LCOV - code coverage report
Current view: top level - mm - page-writeback.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 50 773 6.5 %
Date: 2022-12-09 01:23:36 Functions: 6 56 10.7 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * mm/page-writeback.c
       4             :  *
       5             :  * Copyright (C) 2002, Linus Torvalds.
       6             :  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
       7             :  *
       8             :  * Contains functions related to writing back dirty pages at the
       9             :  * address_space level.
      10             :  *
      11             :  * 10Apr2002    Andrew Morton
      12             :  *              Initial version
      13             :  */
      14             : 
      15             : #include <linux/kernel.h>
      16             : #include <linux/export.h>
      17             : #include <linux/spinlock.h>
      18             : #include <linux/fs.h>
      19             : #include <linux/mm.h>
      20             : #include <linux/swap.h>
      21             : #include <linux/slab.h>
      22             : #include <linux/pagemap.h>
      23             : #include <linux/writeback.h>
      24             : #include <linux/init.h>
      25             : #include <linux/backing-dev.h>
      26             : #include <linux/task_io_accounting_ops.h>
      27             : #include <linux/blkdev.h>
      28             : #include <linux/mpage.h>
      29             : #include <linux/rmap.h>
      30             : #include <linux/percpu.h>
      31             : #include <linux/smp.h>
      32             : #include <linux/sysctl.h>
      33             : #include <linux/cpu.h>
      34             : #include <linux/syscalls.h>
      35             : #include <linux/pagevec.h>
      36             : #include <linux/timer.h>
      37             : #include <linux/sched/rt.h>
      38             : #include <linux/sched/signal.h>
      39             : #include <linux/mm_inline.h>
      40             : #include <trace/events/writeback.h>
      41             : 
      42             : #include "internal.h"
      43             : 
      44             : /*
      45             :  * Sleep at most 200ms at a time in balance_dirty_pages().
      46             :  */
      47             : #define MAX_PAUSE               max(HZ/5, 1)
      48             : 
      49             : /*
      50             :  * Try to keep balance_dirty_pages() call intervals higher than this many pages
      51             :  * by raising pause time to max_pause when falls below it.
      52             :  */
      53             : #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
      54             : 
      55             : /*
      56             :  * Estimate write bandwidth at 200ms intervals.
      57             :  */
      58             : #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
      59             : 
      60             : #define RATELIMIT_CALC_SHIFT    10
      61             : 
      62             : /*
      63             :  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
      64             :  * will look to see if it needs to force writeback or throttling.
      65             :  */
      66             : static long ratelimit_pages = 32;
      67             : 
      68             : /* The following parameters are exported via /proc/sys/vm */
      69             : 
      70             : /*
      71             :  * Start background writeback (via writeback threads) at this percentage
      72             :  */
      73             : int dirty_background_ratio = 10;
      74             : 
      75             : /*
      76             :  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
      77             :  * dirty_background_ratio * the amount of dirtyable memory
      78             :  */
      79             : unsigned long dirty_background_bytes;
      80             : 
      81             : /*
      82             :  * free highmem will not be subtracted from the total free memory
      83             :  * for calculating free ratios if vm_highmem_is_dirtyable is true
      84             :  */
      85             : int vm_highmem_is_dirtyable;
      86             : 
      87             : /*
      88             :  * The generator of dirty data starts writeback at this percentage
      89             :  */
      90             : int vm_dirty_ratio = 20;
      91             : 
      92             : /*
      93             :  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
      94             :  * vm_dirty_ratio * the amount of dirtyable memory
      95             :  */
      96             : unsigned long vm_dirty_bytes;
      97             : 
      98             : /*
      99             :  * The interval between `kupdate'-style writebacks
     100             :  */
     101             : unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
     102             : 
     103             : EXPORT_SYMBOL_GPL(dirty_writeback_interval);
     104             : 
     105             : /*
     106             :  * The longest time for which data is allowed to remain dirty
     107             :  */
     108             : unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
     109             : 
     110             : /*
     111             :  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
     112             :  * a full sync is triggered after this time elapses without any disk activity.
     113             :  */
     114             : int laptop_mode;
     115             : 
     116             : EXPORT_SYMBOL(laptop_mode);
     117             : 
     118             : /* End of sysctl-exported parameters */
     119             : 
     120             : struct wb_domain global_wb_domain;
     121             : 
     122             : /* consolidated parameters for balance_dirty_pages() and its subroutines */
     123             : struct dirty_throttle_control {
     124             : #ifdef CONFIG_CGROUP_WRITEBACK
     125             :         struct wb_domain        *dom;
     126             :         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
     127             : #endif
     128             :         struct bdi_writeback    *wb;
     129             :         struct fprop_local_percpu *wb_completions;
     130             : 
     131             :         unsigned long           avail;          /* dirtyable */
     132             :         unsigned long           dirty;          /* file_dirty + write + nfs */
     133             :         unsigned long           thresh;         /* dirty threshold */
     134             :         unsigned long           bg_thresh;      /* dirty background threshold */
     135             : 
     136             :         unsigned long           wb_dirty;       /* per-wb counterparts */
     137             :         unsigned long           wb_thresh;
     138             :         unsigned long           wb_bg_thresh;
     139             : 
     140             :         unsigned long           pos_ratio;
     141             : };
     142             : 
     143             : /*
     144             :  * Length of period for aging writeout fractions of bdis. This is an
     145             :  * arbitrarily chosen number. The longer the period, the slower fractions will
     146             :  * reflect changes in current writeout rate.
     147             :  */
     148             : #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
     149             : 
     150             : #ifdef CONFIG_CGROUP_WRITEBACK
     151             : 
     152             : #define GDTC_INIT(__wb)         .wb = (__wb),                           \
     153             :                                 .dom = &global_wb_domain,           \
     154             :                                 .wb_completions = &(__wb)->completions
     155             : 
     156             : #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
     157             : 
     158             : #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
     159             :                                 .dom = mem_cgroup_wb_domain(__wb),      \
     160             :                                 .wb_completions = &(__wb)->memcg_completions, \
     161             :                                 .gdtc = __gdtc
     162             : 
     163             : static bool mdtc_valid(struct dirty_throttle_control *dtc)
     164             : {
     165             :         return dtc->dom;
     166             : }
     167             : 
     168             : static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
     169             : {
     170             :         return dtc->dom;
     171             : }
     172             : 
     173             : static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
     174             : {
     175             :         return mdtc->gdtc;
     176             : }
     177             : 
     178             : static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
     179             : {
     180             :         return &wb->memcg_completions;
     181             : }
     182             : 
     183             : static void wb_min_max_ratio(struct bdi_writeback *wb,
     184             :                              unsigned long *minp, unsigned long *maxp)
     185             : {
     186             :         unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
     187             :         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
     188             :         unsigned long long min = wb->bdi->min_ratio;
     189             :         unsigned long long max = wb->bdi->max_ratio;
     190             : 
     191             :         /*
     192             :          * @wb may already be clean by the time control reaches here and
     193             :          * the total may not include its bw.
     194             :          */
     195             :         if (this_bw < tot_bw) {
     196             :                 if (min) {
     197             :                         min *= this_bw;
     198             :                         min = div64_ul(min, tot_bw);
     199             :                 }
     200             :                 if (max < 100) {
     201             :                         max *= this_bw;
     202             :                         max = div64_ul(max, tot_bw);
     203             :                 }
     204             :         }
     205             : 
     206             :         *minp = min;
     207             :         *maxp = max;
     208             : }
     209             : 
     210             : #else   /* CONFIG_CGROUP_WRITEBACK */
     211             : 
     212             : #define GDTC_INIT(__wb)         .wb = (__wb),                           \
     213             :                                 .wb_completions = &(__wb)->completions
     214             : #define GDTC_INIT_NO_WB
     215             : #define MDTC_INIT(__wb, __gdtc)
     216             : 
     217             : static bool mdtc_valid(struct dirty_throttle_control *dtc)
     218             : {
     219             :         return false;
     220             : }
     221             : 
     222             : static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
     223             : {
     224             :         return &global_wb_domain;
     225             : }
     226             : 
     227             : static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
     228             : {
     229             :         return NULL;
     230             : }
     231             : 
     232             : static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
     233             : {
     234             :         return NULL;
     235             : }
     236             : 
     237             : static void wb_min_max_ratio(struct bdi_writeback *wb,
     238             :                              unsigned long *minp, unsigned long *maxp)
     239             : {
     240           0 :         *minp = wb->bdi->min_ratio;
     241           0 :         *maxp = wb->bdi->max_ratio;
     242             : }
     243             : 
     244             : #endif  /* CONFIG_CGROUP_WRITEBACK */
     245             : 
     246             : /*
     247             :  * In a memory zone, there is a certain amount of pages we consider
     248             :  * available for the page cache, which is essentially the number of
     249             :  * free and reclaimable pages, minus some zone reserves to protect
     250             :  * lowmem and the ability to uphold the zone's watermarks without
     251             :  * requiring writeback.
     252             :  *
     253             :  * This number of dirtyable pages is the base value of which the
     254             :  * user-configurable dirty ratio is the effective number of pages that
     255             :  * are allowed to be actually dirtied.  Per individual zone, or
     256             :  * globally by using the sum of dirtyable pages over all zones.
     257             :  *
     258             :  * Because the user is allowed to specify the dirty limit globally as
     259             :  * absolute number of bytes, calculating the per-zone dirty limit can
     260             :  * require translating the configured limit into a percentage of
     261             :  * global dirtyable memory first.
     262             :  */
     263             : 
     264             : /**
     265             :  * node_dirtyable_memory - number of dirtyable pages in a node
     266             :  * @pgdat: the node
     267             :  *
     268             :  * Return: the node's number of pages potentially available for dirty
     269             :  * page cache.  This is the base value for the per-node dirty limits.
     270             :  */
     271             : static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
     272             : {
     273           0 :         unsigned long nr_pages = 0;
     274             :         int z;
     275             : 
     276           0 :         for (z = 0; z < MAX_NR_ZONES; z++) {
     277           0 :                 struct zone *zone = pgdat->node_zones + z;
     278             : 
     279           0 :                 if (!populated_zone(zone))
     280           0 :                         continue;
     281             : 
     282           0 :                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
     283             :         }
     284             : 
     285             :         /*
     286             :          * Pages reserved for the kernel should not be considered
     287             :          * dirtyable, to prevent a situation where reclaim has to
     288             :          * clean pages in order to balance the zones.
     289             :          */
     290           0 :         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
     291             : 
     292           0 :         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
     293           0 :         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
     294             : 
     295             :         return nr_pages;
     296             : }
     297             : 
     298             : static unsigned long highmem_dirtyable_memory(unsigned long total)
     299             : {
     300             : #ifdef CONFIG_HIGHMEM
     301             :         int node;
     302             :         unsigned long x = 0;
     303             :         int i;
     304             : 
     305             :         for_each_node_state(node, N_HIGH_MEMORY) {
     306             :                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
     307             :                         struct zone *z;
     308             :                         unsigned long nr_pages;
     309             : 
     310             :                         if (!is_highmem_idx(i))
     311             :                                 continue;
     312             : 
     313             :                         z = &NODE_DATA(node)->node_zones[i];
     314             :                         if (!populated_zone(z))
     315             :                                 continue;
     316             : 
     317             :                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
     318             :                         /* watch for underflows */
     319             :                         nr_pages -= min(nr_pages, high_wmark_pages(z));
     320             :                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
     321             :                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
     322             :                         x += nr_pages;
     323             :                 }
     324             :         }
     325             : 
     326             :         /*
     327             :          * Make sure that the number of highmem pages is never larger
     328             :          * than the number of the total dirtyable memory. This can only
     329             :          * occur in very strange VM situations but we want to make sure
     330             :          * that this does not occur.
     331             :          */
     332             :         return min(x, total);
     333             : #else
     334             :         return 0;
     335             : #endif
     336             : }
     337             : 
     338             : /**
     339             :  * global_dirtyable_memory - number of globally dirtyable pages
     340             :  *
     341             :  * Return: the global number of pages potentially available for dirty
     342             :  * page cache.  This is the base value for the global dirty limits.
     343             :  */
     344             : static unsigned long global_dirtyable_memory(void)
     345             : {
     346             :         unsigned long x;
     347             : 
     348           1 :         x = global_zone_page_state(NR_FREE_PAGES);
     349             :         /*
     350             :          * Pages reserved for the kernel should not be considered
     351             :          * dirtyable, to prevent a situation where reclaim has to
     352             :          * clean pages in order to balance the zones.
     353             :          */
     354           1 :         x -= min(x, totalreserve_pages);
     355             : 
     356           1 :         x += global_node_page_state(NR_INACTIVE_FILE);
     357           1 :         x += global_node_page_state(NR_ACTIVE_FILE);
     358             : 
     359             :         if (!vm_highmem_is_dirtyable)
     360             :                 x -= highmem_dirtyable_memory(x);
     361             : 
     362           1 :         return x + 1;   /* Ensure that we never return 0 */
     363             : }
     364             : 
     365             : /**
     366             :  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
     367             :  * @dtc: dirty_throttle_control of interest
     368             :  *
     369             :  * Calculate @dtc->thresh and ->bg_thresh considering
     370             :  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
     371             :  * must ensure that @dtc->avail is set before calling this function.  The
     372             :  * dirty limits will be lifted by 1/4 for real-time tasks.
     373             :  */
     374           1 : static void domain_dirty_limits(struct dirty_throttle_control *dtc)
     375             : {
     376           1 :         const unsigned long available_memory = dtc->avail;
     377           1 :         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
     378           1 :         unsigned long bytes = vm_dirty_bytes;
     379           1 :         unsigned long bg_bytes = dirty_background_bytes;
     380             :         /* convert ratios to per-PAGE_SIZE for higher precision */
     381           1 :         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
     382           1 :         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
     383             :         unsigned long thresh;
     384             :         unsigned long bg_thresh;
     385             :         struct task_struct *tsk;
     386             : 
     387             :         /* gdtc is !NULL iff @dtc is for memcg domain */
     388             :         if (gdtc) {
     389             :                 unsigned long global_avail = gdtc->avail;
     390             : 
     391             :                 /*
     392             :                  * The byte settings can't be applied directly to memcg
     393             :                  * domains.  Convert them to ratios by scaling against
     394             :                  * globally available memory.  As the ratios are in
     395             :                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
     396             :                  * number of pages.
     397             :                  */
     398             :                 if (bytes)
     399             :                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
     400             :                                     PAGE_SIZE);
     401             :                 if (bg_bytes)
     402             :                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
     403             :                                        PAGE_SIZE);
     404             :                 bytes = bg_bytes = 0;
     405             :         }
     406             : 
     407           1 :         if (bytes)
     408           0 :                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
     409             :         else
     410           1 :                 thresh = (ratio * available_memory) / PAGE_SIZE;
     411             : 
     412           1 :         if (bg_bytes)
     413           0 :                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
     414             :         else
     415           1 :                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
     416             : 
     417           1 :         if (bg_thresh >= thresh)
     418           0 :                 bg_thresh = thresh / 2;
     419           1 :         tsk = current;
     420           2 :         if (rt_task(tsk)) {
     421           0 :                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
     422           0 :                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
     423             :         }
     424           1 :         dtc->thresh = thresh;
     425           1 :         dtc->bg_thresh = bg_thresh;
     426             : 
     427             :         /* we should eventually report the domain in the TP */
     428             :         if (!gdtc)
     429             :                 trace_global_dirty_state(bg_thresh, thresh);
     430           1 : }
     431             : 
     432             : /**
     433             :  * global_dirty_limits - background-writeback and dirty-throttling thresholds
     434             :  * @pbackground: out parameter for bg_thresh
     435             :  * @pdirty: out parameter for thresh
     436             :  *
     437             :  * Calculate bg_thresh and thresh for global_wb_domain.  See
     438             :  * domain_dirty_limits() for details.
     439             :  */
     440           1 : void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
     441             : {
     442           1 :         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
     443             : 
     444           1 :         gdtc.avail = global_dirtyable_memory();
     445           1 :         domain_dirty_limits(&gdtc);
     446             : 
     447           1 :         *pbackground = gdtc.bg_thresh;
     448           1 :         *pdirty = gdtc.thresh;
     449           1 : }
     450             : 
     451             : /**
     452             :  * node_dirty_limit - maximum number of dirty pages allowed in a node
     453             :  * @pgdat: the node
     454             :  *
     455             :  * Return: the maximum number of dirty pages allowed in a node, based
     456             :  * on the node's dirtyable memory.
     457             :  */
     458           0 : static unsigned long node_dirty_limit(struct pglist_data *pgdat)
     459             : {
     460           0 :         unsigned long node_memory = node_dirtyable_memory(pgdat);
     461           0 :         struct task_struct *tsk = current;
     462             :         unsigned long dirty;
     463             : 
     464           0 :         if (vm_dirty_bytes)
     465           0 :                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
     466           0 :                         node_memory / global_dirtyable_memory();
     467             :         else
     468           0 :                 dirty = vm_dirty_ratio * node_memory / 100;
     469             : 
     470           0 :         if (rt_task(tsk))
     471           0 :                 dirty += dirty / 4;
     472             : 
     473           0 :         return dirty;
     474             : }
     475             : 
     476             : /**
     477             :  * node_dirty_ok - tells whether a node is within its dirty limits
     478             :  * @pgdat: the node to check
     479             :  *
     480             :  * Return: %true when the dirty pages in @pgdat are within the node's
     481             :  * dirty limit, %false if the limit is exceeded.
     482             :  */
     483           0 : bool node_dirty_ok(struct pglist_data *pgdat)
     484             : {
     485           0 :         unsigned long limit = node_dirty_limit(pgdat);
     486           0 :         unsigned long nr_pages = 0;
     487             : 
     488           0 :         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
     489           0 :         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
     490             : 
     491           0 :         return nr_pages <= limit;
     492             : }
     493             : 
     494           0 : int dirty_background_ratio_handler(struct ctl_table *table, int write,
     495             :                 void *buffer, size_t *lenp, loff_t *ppos)
     496             : {
     497             :         int ret;
     498             : 
     499           0 :         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
     500           0 :         if (ret == 0 && write)
     501           0 :                 dirty_background_bytes = 0;
     502           0 :         return ret;
     503             : }
     504             : 
     505           0 : int dirty_background_bytes_handler(struct ctl_table *table, int write,
     506             :                 void *buffer, size_t *lenp, loff_t *ppos)
     507             : {
     508             :         int ret;
     509             : 
     510           0 :         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
     511           0 :         if (ret == 0 && write)
     512           0 :                 dirty_background_ratio = 0;
     513           0 :         return ret;
     514             : }
     515             : 
     516           0 : int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
     517             :                 size_t *lenp, loff_t *ppos)
     518             : {
     519           0 :         int old_ratio = vm_dirty_ratio;
     520             :         int ret;
     521             : 
     522           0 :         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
     523           0 :         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
     524           0 :                 writeback_set_ratelimit();
     525           0 :                 vm_dirty_bytes = 0;
     526             :         }
     527           0 :         return ret;
     528             : }
     529             : 
     530           0 : int dirty_bytes_handler(struct ctl_table *table, int write,
     531             :                 void *buffer, size_t *lenp, loff_t *ppos)
     532             : {
     533           0 :         unsigned long old_bytes = vm_dirty_bytes;
     534             :         int ret;
     535             : 
     536           0 :         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
     537           0 :         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
     538           0 :                 writeback_set_ratelimit();
     539           0 :                 vm_dirty_ratio = 0;
     540             :         }
     541           0 :         return ret;
     542             : }
     543             : 
     544             : static unsigned long wp_next_time(unsigned long cur_time)
     545             : {
     546           0 :         cur_time += VM_COMPLETIONS_PERIOD_LEN;
     547             :         /* 0 has a special meaning... */
     548           0 :         if (!cur_time)
     549             :                 return 1;
     550             :         return cur_time;
     551             : }
     552             : 
     553           0 : static void wb_domain_writeout_add(struct wb_domain *dom,
     554             :                                    struct fprop_local_percpu *completions,
     555             :                                    unsigned int max_prop_frac, long nr)
     556             : {
     557           0 :         __fprop_add_percpu_max(&dom->completions, completions,
     558             :                                max_prop_frac, nr);
     559             :         /* First event after period switching was turned off? */
     560           0 :         if (unlikely(!dom->period_time)) {
     561             :                 /*
     562             :                  * We can race with other __bdi_writeout_inc calls here but
     563             :                  * it does not cause any harm since the resulting time when
     564             :                  * timer will fire and what is in writeout_period_time will be
     565             :                  * roughly the same.
     566             :                  */
     567           0 :                 dom->period_time = wp_next_time(jiffies);
     568           0 :                 mod_timer(&dom->period_timer, dom->period_time);
     569             :         }
     570           0 : }
     571             : 
     572             : /*
     573             :  * Increment @wb's writeout completion count and the global writeout
     574             :  * completion count. Called from __folio_end_writeback().
     575             :  */
     576             : static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
     577             : {
     578             :         struct wb_domain *cgdom;
     579             : 
     580           0 :         wb_stat_mod(wb, WB_WRITTEN, nr);
     581           0 :         wb_domain_writeout_add(&global_wb_domain, &wb->completions,
     582           0 :                                wb->bdi->max_prop_frac, nr);
     583             : 
     584           0 :         cgdom = mem_cgroup_wb_domain(wb);
     585             :         if (cgdom)
     586             :                 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
     587             :                                        wb->bdi->max_prop_frac, nr);
     588             : }
     589             : 
     590           0 : void wb_writeout_inc(struct bdi_writeback *wb)
     591             : {
     592             :         unsigned long flags;
     593             : 
     594           0 :         local_irq_save(flags);
     595           0 :         __wb_writeout_add(wb, 1);
     596           0 :         local_irq_restore(flags);
     597           0 : }
     598             : EXPORT_SYMBOL_GPL(wb_writeout_inc);
     599             : 
     600             : /*
     601             :  * On idle system, we can be called long after we scheduled because we use
     602             :  * deferred timers so count with missed periods.
     603             :  */
     604           0 : static void writeout_period(struct timer_list *t)
     605             : {
     606           0 :         struct wb_domain *dom = from_timer(dom, t, period_timer);
     607           0 :         int miss_periods = (jiffies - dom->period_time) /
     608             :                                                  VM_COMPLETIONS_PERIOD_LEN;
     609             : 
     610           0 :         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
     611           0 :                 dom->period_time = wp_next_time(dom->period_time +
     612           0 :                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
     613           0 :                 mod_timer(&dom->period_timer, dom->period_time);
     614             :         } else {
     615             :                 /*
     616             :                  * Aging has zeroed all fractions. Stop wasting CPU on period
     617             :                  * updates.
     618             :                  */
     619           0 :                 dom->period_time = 0;
     620             :         }
     621           0 : }
     622             : 
     623           1 : int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
     624             : {
     625           1 :         memset(dom, 0, sizeof(*dom));
     626             : 
     627           1 :         spin_lock_init(&dom->lock);
     628             : 
     629           1 :         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
     630             : 
     631           1 :         dom->dirty_limit_tstamp = jiffies;
     632             : 
     633           1 :         return fprop_global_init(&dom->completions, gfp);
     634             : }
     635             : 
     636             : #ifdef CONFIG_CGROUP_WRITEBACK
     637             : void wb_domain_exit(struct wb_domain *dom)
     638             : {
     639             :         del_timer_sync(&dom->period_timer);
     640             :         fprop_global_destroy(&dom->completions);
     641             : }
     642             : #endif
     643             : 
     644             : /*
     645             :  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
     646             :  * registered backing devices, which, for obvious reasons, can not
     647             :  * exceed 100%.
     648             :  */
     649             : static unsigned int bdi_min_ratio;
     650             : 
     651           0 : int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
     652             : {
     653           0 :         int ret = 0;
     654             : 
     655           0 :         spin_lock_bh(&bdi_lock);
     656           0 :         if (min_ratio > bdi->max_ratio) {
     657             :                 ret = -EINVAL;
     658             :         } else {
     659           0 :                 min_ratio -= bdi->min_ratio;
     660           0 :                 if (bdi_min_ratio + min_ratio < 100) {
     661           0 :                         bdi_min_ratio += min_ratio;
     662           0 :                         bdi->min_ratio += min_ratio;
     663             :                 } else {
     664             :                         ret = -EINVAL;
     665             :                 }
     666             :         }
     667           0 :         spin_unlock_bh(&bdi_lock);
     668             : 
     669           0 :         return ret;
     670             : }
     671             : 
     672           0 : int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
     673             : {
     674           0 :         int ret = 0;
     675             : 
     676           0 :         if (max_ratio > 100)
     677             :                 return -EINVAL;
     678             : 
     679           0 :         spin_lock_bh(&bdi_lock);
     680           0 :         if (bdi->min_ratio > max_ratio) {
     681             :                 ret = -EINVAL;
     682             :         } else {
     683           0 :                 bdi->max_ratio = max_ratio;
     684           0 :                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
     685             :         }
     686           0 :         spin_unlock_bh(&bdi_lock);
     687             : 
     688           0 :         return ret;
     689             : }
     690             : EXPORT_SYMBOL(bdi_set_max_ratio);
     691             : 
     692             : static unsigned long dirty_freerun_ceiling(unsigned long thresh,
     693             :                                            unsigned long bg_thresh)
     694             : {
     695           0 :         return (thresh + bg_thresh) / 2;
     696             : }
     697             : 
     698             : static unsigned long hard_dirty_limit(struct wb_domain *dom,
     699             :                                       unsigned long thresh)
     700             : {
     701           0 :         return max(thresh, dom->dirty_limit);
     702             : }
     703             : 
     704             : /*
     705             :  * Memory which can be further allocated to a memcg domain is capped by
     706             :  * system-wide clean memory excluding the amount being used in the domain.
     707             :  */
     708             : static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
     709             :                             unsigned long filepages, unsigned long headroom)
     710             : {
     711             :         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
     712             :         unsigned long clean = filepages - min(filepages, mdtc->dirty);
     713             :         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
     714             :         unsigned long other_clean = global_clean - min(global_clean, clean);
     715             : 
     716             :         mdtc->avail = filepages + min(headroom, other_clean);
     717             : }
     718             : 
     719             : /**
     720             :  * __wb_calc_thresh - @wb's share of dirty throttling threshold
     721             :  * @dtc: dirty_throttle_context of interest
     722             :  *
     723             :  * Note that balance_dirty_pages() will only seriously take it as a hard limit
     724             :  * when sleeping max_pause per page is not enough to keep the dirty pages under
     725             :  * control. For example, when the device is completely stalled due to some error
     726             :  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
     727             :  * In the other normal situations, it acts more gently by throttling the tasks
     728             :  * more (rather than completely block them) when the wb dirty pages go high.
     729             :  *
     730             :  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
     731             :  * - starving fast devices
     732             :  * - piling up dirty pages (that will take long time to sync) on slow devices
     733             :  *
     734             :  * The wb's share of dirty limit will be adapting to its throughput and
     735             :  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
     736             :  *
     737             :  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
     738             :  * dirty balancing includes all PG_dirty and PG_writeback pages.
     739             :  */
     740           0 : static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
     741             : {
     742           0 :         struct wb_domain *dom = dtc_dom(dtc);
     743           0 :         unsigned long thresh = dtc->thresh;
     744             :         u64 wb_thresh;
     745             :         unsigned long numerator, denominator;
     746             :         unsigned long wb_min_ratio, wb_max_ratio;
     747             : 
     748             :         /*
     749             :          * Calculate this BDI's share of the thresh ratio.
     750             :          */
     751           0 :         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
     752             :                               &numerator, &denominator);
     753             : 
     754           0 :         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
     755           0 :         wb_thresh *= numerator;
     756           0 :         wb_thresh = div64_ul(wb_thresh, denominator);
     757             : 
     758           0 :         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
     759             : 
     760           0 :         wb_thresh += (thresh * wb_min_ratio) / 100;
     761           0 :         if (wb_thresh > (thresh * wb_max_ratio) / 100)
     762           0 :                 wb_thresh = thresh * wb_max_ratio / 100;
     763             : 
     764           0 :         return wb_thresh;
     765             : }
     766             : 
     767           0 : unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
     768             : {
     769           0 :         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
     770             :                                                .thresh = thresh };
     771           0 :         return __wb_calc_thresh(&gdtc);
     772             : }
     773             : 
     774             : /*
     775             :  *                           setpoint - dirty 3
     776             :  *        f(dirty) := 1.0 + (----------------)
     777             :  *                           limit - setpoint
     778             :  *
     779             :  * it's a 3rd order polynomial that subjects to
     780             :  *
     781             :  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
     782             :  * (2) f(setpoint) = 1.0 => the balance point
     783             :  * (3) f(limit)    = 0   => the hard limit
     784             :  * (4) df/dx      <= 0        => negative feedback control
     785             :  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
     786             :  *     => fast response on large errors; small oscillation near setpoint
     787             :  */
     788             : static long long pos_ratio_polynom(unsigned long setpoint,
     789             :                                           unsigned long dirty,
     790             :                                           unsigned long limit)
     791             : {
     792             :         long long pos_ratio;
     793             :         long x;
     794             : 
     795           0 :         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
     796           0 :                       (limit - setpoint) | 1);
     797           0 :         pos_ratio = x;
     798           0 :         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
     799           0 :         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
     800           0 :         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
     801             : 
     802           0 :         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
     803             : }
     804             : 
     805             : /*
     806             :  * Dirty position control.
     807             :  *
     808             :  * (o) global/bdi setpoints
     809             :  *
     810             :  * We want the dirty pages be balanced around the global/wb setpoints.
     811             :  * When the number of dirty pages is higher/lower than the setpoint, the
     812             :  * dirty position control ratio (and hence task dirty ratelimit) will be
     813             :  * decreased/increased to bring the dirty pages back to the setpoint.
     814             :  *
     815             :  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
     816             :  *
     817             :  *     if (dirty < setpoint) scale up   pos_ratio
     818             :  *     if (dirty > setpoint) scale down pos_ratio
     819             :  *
     820             :  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
     821             :  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
     822             :  *
     823             :  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
     824             :  *
     825             :  * (o) global control line
     826             :  *
     827             :  *     ^ pos_ratio
     828             :  *     |
     829             :  *     |            |<===== global dirty control scope ======>|
     830             :  * 2.0  * * * * * * *
     831             :  *     |            .*
     832             :  *     |            . *
     833             :  *     |            .   *
     834             :  *     |            .     *
     835             :  *     |            .        *
     836             :  *     |            .            *
     837             :  * 1.0 ................................*
     838             :  *     |            .                  .     *
     839             :  *     |            .                  .          *
     840             :  *     |            .                  .              *
     841             :  *     |            .                  .                 *
     842             :  *     |            .                  .                    *
     843             :  *   0 +------------.------------------.----------------------*------------->
     844             :  *           freerun^          setpoint^                 limit^   dirty pages
     845             :  *
     846             :  * (o) wb control line
     847             :  *
     848             :  *     ^ pos_ratio
     849             :  *     |
     850             :  *     |            *
     851             :  *     |              *
     852             :  *     |                *
     853             :  *     |                  *
     854             :  *     |                    * |<=========== span ============>|
     855             :  * 1.0 .......................*
     856             :  *     |                      . *
     857             :  *     |                      .   *
     858             :  *     |                      .     *
     859             :  *     |                      .       *
     860             :  *     |                      .         *
     861             :  *     |                      .           *
     862             :  *     |                      .             *
     863             :  *     |                      .               *
     864             :  *     |                      .                 *
     865             :  *     |                      .                   *
     866             :  *     |                      .                     *
     867             :  * 1/4 ...............................................* * * * * * * * * * * *
     868             :  *     |                      .                         .
     869             :  *     |                      .                           .
     870             :  *     |                      .                             .
     871             :  *   0 +----------------------.-------------------------------.------------->
     872             :  *                wb_setpoint^                    x_intercept^
     873             :  *
     874             :  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
     875             :  * be smoothly throttled down to normal if it starts high in situations like
     876             :  * - start writing to a slow SD card and a fast disk at the same time. The SD
     877             :  *   card's wb_dirty may rush to many times higher than wb_setpoint.
     878             :  * - the wb dirty thresh drops quickly due to change of JBOD workload
     879             :  */
     880           0 : static void wb_position_ratio(struct dirty_throttle_control *dtc)
     881             : {
     882           0 :         struct bdi_writeback *wb = dtc->wb;
     883           0 :         unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
     884           0 :         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
     885           0 :         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
     886           0 :         unsigned long wb_thresh = dtc->wb_thresh;
     887             :         unsigned long x_intercept;
     888             :         unsigned long setpoint;         /* dirty pages' target balance point */
     889             :         unsigned long wb_setpoint;
     890             :         unsigned long span;
     891             :         long long pos_ratio;            /* for scaling up/down the rate limit */
     892             :         long x;
     893             : 
     894           0 :         dtc->pos_ratio = 0;
     895             : 
     896           0 :         if (unlikely(dtc->dirty >= limit))
     897             :                 return;
     898             : 
     899             :         /*
     900             :          * global setpoint
     901             :          *
     902             :          * See comment for pos_ratio_polynom().
     903             :          */
     904           0 :         setpoint = (freerun + limit) / 2;
     905           0 :         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
     906             : 
     907             :         /*
     908             :          * The strictlimit feature is a tool preventing mistrusted filesystems
     909             :          * from growing a large number of dirty pages before throttling. For
     910             :          * such filesystems balance_dirty_pages always checks wb counters
     911             :          * against wb limits. Even if global "nr_dirty" is under "freerun".
     912             :          * This is especially important for fuse which sets bdi->max_ratio to
     913             :          * 1% by default. Without strictlimit feature, fuse writeback may
     914             :          * consume arbitrary amount of RAM because it is accounted in
     915             :          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
     916             :          *
     917             :          * Here, in wb_position_ratio(), we calculate pos_ratio based on
     918             :          * two values: wb_dirty and wb_thresh. Let's consider an example:
     919             :          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
     920             :          * limits are set by default to 10% and 20% (background and throttle).
     921             :          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
     922             :          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
     923             :          * about ~6K pages (as the average of background and throttle wb
     924             :          * limits). The 3rd order polynomial will provide positive feedback if
     925             :          * wb_dirty is under wb_setpoint and vice versa.
     926             :          *
     927             :          * Note, that we cannot use global counters in these calculations
     928             :          * because we want to throttle process writing to a strictlimit wb
     929             :          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
     930             :          * in the example above).
     931             :          */
     932           0 :         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
     933             :                 long long wb_pos_ratio;
     934             : 
     935           0 :                 if (dtc->wb_dirty < 8) {
     936           0 :                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
     937             :                                            2 << RATELIMIT_CALC_SHIFT);
     938           0 :                         return;
     939             :                 }
     940             : 
     941           0 :                 if (dtc->wb_dirty >= wb_thresh)
     942             :                         return;
     943             : 
     944           0 :                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
     945             :                                                     dtc->wb_bg_thresh);
     946             : 
     947           0 :                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
     948             :                         return;
     949             : 
     950           0 :                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
     951             :                                                  wb_thresh);
     952             : 
     953             :                 /*
     954             :                  * Typically, for strictlimit case, wb_setpoint << setpoint
     955             :                  * and pos_ratio >> wb_pos_ratio. In the other words global
     956             :                  * state ("dirty") is not limiting factor and we have to
     957             :                  * make decision based on wb counters. But there is an
     958             :                  * important case when global pos_ratio should get precedence:
     959             :                  * global limits are exceeded (e.g. due to activities on other
     960             :                  * wb's) while given strictlimit wb is below limit.
     961             :                  *
     962             :                  * "pos_ratio * wb_pos_ratio" would work for the case above,
     963             :                  * but it would look too non-natural for the case of all
     964             :                  * activity in the system coming from a single strictlimit wb
     965             :                  * with bdi->max_ratio == 100%.
     966             :                  *
     967             :                  * Note that min() below somewhat changes the dynamics of the
     968             :                  * control system. Normally, pos_ratio value can be well over 3
     969             :                  * (when globally we are at freerun and wb is well below wb
     970             :                  * setpoint). Now the maximum pos_ratio in the same situation
     971             :                  * is 2. We might want to tweak this if we observe the control
     972             :                  * system is too slow to adapt.
     973             :                  */
     974           0 :                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
     975           0 :                 return;
     976             :         }
     977             : 
     978             :         /*
     979             :          * We have computed basic pos_ratio above based on global situation. If
     980             :          * the wb is over/under its share of dirty pages, we want to scale
     981             :          * pos_ratio further down/up. That is done by the following mechanism.
     982             :          */
     983             : 
     984             :         /*
     985             :          * wb setpoint
     986             :          *
     987             :          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
     988             :          *
     989             :          *                        x_intercept - wb_dirty
     990             :          *                     := --------------------------
     991             :          *                        x_intercept - wb_setpoint
     992             :          *
     993             :          * The main wb control line is a linear function that subjects to
     994             :          *
     995             :          * (1) f(wb_setpoint) = 1.0
     996             :          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
     997             :          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
     998             :          *
     999             :          * For single wb case, the dirty pages are observed to fluctuate
    1000             :          * regularly within range
    1001             :          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
    1002             :          * for various filesystems, where (2) can yield in a reasonable 12.5%
    1003             :          * fluctuation range for pos_ratio.
    1004             :          *
    1005             :          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
    1006             :          * own size, so move the slope over accordingly and choose a slope that
    1007             :          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
    1008             :          */
    1009           0 :         if (unlikely(wb_thresh > dtc->thresh))
    1010           0 :                 wb_thresh = dtc->thresh;
    1011             :         /*
    1012             :          * It's very possible that wb_thresh is close to 0 not because the
    1013             :          * device is slow, but that it has remained inactive for long time.
    1014             :          * Honour such devices a reasonable good (hopefully IO efficient)
    1015             :          * threshold, so that the occasional writes won't be blocked and active
    1016             :          * writes can rampup the threshold quickly.
    1017             :          */
    1018           0 :         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
    1019             :         /*
    1020             :          * scale global setpoint to wb's:
    1021             :          *      wb_setpoint = setpoint * wb_thresh / thresh
    1022             :          */
    1023           0 :         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
    1024           0 :         wb_setpoint = setpoint * (u64)x >> 16;
    1025             :         /*
    1026             :          * Use span=(8*write_bw) in single wb case as indicated by
    1027             :          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
    1028             :          *
    1029             :          *        wb_thresh                    thresh - wb_thresh
    1030             :          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
    1031             :          *         thresh                           thresh
    1032             :          */
    1033           0 :         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
    1034           0 :         x_intercept = wb_setpoint + span;
    1035             : 
    1036           0 :         if (dtc->wb_dirty < x_intercept - span / 4) {
    1037           0 :                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
    1038           0 :                                       (x_intercept - wb_setpoint) | 1);
    1039             :         } else
    1040           0 :                 pos_ratio /= 4;
    1041             : 
    1042             :         /*
    1043             :          * wb reserve area, safeguard against dirty pool underrun and disk idle
    1044             :          * It may push the desired control point of global dirty pages higher
    1045             :          * than setpoint.
    1046             :          */
    1047           0 :         x_intercept = wb_thresh / 2;
    1048           0 :         if (dtc->wb_dirty < x_intercept) {
    1049           0 :                 if (dtc->wb_dirty > x_intercept / 8)
    1050           0 :                         pos_ratio = div_u64(pos_ratio * x_intercept,
    1051             :                                             dtc->wb_dirty);
    1052             :                 else
    1053           0 :                         pos_ratio *= 8;
    1054             :         }
    1055             : 
    1056           0 :         dtc->pos_ratio = pos_ratio;
    1057             : }
    1058             : 
    1059           0 : static void wb_update_write_bandwidth(struct bdi_writeback *wb,
    1060             :                                       unsigned long elapsed,
    1061             :                                       unsigned long written)
    1062             : {
    1063           0 :         const unsigned long period = roundup_pow_of_two(3 * HZ);
    1064           0 :         unsigned long avg = wb->avg_write_bandwidth;
    1065           0 :         unsigned long old = wb->write_bandwidth;
    1066             :         u64 bw;
    1067             : 
    1068             :         /*
    1069             :          * bw = written * HZ / elapsed
    1070             :          *
    1071             :          *                   bw * elapsed + write_bandwidth * (period - elapsed)
    1072             :          * write_bandwidth = ---------------------------------------------------
    1073             :          *                                          period
    1074             :          *
    1075             :          * @written may have decreased due to folio_account_redirty().
    1076             :          * Avoid underflowing @bw calculation.
    1077             :          */
    1078           0 :         bw = written - min(written, wb->written_stamp);
    1079           0 :         bw *= HZ;
    1080           0 :         if (unlikely(elapsed > period)) {
    1081           0 :                 bw = div64_ul(bw, elapsed);
    1082           0 :                 avg = bw;
    1083           0 :                 goto out;
    1084             :         }
    1085           0 :         bw += (u64)wb->write_bandwidth * (period - elapsed);
    1086           0 :         bw >>= ilog2(period);
    1087             : 
    1088             :         /*
    1089             :          * one more level of smoothing, for filtering out sudden spikes
    1090             :          */
    1091           0 :         if (avg > old && old >= (unsigned long)bw)
    1092           0 :                 avg -= (avg - old) >> 3;
    1093             : 
    1094           0 :         if (avg < old && old <= (unsigned long)bw)
    1095           0 :                 avg += (old - avg) >> 3;
    1096             : 
    1097             : out:
    1098             :         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
    1099           0 :         avg = max(avg, 1LU);
    1100           0 :         if (wb_has_dirty_io(wb)) {
    1101           0 :                 long delta = avg - wb->avg_write_bandwidth;
    1102           0 :                 WARN_ON_ONCE(atomic_long_add_return(delta,
    1103             :                                         &wb->bdi->tot_write_bandwidth) <= 0);
    1104             :         }
    1105           0 :         wb->write_bandwidth = bw;
    1106           0 :         WRITE_ONCE(wb->avg_write_bandwidth, avg);
    1107           0 : }
    1108             : 
    1109             : static void update_dirty_limit(struct dirty_throttle_control *dtc)
    1110             : {
    1111           0 :         struct wb_domain *dom = dtc_dom(dtc);
    1112           0 :         unsigned long thresh = dtc->thresh;
    1113           0 :         unsigned long limit = dom->dirty_limit;
    1114             : 
    1115             :         /*
    1116             :          * Follow up in one step.
    1117             :          */
    1118           0 :         if (limit < thresh) {
    1119             :                 limit = thresh;
    1120             :                 goto update;
    1121             :         }
    1122             : 
    1123             :         /*
    1124             :          * Follow down slowly. Use the higher one as the target, because thresh
    1125             :          * may drop below dirty. This is exactly the reason to introduce
    1126             :          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
    1127             :          */
    1128           0 :         thresh = max(thresh, dtc->dirty);
    1129           0 :         if (limit > thresh) {
    1130           0 :                 limit -= (limit - thresh) >> 5;
    1131             :                 goto update;
    1132             :         }
    1133             :         return;
    1134             : update:
    1135           0 :         dom->dirty_limit = limit;
    1136             : }
    1137             : 
    1138           0 : static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
    1139             :                                       unsigned long now)
    1140             : {
    1141           0 :         struct wb_domain *dom = dtc_dom(dtc);
    1142             : 
    1143             :         /*
    1144             :          * check locklessly first to optimize away locking for the most time
    1145             :          */
    1146           0 :         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
    1147             :                 return;
    1148             : 
    1149           0 :         spin_lock(&dom->lock);
    1150           0 :         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
    1151           0 :                 update_dirty_limit(dtc);
    1152           0 :                 dom->dirty_limit_tstamp = now;
    1153             :         }
    1154           0 :         spin_unlock(&dom->lock);
    1155             : }
    1156             : 
    1157             : /*
    1158             :  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
    1159             :  *
    1160             :  * Normal wb tasks will be curbed at or below it in long term.
    1161             :  * Obviously it should be around (write_bw / N) when there are N dd tasks.
    1162             :  */
    1163           0 : static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
    1164             :                                       unsigned long dirtied,
    1165             :                                       unsigned long elapsed)
    1166             : {
    1167           0 :         struct bdi_writeback *wb = dtc->wb;
    1168           0 :         unsigned long dirty = dtc->dirty;
    1169           0 :         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
    1170           0 :         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
    1171           0 :         unsigned long setpoint = (freerun + limit) / 2;
    1172           0 :         unsigned long write_bw = wb->avg_write_bandwidth;
    1173           0 :         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
    1174             :         unsigned long dirty_rate;
    1175             :         unsigned long task_ratelimit;
    1176             :         unsigned long balanced_dirty_ratelimit;
    1177             :         unsigned long step;
    1178             :         unsigned long x;
    1179             :         unsigned long shift;
    1180             : 
    1181             :         /*
    1182             :          * The dirty rate will match the writeout rate in long term, except
    1183             :          * when dirty pages are truncated by userspace or re-dirtied by FS.
    1184             :          */
    1185           0 :         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
    1186             : 
    1187             :         /*
    1188             :          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
    1189             :          */
    1190           0 :         task_ratelimit = (u64)dirty_ratelimit *
    1191           0 :                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
    1192           0 :         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
    1193             : 
    1194             :         /*
    1195             :          * A linear estimation of the "balanced" throttle rate. The theory is,
    1196             :          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
    1197             :          * dirty_rate will be measured to be (N * task_ratelimit). So the below
    1198             :          * formula will yield the balanced rate limit (write_bw / N).
    1199             :          *
    1200             :          * Note that the expanded form is not a pure rate feedback:
    1201             :          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
    1202             :          * but also takes pos_ratio into account:
    1203             :          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
    1204             :          *
    1205             :          * (1) is not realistic because pos_ratio also takes part in balancing
    1206             :          * the dirty rate.  Consider the state
    1207             :          *      pos_ratio = 0.5                                              (3)
    1208             :          *      rate = 2 * (write_bw / N)                                    (4)
    1209             :          * If (1) is used, it will stuck in that state! Because each dd will
    1210             :          * be throttled at
    1211             :          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
    1212             :          * yielding
    1213             :          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
    1214             :          * put (6) into (1) we get
    1215             :          *      rate_(i+1) = rate_(i)                                        (7)
    1216             :          *
    1217             :          * So we end up using (2) to always keep
    1218             :          *      rate_(i+1) ~= (write_bw / N)                                 (8)
    1219             :          * regardless of the value of pos_ratio. As long as (8) is satisfied,
    1220             :          * pos_ratio is able to drive itself to 1.0, which is not only where
    1221             :          * the dirty count meet the setpoint, but also where the slope of
    1222             :          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
    1223             :          */
    1224           0 :         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
    1225             :                                            dirty_rate | 1);
    1226             :         /*
    1227             :          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
    1228             :          */
    1229           0 :         if (unlikely(balanced_dirty_ratelimit > write_bw))
    1230           0 :                 balanced_dirty_ratelimit = write_bw;
    1231             : 
    1232             :         /*
    1233             :          * We could safely do this and return immediately:
    1234             :          *
    1235             :          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
    1236             :          *
    1237             :          * However to get a more stable dirty_ratelimit, the below elaborated
    1238             :          * code makes use of task_ratelimit to filter out singular points and
    1239             :          * limit the step size.
    1240             :          *
    1241             :          * The below code essentially only uses the relative value of
    1242             :          *
    1243             :          *      task_ratelimit - dirty_ratelimit
    1244             :          *      = (pos_ratio - 1) * dirty_ratelimit
    1245             :          *
    1246             :          * which reflects the direction and size of dirty position error.
    1247             :          */
    1248             : 
    1249             :         /*
    1250             :          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
    1251             :          * task_ratelimit is on the same side of dirty_ratelimit, too.
    1252             :          * For example, when
    1253             :          * - dirty_ratelimit > balanced_dirty_ratelimit
    1254             :          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
    1255             :          * lowering dirty_ratelimit will help meet both the position and rate
    1256             :          * control targets. Otherwise, don't update dirty_ratelimit if it will
    1257             :          * only help meet the rate target. After all, what the users ultimately
    1258             :          * feel and care are stable dirty rate and small position error.
    1259             :          *
    1260             :          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
    1261             :          * and filter out the singular points of balanced_dirty_ratelimit. Which
    1262             :          * keeps jumping around randomly and can even leap far away at times
    1263             :          * due to the small 200ms estimation period of dirty_rate (we want to
    1264             :          * keep that period small to reduce time lags).
    1265             :          */
    1266           0 :         step = 0;
    1267             : 
    1268             :         /*
    1269             :          * For strictlimit case, calculations above were based on wb counters
    1270             :          * and limits (starting from pos_ratio = wb_position_ratio() and up to
    1271             :          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
    1272             :          * Hence, to calculate "step" properly, we have to use wb_dirty as
    1273             :          * "dirty" and wb_setpoint as "setpoint".
    1274             :          *
    1275             :          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
    1276             :          * it's possible that wb_thresh is close to zero due to inactivity
    1277             :          * of backing device.
    1278             :          */
    1279           0 :         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
    1280           0 :                 dirty = dtc->wb_dirty;
    1281           0 :                 if (dtc->wb_dirty < 8)
    1282           0 :                         setpoint = dtc->wb_dirty + 1;
    1283             :                 else
    1284           0 :                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
    1285             :         }
    1286             : 
    1287           0 :         if (dirty < setpoint) {
    1288           0 :                 x = min3(wb->balanced_dirty_ratelimit,
    1289             :                          balanced_dirty_ratelimit, task_ratelimit);
    1290           0 :                 if (dirty_ratelimit < x)
    1291           0 :                         step = x - dirty_ratelimit;
    1292             :         } else {
    1293           0 :                 x = max3(wb->balanced_dirty_ratelimit,
    1294             :                          balanced_dirty_ratelimit, task_ratelimit);
    1295           0 :                 if (dirty_ratelimit > x)
    1296           0 :                         step = dirty_ratelimit - x;
    1297             :         }
    1298             : 
    1299             :         /*
    1300             :          * Don't pursue 100% rate matching. It's impossible since the balanced
    1301             :          * rate itself is constantly fluctuating. So decrease the track speed
    1302             :          * when it gets close to the target. Helps eliminate pointless tremors.
    1303             :          */
    1304           0 :         shift = dirty_ratelimit / (2 * step + 1);
    1305           0 :         if (shift < BITS_PER_LONG)
    1306           0 :                 step = DIV_ROUND_UP(step >> shift, 8);
    1307             :         else
    1308             :                 step = 0;
    1309             : 
    1310           0 :         if (dirty_ratelimit < balanced_dirty_ratelimit)
    1311           0 :                 dirty_ratelimit += step;
    1312             :         else
    1313           0 :                 dirty_ratelimit -= step;
    1314             : 
    1315           0 :         WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
    1316           0 :         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
    1317             : 
    1318           0 :         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
    1319           0 : }
    1320             : 
    1321           0 : static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
    1322             :                                   struct dirty_throttle_control *mdtc,
    1323             :                                   bool update_ratelimit)
    1324             : {
    1325           0 :         struct bdi_writeback *wb = gdtc->wb;
    1326           0 :         unsigned long now = jiffies;
    1327             :         unsigned long elapsed;
    1328             :         unsigned long dirtied;
    1329             :         unsigned long written;
    1330             : 
    1331           0 :         spin_lock(&wb->list_lock);
    1332             : 
    1333             :         /*
    1334             :          * Lockless checks for elapsed time are racy and delayed update after
    1335             :          * IO completion doesn't do it at all (to make sure written pages are
    1336             :          * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
    1337             :          * division errors.
    1338             :          */
    1339           0 :         elapsed = max(now - wb->bw_time_stamp, 1UL);
    1340           0 :         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
    1341           0 :         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
    1342             : 
    1343           0 :         if (update_ratelimit) {
    1344           0 :                 domain_update_dirty_limit(gdtc, now);
    1345           0 :                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
    1346             : 
    1347             :                 /*
    1348             :                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
    1349             :                  * compiler has no way to figure that out.  Help it.
    1350             :                  */
    1351             :                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
    1352             :                         domain_update_dirty_limit(mdtc, now);
    1353             :                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
    1354             :                 }
    1355             :         }
    1356           0 :         wb_update_write_bandwidth(wb, elapsed, written);
    1357             : 
    1358           0 :         wb->dirtied_stamp = dirtied;
    1359           0 :         wb->written_stamp = written;
    1360           0 :         WRITE_ONCE(wb->bw_time_stamp, now);
    1361           0 :         spin_unlock(&wb->list_lock);
    1362           0 : }
    1363             : 
    1364           0 : void wb_update_bandwidth(struct bdi_writeback *wb)
    1365             : {
    1366           0 :         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
    1367             : 
    1368           0 :         __wb_update_bandwidth(&gdtc, NULL, false);
    1369           0 : }
    1370             : 
    1371             : /* Interval after which we consider wb idle and don't estimate bandwidth */
    1372             : #define WB_BANDWIDTH_IDLE_JIF (HZ)
    1373             : 
    1374             : static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
    1375             : {
    1376           0 :         unsigned long now = jiffies;
    1377           0 :         unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
    1378             : 
    1379           0 :         if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
    1380           0 :             !atomic_read(&wb->writeback_inodes)) {
    1381           0 :                 spin_lock(&wb->list_lock);
    1382           0 :                 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
    1383           0 :                 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
    1384           0 :                 WRITE_ONCE(wb->bw_time_stamp, now);
    1385           0 :                 spin_unlock(&wb->list_lock);
    1386             :         }
    1387             : }
    1388             : 
    1389             : /*
    1390             :  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
    1391             :  * will look to see if it needs to start dirty throttling.
    1392             :  *
    1393             :  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
    1394             :  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
    1395             :  * (the number of pages we may dirty without exceeding the dirty limits).
    1396             :  */
    1397             : static unsigned long dirty_poll_interval(unsigned long dirty,
    1398             :                                          unsigned long thresh)
    1399             : {
    1400           0 :         if (thresh > dirty)
    1401           0 :                 return 1UL << (ilog2(thresh - dirty) >> 1);
    1402             : 
    1403             :         return 1;
    1404             : }
    1405             : 
    1406             : static unsigned long wb_max_pause(struct bdi_writeback *wb,
    1407             :                                   unsigned long wb_dirty)
    1408             : {
    1409           0 :         unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
    1410             :         unsigned long t;
    1411             : 
    1412             :         /*
    1413             :          * Limit pause time for small memory systems. If sleeping for too long
    1414             :          * time, a small pool of dirty/writeback pages may go empty and disk go
    1415             :          * idle.
    1416             :          *
    1417             :          * 8 serves as the safety ratio.
    1418             :          */
    1419           0 :         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
    1420           0 :         t++;
    1421             : 
    1422           0 :         return min_t(unsigned long, t, MAX_PAUSE);
    1423             : }
    1424             : 
    1425           0 : static long wb_min_pause(struct bdi_writeback *wb,
    1426             :                          long max_pause,
    1427             :                          unsigned long task_ratelimit,
    1428             :                          unsigned long dirty_ratelimit,
    1429             :                          int *nr_dirtied_pause)
    1430             : {
    1431           0 :         long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
    1432           0 :         long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
    1433             :         long t;         /* target pause */
    1434             :         long pause;     /* estimated next pause */
    1435             :         int pages;      /* target nr_dirtied_pause */
    1436             : 
    1437             :         /* target for 10ms pause on 1-dd case */
    1438           0 :         t = max(1, HZ / 100);
    1439             : 
    1440             :         /*
    1441             :          * Scale up pause time for concurrent dirtiers in order to reduce CPU
    1442             :          * overheads.
    1443             :          *
    1444             :          * (N * 10ms) on 2^N concurrent tasks.
    1445             :          */
    1446           0 :         if (hi > lo)
    1447           0 :                 t += (hi - lo) * (10 * HZ) / 1024;
    1448             : 
    1449             :         /*
    1450             :          * This is a bit convoluted. We try to base the next nr_dirtied_pause
    1451             :          * on the much more stable dirty_ratelimit. However the next pause time
    1452             :          * will be computed based on task_ratelimit and the two rate limits may
    1453             :          * depart considerably at some time. Especially if task_ratelimit goes
    1454             :          * below dirty_ratelimit/2 and the target pause is max_pause, the next
    1455             :          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
    1456             :          * result task_ratelimit won't be executed faithfully, which could
    1457             :          * eventually bring down dirty_ratelimit.
    1458             :          *
    1459             :          * We apply two rules to fix it up:
    1460             :          * 1) try to estimate the next pause time and if necessary, use a lower
    1461             :          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
    1462             :          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
    1463             :          * 2) limit the target pause time to max_pause/2, so that the normal
    1464             :          *    small fluctuations of task_ratelimit won't trigger rule (1) and
    1465             :          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
    1466             :          */
    1467           0 :         t = min(t, 1 + max_pause / 2);
    1468           0 :         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
    1469             : 
    1470             :         /*
    1471             :          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
    1472             :          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
    1473             :          * When the 16 consecutive reads are often interrupted by some dirty
    1474             :          * throttling pause during the async writes, cfq will go into idles
    1475             :          * (deadline is fine). So push nr_dirtied_pause as high as possible
    1476             :          * until reaches DIRTY_POLL_THRESH=32 pages.
    1477             :          */
    1478           0 :         if (pages < DIRTY_POLL_THRESH) {
    1479           0 :                 t = max_pause;
    1480           0 :                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
    1481           0 :                 if (pages > DIRTY_POLL_THRESH) {
    1482           0 :                         pages = DIRTY_POLL_THRESH;
    1483           0 :                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
    1484             :                 }
    1485             :         }
    1486             : 
    1487           0 :         pause = HZ * pages / (task_ratelimit + 1);
    1488           0 :         if (pause > max_pause) {
    1489           0 :                 t = max_pause;
    1490           0 :                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
    1491             :         }
    1492             : 
    1493           0 :         *nr_dirtied_pause = pages;
    1494             :         /*
    1495             :          * The minimal pause time will normally be half the target pause time.
    1496             :          */
    1497           0 :         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
    1498             : }
    1499             : 
    1500           0 : static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
    1501             : {
    1502           0 :         struct bdi_writeback *wb = dtc->wb;
    1503             :         unsigned long wb_reclaimable;
    1504             : 
    1505             :         /*
    1506             :          * wb_thresh is not treated as some limiting factor as
    1507             :          * dirty_thresh, due to reasons
    1508             :          * - in JBOD setup, wb_thresh can fluctuate a lot
    1509             :          * - in a system with HDD and USB key, the USB key may somehow
    1510             :          *   go into state (wb_dirty >> wb_thresh) either because
    1511             :          *   wb_dirty starts high, or because wb_thresh drops low.
    1512             :          *   In this case we don't want to hard throttle the USB key
    1513             :          *   dirtiers for 100 seconds until wb_dirty drops under
    1514             :          *   wb_thresh. Instead the auxiliary wb control line in
    1515             :          *   wb_position_ratio() will let the dirtier task progress
    1516             :          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
    1517             :          */
    1518           0 :         dtc->wb_thresh = __wb_calc_thresh(dtc);
    1519           0 :         dtc->wb_bg_thresh = dtc->thresh ?
    1520           0 :                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
    1521             : 
    1522             :         /*
    1523             :          * In order to avoid the stacked BDI deadlock we need
    1524             :          * to ensure we accurately count the 'dirty' pages when
    1525             :          * the threshold is low.
    1526             :          *
    1527             :          * Otherwise it would be possible to get thresh+n pages
    1528             :          * reported dirty, even though there are thresh-m pages
    1529             :          * actually dirty; with m+n sitting in the percpu
    1530             :          * deltas.
    1531             :          */
    1532           0 :         if (dtc->wb_thresh < 2 * wb_stat_error()) {
    1533           0 :                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
    1534           0 :                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
    1535             :         } else {
    1536           0 :                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
    1537           0 :                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
    1538             :         }
    1539           0 : }
    1540             : 
    1541             : /*
    1542             :  * balance_dirty_pages() must be called by processes which are generating dirty
    1543             :  * data.  It looks at the number of dirty pages in the machine and will force
    1544             :  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
    1545             :  * If we're over `background_thresh' then the writeback threads are woken to
    1546             :  * perform some writeout.
    1547             :  */
    1548           0 : static void balance_dirty_pages(struct bdi_writeback *wb,
    1549             :                                 unsigned long pages_dirtied)
    1550             : {
    1551           0 :         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
    1552             :         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
    1553           0 :         struct dirty_throttle_control * const gdtc = &gdtc_stor;
    1554           0 :         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
    1555             :                                                      &mdtc_stor : NULL;
    1556             :         struct dirty_throttle_control *sdtc;
    1557             :         unsigned long nr_reclaimable;   /* = file_dirty */
    1558             :         long period;
    1559             :         long pause;
    1560             :         long max_pause;
    1561             :         long min_pause;
    1562             :         int nr_dirtied_pause;
    1563           0 :         bool dirty_exceeded = false;
    1564             :         unsigned long task_ratelimit;
    1565             :         unsigned long dirty_ratelimit;
    1566           0 :         struct backing_dev_info *bdi = wb->bdi;
    1567           0 :         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
    1568           0 :         unsigned long start_time = jiffies;
    1569             : 
    1570             :         for (;;) {
    1571           0 :                 unsigned long now = jiffies;
    1572             :                 unsigned long dirty, thresh, bg_thresh;
    1573           0 :                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
    1574           0 :                 unsigned long m_thresh = 0;
    1575           0 :                 unsigned long m_bg_thresh = 0;
    1576             : 
    1577           0 :                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
    1578           0 :                 gdtc->avail = global_dirtyable_memory();
    1579           0 :                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
    1580             : 
    1581           0 :                 domain_dirty_limits(gdtc);
    1582             : 
    1583           0 :                 if (unlikely(strictlimit)) {
    1584           0 :                         wb_dirty_limits(gdtc);
    1585             : 
    1586           0 :                         dirty = gdtc->wb_dirty;
    1587           0 :                         thresh = gdtc->wb_thresh;
    1588           0 :                         bg_thresh = gdtc->wb_bg_thresh;
    1589             :                 } else {
    1590           0 :                         dirty = gdtc->dirty;
    1591           0 :                         thresh = gdtc->thresh;
    1592           0 :                         bg_thresh = gdtc->bg_thresh;
    1593             :                 }
    1594             : 
    1595             :                 if (mdtc) {
    1596             :                         unsigned long filepages, headroom, writeback;
    1597             : 
    1598             :                         /*
    1599             :                          * If @wb belongs to !root memcg, repeat the same
    1600             :                          * basic calculations for the memcg domain.
    1601             :                          */
    1602             :                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
    1603             :                                             &mdtc->dirty, &writeback);
    1604             :                         mdtc->dirty += writeback;
    1605             :                         mdtc_calc_avail(mdtc, filepages, headroom);
    1606             : 
    1607             :                         domain_dirty_limits(mdtc);
    1608             : 
    1609             :                         if (unlikely(strictlimit)) {
    1610             :                                 wb_dirty_limits(mdtc);
    1611             :                                 m_dirty = mdtc->wb_dirty;
    1612             :                                 m_thresh = mdtc->wb_thresh;
    1613             :                                 m_bg_thresh = mdtc->wb_bg_thresh;
    1614             :                         } else {
    1615             :                                 m_dirty = mdtc->dirty;
    1616             :                                 m_thresh = mdtc->thresh;
    1617             :                                 m_bg_thresh = mdtc->bg_thresh;
    1618             :                         }
    1619             :                 }
    1620             : 
    1621             :                 /*
    1622             :                  * Throttle it only when the background writeback cannot
    1623             :                  * catch-up. This avoids (excessively) small writeouts
    1624             :                  * when the wb limits are ramping up in case of !strictlimit.
    1625             :                  *
    1626             :                  * In strictlimit case make decision based on the wb counters
    1627             :                  * and limits. Small writeouts when the wb limits are ramping
    1628             :                  * up are the price we consciously pay for strictlimit-ing.
    1629             :                  *
    1630             :                  * If memcg domain is in effect, @dirty should be under
    1631             :                  * both global and memcg freerun ceilings.
    1632             :                  */
    1633           0 :                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
    1634             :                     (!mdtc ||
    1635             :                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
    1636             :                         unsigned long intv;
    1637             :                         unsigned long m_intv;
    1638             : 
    1639             : free_running:
    1640           0 :                         intv = dirty_poll_interval(dirty, thresh);
    1641           0 :                         m_intv = ULONG_MAX;
    1642             : 
    1643           0 :                         current->dirty_paused_when = now;
    1644           0 :                         current->nr_dirtied = 0;
    1645             :                         if (mdtc)
    1646             :                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
    1647           0 :                         current->nr_dirtied_pause = min(intv, m_intv);
    1648           0 :                         break;
    1649             :                 }
    1650             : 
    1651           0 :                 if (unlikely(!writeback_in_progress(wb)))
    1652           0 :                         wb_start_background_writeback(wb);
    1653             : 
    1654           0 :                 mem_cgroup_flush_foreign(wb);
    1655             : 
    1656             :                 /*
    1657             :                  * Calculate global domain's pos_ratio and select the
    1658             :                  * global dtc by default.
    1659             :                  */
    1660           0 :                 if (!strictlimit) {
    1661           0 :                         wb_dirty_limits(gdtc);
    1662             : 
    1663           0 :                         if ((current->flags & PF_LOCAL_THROTTLE) &&
    1664           0 :                             gdtc->wb_dirty <
    1665           0 :                             dirty_freerun_ceiling(gdtc->wb_thresh,
    1666             :                                                   gdtc->wb_bg_thresh))
    1667             :                                 /*
    1668             :                                  * LOCAL_THROTTLE tasks must not be throttled
    1669             :                                  * when below the per-wb freerun ceiling.
    1670             :                                  */
    1671             :                                 goto free_running;
    1672             :                 }
    1673             : 
    1674           0 :                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
    1675           0 :                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
    1676             : 
    1677           0 :                 wb_position_ratio(gdtc);
    1678           0 :                 sdtc = gdtc;
    1679             : 
    1680             :                 if (mdtc) {
    1681             :                         /*
    1682             :                          * If memcg domain is in effect, calculate its
    1683             :                          * pos_ratio.  @wb should satisfy constraints from
    1684             :                          * both global and memcg domains.  Choose the one
    1685             :                          * w/ lower pos_ratio.
    1686             :                          */
    1687             :                         if (!strictlimit) {
    1688             :                                 wb_dirty_limits(mdtc);
    1689             : 
    1690             :                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
    1691             :                                     mdtc->wb_dirty <
    1692             :                                     dirty_freerun_ceiling(mdtc->wb_thresh,
    1693             :                                                           mdtc->wb_bg_thresh))
    1694             :                                         /*
    1695             :                                          * LOCAL_THROTTLE tasks must not be
    1696             :                                          * throttled when below the per-wb
    1697             :                                          * freerun ceiling.
    1698             :                                          */
    1699             :                                         goto free_running;
    1700             :                         }
    1701             :                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
    1702             :                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
    1703             : 
    1704             :                         wb_position_ratio(mdtc);
    1705             :                         if (mdtc->pos_ratio < gdtc->pos_ratio)
    1706             :                                 sdtc = mdtc;
    1707             :                 }
    1708             : 
    1709           0 :                 if (dirty_exceeded && !wb->dirty_exceeded)
    1710           0 :                         wb->dirty_exceeded = 1;
    1711             : 
    1712           0 :                 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
    1713             :                                            BANDWIDTH_INTERVAL))
    1714           0 :                         __wb_update_bandwidth(gdtc, mdtc, true);
    1715             : 
    1716             :                 /* throttle according to the chosen dtc */
    1717           0 :                 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
    1718           0 :                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
    1719             :                                                         RATELIMIT_CALC_SHIFT;
    1720           0 :                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
    1721           0 :                 min_pause = wb_min_pause(wb, max_pause,
    1722             :                                          task_ratelimit, dirty_ratelimit,
    1723             :                                          &nr_dirtied_pause);
    1724             : 
    1725           0 :                 if (unlikely(task_ratelimit == 0)) {
    1726             :                         period = max_pause;
    1727             :                         pause = max_pause;
    1728             :                         goto pause;
    1729             :                 }
    1730           0 :                 period = HZ * pages_dirtied / task_ratelimit;
    1731           0 :                 pause = period;
    1732           0 :                 if (current->dirty_paused_when)
    1733           0 :                         pause -= now - current->dirty_paused_when;
    1734             :                 /*
    1735             :                  * For less than 1s think time (ext3/4 may block the dirtier
    1736             :                  * for up to 800ms from time to time on 1-HDD; so does xfs,
    1737             :                  * however at much less frequency), try to compensate it in
    1738             :                  * future periods by updating the virtual time; otherwise just
    1739             :                  * do a reset, as it may be a light dirtier.
    1740             :                  */
    1741           0 :                 if (pause < min_pause) {
    1742           0 :                         trace_balance_dirty_pages(wb,
    1743             :                                                   sdtc->thresh,
    1744             :                                                   sdtc->bg_thresh,
    1745             :                                                   sdtc->dirty,
    1746             :                                                   sdtc->wb_thresh,
    1747             :                                                   sdtc->wb_dirty,
    1748             :                                                   dirty_ratelimit,
    1749             :                                                   task_ratelimit,
    1750             :                                                   pages_dirtied,
    1751             :                                                   period,
    1752           0 :                                                   min(pause, 0L),
    1753             :                                                   start_time);
    1754           0 :                         if (pause < -HZ) {
    1755           0 :                                 current->dirty_paused_when = now;
    1756           0 :                                 current->nr_dirtied = 0;
    1757           0 :                         } else if (period) {
    1758           0 :                                 current->dirty_paused_when += period;
    1759           0 :                                 current->nr_dirtied = 0;
    1760           0 :                         } else if (current->nr_dirtied_pause <= pages_dirtied)
    1761           0 :                                 current->nr_dirtied_pause += pages_dirtied;
    1762             :                         break;
    1763             :                 }
    1764           0 :                 if (unlikely(pause > max_pause)) {
    1765             :                         /* for occasional dropped task_ratelimit */
    1766           0 :                         now += min(pause - max_pause, max_pause);
    1767           0 :                         pause = max_pause;
    1768             :                 }
    1769             : 
    1770             : pause:
    1771           0 :                 trace_balance_dirty_pages(wb,
    1772             :                                           sdtc->thresh,
    1773             :                                           sdtc->bg_thresh,
    1774             :                                           sdtc->dirty,
    1775             :                                           sdtc->wb_thresh,
    1776             :                                           sdtc->wb_dirty,
    1777             :                                           dirty_ratelimit,
    1778             :                                           task_ratelimit,
    1779             :                                           pages_dirtied,
    1780             :                                           period,
    1781             :                                           pause,
    1782             :                                           start_time);
    1783           0 :                 __set_current_state(TASK_KILLABLE);
    1784           0 :                 wb->dirty_sleep = now;
    1785           0 :                 io_schedule_timeout(pause);
    1786             : 
    1787           0 :                 current->dirty_paused_when = now + pause;
    1788           0 :                 current->nr_dirtied = 0;
    1789           0 :                 current->nr_dirtied_pause = nr_dirtied_pause;
    1790             : 
    1791             :                 /*
    1792             :                  * This is typically equal to (dirty < thresh) and can also
    1793             :                  * keep "1000+ dd on a slow USB stick" under control.
    1794             :                  */
    1795           0 :                 if (task_ratelimit)
    1796             :                         break;
    1797             : 
    1798             :                 /*
    1799             :                  * In the case of an unresponsive NFS server and the NFS dirty
    1800             :                  * pages exceeds dirty_thresh, give the other good wb's a pipe
    1801             :                  * to go through, so that tasks on them still remain responsive.
    1802             :                  *
    1803             :                  * In theory 1 page is enough to keep the consumer-producer
    1804             :                  * pipe going: the flusher cleans 1 page => the task dirties 1
    1805             :                  * more page. However wb_dirty has accounting errors.  So use
    1806             :                  * the larger and more IO friendly wb_stat_error.
    1807             :                  */
    1808           0 :                 if (sdtc->wb_dirty <= wb_stat_error())
    1809             :                         break;
    1810             : 
    1811           0 :                 if (fatal_signal_pending(current))
    1812             :                         break;
    1813             :         }
    1814             : 
    1815           0 :         if (!dirty_exceeded && wb->dirty_exceeded)
    1816           0 :                 wb->dirty_exceeded = 0;
    1817             : 
    1818           0 :         if (writeback_in_progress(wb))
    1819           0 :                 return;
    1820             : 
    1821             :         /*
    1822             :          * In laptop mode, we wait until hitting the higher threshold before
    1823             :          * starting background writeout, and then write out all the way down
    1824             :          * to the lower threshold.  So slow writers cause minimal disk activity.
    1825             :          *
    1826             :          * In normal mode, we start background writeout at the lower
    1827             :          * background_thresh, to keep the amount of dirty memory low.
    1828             :          */
    1829           0 :         if (laptop_mode)
    1830             :                 return;
    1831             : 
    1832           0 :         if (nr_reclaimable > gdtc->bg_thresh)
    1833           0 :                 wb_start_background_writeback(wb);
    1834             : }
    1835             : 
    1836             : static DEFINE_PER_CPU(int, bdp_ratelimits);
    1837             : 
    1838             : /*
    1839             :  * Normal tasks are throttled by
    1840             :  *      loop {
    1841             :  *              dirty tsk->nr_dirtied_pause pages;
    1842             :  *              take a snap in balance_dirty_pages();
    1843             :  *      }
    1844             :  * However there is a worst case. If every task exit immediately when dirtied
    1845             :  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
    1846             :  * called to throttle the page dirties. The solution is to save the not yet
    1847             :  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
    1848             :  * randomly into the running tasks. This works well for the above worst case,
    1849             :  * as the new task will pick up and accumulate the old task's leaked dirty
    1850             :  * count and eventually get throttled.
    1851             :  */
    1852             : DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
    1853             : 
    1854             : /**
    1855             :  * balance_dirty_pages_ratelimited - balance dirty memory state
    1856             :  * @mapping: address_space which was dirtied
    1857             :  *
    1858             :  * Processes which are dirtying memory should call in here once for each page
    1859             :  * which was newly dirtied.  The function will periodically check the system's
    1860             :  * dirty state and will initiate writeback if needed.
    1861             :  *
    1862             :  * Once we're over the dirty memory limit we decrease the ratelimiting
    1863             :  * by a lot, to prevent individual processes from overshooting the limit
    1864             :  * by (ratelimit_pages) each.
    1865             :  */
    1866           0 : void balance_dirty_pages_ratelimited(struct address_space *mapping)
    1867             : {
    1868           0 :         struct inode *inode = mapping->host;
    1869           0 :         struct backing_dev_info *bdi = inode_to_bdi(inode);
    1870           0 :         struct bdi_writeback *wb = NULL;
    1871             :         int ratelimit;
    1872             :         int *p;
    1873             : 
    1874           0 :         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
    1875             :                 return;
    1876             : 
    1877           0 :         if (inode_cgwb_enabled(inode))
    1878             :                 wb = wb_get_create_current(bdi, GFP_KERNEL);
    1879             :         if (!wb)
    1880           0 :                 wb = &bdi->wb;
    1881             : 
    1882           0 :         ratelimit = current->nr_dirtied_pause;
    1883           0 :         if (wb->dirty_exceeded)
    1884           0 :                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
    1885             : 
    1886           0 :         preempt_disable();
    1887             :         /*
    1888             :          * This prevents one CPU to accumulate too many dirtied pages without
    1889             :          * calling into balance_dirty_pages(), which can happen when there are
    1890             :          * 1000+ tasks, all of them start dirtying pages at exactly the same
    1891             :          * time, hence all honoured too large initial task->nr_dirtied_pause.
    1892             :          */
    1893           0 :         p =  this_cpu_ptr(&bdp_ratelimits);
    1894           0 :         if (unlikely(current->nr_dirtied >= ratelimit))
    1895           0 :                 *p = 0;
    1896           0 :         else if (unlikely(*p >= ratelimit_pages)) {
    1897           0 :                 *p = 0;
    1898           0 :                 ratelimit = 0;
    1899             :         }
    1900             :         /*
    1901             :          * Pick up the dirtied pages by the exited tasks. This avoids lots of
    1902             :          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
    1903             :          * the dirty throttling and livelock other long-run dirtiers.
    1904             :          */
    1905           0 :         p = this_cpu_ptr(&dirty_throttle_leaks);
    1906           0 :         if (*p > 0 && current->nr_dirtied < ratelimit) {
    1907             :                 unsigned long nr_pages_dirtied;
    1908           0 :                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
    1909           0 :                 *p -= nr_pages_dirtied;
    1910           0 :                 current->nr_dirtied += nr_pages_dirtied;
    1911             :         }
    1912           0 :         preempt_enable();
    1913             : 
    1914           0 :         if (unlikely(current->nr_dirtied >= ratelimit))
    1915           0 :                 balance_dirty_pages(wb, current->nr_dirtied);
    1916             : 
    1917             :         wb_put(wb);
    1918             : }
    1919             : EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
    1920             : 
    1921             : /**
    1922             :  * wb_over_bg_thresh - does @wb need to be written back?
    1923             :  * @wb: bdi_writeback of interest
    1924             :  *
    1925             :  * Determines whether background writeback should keep writing @wb or it's
    1926             :  * clean enough.
    1927             :  *
    1928             :  * Return: %true if writeback should continue.
    1929             :  */
    1930           0 : bool wb_over_bg_thresh(struct bdi_writeback *wb)
    1931             : {
    1932           0 :         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
    1933             :         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
    1934           0 :         struct dirty_throttle_control * const gdtc = &gdtc_stor;
    1935           0 :         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
    1936             :                                                      &mdtc_stor : NULL;
    1937             :         unsigned long reclaimable;
    1938             :         unsigned long thresh;
    1939             : 
    1940             :         /*
    1941             :          * Similar to balance_dirty_pages() but ignores pages being written
    1942             :          * as we're trying to decide whether to put more under writeback.
    1943             :          */
    1944           0 :         gdtc->avail = global_dirtyable_memory();
    1945           0 :         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
    1946           0 :         domain_dirty_limits(gdtc);
    1947             : 
    1948           0 :         if (gdtc->dirty > gdtc->bg_thresh)
    1949             :                 return true;
    1950             : 
    1951           0 :         thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
    1952           0 :         if (thresh < 2 * wb_stat_error())
    1953           0 :                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
    1954             :         else
    1955           0 :                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
    1956             : 
    1957           0 :         if (reclaimable > thresh)
    1958             :                 return true;
    1959             : 
    1960             :         if (mdtc) {
    1961             :                 unsigned long filepages, headroom, writeback;
    1962             : 
    1963             :                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
    1964             :                                     &writeback);
    1965             :                 mdtc_calc_avail(mdtc, filepages, headroom);
    1966             :                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
    1967             : 
    1968             :                 if (mdtc->dirty > mdtc->bg_thresh)
    1969             :                         return true;
    1970             : 
    1971             :                 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
    1972             :                 if (thresh < 2 * wb_stat_error())
    1973             :                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
    1974             :                 else
    1975             :                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
    1976             : 
    1977             :                 if (reclaimable > thresh)
    1978             :                         return true;
    1979             :         }
    1980             : 
    1981             :         return false;
    1982             : }
    1983             : 
    1984             : /*
    1985             :  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
    1986             :  */
    1987           0 : int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
    1988             :                 void *buffer, size_t *length, loff_t *ppos)
    1989             : {
    1990           0 :         unsigned int old_interval = dirty_writeback_interval;
    1991             :         int ret;
    1992             : 
    1993           0 :         ret = proc_dointvec(table, write, buffer, length, ppos);
    1994             : 
    1995             :         /*
    1996             :          * Writing 0 to dirty_writeback_interval will disable periodic writeback
    1997             :          * and a different non-zero value will wakeup the writeback threads.
    1998             :          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
    1999             :          * iterate over all bdis and wbs.
    2000             :          * The reason we do this is to make the change take effect immediately.
    2001             :          */
    2002           0 :         if (!ret && write && dirty_writeback_interval &&
    2003             :                 dirty_writeback_interval != old_interval)
    2004           0 :                 wakeup_flusher_threads(WB_REASON_PERIODIC);
    2005             : 
    2006           0 :         return ret;
    2007             : }
    2008             : 
    2009           0 : void laptop_mode_timer_fn(struct timer_list *t)
    2010             : {
    2011           0 :         struct backing_dev_info *backing_dev_info =
    2012           0 :                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
    2013             : 
    2014           0 :         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
    2015           0 : }
    2016             : 
    2017             : /*
    2018             :  * We've spun up the disk and we're in laptop mode: schedule writeback
    2019             :  * of all dirty data a few seconds from now.  If the flush is already scheduled
    2020             :  * then push it back - the user is still using the disk.
    2021             :  */
    2022           0 : void laptop_io_completion(struct backing_dev_info *info)
    2023             : {
    2024           0 :         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
    2025           0 : }
    2026             : 
    2027             : /*
    2028             :  * We're in laptop mode and we've just synced. The sync's writes will have
    2029             :  * caused another writeback to be scheduled by laptop_io_completion.
    2030             :  * Nothing needs to be written back anymore, so we unschedule the writeback.
    2031             :  */
    2032           0 : void laptop_sync_completion(void)
    2033             : {
    2034             :         struct backing_dev_info *bdi;
    2035             : 
    2036             :         rcu_read_lock();
    2037             : 
    2038           0 :         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
    2039           0 :                 del_timer(&bdi->laptop_mode_wb_timer);
    2040             : 
    2041             :         rcu_read_unlock();
    2042           0 : }
    2043             : 
    2044             : /*
    2045             :  * If ratelimit_pages is too high then we can get into dirty-data overload
    2046             :  * if a large number of processes all perform writes at the same time.
    2047             :  *
    2048             :  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
    2049             :  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
    2050             :  * thresholds.
    2051             :  */
    2052             : 
    2053           1 : void writeback_set_ratelimit(void)
    2054             : {
    2055           1 :         struct wb_domain *dom = &global_wb_domain;
    2056             :         unsigned long background_thresh;
    2057             :         unsigned long dirty_thresh;
    2058             : 
    2059           1 :         global_dirty_limits(&background_thresh, &dirty_thresh);
    2060           1 :         dom->dirty_limit = dirty_thresh;
    2061           1 :         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
    2062           1 :         if (ratelimit_pages < 16)
    2063           0 :                 ratelimit_pages = 16;
    2064           1 : }
    2065             : 
    2066           1 : static int page_writeback_cpu_online(unsigned int cpu)
    2067             : {
    2068           1 :         writeback_set_ratelimit();
    2069           1 :         return 0;
    2070             : }
    2071             : 
    2072             : /*
    2073             :  * Called early on to tune the page writeback dirty limits.
    2074             :  *
    2075             :  * We used to scale dirty pages according to how total memory
    2076             :  * related to pages that could be allocated for buffers.
    2077             :  *
    2078             :  * However, that was when we used "dirty_ratio" to scale with
    2079             :  * all memory, and we don't do that any more. "dirty_ratio"
    2080             :  * is now applied to total non-HIGHPAGE memory, and as such we can't
    2081             :  * get into the old insane situation any more where we had
    2082             :  * large amounts of dirty pages compared to a small amount of
    2083             :  * non-HIGHMEM memory.
    2084             :  *
    2085             :  * But we might still want to scale the dirty_ratio by how
    2086             :  * much memory the box has..
    2087             :  */
    2088           1 : void __init page_writeback_init(void)
    2089             : {
    2090           1 :         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
    2091             : 
    2092           1 :         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
    2093             :                           page_writeback_cpu_online, NULL);
    2094           1 :         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
    2095             :                           page_writeback_cpu_online);
    2096           1 : }
    2097             : 
    2098             : /**
    2099             :  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
    2100             :  * @mapping: address space structure to write
    2101             :  * @start: starting page index
    2102             :  * @end: ending page index (inclusive)
    2103             :  *
    2104             :  * This function scans the page range from @start to @end (inclusive) and tags
    2105             :  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
    2106             :  * that write_cache_pages (or whoever calls this function) will then use
    2107             :  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
    2108             :  * used to avoid livelocking of writeback by a process steadily creating new
    2109             :  * dirty pages in the file (thus it is important for this function to be quick
    2110             :  * so that it can tag pages faster than a dirtying process can create them).
    2111             :  */
    2112           0 : void tag_pages_for_writeback(struct address_space *mapping,
    2113             :                              pgoff_t start, pgoff_t end)
    2114             : {
    2115           0 :         XA_STATE(xas, &mapping->i_pages, start);
    2116           0 :         unsigned int tagged = 0;
    2117             :         void *page;
    2118             : 
    2119           0 :         xas_lock_irq(&xas);
    2120           0 :         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
    2121           0 :                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
    2122           0 :                 if (++tagged % XA_CHECK_SCHED)
    2123           0 :                         continue;
    2124             : 
    2125           0 :                 xas_pause(&xas);
    2126           0 :                 xas_unlock_irq(&xas);
    2127           0 :                 cond_resched();
    2128           0 :                 xas_lock_irq(&xas);
    2129             :         }
    2130           0 :         xas_unlock_irq(&xas);
    2131           0 : }
    2132             : EXPORT_SYMBOL(tag_pages_for_writeback);
    2133             : 
    2134             : /**
    2135             :  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
    2136             :  * @mapping: address space structure to write
    2137             :  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
    2138             :  * @writepage: function called for each page
    2139             :  * @data: data passed to writepage function
    2140             :  *
    2141             :  * If a page is already under I/O, write_cache_pages() skips it, even
    2142             :  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
    2143             :  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
    2144             :  * and msync() need to guarantee that all the data which was dirty at the time
    2145             :  * the call was made get new I/O started against them.  If wbc->sync_mode is
    2146             :  * WB_SYNC_ALL then we were called for data integrity and we must wait for
    2147             :  * existing IO to complete.
    2148             :  *
    2149             :  * To avoid livelocks (when other process dirties new pages), we first tag
    2150             :  * pages which should be written back with TOWRITE tag and only then start
    2151             :  * writing them. For data-integrity sync we have to be careful so that we do
    2152             :  * not miss some pages (e.g., because some other process has cleared TOWRITE
    2153             :  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
    2154             :  * by the process clearing the DIRTY tag (and submitting the page for IO).
    2155             :  *
    2156             :  * To avoid deadlocks between range_cyclic writeback and callers that hold
    2157             :  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
    2158             :  * we do not loop back to the start of the file. Doing so causes a page
    2159             :  * lock/page writeback access order inversion - we should only ever lock
    2160             :  * multiple pages in ascending page->index order, and looping back to the start
    2161             :  * of the file violates that rule and causes deadlocks.
    2162             :  *
    2163             :  * Return: %0 on success, negative error code otherwise
    2164             :  */
    2165           0 : int write_cache_pages(struct address_space *mapping,
    2166             :                       struct writeback_control *wbc, writepage_t writepage,
    2167             :                       void *data)
    2168             : {
    2169           0 :         int ret = 0;
    2170           0 :         int done = 0;
    2171             :         int error;
    2172             :         struct pagevec pvec;
    2173             :         int nr_pages;
    2174             :         pgoff_t index;
    2175             :         pgoff_t end;            /* Inclusive */
    2176             :         pgoff_t done_index;
    2177           0 :         int range_whole = 0;
    2178             :         xa_mark_t tag;
    2179             : 
    2180           0 :         pagevec_init(&pvec);
    2181           0 :         if (wbc->range_cyclic) {
    2182           0 :                 index = mapping->writeback_index; /* prev offset */
    2183           0 :                 end = -1;
    2184             :         } else {
    2185           0 :                 index = wbc->range_start >> PAGE_SHIFT;
    2186           0 :                 end = wbc->range_end >> PAGE_SHIFT;
    2187           0 :                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
    2188           0 :                         range_whole = 1;
    2189             :         }
    2190           0 :         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
    2191           0 :                 tag_pages_for_writeback(mapping, index, end);
    2192           0 :                 tag = PAGECACHE_TAG_TOWRITE;
    2193             :         } else {
    2194             :                 tag = PAGECACHE_TAG_DIRTY;
    2195             :         }
    2196           0 :         done_index = index;
    2197           0 :         while (!done && (index <= end)) {
    2198             :                 int i;
    2199             : 
    2200           0 :                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
    2201             :                                 tag);
    2202           0 :                 if (nr_pages == 0)
    2203             :                         break;
    2204             : 
    2205           0 :                 for (i = 0; i < nr_pages; i++) {
    2206           0 :                         struct page *page = pvec.pages[i];
    2207             : 
    2208           0 :                         done_index = page->index;
    2209             : 
    2210           0 :                         lock_page(page);
    2211             : 
    2212             :                         /*
    2213             :                          * Page truncated or invalidated. We can freely skip it
    2214             :                          * then, even for data integrity operations: the page
    2215             :                          * has disappeared concurrently, so there could be no
    2216             :                          * real expectation of this data integrity operation
    2217             :                          * even if there is now a new, dirty page at the same
    2218             :                          * pagecache address.
    2219             :                          */
    2220           0 :                         if (unlikely(page->mapping != mapping)) {
    2221             : continue_unlock:
    2222           0 :                                 unlock_page(page);
    2223           0 :                                 continue;
    2224             :                         }
    2225             : 
    2226           0 :                         if (!PageDirty(page)) {
    2227             :                                 /* someone wrote it for us */
    2228             :                                 goto continue_unlock;
    2229             :                         }
    2230             : 
    2231           0 :                         if (PageWriteback(page)) {
    2232           0 :                                 if (wbc->sync_mode != WB_SYNC_NONE)
    2233           0 :                                         wait_on_page_writeback(page);
    2234             :                                 else
    2235             :                                         goto continue_unlock;
    2236             :                         }
    2237             : 
    2238           0 :                         BUG_ON(PageWriteback(page));
    2239           0 :                         if (!clear_page_dirty_for_io(page))
    2240             :                                 goto continue_unlock;
    2241             : 
    2242           0 :                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
    2243           0 :                         error = (*writepage)(page, wbc, data);
    2244           0 :                         if (unlikely(error)) {
    2245             :                                 /*
    2246             :                                  * Handle errors according to the type of
    2247             :                                  * writeback. There's no need to continue for
    2248             :                                  * background writeback. Just push done_index
    2249             :                                  * past this page so media errors won't choke
    2250             :                                  * writeout for the entire file. For integrity
    2251             :                                  * writeback, we must process the entire dirty
    2252             :                                  * set regardless of errors because the fs may
    2253             :                                  * still have state to clear for each page. In
    2254             :                                  * that case we continue processing and return
    2255             :                                  * the first error.
    2256             :                                  */
    2257           0 :                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
    2258           0 :                                         unlock_page(page);
    2259           0 :                                         error = 0;
    2260           0 :                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
    2261           0 :                                         ret = error;
    2262           0 :                                         done_index = page->index + 1;
    2263           0 :                                         done = 1;
    2264           0 :                                         break;
    2265             :                                 }
    2266           0 :                                 if (!ret)
    2267           0 :                                         ret = error;
    2268             :                         }
    2269             : 
    2270             :                         /*
    2271             :                          * We stop writing back only if we are not doing
    2272             :                          * integrity sync. In case of integrity sync we have to
    2273             :                          * keep going until we have written all the pages
    2274             :                          * we tagged for writeback prior to entering this loop.
    2275             :                          */
    2276           0 :                         if (--wbc->nr_to_write <= 0 &&
    2277           0 :                             wbc->sync_mode == WB_SYNC_NONE) {
    2278             :                                 done = 1;
    2279             :                                 break;
    2280             :                         }
    2281             :                 }
    2282           0 :                 pagevec_release(&pvec);
    2283           0 :                 cond_resched();
    2284             :         }
    2285             : 
    2286             :         /*
    2287             :          * If we hit the last page and there is more work to be done: wrap
    2288             :          * back the index back to the start of the file for the next
    2289             :          * time we are called.
    2290             :          */
    2291           0 :         if (wbc->range_cyclic && !done)
    2292           0 :                 done_index = 0;
    2293           0 :         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
    2294           0 :                 mapping->writeback_index = done_index;
    2295             : 
    2296           0 :         return ret;
    2297             : }
    2298             : EXPORT_SYMBOL(write_cache_pages);
    2299             : 
    2300             : /*
    2301             :  * Function used by generic_writepages to call the real writepage
    2302             :  * function and set the mapping flags on error
    2303             :  */
    2304           0 : static int __writepage(struct page *page, struct writeback_control *wbc,
    2305             :                        void *data)
    2306             : {
    2307           0 :         struct address_space *mapping = data;
    2308           0 :         int ret = mapping->a_ops->writepage(page, wbc);
    2309           0 :         mapping_set_error(mapping, ret);
    2310           0 :         return ret;
    2311             : }
    2312             : 
    2313             : /**
    2314             :  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
    2315             :  * @mapping: address space structure to write
    2316             :  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
    2317             :  *
    2318             :  * This is a library function, which implements the writepages()
    2319             :  * address_space_operation.
    2320             :  *
    2321             :  * Return: %0 on success, negative error code otherwise
    2322             :  */
    2323           0 : int generic_writepages(struct address_space *mapping,
    2324             :                        struct writeback_control *wbc)
    2325             : {
    2326             :         struct blk_plug plug;
    2327             :         int ret;
    2328             : 
    2329             :         /* deal with chardevs and other special file */
    2330           0 :         if (!mapping->a_ops->writepage)
    2331             :                 return 0;
    2332             : 
    2333           0 :         blk_start_plug(&plug);
    2334           0 :         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
    2335           0 :         blk_finish_plug(&plug);
    2336           0 :         return ret;
    2337             : }
    2338             : 
    2339             : EXPORT_SYMBOL(generic_writepages);
    2340             : 
    2341           0 : int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
    2342             : {
    2343             :         int ret;
    2344             :         struct bdi_writeback *wb;
    2345             : 
    2346           0 :         if (wbc->nr_to_write <= 0)
    2347             :                 return 0;
    2348           0 :         wb = inode_to_wb_wbc(mapping->host, wbc);
    2349             :         wb_bandwidth_estimate_start(wb);
    2350             :         while (1) {
    2351           0 :                 if (mapping->a_ops->writepages)
    2352           0 :                         ret = mapping->a_ops->writepages(mapping, wbc);
    2353             :                 else
    2354           0 :                         ret = generic_writepages(mapping, wbc);
    2355           0 :                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
    2356             :                         break;
    2357             : 
    2358             :                 /*
    2359             :                  * Lacking an allocation context or the locality or writeback
    2360             :                  * state of any of the inode's pages, throttle based on
    2361             :                  * writeback activity on the local node. It's as good a
    2362             :                  * guess as any.
    2363             :                  */
    2364           0 :                 reclaim_throttle(NODE_DATA(numa_node_id()),
    2365             :                         VMSCAN_THROTTLE_WRITEBACK);
    2366             :         }
    2367             :         /*
    2368             :          * Usually few pages are written by now from those we've just submitted
    2369             :          * but if there's constant writeback being submitted, this makes sure
    2370             :          * writeback bandwidth is updated once in a while.
    2371             :          */
    2372           0 :         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
    2373             :                                    BANDWIDTH_INTERVAL))
    2374           0 :                 wb_update_bandwidth(wb);
    2375             :         return ret;
    2376             : }
    2377             : 
    2378             : /**
    2379             :  * folio_write_one - write out a single folio and wait on I/O.
    2380             :  * @folio: The folio to write.
    2381             :  *
    2382             :  * The folio must be locked by the caller and will be unlocked upon return.
    2383             :  *
    2384             :  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
    2385             :  * function returns.
    2386             :  *
    2387             :  * Return: %0 on success, negative error code otherwise
    2388             :  */
    2389           0 : int folio_write_one(struct folio *folio)
    2390             : {
    2391           0 :         struct address_space *mapping = folio->mapping;
    2392           0 :         int ret = 0;
    2393           0 :         struct writeback_control wbc = {
    2394             :                 .sync_mode = WB_SYNC_ALL,
    2395           0 :                 .nr_to_write = folio_nr_pages(folio),
    2396             :         };
    2397             : 
    2398           0 :         BUG_ON(!folio_test_locked(folio));
    2399             : 
    2400           0 :         folio_wait_writeback(folio);
    2401             : 
    2402           0 :         if (folio_clear_dirty_for_io(folio)) {
    2403           0 :                 folio_get(folio);
    2404           0 :                 ret = mapping->a_ops->writepage(&folio->page, &wbc);
    2405           0 :                 if (ret == 0)
    2406           0 :                         folio_wait_writeback(folio);
    2407             :                 folio_put(folio);
    2408             :         } else {
    2409           0 :                 folio_unlock(folio);
    2410             :         }
    2411             : 
    2412           0 :         if (!ret)
    2413           0 :                 ret = filemap_check_errors(mapping);
    2414           0 :         return ret;
    2415             : }
    2416             : EXPORT_SYMBOL(folio_write_one);
    2417             : 
    2418             : /*
    2419             :  * For address_spaces which do not use buffers nor write back.
    2420             :  */
    2421           0 : bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
    2422             : {
    2423           0 :         if (!folio_test_dirty(folio))
    2424           0 :                 return !folio_test_set_dirty(folio);
    2425             :         return false;
    2426             : }
    2427             : EXPORT_SYMBOL(noop_dirty_folio);
    2428             : 
    2429             : /*
    2430             :  * Helper function for set_page_dirty family.
    2431             :  *
    2432             :  * Caller must hold lock_page_memcg().
    2433             :  *
    2434             :  * NOTE: This relies on being atomic wrt interrupts.
    2435             :  */
    2436           0 : static void folio_account_dirtied(struct folio *folio,
    2437             :                 struct address_space *mapping)
    2438             : {
    2439           0 :         struct inode *inode = mapping->host;
    2440             : 
    2441           0 :         trace_writeback_dirty_folio(folio, mapping);
    2442             : 
    2443           0 :         if (mapping_can_writeback(mapping)) {
    2444             :                 struct bdi_writeback *wb;
    2445           0 :                 long nr = folio_nr_pages(folio);
    2446             : 
    2447           0 :                 inode_attach_wb(inode, &folio->page);
    2448           0 :                 wb = inode_to_wb(inode);
    2449             : 
    2450           0 :                 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
    2451           0 :                 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
    2452           0 :                 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
    2453           0 :                 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
    2454           0 :                 wb_stat_mod(wb, WB_DIRTIED, nr);
    2455           0 :                 task_io_account_write(nr * PAGE_SIZE);
    2456           0 :                 current->nr_dirtied += nr;
    2457           0 :                 __this_cpu_add(bdp_ratelimits, nr);
    2458             : 
    2459           0 :                 mem_cgroup_track_foreign_dirty(folio, wb);
    2460             :         }
    2461           0 : }
    2462             : 
    2463             : /*
    2464             :  * Helper function for deaccounting dirty page without writeback.
    2465             :  *
    2466             :  * Caller must hold lock_page_memcg().
    2467             :  */
    2468           0 : void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
    2469             : {
    2470           0 :         long nr = folio_nr_pages(folio);
    2471             : 
    2472           0 :         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
    2473           0 :         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
    2474           0 :         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
    2475           0 :         task_io_account_cancelled_write(nr * PAGE_SIZE);
    2476           0 : }
    2477             : 
    2478             : /*
    2479             :  * Mark the folio dirty, and set it dirty in the page cache, and mark
    2480             :  * the inode dirty.
    2481             :  *
    2482             :  * If warn is true, then emit a warning if the folio is not uptodate and has
    2483             :  * not been truncated.
    2484             :  *
    2485             :  * The caller must hold lock_page_memcg().  Most callers have the folio
    2486             :  * locked.  A few have the folio blocked from truncation through other
    2487             :  * means (eg zap_page_range() has it mapped and is holding the page table
    2488             :  * lock).  This can also be called from mark_buffer_dirty(), which I
    2489             :  * cannot prove is always protected against truncate.
    2490             :  */
    2491           0 : void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
    2492             :                              int warn)
    2493             : {
    2494             :         unsigned long flags;
    2495             : 
    2496           0 :         xa_lock_irqsave(&mapping->i_pages, flags);
    2497           0 :         if (folio->mapping) {        /* Race with truncate? */
    2498           0 :                 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
    2499           0 :                 folio_account_dirtied(folio, mapping);
    2500           0 :                 __xa_set_mark(&mapping->i_pages, folio_index(folio),
    2501             :                                 PAGECACHE_TAG_DIRTY);
    2502             :         }
    2503           0 :         xa_unlock_irqrestore(&mapping->i_pages, flags);
    2504           0 : }
    2505             : 
    2506             : /**
    2507             :  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
    2508             :  * @mapping: Address space this folio belongs to.
    2509             :  * @folio: Folio to be marked as dirty.
    2510             :  *
    2511             :  * Filesystems which do not use buffer heads should call this function
    2512             :  * from their set_page_dirty address space operation.  It ignores the
    2513             :  * contents of folio_get_private(), so if the filesystem marks individual
    2514             :  * blocks as dirty, the filesystem should handle that itself.
    2515             :  *
    2516             :  * This is also sometimes used by filesystems which use buffer_heads when
    2517             :  * a single buffer is being dirtied: we want to set the folio dirty in
    2518             :  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
    2519             :  * whereas block_dirty_folio() is a "top-down" dirtying.
    2520             :  *
    2521             :  * The caller must ensure this doesn't race with truncation.  Most will
    2522             :  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
    2523             :  * folio mapped and the pte lock held, which also locks out truncation.
    2524             :  */
    2525           0 : bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
    2526             : {
    2527           0 :         folio_memcg_lock(folio);
    2528           0 :         if (folio_test_set_dirty(folio)) {
    2529             :                 folio_memcg_unlock(folio);
    2530             :                 return false;
    2531             :         }
    2532             : 
    2533           0 :         __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
    2534           0 :         folio_memcg_unlock(folio);
    2535             : 
    2536           0 :         if (mapping->host) {
    2537             :                 /* !PageAnon && !swapper_space */
    2538           0 :                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
    2539             :         }
    2540             :         return true;
    2541             : }
    2542             : EXPORT_SYMBOL(filemap_dirty_folio);
    2543             : 
    2544             : /**
    2545             :  * folio_account_redirty - Manually account for redirtying a page.
    2546             :  * @folio: The folio which is being redirtied.
    2547             :  *
    2548             :  * Most filesystems should call folio_redirty_for_writepage() instead
    2549             :  * of this fuction.  If your filesystem is doing writeback outside the
    2550             :  * context of a writeback_control(), it can call this when redirtying
    2551             :  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
    2552             :  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
    2553             :  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
    2554             :  * in balanced_dirty_ratelimit and the dirty pages position control.
    2555             :  */
    2556           0 : void folio_account_redirty(struct folio *folio)
    2557             : {
    2558           0 :         struct address_space *mapping = folio->mapping;
    2559             : 
    2560           0 :         if (mapping && mapping_can_writeback(mapping)) {
    2561           0 :                 struct inode *inode = mapping->host;
    2562             :                 struct bdi_writeback *wb;
    2563           0 :                 struct wb_lock_cookie cookie = {};
    2564           0 :                 long nr = folio_nr_pages(folio);
    2565             : 
    2566           0 :                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
    2567           0 :                 current->nr_dirtied -= nr;
    2568           0 :                 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
    2569           0 :                 wb_stat_mod(wb, WB_DIRTIED, -nr);
    2570           0 :                 unlocked_inode_to_wb_end(inode, &cookie);
    2571             :         }
    2572           0 : }
    2573             : EXPORT_SYMBOL(folio_account_redirty);
    2574             : 
    2575             : /**
    2576             :  * folio_redirty_for_writepage - Decline to write a dirty folio.
    2577             :  * @wbc: The writeback control.
    2578             :  * @folio: The folio.
    2579             :  *
    2580             :  * When a writepage implementation decides that it doesn't want to write
    2581             :  * @folio for some reason, it should call this function, unlock @folio and
    2582             :  * return 0.
    2583             :  *
    2584             :  * Return: True if we redirtied the folio.  False if someone else dirtied
    2585             :  * it first.
    2586             :  */
    2587           0 : bool folio_redirty_for_writepage(struct writeback_control *wbc,
    2588             :                 struct folio *folio)
    2589             : {
    2590             :         bool ret;
    2591           0 :         long nr = folio_nr_pages(folio);
    2592             : 
    2593           0 :         wbc->pages_skipped += nr;
    2594           0 :         ret = filemap_dirty_folio(folio->mapping, folio);
    2595           0 :         folio_account_redirty(folio);
    2596             : 
    2597           0 :         return ret;
    2598             : }
    2599             : EXPORT_SYMBOL(folio_redirty_for_writepage);
    2600             : 
    2601             : /**
    2602             :  * folio_mark_dirty - Mark a folio as being modified.
    2603             :  * @folio: The folio.
    2604             :  *
    2605             :  * For folios with a mapping this should be done with the folio lock held
    2606             :  * for the benefit of asynchronous memory errors who prefer a consistent
    2607             :  * dirty state. This rule can be broken in some special cases,
    2608             :  * but should be better not to.
    2609             :  *
    2610             :  * Return: True if the folio was newly dirtied, false if it was already dirty.
    2611             :  */
    2612           0 : bool folio_mark_dirty(struct folio *folio)
    2613             : {
    2614           0 :         struct address_space *mapping = folio_mapping(folio);
    2615             : 
    2616           0 :         if (likely(mapping)) {
    2617             :                 /*
    2618             :                  * readahead/lru_deactivate_page could remain
    2619             :                  * PG_readahead/PG_reclaim due to race with folio_end_writeback
    2620             :                  * About readahead, if the folio is written, the flags would be
    2621             :                  * reset. So no problem.
    2622             :                  * About lru_deactivate_page, if the folio is redirtied,
    2623             :                  * the flag will be reset. So no problem. but if the
    2624             :                  * folio is used by readahead it will confuse readahead
    2625             :                  * and make it restart the size rampup process. But it's
    2626             :                  * a trivial problem.
    2627             :                  */
    2628           0 :                 if (folio_test_reclaim(folio))
    2629             :                         folio_clear_reclaim(folio);
    2630           0 :                 return mapping->a_ops->dirty_folio(mapping, folio);
    2631             :         }
    2632             : 
    2633             :         return noop_dirty_folio(mapping, folio);
    2634             : }
    2635             : EXPORT_SYMBOL(folio_mark_dirty);
    2636             : 
    2637             : /*
    2638             :  * set_page_dirty() is racy if the caller has no reference against
    2639             :  * page->mapping->host, and if the page is unlocked.  This is because another
    2640             :  * CPU could truncate the page off the mapping and then free the mapping.
    2641             :  *
    2642             :  * Usually, the page _is_ locked, or the caller is a user-space process which
    2643             :  * holds a reference on the inode by having an open file.
    2644             :  *
    2645             :  * In other cases, the page should be locked before running set_page_dirty().
    2646             :  */
    2647           0 : int set_page_dirty_lock(struct page *page)
    2648             : {
    2649             :         int ret;
    2650             : 
    2651           0 :         lock_page(page);
    2652           0 :         ret = set_page_dirty(page);
    2653           0 :         unlock_page(page);
    2654           0 :         return ret;
    2655             : }
    2656             : EXPORT_SYMBOL(set_page_dirty_lock);
    2657             : 
    2658             : /*
    2659             :  * This cancels just the dirty bit on the kernel page itself, it does NOT
    2660             :  * actually remove dirty bits on any mmap's that may be around. It also
    2661             :  * leaves the page tagged dirty, so any sync activity will still find it on
    2662             :  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
    2663             :  * look at the dirty bits in the VM.
    2664             :  *
    2665             :  * Doing this should *normally* only ever be done when a page is truncated,
    2666             :  * and is not actually mapped anywhere at all. However, fs/buffer.c does
    2667             :  * this when it notices that somebody has cleaned out all the buffers on a
    2668             :  * page without actually doing it through the VM. Can you say "ext3 is
    2669             :  * horribly ugly"? Thought you could.
    2670             :  */
    2671           0 : void __folio_cancel_dirty(struct folio *folio)
    2672             : {
    2673           0 :         struct address_space *mapping = folio_mapping(folio);
    2674             : 
    2675           0 :         if (mapping_can_writeback(mapping)) {
    2676           0 :                 struct inode *inode = mapping->host;
    2677             :                 struct bdi_writeback *wb;
    2678             :                 struct wb_lock_cookie cookie = {};
    2679             : 
    2680           0 :                 folio_memcg_lock(folio);
    2681           0 :                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
    2682             : 
    2683           0 :                 if (folio_test_clear_dirty(folio))
    2684             :                         folio_account_cleaned(folio, wb);
    2685             : 
    2686           0 :                 unlocked_inode_to_wb_end(inode, &cookie);
    2687           0 :                 folio_memcg_unlock(folio);
    2688             :         } else {
    2689             :                 folio_clear_dirty(folio);
    2690             :         }
    2691           0 : }
    2692             : EXPORT_SYMBOL(__folio_cancel_dirty);
    2693             : 
    2694             : /*
    2695             :  * Clear a folio's dirty flag, while caring for dirty memory accounting.
    2696             :  * Returns true if the folio was previously dirty.
    2697             :  *
    2698             :  * This is for preparing to put the folio under writeout.  We leave
    2699             :  * the folio tagged as dirty in the xarray so that a concurrent
    2700             :  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
    2701             :  * The ->writepage implementation will run either folio_start_writeback()
    2702             :  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
    2703             :  * and xarray dirty tag back into sync.
    2704             :  *
    2705             :  * This incoherency between the folio's dirty flag and xarray tag is
    2706             :  * unfortunate, but it only exists while the folio is locked.
    2707             :  */
    2708           0 : bool folio_clear_dirty_for_io(struct folio *folio)
    2709             : {
    2710           0 :         struct address_space *mapping = folio_mapping(folio);
    2711           0 :         bool ret = false;
    2712             : 
    2713             :         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
    2714             : 
    2715           0 :         if (mapping && mapping_can_writeback(mapping)) {
    2716           0 :                 struct inode *inode = mapping->host;
    2717             :                 struct bdi_writeback *wb;
    2718             :                 struct wb_lock_cookie cookie = {};
    2719             : 
    2720             :                 /*
    2721             :                  * Yes, Virginia, this is indeed insane.
    2722             :                  *
    2723             :                  * We use this sequence to make sure that
    2724             :                  *  (a) we account for dirty stats properly
    2725             :                  *  (b) we tell the low-level filesystem to
    2726             :                  *      mark the whole folio dirty if it was
    2727             :                  *      dirty in a pagetable. Only to then
    2728             :                  *  (c) clean the folio again and return 1 to
    2729             :                  *      cause the writeback.
    2730             :                  *
    2731             :                  * This way we avoid all nasty races with the
    2732             :                  * dirty bit in multiple places and clearing
    2733             :                  * them concurrently from different threads.
    2734             :                  *
    2735             :                  * Note! Normally the "folio_mark_dirty(folio)"
    2736             :                  * has no effect on the actual dirty bit - since
    2737             :                  * that will already usually be set. But we
    2738             :                  * need the side effects, and it can help us
    2739             :                  * avoid races.
    2740             :                  *
    2741             :                  * We basically use the folio "master dirty bit"
    2742             :                  * as a serialization point for all the different
    2743             :                  * threads doing their things.
    2744             :                  */
    2745           0 :                 if (folio_mkclean(folio))
    2746           0 :                         folio_mark_dirty(folio);
    2747             :                 /*
    2748             :                  * We carefully synchronise fault handlers against
    2749             :                  * installing a dirty pte and marking the folio dirty
    2750             :                  * at this point.  We do this by having them hold the
    2751             :                  * page lock while dirtying the folio, and folios are
    2752             :                  * always locked coming in here, so we get the desired
    2753             :                  * exclusion.
    2754             :                  */
    2755           0 :                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
    2756           0 :                 if (folio_test_clear_dirty(folio)) {
    2757           0 :                         long nr = folio_nr_pages(folio);
    2758           0 :                         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
    2759           0 :                         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
    2760           0 :                         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
    2761           0 :                         ret = true;
    2762             :                 }
    2763           0 :                 unlocked_inode_to_wb_end(inode, &cookie);
    2764             :                 return ret;
    2765             :         }
    2766           0 :         return folio_test_clear_dirty(folio);
    2767             : }
    2768             : EXPORT_SYMBOL(folio_clear_dirty_for_io);
    2769             : 
    2770             : static void wb_inode_writeback_start(struct bdi_writeback *wb)
    2771             : {
    2772           0 :         atomic_inc(&wb->writeback_inodes);
    2773             : }
    2774             : 
    2775             : static void wb_inode_writeback_end(struct bdi_writeback *wb)
    2776             : {
    2777           0 :         atomic_dec(&wb->writeback_inodes);
    2778             :         /*
    2779             :          * Make sure estimate of writeback throughput gets updated after
    2780             :          * writeback completed. We delay the update by BANDWIDTH_INTERVAL
    2781             :          * (which is the interval other bandwidth updates use for batching) so
    2782             :          * that if multiple inodes end writeback at a similar time, they get
    2783             :          * batched into one bandwidth update.
    2784             :          */
    2785           0 :         queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
    2786             : }
    2787             : 
    2788           0 : bool __folio_end_writeback(struct folio *folio)
    2789             : {
    2790           0 :         long nr = folio_nr_pages(folio);
    2791           0 :         struct address_space *mapping = folio_mapping(folio);
    2792             :         bool ret;
    2793             : 
    2794           0 :         folio_memcg_lock(folio);
    2795           0 :         if (mapping && mapping_use_writeback_tags(mapping)) {
    2796           0 :                 struct inode *inode = mapping->host;
    2797           0 :                 struct backing_dev_info *bdi = inode_to_bdi(inode);
    2798             :                 unsigned long flags;
    2799             : 
    2800           0 :                 xa_lock_irqsave(&mapping->i_pages, flags);
    2801           0 :                 ret = folio_test_clear_writeback(folio);
    2802           0 :                 if (ret) {
    2803           0 :                         __xa_clear_mark(&mapping->i_pages, folio_index(folio),
    2804             :                                                 PAGECACHE_TAG_WRITEBACK);
    2805           0 :                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
    2806           0 :                                 struct bdi_writeback *wb = inode_to_wb(inode);
    2807             : 
    2808           0 :                                 wb_stat_mod(wb, WB_WRITEBACK, -nr);
    2809           0 :                                 __wb_writeout_add(wb, nr);
    2810           0 :                                 if (!mapping_tagged(mapping,
    2811             :                                                     PAGECACHE_TAG_WRITEBACK))
    2812             :                                         wb_inode_writeback_end(wb);
    2813             :                         }
    2814             :                 }
    2815             : 
    2816           0 :                 if (mapping->host && !mapping_tagged(mapping,
    2817             :                                                      PAGECACHE_TAG_WRITEBACK))
    2818           0 :                         sb_clear_inode_writeback(mapping->host);
    2819             : 
    2820           0 :                 xa_unlock_irqrestore(&mapping->i_pages, flags);
    2821             :         } else {
    2822           0 :                 ret = folio_test_clear_writeback(folio);
    2823             :         }
    2824           0 :         if (ret) {
    2825           0 :                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
    2826           0 :                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
    2827           0 :                 node_stat_mod_folio(folio, NR_WRITTEN, nr);
    2828             :         }
    2829           0 :         folio_memcg_unlock(folio);
    2830           0 :         return ret;
    2831             : }
    2832             : 
    2833           0 : bool __folio_start_writeback(struct folio *folio, bool keep_write)
    2834             : {
    2835           0 :         long nr = folio_nr_pages(folio);
    2836           0 :         struct address_space *mapping = folio_mapping(folio);
    2837             :         bool ret;
    2838             :         int access_ret;
    2839             : 
    2840           0 :         folio_memcg_lock(folio);
    2841           0 :         if (mapping && mapping_use_writeback_tags(mapping)) {
    2842           0 :                 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
    2843           0 :                 struct inode *inode = mapping->host;
    2844           0 :                 struct backing_dev_info *bdi = inode_to_bdi(inode);
    2845             :                 unsigned long flags;
    2846             : 
    2847           0 :                 xas_lock_irqsave(&xas, flags);
    2848           0 :                 xas_load(&xas);
    2849           0 :                 ret = folio_test_set_writeback(folio);
    2850           0 :                 if (!ret) {
    2851             :                         bool on_wblist;
    2852             : 
    2853           0 :                         on_wblist = mapping_tagged(mapping,
    2854             :                                                    PAGECACHE_TAG_WRITEBACK);
    2855             : 
    2856           0 :                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
    2857           0 :                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
    2858           0 :                                 struct bdi_writeback *wb = inode_to_wb(inode);
    2859             : 
    2860           0 :                                 wb_stat_mod(wb, WB_WRITEBACK, nr);
    2861           0 :                                 if (!on_wblist)
    2862             :                                         wb_inode_writeback_start(wb);
    2863             :                         }
    2864             : 
    2865             :                         /*
    2866             :                          * We can come through here when swapping
    2867             :                          * anonymous folios, so we don't necessarily
    2868             :                          * have an inode to track for sync.
    2869             :                          */
    2870           0 :                         if (mapping->host && !on_wblist)
    2871           0 :                                 sb_mark_inode_writeback(mapping->host);
    2872             :                 }
    2873           0 :                 if (!folio_test_dirty(folio))
    2874           0 :                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
    2875           0 :                 if (!keep_write)
    2876           0 :                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
    2877           0 :                 xas_unlock_irqrestore(&xas, flags);
    2878             :         } else {
    2879           0 :                 ret = folio_test_set_writeback(folio);
    2880             :         }
    2881           0 :         if (!ret) {
    2882           0 :                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
    2883             :                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
    2884             :         }
    2885           0 :         folio_memcg_unlock(folio);
    2886           0 :         access_ret = arch_make_folio_accessible(folio);
    2887             :         /*
    2888             :          * If writeback has been triggered on a page that cannot be made
    2889             :          * accessible, it is too late to recover here.
    2890             :          */
    2891             :         VM_BUG_ON_FOLIO(access_ret != 0, folio);
    2892             : 
    2893           0 :         return ret;
    2894             : }
    2895             : EXPORT_SYMBOL(__folio_start_writeback);
    2896             : 
    2897             : /**
    2898             :  * folio_wait_writeback - Wait for a folio to finish writeback.
    2899             :  * @folio: The folio to wait for.
    2900             :  *
    2901             :  * If the folio is currently being written back to storage, wait for the
    2902             :  * I/O to complete.
    2903             :  *
    2904             :  * Context: Sleeps.  Must be called in process context and with
    2905             :  * no spinlocks held.  Caller should hold a reference on the folio.
    2906             :  * If the folio is not locked, writeback may start again after writeback
    2907             :  * has finished.
    2908             :  */
    2909           0 : void folio_wait_writeback(struct folio *folio)
    2910             : {
    2911           0 :         while (folio_test_writeback(folio)) {
    2912           0 :                 trace_folio_wait_writeback(folio, folio_mapping(folio));
    2913           0 :                 folio_wait_bit(folio, PG_writeback);
    2914             :         }
    2915           0 : }
    2916             : EXPORT_SYMBOL_GPL(folio_wait_writeback);
    2917             : 
    2918             : /**
    2919             :  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
    2920             :  * @folio: The folio to wait for.
    2921             :  *
    2922             :  * If the folio is currently being written back to storage, wait for the
    2923             :  * I/O to complete or a fatal signal to arrive.
    2924             :  *
    2925             :  * Context: Sleeps.  Must be called in process context and with
    2926             :  * no spinlocks held.  Caller should hold a reference on the folio.
    2927             :  * If the folio is not locked, writeback may start again after writeback
    2928             :  * has finished.
    2929             :  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
    2930             :  */
    2931           0 : int folio_wait_writeback_killable(struct folio *folio)
    2932             : {
    2933           0 :         while (folio_test_writeback(folio)) {
    2934           0 :                 trace_folio_wait_writeback(folio, folio_mapping(folio));
    2935           0 :                 if (folio_wait_bit_killable(folio, PG_writeback))
    2936             :                         return -EINTR;
    2937             :         }
    2938             : 
    2939             :         return 0;
    2940             : }
    2941             : EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
    2942             : 
    2943             : /**
    2944             :  * folio_wait_stable() - wait for writeback to finish, if necessary.
    2945             :  * @folio: The folio to wait on.
    2946             :  *
    2947             :  * This function determines if the given folio is related to a backing
    2948             :  * device that requires folio contents to be held stable during writeback.
    2949             :  * If so, then it will wait for any pending writeback to complete.
    2950             :  *
    2951             :  * Context: Sleeps.  Must be called in process context and with
    2952             :  * no spinlocks held.  Caller should hold a reference on the folio.
    2953             :  * If the folio is not locked, writeback may start again after writeback
    2954             :  * has finished.
    2955             :  */
    2956           0 : void folio_wait_stable(struct folio *folio)
    2957             : {
    2958           0 :         if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
    2959           0 :                 folio_wait_writeback(folio);
    2960           0 : }
    2961             : EXPORT_SYMBOL_GPL(folio_wait_stable);

Generated by: LCOV version 1.14