :                                 continue;
    2625             :                         pud_clear_bad(pud);
    2626             :                 }
    2627           0 :                 err = apply_to_pmd_range(mm, pud, addr, next,
    2628             :                                          fn, data, create, mask);
    2629           0 :                 if (err)
    2630             :                         break;
    2631           0 :         } while (pud++, addr = next, addr != end);
    2632             : 
    2633             :         return err;
    2634             : }
    2635             : 
    2636             : static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
    2637             :                                      unsigned long addr, unsigned long end,
    2638             :                                      pte_fn_t fn, void *data, bool create,
    2639             :                                      pgtbl_mod_mask *mask)
    2640             : {
    2641             :         p4d_t *p4d;
    2642             :         unsigned long next;
    2643           0 :         int err = 0;
    2644             : 
    2645           0 :         if (create) {
    2646           0 :                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
    2647           0 :                 if (!p4d)
    2648             :                         return -ENOMEM;
    2649             :         } else {
    2650             :                 p4d = p4d_offset(pgd, addr);
    2651             :         }
    2652             :         do {
    2653           0 :                 next = p4d_addr_end(addr, end);
    2654           0 :                 if (p4d_none(*p4d) && !create)
    2655             :                         continue;
    2656           0 :                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
    2657             :                         return -EINVAL;
    2658           0 :                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
    2659             :                         if (!create)
    2660             :                                 continue;
    2661             :                         p4d_clear_bad(p4d);
    2662             :                 }
    2663           0 :                 err = apply_to_pud_range(mm, p4d, addr, next,
    2664             :                                          fn, data, create, mask);
    2665             :                 if (err)
    2666             :                         break;
    2667             :         } while (p4d++, addr = next, addr != end);
    2668             : 
    2669             :         return err;
    2670             : }
    2671             : 
    2672           0 : static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
    2673             :                                  unsigned long size, pte_fn_t fn,
    2674             :                                  void *data, bool create)
    2675             : {
    2676             :         pgd_t *pgd;
    2677           0 :         unsigned long start = addr, next;
    2678           0 :         unsigned long end = addr + size;
    2679           0 :         pgtbl_mod_mask mask = 0;
    2680           0 :         int err = 0;
    2681             : 
    2682           0 :         if (WARN_ON(addr >= end))
    2683             :                 return -EINVAL;
    2684             : 
    2685           0 :         pgd = pgd_offset(mm, addr);
    2686             :         do {
    2687           0 :                 next = pgd_addr_end(addr, end);
    2688           0 :                 if (pgd_none(*pgd) && !create)
    2689             :                         continue;
    2690           0 :                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
    2691             :                         return -EINVAL;
    2692           0 :                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
    2693             :                         if (!create)
    2694             :                                 continue;
    2695             :                         pgd_clear_bad(pgd);
    2696             :                 }
    2697           0 :                 err = apply_to_p4d_range(mm, pgd, addr, next,
    2698             :                                          fn, data, create, &mask);
    2699           0 :                 if (err)
    2700             :                         break;
    2701           0 :         } while (pgd++, addr = next, addr != end);
    2702             : 
    2703             :         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
    2704             :                 arch_sync_kernel_mappings(start, start + size);
    2705             : 
    2706             :         return err;
    2707             : }
    2708             : 
    2709             : /*
    2710             :  * Scan a region of virtual memory, filling in page tables as necessary
    2711             :  * and calling a provided function on each leaf page table.
    2712             :  */
    2713           0 : int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
    2714             :                         unsigned long size, pte_fn_t fn, void *data)
    2715             : {
    2716           0 :         return __apply_to_page_range(mm, addr, size, fn, data, true);
    2717             : }
    2718             : EXPORT_SYMBOL_GPL(apply_to_page_range);
    2719             : 
    2720             : /*
    2721             :  * Scan a region of virtual memory, calling a provided function on
    2722             :  * each leaf page table where it exists.
    2723             :  *
    2724             :  * Unlike apply_to_page_range, this does _not_ fill in page tables
    2725             :  * where they are absent.
    2726             :  */
    2727           0 : int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
    2728             :                                  unsigned long size, pte_fn_t fn, void *data)
    2729             : {
    2730           0 :         return __apply_to_page_range(mm, addr, size, fn, data, false);
    2731             : }
    2732             : EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
    2733             : 
    2734             : /*
    2735             :  * handle_pte_fault chooses page fault handler according to an entry which was
    2736             :  * read non-atomically.  Before making any commitment, on those architectures
    2737             :  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
    2738             :  * parts, do_swap_page must check under lock before unmapping the pte and
    2739             :  * proceeding (but do_wp_page is only called after already making such a check;
    2740             :  * and do_anonymous_page can safely check later on).
    2741             :  */
    2742             : static inline int pte_unmap_same(struct vm_fault *vmf)
    2743             : {
    2744           0 :         int same = 1;
    2745             : #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
    2746             :         if (sizeof(pte_t) > sizeof(unsigned long)) {
    2747             :                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
    2748             :                 spin_lock(ptl);
    2749             :                 same = pte_same(*vmf->pte, vmf->orig_pte);
    2750             :                 spin_unlock(ptl);
    2751             :         }
    2752             : #endif
    2753             :         pte_unmap(vmf->pte);
    2754           0 :         vmf->pte = NULL;
    2755             :         return same;
    2756             : }
    2757             : 
    2758           0 : static inline bool cow_user_page(struct page *dst, struct page *src,
    2759             :                                  struct vm_fault *vmf)
    2760             : {
    2761             :         bool ret;
    2762             :         void *kaddr;
    2763             :         void __user *uaddr;
    2764           0 :         bool locked = false;
    2765           0 :         struct vm_area_struct *vma = vmf->vma;
    2766           0 :         struct mm_struct *mm = vma->vm_mm;
    2767           0 :         unsigned long addr = vmf->address;
    2768             : 
    2769           0 :         if (likely(src)) {
    2770           0 :                 copy_user_highpage(dst, src, addr, vma);
    2771           0 :                 return true;
    2772             :         }
    2773             : 
    2774             :         /*
    2775             :          * If the source page was a PFN mapping, we don't have
    2776             :          * a "struct page" for it. We do a best-effort copy by
    2777             :          * just copying from the original user address. If that
    2778             :          * fails, we just zero-fill it. Live with it.
    2779             :          */
    2780           0 :         kaddr = kmap_atomic(dst);
    2781           0 :         uaddr = (void __user *)(addr & PAGE_MASK);
    2782             : 
    2783             :         /*
    2784             :          * On architectures with software "accessed" bits, we would
    2785             :          * take a double page fault, so mark it accessed here.
    2786             :          */
    2787           0 :         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
    2788             :                 pte_t entry;
    2789             : 
    2790           0 :                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
    2791           0 :                 locked = true;
    2792           0 :                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
    2793             :                         /*
    2794             :                          * Other thread has already handled the fault
    2795             :                          * and update local tlb only
    2796             :                          */
    2797           0 :                         update_mmu_tlb(vma, addr, vmf->pte);
    2798           0 :                         ret = false;
    2799           0 :                         goto pte_unlock;
    2800             :                 }
    2801             : 
    2802           0 :                 entry = pte_mkyoung(vmf->orig_pte);
    2803           0 :                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
    2804             :                         update_mmu_cache(vma, addr, vmf->pte);
    2805             :         }
    2806             : 
    2807             :         /*
    2808             :          * This really shouldn't fail, because the page is there
    2809             :          * in the page tables. But it might just be unreadable,
    2810             :          * in which case we just give up and fill the result with
    2811             :          * zeroes.
    2812             :          */
    2813           0 :         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
    2814           0 :                 if (locked)
    2815             :                         goto warn;
    2816             : 
    2817             :                 /* Re-validate under PTL if the page is still mapped */
    2818           0 :                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
    2819           0 :                 locked = true;
    2820           0 :                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
    2821             :                         /* The PTE changed under us, update local tlb */
    2822             :                         update_mmu_tlb(vma, addr, vmf->pte);
    2823             :                         ret = false;
    2824             :                         goto pte_unlock;
    2825             :                 }
    2826             : 
    2827             :                 /*
    2828             :                  * The same page can be mapped back since last copy attempt.
    2829             :                  * Try to copy again under PTL.
    2830             :                  */
    2831           0 :                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
    2832             :                         /*
    2833             :                          * Give a warn in case there can be some obscure
    2834             :                          * use-case
    2835             :                          */
    2836             : warn:
    2837           0 :                         WARN_ON_ONCE(1);
    2838           0 :                         clear_page(kaddr);
    2839             :                 }
    2840             :         }
    2841             : 
    2842             :         ret = true;
    2843             : 
    2844             : pte_unlock:
    2845           0 :         if (locked)
    2846           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    2847           0 :         kunmap_atomic(kaddr);
    2848           0 :         flush_dcache_page(dst);
    2849             : 
    2850           0 :         return ret;
    2851             : }
    2852             : 
    2853             : static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
    2854             : {
    2855           0 :         struct file *vm_file = vma->vm_file;
    2856             : 
    2857           0 :         if (vm_file)
    2858           0 :                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
    2859             : 
    2860             :         /*
    2861             :          * Special mappings (e.g. VDSO) do not have any file so fake
    2862             :          * a default GFP_KERNEL for them.
    2863             :          */
    2864             :         return GFP_KERNEL;
    2865             : }
    2866             : 
    2867             : /*
    2868             :  * Notify the address space that the page is about to become writable so that
    2869             :  * it can prohibit this or wait for the page to get into an appropriate state.
    2870             :  *
    2871             :  * We do this without the lock held, so that it can sleep if it needs to.
    2872             :  */
    2873           0 : static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
    2874             : {
    2875             :         vm_fault_t ret;
    2876           0 :         struct page *page = vmf->page;
    2877           0 :         unsigned int old_flags = vmf->flags;
    2878             : 
    2879           0 :         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
    2880             : 
    2881           0 :         if (vmf->vma->vm_file &&
    2882           0 :             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
    2883             :                 return VM_FAULT_SIGBUS;
    2884             : 
    2885           0 :         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
    2886             :         /* Restore original flags so that caller is not surprised */
    2887           0 :         vmf->flags = old_flags;
    2888           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
    2889             :                 return ret;
    2890           0 :         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
    2891           0 :                 lock_page(page);
    2892           0 :                 if (!page->mapping) {
    2893           0 :                         unlock_page(page);
    2894           0 :                         return 0; /* retry */
    2895             :                 }
    2896           0 :                 ret |= VM_FAULT_LOCKED;
    2897             :         } else
    2898             :                 VM_BUG_ON_PAGE(!PageLocked(page), page);
    2899             :         return ret;
    2900             : }
    2901             : 
    2902             : /*
    2903             :  * Handle dirtying of a page in shared file mapping on a write fault.
    2904             :  *
    2905             :  * The function expects the page to be locked and unlocks it.
    2906             :  */
    2907           0 : static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
    2908             : {
    2909           0 :         struct vm_area_struct *vma = vmf->vma;
    2910             :         struct address_space *mapping;
    2911           0 :         struct page *page = vmf->page;
    2912             :         bool dirtied;
    2913           0 :         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
    2914             : 
    2915           0 :         dirtied = set_page_dirty(page);
    2916             :         VM_BUG_ON_PAGE(PageAnon(page), page);
    2917             :         /*
    2918             :          * Take a local copy of the address_space - page.mapping may be zeroed
    2919             :          * by truncate after unlock_page().   The address_space itself remains
    2920             :          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
    2921             :          * release semantics to prevent the compiler from undoing this copying.
    2922             :          */
    2923           0 :         mapping = page_rmapping(page);
    2924           0 :         unlock_page(page);
    2925             : 
    2926           0 :         if (!page_mkwrite)
    2927           0 :                 file_update_time(vma->vm_file);
    2928             : 
    2929             :         /*
    2930             :          * Throttle page dirtying rate down to writeback speed.
    2931             :          *
    2932             :          * mapping may be NULL here because some device drivers do not
    2933             :          * set page.mapping but still dirty their pages
    2934             :          *
    2935             :          * Drop the mmap_lock before waiting on IO, if we can. The file
    2936             :          * is pinning the mapping, as per above.
    2937             :          */
    2938           0 :         if ((dirtied || page_mkwrite) && mapping) {
    2939             :                 struct file *fpin;
    2940             : 
    2941           0 :                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
    2942           0 :                 balance_dirty_pages_ratelimited(mapping);
    2943           0 :                 if (fpin) {
    2944           0 :                         fput(fpin);
    2945           0 :                         return VM_FAULT_RETRY;
    2946             :                 }
    2947             :         }
    2948             : 
    2949             :         return 0;
    2950             : }
    2951             : 
    2952             : /*
    2953             :  * Handle write page faults for pages that can be reused in the current vma
    2954             :  *
    2955             :  * This can happen either due to the mapping being with the VM_SHARED flag,
    2956             :  * or due to us being the last reference standing to the page. In either
    2957             :  * case, all we need to do here is to mark the page as writable and update
    2958             :  * any related book-keeping.
    2959             :  */
    2960           0 : static inline void wp_page_reuse(struct vm_fault *vmf)
    2961             :         __releases(vmf->ptl)
    2962             : {
    2963           0 :         struct vm_area_struct *vma = vmf->vma;
    2964           0 :         struct page *page = vmf->page;
    2965             :         pte_t entry;
    2966             :         /*
    2967             :          * Clear the pages cpupid information as the existing
    2968             :          * information potentially belongs to a now completely
    2969             :          * unrelated process.
    2970             :          */
    2971             :         if (page)
    2972             :                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
    2973             : 
    2974           0 :         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
    2975           0 :         entry = pte_mkyoung(vmf->orig_pte);
    2976           0 :         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    2977           0 :         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
    2978             :                 update_mmu_cache(vma, vmf->address, vmf->pte);
    2979           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    2980           0 :         count_vm_event(PGREUSE);
    2981           0 : }
    2982             : 
    2983             : /*
    2984             :  * Handle the case of a page which we actually need to copy to a new page.
    2985             :  *
    2986             :  * Called with mmap_lock locked and the old page referenced, but
    2987             :  * without the ptl held.
    2988             :  *
    2989             :  * High level logic flow:
    2990             :  *
    2991             :  * - Allocate a page, copy the content of the old page to the new one.
    2992             :  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
    2993             :  * - Take the PTL. If the pte changed, bail out and release the allocated page
    2994             :  * - If the pte is still the way we remember it, update the page table and all
    2995             :  *   relevant references. This includes dropping the reference the page-table
    2996             :  *   held to the old page, as well as updating the rmap.
    2997             :  * - In any case, unlock the PTL and drop the reference we took to the old page.
    2998             :  */
    2999           0 : static vm_fault_t wp_page_copy(struct vm_fault *vmf)
    3000             : {
    3001           0 :         struct vm_area_struct *vma = vmf->vma;
    3002           0 :         struct mm_struct *mm = vma->vm_mm;
    3003           0 :         struct page *old_page = vmf->page;
    3004           0 :         struct page *new_page = NULL;
    3005             :         pte_t entry;
    3006           0 :         int page_copied = 0;
    3007             :         struct mmu_notifier_range range;
    3008             : 
    3009           0 :         if (unlikely(anon_vma_prepare(vma)))
    3010             :                 goto oom;
    3011             : 
    3012           0 :         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
    3013           0 :                 new_page = alloc_zeroed_user_highpage_movable(vma,
    3014             :                                                               vmf->address);
    3015           0 :                 if (!new_page)
    3016             :                         goto oom;
    3017             :         } else {
    3018           0 :                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
    3019             :                                 vmf->address);
    3020           0 :                 if (!new_page)
    3021             :                         goto oom;
    3022             : 
    3023           0 :                 if (!cow_user_page(new_page, old_page, vmf)) {
    3024             :                         /*
    3025             :                          * COW failed, if the fault was solved by other,
    3026             :                          * it's fine. If not, userspace would re-fault on
    3027             :                          * the same address and we will handle the fault
    3028             :                          * from the second attempt.
    3029             :                          */
    3030           0 :                         put_page(new_page);
    3031           0 :                         if (old_page)
    3032           0 :                                 put_page(old_page);
    3033             :                         return 0;
    3034             :                 }
    3035             :         }
    3036             : 
    3037           0 :         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
    3038             :                 goto oom_free_new;
    3039           0 :         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
    3040             : 
    3041           0 :         __SetPageUptodate(new_page);
    3042             : 
    3043           0 :         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
    3044             :                                 vmf->address & PAGE_MASK,
    3045             :                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
    3046           0 :         mmu_notifier_invalidate_range_start(&range);
    3047             : 
    3048             :         /*
    3049             :          * Re-check the pte - we dropped the lock
    3050             :          */
    3051           0 :         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
    3052           0 :         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
    3053           0 :                 if (old_page) {
    3054           0 :                         if (!PageAnon(old_page)) {
    3055           0 :                                 dec_mm_counter_fast(mm,
    3056             :                                                 mm_counter_file(old_page));
    3057             :                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
    3058             :                         }
    3059             :                 } else {
    3060             :                         inc_mm_counter_fast(mm, MM_ANONPAGES);
    3061             :                 }
    3062           0 :                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
    3063           0 :                 entry = mk_pte(new_page, vma->vm_page_prot);
    3064             :                 entry = pte_sw_mkyoung(entry);
    3065           0 :                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    3066             : 
    3067             :                 /*
    3068             :                  * Clear the pte entry and flush it first, before updating the
    3069             :                  * pte with the new entry, to keep TLBs on different CPUs in
    3070             :                  * sync. This code used to set the new PTE then flush TLBs, but
    3071             :                  * that left a window where the new PTE could be loaded into
    3072             :                  * some TLBs while the old PTE remains in others.
    3073             :                  */
    3074           0 :                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
    3075           0 :                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
    3076           0 :                 lru_cache_add_inactive_or_unevictable(new_page, vma);
    3077             :                 /*
    3078             :                  * We call the notify macro here because, when using secondary
    3079             :                  * mmu page tables (such as kvm shadow page tables), we want the
    3080             :                  * new page to be mapped directly into the secondary page table.
    3081             :                  */
    3082           0 :                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
    3083             :                 update_mmu_cache(vma, vmf->address, vmf->pte);
    3084           0 :                 if (old_page) {
    3085             :                         /*
    3086             :                          * Only after switching the pte to the new page may
    3087             :                          * we remove the mapcount here. Otherwise another
    3088             :                          * process may come and find the rmap count decremented
    3089             :                          * before the pte is switched to the new page, and
    3090             :                          * "reuse" the old page writing into it while our pte
    3091             :                          * here still points into it and can be read by other
    3092             :                          * threads.
    3093             :                          *
    3094             :                          * The critical issue is to order this
    3095             :                          * page_remove_rmap with the ptp_clear_flush above.
    3096             :                          * Those stores are ordered by (if nothing else,)
    3097             :                          * the barrier present in the atomic_add_negative
    3098             :                          * in page_remove_rmap.
    3099             :                          *
    3100             :                          * Then the TLB flush in ptep_clear_flush ensures that
    3101             :                          * no process can access the old page before the
    3102             :                          * decremented mapcount is visible. And the old page
    3103             :                          * cannot be reused until after the decremented
    3104             :                          * mapcount is visible. So transitively, TLBs to
    3105             :                          * old page will be flushed before it can be reused.
    3106             :                          */
    3107           0 :                         page_remove_rmap(old_page, vma, false);
    3108             :                 }
    3109             : 
    3110             :                 /* Free the old page.. */
    3111             :                 new_page = old_page;
    3112             :                 page_copied = 1;
    3113             :         } else {
    3114             :                 update_mmu_tlb(vma, vmf->address, vmf->pte);
    3115             :         }
    3116             : 
    3117           0 :         if (new_page)
    3118           0 :                 put_page(new_page);
    3119             : 
    3120           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3121             :         /*
    3122             :          * No need to double call mmu_notifier->invalidate_range() callback as
    3123             :          * the above ptep_clear_flush_notify() did already call it.
    3124             :          */
    3125           0 :         mmu_notifier_invalidate_range_only_end(&range);
    3126           0 :         if (old_page) {
    3127           0 :                 if (page_copied)
    3128           0 :                         free_swap_cache(old_page);
    3129           0 :                 put_page(old_page);
    3130             :         }
    3131           0 :         return page_copied ? VM_FAULT_WRITE : 0;
    3132             : oom_free_new:
    3133             :         put_page(new_page);
    3134             : oom:
    3135           0 :         if (old_page)
    3136           0 :                 put_page(old_page);
    3137             :         return VM_FAULT_OOM;
    3138             : }
    3139             : 
    3140             : /**
    3141             :  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
    3142             :  *                        writeable once the page is prepared
    3143             :  *
    3144             :  * @vmf: structure describing the fault
    3145             :  *
    3146             :  * This function handles all that is needed to finish a write page fault in a
    3147             :  * shared mapping due to PTE being read-only once the mapped page is prepared.
    3148             :  * It handles locking of PTE and modifying it.
    3149             :  *
    3150             :  * The function expects the page to be locked or other protection against
    3151             :  * concurrent faults / writeback (such as DAX radix tree locks).
    3152             :  *
    3153             :  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
    3154             :  * we acquired PTE lock.
    3155             :  */
    3156           0 : vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
    3157             : {
    3158           0 :         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
    3159           0 :         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
    3160             :                                        &vmf->ptl);
    3161             :         /*
    3162             :          * We might have raced with another page fault while we released the
    3163             :          * pte_offset_map_lock.
    3164             :          */
    3165           0 :         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
    3166           0 :                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
    3167           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3168           0 :                 return VM_FAULT_NOPAGE;
    3169             :         }
    3170           0 :         wp_page_reuse(vmf);
    3171           0 :         return 0;
    3172             : }
    3173             : 
    3174             : /*
    3175             :  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
    3176             :  * mapping
    3177             :  */
    3178           0 : static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
    3179             : {
    3180           0 :         struct vm_area_struct *vma = vmf->vma;
    3181             : 
    3182           0 :         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
    3183             :                 vm_fault_t ret;
    3184             : 
    3185           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3186           0 :                 vmf->flags |= FAULT_FLAG_MKWRITE;
    3187           0 :                 ret = vma->vm_ops->pfn_mkwrite(vmf);
    3188           0 :                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
    3189             :                         return ret;
    3190           0 :                 return finish_mkwrite_fault(vmf);
    3191             :         }
    3192           0 :         wp_page_reuse(vmf);
    3193           0 :         return VM_FAULT_WRITE;
    3194             : }
    3195             : 
    3196           0 : static vm_fault_t wp_page_shared(struct vm_fault *vmf)
    3197             :         __releases(vmf->ptl)
    3198             : {
    3199           0 :         struct vm_area_struct *vma = vmf->vma;
    3200           0 :         vm_fault_t ret = VM_FAULT_WRITE;
    3201             : 
    3202           0 :         get_page(vmf->page);
    3203             : 
    3204           0 :         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
    3205             :                 vm_fault_t tmp;
    3206             : 
    3207           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3208           0 :                 tmp = do_page_mkwrite(vmf);
    3209           0 :                 if (unlikely(!tmp || (tmp &
    3210             :                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
    3211           0 :                         put_page(vmf->page);
    3212           0 :                         return tmp;
    3213             :                 }
    3214           0 :                 tmp = finish_mkwrite_fault(vmf);
    3215           0 :                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
    3216           0 :                         unlock_page(vmf->page);
    3217           0 :                         put_page(vmf->page);
    3218           0 :                         return tmp;
    3219             :                 }
    3220             :         } else {
    3221           0 :                 wp_page_reuse(vmf);
    3222           0 :                 lock_page(vmf->page);
    3223             :         }
    3224           0 :         ret |= fault_dirty_shared_page(vmf);
    3225           0 :         put_page(vmf->page);
    3226             : 
    3227           0 :         return ret;
    3228             : }
    3229             : 
    3230             : /*
    3231             :  * This routine handles present pages, when users try to write
    3232             :  * to a shared page. It is done by copying the page to a new address
    3233             :  * and decrementing the shared-page counter for the old page.
    3234             :  *
    3235             :  * Note that this routine assumes that the protection checks have been
    3236             :  * done by the caller (the low-level page fault routine in most cases).
    3237             :  * Thus we can safely just mark it writable once we've done any necessary
    3238             :  * COW.
    3239             :  *
    3240             :  * We also mark the page dirty at this point even though the page will
    3241             :  * change only once the write actually happens. This avoids a few races,
    3242             :  * and potentially makes it more efficient.
    3243             :  *
    3244             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    3245             :  * but allow concurrent faults), with pte both mapped and locked.
    3246             :  * We return with mmap_lock still held, but pte unmapped and unlocked.
    3247             :  */
    3248           0 : static vm_fault_t do_wp_page(struct vm_fault *vmf)
    3249             :         __releases(vmf->ptl)
    3250             : {
    3251           0 :         struct vm_area_struct *vma = vmf->vma;
    3252             : 
    3253           0 :         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
    3254             :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3255             :                 return handle_userfault(vmf, VM_UFFD_WP);
    3256             :         }
    3257             : 
    3258             :         /*
    3259             :          * Userfaultfd write-protect can defer flushes. Ensure the TLB
    3260             :          * is flushed in this case before copying.
    3261             :          */
    3262           0 :         if (unlikely(userfaultfd_wp(vmf->vma) &&
    3263             :                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
    3264             :                 flush_tlb_page(vmf->vma, vmf->address);
    3265             : 
    3266           0 :         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
    3267           0 :         if (!vmf->page) {
    3268             :                 /*
    3269             :                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
    3270             :                  * VM_PFNMAP VMA.
    3271             :                  *
    3272             :                  * We should not cow pages in a shared writeable mapping.
    3273             :                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
    3274             :                  */
    3275           0 :                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
    3276             :                                      (VM_WRITE|VM_SHARED))
    3277           0 :                         return wp_pfn_shared(vmf);
    3278             : 
    3279           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3280           0 :                 return wp_page_copy(vmf);
    3281             :         }
    3282             : 
    3283             :         /*
    3284             :          * Take out anonymous pages first, anonymous shared vmas are
    3285             :          * not dirty accountable.
    3286             :          */
    3287           0 :         if (PageAnon(vmf->page)) {
    3288           0 :                 struct page *page = vmf->page;
    3289             : 
    3290             :                 /*
    3291             :                  * We have to verify under page lock: these early checks are
    3292             :                  * just an optimization to avoid locking the page and freeing
    3293             :                  * the swapcache if there is little hope that we can reuse.
    3294             :                  *
    3295             :                  * PageKsm() doesn't necessarily raise the page refcount.
    3296             :                  */
    3297           0 :                 if (PageKsm(page) || page_count(page) > 3)
    3298             :                         goto copy;
    3299           0 :                 if (!PageLRU(page))
    3300             :                         /*
    3301             :                          * Note: We cannot easily detect+handle references from
    3302             :                          * remote LRU pagevecs or references to PageLRU() pages.
    3303             :                          */
    3304           0 :                         lru_add_drain();
    3305           0 :                 if (page_count(page) > 1 + PageSwapCache(page))
    3306             :                         goto copy;
    3307           0 :                 if (!trylock_page(page))
    3308             :                         goto copy;
    3309           0 :                 if (PageSwapCache(page))
    3310           0 :                         try_to_free_swap(page);
    3311           0 :                 if (PageKsm(page) || page_count(page) != 1) {
    3312           0 :                         unlock_page(page);
    3313           0 :                         goto copy;
    3314             :                 }
    3315             :                 /*
    3316             :                  * Ok, we've got the only page reference from our mapping
    3317             :                  * and the page is locked, it's dark out, and we're wearing
    3318             :                  * sunglasses. Hit it.
    3319             :                  */
    3320           0 :                 unlock_page(page);
    3321           0 :                 wp_page_reuse(vmf);
    3322           0 :                 return VM_FAULT_WRITE;
    3323           0 :         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
    3324             :                                         (VM_WRITE|VM_SHARED))) {
    3325           0 :                 return wp_page_shared(vmf);
    3326             :         }
    3327             : copy:
    3328             :         /*
    3329             :          * Ok, we need to copy. Oh, well..
    3330             :          */
    3331           0 :         get_page(vmf->page);
    3332             : 
    3333           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3334           0 :         return wp_page_copy(vmf);
    3335             : }
    3336             : 
    3337             : static void unmap_mapping_range_vma(struct vm_area_struct *vma,
    3338             :                 unsigned long start_addr, unsigned long end_addr,
    3339             :                 struct zap_details *details)
    3340             : {
    3341           0 :         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
    3342             : }
    3343             : 
    3344           0 : static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
    3345             :                                             pgoff_t first_index,
    3346             :                                             pgoff_t last_index,
    3347             :                                             struct zap_details *details)
    3348             : {
    3349             :         struct vm_area_struct *vma;
    3350             :         pgoff_t vba, vea, zba, zea;
    3351             : 
    3352           0 :         vma_interval_tree_foreach(vma, root, first_index, last_index) {
    3353           0 :                 vba = vma->vm_pgoff;
    3354           0 :                 vea = vba + vma_pages(vma) - 1;
    3355           0 :                 zba = max(first_index, vba);
    3356           0 :                 zea = min(last_index, vea);
    3357             : 
    3358           0 :                 unmap_mapping_range_vma(vma,
    3359           0 :                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
    3360           0 :                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
    3361             :                                 details);
    3362             :         }
    3363           0 : }
    3364             : 
    3365             : /**
    3366             :  * unmap_mapping_folio() - Unmap single folio from processes.
    3367             :  * @folio: The locked folio to be unmapped.
    3368             :  *
    3369             :  * Unmap this folio from any userspace process which still has it mmaped.
    3370             :  * Typically, for efficiency, the range of nearby pages has already been
    3371             :  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
    3372             :  * truncation or invalidation holds the lock on a folio, it may find that
    3373             :  * the page has been remapped again: and then uses unmap_mapping_folio()
    3374             :  * to unmap it finally.
    3375             :  */
    3376           0 : void unmap_mapping_folio(struct folio *folio)
    3377             : {
    3378           0 :         struct address_space *mapping = folio->mapping;
    3379           0 :         struct zap_details details = { };
    3380             :         pgoff_t first_index;
    3381             :         pgoff_t last_index;
    3382             : 
    3383             :         VM_BUG_ON(!folio_test_locked(folio));
    3384             : 
    3385           0 :         first_index = folio->index;
    3386           0 :         last_index = folio->index + folio_nr_pages(folio) - 1;
    3387             : 
    3388             :         details.even_cows = false;
    3389           0 :         details.single_folio = folio;
    3390             : 
    3391           0 :         i_mmap_lock_read(mapping);
    3392           0 :         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
    3393           0 :                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
    3394             :                                          last_index, &details);
    3395           0 :         i_mmap_unlock_read(mapping);
    3396           0 : }
    3397             : 
    3398             : /**
    3399             :  * unmap_mapping_pages() - Unmap pages from processes.
    3400             :  * @mapping: The address space containing pages to be unmapped.
    3401             :  * @start: Index of first page to be unmapped.
    3402             :  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
    3403             :  * @even_cows: Whether to unmap even private COWed pages.
    3404             :  *
    3405             :  * Unmap the pages in this address space from any userspace process which
    3406             :  * has them mmaped.  Generally, you want to remove COWed pages as well when
    3407             :  * a file is being truncated, but not when invalidating pages from the page
    3408             :  * cache.
    3409             :  */
    3410           0 : void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
    3411             :                 pgoff_t nr, bool even_cows)
    3412             : {
    3413           0 :         struct zap_details details = { };
    3414           0 :         pgoff_t first_index = start;
    3415           0 :         pgoff_t last_index = start + nr - 1;
    3416             : 
    3417           0 :         details.even_cows = even_cows;
    3418           0 :         if (last_index < first_index)
    3419           0 :                 last_index = ULONG_MAX;
    3420             : 
    3421           0 :         i_mmap_lock_read(mapping);
    3422           0 :         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
    3423           0 :                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
    3424             :                                          last_index, &details);
    3425           0 :         i_mmap_unlock_read(mapping);
    3426           0 : }
    3427             : EXPORT_SYMBOL_GPL(unmap_mapping_pages);
    3428             : 
    3429             : /**
    3430             :  * unmap_mapping_range - unmap the portion of all mmaps in the specified
    3431             :  * address_space corresponding to the specified byte range in the underlying
    3432             :  * file.
    3433             :  *
    3434             :  * @mapping: the address space containing mmaps to be unmapped.
    3435             :  * @holebegin: byte in first page to unmap, relative to the start of
    3436             :  * the underlying file.  This will be rounded down to a PAGE_SIZE
    3437             :  * boundary.  Note that this is different from truncate_pagecache(), which
    3438             :  * must keep the partial page.  In contrast, we must get rid of
    3439             :  * partial pages.
    3440             :  * @holelen: size of prospective hole in bytes.  This will be rounded
    3441             :  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
    3442             :  * end of the file.
    3443             :  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
    3444             :  * but 0 when invalidating pagecache, don't throw away private data.
    3445             :  */
    3446           0 : void unmap_mapping_range(struct address_space *mapping,
    3447             :                 loff_t const holebegin, loff_t const holelen, int even_cows)
    3448             : {
    3449           0 :         pgoff_t hba = holebegin >> PAGE_SHIFT;
    3450           0 :         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
    3451             : 
    3452             :         /* Check for overflow. */
    3453             :         if (sizeof(holelen) > sizeof(hlen)) {
    3454             :                 long long holeend =
    3455             :                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
    3456             :                 if (holeend & ~(long long)ULONG_MAX)
    3457             :                         hlen = ULONG_MAX - hba + 1;
    3458             :         }
    3459             : 
    3460           0 :         unmap_mapping_pages(mapping, hba, hlen, even_cows);
    3461           0 : }
    3462             : EXPORT_SYMBOL(unmap_mapping_range);
    3463             : 
    3464             : /*
    3465             :  * Restore a potential device exclusive pte to a working pte entry
    3466             :  */
    3467             : static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
    3468             : {
    3469             :         struct page *page = vmf->page;
    3470             :         struct vm_area_struct *vma = vmf->vma;
    3471             :         struct mmu_notifier_range range;
    3472             : 
    3473             :         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
    3474             :                 return VM_FAULT_RETRY;
    3475             :         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
    3476             :                                 vma->vm_mm, vmf->address & PAGE_MASK,
    3477             :                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
    3478             :         mmu_notifier_invalidate_range_start(&range);
    3479             : 
    3480             :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
    3481             :                                 &vmf->ptl);
    3482             :         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
    3483             :                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
    3484             : 
    3485             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3486             :         unlock_page(page);
    3487             : 
    3488             :         mmu_notifier_invalidate_range_end(&range);
    3489             :         return 0;
    3490             : }
    3491             : 
    3492           0 : static inline bool should_try_to_free_swap(struct page *page,
    3493             :                                            struct vm_area_struct *vma,
    3494             :                                            unsigned int fault_flags)
    3495             : {
    3496           0 :         if (!PageSwapCache(page))
    3497             :                 return false;
    3498           0 :         if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
    3499           0 :             PageMlocked(page))
    3500             :                 return true;
    3501             :         /*
    3502             :          * If we want to map a page that's in the swapcache writable, we
    3503             :          * have to detect via the refcount if we're really the exclusive
    3504             :          * user. Try freeing the swapcache to get rid of the swapcache
    3505             :          * reference only in case it's likely that we'll be the exlusive user.
    3506             :          */
    3507           0 :         return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
    3508           0 :                 page_count(page) == 2;
    3509             : }
    3510             : 
    3511             : /*
    3512             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    3513             :  * but allow concurrent faults), and pte mapped but not yet locked.
    3514             :  * We return with pte unmapped and unlocked.
    3515             :  *
    3516             :  * We return with the mmap_lock locked or unlocked in the same cases
    3517             :  * as does filemap_fault().
    3518             :  */
    3519           0 : vm_fault_t do_swap_page(struct vm_fault *vmf)
    3520             : {
    3521           0 :         struct vm_area_struct *vma = vmf->vma;
    3522           0 :         struct page *page = NULL, *swapcache;
    3523           0 :         struct swap_info_struct *si = NULL;
    3524             :         swp_entry_t entry;
    3525             :         pte_t pte;
    3526             :         int locked;
    3527           0 :         int exclusive = 0;
    3528           0 :         vm_fault_t ret = 0;
    3529           0 :         void *shadow = NULL;
    3530             : 
    3531           0 :         if (!pte_unmap_same(vmf))
    3532             :                 goto out;
    3533             : 
    3534           0 :         entry = pte_to_swp_entry(vmf->orig_pte);
    3535           0 :         if (unlikely(non_swap_entry(entry))) {
    3536           0 :                 if (is_migration_entry(entry)) {
    3537           0 :                         migration_entry_wait(vma->vm_mm, vmf->pmd,
    3538             :                                              vmf->address);
    3539           0 :                 } else if (is_device_exclusive_entry(entry)) {
    3540             :                         vmf->page = pfn_swap_entry_to_page(entry);
    3541             :                         ret = remove_device_exclusive_entry(vmf);
    3542           0 :                 } else if (is_device_private_entry(entry)) {
    3543             :                         vmf->page = pfn_swap_entry_to_page(entry);
    3544             :                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
    3545           0 :                 } else if (is_hwpoison_entry(entry)) {
    3546             :                         ret = VM_FAULT_HWPOISON;
    3547             :                 } else {
    3548           0 :                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
    3549           0 :                         ret = VM_FAULT_SIGBUS;
    3550             :                 }
    3551             :                 goto out;
    3552             :         }
    3553             : 
    3554             :         /* Prevent swapoff from happening to us. */
    3555           0 :         si = get_swap_device(entry);
    3556           0 :         if (unlikely(!si))
    3557             :                 goto out;
    3558             : 
    3559           0 :         page = lookup_swap_cache(entry, vma, vmf->address);
    3560           0 :         swapcache = page;
    3561             : 
    3562           0 :         if (!page) {
    3563           0 :                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
    3564           0 :                     __swap_count(entry) == 1) {
    3565             :                         /* skip swapcache */
    3566           0 :                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
    3567             :                                                         vmf->address);
    3568           0 :                         if (page) {
    3569           0 :                                 __SetPageLocked(page);
    3570           0 :                                 __SetPageSwapBacked(page);
    3571             : 
    3572           0 :                                 if (mem_cgroup_swapin_charge_page(page,
    3573             :                                         vma->vm_mm, GFP_KERNEL, entry)) {
    3574             :                                         ret = VM_FAULT_OOM;
    3575             :                                         goto out_page;
    3576             :                                 }
    3577           0 :                                 mem_cgroup_swapin_uncharge_swap(entry);
    3578             : 
    3579           0 :                                 shadow = get_shadow_from_swap_cache(entry);
    3580           0 :                                 if (shadow)
    3581           0 :                                         workingset_refault(page_folio(page),
    3582             :                                                                 shadow);
    3583             : 
    3584           0 :                                 lru_cache_add(page);
    3585             : 
    3586             :                                 /* To provide entry to swap_readpage() */
    3587           0 :                                 set_page_private(page, entry.val);
    3588           0 :                                 swap_readpage(page, true);
    3589           0 :                                 set_page_private(page, 0);
    3590             :                         }
    3591             :                 } else {
    3592           0 :                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
    3593             :                                                 vmf);
    3594           0 :                         swapcache = page;
    3595             :                 }
    3596             : 
    3597           0 :                 if (!page) {
    3598             :                         /*
    3599             :                          * Back out if somebody else faulted in this pte
    3600             :                          * while we released the pte lock.
    3601             :                          */
    3602           0 :                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    3603             :                                         vmf->address, &vmf->ptl);
    3604           0 :                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
    3605           0 :                                 ret = VM_FAULT_OOM;
    3606             :                         goto unlock;
    3607             :                 }
    3608             : 
    3609             :                 /* Had to read the page from swap area: Major fault */
    3610           0 :                 ret = VM_FAULT_MAJOR;
    3611           0 :                 count_vm_event(PGMAJFAULT);
    3612           0 :                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
    3613             :         } else if (PageHWPoison(page)) {
    3614             :                 /*
    3615             :                  * hwpoisoned dirty swapcache pages are kept for killing
    3616             :                  * owner processes (which may be unknown at hwpoison time)
    3617             :                  */
    3618             :                 ret = VM_FAULT_HWPOISON;
    3619             :                 goto out_release;
    3620             :         }
    3621             : 
    3622           0 :         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
    3623             : 
    3624           0 :         if (!locked) {
    3625           0 :                 ret |= VM_FAULT_RETRY;
    3626           0 :                 goto out_release;
    3627             :         }
    3628             : 
    3629           0 :         if (swapcache) {
    3630             :                 /*
    3631             :                  * Make sure try_to_free_swap or swapoff did not release the
    3632             :                  * swapcache from under us.  The page pin, and pte_same test
    3633             :                  * below, are not enough to exclude that.  Even if it is still
    3634             :                  * swapcache, we need to check that the page's swap has not
    3635             :                  * changed.
    3636             :                  */
    3637           0 :                 if (unlikely(!PageSwapCache(page) ||
    3638             :                              page_private(page) != entry.val))
    3639             :                         goto out_page;
    3640             : 
    3641             :                 /*
    3642             :                  * KSM sometimes has to copy on read faults, for example, if
    3643             :                  * page->index of !PageKSM() pages would be nonlinear inside the
    3644             :                  * anon VMA -- PageKSM() is lost on actual swapout.
    3645             :                  */
    3646           0 :                 page = ksm_might_need_to_copy(page, vma, vmf->address);
    3647           0 :                 if (unlikely(!page)) {
    3648             :                         ret = VM_FAULT_OOM;
    3649             :                         page = swapcache;
    3650             :                         goto out_page;
    3651             :                 }
    3652             : 
    3653             :                 /*
    3654             :                  * If we want to map a page that's in the swapcache writable, we
    3655             :                  * have to detect via the refcount if we're really the exclusive
    3656             :                  * owner. Try removing the extra reference from the local LRU
    3657             :                  * pagevecs if required.
    3658             :                  */
    3659           0 :                 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
    3660           0 :                     !PageKsm(page) && !PageLRU(page))
    3661           0 :                         lru_add_drain();
    3662             :         }
    3663             : 
    3664           0 :         cgroup_throttle_swaprate(page, GFP_KERNEL);
    3665             : 
    3666             :         /*
    3667             :          * Back out if somebody else already faulted in this pte.
    3668             :          */
    3669           0 :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
    3670             :                         &vmf->ptl);
    3671           0 :         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
    3672             :                 goto out_nomap;
    3673             : 
    3674           0 :         if (unlikely(!PageUptodate(page))) {
    3675             :                 ret = VM_FAULT_SIGBUS;
    3676             :                 goto out_nomap;
    3677             :         }
    3678             : 
    3679             :         /*
    3680             :          * Remove the swap entry and conditionally try to free up the swapcache.
    3681             :          * We're already holding a reference on the page but haven't mapped it
    3682             :          * yet.
    3683             :          */
    3684           0 :         swap_free(entry);
    3685           0 :         if (should_try_to_free_swap(page, vma, vmf->flags))
    3686           0 :                 try_to_free_swap(page);
    3687             : 
    3688           0 :         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
    3689           0 :         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
    3690           0 :         pte = mk_pte(page, vma->vm_page_prot);
    3691             : 
    3692             :         /*
    3693             :          * Same logic as in do_wp_page(); however, optimize for fresh pages
    3694             :          * that are certainly not shared because we just allocated them without
    3695             :          * exposing them to the swapcache.
    3696             :          */
    3697           0 :         if ((vmf->flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
    3698           0 :             (page != swapcache || page_count(page) == 1)) {
    3699           0 :                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
    3700           0 :                 vmf->flags &= ~FAULT_FLAG_WRITE;
    3701           0 :                 ret |= VM_FAULT_WRITE;
    3702           0 :                 exclusive = RMAP_EXCLUSIVE;
    3703             :         }
    3704           0 :         flush_icache_page(vma, page);
    3705           0 :         if (pte_swp_soft_dirty(vmf->orig_pte))
    3706             :                 pte = pte_mksoft_dirty(pte);
    3707             :         if (pte_swp_uffd_wp(vmf->orig_pte)) {
    3708             :                 pte = pte_mkuffd_wp(pte);
    3709             :                 pte = pte_wrprotect(pte);
    3710             :         }
    3711           0 :         vmf->orig_pte = pte;
    3712             : 
    3713             :         /* ksm created a completely new copy */
    3714           0 :         if (unlikely(page != swapcache && swapcache)) {
    3715           0 :                 page_add_new_anon_rmap(page, vma, vmf->address, false);
    3716           0 :                 lru_cache_add_inactive_or_unevictable(page, vma);
    3717             :         } else {
    3718           0 :                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
    3719             :         }
    3720             : 
    3721           0 :         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
    3722           0 :         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
    3723             : 
    3724           0 :         unlock_page(page);
    3725           0 :         if (page != swapcache && swapcache) {
    3726             :                 /*
    3727             :                  * Hold the lock to avoid the swap entry to be reused
    3728             :                  * until we take the PT lock for the pte_same() check
    3729             :                  * (to avoid false positives from pte_same). For
    3730             :                  * further safety release the lock after the swap_free
    3731             :                  * so that the swap count won't change under a
    3732             :                  * parallel locked swapcache.
    3733             :                  */
    3734           0 :                 unlock_page(swapcache);
    3735           0 :                 put_page(swapcache);
    3736             :         }
    3737             : 
    3738           0 :         if (vmf->flags & FAULT_FLAG_WRITE) {
    3739           0 :                 ret |= do_wp_page(vmf);
    3740           0 :                 if (ret & VM_FAULT_ERROR)
    3741           0 :                         ret &= VM_FAULT_ERROR;
    3742             :                 goto out;
    3743             :         }
    3744             : 
    3745             :         /* No need to invalidate - it was non-present before */
    3746             :         update_mmu_cache(vma, vmf->address, vmf->pte);
    3747             : unlock:
    3748           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3749             : out:
    3750           0 :         if (si)
    3751             :                 put_swap_device(si);
    3752             :         return ret;
    3753             : out_nomap:
    3754           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3755             : out_page:
    3756           0 :         unlock_page(page);
    3757             : out_release:
    3758           0 :         put_page(page);
    3759           0 :         if (page != swapcache && swapcache) {
    3760           0 :                 unlock_page(swapcache);
    3761           0 :                 put_page(swapcache);
    3762             :         }
    3763           0 :         if (si)
    3764             :                 put_swap_device(si);
    3765             :         return ret;
    3766             : }
    3767             : 
    3768             : /*
    3769             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    3770             :  * but allow concurrent faults), and pte mapped but not yet locked.
    3771             :  * We return with mmap_lock still held, but pte unmapped and unlocked.
    3772             :  */
    3773           0 : static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
    3774             : {
    3775           0 :         struct vm_area_struct *vma = vmf->vma;
    3776             :         struct page *page;
    3777           0 :         vm_fault_t ret = 0;
    3778             :         pte_t entry;
    3779             : 
    3780             :         /* File mapping without ->vm_ops ? */
    3781           0 :         if (vma->vm_flags & VM_SHARED)
    3782             :                 return VM_FAULT_SIGBUS;
    3783             : 
    3784             :         /*
    3785             :          * Use pte_alloc() instead of pte_alloc_map().  We can't run
    3786             :          * pte_offset_map() on pmds where a huge pmd might be created
    3787             :          * from a different thread.
    3788             :          *
    3789             :          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
    3790             :          * parallel threads are excluded by other means.
    3791             :          *
    3792             :          * Here we only have mmap_read_lock(mm).
    3793             :          */
    3794           0 :         if (pte_alloc(vma->vm_mm, vmf->pmd))
    3795             :                 return VM_FAULT_OOM;
    3796             : 
    3797             :         /* See comment in handle_pte_fault() */
    3798           0 :         if (unlikely(pmd_trans_unstable(vmf->pmd)))
    3799             :                 return 0;
    3800             : 
    3801             :         /* Use the zero-page for reads */
    3802           0 :         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
    3803             :                         !mm_forbids_zeropage(vma->vm_mm)) {
    3804           0 :                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
    3805             :                                                 vma->vm_page_prot));
    3806           0 :                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    3807             :                                 vmf->address, &vmf->ptl);
    3808           0 :                 if (!pte_none(*vmf->pte)) {
    3809             :                         update_mmu_tlb(vma, vmf->address, vmf->pte);
    3810             :                         goto unlock;
    3811             :                 }
    3812           0 :                 ret = check_stable_address_space(vma->vm_mm);
    3813           0 :                 if (ret)
    3814             :                         goto unlock;
    3815             :                 /* Deliver the page fault to userland, check inside PT lock */
    3816             :                 if (userfaultfd_missing(vma)) {
    3817             :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3818             :                         return handle_userfault(vmf, VM_UFFD_MISSING);
    3819             :                 }
    3820             :                 goto setpte;
    3821             :         }
    3822             : 
    3823             :         /* Allocate our own private page. */
    3824           0 :         if (unlikely(anon_vma_prepare(vma)))
    3825             :                 goto oom;
    3826           0 :         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
    3827           0 :         if (!page)
    3828             :                 goto oom;
    3829             : 
    3830           0 :         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
    3831             :                 goto oom_free_page;
    3832           0 :         cgroup_throttle_swaprate(page, GFP_KERNEL);
    3833             : 
    3834             :         /*
    3835             :          * The memory barrier inside __SetPageUptodate makes sure that
    3836             :          * preceding stores to the page contents become visible before
    3837             :          * the set_pte_at() write.
    3838             :          */
    3839           0 :         __SetPageUptodate(page);
    3840             : 
    3841           0 :         entry = mk_pte(page, vma->vm_page_prot);
    3842             :         entry = pte_sw_mkyoung(entry);
    3843           0 :         if (vma->vm_flags & VM_WRITE)
    3844           0 :                 entry = pte_mkwrite(pte_mkdirty(entry));
    3845             : 
    3846           0 :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
    3847             :                         &vmf->ptl);
    3848           0 :         if (!pte_none(*vmf->pte)) {
    3849             :                 update_mmu_cache(vma, vmf->address, vmf->pte);
    3850             :                 goto release;
    3851             :         }
    3852             : 
    3853           0 :         ret = check_stable_address_space(vma->vm_mm);
    3854           0 :         if (ret)
    3855             :                 goto release;
    3856             : 
    3857             :         /* Deliver the page fault to userland, check inside PT lock */
    3858           0 :         if (userfaultfd_missing(vma)) {
    3859             :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3860             :                 put_page(page);
    3861             :                 return handle_userfault(vmf, VM_UFFD_MISSING);
    3862             :         }
    3863             : 
    3864           0 :         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
    3865           0 :         page_add_new_anon_rmap(page, vma, vmf->address, false);
    3866           0 :         lru_cache_add_inactive_or_unevictable(page, vma);
    3867             : setpte:
    3868           0 :         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
    3869             : 
    3870             :         /* No need to invalidate - it was non-present before */
    3871             :         update_mmu_cache(vma, vmf->address, vmf->pte);
    3872             : unlock:
    3873           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3874           0 :         return ret;
    3875             : release:
    3876           0 :         put_page(page);
    3877           0 :         goto unlock;
    3878             : oom_free_page:
    3879             :         put_page(page);
    3880             : oom:
    3881             :         return VM_FAULT_OOM;
    3882             : }
    3883             : 
    3884             : /*
    3885             :  * The mmap_lock must have been held on entry, and may have been
    3886             :  * released depending on flags and vma->vm_ops->fault() return value.
    3887             :  * See filemap_fault() and __lock_page_retry().
    3888             :  */
    3889           0 : static vm_fault_t __do_fault(struct vm_fault *vmf)
    3890             : {
    3891           0 :         struct vm_area_struct *vma = vmf->vma;
    3892             :         vm_fault_t ret;
    3893             : 
    3894             :         /*
    3895             :          * Preallocate pte before we take page_lock because this might lead to
    3896             :          * deadlocks for memcg reclaim which waits for pages under writeback:
    3897             :          *                              lock_page(A)
    3898             :          *                              SetPageWriteback(A)
    3899             :          *                              unlock_page(A)
    3900             :          * lock_page(B)
    3901             :          *                              lock_page(B)
    3902             :          * pte_alloc_one
    3903             :          *   shrink_page_list
    3904             :          *     wait_on_page_writeback(A)
    3905             :          *                              SetPageWriteback(B)
    3906             :          *                              unlock_page(B)
    3907             :          *                              # flush A, B to clear the writeback
    3908             :          */
    3909           0 :         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
    3910           0 :                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
    3911           0 :                 if (!vmf->prealloc_pte)
    3912             :                         return VM_FAULT_OOM;
    3913             :         }
    3914             : 
    3915           0 :         ret = vma->vm_ops->fault(vmf);
    3916           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
    3917             :                             VM_FAULT_DONE_COW)))
    3918             :                 return ret;
    3919             : 
    3920           0 :         if (unlikely(PageHWPoison(vmf->page))) {
    3921             :                 struct page *page = vmf->page;
    3922             :                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
    3923             :                 if (ret & VM_FAULT_LOCKED) {
    3924             :                         if (page_mapped(page))
    3925             :                                 unmap_mapping_pages(page_mapping(page),
    3926             :                                                     page->index, 1, false);
    3927             :                         /* Retry if a clean page was removed from the cache. */
    3928             :                         if (invalidate_inode_page(page))
    3929             :                                 poisonret = VM_FAULT_NOPAGE;
    3930             :                         unlock_page(page);
    3931             :                 }
    3932             :                 put_page(page);
    3933             :                 vmf->page = NULL;
    3934             :                 return poisonret;
    3935             :         }
    3936             : 
    3937           0 :         if (unlikely(!(ret & VM_FAULT_LOCKED)))
    3938           0 :                 lock_page(vmf->page);
    3939             :         else
    3940             :                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
    3941             : 
    3942             :         return ret;
    3943             : }
    3944             : 
    3945             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    3946             : static void deposit_prealloc_pte(struct vm_fault *vmf)
    3947             : {
    3948             :         struct vm_area_struct *vma = vmf->vma;
    3949             : 
    3950             :         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
    3951             :         /*
    3952             :          * We are going to consume the prealloc table,
    3953             :          * count that as nr_ptes.
    3954             :          */
    3955             :         mm_inc_nr_ptes(vma->vm_mm);
    3956             :         vmf->prealloc_pte = NULL;
    3957             : }
    3958             : 
    3959             : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
    3960             : {
    3961             :         struct vm_area_struct *vma = vmf->vma;
    3962             :         bool write = vmf->flags & FAULT_FLAG_WRITE;
    3963             :         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
    3964             :         pmd_t entry;
    3965             :         int i;
    3966             :         vm_fault_t ret = VM_FAULT_FALLBACK;
    3967             : 
    3968             :         if (!transhuge_vma_suitable(vma, haddr))
    3969             :                 return ret;
    3970             : 
    3971             :         page = compound_head(page);
    3972             :         if (compound_order(page) != HPAGE_PMD_ORDER)
    3973             :                 return ret;
    3974             : 
    3975             :         /*
    3976             :          * Just backoff if any subpage of a THP is corrupted otherwise
    3977             :          * the corrupted page may mapped by PMD silently to escape the
    3978             :          * check.  This kind of THP just can be PTE mapped.  Access to
    3979             :          * the corrupted subpage should trigger SIGBUS as expected.
    3980             :          */
    3981             :         if (unlikely(PageHasHWPoisoned(page)))
    3982             :                 return ret;
    3983             : 
    3984             :         /*
    3985             :          * Archs like ppc64 need additional space to store information
    3986             :          * related to pte entry. Use the preallocated table for that.
    3987             :          */
    3988             :         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
    3989             :                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
    3990             :                 if (!vmf->prealloc_pte)
    3991             :                         return VM_FAULT_OOM;
    3992             :         }
    3993             : 
    3994             :         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
    3995             :         if (unlikely(!pmd_none(*vmf->pmd)))
    3996             :                 goto out;
    3997             : 
    3998             :         for (i = 0; i < HPAGE_PMD_NR; i++)
    3999             :                 flush_icache_page(vma, page + i);
    4000             : 
    4001             :         entry = mk_huge_pmd(page, vma->vm_page_prot);
    4002             :         if (write)
    4003             :                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
    4004             : 
    4005             :         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
    4006             :         page_add_file_rmap(page, vma, true);
    4007             : 
    4008             :         /*
    4009             :          * deposit and withdraw with pmd lock held
    4010             :          */
    4011             :         if (arch_needs_pgtable_deposit())
    4012             :                 deposit_prealloc_pte(vmf);
    4013             : 
    4014             :         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
    4015             : 
    4016             :         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
    4017             : 
    4018             :         /* fault is handled */
    4019             :         ret = 0;
    4020             :         count_vm_event(THP_FILE_MAPPED);
    4021             : out:
    4022             :         spin_unlock(vmf->ptl);
    4023             :         return ret;
    4024             : }
    4025             : #else
    4026           0 : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
    4027             : {
    4028           0 :         return VM_FAULT_FALLBACK;
    4029             : }
    4030             : #endif
    4031             : 
    4032           0 : void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
    4033             : {
    4034           0 :         struct vm_area_struct *vma = vmf->vma;
    4035           0 :         bool write = vmf->flags & FAULT_FLAG_WRITE;
    4036           0 :         bool prefault = vmf->address != addr;
    4037             :         pte_t entry;
    4038             : 
    4039           0 :         flush_icache_page(vma, page);
    4040           0 :         entry = mk_pte(page, vma->vm_page_prot);
    4041             : 
    4042             :         if (prefault && arch_wants_old_prefaulted_pte())
    4043             :                 entry = pte_mkold(entry);
    4044             :         else
    4045             :                 entry = pte_sw_mkyoung(entry);
    4046             : 
    4047           0 :         if (write)
    4048           0 :                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    4049             :         /* copy-on-write page */
    4050           0 :         if (write && !(vma->vm_flags & VM_SHARED)) {
    4051           0 :                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
    4052           0 :                 page_add_new_anon_rmap(page, vma, addr, false);
    4053           0 :                 lru_cache_add_inactive_or_unevictable(page, vma);
    4054             :         } else {
    4055           0 :                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
    4056           0 :                 page_add_file_rmap(page, vma, false);
    4057             :         }
    4058           0 :         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
    4059           0 : }
    4060             : 
    4061             : /**
    4062             :  * finish_fault - finish page fault once we have prepared the page to fault
    4063             :  *
    4064             :  * @vmf: structure describing the fault
    4065             :  *
    4066             :  * This function handles all that is needed to finish a page fault once the
    4067             :  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
    4068             :  * given page, adds reverse page mapping, handles memcg charges and LRU
    4069             :  * addition.
    4070             :  *
    4071             :  * The function expects the page to be locked and on success it consumes a
    4072             :  * reference of a page being mapped (for the PTE which maps it).
    4073             :  *
    4074             :  * Return: %0 on success, %VM_FAULT_ code in case of error.
    4075             :  */
    4076           0 : vm_fault_t finish_fault(struct vm_fault *vmf)
    4077             : {
    4078           0 :         struct vm_area_struct *vma = vmf->vma;
    4079             :         struct page *page;
    4080             :         vm_fault_t ret;
    4081             : 
    4082             :         /* Did we COW the page? */
    4083           0 :         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
    4084           0 :                 page = vmf->cow_page;
    4085             :         else
    4086           0 :                 page = vmf->page;
    4087             : 
    4088             :         /*
    4089             :          * check even for read faults because we might have lost our CoWed
    4090             :          * page
    4091             :          */
    4092           0 :         if (!(vma->vm_flags & VM_SHARED)) {
    4093           0 :                 ret = check_stable_address_space(vma->vm_mm);
    4094           0 :                 if (ret)
    4095             :                         return ret;
    4096             :         }
    4097             : 
    4098           0 :         if (pmd_none(*vmf->pmd)) {
    4099           0 :                 if (PageTransCompound(page)) {
    4100             :                         ret = do_set_pmd(vmf, page);
    4101             :                         if (ret != VM_FAULT_FALLBACK)
    4102             :                                 return ret;
    4103             :                 }
    4104             : 
    4105           0 :                 if (vmf->prealloc_pte)
    4106           0 :                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
    4107           0 :                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
    4108             :                         return VM_FAULT_OOM;
    4109             :         }
    4110             : 
    4111             :         /* See comment in handle_pte_fault() */
    4112           0 :         if (pmd_devmap_trans_unstable(vmf->pmd))
    4113             :                 return 0;
    4114             : 
    4115           0 :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    4116             :                                       vmf->address, &vmf->ptl);
    4117           0 :         ret = 0;
    4118             :         /* Re-check under ptl */
    4119           0 :         if (likely(pte_none(*vmf->pte)))
    4120           0 :                 do_set_pte(vmf, page, vmf->address);
    4121             :         else
    4122             :                 ret = VM_FAULT_NOPAGE;
    4123             : 
    4124           0 :         update_mmu_tlb(vma, vmf->address, vmf->pte);
    4125           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4126           0 :         return ret;
    4127             : }
    4128             : 
    4129             : static unsigned long fault_around_bytes __read_mostly =
    4130             :         rounddown_pow_of_two(65536);
    4131             : 
    4132             : #ifdef CONFIG_DEBUG_FS
    4133             : static int fault_around_bytes_get(void *data, u64 *val)
    4134             : {
    4135             :         *val = fault_around_bytes;
    4136             :         return 0;
    4137             : }
    4138             : 
    4139             : /*
    4140             :  * fault_around_bytes must be rounded down to the nearest page order as it's
    4141             :  * what do_fault_around() expects to see.
    4142             :  */
    4143             : static int fault_around_bytes_set(void *data, u64 val)
    4144             : {
    4145             :         if (val / PAGE_SIZE > PTRS_PER_PTE)
    4146             :                 return -EINVAL;
    4147             :         if (val > PAGE_SIZE)
    4148             :                 fault_around_bytes = rounddown_pow_of_two(val);
    4149             :         else
    4150             :                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
    4151             :         return 0;
    4152             : }
    4153             : DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
    4154             :                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
    4155             : 
    4156             : static int __init fault_around_debugfs(void)
    4157             : {
    4158             :         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
    4159             :                                    &fault_around_bytes_fops);
    4160             :         return 0;
    4161             : }
    4162             : late_initcall(fault_around_debugfs);
    4163             : #endif
    4164             : 
    4165             : /*
    4166             :  * do_fault_around() tries to map few pages around the fault address. The hope
    4167             :  * is that the pages will be needed soon and this will lower the number of
    4168             :  * faults to handle.
    4169             :  *
    4170             :  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
    4171             :  * not ready to be mapped: not up-to-date, locked, etc.
    4172             :  *
    4173             :  * This function is called with the page table lock taken. In the split ptlock
    4174             :  * case the page table lock only protects only those entries which belong to
    4175             :  * the page table corresponding to the fault address.
    4176             :  *
    4177             :  * This function doesn't cross the VMA boundaries, in order to call map_pages()
    4178             :  * only once.
    4179             :  *
    4180             :  * fault_around_bytes defines how many bytes we'll try to map.
    4181             :  * do_fault_around() expects it to be set to a power of two less than or equal
    4182             :  * to PTRS_PER_PTE.
    4183             :  *
    4184             :  * The virtual address of the area that we map is naturally aligned to
    4185             :  * fault_around_bytes rounded down to the machine page size
    4186             :  * (and therefore to page order).  This way it's easier to guarantee
    4187             :  * that we don't cross page table boundaries.
    4188             :  */
    4189           0 : static vm_fault_t do_fault_around(struct vm_fault *vmf)
    4190             : {
    4191           0 :         unsigned long address = vmf->address, nr_pages, mask;
    4192           0 :         pgoff_t start_pgoff = vmf->pgoff;
    4193             :         pgoff_t end_pgoff;
    4194             :         int off;
    4195             : 
    4196           0 :         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
    4197           0 :         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
    4198             : 
    4199           0 :         address = max(address & mask, vmf->vma->vm_start);
    4200           0 :         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
    4201           0 :         start_pgoff -= off;
    4202             : 
    4203             :         /*
    4204             :          *  end_pgoff is either the end of the page table, the end of
    4205             :          *  the vma or nr_pages from start_pgoff, depending what is nearest.
    4206             :          */
    4207           0 :         end_pgoff = start_pgoff -
    4208           0 :                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
    4209             :                 PTRS_PER_PTE - 1;
    4210           0 :         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
    4211             :                         start_pgoff + nr_pages - 1);
    4212             : 
    4213           0 :         if (pmd_none(*vmf->pmd)) {
    4214           0 :                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
    4215           0 :                 if (!vmf->prealloc_pte)
    4216             :                         return VM_FAULT_OOM;
    4217             :         }
    4218             : 
    4219           0 :         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
    4220             : }
    4221             : 
    4222           0 : static vm_fault_t do_read_fault(struct vm_fault *vmf)
    4223             : {
    4224           0 :         struct vm_area_struct *vma = vmf->vma;
    4225           0 :         vm_fault_t ret = 0;
    4226             : 
    4227             :         /*
    4228             :          * Let's call ->map_pages() first and use ->fault() as fallback
    4229             :          * if page by the offset is not ready to be mapped (cold cache or
    4230             :          * something).
    4231             :          */
    4232           0 :         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
    4233           0 :                 if (likely(!userfaultfd_minor(vmf->vma))) {
    4234           0 :                         ret = do_fault_around(vmf);
    4235           0 :                         if (ret)
    4236             :                                 return ret;
    4237             :                 }
    4238             :         }
    4239             : 
    4240           0 :         ret = __do_fault(vmf);
    4241           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4242             :                 return ret;
    4243             : 
    4244           0 :         ret |= finish_fault(vmf);
    4245           0 :         unlock_page(vmf->page);
    4246           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4247           0 :                 put_page(vmf->page);
    4248             :         return ret;
    4249             : }
    4250             : 
    4251           0 : static vm_fault_t do_cow_fault(struct vm_fault *vmf)
    4252             : {
    4253           0 :         struct vm_area_struct *vma = vmf->vma;
    4254             :         vm_fault_t ret;
    4255             : 
    4256           0 :         if (unlikely(anon_vma_prepare(vma)))
    4257             :                 return VM_FAULT_OOM;
    4258             : 
    4259           0 :         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
    4260           0 :         if (!vmf->cow_page)
    4261             :                 return VM_FAULT_OOM;
    4262             : 
    4263           0 :         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
    4264             :                                 GFP_KERNEL)) {
    4265             :                 put_page(vmf->cow_page);
    4266             :                 return VM_FAULT_OOM;
    4267             :         }
    4268           0 :         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
    4269             : 
    4270           0 :         ret = __do_fault(vmf);
    4271           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4272             :                 goto uncharge_out;
    4273           0 :         if (ret & VM_FAULT_DONE_COW)
    4274             :                 return ret;
    4275             : 
    4276           0 :         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
    4277           0 :         __SetPageUptodate(vmf->cow_page);
    4278             : 
    4279           0 :         ret |= finish_fault(vmf);
    4280           0 :         unlock_page(vmf->page);
    4281           0 :         put_page(vmf->page);
    4282           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4283             :                 goto uncharge_out;
    4284             :         return ret;
    4285             : uncharge_out:
    4286           0 :         put_page(vmf->cow_page);
    4287           0 :         return ret;
    4288             : }
    4289             : 
    4290           0 : static vm_fault_t do_shared_fault(struct vm_fault *vmf)
    4291             : {
    4292           0 :         struct vm_area_struct *vma = vmf->vma;
    4293             :         vm_fault_t ret, tmp;
    4294             : 
    4295           0 :         ret = __do_fault(vmf);
    4296           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4297             :                 return ret;
    4298             : 
    4299             :         /*
    4300             :          * Check if the backing address space wants to know that the page is
    4301             :          * about to become writable
    4302             :          */
    4303           0 :         if (vma->vm_ops->page_mkwrite) {
    4304           0 :                 unlock_page(vmf->page);
    4305           0 :                 tmp = do_page_mkwrite(vmf);
    4306           0 :                 if (unlikely(!tmp ||
    4307             :                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
    4308           0 :                         put_page(vmf->page);
    4309           0 :                         return tmp;
    4310             :                 }
    4311             :         }
    4312             : 
    4313           0 :         ret |= finish_fault(vmf);
    4314           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
    4315             :                                         VM_FAULT_RETRY))) {
    4316           0 :                 unlock_page(vmf->page);
    4317           0 :                 put_page(vmf->page);
    4318           0 :                 return ret;
    4319             :         }
    4320             : 
    4321           0 :         ret |= fault_dirty_shared_page(vmf);
    4322           0 :         return ret;
    4323             : }
    4324             : 
    4325             : /*
    4326             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    4327             :  * but allow concurrent faults).
    4328             :  * The mmap_lock may have been released depending on flags and our
    4329             :  * return value.  See filemap_fault() and __folio_lock_or_retry().
    4330             :  * If mmap_lock is released, vma may become invalid (for example
    4331             :  * by other thread calling munmap()).
    4332             :  */
    4333           0 : static vm_fault_t do_fault(struct vm_fault *vmf)
    4334             : {
    4335           0 :         struct vm_area_struct *vma = vmf->vma;
    4336           0 :         struct mm_struct *vm_mm = vma->vm_mm;
    4337             :         vm_fault_t ret;
    4338             : 
    4339             :         /*
    4340             :          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
    4341             :          */
    4342           0 :         if (!vma->vm_ops->fault) {
    4343             :                 /*
    4344             :                  * If we find a migration pmd entry or a none pmd entry, which
    4345             :                  * should never happen, return SIGBUS
    4346             :                  */
    4347           0 :                 if (unlikely(!pmd_present(*vmf->pmd)))
    4348             :                         ret = VM_FAULT_SIGBUS;
    4349             :                 else {
    4350           0 :                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
    4351             :                                                        vmf->pmd,
    4352             :                                                        vmf->address,
    4353             :                                                        &vmf->ptl);
    4354             :                         /*
    4355             :                          * Make sure this is not a temporary clearing of pte
    4356             :                          * by holding ptl and checking again. A R/M/W update
    4357             :                          * of pte involves: take ptl, clearing the pte so that
    4358             :                          * we don't have concurrent modification by hardware
    4359             :                          * followed by an update.
    4360             :                          */
    4361           0 :                         if (unlikely(pte_none(*vmf->pte)))
    4362             :                                 ret = VM_FAULT_SIGBUS;
    4363             :                         else
    4364           0 :                                 ret = VM_FAULT_NOPAGE;
    4365             : 
    4366           0 :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4367             :                 }
    4368           0 :         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
    4369           0 :                 ret = do_read_fault(vmf);
    4370           0 :         else if (!(vma->vm_flags & VM_SHARED))
    4371           0 :                 ret = do_cow_fault(vmf);
    4372             :         else
    4373           0 :                 ret = do_shared_fault(vmf);
    4374             : 
    4375             :         /* preallocated pagetable is unused: free it */
    4376           0 :         if (vmf->prealloc_pte) {
    4377           0 :                 pte_free(vm_mm, vmf->prealloc_pte);
    4378           0 :                 vmf->prealloc_pte = NULL;
    4379             :         }
    4380           0 :         return ret;
    4381             : }
    4382             : 
    4383           0 : int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
    4384             :                       unsigned long addr, int page_nid, int *flags)
    4385             : {
    4386           0 :         get_page(page);
    4387             : 
    4388             :         count_vm_numa_event(NUMA_HINT_FAULTS);
    4389           0 :         if (page_nid == numa_node_id()) {
    4390             :                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
    4391           0 :                 *flags |= TNF_FAULT_LOCAL;
    4392             :         }
    4393             : 
    4394           0 :         return mpol_misplaced(page, vma, addr);
    4395             : }
    4396             : 
    4397             : static vm_fault_t do_numa_page(struct vm_fault *vmf)
    4398             : {
    4399             :         struct vm_area_struct *vma = vmf->vma;
    4400             :         struct page *page = NULL;
    4401             :         int page_nid = NUMA_NO_NODE;
    4402             :         int last_cpupid;
    4403             :         int target_nid;
    4404             :         pte_t pte, old_pte;
    4405             :         bool was_writable = pte_savedwrite(vmf->orig_pte);
    4406             :         int flags = 0;
    4407             : 
    4408             :         /*
    4409             :          * The "pte" at this point cannot be used safely without
    4410             :          * validation through pte_unmap_same(). It's of NUMA type but
    4411             :          * the pfn may be screwed if the read is non atomic.
    4412             :          */
    4413             :         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
    4414             :         spin_lock(vmf->ptl);
    4415             :         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
    4416             :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    4417             :                 goto out;
    4418             :         }
    4419             : 
    4420             :         /* Get the normal PTE  */
    4421             :         old_pte = ptep_get(vmf->pte);
    4422             :         pte = pte_modify(old_pte, vma->vm_page_prot);
    4423             : 
    4424             :         page = vm_normal_page(vma, vmf->address, pte);
    4425             :         if (!page)
    4426             :                 goto out_map;
    4427             : 
    4428             :         /* TODO: handle PTE-mapped THP */
    4429             :         if (PageCompound(page))
    4430             :                 goto out_map;
    4431             : 
    4432             :         /*
    4433             :          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
    4434             :          * much anyway since they can be in shared cache state. This misses
    4435             :          * the case where a mapping is writable but the process never writes
    4436             :          * to it but pte_write gets cleared during protection updates and
    4437             :          * pte_dirty has unpredictable behaviour between PTE scan updates,
    4438             :          * background writeback, dirty balancing and application behaviour.
    4439             :          */
    4440             :         if (!was_writable)
    4441             :                 flags |= TNF_NO_GROUP;
    4442             : 
    4443             :         /*
    4444             :          * Flag if the page is shared between multiple address spaces. This
    4445             :          * is later used when determining whether to group tasks together
    4446             :          */
    4447             :         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
    4448             :                 flags |= TNF_SHARED;
    4449             : 
    4450             :         last_cpupid = page_cpupid_last(page);
    4451             :         page_nid = page_to_nid(page);
    4452             :         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
    4453             :                         &flags);
    4454             :         if (target_nid == NUMA_NO_NODE) {
    4455             :                 put_page(page);
    4456             :                 goto out_map;
    4457             :         }
    4458             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4459             : 
    4460             :         /* Migrate to the requested node */
    4461             :         if (migrate_misplaced_page(page, vma, target_nid)) {
    4462             :                 page_nid = target_nid;
    4463             :                 flags |= TNF_MIGRATED;
    4464             :         } else {
    4465             :                 flags |= TNF_MIGRATE_FAIL;
    4466             :                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
    4467             :                 spin_lock(vmf->ptl);
    4468             :                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
    4469             :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4470             :                         goto out;
    4471             :                 }
    4472             :                 goto out_map;
    4473             :         }
    4474             : 
    4475             : out:
    4476             :         if (page_nid != NUMA_NO_NODE)
    4477             :                 task_numa_fault(last_cpupid, page_nid, 1, flags);
    4478             :         return 0;
    4479             : out_map:
    4480             :         /*
    4481             :          * Make it present again, depending on how arch implements
    4482             :          * non-accessible ptes, some can allow access by kernel mode.
    4483             :          */
    4484             :         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
    4485             :         pte = pte_modify(old_pte, vma->vm_page_prot);
    4486             :         pte = pte_mkyoung(pte);
    4487             :         if (was_writable)
    4488             :                 pte = pte_mkwrite(pte);
    4489             :         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
    4490             :         update_mmu_cache(vma, vmf->address, vmf->pte);
    4491             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4492             :         goto out;
    4493             : }
    4494             : 
    4495             : static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
    4496             : {
    4497             :         if (vma_is_anonymous(vmf->vma))
    4498             :                 return do_huge_pmd_anonymous_page(vmf);
    4499             :         if (vmf->vma->vm_ops->huge_fault)
    4500             :                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
    4501             :         return VM_FAULT_FALLBACK;
    4502             : }
    4503             : 
    4504             : /* `inline' is required to avoid gcc 4.1.2 build error */
    4505             : static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
    4506             : {
    4507             :         if (vma_is_anonymous(vmf->vma)) {
    4508             :                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
    4509             :                         return handle_userfault(vmf, VM_UFFD_WP);
    4510             :                 return do_huge_pmd_wp_page(vmf);
    4511             :         }
    4512             :         if (vmf->vma->vm_ops->huge_fault) {
    4513             :                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
    4514             : 
    4515             :                 if (!(ret & VM_FAULT_FALLBACK))
    4516             :                         return ret;
    4517             :         }
    4518             : 
    4519             :         /* COW or write-notify handled on pte level: split pmd. */
    4520             :         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
    4521             : 
    4522             :         return VM_FAULT_FALLBACK;
    4523             : }
    4524             : 
    4525             : static vm_fault_t create_huge_pud(struct vm_fault *vmf)
    4526             : {
    4527             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
    4528             :         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    4529             :         /* No support for anonymous transparent PUD pages yet */
    4530             :         if (vma_is_anonymous(vmf->vma))
    4531             :                 goto split;
    4532             :         if (vmf->vma->vm_ops->huge_fault) {
    4533             :                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
    4534             : 
    4535             :                 if (!(ret & VM_FAULT_FALLBACK))
    4536             :                         return ret;
    4537             :         }
    4538             : split:
    4539             :         /* COW or write-notify not handled on PUD level: split pud.*/
    4540             :         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
    4541             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    4542             :         return VM_FAULT_FALLBACK;
    4543             : }
    4544             : 
    4545             : static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
    4546             : {
    4547             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    4548             :         /* No support for anonymous transparent PUD pages yet */
    4549             :         if (vma_is_anonymous(vmf->vma))
    4550             :                 return VM_FAULT_FALLBACK;
    4551             :         if (vmf->vma->vm_ops->huge_fault)
    4552             :                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
    4553             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    4554             :         return VM_FAULT_FALLBACK;
    4555             : }
    4556             : 
    4557             : /*
    4558             :  * These routines also need to handle stuff like marking pages dirty
    4559             :  * and/or accessed for architectures that don't do it in hardware (most
    4560             :  * RISC architectures).  The early dirtying is also good on the i386.
    4561             :  *
    4562             :  * There is also a hook called "update_mmu_cache()" that architectures
    4563             :  * with external mmu caches can use to update those (ie the Sparc or
    4564             :  * PowerPC hashed page tables that act as extended TLBs).
    4565             :  *
    4566             :  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
    4567             :  * concurrent faults).
    4568             :  *
    4569             :  * The mmap_lock may have been released depending on flags and our return value.
    4570             :  * See filemap_fault() and __folio_lock_or_retry().
    4571             :  */
    4572           0 : static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
    4573             : {
    4574             :         pte_t entry;
    4575             : 
    4576           0 :         if (unlikely(pmd_none(*vmf->pmd))) {
    4577             :                 /*
    4578             :                  * Leave __pte_alloc() until later: because vm_ops->fault may
    4579             :                  * want to allocate huge page, and if we expose page table
    4580             :                  * for an instant, it will be difficult to retract from
    4581             :                  * concurrent faults and from rmap lookups.
    4582             :                  */
    4583           0 :                 vmf->pte = NULL;
    4584             :         } else {
    4585             :                 /*
    4586             :                  * If a huge pmd materialized under us just retry later.  Use
    4587             :                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
    4588             :                  * of pmd_trans_huge() to ensure the pmd didn't become
    4589             :                  * pmd_trans_huge under us and then back to pmd_none, as a
    4590             :                  * result of MADV_DONTNEED running immediately after a huge pmd
    4591             :                  * fault in a different thread of this mm, in turn leading to a
    4592             :                  * misleading pmd_trans_huge() retval. All we have to ensure is
    4593             :                  * that it is a regular pmd that we can walk with
    4594             :                  * pte_offset_map() and we can do that through an atomic read
    4595             :                  * in C, which is what pmd_trans_unstable() provides.
    4596             :                  */
    4597           0 :                 if (pmd_devmap_trans_unstable(vmf->pmd))
    4598             :                         return 0;
    4599             :                 /*
    4600             :                  * A regular pmd is established and it can't morph into a huge
    4601             :                  * pmd from under us anymore at this point because we hold the
    4602             :                  * mmap_lock read mode and khugepaged takes it in write mode.
    4603             :                  * So now it's safe to run pte_offset_map().
    4604             :                  */
    4605           0 :                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
    4606           0 :                 vmf->orig_pte = *vmf->pte;
    4607             : 
    4608             :                 /*
    4609             :                  * some architectures can have larger ptes than wordsize,
    4610             :                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
    4611             :                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
    4612             :                  * accesses.  The code below just needs a consistent view
    4613             :                  * for the ifs and we later double check anyway with the
    4614             :                  * ptl lock held. So here a barrier will do.
    4615             :                  */
    4616           0 :                 barrier();
    4617           0 :                 if (pte_none(vmf->orig_pte)) {
    4618             :                         pte_unmap(vmf->pte);
    4619           0 :                         vmf->pte = NULL;
    4620             :                 }
    4621             :         }
    4622             : 
    4623           0 :         if (!vmf->pte) {
    4624           0 :                 if (vma_is_anonymous(vmf->vma))
    4625           0 :                         return do_anonymous_page(vmf);
    4626             :                 else
    4627           0 :                         return do_fault(vmf);
    4628             :         }
    4629             : 
    4630           0 :         if (!pte_present(vmf->orig_pte))
    4631           0 :                 return do_swap_page(vmf);
    4632             : 
    4633           0 :         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
    4634             :                 return do_numa_page(vmf);
    4635             : 
    4636           0 :         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
    4637           0 :         spin_lock(vmf->ptl);
    4638           0 :         entry = vmf->orig_pte;
    4639           0 :         if (unlikely(!pte_same(*vmf->pte, entry))) {
    4640             :                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
    4641             :                 goto unlock;
    4642             :         }
    4643           0 :         if (vmf->flags & FAULT_FLAG_WRITE) {
    4644           0 :                 if (!pte_write(entry))
    4645           0 :                         return do_wp_page(vmf);
    4646             :                 entry = pte_mkdirty(entry);
    4647             :         }
    4648           0 :         entry = pte_mkyoung(entry);
    4649           0 :         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
    4650           0 :                                 vmf->flags & FAULT_FLAG_WRITE)) {
    4651             :                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
    4652             :         } else {
    4653             :                 /* Skip spurious TLB flush for retried page fault */
    4654           0 :                 if (vmf->flags & FAULT_FLAG_TRIED)
    4655             :                         goto unlock;
    4656             :                 /*
    4657             :                  * This is needed only for protection faults but the arch code
    4658             :                  * is not yet telling us if this is a protection fault or not.
    4659             :                  * This still avoids useless tlb flushes for .text page faults
    4660             :                  * with threads.
    4661             :                  */
    4662           0 :                 if (vmf->flags & FAULT_FLAG_WRITE)
    4663           0 :                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
    4664             :         }
    4665             : unlock:
    4666           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4667           0 :         return 0;
    4668             : }
    4669             : 
    4670             : /*
    4671             :  * By the time we get here, we already hold the mm semaphore
    4672             :  *
    4673             :  * The mmap_lock may have been released depending on flags and our
    4674             :  * return value.  See filemap_fault() and __folio_lock_or_retry().
    4675             :  */
    4676           0 : static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
    4677             :                 unsigned long address, unsigned int flags)
    4678             : {
    4679           0 :         struct vm_fault vmf = {
    4680             :                 .vma = vma,
    4681           0 :                 .address = address & PAGE_MASK,
    4682             :                 .real_address = address,
    4683             :                 .flags = flags,
    4684           0 :                 .pgoff = linear_page_index(vma, address),
    4685           0 :                 .gfp_mask = __get_fault_gfp_mask(vma),
    4686             :         };
    4687           0 :         unsigned int dirty = flags & FAULT_FLAG_WRITE;
    4688           0 :         struct mm_struct *mm = vma->vm_mm;
    4689             :         pgd_t *pgd;
    4690             :         p4d_t *p4d;
    4691             :         vm_fault_t ret;
    4692             : 
    4693           0 :         pgd = pgd_offset(mm, address);
    4694           0 :         p4d = p4d_alloc(mm, pgd, address);
    4695           0 :         if (!p4d)
    4696             :                 return VM_FAULT_OOM;
    4697             : 
    4698           0 :         vmf.pud = pud_alloc(mm, p4d, address);
    4699             :         if (!vmf.pud)
    4700             :                 return VM_FAULT_OOM;
    4701             : retry_pud:
    4702             :         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
    4703             :                 ret = create_huge_pud(&vmf);
    4704             :                 if (!(ret & VM_FAULT_FALLBACK))
    4705             :                         return ret;
    4706             :         } else {
    4707             :                 pud_t orig_pud = *vmf.pud;
    4708             : 
    4709           0 :                 barrier();
    4710           0 :                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
    4711             : 
    4712             :                         /* NUMA case for anonymous PUDs would go here */
    4713             : 
    4714             :                         if (dirty && !pud_write(orig_pud)) {
    4715             :                                 ret = wp_huge_pud(&vmf, orig_pud);
    4716             :                                 if (!(ret & VM_FAULT_FALLBACK))
    4717             :                                         return ret;
    4718             :                         } else {
    4719             :                                 huge_pud_set_accessed(&vmf, orig_pud);
    4720             :                                 return 0;
    4721             :                         }
    4722             :                 }
    4723             :         }
    4724             : 
    4725           0 :         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
    4726           0 :         if (!vmf.pmd)
    4727             :                 return VM_FAULT_OOM;
    4728             : 
    4729             :         /* Huge pud page fault raced with pmd_alloc? */
    4730           0 :         if (pud_trans_unstable(vmf.pud))
    4731             :                 goto retry_pud;
    4732             : 
    4733             :         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
    4734             :                 ret = create_huge_pmd(&vmf);
    4735             :                 if (!(ret & VM_FAULT_FALLBACK))
    4736             :                         return ret;
    4737             :         } else {
    4738           0 :                 vmf.orig_pmd = *vmf.pmd;
    4739             : 
    4740           0 :                 barrier();
    4741           0 :                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
    4742             :                         VM_BUG_ON(thp_migration_supported() &&
    4743             :                                           !is_pmd_migration_entry(vmf.orig_pmd));
    4744             :                         if (is_pmd_migration_entry(vmf.orig_pmd))
    4745             :                                 pmd_migration_entry_wait(mm, vmf.pmd);
    4746             :                         return 0;
    4747             :                 }
    4748           0 :                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
    4749             :                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
    4750             :                                 return do_huge_pmd_numa_page(&vmf);
    4751             : 
    4752             :                         if (dirty && !pmd_write(vmf.orig_pmd)) {
    4753             :                                 ret = wp_huge_pmd(&vmf);
    4754             :                                 if (!(ret & VM_FAULT_FALLBACK))
    4755             :                                         return ret;
    4756             :                         } else {
    4757             :                                 huge_pmd_set_accessed(&vmf);
    4758             :                                 return 0;
    4759             :                         }
    4760             :                 }
    4761             :         }
    4762             : 
    4763           0 :         return handle_pte_fault(&vmf);
    4764             : }
    4765             : 
    4766             : /**
    4767             :  * mm_account_fault - Do page fault accounting
    4768             :  *
    4769             :  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
    4770             :  *        of perf event counters, but we'll still do the per-task accounting to
    4771             :  *        the task who triggered this page fault.
    4772             :  * @address: the faulted address.
    4773             :  * @flags: the fault flags.
    4774             :  * @ret: the fault retcode.
    4775             :  *
    4776             :  * This will take care of most of the page fault accounting.  Meanwhile, it
    4777             :  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
    4778             :  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
    4779             :  * still be in per-arch page fault handlers at the entry of page fault.
    4780             :  */
    4781           0 : static inline void mm_account_fault(struct pt_regs *regs,
    4782             :                                     unsigned long address, unsigned int flags,
    4783             :                                     vm_fault_t ret)
    4784             : {
    4785             :         bool major;
    4786             : 
    4787             :         /*
    4788             :          * We don't do accounting for some specific faults:
    4789             :          *
    4790             :          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
    4791             :          *   includes arch_vma_access_permitted() failing before reaching here.
    4792             :          *   So this is not a "this many hardware page faults" counter.  We
    4793             :          *   should use the hw profiling for that.
    4794             :          *
    4795             :          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
    4796             :          *   once they're completed.
    4797             :          */
    4798           0 :         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
    4799             :                 return;
    4800             : 
    4801             :         /*
    4802             :          * We define the fault as a major fault when the final successful fault
    4803             :          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
    4804             :          * handle it immediately previously).
    4805             :          */
    4806           0 :         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
    4807             : 
    4808           0 :         if (major)
    4809           0 :                 current->maj_flt++;
    4810             :         else
    4811           0 :                 current->min_flt++;
    4812             : 
    4813             :         /*
    4814             :          * If the fault is done for GUP, regs will be NULL.  We only do the
    4815             :          * accounting for the per thread fault counters who triggered the
    4816             :          * fault, and we skip the perf event updates.
    4817             :          */
    4818             :         if (!regs)
    4819             :                 return;
    4820             : 
    4821             :         if (major)
    4822             :                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
    4823             :         else
    4824             :                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
    4825             : }
    4826             : 
    4827             : /*
    4828             :  * By the time we get here, we already hold the mm semaphore
    4829             :  *
    4830             :  * The mmap_lock may have been released depending on flags and our
    4831             :  * return value.  See filemap_fault() and __folio_lock_or_retry().
    4832             :  */
    4833           0 : vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
    4834             :                            unsigned int flags, struct pt_regs *regs)
    4835             : {
    4836             :         vm_fault_t ret;
    4837             : 
    4838           0 :         __set_current_state(TASK_RUNNING);
    4839             : 
    4840           0 :         count_vm_event(PGFAULT);
    4841           0 :         count_memcg_event_mm(vma->vm_mm, PGFAULT);
    4842             : 
    4843             :         /* do counter updates before entering really critical section. */
    4844           0 :         check_sync_rss_stat(current);
    4845             : 
    4846           0 :         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
    4847           0 :                                             flags & FAULT_FLAG_INSTRUCTION,
    4848           0 :                                             flags & FAULT_FLAG_REMOTE))
    4849             :                 return VM_FAULT_SIGSEGV;
    4850             : 
    4851             :         /*
    4852             :          * Enable the memcg OOM handling for faults triggered in user
    4853             :          * space.  Kernel faults are handled more gracefully.
    4854             :          */
    4855           0 :         if (flags & FAULT_FLAG_USER)
    4856             :                 mem_cgroup_enter_user_fault();
    4857             : 
    4858           0 :         if (unlikely(is_vm_hugetlb_page(vma)))
    4859             :                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
    4860             :         else
    4861           0 :                 ret = __handle_mm_fault(vma, address, flags);
    4862             : 
    4863           0 :         if (flags & FAULT_FLAG_USER) {
    4864             :                 mem_cgroup_exit_user_fault();
    4865             :                 /*
    4866             :                  * The task may have entered a memcg OOM situation but
    4867             :                  * if the allocation error was handled gracefully (no
    4868             :                  * VM_FAULT_OOM), there is no need to kill anything.
    4869             :                  * Just clean up the OOM state peacefully.
    4870             :                  */
    4871           0 :                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
    4872             :                         mem_cgroup_oom_synchronize(false);
    4873             :         }
    4874             : 
    4875           0 :         mm_account_fault(regs, address, flags, ret);
    4876             : 
    4877             :         return ret;
    4878             : }
    4879             : EXPORT_SYMBOL_GPL(handle_mm_fault);
    4880             : 
    4881             : #ifndef __PAGETABLE_P4D_FOLDED
    4882             : /*
    4883             :  * Allocate p4d page table.
    4884             :  * We've already handled the fast-path in-line.
    4885             :  */
    4886             : int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
    4887             : {
    4888             :         p4d_t *new = p4d_alloc_one(mm, address);
    4889             :         if (!new)
    4890             :                 return -ENOMEM;
    4891             : 
    4892             :         spin_lock(&mm->page_table_lock);
    4893             :         if (pgd_present(*pgd)) {        /* Another has populated it */
    4894             :                 p4d_free(mm, new);
    4895             :         } else {
    4896             :                 smp_wmb(); /* See comment in pmd_install() */
    4897             :                 pgd_populate(mm, pgd, new);
    4898             :         }
    4899             :         spin_unlock(&mm->page_table_lock);
    4900             :         return 0;
    4901             : }
    4902             : #endif /* __PAGETABLE_P4D_FOLDED */
    4903             : 
    4904             : #ifndef __PAGETABLE_PUD_FOLDED
    4905             : /*
    4906             :  * Allocate page upper directory.
    4907             :  * We've already handled the fast-path in-line.
    4908             :  */
    4909             : int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
    4910             : {
    4911             :         pud_t *new = pud_alloc_one(mm, address);
    4912             :         if (!new)
    4913             :                 return -ENOMEM;
    4914             : 
    4915             :         spin_lock(&mm->page_table_lock);
    4916             :         if (!p4d_present(*p4d)) {
    4917             :                 mm_inc_nr_puds(mm);
    4918             :                 smp_wmb(); /* See comment in pmd_install() */
    4919             :                 p4d_populate(mm, p4d, new);
    4920             :         } else  /* Another has populated it */
    4921             :                 pud_free(mm, new);
    4922             :         spin_unlock(&mm->page_table_lock);
    4923             :         return 0;
    4924             : }
    4925             : #endif /* __PAGETABLE_PUD_FOLDED */
    4926             : 
    4927             : #ifndef __PAGETABLE_PMD_FOLDED
    4928             : /*
    4929             :  * Allocate page middle directory.
    4930             :  * We've already handled the fast-path in-line.
    4931             :  */
    4932           1 : int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
    4933             : {
    4934             :         spinlock_t *ptl;
    4935           1 :         pmd_t *new = pmd_alloc_one(mm, address);
    4936           1 :         if (!new)
    4937             :                 return -ENOMEM;
    4938             : 
    4939           2 :         ptl = pud_lock(mm, pud);
    4940           1 :         if (!pud_present(*pud)) {
    4941           1 :                 mm_inc_nr_pmds(mm);
    4942           1 :                 smp_wmb(); /* See comment in pmd_install() */
    4943           1 :                 pud_populate(mm, pud, new);
    4944             :         } else {        /* Another has populated it */
    4945           0 :                 pmd_free(mm, new);
    4946             :         }
    4947           1 :         spin_unlock(ptl);
    4948           1 :         return 0;
    4949             : }
    4950             : #endif /* __PAGETABLE_PMD_FOLDED */
    4951             : 
    4952           0 : int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
    4953             :                           struct mmu_notifier_range *range, pte_t **ptepp,
    4954             :                           pmd_t **pmdpp, spinlock_t **ptlp)
    4955             : {
    4956             :         pgd_t *pgd;
    4957             :         p4d_t *p4d;
    4958             :         pud_t *pud;
    4959             :         pmd_t *pmd;
    4960             :         pte_t *ptep;
    4961             : 
    4962           0 :         pgd = pgd_offset(mm, address);
    4963             :         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
    4964             :                 goto out;
    4965             : 
    4966           0 :         p4d = p4d_offset(pgd, address);
    4967             :         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
    4968             :                 goto out;
    4969             : 
    4970           0 :         pud = pud_offset(p4d, address);
    4971           0 :         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
    4972             :                 goto out;
    4973             : 
    4974           0 :         pmd = pmd_offset(pud, address);
    4975             :         VM_BUG_ON(pmd_trans_huge(*pmd));
    4976             : 
    4977             :         if (pmd_huge(*pmd)) {
    4978             :                 if (!pmdpp)
    4979             :                         goto out;
    4980             : 
    4981             :                 if (range) {
    4982             :                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
    4983             :                                                 NULL, mm, address & PMD_MASK,
    4984             :                                                 (address & PMD_MASK) + PMD_SIZE);
    4985             :                         mmu_notifier_invalidate_range_start(range);
    4986             :                 }
    4987             :                 *ptlp = pmd_lock(mm, pmd);
    4988             :                 if (pmd_huge(*pmd)) {
    4989             :                         *pmdpp = pmd;
    4990             :                         return 0;
    4991             :                 }
    4992             :                 spin_unlock(*ptlp);
    4993             :                 if (range)
    4994             :                         mmu_notifier_invalidate_range_end(range);
    4995             :         }
    4996             : 
    4997           0 :         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
    4998             :                 goto out;
    4999             : 
    5000           0 :         if (range) {
    5001           0 :                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
    5002             :                                         address & PAGE_MASK,
    5003             :                                         (address & PAGE_MASK) + PAGE_SIZE);
    5004             :                 mmu_notifier_invalidate_range_start(range);
    5005             :         }
    5006           0 :         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
    5007           0 :         if (!pte_present(*ptep))
    5008             :                 goto unlock;
    5009           0 :         *ptepp = ptep;
    5010           0 :         return 0;
    5011             : unlock:
    5012           0 :         pte_unmap_unlock(ptep, *ptlp);
    5013             :         if (range)
    5014             :                 mmu_notifier_invalidate_range_end(range);
    5015             : out:
    5016             :         return -EINVAL;
    5017             : }
    5018             : 
    5019             : /**
    5020             :  * follow_pte - look up PTE at a user virtual address
    5021             :  * @mm: the mm_struct of the target address space
    5022             :  * @address: user virtual address
    5023             :  * @ptepp: location to store found PTE
    5024             :  * @ptlp: location to store the lock for the PTE
    5025             :  *
    5026             :  * On a successful return, the pointer to the PTE is stored in @ptepp;
    5027             :  * the corresponding lock is taken and its location is stored in @ptlp.
    5028             :  * The contents of the PTE are only stable until @ptlp is released;
    5029             :  * any further use, if any, must be protected against invalidation
    5030             :  * with MMU notifiers.
    5031             :  *
    5032             :  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
    5033             :  * should be taken for read.
    5034             :  *
    5035             :  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
    5036             :  * it is not a good general-purpose API.
    5037             :  *
    5038             :  * Return: zero on success, -ve otherwise.
    5039             :  */
    5040           0 : int follow_pte(struct mm_struct *mm, unsigned long address,
    5041             :                pte_t **ptepp, spinlock_t **ptlp)
    5042             : {
    5043           0 :         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
    5044             : }
    5045             : EXPORT_SYMBOL_GPL(follow_pte);
    5046             : 
    5047             : /**
    5048             :  * follow_pfn - look up PFN at a user virtual address
    5049             :  * @vma: memory mapping
    5050             :  * @address: user virtual address
    5051             :  * @pfn: location to store found PFN
    5052             :  *
    5053             :  * Only IO mappings and raw PFN mappings are allowed.
    5054             :  *
    5055             :  * This function does not allow the caller to read the permissions
    5056             :  * of the PTE.  Do not use it.
    5057             :  *
    5058             :  * Return: zero and the pfn at @pfn on success, -ve otherwise.
    5059             :  */
    5060           0 : int follow_pfn(struct vm_area_struct *vma, unsigned long address,
    5061             :         unsigned long *pfn)
    5062             : {
    5063           0 :         int ret = -EINVAL;
    5064             :         spinlock_t *ptl;
    5065             :         pte_t *ptep;
    5066             : 
    5067           0 :         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    5068             :                 return ret;
    5069             : 
    5070           0 :         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
    5071           0 :         if (ret)
    5072             :                 return ret;
    5073           0 :         *pfn = pte_pfn(*ptep);
    5074           0 :         pte_unmap_unlock(ptep, ptl);
    5075           0 :         return 0;
    5076             : }
    5077             : EXPORT_SYMBOL(follow_pfn);
    5078             : 
    5079             : #ifdef CONFIG_HAVE_IOREMAP_PROT
    5080             : int follow_phys(struct vm_area_struct *vma,
    5081             :                 unsigned long address, unsigned int flags,
    5082             :                 unsigned long *prot, resource_size_t *phys)
    5083             : {
    5084             :         int ret = -EINVAL;
    5085             :         pte_t *ptep, pte;
    5086             :         spinlock_t *ptl;
    5087             : 
    5088             :         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    5089             :                 goto out;
    5090             : 
    5091             :         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
    5092             :                 goto out;
    5093             :         pte = *ptep;
    5094             : 
    5095             :         if ((flags & FOLL_WRITE) && !pte_write(pte))
    5096             :                 goto unlock;
    5097             : 
    5098             :         *prot = pgprot_val(pte_pgprot(pte));
    5099             :         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
    5100             : 
    5101             :         ret = 0;
    5102             : unlock:
    5103             :         pte_unmap_unlock(ptep, ptl);
    5104             : out:
    5105             :         return ret;
    5106             : }
    5107             : 
    5108             : /**
    5109             :  * generic_access_phys - generic implementation for iomem mmap access
    5110             :  * @vma: the vma to access
    5111             :  * @addr: userspace address, not relative offset within @vma
    5112             :  * @buf: buffer to read/write
    5113             :  * @len: length of transfer
    5114             :  * @write: set to FOLL_WRITE when writing, otherwise reading
    5115             :  *
    5116             :  * This is a generic implementation for &vm_operations_struct.access for an
    5117             :  * iomem mapping. This callback is used by access_process_vm() when the @vma is
    5118             :  * not page based.
    5119             :  */
    5120             : int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
    5121             :                         void *buf, int len, int write)
    5122             : {
    5123             :         resource_size_t phys_addr;
    5124             :         unsigned long prot = 0;
    5125             :         void __iomem *maddr;
    5126             :         pte_t *ptep, pte;
    5127             :         spinlock_t *ptl;
    5128             :         int offset = offset_in_page(addr);
    5129             :         int ret = -EINVAL;
    5130             : 
    5131             :         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    5132             :                 return -EINVAL;
    5133             : 
    5134             : retry:
    5135             :         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
    5136             :                 return -EINVAL;
    5137             :         pte = *ptep;
    5138             :         pte_unmap_unlock(ptep, ptl);
    5139             : 
    5140             :         prot = pgprot_val(pte_pgprot(pte));
    5141             :         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
    5142             : 
    5143             :         if ((write & FOLL_WRITE) && !pte_write(pte))
    5144             :                 return -EINVAL;
    5145             : 
    5146             :         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
    5147             :         if (!maddr)
    5148             :                 return -ENOMEM;
    5149             : 
    5150             :         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
    5151             :                 goto out_unmap;
    5152             : 
    5153             :         if (!pte_same(pte, *ptep)) {
    5154             :                 pte_unmap_unlock(ptep, ptl);
    5155             :                 iounmap(maddr);
    5156             : 
    5157             :                 goto retry;
    5158             :         }
    5159             : 
    5160             :         if (write)
    5161             :                 memcpy_toio(maddr + offset, buf, len);
    5162             :         else
    5163             :                 memcpy_fromio(buf, maddr + offset, len);
    5164             :         ret = len;
    5165             :         pte_unmap_unlock(ptep, ptl);
    5166             : out_unmap:
    5167             :         iounmap(maddr);
    5168             : 
    5169             :         return ret;
    5170             : }
    5171             : EXPORT_SYMBOL_GPL(generic_access_phys);
    5172             : #endif
    5173             : 
    5174             : /*
    5175             :  * Access another process' address space as given in mm.
    5176             :  */
    5177           0 : int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
    5178             :                        int len, unsigned int gup_flags)
    5179             : {
    5180             :         struct vm_area_struct *vma;
    5181           0 :         void *old_buf = buf;
    5182           0 :         int write = gup_flags & FOLL_WRITE;
    5183             : 
    5184           0 :         if (mmap_read_lock_killable(mm))
    5185             :                 return 0;
    5186             : 
    5187             :         /* ignore errors, just check how much was successfully transferred */
    5188           0 :         while (len) {
    5189             :                 int bytes, ret, offset;
    5190             :                 void *maddr;
    5191           0 :                 struct page *page = NULL;
    5192             : 
    5193           0 :                 ret = get_user_pages_remote(mm, addr, 1,
    5194             :                                 gup_flags, &page, &vma, NULL);
    5195           0 :                 if (ret <= 0) {
    5196             : #ifndef CONFIG_HAVE_IOREMAP_PROT
    5197             :                         break;
    5198             : #else
    5199             :                         /*
    5200             :                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
    5201             :                          * we can access using slightly different code.
    5202             :                          */
    5203             :                         vma = vma_lookup(mm, addr);
    5204             :                         if (!vma)
    5205             :                                 break;
    5206             :                         if (vma->vm_ops && vma->vm_ops->access)
    5207             :                                 ret = vma->vm_ops->access(vma, addr, buf,
    5208             :                                                           len, write);
    5209             :                         if (ret <= 0)
    5210             :                                 break;
    5211             :                         bytes = ret;
    5212             : #endif
    5213             :                 } else {
    5214           0 :                         bytes = len;
    5215           0 :                         offset = addr & (PAGE_SIZE-1);
    5216           0 :                         if (bytes > PAGE_SIZE-offset)
    5217           0 :                                 bytes = PAGE_SIZE-offset;
    5218             : 
    5219           0 :                         maddr = kmap(page);
    5220           0 :                         if (write) {
    5221           0 :                                 copy_to_user_page(vma, page, addr,
    5222             :                                                   maddr + offset, buf, bytes);
    5223           0 :                                 set_page_dirty_lock(page);
    5224             :                         } else {
    5225           0 :                                 copy_from_user_page(vma, page, addr,
    5226             :                                                     buf, maddr + offset, bytes);
    5227             :                         }
    5228           0 :                         kunmap(page);
    5229           0 :                         put_page(page);
    5230             :                 }
    5231           0 :                 len -= bytes;
    5232           0 :                 buf += bytes;
    5233           0 :                 addr += bytes;
    5234             :         }
    5235           0 :         mmap_read_unlock(mm);
    5236             : 
    5237           0 :         return buf - old_buf;
    5238             : }
    5239             : 
    5240             : /**
    5241             :  * access_remote_vm - access another process' address space
    5242             :  * @mm:         the mm_struct of the target address space
    5243             :  * @addr:       start address to access
    5244             :  * @buf:        source or destination buffer
    5245             :  * @len:        number of bytes to transfer
    5246             :  * @gup_flags:  flags modifying lookup behaviour
    5247             :  *
    5248             :  * The caller must hold a reference on @mm.
    5249             :  *
    5250             :  * Return: number of bytes copied from source to destination.
    5251             :  */
    5252           0 : int access_remote_vm(struct mm_struct *mm, unsigned long addr,
    5253             :                 void *buf, int len, unsigned int gup_flags)
    5254             : {
    5255           0 :         return __access_remote_vm(mm, addr, buf, len, gup_flags);
    5256             : }
    5257             : 
    5258             : /*
    5259             :  * Access another process' address space.
    5260             :  * Source/target buffer must be kernel space,
    5261             :  * Do not walk the page table directly, use get_user_pages
    5262             :  */
    5263           0 : int access_process_vm(struct task_struct *tsk, unsigned long addr,
    5264             :                 void *buf, int len, unsigned int gup_flags)
    5265             : {
    5266             :         struct mm_struct *mm;
    5267             :         int ret;
    5268             : 
    5269           0 :         mm = get_task_mm(tsk);
    5270           0 :         if (!mm)
    5271             :                 return 0;
    5272             : 
    5273           0 :         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
    5274             : 
    5275           0 :         mmput(mm);
    5276             : 
    5277           0 :         return ret;
    5278             : }
    5279             : EXPORT_SYMBOL_GPL(access_process_vm);
    5280             : 
    5281             : /*
    5282             :  * Print the name of a VMA.
    5283             :  */
    5284           0 : void print_vma_addr(char *prefix, unsigned long ip)
    5285             : {
    5286           0 :         struct mm_struct *mm = current->mm;
    5287             :         struct vm_area_struct *vma;
    5288             : 
    5289             :         /*
    5290             :          * we might be running from an atomic context so we cannot sleep
    5291             :          */
    5292           0 :         if (!mmap_read_trylock(mm))
    5293             :                 return;
    5294             : 
    5295           0 :         vma = find_vma(mm, ip);
    5296           0 :         if (vma && vma->vm_file) {
    5297           0 :                 struct file *f = vma->vm_file;
    5298           0 :                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
    5299           0 :                 if (buf) {
    5300             :                         char *p;
    5301             : 
    5302           0 :                         p = file_path(f, buf, PAGE_SIZE);
    5303           0 :                         if (IS_ERR(p))
    5304           0 :                                 p = "?";
    5305           0 :                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
    5306             :                                         vma->vm_start,
    5307             :                                         vma->vm_end - vma->vm_start);
    5308           0 :                         free_page((unsigned long)buf);
    5309             :                 }
    5310             :         }
    5311             :         mmap_read_unlock(mm);
    5312             : }
    5313             : 
    5314             : #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
    5315             : void __might_fault(const char *file, int line)
    5316             : {
    5317             :         if (pagefault_disabled())
    5318             :                 return;
    5319             :         __might_sleep(file, line);
    5320             : #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
    5321             :         if (current->mm)
    5322             :                 might_lock_read(&current->mm->mmap_lock);
    5323             : #endif
    5324             : }
    5325             : EXPORT_SYMBOL(__might_fault);
    5326             : #endif
    5327             : 
    5328             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
    5329             : /*
    5330             :  * Process all subpages of the specified huge page with the specified
    5331             :  * operation.  The target subpage will be processed last to keep its
    5332             :  * cache lines hot.
    5333             :  */
    5334             : static inline void process_huge_page(
    5335             :         unsigned long addr_hint, unsigned int pages_per_huge_page,
    5336             :         void (*process_subpage)(unsigned long addr, int idx, void *arg),
    5337             :         void *arg)
    5338             : {
    5339             :         int i, n, base, l;
    5340             :         unsigned long addr = addr_hint &
    5341             :                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
    5342             : 
    5343             :         /* Process target subpage last to keep its cache lines hot */
    5344             :         might_sleep();
    5345             :         n = (addr_hint - addr) / PAGE_SIZE;
    5346             :         if (2 * n <= pages_per_huge_page) {
    5347             :                 /* If target subpage in first half of huge page */
    5348             :                 base = 0;
    5349             :                 l = n;
    5350             :                 /* Process subpages at the end of huge page */
    5351             :                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
    5352             :                         cond_resched();
    5353             :                         process_subpage(addr + i * PAGE_SIZE, i, arg);
    5354             :                 }
    5355             :         } else {
    5356             :                 /* If target subpage in second half of huge page */
    5357             :                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
    5358             :                 l = pages_per_huge_page - n;
    5359             :                 /* Process subpages at the begin of huge page */
    5360             :                 for (i = 0; i < base; i++) {
    5361             :                         cond_resched();
    5362             :                         process_subpage(addr + i * PAGE_SIZE, i, arg);
    5363             :                 }
    5364             :         }
    5365             :         /*
    5366             :          * Process remaining subpages in left-right-left-right pattern
    5367             :          * towards the target subpage
    5368             :          */
    5369             :         for (i = 0; i < l; i++) {
    5370             :                 int left_idx = base + i;
    5371             :                 int right_idx = base + 2 * l - 1 - i;
    5372             : 
    5373             :                 cond_resched();
    5374             :                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
    5375             :                 cond_resched();
    5376             :                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
    5377             :         }
    5378             : }
    5379             : 
    5380             : static void clear_gigantic_page(struct page *page,
    5381             :                                 unsigned long addr,
    5382             :                                 unsigned int pages_per_huge_page)
    5383             : {
    5384             :         int i;
    5385             :         struct page *p = page;
    5386             : 
    5387             :         might_sleep();
    5388             :         for (i = 0; i < pages_per_huge_page;
    5389             :              i++, p = mem_map_next(p, page, i)) {
    5390             :                 cond_resched();
    5391             :                 clear_user_highpage(p, addr + i * PAGE_SIZE);
    5392             :         }
    5393             : }
    5394             : 
    5395             : static void clear_subpage(unsigned long addr, int idx, void *arg)
    5396             : {
    5397             :         struct page *page = arg;
    5398             : 
    5399             :         clear_user_highpage(page + idx, addr);
    5400             : }
    5401             : 
    5402             : void clear_huge_page(struct page *page,
    5403             :                      unsigned long addr_hint, unsigned int pages_per_huge_page)
    5404             : {
    5405             :         unsigned long addr = addr_hint &
    5406             :                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
    5407             : 
    5408             :         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
    5409             :                 clear_gigantic_page(page, addr, pages_per_huge_page);
    5410             :                 return;
    5411             :         }
    5412             : 
    5413             :         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
    5414             : }
    5415             : 
    5416             : static void copy_user_gigantic_page(struct page *dst, struct page *src,
    5417             :                                     unsigned long addr,
    5418             :                                     struct vm_area_struct *vma,
    5419             :                                     unsigned int pages_per_huge_page)
    5420             : {
    5421             :         int i;
    5422             :         struct page *dst_base = dst;
    5423             :         struct page *src_base = src;
    5424             : 
    5425             :         for (i = 0; i < pages_per_huge_page; ) {
    5426             :                 cond_resched();
    5427             :                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
    5428             : 
    5429             :                 i++;
    5430             :                 dst = mem_map_next(dst, dst_base, i);
    5431             :                 src = mem_map_next(src, src_base, i);
    5432             :         }
    5433             : }
    5434             : 
    5435             : struct copy_subpage_arg {
    5436             :         struct page *dst;
    5437             :         struct page *src;
    5438             :         struct vm_area_struct *vma;
    5439             : };
    5440             : 
    5441             : static void copy_subpage(unsigned long addr, int idx, void *arg)
    5442             : {
    5443             :         struct copy_subpage_arg *copy_arg = arg;
    5444             : 
    5445             :         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
    5446             :                            addr, copy_arg->vma);
    5447             : }
    5448             : 
    5449             : void copy_user_huge_page(struct page *dst, struct page *src,
    5450             :                          unsigned long addr_hint, struct vm_area_struct *vma,
    5451             :                          unsigned int pages_per_huge_page)
    5452             : {
    5453             :         unsigned long addr = addr_hint &
    5454             :                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
    5455             :         struct copy_subpage_arg arg = {
    5456             :                 .dst = dst,
    5457             :                 .src = src,
    5458             :                 .vma = vma,
    5459             :         };
    5460             : 
    5461             :         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
    5462             :                 copy_user_gigantic_page(dst, src, addr, vma,
    5463             :                                         pages_per_huge_page);
    5464             :                 return;
    5465             :         }
    5466             : 
    5467             :         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
    5468             : }
    5469             : 
    5470             : long copy_huge_page_from_user(struct page *dst_page,
    5471             :                                 const void __user *usr_src,
    5472             :                                 unsigned int pages_per_huge_page,
    5473             :                                 bool allow_pagefault)
    5474             : {
    5475             :         void *page_kaddr;
    5476             :         unsigned long i, rc = 0;
    5477             :         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
    5478             :         struct page *subpage = dst_page;
    5479             : 
    5480             :         for (i = 0; i < pages_per_huge_page;
    5481             :              i++, subpage = mem_map_next(subpage, dst_page, i)) {
    5482             :                 if (allow_pagefault)
    5483             :                         page_kaddr = kmap(subpage);
    5484             :                 else
    5485             :                         page_kaddr = kmap_atomic(subpage);
    5486             :                 rc = copy_from_user(page_kaddr,
    5487             :                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
    5488             :                 if (allow_pagefault)
    5489             :                         kunmap(subpage);
    5490             :                 else
    5491             :                         kunmap_atomic(page_kaddr);
    5492             : 
    5493             :                 ret_val -= (PAGE_SIZE - rc);
    5494             :                 if (rc)
    5495             :                         break;
    5496             : 
    5497             :                 flush_dcache_page(subpage);
    5498             : 
    5499             :                 cond_resched();
    5500             :         }
    5501             :         return ret_val;
    5502             : }
    5503             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
    5504             : 
    5505             : #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
    5506             : 
    5507             : static struct kmem_cache *page_ptl_cachep;
    5508             : 
    5509             : void __init ptlock_cache_init(void)
    5510             : {
    5511             :         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
    5512             :                         SLAB_PANIC, NULL);
    5513             : }
    5514             : 
    5515             : bool ptlock_alloc(struct page *page)
    5516             : {
    5517             :         spinlock_t *ptl;
    5518             : 
    5519             :         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
    5520             :         if (!ptl)
    5521             :                 return false;
    5522             :         page->ptl = ptl;
    5523             :         return true;
    5524             : }
    5525             : 
    5526             : void ptlock_free(struct page *page)
    5527             : {
    5528             :         kmem_cache_free(page_ptl_cachep, page->ptl);
    5529             : }
    5530             : #endif

Generated by: LCOV version 1.14