Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/mm/page_alloc.c
4 : *
5 : * Manages the free list, the system allocates free pages here.
6 : * Note that kmalloc() lives in slab.c
7 : *
8 : * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 : * Swap reorganised 29.12.95, Stephen Tweedie
10 : * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 : * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 : * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 : * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 : * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 : * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 : */
17 :
18 : #include <linux/stddef.h>
19 : #include <linux/mm.h>
20 : #include <linux/highmem.h>
21 : #include <linux/swap.h>
22 : #include <linux/swapops.h>
23 : #include <linux/interrupt.h>
24 : #include <linux/pagemap.h>
25 : #include <linux/jiffies.h>
26 : #include <linux/memblock.h>
27 : #include <linux/compiler.h>
28 : #include <linux/kernel.h>
29 : #include <linux/kasan.h>
30 : #include <linux/module.h>
31 : #include <linux/suspend.h>
32 : #include <linux/pagevec.h>
33 : #include <linux/blkdev.h>
34 : #include <linux/slab.h>
35 : #include <linux/ratelimit.h>
36 : #include <linux/oom.h>
37 : #include <linux/topology.h>
38 : #include <linux/sysctl.h>
39 : #include <linux/cpu.h>
40 : #include <linux/cpuset.h>
41 : #include <linux/memory_hotplug.h>
42 : #include <linux/nodemask.h>
43 : #include <linux/vmalloc.h>
44 : #include <linux/vmstat.h>
45 : #include <linux/mempolicy.h>
46 : #include <linux/memremap.h>
47 : #include <linux/stop_machine.h>
48 : #include <linux/random.h>
49 : #include <linux/sort.h>
50 : #include <linux/pfn.h>
51 : #include <linux/backing-dev.h>
52 : #include <linux/fault-inject.h>
53 : #include <linux/page-isolation.h>
54 : #include <linux/debugobjects.h>
55 : #include <linux/kmemleak.h>
56 : #include <linux/compaction.h>
57 : #include <trace/events/kmem.h>
58 : #include <trace/events/oom.h>
59 : #include <linux/prefetch.h>
60 : #include <linux/mm_inline.h>
61 : #include <linux/mmu_notifier.h>
62 : #include <linux/migrate.h>
63 : #include <linux/hugetlb.h>
64 : #include <linux/sched/rt.h>
65 : #include <linux/sched/mm.h>
66 : #include <linux/page_owner.h>
67 : #include <linux/page_table_check.h>
68 : #include <linux/kthread.h>
69 : #include <linux/memcontrol.h>
70 : #include <linux/ftrace.h>
71 : #include <linux/lockdep.h>
72 : #include <linux/nmi.h>
73 : #include <linux/psi.h>
74 : #include <linux/padata.h>
75 : #include <linux/khugepaged.h>
76 : #include <linux/buffer_head.h>
77 : #include <linux/delayacct.h>
78 : #include <asm/sections.h>
79 : #include <asm/tlbflush.h>
80 : #include <asm/div64.h>
81 : #include "internal.h"
82 : #include "shuffle.h"
83 : #include "page_reporting.h"
84 :
85 : /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 : typedef int __bitwise fpi_t;
87 :
88 : /* No special request */
89 : #define FPI_NONE ((__force fpi_t)0)
90 :
91 : /*
92 : * Skip free page reporting notification for the (possibly merged) page.
93 : * This does not hinder free page reporting from grabbing the page,
94 : * reporting it and marking it "reported" - it only skips notifying
95 : * the free page reporting infrastructure about a newly freed page. For
96 : * example, used when temporarily pulling a page from a freelist and
97 : * putting it back unmodified.
98 : */
99 : #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100 :
101 : /*
102 : * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 : * page shuffling (relevant code - e.g., memory onlining - is expected to
104 : * shuffle the whole zone).
105 : *
106 : * Note: No code should rely on this flag for correctness - it's purely
107 : * to allow for optimizations when handing back either fresh pages
108 : * (memory onlining) or untouched pages (page isolation, free page
109 : * reporting).
110 : */
111 : #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
112 :
113 : /*
114 : * Don't poison memory with KASAN (only for the tag-based modes).
115 : * During boot, all non-reserved memblock memory is exposed to page_alloc.
116 : * Poisoning all that memory lengthens boot time, especially on systems with
117 : * large amount of RAM. This flag is used to skip that poisoning.
118 : * This is only done for the tag-based KASAN modes, as those are able to
119 : * detect memory corruptions with the memory tags assigned by default.
120 : * All memory allocated normally after boot gets poisoned as usual.
121 : */
122 : #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
123 :
124 : /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
125 : static DEFINE_MUTEX(pcp_batch_high_lock);
126 : #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
127 :
128 : struct pagesets {
129 : local_lock_t lock;
130 : };
131 : static DEFINE_PER_CPU(struct pagesets, pagesets) = {
132 : .lock = INIT_LOCAL_LOCK(lock),
133 : };
134 :
135 : #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
136 : DEFINE_PER_CPU(int, numa_node);
137 : EXPORT_PER_CPU_SYMBOL(numa_node);
138 : #endif
139 :
140 : DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
141 :
142 : #ifdef CONFIG_HAVE_MEMORYLESS_NODES
143 : /*
144 : * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
145 : * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
146 : * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
147 : * defined in <linux/topology.h>.
148 : */
149 : DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
150 : EXPORT_PER_CPU_SYMBOL(_numa_mem_);
151 : #endif
152 :
153 : /* work_structs for global per-cpu drains */
154 : struct pcpu_drain {
155 : struct zone *zone;
156 : struct work_struct work;
157 : };
158 : static DEFINE_MUTEX(pcpu_drain_mutex);
159 : static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
160 :
161 : #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
162 : volatile unsigned long latent_entropy __latent_entropy;
163 : EXPORT_SYMBOL(latent_entropy);
164 : #endif
165 :
166 : /*
167 : * Array of node states.
168 : */
169 : nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
170 : [N_POSSIBLE] = NODE_MASK_ALL,
171 : [N_ONLINE] = { { [0] = 1UL } },
172 : #ifndef CONFIG_NUMA
173 : [N_NORMAL_MEMORY] = { { [0] = 1UL } },
174 : #ifdef CONFIG_HIGHMEM
175 : [N_HIGH_MEMORY] = { { [0] = 1UL } },
176 : #endif
177 : [N_MEMORY] = { { [0] = 1UL } },
178 : [N_CPU] = { { [0] = 1UL } },
179 : #endif /* NUMA */
180 : };
181 : EXPORT_SYMBOL(node_states);
182 :
183 : atomic_long_t _totalram_pages __read_mostly;
184 : EXPORT_SYMBOL(_totalram_pages);
185 : unsigned long totalreserve_pages __read_mostly;
186 : unsigned long totalcma_pages __read_mostly;
187 :
188 : int percpu_pagelist_high_fraction;
189 : gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
190 : DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
191 : EXPORT_SYMBOL(init_on_alloc);
192 :
193 : DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
194 : EXPORT_SYMBOL(init_on_free);
195 :
196 : static bool _init_on_alloc_enabled_early __read_mostly
197 : = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
198 0 : static int __init early_init_on_alloc(char *buf)
199 : {
200 :
201 0 : return kstrtobool(buf, &_init_on_alloc_enabled_early);
202 : }
203 : early_param("init_on_alloc", early_init_on_alloc);
204 :
205 : static bool _init_on_free_enabled_early __read_mostly
206 : = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
207 0 : static int __init early_init_on_free(char *buf)
208 : {
209 0 : return kstrtobool(buf, &_init_on_free_enabled_early);
210 : }
211 : early_param("init_on_free", early_init_on_free);
212 :
213 : /*
214 : * A cached value of the page's pageblock's migratetype, used when the page is
215 : * put on a pcplist. Used to avoid the pageblock migratetype lookup when
216 : * freeing from pcplists in most cases, at the cost of possibly becoming stale.
217 : * Also the migratetype set in the page does not necessarily match the pcplist
218 : * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
219 : * other index - this ensures that it will be put on the correct CMA freelist.
220 : */
221 : static inline int get_pcppage_migratetype(struct page *page)
222 : {
223 3 : return page->index;
224 : }
225 :
226 : static inline void set_pcppage_migratetype(struct page *page, int migratetype)
227 : {
228 694 : page->index = migratetype;
229 : }
230 :
231 : #ifdef CONFIG_PM_SLEEP
232 : /*
233 : * The following functions are used by the suspend/hibernate code to temporarily
234 : * change gfp_allowed_mask in order to avoid using I/O during memory allocations
235 : * while devices are suspended. To avoid races with the suspend/hibernate code,
236 : * they should always be called with system_transition_mutex held
237 : * (gfp_allowed_mask also should only be modified with system_transition_mutex
238 : * held, unless the suspend/hibernate code is guaranteed not to run in parallel
239 : * with that modification).
240 : */
241 :
242 : static gfp_t saved_gfp_mask;
243 :
244 0 : void pm_restore_gfp_mask(void)
245 : {
246 0 : WARN_ON(!mutex_is_locked(&system_transition_mutex));
247 0 : if (saved_gfp_mask) {
248 0 : gfp_allowed_mask = saved_gfp_mask;
249 0 : saved_gfp_mask = 0;
250 : }
251 0 : }
252 :
253 0 : void pm_restrict_gfp_mask(void)
254 : {
255 0 : WARN_ON(!mutex_is_locked(&system_transition_mutex));
256 0 : WARN_ON(saved_gfp_mask);
257 0 : saved_gfp_mask = gfp_allowed_mask;
258 0 : gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
259 0 : }
260 :
261 0 : bool pm_suspended_storage(void)
262 : {
263 0 : if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
264 : return false;
265 0 : return true;
266 : }
267 : #endif /* CONFIG_PM_SLEEP */
268 :
269 : #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
270 : unsigned int pageblock_order __read_mostly;
271 : #endif
272 :
273 : static void __free_pages_ok(struct page *page, unsigned int order,
274 : fpi_t fpi_flags);
275 :
276 : /*
277 : * results with 256, 32 in the lowmem_reserve sysctl:
278 : * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
279 : * 1G machine -> (16M dma, 784M normal, 224M high)
280 : * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
281 : * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
282 : * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
283 : *
284 : * TBD: should special case ZONE_DMA32 machines here - in those we normally
285 : * don't need any ZONE_NORMAL reservation
286 : */
287 : int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
288 : #ifdef CONFIG_ZONE_DMA
289 : [ZONE_DMA] = 256,
290 : #endif
291 : #ifdef CONFIG_ZONE_DMA32
292 : [ZONE_DMA32] = 256,
293 : #endif
294 : [ZONE_NORMAL] = 32,
295 : #ifdef CONFIG_HIGHMEM
296 : [ZONE_HIGHMEM] = 0,
297 : #endif
298 : [ZONE_MOVABLE] = 0,
299 : };
300 :
301 : static char * const zone_names[MAX_NR_ZONES] = {
302 : #ifdef CONFIG_ZONE_DMA
303 : "DMA",
304 : #endif
305 : #ifdef CONFIG_ZONE_DMA32
306 : "DMA32",
307 : #endif
308 : "Normal",
309 : #ifdef CONFIG_HIGHMEM
310 : "HighMem",
311 : #endif
312 : "Movable",
313 : #ifdef CONFIG_ZONE_DEVICE
314 : "Device",
315 : #endif
316 : };
317 :
318 : const char * const migratetype_names[MIGRATE_TYPES] = {
319 : "Unmovable",
320 : "Movable",
321 : "Reclaimable",
322 : "HighAtomic",
323 : #ifdef CONFIG_CMA
324 : "CMA",
325 : #endif
326 : #ifdef CONFIG_MEMORY_ISOLATION
327 : "Isolate",
328 : #endif
329 : };
330 :
331 : compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
332 : [NULL_COMPOUND_DTOR] = NULL,
333 : [COMPOUND_PAGE_DTOR] = free_compound_page,
334 : #ifdef CONFIG_HUGETLB_PAGE
335 : [HUGETLB_PAGE_DTOR] = free_huge_page,
336 : #endif
337 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 : [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
339 : #endif
340 : };
341 :
342 : int min_free_kbytes = 1024;
343 : int user_min_free_kbytes = -1;
344 : int watermark_boost_factor __read_mostly = 15000;
345 : int watermark_scale_factor = 10;
346 :
347 : static unsigned long nr_kernel_pages __initdata;
348 : static unsigned long nr_all_pages __initdata;
349 : static unsigned long dma_reserve __initdata;
350 :
351 : static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352 : static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
353 : static unsigned long required_kernelcore __initdata;
354 : static unsigned long required_kernelcore_percent __initdata;
355 : static unsigned long required_movablecore __initdata;
356 : static unsigned long required_movablecore_percent __initdata;
357 : static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
358 : static bool mirrored_kernelcore __meminitdata;
359 :
360 : /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
361 : int movable_zone;
362 : EXPORT_SYMBOL(movable_zone);
363 :
364 : #if MAX_NUMNODES > 1
365 : unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
366 : unsigned int nr_online_nodes __read_mostly = 1;
367 : EXPORT_SYMBOL(nr_node_ids);
368 : EXPORT_SYMBOL(nr_online_nodes);
369 : #endif
370 :
371 : int page_group_by_mobility_disabled __read_mostly;
372 :
373 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
374 : /*
375 : * During boot we initialize deferred pages on-demand, as needed, but once
376 : * page_alloc_init_late() has finished, the deferred pages are all initialized,
377 : * and we can permanently disable that path.
378 : */
379 : static DEFINE_STATIC_KEY_TRUE(deferred_pages);
380 :
381 : static inline bool deferred_pages_enabled(void)
382 : {
383 : return static_branch_unlikely(&deferred_pages);
384 : }
385 :
386 : /* Returns true if the struct page for the pfn is uninitialised */
387 : static inline bool __meminit early_page_uninitialised(unsigned long pfn)
388 : {
389 : int nid = early_pfn_to_nid(pfn);
390 :
391 : if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
392 : return true;
393 :
394 : return false;
395 : }
396 :
397 : /*
398 : * Returns true when the remaining initialisation should be deferred until
399 : * later in the boot cycle when it can be parallelised.
400 : */
401 : static bool __meminit
402 : defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
403 : {
404 : static unsigned long prev_end_pfn, nr_initialised;
405 :
406 : /*
407 : * prev_end_pfn static that contains the end of previous zone
408 : * No need to protect because called very early in boot before smp_init.
409 : */
410 : if (prev_end_pfn != end_pfn) {
411 : prev_end_pfn = end_pfn;
412 : nr_initialised = 0;
413 : }
414 :
415 : /* Always populate low zones for address-constrained allocations */
416 : if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
417 : return false;
418 :
419 : if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
420 : return true;
421 : /*
422 : * We start only with one section of pages, more pages are added as
423 : * needed until the rest of deferred pages are initialized.
424 : */
425 : nr_initialised++;
426 : if ((nr_initialised > PAGES_PER_SECTION) &&
427 : (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 : NODE_DATA(nid)->first_deferred_pfn = pfn;
429 : return true;
430 : }
431 : return false;
432 : }
433 : #else
434 : static inline bool deferred_pages_enabled(void)
435 : {
436 : return false;
437 : }
438 :
439 : static inline bool early_page_uninitialised(unsigned long pfn)
440 : {
441 : return false;
442 : }
443 :
444 : static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
445 : {
446 : return false;
447 : }
448 : #endif
449 :
450 : /* Return a pointer to the bitmap storing bits affecting a block of pages */
451 : static inline unsigned long *get_pageblock_bitmap(const struct page *page,
452 : unsigned long pfn)
453 : {
454 : #ifdef CONFIG_SPARSEMEM
455 : return section_to_usemap(__pfn_to_section(pfn));
456 : #else
457 530 : return page_zone(page)->pageblock_flags;
458 : #endif /* CONFIG_SPARSEMEM */
459 : }
460 :
461 : static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
462 : {
463 : #ifdef CONFIG_SPARSEMEM
464 : pfn &= (PAGES_PER_SECTION-1);
465 : #else
466 530 : pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
467 : #endif /* CONFIG_SPARSEMEM */
468 530 : return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
469 : }
470 :
471 : static __always_inline
472 : unsigned long __get_pfnblock_flags_mask(const struct page *page,
473 : unsigned long pfn,
474 : unsigned long mask)
475 : {
476 : unsigned long *bitmap;
477 : unsigned long bitidx, word_bitidx;
478 : unsigned long word;
479 :
480 536 : bitmap = get_pageblock_bitmap(page, pfn);
481 268 : bitidx = pfn_to_bitidx(page, pfn);
482 268 : word_bitidx = bitidx / BITS_PER_LONG;
483 268 : bitidx &= (BITS_PER_LONG-1);
484 :
485 268 : word = bitmap[word_bitidx];
486 268 : return (word >> bitidx) & mask;
487 : }
488 :
489 : /**
490 : * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
491 : * @page: The page within the block of interest
492 : * @pfn: The target page frame number
493 : * @mask: mask of bits that the caller is interested in
494 : *
495 : * Return: pageblock_bits flags
496 : */
497 0 : unsigned long get_pfnblock_flags_mask(const struct page *page,
498 : unsigned long pfn, unsigned long mask)
499 : {
500 2 : return __get_pfnblock_flags_mask(page, pfn, mask);
501 : }
502 :
503 : static __always_inline int get_pfnblock_migratetype(const struct page *page,
504 : unsigned long pfn)
505 : {
506 266 : return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
507 : }
508 :
509 : /**
510 : * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
511 : * @page: The page within the block of interest
512 : * @flags: The flags to set
513 : * @pfn: The target page frame number
514 : * @mask: mask of bits that the caller is interested in
515 : */
516 262 : void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
517 : unsigned long pfn,
518 : unsigned long mask)
519 : {
520 : unsigned long *bitmap;
521 : unsigned long bitidx, word_bitidx;
522 : unsigned long old_word, word;
523 :
524 : BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
525 : BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
526 :
527 524 : bitmap = get_pageblock_bitmap(page, pfn);
528 262 : bitidx = pfn_to_bitidx(page, pfn);
529 262 : word_bitidx = bitidx / BITS_PER_LONG;
530 262 : bitidx &= (BITS_PER_LONG-1);
531 :
532 : VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
533 :
534 262 : mask <<= bitidx;
535 262 : flags <<= bitidx;
536 :
537 262 : word = READ_ONCE(bitmap[word_bitidx]);
538 : for (;;) {
539 524 : old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
540 262 : if (word == old_word)
541 : break;
542 : word = old_word;
543 : }
544 262 : }
545 :
546 262 : void set_pageblock_migratetype(struct page *page, int migratetype)
547 : {
548 262 : if (unlikely(page_group_by_mobility_disabled &&
549 : migratetype < MIGRATE_PCPTYPES))
550 0 : migratetype = MIGRATE_UNMOVABLE;
551 :
552 262 : set_pfnblock_flags_mask(page, (unsigned long)migratetype,
553 262 : page_to_pfn(page), MIGRATETYPE_MASK);
554 262 : }
555 :
556 : #ifdef CONFIG_DEBUG_VM
557 : static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
558 : {
559 : int ret = 0;
560 : unsigned seq;
561 : unsigned long pfn = page_to_pfn(page);
562 : unsigned long sp, start_pfn;
563 :
564 : do {
565 : seq = zone_span_seqbegin(zone);
566 : start_pfn = zone->zone_start_pfn;
567 : sp = zone->spanned_pages;
568 : if (!zone_spans_pfn(zone, pfn))
569 : ret = 1;
570 : } while (zone_span_seqretry(zone, seq));
571 :
572 : if (ret)
573 : pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
574 : pfn, zone_to_nid(zone), zone->name,
575 : start_pfn, start_pfn + sp);
576 :
577 : return ret;
578 : }
579 :
580 : static int page_is_consistent(struct zone *zone, struct page *page)
581 : {
582 : if (zone != page_zone(page))
583 : return 0;
584 :
585 : return 1;
586 : }
587 : /*
588 : * Temporary debugging check for pages not lying within a given zone.
589 : */
590 : static int __maybe_unused bad_range(struct zone *zone, struct page *page)
591 : {
592 : if (page_outside_zone_boundaries(zone, page))
593 : return 1;
594 : if (!page_is_consistent(zone, page))
595 : return 1;
596 :
597 : return 0;
598 : }
599 : #else
600 : static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
601 : {
602 : return 0;
603 : }
604 : #endif
605 :
606 0 : static void bad_page(struct page *page, const char *reason)
607 : {
608 : static unsigned long resume;
609 : static unsigned long nr_shown;
610 : static unsigned long nr_unshown;
611 :
612 : /*
613 : * Allow a burst of 60 reports, then keep quiet for that minute;
614 : * or allow a steady drip of one report per second.
615 : */
616 0 : if (nr_shown == 60) {
617 0 : if (time_before(jiffies, resume)) {
618 0 : nr_unshown++;
619 0 : goto out;
620 : }
621 0 : if (nr_unshown) {
622 0 : pr_alert(
623 : "BUG: Bad page state: %lu messages suppressed\n",
624 : nr_unshown);
625 0 : nr_unshown = 0;
626 : }
627 0 : nr_shown = 0;
628 : }
629 0 : if (nr_shown++ == 0)
630 0 : resume = jiffies + 60 * HZ;
631 :
632 0 : pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
633 : current->comm, page_to_pfn(page));
634 0 : dump_page(page, reason);
635 :
636 : print_modules();
637 0 : dump_stack();
638 : out:
639 : /* Leave bad fields for debug, except PageBuddy could make trouble */
640 0 : page_mapcount_reset(page); /* remove PageBuddy */
641 0 : add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
642 0 : }
643 :
644 : static inline unsigned int order_to_pindex(int migratetype, int order)
645 : {
646 478 : int base = order;
647 :
648 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 : if (order > PAGE_ALLOC_COSTLY_ORDER) {
650 : VM_BUG_ON(order != pageblock_order);
651 : base = PAGE_ALLOC_COSTLY_ORDER + 1;
652 : }
653 : #else
654 : VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
655 : #endif
656 :
657 478 : return (MIGRATE_PCPTYPES * base) + migratetype;
658 : }
659 :
660 : static inline int pindex_to_order(unsigned int pindex)
661 : {
662 0 : int order = pindex / MIGRATE_PCPTYPES;
663 :
664 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 : if (order > PAGE_ALLOC_COSTLY_ORDER)
666 : order = pageblock_order;
667 : #else
668 : VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
669 : #endif
670 :
671 : return order;
672 : }
673 :
674 : static inline bool pcp_allowed_order(unsigned int order)
675 : {
676 479 : if (order <= PAGE_ALLOC_COSTLY_ORDER)
677 : return true;
678 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
679 : if (order == pageblock_order)
680 : return true;
681 : #endif
682 : return false;
683 : }
684 :
685 11 : static inline void free_the_page(struct page *page, unsigned int order)
686 : {
687 11 : if (pcp_allowed_order(order)) /* Via pcp? */
688 3 : free_unref_page(page, order);
689 : else
690 8 : __free_pages_ok(page, order, FPI_NONE);
691 11 : }
692 :
693 : /*
694 : * Higher-order pages are called "compound pages". They are structured thusly:
695 : *
696 : * The first PAGE_SIZE page is called the "head page" and have PG_head set.
697 : *
698 : * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
699 : * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
700 : *
701 : * The first tail page's ->compound_dtor holds the offset in array of compound
702 : * page destructors. See compound_page_dtors.
703 : *
704 : * The first tail page's ->compound_order holds the order of allocation.
705 : * This usage means that zero-order pages may not be compound.
706 : */
707 :
708 0 : void free_compound_page(struct page *page)
709 : {
710 0 : mem_cgroup_uncharge(page_folio(page));
711 0 : free_the_page(page, compound_order(page));
712 0 : }
713 :
714 : static void prep_compound_head(struct page *page, unsigned int order)
715 : {
716 109 : set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
717 109 : set_compound_order(page, order);
718 218 : atomic_set(compound_mapcount_ptr(page), -1);
719 218 : atomic_set(compound_pincount_ptr(page), 0);
720 : }
721 :
722 : static void prep_compound_tail(struct page *head, int tail_idx)
723 : {
724 407 : struct page *p = head + tail_idx;
725 :
726 407 : p->mapping = TAIL_MAPPING;
727 407 : set_compound_head(p, head);
728 : }
729 :
730 0 : void prep_compound_page(struct page *page, unsigned int order)
731 : {
732 : int i;
733 109 : int nr_pages = 1 << order;
734 :
735 109 : __SetPageHead(page);
736 516 : for (i = 1; i < nr_pages; i++)
737 407 : prep_compound_tail(page, i);
738 :
739 109 : prep_compound_head(page, order);
740 0 : }
741 :
742 : #ifdef CONFIG_DEBUG_PAGEALLOC
743 : unsigned int _debug_guardpage_minorder;
744 :
745 : bool _debug_pagealloc_enabled_early __read_mostly
746 : = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
747 : EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
748 : DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
749 : EXPORT_SYMBOL(_debug_pagealloc_enabled);
750 :
751 : DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
752 :
753 : static int __init early_debug_pagealloc(char *buf)
754 : {
755 : return kstrtobool(buf, &_debug_pagealloc_enabled_early);
756 : }
757 : early_param("debug_pagealloc", early_debug_pagealloc);
758 :
759 : static int __init debug_guardpage_minorder_setup(char *buf)
760 : {
761 : unsigned long res;
762 :
763 : if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
764 : pr_err("Bad debug_guardpage_minorder value\n");
765 : return 0;
766 : }
767 : _debug_guardpage_minorder = res;
768 : pr_info("Setting debug_guardpage_minorder to %lu\n", res);
769 : return 0;
770 : }
771 : early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
772 :
773 : static inline bool set_page_guard(struct zone *zone, struct page *page,
774 : unsigned int order, int migratetype)
775 : {
776 : if (!debug_guardpage_enabled())
777 : return false;
778 :
779 : if (order >= debug_guardpage_minorder())
780 : return false;
781 :
782 : __SetPageGuard(page);
783 : INIT_LIST_HEAD(&page->lru);
784 : set_page_private(page, order);
785 : /* Guard pages are not available for any usage */
786 : __mod_zone_freepage_state(zone, -(1 << order), migratetype);
787 :
788 : return true;
789 : }
790 :
791 : static inline void clear_page_guard(struct zone *zone, struct page *page,
792 : unsigned int order, int migratetype)
793 : {
794 : if (!debug_guardpage_enabled())
795 : return;
796 :
797 : __ClearPageGuard(page);
798 :
799 : set_page_private(page, 0);
800 : if (!is_migrate_isolate(migratetype))
801 : __mod_zone_freepage_state(zone, (1 << order), migratetype);
802 : }
803 : #else
804 : static inline bool set_page_guard(struct zone *zone, struct page *page,
805 : unsigned int order, int migratetype) { return false; }
806 : static inline void clear_page_guard(struct zone *zone, struct page *page,
807 : unsigned int order, int migratetype) {}
808 : #endif
809 :
810 : /*
811 : * Enable static keys related to various memory debugging and hardening options.
812 : * Some override others, and depend on early params that are evaluated in the
813 : * order of appearance. So we need to first gather the full picture of what was
814 : * enabled, and then make decisions.
815 : */
816 1 : void init_mem_debugging_and_hardening(void)
817 : {
818 1 : bool page_poisoning_requested = false;
819 :
820 : #ifdef CONFIG_PAGE_POISONING
821 : /*
822 : * Page poisoning is debug page alloc for some arches. If
823 : * either of those options are enabled, enable poisoning.
824 : */
825 : if (page_poisoning_enabled() ||
826 : (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
827 : debug_pagealloc_enabled())) {
828 : static_branch_enable(&_page_poisoning_enabled);
829 : page_poisoning_requested = true;
830 : }
831 : #endif
832 :
833 1 : if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
834 : page_poisoning_requested) {
835 : pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
836 : "will take precedence over init_on_alloc and init_on_free\n");
837 : _init_on_alloc_enabled_early = false;
838 : _init_on_free_enabled_early = false;
839 : }
840 :
841 1 : if (_init_on_alloc_enabled_early)
842 0 : static_branch_enable(&init_on_alloc);
843 : else
844 1 : static_branch_disable(&init_on_alloc);
845 :
846 1 : if (_init_on_free_enabled_early)
847 0 : static_branch_enable(&init_on_free);
848 : else
849 1 : static_branch_disable(&init_on_free);
850 :
851 : #ifdef CONFIG_DEBUG_PAGEALLOC
852 : if (!debug_pagealloc_enabled())
853 : return;
854 :
855 : static_branch_enable(&_debug_pagealloc_enabled);
856 :
857 : if (!debug_guardpage_minorder())
858 : return;
859 :
860 : static_branch_enable(&_debug_guardpage_enabled);
861 : #endif
862 1 : }
863 :
864 : static inline void set_buddy_order(struct page *page, unsigned int order)
865 : {
866 1924 : set_page_private(page, order);
867 962 : __SetPageBuddy(page);
868 : }
869 :
870 : /*
871 : * This function checks whether a page is free && is the buddy
872 : * we can coalesce a page and its buddy if
873 : * (a) the buddy is not in a hole (check before calling!) &&
874 : * (b) the buddy is in the buddy system &&
875 : * (c) a page and its buddy have the same order &&
876 : * (d) a page and its buddy are in the same zone.
877 : *
878 : * For recording whether a page is in the buddy system, we set PageBuddy.
879 : * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
880 : *
881 : * For recording page's order, we use page_private(page).
882 : */
883 : static inline bool page_is_buddy(struct page *page, struct page *buddy,
884 : unsigned int order)
885 : {
886 70 : if (!page_is_guard(buddy) && !PageBuddy(buddy))
887 : return false;
888 :
889 32 : if (buddy_order(buddy) != order)
890 : return false;
891 :
892 : /*
893 : * zone check is done late to avoid uselessly calculating
894 : * zone/node ids for pages that could never merge.
895 : */
896 48 : if (page_zone_id(page) != page_zone_id(buddy))
897 : return false;
898 :
899 : VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
900 :
901 : return true;
902 : }
903 :
904 : #ifdef CONFIG_COMPACTION
905 263 : static inline struct capture_control *task_capc(struct zone *zone)
906 : {
907 263 : struct capture_control *capc = current->capture_control;
908 :
909 263 : return unlikely(capc) &&
910 0 : !(current->flags & PF_KTHREAD) &&
911 0 : !capc->page &&
912 526 : capc->cc->zone == zone ? capc : NULL;
913 : }
914 :
915 : static inline bool
916 : compaction_capture(struct capture_control *capc, struct page *page,
917 : int order, int migratetype)
918 : {
919 27 : if (!capc || order != capc->cc->order)
920 : return false;
921 :
922 : /* Do not accidentally pollute CMA or isolated regions*/
923 : if (is_migrate_cma(migratetype) ||
924 0 : is_migrate_isolate(migratetype))
925 : return false;
926 :
927 : /*
928 : * Do not let lower order allocations pollute a movable pageblock.
929 : * This might let an unmovable request use a reclaimable pageblock
930 : * and vice-versa but no more than normal fallback logic which can
931 : * have trouble finding a high-order free page.
932 : */
933 0 : if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
934 : return false;
935 :
936 0 : capc->page = page;
937 : return true;
938 : }
939 :
940 : #else
941 : static inline struct capture_control *task_capc(struct zone *zone)
942 : {
943 : return NULL;
944 : }
945 :
946 : static inline bool
947 : compaction_capture(struct capture_control *capc, struct page *page,
948 : int order, int migratetype)
949 : {
950 : return false;
951 : }
952 : #endif /* CONFIG_COMPACTION */
953 :
954 : /* Used for pages not on another list */
955 : static inline void add_to_free_list(struct page *page, struct zone *zone,
956 : unsigned int order, int migratetype)
957 : {
958 699 : struct free_area *area = &zone->free_area[order];
959 :
960 1398 : list_add(&page->lru, &area->free_list[migratetype]);
961 699 : area->nr_free++;
962 : }
963 :
964 : /* Used for pages not on another list */
965 : static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
966 : unsigned int order, int migratetype)
967 : {
968 263 : struct free_area *area = &zone->free_area[order];
969 :
970 526 : list_add_tail(&page->lru, &area->free_list[migratetype]);
971 263 : area->nr_free++;
972 : }
973 :
974 : /*
975 : * Used for pages which are on another list. Move the pages to the tail
976 : * of the list - so the moved pages won't immediately be considered for
977 : * allocation again (e.g., optimization for memory onlining).
978 : */
979 : static inline void move_to_free_list(struct page *page, struct zone *zone,
980 : unsigned int order, int migratetype)
981 : {
982 2 : struct free_area *area = &zone->free_area[order];
983 :
984 4 : list_move_tail(&page->lru, &area->free_list[migratetype]);
985 : }
986 :
987 : static inline void del_page_from_free_list(struct page *page, struct zone *zone,
988 : unsigned int order)
989 : {
990 : /* clear reported state and update reported page count */
991 : if (page_reported(page))
992 : __ClearPageReported(page);
993 :
994 1398 : list_del(&page->lru);
995 699 : __ClearPageBuddy(page);
996 1398 : set_page_private(page, 0);
997 699 : zone->free_area[order].nr_free--;
998 : }
999 :
1000 : /*
1001 : * If this is not the largest possible page, check if the buddy
1002 : * of the next-highest order is free. If it is, it's possible
1003 : * that pages are being freed that will coalesce soon. In case,
1004 : * that is happening, add the free page to the tail of the list
1005 : * so it's less likely to be used soon and more likely to be merged
1006 : * as a higher order page
1007 : */
1008 : static inline bool
1009 8 : buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1010 : struct page *page, unsigned int order)
1011 : {
1012 : struct page *higher_page, *higher_buddy;
1013 : unsigned long combined_pfn;
1014 :
1015 8 : if (order >= MAX_ORDER - 2)
1016 : return false;
1017 :
1018 8 : combined_pfn = buddy_pfn & pfn;
1019 8 : higher_page = page + (combined_pfn - pfn);
1020 16 : buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1021 8 : higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1022 :
1023 8 : return page_is_buddy(higher_page, higher_buddy, order + 1);
1024 : }
1025 :
1026 : /*
1027 : * Freeing function for a buddy system allocator.
1028 : *
1029 : * The concept of a buddy system is to maintain direct-mapped table
1030 : * (containing bit values) for memory blocks of various "orders".
1031 : * The bottom level table contains the map for the smallest allocatable
1032 : * units of memory (here, pages), and each level above it describes
1033 : * pairs of units from the levels below, hence, "buddies".
1034 : * At a high level, all that happens here is marking the table entry
1035 : * at the bottom level available, and propagating the changes upward
1036 : * as necessary, plus some accounting needed to play nicely with other
1037 : * parts of the VM system.
1038 : * At each level, we keep a list of pages, which are heads of continuous
1039 : * free pages of length of (1 << order) and marked with PageBuddy.
1040 : * Page's order is recorded in page_private(page) field.
1041 : * So when we are allocating or freeing one, we can derive the state of the
1042 : * other. That is, if we allocate a small block, and both were
1043 : * free, the remainder of the region must be split into blocks.
1044 : * If a block is freed, and its buddy is also free, then this
1045 : * triggers coalescing into a block of larger size.
1046 : *
1047 : * -- nyc
1048 : */
1049 :
1050 263 : static inline void __free_one_page(struct page *page,
1051 : unsigned long pfn,
1052 : struct zone *zone, unsigned int order,
1053 : int migratetype, fpi_t fpi_flags)
1054 : {
1055 263 : struct capture_control *capc = task_capc(zone);
1056 263 : unsigned int max_order = pageblock_order;
1057 : unsigned long buddy_pfn;
1058 : unsigned long combined_pfn;
1059 : struct page *buddy;
1060 : bool to_tail;
1061 :
1062 : VM_BUG_ON(!zone_is_initialized(zone));
1063 : VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1064 :
1065 : VM_BUG_ON(migratetype == -1);
1066 263 : if (likely(!is_migrate_isolate(migratetype)))
1067 263 : __mod_zone_freepage_state(zone, 1 << order, migratetype);
1068 :
1069 : VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1070 : VM_BUG_ON_PAGE(bad_range(zone, page), page);
1071 :
1072 : continue_merging:
1073 271 : while (order < max_order) {
1074 54 : if (compaction_capture(capc, page, order, migratetype)) {
1075 0 : __mod_zone_freepage_state(zone, -(1 << order),
1076 : migratetype);
1077 : return;
1078 : }
1079 27 : buddy_pfn = __find_buddy_pfn(pfn, order);
1080 27 : buddy = page + (buddy_pfn - pfn);
1081 :
1082 27 : if (!page_is_buddy(page, buddy, order))
1083 : goto done_merging;
1084 : /*
1085 : * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1086 : * merge with it and move up one order.
1087 : */
1088 8 : if (page_is_guard(buddy))
1089 : clear_page_guard(zone, buddy, order, migratetype);
1090 : else
1091 : del_page_from_free_list(buddy, zone, order);
1092 8 : combined_pfn = buddy_pfn & pfn;
1093 8 : page = page + (combined_pfn - pfn);
1094 8 : pfn = combined_pfn;
1095 8 : order++;
1096 : }
1097 244 : if (order < MAX_ORDER - 1) {
1098 : /* If we are here, it means order is >= pageblock_order.
1099 : * We want to prevent merge between freepages on pageblock
1100 : * without fallbacks and normal pageblock. Without this,
1101 : * pageblock isolation could cause incorrect freepage or CMA
1102 : * accounting or HIGHATOMIC accounting.
1103 : *
1104 : * We don't want to hit this code for the more frequent
1105 : * low-order merging.
1106 : */
1107 : int buddy_mt;
1108 :
1109 0 : buddy_pfn = __find_buddy_pfn(pfn, order);
1110 0 : buddy = page + (buddy_pfn - pfn);
1111 :
1112 0 : if (!page_is_buddy(page, buddy, order))
1113 : goto done_merging;
1114 0 : buddy_mt = get_pageblock_migratetype(buddy);
1115 :
1116 0 : if (migratetype != buddy_mt
1117 0 : && (!migratetype_is_mergeable(migratetype) ||
1118 0 : !migratetype_is_mergeable(buddy_mt)))
1119 : goto done_merging;
1120 0 : max_order = order + 1;
1121 0 : goto continue_merging;
1122 : }
1123 :
1124 : done_merging:
1125 263 : set_buddy_order(page, order);
1126 :
1127 263 : if (fpi_flags & FPI_TO_TAIL)
1128 : to_tail = true;
1129 8 : else if (is_shuffle_order(order))
1130 : to_tail = shuffle_pick_tail();
1131 : else
1132 8 : to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1133 :
1134 263 : if (to_tail)
1135 : add_to_free_list_tail(page, zone, order, migratetype);
1136 : else
1137 : add_to_free_list(page, zone, order, migratetype);
1138 :
1139 : /* Notify page reporting subsystem of freed page */
1140 : if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1141 : page_reporting_notify_free(order);
1142 : }
1143 :
1144 : /*
1145 : * A bad page could be due to a number of fields. Instead of multiple branches,
1146 : * try and check multiple fields with one check. The caller must do a detailed
1147 : * check if necessary.
1148 : */
1149 : static inline bool page_expected_state(struct page *page,
1150 : unsigned long check_flags)
1151 : {
1152 505120 : if (unlikely(atomic_read(&page->_mapcount) != -1))
1153 : return false;
1154 :
1155 505120 : if (unlikely((unsigned long)page->mapping |
1156 : page_ref_count(page) |
1157 : #ifdef CONFIG_MEMCG
1158 : page->memcg_data |
1159 : #endif
1160 : (page->flags & check_flags)))
1161 : return false;
1162 :
1163 : return true;
1164 : }
1165 :
1166 : static const char *page_bad_reason(struct page *page, unsigned long flags)
1167 : {
1168 0 : const char *bad_reason = NULL;
1169 :
1170 0 : if (unlikely(atomic_read(&page->_mapcount) != -1))
1171 0 : bad_reason = "nonzero mapcount";
1172 0 : if (unlikely(page->mapping != NULL))
1173 0 : bad_reason = "non-NULL mapping";
1174 0 : if (unlikely(page_ref_count(page) != 0))
1175 0 : bad_reason = "nonzero _refcount";
1176 0 : if (unlikely(page->flags & flags)) {
1177 : if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1178 : bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1179 : else
1180 0 : bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1181 : }
1182 : #ifdef CONFIG_MEMCG
1183 : if (unlikely(page->memcg_data))
1184 : bad_reason = "page still charged to cgroup";
1185 : #endif
1186 : return bad_reason;
1187 : }
1188 :
1189 0 : static void check_free_page_bad(struct page *page)
1190 : {
1191 0 : bad_page(page,
1192 : page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1193 0 : }
1194 :
1195 251307 : static inline int check_free_page(struct page *page)
1196 : {
1197 251307 : if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1198 : return 0;
1199 :
1200 : /* Something has gone sideways, find it */
1201 0 : check_free_page_bad(page);
1202 0 : return 1;
1203 : }
1204 :
1205 : static int free_tail_pages_check(struct page *head_page, struct page *page)
1206 : {
1207 251 : int ret = 1;
1208 :
1209 : /*
1210 : * We rely page->lru.next never has bit 0 set, unless the page
1211 : * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1212 : */
1213 : BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1214 :
1215 : if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1216 251 : ret = 0;
1217 : goto out;
1218 : }
1219 : switch (page - head_page) {
1220 : case 1:
1221 : /* the first tail page: ->mapping may be compound_mapcount() */
1222 : if (unlikely(compound_mapcount(page))) {
1223 : bad_page(page, "nonzero compound_mapcount");
1224 : goto out;
1225 : }
1226 : break;
1227 : case 2:
1228 : /*
1229 : * the second tail page: ->mapping is
1230 : * deferred_list.next -- ignore value.
1231 : */
1232 : break;
1233 : default:
1234 : if (page->mapping != TAIL_MAPPING) {
1235 : bad_page(page, "corrupted mapping in tail page");
1236 : goto out;
1237 : }
1238 : break;
1239 : }
1240 : if (unlikely(!PageTail(page))) {
1241 : bad_page(page, "PageTail not set");
1242 : goto out;
1243 : }
1244 : if (unlikely(compound_head(page) != head_page)) {
1245 : bad_page(page, "compound_head not consistent");
1246 : goto out;
1247 : }
1248 : ret = 0;
1249 : out:
1250 251 : page->mapping = NULL;
1251 251 : clear_compound_head(page);
1252 : return ret;
1253 : }
1254 :
1255 : /*
1256 : * Skip KASAN memory poisoning when either:
1257 : *
1258 : * 1. Deferred memory initialization has not yet completed,
1259 : * see the explanation below.
1260 : * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1261 : * see the comment next to it.
1262 : * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1263 : * see the comment next to it.
1264 : *
1265 : * Poisoning pages during deferred memory init will greatly lengthen the
1266 : * process and cause problem in large memory systems as the deferred pages
1267 : * initialization is done with interrupt disabled.
1268 : *
1269 : * Assuming that there will be no reference to those newly initialized
1270 : * pages before they are ever allocated, this should have no effect on
1271 : * KASAN memory tracking as the poison will be properly inserted at page
1272 : * allocation time. The only corner case is when pages are allocated by
1273 : * on-demand allocation and then freed again before the deferred pages
1274 : * initialization is done, but this is not likely to happen.
1275 : */
1276 : static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1277 : {
1278 : return deferred_pages_enabled() ||
1279 : (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1280 : (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1281 : PageSkipKASanPoison(page);
1282 : }
1283 :
1284 0 : static void kernel_init_free_pages(struct page *page, int numpages)
1285 : {
1286 : int i;
1287 :
1288 : /* s390's use of memset() could override KASAN redzones. */
1289 : kasan_disable_current();
1290 334 : for (i = 0; i < numpages; i++) {
1291 334 : u8 tag = page_kasan_tag(page + i);
1292 334 : page_kasan_tag_reset(page + i);
1293 334 : clear_highpage(page + i);
1294 334 : page_kasan_tag_set(page + i, tag);
1295 : }
1296 : kasan_enable_current();
1297 0 : }
1298 :
1299 : static __always_inline bool free_pages_prepare(struct page *page,
1300 : unsigned int order, bool check_free, fpi_t fpi_flags)
1301 : {
1302 266 : int bad = 0;
1303 266 : bool init = want_init_on_free();
1304 :
1305 : VM_BUG_ON_PAGE(PageTail(page), page);
1306 :
1307 266 : trace_mm_page_free(page, order);
1308 :
1309 266 : if (unlikely(PageHWPoison(page)) && !order) {
1310 : /*
1311 : * Do not let hwpoison pages hit pcplists/buddy
1312 : * Untie memcg state and reset page's owner
1313 : */
1314 : if (memcg_kmem_enabled() && PageMemcgKmem(page))
1315 : __memcg_kmem_uncharge_page(page, order);
1316 : reset_page_owner(page, order);
1317 : page_table_check_free(page, order);
1318 : return false;
1319 : }
1320 :
1321 : /*
1322 : * Check tail pages before head page information is cleared to
1323 : * avoid checking PageCompound for order-0 pages.
1324 : */
1325 266 : if (unlikely(order)) {
1326 264 : bool compound = PageCompound(page);
1327 : int i;
1328 :
1329 : VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1330 :
1331 : if (compound) {
1332 : ClearPageDoubleMap(page);
1333 : ClearPageHasHWPoisoned(page);
1334 : }
1335 251044 : for (i = 1; i < (1 << order); i++) {
1336 251044 : if (compound)
1337 502 : bad += free_tail_pages_check(page, page + i);
1338 251044 : if (unlikely(check_free_page(page + i))) {
1339 0 : bad++;
1340 0 : continue;
1341 : }
1342 251044 : (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1343 : }
1344 : }
1345 266 : if (PageMappingFlags(page))
1346 0 : page->mapping = NULL;
1347 : if (memcg_kmem_enabled() && PageMemcgKmem(page))
1348 : __memcg_kmem_uncharge_page(page, order);
1349 : if (check_free)
1350 263 : bad += check_free_page(page);
1351 266 : if (bad)
1352 : return false;
1353 :
1354 266 : page_cpupid_reset_last(page);
1355 266 : page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1356 : reset_page_owner(page, order);
1357 266 : page_table_check_free(page, order);
1358 :
1359 266 : if (!PageHighMem(page)) {
1360 : debug_check_no_locks_freed(page_address(page),
1361 : PAGE_SIZE << order);
1362 : debug_check_no_obj_freed(page_address(page),
1363 : PAGE_SIZE << order);
1364 : }
1365 :
1366 266 : kernel_poison_pages(page, 1 << order);
1367 :
1368 : /*
1369 : * As memory initialization might be integrated into KASAN,
1370 : * KASAN poisoning and memory initialization code must be
1371 : * kept together to avoid discrepancies in behavior.
1372 : *
1373 : * With hardware tag-based KASAN, memory tags must be set before the
1374 : * page becomes unavailable via debug_pagealloc or arch_free_page.
1375 : */
1376 266 : if (!should_skip_kasan_poison(page, fpi_flags)) {
1377 : kasan_poison_pages(page, order, init);
1378 :
1379 : /* Memory is already initialized if KASAN did it internally. */
1380 : if (kasan_has_integrated_init())
1381 : init = false;
1382 : }
1383 266 : if (init)
1384 0 : kernel_init_free_pages(page, 1 << order);
1385 :
1386 : /*
1387 : * arch_free_page() can make the page's contents inaccessible. s390
1388 : * does this. So nothing which can access the page's contents should
1389 : * happen after this.
1390 : */
1391 : arch_free_page(page, order);
1392 :
1393 : debug_pagealloc_unmap_pages(page, 1 << order);
1394 :
1395 : return true;
1396 : }
1397 :
1398 : #ifdef CONFIG_DEBUG_VM
1399 : /*
1400 : * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1401 : * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1402 : * moved from pcp lists to free lists.
1403 : */
1404 : static bool free_pcp_prepare(struct page *page, unsigned int order)
1405 : {
1406 : return free_pages_prepare(page, order, true, FPI_NONE);
1407 : }
1408 :
1409 : static bool bulkfree_pcp_prepare(struct page *page)
1410 : {
1411 : if (debug_pagealloc_enabled_static())
1412 : return check_free_page(page);
1413 : else
1414 : return false;
1415 : }
1416 : #else
1417 : /*
1418 : * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1419 : * moving from pcp lists to free list in order to reduce overhead. With
1420 : * debug_pagealloc enabled, they are checked also immediately when being freed
1421 : * to the pcp lists.
1422 : */
1423 3 : static bool free_pcp_prepare(struct page *page, unsigned int order)
1424 : {
1425 : if (debug_pagealloc_enabled_static())
1426 : return free_pages_prepare(page, order, true, FPI_NONE);
1427 : else
1428 3 : return free_pages_prepare(page, order, false, FPI_NONE);
1429 : }
1430 :
1431 : static bool bulkfree_pcp_prepare(struct page *page)
1432 : {
1433 0 : return check_free_page(page);
1434 : }
1435 : #endif /* CONFIG_DEBUG_VM */
1436 :
1437 : /*
1438 : * Frees a number of pages from the PCP lists
1439 : * Assumes all pages on list are in same zone.
1440 : * count is the number of pages to free.
1441 : */
1442 0 : static void free_pcppages_bulk(struct zone *zone, int count,
1443 : struct per_cpu_pages *pcp,
1444 : int pindex)
1445 : {
1446 0 : int min_pindex = 0;
1447 0 : int max_pindex = NR_PCP_LISTS - 1;
1448 : unsigned int order;
1449 : bool isolated_pageblocks;
1450 : struct page *page;
1451 :
1452 : /*
1453 : * Ensure proper count is passed which otherwise would stuck in the
1454 : * below while (list_empty(list)) loop.
1455 : */
1456 0 : count = min(pcp->count, count);
1457 :
1458 : /* Ensure requested pindex is drained first. */
1459 0 : pindex = pindex - 1;
1460 :
1461 : /*
1462 : * local_lock_irq held so equivalent to spin_lock_irqsave for
1463 : * both PREEMPT_RT and non-PREEMPT_RT configurations.
1464 : */
1465 0 : spin_lock(&zone->lock);
1466 0 : isolated_pageblocks = has_isolate_pageblock(zone);
1467 :
1468 0 : while (count > 0) {
1469 : struct list_head *list;
1470 : int nr_pages;
1471 :
1472 : /* Remove pages from lists in a round-robin fashion. */
1473 : do {
1474 0 : if (++pindex > max_pindex)
1475 0 : pindex = min_pindex;
1476 0 : list = &pcp->lists[pindex];
1477 0 : if (!list_empty(list))
1478 : break;
1479 :
1480 0 : if (pindex == max_pindex)
1481 0 : max_pindex--;
1482 0 : if (pindex == min_pindex)
1483 0 : min_pindex++;
1484 : } while (1);
1485 :
1486 0 : order = pindex_to_order(pindex);
1487 0 : nr_pages = 1 << order;
1488 : BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1489 : do {
1490 : int mt;
1491 :
1492 0 : page = list_last_entry(list, struct page, lru);
1493 0 : mt = get_pcppage_migratetype(page);
1494 :
1495 : /* must delete to avoid corrupting pcp list */
1496 0 : list_del(&page->lru);
1497 0 : count -= nr_pages;
1498 0 : pcp->count -= nr_pages;
1499 :
1500 0 : if (bulkfree_pcp_prepare(page))
1501 0 : continue;
1502 :
1503 : /* MIGRATE_ISOLATE page should not go to pcplists */
1504 : VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1505 : /* Pageblock could have been isolated meanwhile */
1506 : if (unlikely(isolated_pageblocks))
1507 : mt = get_pageblock_migratetype(page);
1508 :
1509 0 : __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1510 0 : trace_mm_page_pcpu_drain(page, order, mt);
1511 0 : } while (count > 0 && !list_empty(list));
1512 : }
1513 :
1514 0 : spin_unlock(&zone->lock);
1515 0 : }
1516 :
1517 : static void free_one_page(struct zone *zone,
1518 : struct page *page, unsigned long pfn,
1519 : unsigned int order,
1520 : int migratetype, fpi_t fpi_flags)
1521 : {
1522 : unsigned long flags;
1523 :
1524 : spin_lock_irqsave(&zone->lock, flags);
1525 : if (unlikely(has_isolate_pageblock(zone) ||
1526 : is_migrate_isolate(migratetype))) {
1527 : migratetype = get_pfnblock_migratetype(page, pfn);
1528 : }
1529 : __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1530 : spin_unlock_irqrestore(&zone->lock, flags);
1531 : }
1532 :
1533 266125 : static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1534 : unsigned long zone, int nid)
1535 : {
1536 266125 : mm_zero_struct_page(page);
1537 532250 : set_page_links(page, zone, nid, pfn);
1538 266125 : init_page_count(page);
1539 266125 : page_mapcount_reset(page);
1540 266125 : page_cpupid_reset_last(page);
1541 266125 : page_kasan_tag_reset(page);
1542 :
1543 532250 : INIT_LIST_HEAD(&page->lru);
1544 : #ifdef WANT_PAGE_VIRTUAL
1545 : /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1546 : if (!is_highmem_idx(zone))
1547 : set_page_address(page, __va(pfn << PAGE_SHIFT));
1548 : #endif
1549 266125 : }
1550 :
1551 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1552 : static void __meminit init_reserved_page(unsigned long pfn)
1553 : {
1554 : pg_data_t *pgdat;
1555 : int nid, zid;
1556 :
1557 : if (!early_page_uninitialised(pfn))
1558 : return;
1559 :
1560 : nid = early_pfn_to_nid(pfn);
1561 : pgdat = NODE_DATA(nid);
1562 :
1563 : for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1564 : struct zone *zone = &pgdat->node_zones[zid];
1565 :
1566 : if (zone_spans_pfn(zone, pfn))
1567 : break;
1568 : }
1569 : __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1570 : }
1571 : #else
1572 : static inline void init_reserved_page(unsigned long pfn)
1573 : {
1574 : }
1575 : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1576 :
1577 : /*
1578 : * Initialised pages do not have PageReserved set. This function is
1579 : * called for each range allocated by the bootmem allocator and
1580 : * marks the pages PageReserved. The remaining valid pages are later
1581 : * sent to the buddy page allocator.
1582 : */
1583 13 : void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1584 : {
1585 13 : unsigned long start_pfn = PFN_DOWN(start);
1586 13 : unsigned long end_pfn = PFN_UP(end);
1587 :
1588 15098 : for (; start_pfn < end_pfn; start_pfn++) {
1589 15085 : if (pfn_valid(start_pfn)) {
1590 15085 : struct page *page = pfn_to_page(start_pfn);
1591 :
1592 15085 : init_reserved_page(start_pfn);
1593 :
1594 : /* Avoid false-positive PageTail() */
1595 30170 : INIT_LIST_HEAD(&page->lru);
1596 :
1597 : /*
1598 : * no need for atomic set_bit because the struct
1599 : * page is not visible yet so nobody should
1600 : * access it yet.
1601 : */
1602 : __SetPageReserved(page);
1603 : }
1604 : }
1605 13 : }
1606 :
1607 263 : static void __free_pages_ok(struct page *page, unsigned int order,
1608 : fpi_t fpi_flags)
1609 : {
1610 : unsigned long flags;
1611 : int migratetype;
1612 263 : unsigned long pfn = page_to_pfn(page);
1613 263 : struct zone *zone = page_zone(page);
1614 :
1615 263 : if (!free_pages_prepare(page, order, true, fpi_flags))
1616 : return;
1617 :
1618 263 : migratetype = get_pfnblock_migratetype(page, pfn);
1619 :
1620 263 : spin_lock_irqsave(&zone->lock, flags);
1621 : if (unlikely(has_isolate_pageblock(zone) ||
1622 : is_migrate_isolate(migratetype))) {
1623 : migratetype = get_pfnblock_migratetype(page, pfn);
1624 : }
1625 263 : __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1626 526 : spin_unlock_irqrestore(&zone->lock, flags);
1627 :
1628 263 : __count_vm_events(PGFREE, 1 << order);
1629 : }
1630 :
1631 255 : void __free_pages_core(struct page *page, unsigned int order)
1632 : {
1633 255 : unsigned int nr_pages = 1 << order;
1634 255 : struct page *p = page;
1635 : unsigned int loop;
1636 :
1637 : /*
1638 : * When initializing the memmap, __init_single_page() sets the refcount
1639 : * of all pages to 1 ("allocated"/"not free"). We have to set the
1640 : * refcount of all involved pages to 0.
1641 : */
1642 255 : prefetchw(p);
1643 251048 : for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1644 250793 : prefetchw(p + 1);
1645 250793 : __ClearPageReserved(p);
1646 250793 : set_page_count(p, 0);
1647 : }
1648 255 : __ClearPageReserved(p);
1649 255 : set_page_count(p, 0);
1650 :
1651 510 : atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1652 :
1653 : /*
1654 : * Bypass PCP and place fresh pages right to the tail, primarily
1655 : * relevant for memory onlining.
1656 : */
1657 255 : __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1658 255 : }
1659 :
1660 : #ifdef CONFIG_NUMA
1661 :
1662 : /*
1663 : * During memory init memblocks map pfns to nids. The search is expensive and
1664 : * this caches recent lookups. The implementation of __early_pfn_to_nid
1665 : * treats start/end as pfns.
1666 : */
1667 : struct mminit_pfnnid_cache {
1668 : unsigned long last_start;
1669 : unsigned long last_end;
1670 : int last_nid;
1671 : };
1672 :
1673 : static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1674 :
1675 : /*
1676 : * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1677 : */
1678 : static int __meminit __early_pfn_to_nid(unsigned long pfn,
1679 : struct mminit_pfnnid_cache *state)
1680 : {
1681 : unsigned long start_pfn, end_pfn;
1682 : int nid;
1683 :
1684 : if (state->last_start <= pfn && pfn < state->last_end)
1685 : return state->last_nid;
1686 :
1687 : nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1688 : if (nid != NUMA_NO_NODE) {
1689 : state->last_start = start_pfn;
1690 : state->last_end = end_pfn;
1691 : state->last_nid = nid;
1692 : }
1693 :
1694 : return nid;
1695 : }
1696 :
1697 : int __meminit early_pfn_to_nid(unsigned long pfn)
1698 : {
1699 : static DEFINE_SPINLOCK(early_pfn_lock);
1700 : int nid;
1701 :
1702 : spin_lock(&early_pfn_lock);
1703 : nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1704 : if (nid < 0)
1705 : nid = first_online_node;
1706 : spin_unlock(&early_pfn_lock);
1707 :
1708 : return nid;
1709 : }
1710 : #endif /* CONFIG_NUMA */
1711 :
1712 255 : void __init memblock_free_pages(struct page *page, unsigned long pfn,
1713 : unsigned int order)
1714 : {
1715 255 : if (early_page_uninitialised(pfn))
1716 : return;
1717 255 : __free_pages_core(page, order);
1718 : }
1719 :
1720 : /*
1721 : * Check that the whole (or subset of) a pageblock given by the interval of
1722 : * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1723 : * with the migration of free compaction scanner.
1724 : *
1725 : * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1726 : *
1727 : * It's possible on some configurations to have a setup like node0 node1 node0
1728 : * i.e. it's possible that all pages within a zones range of pages do not
1729 : * belong to a single zone. We assume that a border between node0 and node1
1730 : * can occur within a single pageblock, but not a node0 node1 node0
1731 : * interleaving within a single pageblock. It is therefore sufficient to check
1732 : * the first and last page of a pageblock and avoid checking each individual
1733 : * page in a pageblock.
1734 : */
1735 260 : struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1736 : unsigned long end_pfn, struct zone *zone)
1737 : {
1738 : struct page *start_page;
1739 : struct page *end_page;
1740 :
1741 : /* end_pfn is one past the range we are checking */
1742 260 : end_pfn--;
1743 :
1744 260 : if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1745 : return NULL;
1746 :
1747 260 : start_page = pfn_to_online_page(start_pfn);
1748 260 : if (!start_page)
1749 : return NULL;
1750 :
1751 260 : if (page_zone(start_page) != zone)
1752 : return NULL;
1753 :
1754 260 : end_page = pfn_to_page(end_pfn);
1755 :
1756 : /* This gives a shorter code than deriving page_zone(end_page) */
1757 780 : if (page_zone_id(start_page) != page_zone_id(end_page))
1758 : return NULL;
1759 :
1760 260 : return start_page;
1761 : }
1762 :
1763 1 : void set_zone_contiguous(struct zone *zone)
1764 : {
1765 1 : unsigned long block_start_pfn = zone->zone_start_pfn;
1766 : unsigned long block_end_pfn;
1767 :
1768 1 : block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1769 523 : for (; block_start_pfn < zone_end_pfn(zone);
1770 260 : block_start_pfn = block_end_pfn,
1771 260 : block_end_pfn += pageblock_nr_pages) {
1772 :
1773 260 : block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1774 :
1775 260 : if (!__pageblock_pfn_to_page(block_start_pfn,
1776 : block_end_pfn, zone))
1777 : return;
1778 260 : cond_resched();
1779 : }
1780 :
1781 : /* We confirm that there is no hole */
1782 1 : zone->contiguous = true;
1783 : }
1784 :
1785 0 : void clear_zone_contiguous(struct zone *zone)
1786 : {
1787 0 : zone->contiguous = false;
1788 0 : }
1789 :
1790 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1791 : static void __init deferred_free_range(unsigned long pfn,
1792 : unsigned long nr_pages)
1793 : {
1794 : struct page *page;
1795 : unsigned long i;
1796 :
1797 : if (!nr_pages)
1798 : return;
1799 :
1800 : page = pfn_to_page(pfn);
1801 :
1802 : /* Free a large naturally-aligned chunk if possible */
1803 : if (nr_pages == pageblock_nr_pages &&
1804 : (pfn & (pageblock_nr_pages - 1)) == 0) {
1805 : set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1806 : __free_pages_core(page, pageblock_order);
1807 : return;
1808 : }
1809 :
1810 : for (i = 0; i < nr_pages; i++, page++, pfn++) {
1811 : if ((pfn & (pageblock_nr_pages - 1)) == 0)
1812 : set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1813 : __free_pages_core(page, 0);
1814 : }
1815 : }
1816 :
1817 : /* Completion tracking for deferred_init_memmap() threads */
1818 : static atomic_t pgdat_init_n_undone __initdata;
1819 : static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1820 :
1821 : static inline void __init pgdat_init_report_one_done(void)
1822 : {
1823 : if (atomic_dec_and_test(&pgdat_init_n_undone))
1824 : complete(&pgdat_init_all_done_comp);
1825 : }
1826 :
1827 : /*
1828 : * Returns true if page needs to be initialized or freed to buddy allocator.
1829 : *
1830 : * First we check if pfn is valid on architectures where it is possible to have
1831 : * holes within pageblock_nr_pages. On systems where it is not possible, this
1832 : * function is optimized out.
1833 : *
1834 : * Then, we check if a current large page is valid by only checking the validity
1835 : * of the head pfn.
1836 : */
1837 : static inline bool __init deferred_pfn_valid(unsigned long pfn)
1838 : {
1839 : if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1840 : return false;
1841 : return true;
1842 : }
1843 :
1844 : /*
1845 : * Free pages to buddy allocator. Try to free aligned pages in
1846 : * pageblock_nr_pages sizes.
1847 : */
1848 : static void __init deferred_free_pages(unsigned long pfn,
1849 : unsigned long end_pfn)
1850 : {
1851 : unsigned long nr_pgmask = pageblock_nr_pages - 1;
1852 : unsigned long nr_free = 0;
1853 :
1854 : for (; pfn < end_pfn; pfn++) {
1855 : if (!deferred_pfn_valid(pfn)) {
1856 : deferred_free_range(pfn - nr_free, nr_free);
1857 : nr_free = 0;
1858 : } else if (!(pfn & nr_pgmask)) {
1859 : deferred_free_range(pfn - nr_free, nr_free);
1860 : nr_free = 1;
1861 : } else {
1862 : nr_free++;
1863 : }
1864 : }
1865 : /* Free the last block of pages to allocator */
1866 : deferred_free_range(pfn - nr_free, nr_free);
1867 : }
1868 :
1869 : /*
1870 : * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1871 : * by performing it only once every pageblock_nr_pages.
1872 : * Return number of pages initialized.
1873 : */
1874 : static unsigned long __init deferred_init_pages(struct zone *zone,
1875 : unsigned long pfn,
1876 : unsigned long end_pfn)
1877 : {
1878 : unsigned long nr_pgmask = pageblock_nr_pages - 1;
1879 : int nid = zone_to_nid(zone);
1880 : unsigned long nr_pages = 0;
1881 : int zid = zone_idx(zone);
1882 : struct page *page = NULL;
1883 :
1884 : for (; pfn < end_pfn; pfn++) {
1885 : if (!deferred_pfn_valid(pfn)) {
1886 : page = NULL;
1887 : continue;
1888 : } else if (!page || !(pfn & nr_pgmask)) {
1889 : page = pfn_to_page(pfn);
1890 : } else {
1891 : page++;
1892 : }
1893 : __init_single_page(page, pfn, zid, nid);
1894 : nr_pages++;
1895 : }
1896 : return (nr_pages);
1897 : }
1898 :
1899 : /*
1900 : * This function is meant to pre-load the iterator for the zone init.
1901 : * Specifically it walks through the ranges until we are caught up to the
1902 : * first_init_pfn value and exits there. If we never encounter the value we
1903 : * return false indicating there are no valid ranges left.
1904 : */
1905 : static bool __init
1906 : deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1907 : unsigned long *spfn, unsigned long *epfn,
1908 : unsigned long first_init_pfn)
1909 : {
1910 : u64 j;
1911 :
1912 : /*
1913 : * Start out by walking through the ranges in this zone that have
1914 : * already been initialized. We don't need to do anything with them
1915 : * so we just need to flush them out of the system.
1916 : */
1917 : for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1918 : if (*epfn <= first_init_pfn)
1919 : continue;
1920 : if (*spfn < first_init_pfn)
1921 : *spfn = first_init_pfn;
1922 : *i = j;
1923 : return true;
1924 : }
1925 :
1926 : return false;
1927 : }
1928 :
1929 : /*
1930 : * Initialize and free pages. We do it in two loops: first we initialize
1931 : * struct page, then free to buddy allocator, because while we are
1932 : * freeing pages we can access pages that are ahead (computing buddy
1933 : * page in __free_one_page()).
1934 : *
1935 : * In order to try and keep some memory in the cache we have the loop
1936 : * broken along max page order boundaries. This way we will not cause
1937 : * any issues with the buddy page computation.
1938 : */
1939 : static unsigned long __init
1940 : deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1941 : unsigned long *end_pfn)
1942 : {
1943 : unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1944 : unsigned long spfn = *start_pfn, epfn = *end_pfn;
1945 : unsigned long nr_pages = 0;
1946 : u64 j = *i;
1947 :
1948 : /* First we loop through and initialize the page values */
1949 : for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1950 : unsigned long t;
1951 :
1952 : if (mo_pfn <= *start_pfn)
1953 : break;
1954 :
1955 : t = min(mo_pfn, *end_pfn);
1956 : nr_pages += deferred_init_pages(zone, *start_pfn, t);
1957 :
1958 : if (mo_pfn < *end_pfn) {
1959 : *start_pfn = mo_pfn;
1960 : break;
1961 : }
1962 : }
1963 :
1964 : /* Reset values and now loop through freeing pages as needed */
1965 : swap(j, *i);
1966 :
1967 : for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1968 : unsigned long t;
1969 :
1970 : if (mo_pfn <= spfn)
1971 : break;
1972 :
1973 : t = min(mo_pfn, epfn);
1974 : deferred_free_pages(spfn, t);
1975 :
1976 : if (mo_pfn <= epfn)
1977 : break;
1978 : }
1979 :
1980 : return nr_pages;
1981 : }
1982 :
1983 : static void __init
1984 : deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1985 : void *arg)
1986 : {
1987 : unsigned long spfn, epfn;
1988 : struct zone *zone = arg;
1989 : u64 i;
1990 :
1991 : deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1992 :
1993 : /*
1994 : * Initialize and free pages in MAX_ORDER sized increments so that we
1995 : * can avoid introducing any issues with the buddy allocator.
1996 : */
1997 : while (spfn < end_pfn) {
1998 : deferred_init_maxorder(&i, zone, &spfn, &epfn);
1999 : cond_resched();
2000 : }
2001 : }
2002 :
2003 : /* An arch may override for more concurrency. */
2004 : __weak int __init
2005 : deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2006 : {
2007 : return 1;
2008 : }
2009 :
2010 : /* Initialise remaining memory on a node */
2011 : static int __init deferred_init_memmap(void *data)
2012 : {
2013 : pg_data_t *pgdat = data;
2014 : const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2015 : unsigned long spfn = 0, epfn = 0;
2016 : unsigned long first_init_pfn, flags;
2017 : unsigned long start = jiffies;
2018 : struct zone *zone;
2019 : int zid, max_threads;
2020 : u64 i;
2021 :
2022 : /* Bind memory initialisation thread to a local node if possible */
2023 : if (!cpumask_empty(cpumask))
2024 : set_cpus_allowed_ptr(current, cpumask);
2025 :
2026 : pgdat_resize_lock(pgdat, &flags);
2027 : first_init_pfn = pgdat->first_deferred_pfn;
2028 : if (first_init_pfn == ULONG_MAX) {
2029 : pgdat_resize_unlock(pgdat, &flags);
2030 : pgdat_init_report_one_done();
2031 : return 0;
2032 : }
2033 :
2034 : /* Sanity check boundaries */
2035 : BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2036 : BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2037 : pgdat->first_deferred_pfn = ULONG_MAX;
2038 :
2039 : /*
2040 : * Once we unlock here, the zone cannot be grown anymore, thus if an
2041 : * interrupt thread must allocate this early in boot, zone must be
2042 : * pre-grown prior to start of deferred page initialization.
2043 : */
2044 : pgdat_resize_unlock(pgdat, &flags);
2045 :
2046 : /* Only the highest zone is deferred so find it */
2047 : for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2048 : zone = pgdat->node_zones + zid;
2049 : if (first_init_pfn < zone_end_pfn(zone))
2050 : break;
2051 : }
2052 :
2053 : /* If the zone is empty somebody else may have cleared out the zone */
2054 : if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2055 : first_init_pfn))
2056 : goto zone_empty;
2057 :
2058 : max_threads = deferred_page_init_max_threads(cpumask);
2059 :
2060 : while (spfn < epfn) {
2061 : unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2062 : struct padata_mt_job job = {
2063 : .thread_fn = deferred_init_memmap_chunk,
2064 : .fn_arg = zone,
2065 : .start = spfn,
2066 : .size = epfn_align - spfn,
2067 : .align = PAGES_PER_SECTION,
2068 : .min_chunk = PAGES_PER_SECTION,
2069 : .max_threads = max_threads,
2070 : };
2071 :
2072 : padata_do_multithreaded(&job);
2073 : deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2074 : epfn_align);
2075 : }
2076 : zone_empty:
2077 : /* Sanity check that the next zone really is unpopulated */
2078 : WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2079 :
2080 : pr_info("node %d deferred pages initialised in %ums\n",
2081 : pgdat->node_id, jiffies_to_msecs(jiffies - start));
2082 :
2083 : pgdat_init_report_one_done();
2084 : return 0;
2085 : }
2086 :
2087 : /*
2088 : * If this zone has deferred pages, try to grow it by initializing enough
2089 : * deferred pages to satisfy the allocation specified by order, rounded up to
2090 : * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2091 : * of SECTION_SIZE bytes by initializing struct pages in increments of
2092 : * PAGES_PER_SECTION * sizeof(struct page) bytes.
2093 : *
2094 : * Return true when zone was grown, otherwise return false. We return true even
2095 : * when we grow less than requested, to let the caller decide if there are
2096 : * enough pages to satisfy the allocation.
2097 : *
2098 : * Note: We use noinline because this function is needed only during boot, and
2099 : * it is called from a __ref function _deferred_grow_zone. This way we are
2100 : * making sure that it is not inlined into permanent text section.
2101 : */
2102 : static noinline bool __init
2103 : deferred_grow_zone(struct zone *zone, unsigned int order)
2104 : {
2105 : unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2106 : pg_data_t *pgdat = zone->zone_pgdat;
2107 : unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2108 : unsigned long spfn, epfn, flags;
2109 : unsigned long nr_pages = 0;
2110 : u64 i;
2111 :
2112 : /* Only the last zone may have deferred pages */
2113 : if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2114 : return false;
2115 :
2116 : pgdat_resize_lock(pgdat, &flags);
2117 :
2118 : /*
2119 : * If someone grew this zone while we were waiting for spinlock, return
2120 : * true, as there might be enough pages already.
2121 : */
2122 : if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2123 : pgdat_resize_unlock(pgdat, &flags);
2124 : return true;
2125 : }
2126 :
2127 : /* If the zone is empty somebody else may have cleared out the zone */
2128 : if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2129 : first_deferred_pfn)) {
2130 : pgdat->first_deferred_pfn = ULONG_MAX;
2131 : pgdat_resize_unlock(pgdat, &flags);
2132 : /* Retry only once. */
2133 : return first_deferred_pfn != ULONG_MAX;
2134 : }
2135 :
2136 : /*
2137 : * Initialize and free pages in MAX_ORDER sized increments so
2138 : * that we can avoid introducing any issues with the buddy
2139 : * allocator.
2140 : */
2141 : while (spfn < epfn) {
2142 : /* update our first deferred PFN for this section */
2143 : first_deferred_pfn = spfn;
2144 :
2145 : nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2146 : touch_nmi_watchdog();
2147 :
2148 : /* We should only stop along section boundaries */
2149 : if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2150 : continue;
2151 :
2152 : /* If our quota has been met we can stop here */
2153 : if (nr_pages >= nr_pages_needed)
2154 : break;
2155 : }
2156 :
2157 : pgdat->first_deferred_pfn = spfn;
2158 : pgdat_resize_unlock(pgdat, &flags);
2159 :
2160 : return nr_pages > 0;
2161 : }
2162 :
2163 : /*
2164 : * deferred_grow_zone() is __init, but it is called from
2165 : * get_page_from_freelist() during early boot until deferred_pages permanently
2166 : * disables this call. This is why we have refdata wrapper to avoid warning,
2167 : * and to ensure that the function body gets unloaded.
2168 : */
2169 : static bool __ref
2170 : _deferred_grow_zone(struct zone *zone, unsigned int order)
2171 : {
2172 : return deferred_grow_zone(zone, order);
2173 : }
2174 :
2175 : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2176 :
2177 1 : void __init page_alloc_init_late(void)
2178 : {
2179 : struct zone *zone;
2180 : int nid;
2181 :
2182 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2183 :
2184 : /* There will be num_node_state(N_MEMORY) threads */
2185 : atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2186 : for_each_node_state(nid, N_MEMORY) {
2187 : kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2188 : }
2189 :
2190 : /* Block until all are initialised */
2191 : wait_for_completion(&pgdat_init_all_done_comp);
2192 :
2193 : /*
2194 : * We initialized the rest of the deferred pages. Permanently disable
2195 : * on-demand struct page initialization.
2196 : */
2197 : static_branch_disable(&deferred_pages);
2198 :
2199 : /* Reinit limits that are based on free pages after the kernel is up */
2200 : files_maxfiles_init();
2201 : #endif
2202 :
2203 1 : buffer_init();
2204 :
2205 : /* Discard memblock private memory */
2206 1 : memblock_discard();
2207 :
2208 1 : for_each_node_state(nid, N_MEMORY)
2209 : shuffle_free_memory(NODE_DATA(nid));
2210 :
2211 3 : for_each_populated_zone(zone)
2212 1 : set_zone_contiguous(zone);
2213 1 : }
2214 :
2215 : #ifdef CONFIG_CMA
2216 : /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2217 : void __init init_cma_reserved_pageblock(struct page *page)
2218 : {
2219 : unsigned i = pageblock_nr_pages;
2220 : struct page *p = page;
2221 :
2222 : do {
2223 : __ClearPageReserved(p);
2224 : set_page_count(p, 0);
2225 : } while (++p, --i);
2226 :
2227 : set_pageblock_migratetype(page, MIGRATE_CMA);
2228 : set_page_refcounted(page);
2229 : __free_pages(page, pageblock_order);
2230 :
2231 : adjust_managed_page_count(page, pageblock_nr_pages);
2232 : page_zone(page)->cma_pages += pageblock_nr_pages;
2233 : }
2234 : #endif
2235 :
2236 : /*
2237 : * The order of subdivision here is critical for the IO subsystem.
2238 : * Please do not alter this order without good reasons and regression
2239 : * testing. Specifically, as large blocks of memory are subdivided,
2240 : * the order in which smaller blocks are delivered depends on the order
2241 : * they're subdivided in this function. This is the primary factor
2242 : * influencing the order in which pages are delivered to the IO
2243 : * subsystem according to empirical testing, and this is also justified
2244 : * by considering the behavior of a buddy system containing a single
2245 : * large block of memory acted on by a series of small allocations.
2246 : * This behavior is a critical factor in sglist merging's success.
2247 : *
2248 : * -- nyc
2249 : */
2250 : static inline void expand(struct zone *zone, struct page *page,
2251 : int low, int high, int migratetype)
2252 : {
2253 691 : unsigned long size = 1 << high;
2254 :
2255 1390 : while (high > low) {
2256 699 : high--;
2257 699 : size >>= 1;
2258 : VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2259 :
2260 : /*
2261 : * Mark as guard pages (or page), that will allow to
2262 : * merge back to allocator when buddy will be freed.
2263 : * Corresponding page table entries will not be touched,
2264 : * pages will stay not present in virtual address space
2265 : */
2266 699 : if (set_page_guard(zone, &page[size], high, migratetype))
2267 : continue;
2268 :
2269 1398 : add_to_free_list(&page[size], zone, high, migratetype);
2270 699 : set_buddy_order(&page[size], high);
2271 : }
2272 : }
2273 :
2274 0 : static void check_new_page_bad(struct page *page)
2275 : {
2276 : if (unlikely(page->flags & __PG_HWPOISON)) {
2277 : /* Don't complain about hwpoisoned pages */
2278 : page_mapcount_reset(page); /* remove PageBuddy */
2279 : return;
2280 : }
2281 :
2282 0 : bad_page(page,
2283 : page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2284 : }
2285 :
2286 : /*
2287 : * This page is about to be returned from the page allocator
2288 : */
2289 1253 : static inline int check_new_page(struct page *page)
2290 : {
2291 1253 : if (likely(page_expected_state(page,
2292 : PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2293 : return 0;
2294 :
2295 0 : check_new_page_bad(page);
2296 0 : return 1;
2297 : }
2298 :
2299 : static bool check_new_pages(struct page *page, unsigned int order)
2300 : {
2301 : int i;
2302 1253 : for (i = 0; i < (1 << order); i++) {
2303 1253 : struct page *p = page + i;
2304 :
2305 1253 : if (unlikely(check_new_page(p)))
2306 : return true;
2307 : }
2308 :
2309 : return false;
2310 : }
2311 :
2312 : #ifdef CONFIG_DEBUG_VM
2313 : /*
2314 : * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2315 : * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2316 : * also checked when pcp lists are refilled from the free lists.
2317 : */
2318 : static inline bool check_pcp_refill(struct page *page, unsigned int order)
2319 : {
2320 : if (debug_pagealloc_enabled_static())
2321 : return check_new_pages(page, order);
2322 : else
2323 : return false;
2324 : }
2325 :
2326 : static inline bool check_new_pcp(struct page *page, unsigned int order)
2327 : {
2328 : return check_new_pages(page, order);
2329 : }
2330 : #else
2331 : /*
2332 : * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2333 : * when pcp lists are being refilled from the free lists. With debug_pagealloc
2334 : * enabled, they are also checked when being allocated from the pcp lists.
2335 : */
2336 : static inline bool check_pcp_refill(struct page *page, unsigned int order)
2337 : {
2338 683 : return check_new_pages(page, order);
2339 : }
2340 : static inline bool check_new_pcp(struct page *page, unsigned int order)
2341 : {
2342 : if (debug_pagealloc_enabled_static())
2343 : return check_new_pages(page, order);
2344 : else
2345 : return false;
2346 : }
2347 : #endif /* CONFIG_DEBUG_VM */
2348 :
2349 : static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2350 : {
2351 : /* Don't skip if a software KASAN mode is enabled. */
2352 : if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2353 : IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2354 : return false;
2355 :
2356 : /* Skip, if hardware tag-based KASAN is not enabled. */
2357 : if (!kasan_hw_tags_enabled())
2358 : return true;
2359 :
2360 : /*
2361 : * With hardware tag-based KASAN enabled, skip if either:
2362 : *
2363 : * 1. Memory tags have already been cleared via tag_clear_highpage().
2364 : * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2365 : */
2366 : return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2367 : }
2368 :
2369 : static inline bool should_skip_init(gfp_t flags)
2370 : {
2371 : /* Don't skip, if hardware tag-based KASAN is not enabled. */
2372 : if (!kasan_hw_tags_enabled())
2373 : return false;
2374 :
2375 : /* For hardware tag-based KASAN, skip if requested. */
2376 : return (flags & __GFP_SKIP_ZERO);
2377 : }
2378 :
2379 528 : inline void post_alloc_hook(struct page *page, unsigned int order,
2380 : gfp_t gfp_flags)
2381 : {
2382 1056 : bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2383 : !should_skip_init(gfp_flags);
2384 528 : bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2385 :
2386 1056 : set_page_private(page, 0);
2387 528 : set_page_refcounted(page);
2388 :
2389 528 : arch_alloc_page(page, order);
2390 528 : debug_pagealloc_map_pages(page, 1 << order);
2391 :
2392 : /*
2393 : * Page unpoisoning must happen before memory initialization.
2394 : * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2395 : * allocations and the page unpoisoning code will complain.
2396 : */
2397 528 : kernel_unpoison_pages(page, 1 << order);
2398 :
2399 : /*
2400 : * As memory initialization might be integrated into KASAN,
2401 : * KASAN unpoisoning and memory initializion code must be
2402 : * kept together to avoid discrepancies in behavior.
2403 : */
2404 :
2405 : /*
2406 : * If memory tags should be zeroed (which happens only when memory
2407 : * should be initialized as well).
2408 : */
2409 528 : if (init_tags) {
2410 : int i;
2411 :
2412 : /* Initialize both memory and tags. */
2413 : for (i = 0; i != 1 << order; ++i)
2414 : tag_clear_highpage(page + i);
2415 :
2416 : /* Note that memory is already initialized by the loop above. */
2417 : init = false;
2418 : }
2419 528 : if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2420 : /* Unpoison shadow memory or set memory tags. */
2421 : kasan_unpoison_pages(page, order, init);
2422 :
2423 : /* Note that memory is already initialized by KASAN. */
2424 : if (kasan_has_integrated_init())
2425 : init = false;
2426 : }
2427 : /* If memory is still not initialized, do it now. */
2428 528 : if (init)
2429 : kernel_init_free_pages(page, 1 << order);
2430 : /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2431 : if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2432 : SetPageSkipKASanPoison(page);
2433 :
2434 528 : set_page_owner(page, order, gfp_flags);
2435 528 : page_table_check_alloc(page, order);
2436 528 : }
2437 :
2438 468 : static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2439 : unsigned int alloc_flags)
2440 : {
2441 528 : post_alloc_hook(page, order, gfp_flags);
2442 :
2443 468 : if (order && (gfp_flags & __GFP_COMP))
2444 : prep_compound_page(page, order);
2445 :
2446 : /*
2447 : * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2448 : * allocate the page. The expectation is that the caller is taking
2449 : * steps that will free more memory. The caller should avoid the page
2450 : * being used for !PFMEMALLOC purposes.
2451 : */
2452 468 : if (alloc_flags & ALLOC_NO_WATERMARKS)
2453 0 : set_page_pfmemalloc(page);
2454 : else
2455 528 : clear_page_pfmemalloc(page);
2456 468 : }
2457 :
2458 : /*
2459 : * Go through the free lists for the given migratetype and remove
2460 : * the smallest available page from the freelists
2461 : */
2462 : static __always_inline
2463 : struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2464 : int migratetype)
2465 : {
2466 : unsigned int current_order;
2467 : struct free_area *area;
2468 : struct page *page;
2469 :
2470 : /* Find a page of the appropriate size in the preferred list */
2471 2826 : for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2472 1411 : area = &(zone->free_area[current_order]);
2473 1411 : page = get_page_from_free_area(area, migratetype);
2474 1411 : if (!page)
2475 720 : continue;
2476 691 : del_page_from_free_list(page, zone, current_order);
2477 1382 : expand(zone, page, order, current_order, migratetype);
2478 691 : set_pcppage_migratetype(page, migratetype);
2479 : return page;
2480 : }
2481 :
2482 : return NULL;
2483 : }
2484 :
2485 :
2486 : /*
2487 : * This array describes the order lists are fallen back to when
2488 : * the free lists for the desirable migrate type are depleted
2489 : *
2490 : * The other migratetypes do not have fallbacks.
2491 : */
2492 : static int fallbacks[MIGRATE_TYPES][3] = {
2493 : [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2494 : [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2495 : [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2496 : };
2497 :
2498 : #ifdef CONFIG_CMA
2499 : static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2500 : unsigned int order)
2501 : {
2502 : return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2503 : }
2504 : #else
2505 : static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2506 : unsigned int order) { return NULL; }
2507 : #endif
2508 :
2509 : /*
2510 : * Move the free pages in a range to the freelist tail of the requested type.
2511 : * Note that start_page and end_pages are not aligned on a pageblock
2512 : * boundary. If alignment is required, use move_freepages_block()
2513 : */
2514 0 : static int move_freepages(struct zone *zone,
2515 : unsigned long start_pfn, unsigned long end_pfn,
2516 : int migratetype, int *num_movable)
2517 : {
2518 : struct page *page;
2519 : unsigned long pfn;
2520 : unsigned int order;
2521 0 : int pages_moved = 0;
2522 :
2523 0 : for (pfn = start_pfn; pfn <= end_pfn;) {
2524 0 : page = pfn_to_page(pfn);
2525 0 : if (!PageBuddy(page)) {
2526 : /*
2527 : * We assume that pages that could be isolated for
2528 : * migration are movable. But we don't actually try
2529 : * isolating, as that would be expensive.
2530 : */
2531 0 : if (num_movable &&
2532 0 : (PageLRU(page) || __PageMovable(page)))
2533 0 : (*num_movable)++;
2534 0 : pfn++;
2535 0 : continue;
2536 : }
2537 :
2538 : /* Make sure we are not inadvertently changing nodes */
2539 : VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2540 : VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2541 :
2542 0 : order = buddy_order(page);
2543 0 : move_to_free_list(page, zone, order, migratetype);
2544 0 : pfn += 1 << order;
2545 0 : pages_moved += 1 << order;
2546 : }
2547 :
2548 0 : return pages_moved;
2549 : }
2550 :
2551 0 : int move_freepages_block(struct zone *zone, struct page *page,
2552 : int migratetype, int *num_movable)
2553 : {
2554 : unsigned long start_pfn, end_pfn, pfn;
2555 :
2556 0 : if (num_movable)
2557 0 : *num_movable = 0;
2558 :
2559 0 : pfn = page_to_pfn(page);
2560 0 : start_pfn = pfn & ~(pageblock_nr_pages - 1);
2561 0 : end_pfn = start_pfn + pageblock_nr_pages - 1;
2562 :
2563 : /* Do not cross zone boundaries */
2564 0 : if (!zone_spans_pfn(zone, start_pfn))
2565 0 : start_pfn = pfn;
2566 0 : if (!zone_spans_pfn(zone, end_pfn))
2567 : return 0;
2568 :
2569 0 : return move_freepages(zone, start_pfn, end_pfn, migratetype,
2570 : num_movable);
2571 : }
2572 :
2573 : static void change_pageblock_range(struct page *pageblock_page,
2574 : int start_order, int migratetype)
2575 : {
2576 2 : int nr_pageblocks = 1 << (start_order - pageblock_order);
2577 :
2578 4 : while (nr_pageblocks--) {
2579 2 : set_pageblock_migratetype(pageblock_page, migratetype);
2580 2 : pageblock_page += pageblock_nr_pages;
2581 : }
2582 : }
2583 :
2584 : /*
2585 : * When we are falling back to another migratetype during allocation, try to
2586 : * steal extra free pages from the same pageblocks to satisfy further
2587 : * allocations, instead of polluting multiple pageblocks.
2588 : *
2589 : * If we are stealing a relatively large buddy page, it is likely there will
2590 : * be more free pages in the pageblock, so try to steal them all. For
2591 : * reclaimable and unmovable allocations, we steal regardless of page size,
2592 : * as fragmentation caused by those allocations polluting movable pageblocks
2593 : * is worse than movable allocations stealing from unmovable and reclaimable
2594 : * pageblocks.
2595 : */
2596 : static bool can_steal_fallback(unsigned int order, int start_mt)
2597 : {
2598 : /*
2599 : * Leaving this order check is intended, although there is
2600 : * relaxed order check in next check. The reason is that
2601 : * we can actually steal whole pageblock if this condition met,
2602 : * but, below check doesn't guarantee it and that is just heuristic
2603 : * so could be changed anytime.
2604 : */
2605 2 : if (order >= pageblock_order)
2606 : return true;
2607 :
2608 0 : if (order >= pageblock_order / 2 ||
2609 0 : start_mt == MIGRATE_RECLAIMABLE ||
2610 0 : start_mt == MIGRATE_UNMOVABLE ||
2611 : page_group_by_mobility_disabled)
2612 : return true;
2613 :
2614 : return false;
2615 : }
2616 :
2617 0 : static inline bool boost_watermark(struct zone *zone)
2618 : {
2619 : unsigned long max_boost;
2620 :
2621 0 : if (!watermark_boost_factor)
2622 : return false;
2623 : /*
2624 : * Don't bother in zones that are unlikely to produce results.
2625 : * On small machines, including kdump capture kernels running
2626 : * in a small area, boosting the watermark can cause an out of
2627 : * memory situation immediately.
2628 : */
2629 0 : if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2630 : return false;
2631 :
2632 0 : max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2633 : watermark_boost_factor, 10000);
2634 :
2635 : /*
2636 : * high watermark may be uninitialised if fragmentation occurs
2637 : * very early in boot so do not boost. We do not fall
2638 : * through and boost by pageblock_nr_pages as failing
2639 : * allocations that early means that reclaim is not going
2640 : * to help and it may even be impossible to reclaim the
2641 : * boosted watermark resulting in a hang.
2642 : */
2643 0 : if (!max_boost)
2644 : return false;
2645 :
2646 0 : max_boost = max(pageblock_nr_pages, max_boost);
2647 :
2648 0 : zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2649 : max_boost);
2650 :
2651 0 : return true;
2652 : }
2653 :
2654 : /*
2655 : * This function implements actual steal behaviour. If order is large enough,
2656 : * we can steal whole pageblock. If not, we first move freepages in this
2657 : * pageblock to our migratetype and determine how many already-allocated pages
2658 : * are there in the pageblock with a compatible migratetype. If at least half
2659 : * of pages are free or compatible, we can change migratetype of the pageblock
2660 : * itself, so pages freed in the future will be put on the correct free list.
2661 : */
2662 2 : static void steal_suitable_fallback(struct zone *zone, struct page *page,
2663 : unsigned int alloc_flags, int start_type, bool whole_block)
2664 : {
2665 4 : unsigned int current_order = buddy_order(page);
2666 : int free_pages, movable_pages, alike_pages;
2667 : int old_block_type;
2668 :
2669 4 : old_block_type = get_pageblock_migratetype(page);
2670 :
2671 : /*
2672 : * This can happen due to races and we want to prevent broken
2673 : * highatomic accounting.
2674 : */
2675 2 : if (is_migrate_highatomic(old_block_type))
2676 : goto single_page;
2677 :
2678 : /* Take ownership for orders >= pageblock_order */
2679 2 : if (current_order >= pageblock_order) {
2680 2 : change_pageblock_range(page, current_order, start_type);
2681 : goto single_page;
2682 : }
2683 :
2684 : /*
2685 : * Boost watermarks to increase reclaim pressure to reduce the
2686 : * likelihood of future fallbacks. Wake kswapd now as the node
2687 : * may be balanced overall and kswapd will not wake naturally.
2688 : */
2689 0 : if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2690 0 : set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2691 :
2692 : /* We are not allowed to try stealing from the whole block */
2693 0 : if (!whole_block)
2694 : goto single_page;
2695 :
2696 0 : free_pages = move_freepages_block(zone, page, start_type,
2697 : &movable_pages);
2698 : /*
2699 : * Determine how many pages are compatible with our allocation.
2700 : * For movable allocation, it's the number of movable pages which
2701 : * we just obtained. For other types it's a bit more tricky.
2702 : */
2703 0 : if (start_type == MIGRATE_MOVABLE) {
2704 0 : alike_pages = movable_pages;
2705 : } else {
2706 : /*
2707 : * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2708 : * to MOVABLE pageblock, consider all non-movable pages as
2709 : * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2710 : * vice versa, be conservative since we can't distinguish the
2711 : * exact migratetype of non-movable pages.
2712 : */
2713 0 : if (old_block_type == MIGRATE_MOVABLE)
2714 0 : alike_pages = pageblock_nr_pages
2715 0 : - (free_pages + movable_pages);
2716 : else
2717 : alike_pages = 0;
2718 : }
2719 :
2720 : /* moving whole block can fail due to zone boundary conditions */
2721 0 : if (!free_pages)
2722 : goto single_page;
2723 :
2724 : /*
2725 : * If a sufficient number of pages in the block are either free or of
2726 : * comparable migratability as our allocation, claim the whole block.
2727 : */
2728 0 : if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2729 : page_group_by_mobility_disabled)
2730 0 : set_pageblock_migratetype(page, start_type);
2731 :
2732 0 : return;
2733 :
2734 : single_page:
2735 2 : move_to_free_list(page, zone, current_order, start_type);
2736 : }
2737 :
2738 : /*
2739 : * Check whether there is a suitable fallback freepage with requested order.
2740 : * If only_stealable is true, this function returns fallback_mt only if
2741 : * we can steal other freepages all together. This would help to reduce
2742 : * fragmentation due to mixed migratetype pages in one pageblock.
2743 : */
2744 2 : int find_suitable_fallback(struct free_area *area, unsigned int order,
2745 : int migratetype, bool only_stealable, bool *can_steal)
2746 : {
2747 : int i;
2748 : int fallback_mt;
2749 :
2750 2 : if (area->nr_free == 0)
2751 : return -1;
2752 :
2753 2 : *can_steal = false;
2754 4 : for (i = 0;; i++) {
2755 6 : fallback_mt = fallbacks[migratetype][i];
2756 4 : if (fallback_mt == MIGRATE_TYPES)
2757 : break;
2758 :
2759 4 : if (free_area_empty(area, fallback_mt))
2760 2 : continue;
2761 :
2762 2 : if (can_steal_fallback(order, migratetype))
2763 2 : *can_steal = true;
2764 :
2765 2 : if (!only_stealable)
2766 : return fallback_mt;
2767 :
2768 0 : if (*can_steal)
2769 : return fallback_mt;
2770 : }
2771 :
2772 : return -1;
2773 : }
2774 :
2775 : /*
2776 : * Reserve a pageblock for exclusive use of high-order atomic allocations if
2777 : * there are no empty page blocks that contain a page with a suitable order
2778 : */
2779 0 : static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2780 : unsigned int alloc_order)
2781 : {
2782 : int mt;
2783 : unsigned long max_managed, flags;
2784 :
2785 : /*
2786 : * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2787 : * Check is race-prone but harmless.
2788 : */
2789 0 : max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2790 0 : if (zone->nr_reserved_highatomic >= max_managed)
2791 : return;
2792 :
2793 0 : spin_lock_irqsave(&zone->lock, flags);
2794 :
2795 : /* Recheck the nr_reserved_highatomic limit under the lock */
2796 0 : if (zone->nr_reserved_highatomic >= max_managed)
2797 : goto out_unlock;
2798 :
2799 : /* Yoink! */
2800 0 : mt = get_pageblock_migratetype(page);
2801 : /* Only reserve normal pageblocks (i.e., they can merge with others) */
2802 0 : if (migratetype_is_mergeable(mt)) {
2803 0 : zone->nr_reserved_highatomic += pageblock_nr_pages;
2804 0 : set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2805 0 : move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2806 : }
2807 :
2808 : out_unlock:
2809 0 : spin_unlock_irqrestore(&zone->lock, flags);
2810 : }
2811 :
2812 : /*
2813 : * Used when an allocation is about to fail under memory pressure. This
2814 : * potentially hurts the reliability of high-order allocations when under
2815 : * intense memory pressure but failed atomic allocations should be easier
2816 : * to recover from than an OOM.
2817 : *
2818 : * If @force is true, try to unreserve a pageblock even though highatomic
2819 : * pageblock is exhausted.
2820 : */
2821 0 : static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2822 : bool force)
2823 : {
2824 0 : struct zonelist *zonelist = ac->zonelist;
2825 : unsigned long flags;
2826 : struct zoneref *z;
2827 : struct zone *zone;
2828 : struct page *page;
2829 : int order;
2830 : bool ret;
2831 :
2832 0 : for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2833 : ac->nodemask) {
2834 : /*
2835 : * Preserve at least one pageblock unless memory pressure
2836 : * is really high.
2837 : */
2838 0 : if (!force && zone->nr_reserved_highatomic <=
2839 : pageblock_nr_pages)
2840 0 : continue;
2841 :
2842 0 : spin_lock_irqsave(&zone->lock, flags);
2843 0 : for (order = 0; order < MAX_ORDER; order++) {
2844 0 : struct free_area *area = &(zone->free_area[order]);
2845 :
2846 0 : page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2847 0 : if (!page)
2848 0 : continue;
2849 :
2850 : /*
2851 : * In page freeing path, migratetype change is racy so
2852 : * we can counter several free pages in a pageblock
2853 : * in this loop although we changed the pageblock type
2854 : * from highatomic to ac->migratetype. So we should
2855 : * adjust the count once.
2856 : */
2857 0 : if (is_migrate_highatomic_page(page)) {
2858 : /*
2859 : * It should never happen but changes to
2860 : * locking could inadvertently allow a per-cpu
2861 : * drain to add pages to MIGRATE_HIGHATOMIC
2862 : * while unreserving so be safe and watch for
2863 : * underflows.
2864 : */
2865 0 : zone->nr_reserved_highatomic -= min(
2866 : pageblock_nr_pages,
2867 : zone->nr_reserved_highatomic);
2868 : }
2869 :
2870 : /*
2871 : * Convert to ac->migratetype and avoid the normal
2872 : * pageblock stealing heuristics. Minimally, the caller
2873 : * is doing the work and needs the pages. More
2874 : * importantly, if the block was always converted to
2875 : * MIGRATE_UNMOVABLE or another type then the number
2876 : * of pageblocks that cannot be completely freed
2877 : * may increase.
2878 : */
2879 0 : set_pageblock_migratetype(page, ac->migratetype);
2880 0 : ret = move_freepages_block(zone, page, ac->migratetype,
2881 : NULL);
2882 0 : if (ret) {
2883 0 : spin_unlock_irqrestore(&zone->lock, flags);
2884 0 : return ret;
2885 : }
2886 : }
2887 0 : spin_unlock_irqrestore(&zone->lock, flags);
2888 : }
2889 :
2890 : return false;
2891 : }
2892 :
2893 : /*
2894 : * Try finding a free buddy page on the fallback list and put it on the free
2895 : * list of requested migratetype, possibly along with other pages from the same
2896 : * block, depending on fragmentation avoidance heuristics. Returns true if
2897 : * fallback was found so that __rmqueue_smallest() can grab it.
2898 : *
2899 : * The use of signed ints for order and current_order is a deliberate
2900 : * deviation from the rest of this file, to make the for loop
2901 : * condition simpler.
2902 : */
2903 : static __always_inline bool
2904 : __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2905 : unsigned int alloc_flags)
2906 : {
2907 : struct free_area *area;
2908 : int current_order;
2909 2 : int min_order = order;
2910 : struct page *page;
2911 : int fallback_mt;
2912 : bool can_steal;
2913 :
2914 : /*
2915 : * Do not steal pages from freelists belonging to other pageblocks
2916 : * i.e. orders < pageblock_order. If there are no local zones free,
2917 : * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2918 : */
2919 : if (alloc_flags & ALLOC_NOFRAGMENT)
2920 : min_order = pageblock_order;
2921 :
2922 : /*
2923 : * Find the largest available free page in the other list. This roughly
2924 : * approximates finding the pageblock with the most free pages, which
2925 : * would be too costly to do exactly.
2926 : */
2927 4 : for (current_order = MAX_ORDER - 1; current_order >= min_order;
2928 0 : --current_order) {
2929 2 : area = &(zone->free_area[current_order]);
2930 2 : fallback_mt = find_suitable_fallback(area, current_order,
2931 : start_migratetype, false, &can_steal);
2932 2 : if (fallback_mt == -1)
2933 0 : continue;
2934 :
2935 : /*
2936 : * We cannot steal all free pages from the pageblock and the
2937 : * requested migratetype is movable. In that case it's better to
2938 : * steal and split the smallest available page instead of the
2939 : * largest available page, because even if the next movable
2940 : * allocation falls back into a different pageblock than this
2941 : * one, it won't cause permanent fragmentation.
2942 : */
2943 2 : if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2944 0 : && current_order > order)
2945 : goto find_smallest;
2946 :
2947 : goto do_steal;
2948 : }
2949 :
2950 : return false;
2951 :
2952 : find_smallest:
2953 0 : for (current_order = order; current_order < MAX_ORDER;
2954 0 : current_order++) {
2955 0 : area = &(zone->free_area[current_order]);
2956 0 : fallback_mt = find_suitable_fallback(area, current_order,
2957 : start_migratetype, false, &can_steal);
2958 0 : if (fallback_mt != -1)
2959 : break;
2960 : }
2961 :
2962 : /*
2963 : * This should not happen - we already found a suitable fallback
2964 : * when looking for the largest page.
2965 : */
2966 : VM_BUG_ON(current_order == MAX_ORDER);
2967 :
2968 : do_steal:
2969 2 : page = get_page_from_free_area(area, fallback_mt);
2970 :
2971 2 : steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2972 : can_steal);
2973 :
2974 2 : trace_mm_page_alloc_extfrag(page, order, current_order,
2975 : start_migratetype, fallback_mt);
2976 :
2977 : return true;
2978 :
2979 : }
2980 :
2981 : /*
2982 : * Do the hard work of removing an element from the buddy allocator.
2983 : * Call me with the zone->lock already held.
2984 : */
2985 : static __always_inline struct page *
2986 : __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2987 : unsigned int alloc_flags)
2988 : {
2989 : struct page *page;
2990 :
2991 : if (IS_ENABLED(CONFIG_CMA)) {
2992 : /*
2993 : * Balance movable allocations between regular and CMA areas by
2994 : * allocating from CMA when over half of the zone's free memory
2995 : * is in the CMA area.
2996 : */
2997 : if (alloc_flags & ALLOC_CMA &&
2998 : zone_page_state(zone, NR_FREE_CMA_PAGES) >
2999 : zone_page_state(zone, NR_FREE_PAGES) / 2) {
3000 : page = __rmqueue_cma_fallback(zone, order);
3001 : if (page)
3002 : goto out;
3003 : }
3004 : }
3005 : retry:
3006 693 : page = __rmqueue_smallest(zone, order, migratetype);
3007 693 : if (unlikely(!page)) {
3008 2 : if (alloc_flags & ALLOC_CMA)
3009 0 : page = __rmqueue_cma_fallback(zone, order);
3010 :
3011 4 : if (!page && __rmqueue_fallback(zone, order, migratetype,
3012 : alloc_flags))
3013 : goto retry;
3014 : }
3015 : out:
3016 : if (page)
3017 : trace_mm_page_alloc_zone_locked(page, order, migratetype);
3018 : return page;
3019 : }
3020 :
3021 : /*
3022 : * Obtain a specified number of elements from the buddy allocator, all under
3023 : * a single hold of the lock, for efficiency. Add them to the supplied list.
3024 : * Returns the number of new pages which were placed at *list.
3025 : */
3026 27 : static int rmqueue_bulk(struct zone *zone, unsigned int order,
3027 : unsigned long count, struct list_head *list,
3028 : int migratetype, unsigned int alloc_flags)
3029 : {
3030 27 : int i, allocated = 0;
3031 :
3032 : /*
3033 : * local_lock_irq held so equivalent to spin_lock_irqsave for
3034 : * both PREEMPT_RT and non-PREEMPT_RT configurations.
3035 : */
3036 54 : spin_lock(&zone->lock);
3037 710 : for (i = 0; i < count; ++i) {
3038 683 : struct page *page = __rmqueue(zone, order, migratetype,
3039 : alloc_flags);
3040 683 : if (unlikely(page == NULL))
3041 : break;
3042 :
3043 683 : if (unlikely(check_pcp_refill(page, order)))
3044 0 : continue;
3045 :
3046 : /*
3047 : * Split buddy pages returned by expand() are received here in
3048 : * physical page order. The page is added to the tail of
3049 : * caller's list. From the callers perspective, the linked list
3050 : * is ordered by page number under some conditions. This is
3051 : * useful for IO devices that can forward direction from the
3052 : * head, thus also in the physical page order. This is useful
3053 : * for IO devices that can merge IO requests if the physical
3054 : * pages are ordered properly.
3055 : */
3056 1366 : list_add_tail(&page->lru, list);
3057 683 : allocated++;
3058 : if (is_migrate_cma(get_pcppage_migratetype(page)))
3059 : __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3060 : -(1 << order));
3061 : }
3062 :
3063 : /*
3064 : * i pages were removed from the buddy list even if some leak due
3065 : * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3066 : * on i. Do not confuse with 'allocated' which is the number of
3067 : * pages added to the pcp list.
3068 : */
3069 54 : __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3070 54 : spin_unlock(&zone->lock);
3071 27 : return allocated;
3072 : }
3073 :
3074 : #ifdef CONFIG_NUMA
3075 : /*
3076 : * Called from the vmstat counter updater to drain pagesets of this
3077 : * currently executing processor on remote nodes after they have
3078 : * expired.
3079 : *
3080 : * Note that this function must be called with the thread pinned to
3081 : * a single processor.
3082 : */
3083 : void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3084 : {
3085 : unsigned long flags;
3086 : int to_drain, batch;
3087 :
3088 : local_lock_irqsave(&pagesets.lock, flags);
3089 : batch = READ_ONCE(pcp->batch);
3090 : to_drain = min(pcp->count, batch);
3091 : if (to_drain > 0)
3092 : free_pcppages_bulk(zone, to_drain, pcp, 0);
3093 : local_unlock_irqrestore(&pagesets.lock, flags);
3094 : }
3095 : #endif
3096 :
3097 : /*
3098 : * Drain pcplists of the indicated processor and zone.
3099 : *
3100 : * The processor must either be the current processor and the
3101 : * thread pinned to the current processor or a processor that
3102 : * is not online.
3103 : */
3104 0 : static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3105 : {
3106 : unsigned long flags;
3107 : struct per_cpu_pages *pcp;
3108 :
3109 0 : local_lock_irqsave(&pagesets.lock, flags);
3110 :
3111 0 : pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3112 0 : if (pcp->count)
3113 0 : free_pcppages_bulk(zone, pcp->count, pcp, 0);
3114 :
3115 0 : local_unlock_irqrestore(&pagesets.lock, flags);
3116 0 : }
3117 :
3118 : /*
3119 : * Drain pcplists of all zones on the indicated processor.
3120 : *
3121 : * The processor must either be the current processor and the
3122 : * thread pinned to the current processor or a processor that
3123 : * is not online.
3124 : */
3125 0 : static void drain_pages(unsigned int cpu)
3126 : {
3127 : struct zone *zone;
3128 :
3129 0 : for_each_populated_zone(zone) {
3130 0 : drain_pages_zone(cpu, zone);
3131 : }
3132 0 : }
3133 :
3134 : /*
3135 : * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3136 : *
3137 : * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3138 : * the single zone's pages.
3139 : */
3140 0 : void drain_local_pages(struct zone *zone)
3141 : {
3142 0 : int cpu = smp_processor_id();
3143 :
3144 0 : if (zone)
3145 0 : drain_pages_zone(cpu, zone);
3146 : else
3147 0 : drain_pages(cpu);
3148 0 : }
3149 :
3150 0 : static void drain_local_pages_wq(struct work_struct *work)
3151 : {
3152 : struct pcpu_drain *drain;
3153 :
3154 0 : drain = container_of(work, struct pcpu_drain, work);
3155 :
3156 : /*
3157 : * drain_all_pages doesn't use proper cpu hotplug protection so
3158 : * we can race with cpu offline when the WQ can move this from
3159 : * a cpu pinned worker to an unbound one. We can operate on a different
3160 : * cpu which is alright but we also have to make sure to not move to
3161 : * a different one.
3162 : */
3163 : migrate_disable();
3164 0 : drain_local_pages(drain->zone);
3165 : migrate_enable();
3166 0 : }
3167 :
3168 : /*
3169 : * The implementation of drain_all_pages(), exposing an extra parameter to
3170 : * drain on all cpus.
3171 : *
3172 : * drain_all_pages() is optimized to only execute on cpus where pcplists are
3173 : * not empty. The check for non-emptiness can however race with a free to
3174 : * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3175 : * that need the guarantee that every CPU has drained can disable the
3176 : * optimizing racy check.
3177 : */
3178 0 : static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3179 : {
3180 : int cpu;
3181 :
3182 : /*
3183 : * Allocate in the BSS so we won't require allocation in
3184 : * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3185 : */
3186 : static cpumask_t cpus_with_pcps;
3187 :
3188 : /*
3189 : * Make sure nobody triggers this path before mm_percpu_wq is fully
3190 : * initialized.
3191 : */
3192 0 : if (WARN_ON_ONCE(!mm_percpu_wq))
3193 : return;
3194 :
3195 : /*
3196 : * Do not drain if one is already in progress unless it's specific to
3197 : * a zone. Such callers are primarily CMA and memory hotplug and need
3198 : * the drain to be complete when the call returns.
3199 : */
3200 0 : if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3201 0 : if (!zone)
3202 : return;
3203 0 : mutex_lock(&pcpu_drain_mutex);
3204 : }
3205 :
3206 : /*
3207 : * We don't care about racing with CPU hotplug event
3208 : * as offline notification will cause the notified
3209 : * cpu to drain that CPU pcps and on_each_cpu_mask
3210 : * disables preemption as part of its processing
3211 : */
3212 0 : for_each_online_cpu(cpu) {
3213 : struct per_cpu_pages *pcp;
3214 : struct zone *z;
3215 0 : bool has_pcps = false;
3216 :
3217 0 : if (force_all_cpus) {
3218 : /*
3219 : * The pcp.count check is racy, some callers need a
3220 : * guarantee that no cpu is missed.
3221 : */
3222 : has_pcps = true;
3223 0 : } else if (zone) {
3224 0 : pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3225 0 : if (pcp->count)
3226 0 : has_pcps = true;
3227 : } else {
3228 0 : for_each_populated_zone(z) {
3229 0 : pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3230 0 : if (pcp->count) {
3231 : has_pcps = true;
3232 : break;
3233 : }
3234 : }
3235 : }
3236 :
3237 0 : if (has_pcps)
3238 0 : cpumask_set_cpu(cpu, &cpus_with_pcps);
3239 : else
3240 : cpumask_clear_cpu(cpu, &cpus_with_pcps);
3241 : }
3242 :
3243 0 : for_each_cpu(cpu, &cpus_with_pcps) {
3244 0 : struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3245 :
3246 0 : drain->zone = zone;
3247 0 : INIT_WORK(&drain->work, drain_local_pages_wq);
3248 0 : queue_work_on(cpu, mm_percpu_wq, &drain->work);
3249 : }
3250 0 : for_each_cpu(cpu, &cpus_with_pcps)
3251 0 : flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3252 :
3253 0 : mutex_unlock(&pcpu_drain_mutex);
3254 : }
3255 :
3256 : /*
3257 : * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3258 : *
3259 : * When zone parameter is non-NULL, spill just the single zone's pages.
3260 : *
3261 : * Note that this can be extremely slow as the draining happens in a workqueue.
3262 : */
3263 0 : void drain_all_pages(struct zone *zone)
3264 : {
3265 0 : __drain_all_pages(zone, false);
3266 0 : }
3267 :
3268 : #ifdef CONFIG_HIBERNATION
3269 :
3270 : /*
3271 : * Touch the watchdog for every WD_PAGE_COUNT pages.
3272 : */
3273 : #define WD_PAGE_COUNT (128*1024)
3274 :
3275 : void mark_free_pages(struct zone *zone)
3276 : {
3277 : unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3278 : unsigned long flags;
3279 : unsigned int order, t;
3280 : struct page *page;
3281 :
3282 : if (zone_is_empty(zone))
3283 : return;
3284 :
3285 : spin_lock_irqsave(&zone->lock, flags);
3286 :
3287 : max_zone_pfn = zone_end_pfn(zone);
3288 : for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3289 : if (pfn_valid(pfn)) {
3290 : page = pfn_to_page(pfn);
3291 :
3292 : if (!--page_count) {
3293 : touch_nmi_watchdog();
3294 : page_count = WD_PAGE_COUNT;
3295 : }
3296 :
3297 : if (page_zone(page) != zone)
3298 : continue;
3299 :
3300 : if (!swsusp_page_is_forbidden(page))
3301 : swsusp_unset_page_free(page);
3302 : }
3303 :
3304 : for_each_migratetype_order(order, t) {
3305 : list_for_each_entry(page,
3306 : &zone->free_area[order].free_list[t], lru) {
3307 : unsigned long i;
3308 :
3309 : pfn = page_to_pfn(page);
3310 : for (i = 0; i < (1UL << order); i++) {
3311 : if (!--page_count) {
3312 : touch_nmi_watchdog();
3313 : page_count = WD_PAGE_COUNT;
3314 : }
3315 : swsusp_set_page_free(pfn_to_page(pfn + i));
3316 : }
3317 : }
3318 : }
3319 : spin_unlock_irqrestore(&zone->lock, flags);
3320 : }
3321 : #endif /* CONFIG_PM */
3322 :
3323 3 : static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3324 : unsigned int order)
3325 : {
3326 : int migratetype;
3327 :
3328 3 : if (!free_pcp_prepare(page, order))
3329 : return false;
3330 :
3331 3 : migratetype = get_pfnblock_migratetype(page, pfn);
3332 6 : set_pcppage_migratetype(page, migratetype);
3333 3 : return true;
3334 : }
3335 :
3336 : static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3337 : bool free_high)
3338 : {
3339 : int min_nr_free, max_nr_free;
3340 :
3341 : /* Free everything if batch freeing high-order pages. */
3342 0 : if (unlikely(free_high))
3343 : return pcp->count;
3344 :
3345 : /* Check for PCP disabled or boot pageset */
3346 0 : if (unlikely(high < batch))
3347 : return 1;
3348 :
3349 : /* Leave at least pcp->batch pages on the list */
3350 0 : min_nr_free = batch;
3351 0 : max_nr_free = high - batch;
3352 :
3353 : /*
3354 : * Double the number of pages freed each time there is subsequent
3355 : * freeing of pages without any allocation.
3356 : */
3357 0 : batch <<= pcp->free_factor;
3358 0 : if (batch < max_nr_free)
3359 0 : pcp->free_factor++;
3360 0 : batch = clamp(batch, min_nr_free, max_nr_free);
3361 :
3362 : return batch;
3363 : }
3364 :
3365 : static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3366 : bool free_high)
3367 : {
3368 3 : int high = READ_ONCE(pcp->high);
3369 :
3370 3 : if (unlikely(!high || free_high))
3371 : return 0;
3372 :
3373 6 : if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3374 : return high;
3375 :
3376 : /*
3377 : * If reclaim is active, limit the number of pages that can be
3378 : * stored on pcp lists
3379 : */
3380 0 : return min(READ_ONCE(pcp->batch) << 2, high);
3381 : }
3382 :
3383 3 : static void free_unref_page_commit(struct page *page, int migratetype,
3384 : unsigned int order)
3385 : {
3386 3 : struct zone *zone = page_zone(page);
3387 : struct per_cpu_pages *pcp;
3388 : int high;
3389 : int pindex;
3390 : bool free_high;
3391 :
3392 3 : __count_vm_event(PGFREE);
3393 3 : pcp = this_cpu_ptr(zone->per_cpu_pageset);
3394 6 : pindex = order_to_pindex(migratetype, order);
3395 6 : list_add(&page->lru, &pcp->lists[pindex]);
3396 3 : pcp->count += 1 << order;
3397 :
3398 : /*
3399 : * As high-order pages other than THP's stored on PCP can contribute
3400 : * to fragmentation, limit the number stored when PCP is heavily
3401 : * freeing without allocation. The remainder after bulk freeing
3402 : * stops will be drained from vmstat refresh context.
3403 : */
3404 3 : free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3405 :
3406 6 : high = nr_pcp_high(pcp, zone, free_high);
3407 3 : if (pcp->count >= high) {
3408 0 : int batch = READ_ONCE(pcp->batch);
3409 :
3410 0 : free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3411 : }
3412 3 : }
3413 :
3414 : /*
3415 : * Free a pcp page
3416 : */
3417 3 : void free_unref_page(struct page *page, unsigned int order)
3418 : {
3419 : unsigned long flags;
3420 3 : unsigned long pfn = page_to_pfn(page);
3421 : int migratetype;
3422 :
3423 3 : if (!free_unref_page_prepare(page, pfn, order))
3424 : return;
3425 :
3426 : /*
3427 : * We only track unmovable, reclaimable and movable on pcp lists.
3428 : * Place ISOLATE pages on the isolated list because they are being
3429 : * offlined but treat HIGHATOMIC as movable pages so we can get those
3430 : * areas back if necessary. Otherwise, we may have to free
3431 : * excessively into the page allocator
3432 : */
3433 6 : migratetype = get_pcppage_migratetype(page);
3434 3 : if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3435 : if (unlikely(is_migrate_isolate(migratetype))) {
3436 : free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3437 : return;
3438 : }
3439 0 : migratetype = MIGRATE_MOVABLE;
3440 : }
3441 :
3442 3 : local_lock_irqsave(&pagesets.lock, flags);
3443 3 : free_unref_page_commit(page, migratetype, order);
3444 3 : local_unlock_irqrestore(&pagesets.lock, flags);
3445 : }
3446 :
3447 : /*
3448 : * Free a list of 0-order pages
3449 : */
3450 0 : void free_unref_page_list(struct list_head *list)
3451 : {
3452 : struct page *page, *next;
3453 : unsigned long flags;
3454 0 : int batch_count = 0;
3455 : int migratetype;
3456 :
3457 : /* Prepare pages for freeing */
3458 0 : list_for_each_entry_safe(page, next, list, lru) {
3459 0 : unsigned long pfn = page_to_pfn(page);
3460 0 : if (!free_unref_page_prepare(page, pfn, 0)) {
3461 0 : list_del(&page->lru);
3462 0 : continue;
3463 : }
3464 :
3465 : /*
3466 : * Free isolated pages directly to the allocator, see
3467 : * comment in free_unref_page.
3468 : */
3469 : migratetype = get_pcppage_migratetype(page);
3470 : if (unlikely(is_migrate_isolate(migratetype))) {
3471 : list_del(&page->lru);
3472 : free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3473 : continue;
3474 : }
3475 : }
3476 :
3477 0 : local_lock_irqsave(&pagesets.lock, flags);
3478 0 : list_for_each_entry_safe(page, next, list, lru) {
3479 : /*
3480 : * Non-isolated types over MIGRATE_PCPTYPES get added
3481 : * to the MIGRATE_MOVABLE pcp list.
3482 : */
3483 0 : migratetype = get_pcppage_migratetype(page);
3484 0 : if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3485 0 : migratetype = MIGRATE_MOVABLE;
3486 :
3487 0 : trace_mm_page_free_batched(page);
3488 0 : free_unref_page_commit(page, migratetype, 0);
3489 :
3490 : /*
3491 : * Guard against excessive IRQ disabled times when we get
3492 : * a large list of pages to free.
3493 : */
3494 0 : if (++batch_count == SWAP_CLUSTER_MAX) {
3495 0 : local_unlock_irqrestore(&pagesets.lock, flags);
3496 0 : batch_count = 0;
3497 0 : local_lock_irqsave(&pagesets.lock, flags);
3498 : }
3499 : }
3500 0 : local_unlock_irqrestore(&pagesets.lock, flags);
3501 0 : }
3502 :
3503 : /*
3504 : * split_page takes a non-compound higher-order page, and splits it into
3505 : * n (1<<order) sub-pages: page[0..n]
3506 : * Each sub-page must be freed individually.
3507 : *
3508 : * Note: this is probably too low level an operation for use in drivers.
3509 : * Please consult with lkml before using this in your driver.
3510 : */
3511 0 : void split_page(struct page *page, unsigned int order)
3512 : {
3513 : int i;
3514 :
3515 : VM_BUG_ON_PAGE(PageCompound(page), page);
3516 : VM_BUG_ON_PAGE(!page_count(page), page);
3517 :
3518 15 : for (i = 1; i < (1 << order); i++)
3519 30 : set_page_refcounted(page + i);
3520 0 : split_page_owner(page, 1 << order);
3521 0 : split_page_memcg(page, 1 << order);
3522 0 : }
3523 : EXPORT_SYMBOL_GPL(split_page);
3524 :
3525 0 : int __isolate_free_page(struct page *page, unsigned int order)
3526 : {
3527 : unsigned long watermark;
3528 : struct zone *zone;
3529 : int mt;
3530 :
3531 0 : BUG_ON(!PageBuddy(page));
3532 :
3533 0 : zone = page_zone(page);
3534 0 : mt = get_pageblock_migratetype(page);
3535 :
3536 0 : if (!is_migrate_isolate(mt)) {
3537 : /*
3538 : * Obey watermarks as if the page was being allocated. We can
3539 : * emulate a high-order watermark check with a raised order-0
3540 : * watermark, because we already know our high-order page
3541 : * exists.
3542 : */
3543 0 : watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3544 0 : if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3545 : return 0;
3546 :
3547 0 : __mod_zone_freepage_state(zone, -(1UL << order), mt);
3548 : }
3549 :
3550 : /* Remove page from free list */
3551 :
3552 0 : del_page_from_free_list(page, zone, order);
3553 :
3554 : /*
3555 : * Set the pageblock if the isolated page is at least half of a
3556 : * pageblock
3557 : */
3558 0 : if (order >= pageblock_order - 1) {
3559 0 : struct page *endpage = page + (1 << order) - 1;
3560 0 : for (; page < endpage; page += pageblock_nr_pages) {
3561 0 : int mt = get_pageblock_migratetype(page);
3562 : /*
3563 : * Only change normal pageblocks (i.e., they can merge
3564 : * with others)
3565 : */
3566 0 : if (migratetype_is_mergeable(mt))
3567 0 : set_pageblock_migratetype(page,
3568 : MIGRATE_MOVABLE);
3569 : }
3570 : }
3571 :
3572 :
3573 0 : return 1UL << order;
3574 : }
3575 :
3576 : /**
3577 : * __putback_isolated_page - Return a now-isolated page back where we got it
3578 : * @page: Page that was isolated
3579 : * @order: Order of the isolated page
3580 : * @mt: The page's pageblock's migratetype
3581 : *
3582 : * This function is meant to return a page pulled from the free lists via
3583 : * __isolate_free_page back to the free lists they were pulled from.
3584 : */
3585 0 : void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3586 : {
3587 0 : struct zone *zone = page_zone(page);
3588 :
3589 : /* zone lock should be held when this function is called */
3590 : lockdep_assert_held(&zone->lock);
3591 :
3592 : /* Return isolated page to tail of freelist. */
3593 0 : __free_one_page(page, page_to_pfn(page), zone, order, mt,
3594 : FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3595 0 : }
3596 :
3597 : /*
3598 : * Update NUMA hit/miss statistics
3599 : *
3600 : * Must be called with interrupts disabled.
3601 : */
3602 : static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3603 : long nr_account)
3604 : {
3605 : #ifdef CONFIG_NUMA
3606 : enum numa_stat_item local_stat = NUMA_LOCAL;
3607 :
3608 : /* skip numa counters update if numa stats is disabled */
3609 : if (!static_branch_likely(&vm_numa_stat_key))
3610 : return;
3611 :
3612 : if (zone_to_nid(z) != numa_node_id())
3613 : local_stat = NUMA_OTHER;
3614 :
3615 : if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3616 : __count_numa_events(z, NUMA_HIT, nr_account);
3617 : else {
3618 : __count_numa_events(z, NUMA_MISS, nr_account);
3619 : __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3620 : }
3621 : __count_numa_events(z, local_stat, nr_account);
3622 : #endif
3623 : }
3624 :
3625 : /* Remove page from the per-cpu list, caller must protect the list */
3626 : static inline
3627 520 : struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3628 : int migratetype,
3629 : unsigned int alloc_flags,
3630 : struct per_cpu_pages *pcp,
3631 : struct list_head *list)
3632 : {
3633 : struct page *page;
3634 :
3635 : do {
3636 520 : if (list_empty(list)) {
3637 27 : int batch = READ_ONCE(pcp->batch);
3638 : int alloced;
3639 :
3640 : /*
3641 : * Scale batch relative to order if batch implies
3642 : * free pages can be stored on the PCP. Batch can
3643 : * be 1 for small zones or for boot pagesets which
3644 : * should never store free pages as the pages may
3645 : * belong to arbitrary zones.
3646 : */
3647 27 : if (batch > 1)
3648 16 : batch = max(batch >> order, 2);
3649 27 : alloced = rmqueue_bulk(zone, order,
3650 : batch, list,
3651 : migratetype, alloc_flags);
3652 :
3653 27 : pcp->count += alloced << order;
3654 27 : if (unlikely(list_empty(list)))
3655 : return NULL;
3656 : }
3657 :
3658 520 : page = list_first_entry(list, struct page, lru);
3659 1040 : list_del(&page->lru);
3660 520 : pcp->count -= 1 << order;
3661 520 : } while (check_new_pcp(page, order));
3662 :
3663 520 : return page;
3664 : }
3665 :
3666 : /* Lock and remove page from the per-cpu list */
3667 460 : static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3668 : struct zone *zone, unsigned int order,
3669 : gfp_t gfp_flags, int migratetype,
3670 : unsigned int alloc_flags)
3671 : {
3672 : struct per_cpu_pages *pcp;
3673 : struct list_head *list;
3674 : struct page *page;
3675 : unsigned long flags;
3676 :
3677 460 : local_lock_irqsave(&pagesets.lock, flags);
3678 :
3679 : /*
3680 : * On allocation, reduce the number of pages that are batch freed.
3681 : * See nr_pcp_free() where free_factor is increased for subsequent
3682 : * frees.
3683 : */
3684 460 : pcp = this_cpu_ptr(zone->per_cpu_pageset);
3685 460 : pcp->free_factor >>= 1;
3686 920 : list = &pcp->lists[order_to_pindex(migratetype, order)];
3687 460 : page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3688 920 : local_unlock_irqrestore(&pagesets.lock, flags);
3689 460 : if (page) {
3690 920 : __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3691 : zone_statistics(preferred_zone, zone, 1);
3692 : }
3693 460 : return page;
3694 : }
3695 :
3696 : /*
3697 : * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3698 : */
3699 : static inline
3700 468 : struct page *rmqueue(struct zone *preferred_zone,
3701 : struct zone *zone, unsigned int order,
3702 : gfp_t gfp_flags, unsigned int alloc_flags,
3703 : int migratetype)
3704 : {
3705 : unsigned long flags;
3706 : struct page *page;
3707 :
3708 468 : if (likely(pcp_allowed_order(order))) {
3709 : /*
3710 : * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3711 : * we need to skip it when CMA area isn't allowed.
3712 : */
3713 : if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3714 : migratetype != MIGRATE_MOVABLE) {
3715 460 : page = rmqueue_pcplist(preferred_zone, zone, order,
3716 : gfp_flags, migratetype, alloc_flags);
3717 : goto out;
3718 : }
3719 : }
3720 :
3721 : /*
3722 : * We most definitely don't want callers attempting to
3723 : * allocate greater than order-1 page units with __GFP_NOFAIL.
3724 : */
3725 8 : WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3726 :
3727 : do {
3728 8 : page = NULL;
3729 8 : spin_lock_irqsave(&zone->lock, flags);
3730 : /*
3731 : * order-0 request can reach here when the pcplist is skipped
3732 : * due to non-CMA allocation context. HIGHATOMIC area is
3733 : * reserved for high-order atomic allocation, so order-0
3734 : * request should skip it.
3735 : */
3736 8 : if (order > 0 && alloc_flags & ALLOC_HARDER) {
3737 : page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3738 : if (page)
3739 : trace_mm_page_alloc_zone_locked(page, order, migratetype);
3740 : }
3741 8 : if (!page) {
3742 8 : page = __rmqueue(zone, order, migratetype, alloc_flags);
3743 8 : if (!page)
3744 : goto failed;
3745 : }
3746 16 : __mod_zone_freepage_state(zone, -(1 << order),
3747 : get_pcppage_migratetype(page));
3748 8 : spin_unlock_irqrestore(&zone->lock, flags);
3749 8 : } while (check_new_pages(page, order));
3750 :
3751 16 : __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3752 : zone_statistics(preferred_zone, zone, 1);
3753 :
3754 : out:
3755 : /* Separate test+clear to avoid unnecessary atomics */
3756 936 : if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3757 0 : clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3758 0 : wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3759 : }
3760 :
3761 : VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3762 : return page;
3763 :
3764 : failed:
3765 0 : spin_unlock_irqrestore(&zone->lock, flags);
3766 : return NULL;
3767 : }
3768 :
3769 : #ifdef CONFIG_FAIL_PAGE_ALLOC
3770 :
3771 : static struct {
3772 : struct fault_attr attr;
3773 :
3774 : bool ignore_gfp_highmem;
3775 : bool ignore_gfp_reclaim;
3776 : u32 min_order;
3777 : } fail_page_alloc = {
3778 : .attr = FAULT_ATTR_INITIALIZER,
3779 : .ignore_gfp_reclaim = true,
3780 : .ignore_gfp_highmem = true,
3781 : .min_order = 1,
3782 : };
3783 :
3784 : static int __init setup_fail_page_alloc(char *str)
3785 : {
3786 : return setup_fault_attr(&fail_page_alloc.attr, str);
3787 : }
3788 : __setup("fail_page_alloc=", setup_fail_page_alloc);
3789 :
3790 : static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3791 : {
3792 : if (order < fail_page_alloc.min_order)
3793 : return false;
3794 : if (gfp_mask & __GFP_NOFAIL)
3795 : return false;
3796 : if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3797 : return false;
3798 : if (fail_page_alloc.ignore_gfp_reclaim &&
3799 : (gfp_mask & __GFP_DIRECT_RECLAIM))
3800 : return false;
3801 :
3802 : return should_fail(&fail_page_alloc.attr, 1 << order);
3803 : }
3804 :
3805 : #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3806 :
3807 : static int __init fail_page_alloc_debugfs(void)
3808 : {
3809 : umode_t mode = S_IFREG | 0600;
3810 : struct dentry *dir;
3811 :
3812 : dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3813 : &fail_page_alloc.attr);
3814 :
3815 : debugfs_create_bool("ignore-gfp-wait", mode, dir,
3816 : &fail_page_alloc.ignore_gfp_reclaim);
3817 : debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3818 : &fail_page_alloc.ignore_gfp_highmem);
3819 : debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3820 :
3821 : return 0;
3822 : }
3823 :
3824 : late_initcall(fail_page_alloc_debugfs);
3825 :
3826 : #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3827 :
3828 : #else /* CONFIG_FAIL_PAGE_ALLOC */
3829 :
3830 : static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3831 : {
3832 : return false;
3833 : }
3834 :
3835 : #endif /* CONFIG_FAIL_PAGE_ALLOC */
3836 :
3837 483 : noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3838 : {
3839 483 : return __should_fail_alloc_page(gfp_mask, order);
3840 : }
3841 : ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3842 :
3843 : static inline long __zone_watermark_unusable_free(struct zone *z,
3844 : unsigned int order, unsigned int alloc_flags)
3845 : {
3846 484 : const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3847 484 : long unusable_free = (1 << order) - 1;
3848 :
3849 : /*
3850 : * If the caller does not have rights to ALLOC_HARDER then subtract
3851 : * the high-atomic reserves. This will over-estimate the size of the
3852 : * atomic reserve but it avoids a search.
3853 : */
3854 484 : if (likely(!alloc_harder))
3855 484 : unusable_free += z->nr_reserved_highatomic;
3856 :
3857 : #ifdef CONFIG_CMA
3858 : /* If allocation can't use CMA areas don't use free CMA pages */
3859 : if (!(alloc_flags & ALLOC_CMA))
3860 : unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3861 : #endif
3862 :
3863 : return unusable_free;
3864 : }
3865 :
3866 : /*
3867 : * Return true if free base pages are above 'mark'. For high-order checks it
3868 : * will return true of the order-0 watermark is reached and there is at least
3869 : * one free page of a suitable size. Checking now avoids taking the zone lock
3870 : * to check in the allocation paths if no pages are free.
3871 : */
3872 113 : bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3873 : int highest_zoneidx, unsigned int alloc_flags,
3874 : long free_pages)
3875 : {
3876 113 : long min = mark;
3877 : int o;
3878 113 : const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3879 :
3880 : /* free_pages may go negative - that's OK */
3881 226 : free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3882 :
3883 113 : if (alloc_flags & ALLOC_HIGH)
3884 0 : min -= min / 2;
3885 :
3886 113 : if (unlikely(alloc_harder)) {
3887 : /*
3888 : * OOM victims can try even harder than normal ALLOC_HARDER
3889 : * users on the grounds that it's definitely going to be in
3890 : * the exit path shortly and free memory. Any allocation it
3891 : * makes during the free path will be small and short-lived.
3892 : */
3893 0 : if (alloc_flags & ALLOC_OOM)
3894 0 : min -= min / 2;
3895 : else
3896 0 : min -= min / 4;
3897 : }
3898 :
3899 : /*
3900 : * Check watermarks for an order-0 allocation request. If these
3901 : * are not met, then a high-order request also cannot go ahead
3902 : * even if a suitable page happened to be free.
3903 : */
3904 113 : if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3905 : return false;
3906 :
3907 : /* If this is an order-0 request then the watermark is fine */
3908 113 : if (!order)
3909 : return true;
3910 :
3911 : /* For a high-order request, check at least one suitable page is free */
3912 120 : for (o = order; o < MAX_ORDER; o++) {
3913 120 : struct free_area *area = &z->free_area[o];
3914 : int mt;
3915 :
3916 120 : if (!area->nr_free)
3917 8 : continue;
3918 :
3919 35 : for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3920 147 : if (!free_area_empty(area, mt))
3921 : return true;
3922 : }
3923 :
3924 : #ifdef CONFIG_CMA
3925 : if ((alloc_flags & ALLOC_CMA) &&
3926 : !free_area_empty(area, MIGRATE_CMA)) {
3927 : return true;
3928 : }
3929 : #endif
3930 0 : if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3931 : return true;
3932 : }
3933 : return false;
3934 : }
3935 :
3936 0 : bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3937 : int highest_zoneidx, unsigned int alloc_flags)
3938 : {
3939 0 : return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3940 0 : zone_page_state(z, NR_FREE_PAGES));
3941 : }
3942 :
3943 483 : static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3944 : unsigned long mark, int highest_zoneidx,
3945 : unsigned int alloc_flags, gfp_t gfp_mask)
3946 : {
3947 : long free_pages;
3948 :
3949 483 : free_pages = zone_page_state(z, NR_FREE_PAGES);
3950 :
3951 : /*
3952 : * Fast check for order-0 only. If this fails then the reserves
3953 : * need to be calculated.
3954 : */
3955 483 : if (!order) {
3956 : long fast_free;
3957 :
3958 371 : fast_free = free_pages;
3959 742 : fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3960 371 : if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3961 : return true;
3962 : }
3963 :
3964 112 : if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3965 : free_pages))
3966 : return true;
3967 : /*
3968 : * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3969 : * when checking the min watermark. The min watermark is the
3970 : * point where boosting is ignored so that kswapd is woken up
3971 : * when below the low watermark.
3972 : */
3973 0 : if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3974 : && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3975 0 : mark = z->_watermark[WMARK_MIN];
3976 0 : return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3977 : alloc_flags, free_pages);
3978 : }
3979 :
3980 : return false;
3981 : }
3982 :
3983 1 : bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3984 : unsigned long mark, int highest_zoneidx)
3985 : {
3986 1 : long free_pages = zone_page_state(z, NR_FREE_PAGES);
3987 :
3988 1 : if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3989 0 : free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3990 :
3991 1 : return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3992 : free_pages);
3993 : }
3994 :
3995 : #ifdef CONFIG_NUMA
3996 : int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3997 :
3998 : static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3999 : {
4000 : return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4001 : node_reclaim_distance;
4002 : }
4003 : #else /* CONFIG_NUMA */
4004 : static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4005 : {
4006 : return true;
4007 : }
4008 : #endif /* CONFIG_NUMA */
4009 :
4010 : /*
4011 : * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4012 : * fragmentation is subtle. If the preferred zone was HIGHMEM then
4013 : * premature use of a lower zone may cause lowmem pressure problems that
4014 : * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4015 : * probably too small. It only makes sense to spread allocations to avoid
4016 : * fragmentation between the Normal and DMA32 zones.
4017 : */
4018 : static inline unsigned int
4019 : alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4020 : {
4021 : unsigned int alloc_flags;
4022 :
4023 : /*
4024 : * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4025 : * to save a branch.
4026 : */
4027 468 : alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4028 :
4029 : #ifdef CONFIG_ZONE_DMA32
4030 : if (!zone)
4031 : return alloc_flags;
4032 :
4033 : if (zone_idx(zone) != ZONE_NORMAL)
4034 : return alloc_flags;
4035 :
4036 : /*
4037 : * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4038 : * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4039 : * on UMA that if Normal is populated then so is DMA32.
4040 : */
4041 : BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4042 : if (nr_online_nodes > 1 && !populated_zone(--zone))
4043 : return alloc_flags;
4044 :
4045 : alloc_flags |= ALLOC_NOFRAGMENT;
4046 : #endif /* CONFIG_ZONE_DMA32 */
4047 : return alloc_flags;
4048 : }
4049 :
4050 : /* Must be called after current_gfp_context() which can change gfp_mask */
4051 : static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4052 : unsigned int alloc_flags)
4053 : {
4054 : #ifdef CONFIG_CMA
4055 : if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4056 : alloc_flags |= ALLOC_CMA;
4057 : #endif
4058 : return alloc_flags;
4059 : }
4060 :
4061 : /*
4062 : * get_page_from_freelist goes through the zonelist trying to allocate
4063 : * a page.
4064 : */
4065 : static struct page *
4066 468 : get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4067 : const struct alloc_context *ac)
4068 : {
4069 : struct zoneref *z;
4070 : struct zone *zone;
4071 468 : struct pglist_data *last_pgdat_dirty_limit = NULL;
4072 : bool no_fallback;
4073 :
4074 : retry:
4075 : /*
4076 : * Scan zonelist, looking for a zone with enough free.
4077 : * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4078 : */
4079 468 : no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4080 468 : z = ac->preferred_zoneref;
4081 468 : for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4082 : ac->nodemask) {
4083 : struct page *page;
4084 : unsigned long mark;
4085 :
4086 : if (cpusets_enabled() &&
4087 : (alloc_flags & ALLOC_CPUSET) &&
4088 : !__cpuset_zone_allowed(zone, gfp_mask))
4089 : continue;
4090 : /*
4091 : * When allocating a page cache page for writing, we
4092 : * want to get it from a node that is within its dirty
4093 : * limit, such that no single node holds more than its
4094 : * proportional share of globally allowed dirty pages.
4095 : * The dirty limits take into account the node's
4096 : * lowmem reserves and high watermark so that kswapd
4097 : * should be able to balance it without having to
4098 : * write pages from its LRU list.
4099 : *
4100 : * XXX: For now, allow allocations to potentially
4101 : * exceed the per-node dirty limit in the slowpath
4102 : * (spread_dirty_pages unset) before going into reclaim,
4103 : * which is important when on a NUMA setup the allowed
4104 : * nodes are together not big enough to reach the
4105 : * global limit. The proper fix for these situations
4106 : * will require awareness of nodes in the
4107 : * dirty-throttling and the flusher threads.
4108 : */
4109 468 : if (ac->spread_dirty_pages) {
4110 0 : if (last_pgdat_dirty_limit == zone->zone_pgdat)
4111 0 : continue;
4112 :
4113 0 : if (!node_dirty_ok(zone->zone_pgdat)) {
4114 0 : last_pgdat_dirty_limit = zone->zone_pgdat;
4115 0 : continue;
4116 : }
4117 : }
4118 :
4119 : if (no_fallback && nr_online_nodes > 1 &&
4120 : zone != ac->preferred_zoneref->zone) {
4121 : int local_nid;
4122 :
4123 : /*
4124 : * If moving to a remote node, retry but allow
4125 : * fragmenting fallbacks. Locality is more important
4126 : * than fragmentation avoidance.
4127 : */
4128 : local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4129 : if (zone_to_nid(zone) != local_nid) {
4130 : alloc_flags &= ~ALLOC_NOFRAGMENT;
4131 : goto retry;
4132 : }
4133 : }
4134 :
4135 468 : mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4136 936 : if (!zone_watermark_fast(zone, order, mark,
4137 468 : ac->highest_zoneidx, alloc_flags,
4138 : gfp_mask)) {
4139 : int ret;
4140 :
4141 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4142 : /*
4143 : * Watermark failed for this zone, but see if we can
4144 : * grow this zone if it contains deferred pages.
4145 : */
4146 : if (static_branch_unlikely(&deferred_pages)) {
4147 : if (_deferred_grow_zone(zone, order))
4148 : goto try_this_zone;
4149 : }
4150 : #endif
4151 : /* Checked here to keep the fast path fast */
4152 : BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4153 0 : if (alloc_flags & ALLOC_NO_WATERMARKS)
4154 : goto try_this_zone;
4155 :
4156 : if (!node_reclaim_enabled() ||
4157 : !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4158 0 : continue;
4159 :
4160 : ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4161 : switch (ret) {
4162 : case NODE_RECLAIM_NOSCAN:
4163 : /* did not scan */
4164 : continue;
4165 : case NODE_RECLAIM_FULL:
4166 : /* scanned but unreclaimable */
4167 : continue;
4168 : default:
4169 : /* did we reclaim enough */
4170 : if (zone_watermark_ok(zone, order, mark,
4171 : ac->highest_zoneidx, alloc_flags))
4172 : goto try_this_zone;
4173 :
4174 : continue;
4175 : }
4176 : }
4177 :
4178 : try_this_zone:
4179 468 : page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4180 : gfp_mask, alloc_flags, ac->migratetype);
4181 468 : if (page) {
4182 468 : prep_new_page(page, order, gfp_mask, alloc_flags);
4183 :
4184 : /*
4185 : * If this is a high-order atomic allocation then check
4186 : * if the pageblock should be reserved for the future
4187 : */
4188 468 : if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4189 0 : reserve_highatomic_pageblock(page, zone, order);
4190 :
4191 : return page;
4192 : } else {
4193 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4194 : /* Try again if zone has deferred pages */
4195 : if (static_branch_unlikely(&deferred_pages)) {
4196 : if (_deferred_grow_zone(zone, order))
4197 : goto try_this_zone;
4198 : }
4199 : #endif
4200 : }
4201 : }
4202 :
4203 : /*
4204 : * It's possible on a UMA machine to get through all zones that are
4205 : * fragmented. If avoiding fragmentation, reset and try again.
4206 : */
4207 : if (no_fallback) {
4208 : alloc_flags &= ~ALLOC_NOFRAGMENT;
4209 : goto retry;
4210 : }
4211 :
4212 : return NULL;
4213 : }
4214 :
4215 0 : static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4216 : {
4217 0 : unsigned int filter = SHOW_MEM_FILTER_NODES;
4218 :
4219 : /*
4220 : * This documents exceptions given to allocations in certain
4221 : * contexts that are allowed to allocate outside current's set
4222 : * of allowed nodes.
4223 : */
4224 0 : if (!(gfp_mask & __GFP_NOMEMALLOC))
4225 0 : if (tsk_is_oom_victim(current) ||
4226 0 : (current->flags & (PF_MEMALLOC | PF_EXITING)))
4227 : filter &= ~SHOW_MEM_FILTER_NODES;
4228 0 : if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4229 0 : filter &= ~SHOW_MEM_FILTER_NODES;
4230 :
4231 0 : show_mem(filter, nodemask);
4232 0 : }
4233 :
4234 0 : void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4235 : {
4236 : struct va_format vaf;
4237 : va_list args;
4238 : static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4239 :
4240 0 : if ((gfp_mask & __GFP_NOWARN) ||
4241 0 : !__ratelimit(&nopage_rs) ||
4242 0 : ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4243 0 : return;
4244 :
4245 0 : va_start(args, fmt);
4246 0 : vaf.fmt = fmt;
4247 0 : vaf.va = &args;
4248 0 : pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4249 : current->comm, &vaf, gfp_mask, &gfp_mask,
4250 : nodemask_pr_args(nodemask));
4251 0 : va_end(args);
4252 :
4253 : cpuset_print_current_mems_allowed();
4254 0 : pr_cont("\n");
4255 0 : dump_stack();
4256 0 : warn_alloc_show_mem(gfp_mask, nodemask);
4257 : }
4258 :
4259 : static inline struct page *
4260 0 : __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4261 : unsigned int alloc_flags,
4262 : const struct alloc_context *ac)
4263 : {
4264 : struct page *page;
4265 :
4266 0 : page = get_page_from_freelist(gfp_mask, order,
4267 0 : alloc_flags|ALLOC_CPUSET, ac);
4268 : /*
4269 : * fallback to ignore cpuset restriction if our nodes
4270 : * are depleted
4271 : */
4272 0 : if (!page)
4273 0 : page = get_page_from_freelist(gfp_mask, order,
4274 : alloc_flags, ac);
4275 :
4276 0 : return page;
4277 : }
4278 :
4279 : static inline struct page *
4280 0 : __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4281 : const struct alloc_context *ac, unsigned long *did_some_progress)
4282 : {
4283 0 : struct oom_control oc = {
4284 0 : .zonelist = ac->zonelist,
4285 0 : .nodemask = ac->nodemask,
4286 : .memcg = NULL,
4287 : .gfp_mask = gfp_mask,
4288 : .order = order,
4289 : };
4290 : struct page *page;
4291 :
4292 0 : *did_some_progress = 0;
4293 :
4294 : /*
4295 : * Acquire the oom lock. If that fails, somebody else is
4296 : * making progress for us.
4297 : */
4298 0 : if (!mutex_trylock(&oom_lock)) {
4299 0 : *did_some_progress = 1;
4300 0 : schedule_timeout_uninterruptible(1);
4301 0 : return NULL;
4302 : }
4303 :
4304 : /*
4305 : * Go through the zonelist yet one more time, keep very high watermark
4306 : * here, this is only to catch a parallel oom killing, we must fail if
4307 : * we're still under heavy pressure. But make sure that this reclaim
4308 : * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4309 : * allocation which will never fail due to oom_lock already held.
4310 : */
4311 0 : page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4312 : ~__GFP_DIRECT_RECLAIM, order,
4313 : ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4314 0 : if (page)
4315 : goto out;
4316 :
4317 : /* Coredumps can quickly deplete all memory reserves */
4318 0 : if (current->flags & PF_DUMPCORE)
4319 : goto out;
4320 : /* The OOM killer will not help higher order allocs */
4321 0 : if (order > PAGE_ALLOC_COSTLY_ORDER)
4322 : goto out;
4323 : /*
4324 : * We have already exhausted all our reclaim opportunities without any
4325 : * success so it is time to admit defeat. We will skip the OOM killer
4326 : * because it is very likely that the caller has a more reasonable
4327 : * fallback than shooting a random task.
4328 : *
4329 : * The OOM killer may not free memory on a specific node.
4330 : */
4331 0 : if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4332 : goto out;
4333 : /* The OOM killer does not needlessly kill tasks for lowmem */
4334 : if (ac->highest_zoneidx < ZONE_NORMAL)
4335 : goto out;
4336 0 : if (pm_suspended_storage())
4337 : goto out;
4338 : /*
4339 : * XXX: GFP_NOFS allocations should rather fail than rely on
4340 : * other request to make a forward progress.
4341 : * We are in an unfortunate situation where out_of_memory cannot
4342 : * do much for this context but let's try it to at least get
4343 : * access to memory reserved if the current task is killed (see
4344 : * out_of_memory). Once filesystems are ready to handle allocation
4345 : * failures more gracefully we should just bail out here.
4346 : */
4347 :
4348 : /* Exhausted what can be done so it's blame time */
4349 0 : if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4350 0 : *did_some_progress = 1;
4351 :
4352 : /*
4353 : * Help non-failing allocations by giving them access to memory
4354 : * reserves
4355 : */
4356 0 : if (gfp_mask & __GFP_NOFAIL)
4357 0 : page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4358 : ALLOC_NO_WATERMARKS, ac);
4359 : }
4360 : out:
4361 0 : mutex_unlock(&oom_lock);
4362 0 : return page;
4363 : }
4364 :
4365 : /*
4366 : * Maximum number of compaction retries with a progress before OOM
4367 : * killer is consider as the only way to move forward.
4368 : */
4369 : #define MAX_COMPACT_RETRIES 16
4370 :
4371 : #ifdef CONFIG_COMPACTION
4372 : /* Try memory compaction for high-order allocations before reclaim */
4373 : static struct page *
4374 0 : __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4375 : unsigned int alloc_flags, const struct alloc_context *ac,
4376 : enum compact_priority prio, enum compact_result *compact_result)
4377 : {
4378 0 : struct page *page = NULL;
4379 : unsigned long pflags;
4380 : unsigned int noreclaim_flag;
4381 :
4382 0 : if (!order)
4383 : return NULL;
4384 :
4385 0 : psi_memstall_enter(&pflags);
4386 : delayacct_compact_start();
4387 0 : noreclaim_flag = memalloc_noreclaim_save();
4388 :
4389 0 : *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4390 : prio, &page);
4391 :
4392 0 : memalloc_noreclaim_restore(noreclaim_flag);
4393 0 : psi_memstall_leave(&pflags);
4394 : delayacct_compact_end();
4395 :
4396 0 : if (*compact_result == COMPACT_SKIPPED)
4397 : return NULL;
4398 : /*
4399 : * At least in one zone compaction wasn't deferred or skipped, so let's
4400 : * count a compaction stall
4401 : */
4402 0 : count_vm_event(COMPACTSTALL);
4403 :
4404 : /* Prep a captured page if available */
4405 0 : if (page)
4406 0 : prep_new_page(page, order, gfp_mask, alloc_flags);
4407 :
4408 : /* Try get a page from the freelist if available */
4409 0 : if (!page)
4410 0 : page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4411 :
4412 0 : if (page) {
4413 0 : struct zone *zone = page_zone(page);
4414 :
4415 0 : zone->compact_blockskip_flush = false;
4416 0 : compaction_defer_reset(zone, order, true);
4417 0 : count_vm_event(COMPACTSUCCESS);
4418 0 : return page;
4419 : }
4420 :
4421 : /*
4422 : * It's bad if compaction run occurs and fails. The most likely reason
4423 : * is that pages exist, but not enough to satisfy watermarks.
4424 : */
4425 0 : count_vm_event(COMPACTFAIL);
4426 :
4427 0 : cond_resched();
4428 :
4429 0 : return NULL;
4430 : }
4431 :
4432 : static inline bool
4433 0 : should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4434 : enum compact_result compact_result,
4435 : enum compact_priority *compact_priority,
4436 : int *compaction_retries)
4437 : {
4438 0 : int max_retries = MAX_COMPACT_RETRIES;
4439 : int min_priority;
4440 0 : bool ret = false;
4441 0 : int retries = *compaction_retries;
4442 0 : enum compact_priority priority = *compact_priority;
4443 :
4444 0 : if (!order)
4445 : return false;
4446 :
4447 0 : if (fatal_signal_pending(current))
4448 : return false;
4449 :
4450 0 : if (compaction_made_progress(compact_result))
4451 0 : (*compaction_retries)++;
4452 :
4453 : /*
4454 : * compaction considers all the zone as desperately out of memory
4455 : * so it doesn't really make much sense to retry except when the
4456 : * failure could be caused by insufficient priority
4457 : */
4458 0 : if (compaction_failed(compact_result))
4459 : goto check_priority;
4460 :
4461 : /*
4462 : * compaction was skipped because there are not enough order-0 pages
4463 : * to work with, so we retry only if it looks like reclaim can help.
4464 : */
4465 0 : if (compaction_needs_reclaim(compact_result)) {
4466 0 : ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4467 0 : goto out;
4468 : }
4469 :
4470 : /*
4471 : * make sure the compaction wasn't deferred or didn't bail out early
4472 : * due to locks contention before we declare that we should give up.
4473 : * But the next retry should use a higher priority if allowed, so
4474 : * we don't just keep bailing out endlessly.
4475 : */
4476 0 : if (compaction_withdrawn(compact_result)) {
4477 : goto check_priority;
4478 : }
4479 :
4480 : /*
4481 : * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4482 : * costly ones because they are de facto nofail and invoke OOM
4483 : * killer to move on while costly can fail and users are ready
4484 : * to cope with that. 1/4 retries is rather arbitrary but we
4485 : * would need much more detailed feedback from compaction to
4486 : * make a better decision.
4487 : */
4488 0 : if (order > PAGE_ALLOC_COSTLY_ORDER)
4489 0 : max_retries /= 4;
4490 0 : if (*compaction_retries <= max_retries) {
4491 : ret = true;
4492 : goto out;
4493 : }
4494 :
4495 : /*
4496 : * Make sure there are attempts at the highest priority if we exhausted
4497 : * all retries or failed at the lower priorities.
4498 : */
4499 : check_priority:
4500 0 : min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4501 0 : MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4502 :
4503 0 : if (*compact_priority > min_priority) {
4504 0 : (*compact_priority)--;
4505 0 : *compaction_retries = 0;
4506 0 : ret = true;
4507 : }
4508 : out:
4509 0 : trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4510 0 : return ret;
4511 : }
4512 : #else
4513 : static inline struct page *
4514 : __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4515 : unsigned int alloc_flags, const struct alloc_context *ac,
4516 : enum compact_priority prio, enum compact_result *compact_result)
4517 : {
4518 : *compact_result = COMPACT_SKIPPED;
4519 : return NULL;
4520 : }
4521 :
4522 : static inline bool
4523 : should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4524 : enum compact_result compact_result,
4525 : enum compact_priority *compact_priority,
4526 : int *compaction_retries)
4527 : {
4528 : struct zone *zone;
4529 : struct zoneref *z;
4530 :
4531 : if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4532 : return false;
4533 :
4534 : /*
4535 : * There are setups with compaction disabled which would prefer to loop
4536 : * inside the allocator rather than hit the oom killer prematurely.
4537 : * Let's give them a good hope and keep retrying while the order-0
4538 : * watermarks are OK.
4539 : */
4540 : for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4541 : ac->highest_zoneidx, ac->nodemask) {
4542 : if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4543 : ac->highest_zoneidx, alloc_flags))
4544 : return true;
4545 : }
4546 : return false;
4547 : }
4548 : #endif /* CONFIG_COMPACTION */
4549 :
4550 : #ifdef CONFIG_LOCKDEP
4551 : static struct lockdep_map __fs_reclaim_map =
4552 : STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4553 :
4554 : static bool __need_reclaim(gfp_t gfp_mask)
4555 : {
4556 : /* no reclaim without waiting on it */
4557 : if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4558 : return false;
4559 :
4560 : /* this guy won't enter reclaim */
4561 : if (current->flags & PF_MEMALLOC)
4562 : return false;
4563 :
4564 : if (gfp_mask & __GFP_NOLOCKDEP)
4565 : return false;
4566 :
4567 : return true;
4568 : }
4569 :
4570 : void __fs_reclaim_acquire(unsigned long ip)
4571 : {
4572 : lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4573 : }
4574 :
4575 : void __fs_reclaim_release(unsigned long ip)
4576 : {
4577 : lock_release(&__fs_reclaim_map, ip);
4578 : }
4579 :
4580 : void fs_reclaim_acquire(gfp_t gfp_mask)
4581 : {
4582 : gfp_mask = current_gfp_context(gfp_mask);
4583 :
4584 : if (__need_reclaim(gfp_mask)) {
4585 : if (gfp_mask & __GFP_FS)
4586 : __fs_reclaim_acquire(_RET_IP_);
4587 :
4588 : #ifdef CONFIG_MMU_NOTIFIER
4589 : lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4590 : lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4591 : #endif
4592 :
4593 : }
4594 : }
4595 : EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4596 :
4597 : void fs_reclaim_release(gfp_t gfp_mask)
4598 : {
4599 : gfp_mask = current_gfp_context(gfp_mask);
4600 :
4601 : if (__need_reclaim(gfp_mask)) {
4602 : if (gfp_mask & __GFP_FS)
4603 : __fs_reclaim_release(_RET_IP_);
4604 : }
4605 : }
4606 : EXPORT_SYMBOL_GPL(fs_reclaim_release);
4607 : #endif
4608 :
4609 : /* Perform direct synchronous page reclaim */
4610 : static unsigned long
4611 0 : __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4612 : const struct alloc_context *ac)
4613 : {
4614 : unsigned int noreclaim_flag;
4615 : unsigned long progress;
4616 :
4617 0 : cond_resched();
4618 :
4619 : /* We now go into synchronous reclaim */
4620 : cpuset_memory_pressure_bump();
4621 0 : fs_reclaim_acquire(gfp_mask);
4622 0 : noreclaim_flag = memalloc_noreclaim_save();
4623 :
4624 0 : progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4625 : ac->nodemask);
4626 :
4627 0 : memalloc_noreclaim_restore(noreclaim_flag);
4628 0 : fs_reclaim_release(gfp_mask);
4629 :
4630 0 : cond_resched();
4631 :
4632 0 : return progress;
4633 : }
4634 :
4635 : /* The really slow allocator path where we enter direct reclaim */
4636 : static inline struct page *
4637 0 : __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4638 : unsigned int alloc_flags, const struct alloc_context *ac,
4639 : unsigned long *did_some_progress)
4640 : {
4641 0 : struct page *page = NULL;
4642 : unsigned long pflags;
4643 0 : bool drained = false;
4644 :
4645 0 : psi_memstall_enter(&pflags);
4646 0 : *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4647 0 : if (unlikely(!(*did_some_progress)))
4648 : goto out;
4649 :
4650 : retry:
4651 0 : page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4652 :
4653 : /*
4654 : * If an allocation failed after direct reclaim, it could be because
4655 : * pages are pinned on the per-cpu lists or in high alloc reserves.
4656 : * Shrink them and try again
4657 : */
4658 0 : if (!page && !drained) {
4659 0 : unreserve_highatomic_pageblock(ac, false);
4660 0 : drain_all_pages(NULL);
4661 0 : drained = true;
4662 0 : goto retry;
4663 : }
4664 : out:
4665 0 : psi_memstall_leave(&pflags);
4666 :
4667 0 : return page;
4668 : }
4669 :
4670 0 : static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4671 : const struct alloc_context *ac)
4672 : {
4673 : struct zoneref *z;
4674 : struct zone *zone;
4675 0 : pg_data_t *last_pgdat = NULL;
4676 0 : enum zone_type highest_zoneidx = ac->highest_zoneidx;
4677 :
4678 0 : for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4679 : ac->nodemask) {
4680 0 : if (last_pgdat != zone->zone_pgdat)
4681 0 : wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4682 0 : last_pgdat = zone->zone_pgdat;
4683 : }
4684 0 : }
4685 :
4686 : static inline unsigned int
4687 0 : gfp_to_alloc_flags(gfp_t gfp_mask)
4688 : {
4689 0 : unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4690 :
4691 : /*
4692 : * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4693 : * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4694 : * to save two branches.
4695 : */
4696 : BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4697 : BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4698 :
4699 : /*
4700 : * The caller may dip into page reserves a bit more if the caller
4701 : * cannot run direct reclaim, or if the caller has realtime scheduling
4702 : * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4703 : * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4704 : */
4705 0 : alloc_flags |= (__force int)
4706 : (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4707 :
4708 0 : if (gfp_mask & __GFP_ATOMIC) {
4709 : /*
4710 : * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4711 : * if it can't schedule.
4712 : */
4713 0 : if (!(gfp_mask & __GFP_NOMEMALLOC))
4714 0 : alloc_flags |= ALLOC_HARDER;
4715 : /*
4716 : * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4717 : * comment for __cpuset_node_allowed().
4718 : */
4719 0 : alloc_flags &= ~ALLOC_CPUSET;
4720 0 : } else if (unlikely(rt_task(current)) && in_task())
4721 0 : alloc_flags |= ALLOC_HARDER;
4722 :
4723 0 : alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4724 :
4725 0 : return alloc_flags;
4726 : }
4727 :
4728 : static bool oom_reserves_allowed(struct task_struct *tsk)
4729 : {
4730 0 : if (!tsk_is_oom_victim(tsk))
4731 : return false;
4732 :
4733 : /*
4734 : * !MMU doesn't have oom reaper so give access to memory reserves
4735 : * only to the thread with TIF_MEMDIE set
4736 : */
4737 : if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4738 : return false;
4739 :
4740 : return true;
4741 : }
4742 :
4743 : /*
4744 : * Distinguish requests which really need access to full memory
4745 : * reserves from oom victims which can live with a portion of it
4746 : */
4747 0 : static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4748 : {
4749 0 : if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4750 : return 0;
4751 0 : if (gfp_mask & __GFP_MEMALLOC)
4752 : return ALLOC_NO_WATERMARKS;
4753 0 : if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4754 : return ALLOC_NO_WATERMARKS;
4755 0 : if (!in_interrupt()) {
4756 0 : if (current->flags & PF_MEMALLOC)
4757 : return ALLOC_NO_WATERMARKS;
4758 0 : else if (oom_reserves_allowed(current))
4759 : return ALLOC_OOM;
4760 : }
4761 :
4762 : return 0;
4763 : }
4764 :
4765 0 : bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4766 : {
4767 0 : return !!__gfp_pfmemalloc_flags(gfp_mask);
4768 : }
4769 :
4770 : /*
4771 : * Checks whether it makes sense to retry the reclaim to make a forward progress
4772 : * for the given allocation request.
4773 : *
4774 : * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4775 : * without success, or when we couldn't even meet the watermark if we
4776 : * reclaimed all remaining pages on the LRU lists.
4777 : *
4778 : * Returns true if a retry is viable or false to enter the oom path.
4779 : */
4780 : static inline bool
4781 0 : should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4782 : struct alloc_context *ac, int alloc_flags,
4783 : bool did_some_progress, int *no_progress_loops)
4784 : {
4785 : struct zone *zone;
4786 : struct zoneref *z;
4787 0 : bool ret = false;
4788 :
4789 : /*
4790 : * Costly allocations might have made a progress but this doesn't mean
4791 : * their order will become available due to high fragmentation so
4792 : * always increment the no progress counter for them
4793 : */
4794 0 : if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4795 0 : *no_progress_loops = 0;
4796 : else
4797 0 : (*no_progress_loops)++;
4798 :
4799 : /*
4800 : * Make sure we converge to OOM if we cannot make any progress
4801 : * several times in the row.
4802 : */
4803 0 : if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4804 : /* Before OOM, exhaust highatomic_reserve */
4805 0 : return unreserve_highatomic_pageblock(ac, true);
4806 : }
4807 :
4808 : /*
4809 : * Keep reclaiming pages while there is a chance this will lead
4810 : * somewhere. If none of the target zones can satisfy our allocation
4811 : * request even if all reclaimable pages are considered then we are
4812 : * screwed and have to go OOM.
4813 : */
4814 0 : for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4815 : ac->highest_zoneidx, ac->nodemask) {
4816 : unsigned long available;
4817 : unsigned long reclaimable;
4818 0 : unsigned long min_wmark = min_wmark_pages(zone);
4819 : bool wmark;
4820 :
4821 0 : available = reclaimable = zone_reclaimable_pages(zone);
4822 0 : available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4823 :
4824 : /*
4825 : * Would the allocation succeed if we reclaimed all
4826 : * reclaimable pages?
4827 : */
4828 0 : wmark = __zone_watermark_ok(zone, order, min_wmark,
4829 0 : ac->highest_zoneidx, alloc_flags, available);
4830 0 : trace_reclaim_retry_zone(z, order, reclaimable,
4831 : available, min_wmark, *no_progress_loops, wmark);
4832 0 : if (wmark) {
4833 : ret = true;
4834 : break;
4835 : }
4836 : }
4837 :
4838 : /*
4839 : * Memory allocation/reclaim might be called from a WQ context and the
4840 : * current implementation of the WQ concurrency control doesn't
4841 : * recognize that a particular WQ is congested if the worker thread is
4842 : * looping without ever sleeping. Therefore we have to do a short sleep
4843 : * here rather than calling cond_resched().
4844 : */
4845 0 : if (current->flags & PF_WQ_WORKER)
4846 0 : schedule_timeout_uninterruptible(1);
4847 : else
4848 0 : cond_resched();
4849 : return ret;
4850 : }
4851 :
4852 : static inline bool
4853 : check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4854 : {
4855 : /*
4856 : * It's possible that cpuset's mems_allowed and the nodemask from
4857 : * mempolicy don't intersect. This should be normally dealt with by
4858 : * policy_nodemask(), but it's possible to race with cpuset update in
4859 : * such a way the check therein was true, and then it became false
4860 : * before we got our cpuset_mems_cookie here.
4861 : * This assumes that for all allocations, ac->nodemask can come only
4862 : * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4863 : * when it does not intersect with the cpuset restrictions) or the
4864 : * caller can deal with a violated nodemask.
4865 : */
4866 : if (cpusets_enabled() && ac->nodemask &&
4867 : !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4868 : ac->nodemask = NULL;
4869 : return true;
4870 : }
4871 :
4872 : /*
4873 : * When updating a task's mems_allowed or mempolicy nodemask, it is
4874 : * possible to race with parallel threads in such a way that our
4875 : * allocation can fail while the mask is being updated. If we are about
4876 : * to fail, check if the cpuset changed during allocation and if so,
4877 : * retry.
4878 : */
4879 0 : if (read_mems_allowed_retry(cpuset_mems_cookie))
4880 : return true;
4881 :
4882 : return false;
4883 : }
4884 :
4885 : static inline struct page *
4886 0 : __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4887 : struct alloc_context *ac)
4888 : {
4889 0 : bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4890 0 : const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4891 0 : struct page *page = NULL;
4892 : unsigned int alloc_flags;
4893 : unsigned long did_some_progress;
4894 : enum compact_priority compact_priority;
4895 : enum compact_result compact_result;
4896 : int compaction_retries;
4897 : int no_progress_loops;
4898 : unsigned int cpuset_mems_cookie;
4899 : int reserve_flags;
4900 :
4901 : /*
4902 : * We also sanity check to catch abuse of atomic reserves being used by
4903 : * callers that are not in atomic context.
4904 : */
4905 0 : if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4906 : (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4907 0 : gfp_mask &= ~__GFP_ATOMIC;
4908 :
4909 : retry_cpuset:
4910 0 : compaction_retries = 0;
4911 0 : no_progress_loops = 0;
4912 0 : compact_priority = DEF_COMPACT_PRIORITY;
4913 0 : cpuset_mems_cookie = read_mems_allowed_begin();
4914 :
4915 : /*
4916 : * The fast path uses conservative alloc_flags to succeed only until
4917 : * kswapd needs to be woken up, and to avoid the cost of setting up
4918 : * alloc_flags precisely. So we do that now.
4919 : */
4920 0 : alloc_flags = gfp_to_alloc_flags(gfp_mask);
4921 :
4922 : /*
4923 : * We need to recalculate the starting point for the zonelist iterator
4924 : * because we might have used different nodemask in the fast path, or
4925 : * there was a cpuset modification and we are retrying - otherwise we
4926 : * could end up iterating over non-eligible zones endlessly.
4927 : */
4928 0 : ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4929 : ac->highest_zoneidx, ac->nodemask);
4930 0 : if (!ac->preferred_zoneref->zone)
4931 : goto nopage;
4932 :
4933 : /*
4934 : * Check for insane configurations where the cpuset doesn't contain
4935 : * any suitable zone to satisfy the request - e.g. non-movable
4936 : * GFP_HIGHUSER allocations from MOVABLE nodes only.
4937 : */
4938 : if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4939 : struct zoneref *z = first_zones_zonelist(ac->zonelist,
4940 : ac->highest_zoneidx,
4941 : &cpuset_current_mems_allowed);
4942 : if (!z->zone)
4943 : goto nopage;
4944 : }
4945 :
4946 0 : if (alloc_flags & ALLOC_KSWAPD)
4947 0 : wake_all_kswapds(order, gfp_mask, ac);
4948 :
4949 : /*
4950 : * The adjusted alloc_flags might result in immediate success, so try
4951 : * that first
4952 : */
4953 0 : page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4954 0 : if (page)
4955 : goto got_pg;
4956 :
4957 : /*
4958 : * For costly allocations, try direct compaction first, as it's likely
4959 : * that we have enough base pages and don't need to reclaim. For non-
4960 : * movable high-order allocations, do that as well, as compaction will
4961 : * try prevent permanent fragmentation by migrating from blocks of the
4962 : * same migratetype.
4963 : * Don't try this for allocations that are allowed to ignore
4964 : * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4965 : */
4966 0 : if (can_direct_reclaim &&
4967 0 : (costly_order ||
4968 0 : (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4969 0 : && !gfp_pfmemalloc_allowed(gfp_mask)) {
4970 0 : page = __alloc_pages_direct_compact(gfp_mask, order,
4971 : alloc_flags, ac,
4972 : INIT_COMPACT_PRIORITY,
4973 : &compact_result);
4974 0 : if (page)
4975 : goto got_pg;
4976 :
4977 : /*
4978 : * Checks for costly allocations with __GFP_NORETRY, which
4979 : * includes some THP page fault allocations
4980 : */
4981 0 : if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4982 : /*
4983 : * If allocating entire pageblock(s) and compaction
4984 : * failed because all zones are below low watermarks
4985 : * or is prohibited because it recently failed at this
4986 : * order, fail immediately unless the allocator has
4987 : * requested compaction and reclaim retry.
4988 : *
4989 : * Reclaim is
4990 : * - potentially very expensive because zones are far
4991 : * below their low watermarks or this is part of very
4992 : * bursty high order allocations,
4993 : * - not guaranteed to help because isolate_freepages()
4994 : * may not iterate over freed pages as part of its
4995 : * linear scan, and
4996 : * - unlikely to make entire pageblocks free on its
4997 : * own.
4998 : */
4999 0 : if (compact_result == COMPACT_SKIPPED ||
5000 : compact_result == COMPACT_DEFERRED)
5001 : goto nopage;
5002 :
5003 : /*
5004 : * Looks like reclaim/compaction is worth trying, but
5005 : * sync compaction could be very expensive, so keep
5006 : * using async compaction.
5007 : */
5008 0 : compact_priority = INIT_COMPACT_PRIORITY;
5009 : }
5010 : }
5011 :
5012 : retry:
5013 : /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5014 0 : if (alloc_flags & ALLOC_KSWAPD)
5015 0 : wake_all_kswapds(order, gfp_mask, ac);
5016 :
5017 0 : reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5018 0 : if (reserve_flags)
5019 0 : alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5020 :
5021 : /*
5022 : * Reset the nodemask and zonelist iterators if memory policies can be
5023 : * ignored. These allocations are high priority and system rather than
5024 : * user oriented.
5025 : */
5026 0 : if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5027 0 : ac->nodemask = NULL;
5028 0 : ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5029 : ac->highest_zoneidx, ac->nodemask);
5030 : }
5031 :
5032 : /* Attempt with potentially adjusted zonelist and alloc_flags */
5033 0 : page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5034 0 : if (page)
5035 : goto got_pg;
5036 :
5037 : /* Caller is not willing to reclaim, we can't balance anything */
5038 0 : if (!can_direct_reclaim)
5039 : goto nopage;
5040 :
5041 : /* Avoid recursion of direct reclaim */
5042 0 : if (current->flags & PF_MEMALLOC)
5043 : goto nopage;
5044 :
5045 : /* Try direct reclaim and then allocating */
5046 0 : page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5047 : &did_some_progress);
5048 0 : if (page)
5049 : goto got_pg;
5050 :
5051 : /* Try direct compaction and then allocating */
5052 0 : page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5053 : compact_priority, &compact_result);
5054 0 : if (page)
5055 : goto got_pg;
5056 :
5057 : /* Do not loop if specifically requested */
5058 0 : if (gfp_mask & __GFP_NORETRY)
5059 : goto nopage;
5060 :
5061 : /*
5062 : * Do not retry costly high order allocations unless they are
5063 : * __GFP_RETRY_MAYFAIL
5064 : */
5065 0 : if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5066 : goto nopage;
5067 :
5068 0 : if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5069 : did_some_progress > 0, &no_progress_loops))
5070 : goto retry;
5071 :
5072 : /*
5073 : * It doesn't make any sense to retry for the compaction if the order-0
5074 : * reclaim is not able to make any progress because the current
5075 : * implementation of the compaction depends on the sufficient amount
5076 : * of free memory (see __compaction_suitable)
5077 : */
5078 0 : if (did_some_progress > 0 &&
5079 0 : should_compact_retry(ac, order, alloc_flags,
5080 : compact_result, &compact_priority,
5081 : &compaction_retries))
5082 : goto retry;
5083 :
5084 :
5085 : /* Deal with possible cpuset update races before we start OOM killing */
5086 0 : if (check_retry_cpuset(cpuset_mems_cookie, ac))
5087 : goto retry_cpuset;
5088 :
5089 : /* Reclaim has failed us, start killing things */
5090 0 : page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5091 0 : if (page)
5092 : goto got_pg;
5093 :
5094 : /* Avoid allocations with no watermarks from looping endlessly */
5095 0 : if (tsk_is_oom_victim(current) &&
5096 0 : (alloc_flags & ALLOC_OOM ||
5097 0 : (gfp_mask & __GFP_NOMEMALLOC)))
5098 : goto nopage;
5099 :
5100 : /* Retry as long as the OOM killer is making progress */
5101 0 : if (did_some_progress) {
5102 0 : no_progress_loops = 0;
5103 0 : goto retry;
5104 : }
5105 :
5106 : nopage:
5107 : /* Deal with possible cpuset update races before we fail */
5108 0 : if (check_retry_cpuset(cpuset_mems_cookie, ac))
5109 : goto retry_cpuset;
5110 :
5111 : /*
5112 : * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5113 : * we always retry
5114 : */
5115 0 : if (gfp_mask & __GFP_NOFAIL) {
5116 : /*
5117 : * All existing users of the __GFP_NOFAIL are blockable, so warn
5118 : * of any new users that actually require GFP_NOWAIT
5119 : */
5120 0 : if (WARN_ON_ONCE(!can_direct_reclaim))
5121 : goto fail;
5122 :
5123 : /*
5124 : * PF_MEMALLOC request from this context is rather bizarre
5125 : * because we cannot reclaim anything and only can loop waiting
5126 : * for somebody to do a work for us
5127 : */
5128 0 : WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5129 :
5130 : /*
5131 : * non failing costly orders are a hard requirement which we
5132 : * are not prepared for much so let's warn about these users
5133 : * so that we can identify them and convert them to something
5134 : * else.
5135 : */
5136 0 : WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5137 :
5138 : /*
5139 : * Help non-failing allocations by giving them access to memory
5140 : * reserves but do not use ALLOC_NO_WATERMARKS because this
5141 : * could deplete whole memory reserves which would just make
5142 : * the situation worse
5143 : */
5144 0 : page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5145 0 : if (page)
5146 : goto got_pg;
5147 :
5148 0 : cond_resched();
5149 0 : goto retry;
5150 : }
5151 : fail:
5152 0 : warn_alloc(gfp_mask, ac->nodemask,
5153 : "page allocation failure: order:%u", order);
5154 : got_pg:
5155 0 : return page;
5156 : }
5157 :
5158 483 : static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5159 : int preferred_nid, nodemask_t *nodemask,
5160 : struct alloc_context *ac, gfp_t *alloc_gfp,
5161 : unsigned int *alloc_flags)
5162 : {
5163 483 : ac->highest_zoneidx = gfp_zone(gfp_mask);
5164 966 : ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5165 483 : ac->nodemask = nodemask;
5166 483 : ac->migratetype = gfp_migratetype(gfp_mask);
5167 :
5168 : if (cpusets_enabled()) {
5169 : *alloc_gfp |= __GFP_HARDWALL;
5170 : /*
5171 : * When we are in the interrupt context, it is irrelevant
5172 : * to the current task context. It means that any node ok.
5173 : */
5174 : if (in_task() && !ac->nodemask)
5175 : ac->nodemask = &cpuset_current_mems_allowed;
5176 : else
5177 : *alloc_flags |= ALLOC_CPUSET;
5178 : }
5179 :
5180 483 : fs_reclaim_acquire(gfp_mask);
5181 483 : fs_reclaim_release(gfp_mask);
5182 :
5183 : might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5184 :
5185 483 : if (should_fail_alloc_page(gfp_mask, order))
5186 : return false;
5187 :
5188 483 : *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5189 :
5190 : /* Dirty zone balancing only done in the fast path */
5191 483 : ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5192 :
5193 : /*
5194 : * The preferred zone is used for statistics but crucially it is
5195 : * also used as the starting point for the zonelist iterator. It
5196 : * may get reset for allocations that ignore memory policies.
5197 : */
5198 966 : ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5199 : ac->highest_zoneidx, ac->nodemask);
5200 :
5201 : return true;
5202 : }
5203 :
5204 : /*
5205 : * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5206 : * @gfp: GFP flags for the allocation
5207 : * @preferred_nid: The preferred NUMA node ID to allocate from
5208 : * @nodemask: Set of nodes to allocate from, may be NULL
5209 : * @nr_pages: The number of pages desired on the list or array
5210 : * @page_list: Optional list to store the allocated pages
5211 : * @page_array: Optional array to store the pages
5212 : *
5213 : * This is a batched version of the page allocator that attempts to
5214 : * allocate nr_pages quickly. Pages are added to page_list if page_list
5215 : * is not NULL, otherwise it is assumed that the page_array is valid.
5216 : *
5217 : * For lists, nr_pages is the number of pages that should be allocated.
5218 : *
5219 : * For arrays, only NULL elements are populated with pages and nr_pages
5220 : * is the maximum number of pages that will be stored in the array.
5221 : *
5222 : * Returns the number of pages on the list or array.
5223 : */
5224 15 : unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5225 : nodemask_t *nodemask, int nr_pages,
5226 : struct list_head *page_list,
5227 : struct page **page_array)
5228 : {
5229 : struct page *page;
5230 : unsigned long flags;
5231 : struct zone *zone;
5232 : struct zoneref *z;
5233 : struct per_cpu_pages *pcp;
5234 : struct list_head *pcp_list;
5235 : struct alloc_context ac;
5236 : gfp_t alloc_gfp;
5237 15 : unsigned int alloc_flags = ALLOC_WMARK_LOW;
5238 15 : int nr_populated = 0, nr_account = 0;
5239 :
5240 : /*
5241 : * Skip populated array elements to determine if any pages need
5242 : * to be allocated before disabling IRQs.
5243 : */
5244 30 : while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5245 0 : nr_populated++;
5246 :
5247 : /* No pages requested? */
5248 15 : if (unlikely(nr_pages <= 0))
5249 : goto out;
5250 :
5251 : /* Already populated array? */
5252 15 : if (unlikely(page_array && nr_pages - nr_populated == 0))
5253 : goto out;
5254 :
5255 : /* Bulk allocator does not support memcg accounting. */
5256 : if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5257 : goto failed;
5258 :
5259 : /* Use the single page allocator for one page. */
5260 15 : if (nr_pages - nr_populated == 1)
5261 : goto failed;
5262 :
5263 : #ifdef CONFIG_PAGE_OWNER
5264 : /*
5265 : * PAGE_OWNER may recurse into the allocator to allocate space to
5266 : * save the stack with pagesets.lock held. Releasing/reacquiring
5267 : * removes much of the performance benefit of bulk allocation so
5268 : * force the caller to allocate one page at a time as it'll have
5269 : * similar performance to added complexity to the bulk allocator.
5270 : */
5271 : if (static_branch_unlikely(&page_owner_inited))
5272 : goto failed;
5273 : #endif
5274 :
5275 : /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5276 15 : gfp &= gfp_allowed_mask;
5277 15 : alloc_gfp = gfp;
5278 15 : if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5279 : goto out;
5280 15 : gfp = alloc_gfp;
5281 :
5282 : /* Find an allowed local zone that meets the low watermark. */
5283 30 : for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5284 : unsigned long mark;
5285 :
5286 : if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5287 : !__cpuset_zone_allowed(zone, gfp)) {
5288 : continue;
5289 : }
5290 :
5291 : if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5292 : zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5293 : goto failed;
5294 : }
5295 :
5296 15 : mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5297 15 : if (zone_watermark_fast(zone, 0, mark,
5298 : zonelist_zone_idx(ac.preferred_zoneref),
5299 : alloc_flags, gfp)) {
5300 : break;
5301 : }
5302 : }
5303 :
5304 : /*
5305 : * If there are no allowed local zones that meets the watermarks then
5306 : * try to allocate a single page and reclaim if necessary.
5307 : */
5308 15 : if (unlikely(!zone))
5309 : goto failed;
5310 :
5311 : /* Attempt the batch allocation */
5312 15 : local_lock_irqsave(&pagesets.lock, flags);
5313 15 : pcp = this_cpu_ptr(zone->per_cpu_pageset);
5314 30 : pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5315 :
5316 90 : while (nr_populated < nr_pages) {
5317 :
5318 : /* Skip existing pages */
5319 60 : if (page_array && page_array[nr_populated]) {
5320 0 : nr_populated++;
5321 0 : continue;
5322 : }
5323 :
5324 60 : page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5325 : pcp, pcp_list);
5326 60 : if (unlikely(!page)) {
5327 : /* Try and get at least one page */
5328 0 : if (!nr_populated)
5329 : goto failed_irq;
5330 : break;
5331 : }
5332 60 : nr_account++;
5333 :
5334 60 : prep_new_page(page, 0, gfp, 0);
5335 60 : if (page_list)
5336 0 : list_add(&page->lru, page_list);
5337 : else
5338 60 : page_array[nr_populated] = page;
5339 60 : nr_populated++;
5340 : }
5341 :
5342 30 : local_unlock_irqrestore(&pagesets.lock, flags);
5343 :
5344 30 : __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5345 15 : zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5346 :
5347 : out:
5348 15 : return nr_populated;
5349 :
5350 : failed_irq:
5351 0 : local_unlock_irqrestore(&pagesets.lock, flags);
5352 :
5353 : failed:
5354 0 : page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5355 0 : if (page) {
5356 0 : if (page_list)
5357 0 : list_add(&page->lru, page_list);
5358 : else
5359 0 : page_array[nr_populated] = page;
5360 0 : nr_populated++;
5361 : }
5362 :
5363 : goto out;
5364 : }
5365 : EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5366 :
5367 : /*
5368 : * This is the 'heart' of the zoned buddy allocator.
5369 : */
5370 468 : struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5371 : nodemask_t *nodemask)
5372 : {
5373 : struct page *page;
5374 468 : unsigned int alloc_flags = ALLOC_WMARK_LOW;
5375 : gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5376 468 : struct alloc_context ac = { };
5377 :
5378 : /*
5379 : * There are several places where we assume that the order value is sane
5380 : * so bail out early if the request is out of bound.
5381 : */
5382 468 : if (unlikely(order >= MAX_ORDER)) {
5383 0 : WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5384 : return NULL;
5385 : }
5386 :
5387 468 : gfp &= gfp_allowed_mask;
5388 : /*
5389 : * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5390 : * resp. GFP_NOIO which has to be inherited for all allocation requests
5391 : * from a particular context which has been marked by
5392 : * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5393 : * movable zones are not used during allocation.
5394 : */
5395 468 : gfp = current_gfp_context(gfp);
5396 468 : alloc_gfp = gfp;
5397 468 : if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5398 : &alloc_gfp, &alloc_flags))
5399 : return NULL;
5400 :
5401 : /*
5402 : * Forbid the first pass from falling back to types that fragment
5403 : * memory until all local zones are considered.
5404 : */
5405 936 : alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5406 :
5407 : /* First allocation attempt */
5408 468 : page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5409 468 : if (likely(page))
5410 : goto out;
5411 :
5412 0 : alloc_gfp = gfp;
5413 0 : ac.spread_dirty_pages = false;
5414 :
5415 : /*
5416 : * Restore the original nodemask if it was potentially replaced with
5417 : * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5418 : */
5419 0 : ac.nodemask = nodemask;
5420 :
5421 0 : page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5422 :
5423 : out:
5424 : if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5425 : unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5426 : __free_pages(page, order);
5427 : page = NULL;
5428 : }
5429 :
5430 468 : trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5431 :
5432 468 : return page;
5433 : }
5434 : EXPORT_SYMBOL(__alloc_pages);
5435 :
5436 0 : struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5437 : nodemask_t *nodemask)
5438 : {
5439 0 : struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5440 : preferred_nid, nodemask);
5441 :
5442 : if (page && order > 1)
5443 : prep_transhuge_page(page);
5444 0 : return (struct folio *)page;
5445 : }
5446 : EXPORT_SYMBOL(__folio_alloc);
5447 :
5448 : /*
5449 : * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5450 : * address cannot represent highmem pages. Use alloc_pages and then kmap if
5451 : * you need to access high mem.
5452 : */
5453 4 : unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5454 : {
5455 : struct page *page;
5456 :
5457 8 : page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5458 4 : if (!page)
5459 : return 0;
5460 4 : return (unsigned long) page_address(page);
5461 : }
5462 : EXPORT_SYMBOL(__get_free_pages);
5463 :
5464 0 : unsigned long get_zeroed_page(gfp_t gfp_mask)
5465 : {
5466 0 : return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5467 : }
5468 : EXPORT_SYMBOL(get_zeroed_page);
5469 :
5470 : /**
5471 : * __free_pages - Free pages allocated with alloc_pages().
5472 : * @page: The page pointer returned from alloc_pages().
5473 : * @order: The order of the allocation.
5474 : *
5475 : * This function can free multi-page allocations that are not compound
5476 : * pages. It does not check that the @order passed in matches that of
5477 : * the allocation, so it is easy to leak memory. Freeing more memory
5478 : * than was allocated will probably emit a warning.
5479 : *
5480 : * If the last reference to this page is speculative, it will be released
5481 : * by put_page() which only frees the first page of a non-compound
5482 : * allocation. To prevent the remaining pages from being leaked, we free
5483 : * the subsequent pages here. If you want to use the page's reference
5484 : * count to decide when to free the allocation, you should allocate a
5485 : * compound page, and use put_page() instead of __free_pages().
5486 : *
5487 : * Context: May be called in interrupt context or while holding a normal
5488 : * spinlock, but not in NMI context or while holding a raw spinlock.
5489 : */
5490 11 : void __free_pages(struct page *page, unsigned int order)
5491 : {
5492 11 : if (put_page_testzero(page))
5493 11 : free_the_page(page, order);
5494 0 : else if (!PageHead(page))
5495 0 : while (order-- > 0)
5496 0 : free_the_page(page + (1 << order), order);
5497 11 : }
5498 : EXPORT_SYMBOL(__free_pages);
5499 :
5500 0 : void free_pages(unsigned long addr, unsigned int order)
5501 : {
5502 0 : if (addr != 0) {
5503 : VM_BUG_ON(!virt_addr_valid((void *)addr));
5504 0 : __free_pages(virt_to_page((void *)addr), order);
5505 : }
5506 0 : }
5507 :
5508 : EXPORT_SYMBOL(free_pages);
5509 :
5510 : /*
5511 : * Page Fragment:
5512 : * An arbitrary-length arbitrary-offset area of memory which resides
5513 : * within a 0 or higher order page. Multiple fragments within that page
5514 : * are individually refcounted, in the page's reference counter.
5515 : *
5516 : * The page_frag functions below provide a simple allocation framework for
5517 : * page fragments. This is used by the network stack and network device
5518 : * drivers to provide a backing region of memory for use as either an
5519 : * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5520 : */
5521 0 : static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5522 : gfp_t gfp_mask)
5523 : {
5524 0 : struct page *page = NULL;
5525 0 : gfp_t gfp = gfp_mask;
5526 :
5527 : #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5528 0 : gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5529 : __GFP_NOMEMALLOC;
5530 0 : page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5531 0 : PAGE_FRAG_CACHE_MAX_ORDER);
5532 0 : nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5533 : #endif
5534 0 : if (unlikely(!page))
5535 0 : page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5536 :
5537 0 : nc->va = page ? page_address(page) : NULL;
5538 :
5539 0 : return page;
5540 : }
5541 :
5542 0 : void __page_frag_cache_drain(struct page *page, unsigned int count)
5543 : {
5544 : VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5545 :
5546 0 : if (page_ref_sub_and_test(page, count))
5547 0 : free_the_page(page, compound_order(page));
5548 0 : }
5549 : EXPORT_SYMBOL(__page_frag_cache_drain);
5550 :
5551 0 : void *page_frag_alloc_align(struct page_frag_cache *nc,
5552 : unsigned int fragsz, gfp_t gfp_mask,
5553 : unsigned int align_mask)
5554 : {
5555 0 : unsigned int size = PAGE_SIZE;
5556 : struct page *page;
5557 : int offset;
5558 :
5559 0 : if (unlikely(!nc->va)) {
5560 : refill:
5561 0 : page = __page_frag_cache_refill(nc, gfp_mask);
5562 0 : if (!page)
5563 : return NULL;
5564 :
5565 : #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5566 : /* if size can vary use size else just use PAGE_SIZE */
5567 0 : size = nc->size;
5568 : #endif
5569 : /* Even if we own the page, we do not use atomic_set().
5570 : * This would break get_page_unless_zero() users.
5571 : */
5572 0 : page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5573 :
5574 : /* reset page count bias and offset to start of new frag */
5575 0 : nc->pfmemalloc = page_is_pfmemalloc(page);
5576 0 : nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5577 0 : nc->offset = size;
5578 : }
5579 :
5580 0 : offset = nc->offset - fragsz;
5581 0 : if (unlikely(offset < 0)) {
5582 0 : page = virt_to_page(nc->va);
5583 :
5584 0 : if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5585 : goto refill;
5586 :
5587 0 : if (unlikely(nc->pfmemalloc)) {
5588 0 : free_the_page(page, compound_order(page));
5589 0 : goto refill;
5590 : }
5591 :
5592 : #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5593 : /* if size can vary use size else just use PAGE_SIZE */
5594 0 : size = nc->size;
5595 : #endif
5596 : /* OK, page count is 0, we can safely set it */
5597 0 : set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5598 :
5599 : /* reset page count bias and offset to start of new frag */
5600 0 : nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5601 0 : offset = size - fragsz;
5602 : }
5603 :
5604 0 : nc->pagecnt_bias--;
5605 0 : offset &= align_mask;
5606 0 : nc->offset = offset;
5607 :
5608 0 : return nc->va + offset;
5609 : }
5610 : EXPORT_SYMBOL(page_frag_alloc_align);
5611 :
5612 : /*
5613 : * Frees a page fragment allocated out of either a compound or order 0 page.
5614 : */
5615 0 : void page_frag_free(void *addr)
5616 : {
5617 0 : struct page *page = virt_to_head_page(addr);
5618 :
5619 0 : if (unlikely(put_page_testzero(page)))
5620 0 : free_the_page(page, compound_order(page));
5621 0 : }
5622 : EXPORT_SYMBOL(page_frag_free);
5623 :
5624 3 : static void *make_alloc_exact(unsigned long addr, unsigned int order,
5625 : size_t size)
5626 : {
5627 3 : if (addr) {
5628 3 : unsigned long alloc_end = addr + (PAGE_SIZE << order);
5629 3 : unsigned long used = addr + PAGE_ALIGN(size);
5630 :
5631 6 : split_page(virt_to_page((void *)addr), order);
5632 3 : while (used < alloc_end) {
5633 0 : free_page(used);
5634 0 : used += PAGE_SIZE;
5635 : }
5636 : }
5637 3 : return (void *)addr;
5638 : }
5639 :
5640 : /**
5641 : * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5642 : * @size: the number of bytes to allocate
5643 : * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5644 : *
5645 : * This function is similar to alloc_pages(), except that it allocates the
5646 : * minimum number of pages to satisfy the request. alloc_pages() can only
5647 : * allocate memory in power-of-two pages.
5648 : *
5649 : * This function is also limited by MAX_ORDER.
5650 : *
5651 : * Memory allocated by this function must be released by free_pages_exact().
5652 : *
5653 : * Return: pointer to the allocated area or %NULL in case of error.
5654 : */
5655 3 : void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5656 : {
5657 3 : unsigned int order = get_order(size);
5658 : unsigned long addr;
5659 :
5660 3 : if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5661 0 : gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5662 :
5663 3 : addr = __get_free_pages(gfp_mask, order);
5664 3 : return make_alloc_exact(addr, order, size);
5665 : }
5666 : EXPORT_SYMBOL(alloc_pages_exact);
5667 :
5668 : /**
5669 : * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5670 : * pages on a node.
5671 : * @nid: the preferred node ID where memory should be allocated
5672 : * @size: the number of bytes to allocate
5673 : * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5674 : *
5675 : * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5676 : * back.
5677 : *
5678 : * Return: pointer to the allocated area or %NULL in case of error.
5679 : */
5680 0 : void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5681 : {
5682 0 : unsigned int order = get_order(size);
5683 : struct page *p;
5684 :
5685 0 : if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5686 0 : gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5687 :
5688 0 : p = alloc_pages_node(nid, gfp_mask, order);
5689 0 : if (!p)
5690 : return NULL;
5691 0 : return make_alloc_exact((unsigned long)page_address(p), order, size);
5692 : }
5693 :
5694 : /**
5695 : * free_pages_exact - release memory allocated via alloc_pages_exact()
5696 : * @virt: the value returned by alloc_pages_exact.
5697 : * @size: size of allocation, same value as passed to alloc_pages_exact().
5698 : *
5699 : * Release the memory allocated by a previous call to alloc_pages_exact.
5700 : */
5701 0 : void free_pages_exact(void *virt, size_t size)
5702 : {
5703 0 : unsigned long addr = (unsigned long)virt;
5704 0 : unsigned long end = addr + PAGE_ALIGN(size);
5705 :
5706 0 : while (addr < end) {
5707 0 : free_page(addr);
5708 0 : addr += PAGE_SIZE;
5709 : }
5710 0 : }
5711 : EXPORT_SYMBOL(free_pages_exact);
5712 :
5713 : /**
5714 : * nr_free_zone_pages - count number of pages beyond high watermark
5715 : * @offset: The zone index of the highest zone
5716 : *
5717 : * nr_free_zone_pages() counts the number of pages which are beyond the
5718 : * high watermark within all zones at or below a given zone index. For each
5719 : * zone, the number of pages is calculated as:
5720 : *
5721 : * nr_free_zone_pages = managed_pages - high_pages
5722 : *
5723 : * Return: number of pages beyond high watermark.
5724 : */
5725 3 : static unsigned long nr_free_zone_pages(int offset)
5726 : {
5727 : struct zoneref *z;
5728 : struct zone *zone;
5729 :
5730 : /* Just pick one node, since fallback list is circular */
5731 3 : unsigned long sum = 0;
5732 :
5733 6 : struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5734 :
5735 12 : for_each_zone_zonelist(zone, z, zonelist, offset) {
5736 3 : unsigned long size = zone_managed_pages(zone);
5737 3 : unsigned long high = high_wmark_pages(zone);
5738 3 : if (size > high)
5739 3 : sum += size - high;
5740 : }
5741 :
5742 3 : return sum;
5743 : }
5744 :
5745 : /**
5746 : * nr_free_buffer_pages - count number of pages beyond high watermark
5747 : *
5748 : * nr_free_buffer_pages() counts the number of pages which are beyond the high
5749 : * watermark within ZONE_DMA and ZONE_NORMAL.
5750 : *
5751 : * Return: number of pages beyond high watermark within ZONE_DMA and
5752 : * ZONE_NORMAL.
5753 : */
5754 1 : unsigned long nr_free_buffer_pages(void)
5755 : {
5756 2 : return nr_free_zone_pages(gfp_zone(GFP_USER));
5757 : }
5758 : EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5759 :
5760 : static inline void show_node(struct zone *zone)
5761 : {
5762 : if (IS_ENABLED(CONFIG_NUMA))
5763 : printk("Node %d ", zone_to_nid(zone));
5764 : }
5765 :
5766 0 : long si_mem_available(void)
5767 : {
5768 : long available;
5769 : unsigned long pagecache;
5770 0 : unsigned long wmark_low = 0;
5771 : unsigned long pages[NR_LRU_LISTS];
5772 : unsigned long reclaimable;
5773 : struct zone *zone;
5774 : int lru;
5775 :
5776 0 : for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5777 0 : pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5778 :
5779 0 : for_each_zone(zone)
5780 0 : wmark_low += low_wmark_pages(zone);
5781 :
5782 : /*
5783 : * Estimate the amount of memory available for userspace allocations,
5784 : * without causing swapping.
5785 : */
5786 0 : available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5787 :
5788 : /*
5789 : * Not all the page cache can be freed, otherwise the system will
5790 : * start swapping. Assume at least half of the page cache, or the
5791 : * low watermark worth of cache, needs to stay.
5792 : */
5793 0 : pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5794 0 : pagecache -= min(pagecache / 2, wmark_low);
5795 0 : available += pagecache;
5796 :
5797 : /*
5798 : * Part of the reclaimable slab and other kernel memory consists of
5799 : * items that are in use, and cannot be freed. Cap this estimate at the
5800 : * low watermark.
5801 : */
5802 0 : reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5803 0 : global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5804 0 : available += reclaimable - min(reclaimable / 2, wmark_low);
5805 :
5806 0 : if (available < 0)
5807 0 : available = 0;
5808 0 : return available;
5809 : }
5810 : EXPORT_SYMBOL_GPL(si_mem_available);
5811 :
5812 3 : void si_meminfo(struct sysinfo *val)
5813 : {
5814 3 : val->totalram = totalram_pages();
5815 3 : val->sharedram = global_node_page_state(NR_SHMEM);
5816 3 : val->freeram = global_zone_page_state(NR_FREE_PAGES);
5817 3 : val->bufferram = nr_blockdev_pages();
5818 3 : val->totalhigh = totalhigh_pages();
5819 3 : val->freehigh = nr_free_highpages();
5820 3 : val->mem_unit = PAGE_SIZE;
5821 3 : }
5822 :
5823 : EXPORT_SYMBOL(si_meminfo);
5824 :
5825 : #ifdef CONFIG_NUMA
5826 : void si_meminfo_node(struct sysinfo *val, int nid)
5827 : {
5828 : int zone_type; /* needs to be signed */
5829 : unsigned long managed_pages = 0;
5830 : unsigned long managed_highpages = 0;
5831 : unsigned long free_highpages = 0;
5832 : pg_data_t *pgdat = NODE_DATA(nid);
5833 :
5834 : for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5835 : managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5836 : val->totalram = managed_pages;
5837 : val->sharedram = node_page_state(pgdat, NR_SHMEM);
5838 : val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5839 : #ifdef CONFIG_HIGHMEM
5840 : for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5841 : struct zone *zone = &pgdat->node_zones[zone_type];
5842 :
5843 : if (is_highmem(zone)) {
5844 : managed_highpages += zone_managed_pages(zone);
5845 : free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5846 : }
5847 : }
5848 : val->totalhigh = managed_highpages;
5849 : val->freehigh = free_highpages;
5850 : #else
5851 : val->totalhigh = managed_highpages;
5852 : val->freehigh = free_highpages;
5853 : #endif
5854 : val->mem_unit = PAGE_SIZE;
5855 : }
5856 : #endif
5857 :
5858 : /*
5859 : * Determine whether the node should be displayed or not, depending on whether
5860 : * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5861 : */
5862 : static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5863 : {
5864 0 : if (!(flags & SHOW_MEM_FILTER_NODES))
5865 : return false;
5866 :
5867 : /*
5868 : * no node mask - aka implicit memory numa policy. Do not bother with
5869 : * the synchronization - read_mems_allowed_begin - because we do not
5870 : * have to be precise here.
5871 : */
5872 0 : if (!nodemask)
5873 0 : nodemask = &cpuset_current_mems_allowed;
5874 :
5875 0 : return !node_isset(nid, *nodemask);
5876 : }
5877 :
5878 : #define K(x) ((x) << (PAGE_SHIFT-10))
5879 :
5880 0 : static void show_migration_types(unsigned char type)
5881 : {
5882 : static const char types[MIGRATE_TYPES] = {
5883 : [MIGRATE_UNMOVABLE] = 'U',
5884 : [MIGRATE_MOVABLE] = 'M',
5885 : [MIGRATE_RECLAIMABLE] = 'E',
5886 : [MIGRATE_HIGHATOMIC] = 'H',
5887 : #ifdef CONFIG_CMA
5888 : [MIGRATE_CMA] = 'C',
5889 : #endif
5890 : #ifdef CONFIG_MEMORY_ISOLATION
5891 : [MIGRATE_ISOLATE] = 'I',
5892 : #endif
5893 : };
5894 : char tmp[MIGRATE_TYPES + 1];
5895 0 : char *p = tmp;
5896 : int i;
5897 :
5898 0 : for (i = 0; i < MIGRATE_TYPES; i++) {
5899 0 : if (type & (1 << i))
5900 0 : *p++ = types[i];
5901 : }
5902 :
5903 0 : *p = '\0';
5904 0 : printk(KERN_CONT "(%s) ", tmp);
5905 0 : }
5906 :
5907 : /*
5908 : * Show free area list (used inside shift_scroll-lock stuff)
5909 : * We also calculate the percentage fragmentation. We do this by counting the
5910 : * memory on each free list with the exception of the first item on the list.
5911 : *
5912 : * Bits in @filter:
5913 : * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5914 : * cpuset.
5915 : */
5916 0 : void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5917 : {
5918 0 : unsigned long free_pcp = 0;
5919 : int cpu;
5920 : struct zone *zone;
5921 : pg_data_t *pgdat;
5922 :
5923 0 : for_each_populated_zone(zone) {
5924 0 : if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5925 0 : continue;
5926 :
5927 0 : for_each_online_cpu(cpu)
5928 0 : free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5929 : }
5930 :
5931 0 : printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5932 : " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5933 : " unevictable:%lu dirty:%lu writeback:%lu\n"
5934 : " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5935 : " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5936 : " kernel_misc_reclaimable:%lu\n"
5937 : " free:%lu free_pcp:%lu free_cma:%lu\n",
5938 : global_node_page_state(NR_ACTIVE_ANON),
5939 : global_node_page_state(NR_INACTIVE_ANON),
5940 : global_node_page_state(NR_ISOLATED_ANON),
5941 : global_node_page_state(NR_ACTIVE_FILE),
5942 : global_node_page_state(NR_INACTIVE_FILE),
5943 : global_node_page_state(NR_ISOLATED_FILE),
5944 : global_node_page_state(NR_UNEVICTABLE),
5945 : global_node_page_state(NR_FILE_DIRTY),
5946 : global_node_page_state(NR_WRITEBACK),
5947 : global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5948 : global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5949 : global_node_page_state(NR_FILE_MAPPED),
5950 : global_node_page_state(NR_SHMEM),
5951 : global_node_page_state(NR_PAGETABLE),
5952 : global_zone_page_state(NR_BOUNCE),
5953 : global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5954 : global_zone_page_state(NR_FREE_PAGES),
5955 : free_pcp,
5956 : global_zone_page_state(NR_FREE_CMA_PAGES));
5957 :
5958 0 : for_each_online_pgdat(pgdat) {
5959 0 : if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5960 0 : continue;
5961 :
5962 0 : printk("Node %d"
5963 : " active_anon:%lukB"
5964 : " inactive_anon:%lukB"
5965 : " active_file:%lukB"
5966 : " inactive_file:%lukB"
5967 : " unevictable:%lukB"
5968 : " isolated(anon):%lukB"
5969 : " isolated(file):%lukB"
5970 : " mapped:%lukB"
5971 : " dirty:%lukB"
5972 : " writeback:%lukB"
5973 : " shmem:%lukB"
5974 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5975 : " shmem_thp: %lukB"
5976 : " shmem_pmdmapped: %lukB"
5977 : " anon_thp: %lukB"
5978 : #endif
5979 : " writeback_tmp:%lukB"
5980 : " kernel_stack:%lukB"
5981 : #ifdef CONFIG_SHADOW_CALL_STACK
5982 : " shadow_call_stack:%lukB"
5983 : #endif
5984 : " pagetables:%lukB"
5985 : " all_unreclaimable? %s"
5986 : "\n",
5987 : pgdat->node_id,
5988 : K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5989 : K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5990 : K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5991 : K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5992 : K(node_page_state(pgdat, NR_UNEVICTABLE)),
5993 : K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5994 : K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5995 : K(node_page_state(pgdat, NR_FILE_MAPPED)),
5996 : K(node_page_state(pgdat, NR_FILE_DIRTY)),
5997 : K(node_page_state(pgdat, NR_WRITEBACK)),
5998 : K(node_page_state(pgdat, NR_SHMEM)),
5999 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6000 : K(node_page_state(pgdat, NR_SHMEM_THPS)),
6001 : K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6002 : K(node_page_state(pgdat, NR_ANON_THPS)),
6003 : #endif
6004 : K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6005 : node_page_state(pgdat, NR_KERNEL_STACK_KB),
6006 : #ifdef CONFIG_SHADOW_CALL_STACK
6007 : node_page_state(pgdat, NR_KERNEL_SCS_KB),
6008 : #endif
6009 : K(node_page_state(pgdat, NR_PAGETABLE)),
6010 : pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6011 : "yes" : "no");
6012 : }
6013 :
6014 0 : for_each_populated_zone(zone) {
6015 : int i;
6016 :
6017 0 : if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6018 0 : continue;
6019 :
6020 : free_pcp = 0;
6021 0 : for_each_online_cpu(cpu)
6022 0 : free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6023 :
6024 0 : show_node(zone);
6025 0 : printk(KERN_CONT
6026 : "%s"
6027 : " free:%lukB"
6028 : " boost:%lukB"
6029 : " min:%lukB"
6030 : " low:%lukB"
6031 : " high:%lukB"
6032 : " reserved_highatomic:%luKB"
6033 : " active_anon:%lukB"
6034 : " inactive_anon:%lukB"
6035 : " active_file:%lukB"
6036 : " inactive_file:%lukB"
6037 : " unevictable:%lukB"
6038 : " writepending:%lukB"
6039 : " present:%lukB"
6040 : " managed:%lukB"
6041 : " mlocked:%lukB"
6042 : " bounce:%lukB"
6043 : " free_pcp:%lukB"
6044 : " local_pcp:%ukB"
6045 : " free_cma:%lukB"
6046 : "\n",
6047 : zone->name,
6048 : K(zone_page_state(zone, NR_FREE_PAGES)),
6049 : K(zone->watermark_boost),
6050 : K(min_wmark_pages(zone)),
6051 : K(low_wmark_pages(zone)),
6052 : K(high_wmark_pages(zone)),
6053 : K(zone->nr_reserved_highatomic),
6054 : K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6055 : K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6056 : K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6057 : K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6058 : K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6059 : K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6060 : K(zone->present_pages),
6061 : K(zone_managed_pages(zone)),
6062 : K(zone_page_state(zone, NR_MLOCK)),
6063 : K(zone_page_state(zone, NR_BOUNCE)),
6064 : K(free_pcp),
6065 : K(this_cpu_read(zone->per_cpu_pageset->count)),
6066 : K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6067 0 : printk("lowmem_reserve[]:");
6068 0 : for (i = 0; i < MAX_NR_ZONES; i++)
6069 0 : printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6070 0 : printk(KERN_CONT "\n");
6071 : }
6072 :
6073 0 : for_each_populated_zone(zone) {
6074 : unsigned int order;
6075 0 : unsigned long nr[MAX_ORDER], flags, total = 0;
6076 : unsigned char types[MAX_ORDER];
6077 :
6078 0 : if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6079 0 : continue;
6080 0 : show_node(zone);
6081 0 : printk(KERN_CONT "%s: ", zone->name);
6082 :
6083 0 : spin_lock_irqsave(&zone->lock, flags);
6084 0 : for (order = 0; order < MAX_ORDER; order++) {
6085 0 : struct free_area *area = &zone->free_area[order];
6086 : int type;
6087 :
6088 0 : nr[order] = area->nr_free;
6089 0 : total += nr[order] << order;
6090 :
6091 0 : types[order] = 0;
6092 0 : for (type = 0; type < MIGRATE_TYPES; type++) {
6093 0 : if (!free_area_empty(area, type))
6094 0 : types[order] |= 1 << type;
6095 : }
6096 : }
6097 0 : spin_unlock_irqrestore(&zone->lock, flags);
6098 0 : for (order = 0; order < MAX_ORDER; order++) {
6099 0 : printk(KERN_CONT "%lu*%lukB ",
6100 : nr[order], K(1UL) << order);
6101 0 : if (nr[order])
6102 0 : show_migration_types(types[order]);
6103 : }
6104 0 : printk(KERN_CONT "= %lukB\n", K(total));
6105 : }
6106 :
6107 0 : hugetlb_show_meminfo();
6108 :
6109 0 : printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6110 :
6111 0 : show_swap_cache_info();
6112 0 : }
6113 :
6114 : static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6115 : {
6116 1 : zoneref->zone = zone;
6117 1 : zoneref->zone_idx = zone_idx(zone);
6118 : }
6119 :
6120 : /*
6121 : * Builds allocation fallback zone lists.
6122 : *
6123 : * Add all populated zones of a node to the zonelist.
6124 : */
6125 : static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6126 : {
6127 : struct zone *zone;
6128 1 : enum zone_type zone_type = MAX_NR_ZONES;
6129 1 : int nr_zones = 0;
6130 :
6131 : do {
6132 2 : zone_type--;
6133 2 : zone = pgdat->node_zones + zone_type;
6134 2 : if (populated_zone(zone)) {
6135 2 : zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6136 1 : check_highest_zone(zone_type);
6137 : }
6138 2 : } while (zone_type);
6139 :
6140 : return nr_zones;
6141 : }
6142 :
6143 : #ifdef CONFIG_NUMA
6144 :
6145 : static int __parse_numa_zonelist_order(char *s)
6146 : {
6147 : /*
6148 : * We used to support different zonelists modes but they turned
6149 : * out to be just not useful. Let's keep the warning in place
6150 : * if somebody still use the cmd line parameter so that we do
6151 : * not fail it silently
6152 : */
6153 : if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6154 : pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6155 : return -EINVAL;
6156 : }
6157 : return 0;
6158 : }
6159 :
6160 : char numa_zonelist_order[] = "Node";
6161 :
6162 : /*
6163 : * sysctl handler for numa_zonelist_order
6164 : */
6165 : int numa_zonelist_order_handler(struct ctl_table *table, int write,
6166 : void *buffer, size_t *length, loff_t *ppos)
6167 : {
6168 : if (write)
6169 : return __parse_numa_zonelist_order(buffer);
6170 : return proc_dostring(table, write, buffer, length, ppos);
6171 : }
6172 :
6173 :
6174 : #define MAX_NODE_LOAD (nr_online_nodes)
6175 : static int node_load[MAX_NUMNODES];
6176 :
6177 : /**
6178 : * find_next_best_node - find the next node that should appear in a given node's fallback list
6179 : * @node: node whose fallback list we're appending
6180 : * @used_node_mask: nodemask_t of already used nodes
6181 : *
6182 : * We use a number of factors to determine which is the next node that should
6183 : * appear on a given node's fallback list. The node should not have appeared
6184 : * already in @node's fallback list, and it should be the next closest node
6185 : * according to the distance array (which contains arbitrary distance values
6186 : * from each node to each node in the system), and should also prefer nodes
6187 : * with no CPUs, since presumably they'll have very little allocation pressure
6188 : * on them otherwise.
6189 : *
6190 : * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6191 : */
6192 : int find_next_best_node(int node, nodemask_t *used_node_mask)
6193 : {
6194 : int n, val;
6195 : int min_val = INT_MAX;
6196 : int best_node = NUMA_NO_NODE;
6197 :
6198 : /* Use the local node if we haven't already */
6199 : if (!node_isset(node, *used_node_mask)) {
6200 : node_set(node, *used_node_mask);
6201 : return node;
6202 : }
6203 :
6204 : for_each_node_state(n, N_MEMORY) {
6205 :
6206 : /* Don't want a node to appear more than once */
6207 : if (node_isset(n, *used_node_mask))
6208 : continue;
6209 :
6210 : /* Use the distance array to find the distance */
6211 : val = node_distance(node, n);
6212 :
6213 : /* Penalize nodes under us ("prefer the next node") */
6214 : val += (n < node);
6215 :
6216 : /* Give preference to headless and unused nodes */
6217 : if (!cpumask_empty(cpumask_of_node(n)))
6218 : val += PENALTY_FOR_NODE_WITH_CPUS;
6219 :
6220 : /* Slight preference for less loaded node */
6221 : val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6222 : val += node_load[n];
6223 :
6224 : if (val < min_val) {
6225 : min_val = val;
6226 : best_node = n;
6227 : }
6228 : }
6229 :
6230 : if (best_node >= 0)
6231 : node_set(best_node, *used_node_mask);
6232 :
6233 : return best_node;
6234 : }
6235 :
6236 :
6237 : /*
6238 : * Build zonelists ordered by node and zones within node.
6239 : * This results in maximum locality--normal zone overflows into local
6240 : * DMA zone, if any--but risks exhausting DMA zone.
6241 : */
6242 : static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6243 : unsigned nr_nodes)
6244 : {
6245 : struct zoneref *zonerefs;
6246 : int i;
6247 :
6248 : zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6249 :
6250 : for (i = 0; i < nr_nodes; i++) {
6251 : int nr_zones;
6252 :
6253 : pg_data_t *node = NODE_DATA(node_order[i]);
6254 :
6255 : nr_zones = build_zonerefs_node(node, zonerefs);
6256 : zonerefs += nr_zones;
6257 : }
6258 : zonerefs->zone = NULL;
6259 : zonerefs->zone_idx = 0;
6260 : }
6261 :
6262 : /*
6263 : * Build gfp_thisnode zonelists
6264 : */
6265 : static void build_thisnode_zonelists(pg_data_t *pgdat)
6266 : {
6267 : struct zoneref *zonerefs;
6268 : int nr_zones;
6269 :
6270 : zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6271 : nr_zones = build_zonerefs_node(pgdat, zonerefs);
6272 : zonerefs += nr_zones;
6273 : zonerefs->zone = NULL;
6274 : zonerefs->zone_idx = 0;
6275 : }
6276 :
6277 : /*
6278 : * Build zonelists ordered by zone and nodes within zones.
6279 : * This results in conserving DMA zone[s] until all Normal memory is
6280 : * exhausted, but results in overflowing to remote node while memory
6281 : * may still exist in local DMA zone.
6282 : */
6283 :
6284 : static void build_zonelists(pg_data_t *pgdat)
6285 : {
6286 : static int node_order[MAX_NUMNODES];
6287 : int node, load, nr_nodes = 0;
6288 : nodemask_t used_mask = NODE_MASK_NONE;
6289 : int local_node, prev_node;
6290 :
6291 : /* NUMA-aware ordering of nodes */
6292 : local_node = pgdat->node_id;
6293 : load = nr_online_nodes;
6294 : prev_node = local_node;
6295 :
6296 : memset(node_order, 0, sizeof(node_order));
6297 : while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6298 : /*
6299 : * We don't want to pressure a particular node.
6300 : * So adding penalty to the first node in same
6301 : * distance group to make it round-robin.
6302 : */
6303 : if (node_distance(local_node, node) !=
6304 : node_distance(local_node, prev_node))
6305 : node_load[node] += load;
6306 :
6307 : node_order[nr_nodes++] = node;
6308 : prev_node = node;
6309 : load--;
6310 : }
6311 :
6312 : build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6313 : build_thisnode_zonelists(pgdat);
6314 : pr_info("Fallback order for Node %d: ", local_node);
6315 : for (node = 0; node < nr_nodes; node++)
6316 : pr_cont("%d ", node_order[node]);
6317 : pr_cont("\n");
6318 : }
6319 :
6320 : #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6321 : /*
6322 : * Return node id of node used for "local" allocations.
6323 : * I.e., first node id of first zone in arg node's generic zonelist.
6324 : * Used for initializing percpu 'numa_mem', which is used primarily
6325 : * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6326 : */
6327 : int local_memory_node(int node)
6328 : {
6329 : struct zoneref *z;
6330 :
6331 : z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6332 : gfp_zone(GFP_KERNEL),
6333 : NULL);
6334 : return zone_to_nid(z->zone);
6335 : }
6336 : #endif
6337 :
6338 : static void setup_min_unmapped_ratio(void);
6339 : static void setup_min_slab_ratio(void);
6340 : #else /* CONFIG_NUMA */
6341 :
6342 1 : static void build_zonelists(pg_data_t *pgdat)
6343 : {
6344 : int node, local_node;
6345 : struct zoneref *zonerefs;
6346 : int nr_zones;
6347 :
6348 1 : local_node = pgdat->node_id;
6349 :
6350 1 : zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6351 1 : nr_zones = build_zonerefs_node(pgdat, zonerefs);
6352 1 : zonerefs += nr_zones;
6353 :
6354 : /*
6355 : * Now we build the zonelist so that it contains the zones
6356 : * of all the other nodes.
6357 : * We don't want to pressure a particular node, so when
6358 : * building the zones for node N, we make sure that the
6359 : * zones coming right after the local ones are those from
6360 : * node N+1 (modulo N)
6361 : */
6362 1 : for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6363 0 : if (!node_online(node))
6364 0 : continue;
6365 0 : nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6366 0 : zonerefs += nr_zones;
6367 : }
6368 0 : for (node = 0; node < local_node; node++) {
6369 0 : if (!node_online(node))
6370 0 : continue;
6371 0 : nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6372 0 : zonerefs += nr_zones;
6373 : }
6374 :
6375 1 : zonerefs->zone = NULL;
6376 1 : zonerefs->zone_idx = 0;
6377 1 : }
6378 :
6379 : #endif /* CONFIG_NUMA */
6380 :
6381 : /*
6382 : * Boot pageset table. One per cpu which is going to be used for all
6383 : * zones and all nodes. The parameters will be set in such a way
6384 : * that an item put on a list will immediately be handed over to
6385 : * the buddy list. This is safe since pageset manipulation is done
6386 : * with interrupts disabled.
6387 : *
6388 : * The boot_pagesets must be kept even after bootup is complete for
6389 : * unused processors and/or zones. They do play a role for bootstrapping
6390 : * hotplugged processors.
6391 : *
6392 : * zoneinfo_show() and maybe other functions do
6393 : * not check if the processor is online before following the pageset pointer.
6394 : * Other parts of the kernel may not check if the zone is available.
6395 : */
6396 : static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6397 : /* These effectively disable the pcplists in the boot pageset completely */
6398 : #define BOOT_PAGESET_HIGH 0
6399 : #define BOOT_PAGESET_BATCH 1
6400 : static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6401 : static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6402 : DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6403 :
6404 0 : static void __build_all_zonelists(void *data)
6405 : {
6406 : int nid;
6407 : int __maybe_unused cpu;
6408 1 : pg_data_t *self = data;
6409 : static DEFINE_SPINLOCK(lock);
6410 :
6411 1 : spin_lock(&lock);
6412 :
6413 : #ifdef CONFIG_NUMA
6414 : memset(node_load, 0, sizeof(node_load));
6415 : #endif
6416 :
6417 : /*
6418 : * This node is hotadded and no memory is yet present. So just
6419 : * building zonelists is fine - no need to touch other nodes.
6420 : */
6421 0 : if (self && !node_online(self->node_id)) {
6422 0 : build_zonelists(self);
6423 : } else {
6424 : /*
6425 : * All possible nodes have pgdat preallocated
6426 : * in free_area_init
6427 : */
6428 1 : for_each_node(nid) {
6429 1 : pg_data_t *pgdat = NODE_DATA(nid);
6430 :
6431 1 : build_zonelists(pgdat);
6432 : }
6433 :
6434 : #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6435 : /*
6436 : * We now know the "local memory node" for each node--
6437 : * i.e., the node of the first zone in the generic zonelist.
6438 : * Set up numa_mem percpu variable for on-line cpus. During
6439 : * boot, only the boot cpu should be on-line; we'll init the
6440 : * secondary cpus' numa_mem as they come on-line. During
6441 : * node/memory hotplug, we'll fixup all on-line cpus.
6442 : */
6443 : for_each_online_cpu(cpu)
6444 : set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6445 : #endif
6446 : }
6447 :
6448 1 : spin_unlock(&lock);
6449 0 : }
6450 :
6451 : static noinline void __init
6452 1 : build_all_zonelists_init(void)
6453 : {
6454 : int cpu;
6455 :
6456 1 : __build_all_zonelists(NULL);
6457 :
6458 : /*
6459 : * Initialize the boot_pagesets that are going to be used
6460 : * for bootstrapping processors. The real pagesets for
6461 : * each zone will be allocated later when the per cpu
6462 : * allocator is available.
6463 : *
6464 : * boot_pagesets are used also for bootstrapping offline
6465 : * cpus if the system is already booted because the pagesets
6466 : * are needed to initialize allocators on a specific cpu too.
6467 : * F.e. the percpu allocator needs the page allocator which
6468 : * needs the percpu allocator in order to allocate its pagesets
6469 : * (a chicken-egg dilemma).
6470 : */
6471 2 : for_each_possible_cpu(cpu)
6472 1 : per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6473 :
6474 1 : mminit_verify_zonelist();
6475 : cpuset_init_current_mems_allowed();
6476 1 : }
6477 :
6478 : /*
6479 : * unless system_state == SYSTEM_BOOTING.
6480 : *
6481 : * __ref due to call of __init annotated helper build_all_zonelists_init
6482 : * [protected by SYSTEM_BOOTING].
6483 : */
6484 1 : void __ref build_all_zonelists(pg_data_t *pgdat)
6485 : {
6486 : unsigned long vm_total_pages;
6487 :
6488 1 : if (system_state == SYSTEM_BOOTING) {
6489 1 : build_all_zonelists_init();
6490 : } else {
6491 0 : __build_all_zonelists(pgdat);
6492 : /* cpuset refresh routine should be here */
6493 : }
6494 : /* Get the number of free pages beyond high watermark in all zones. */
6495 1 : vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6496 : /*
6497 : * Disable grouping by mobility if the number of pages in the
6498 : * system is too low to allow the mechanism to work. It would be
6499 : * more accurate, but expensive to check per-zone. This check is
6500 : * made on memory-hotadd so a system can start with mobility
6501 : * disabled and enable it later
6502 : */
6503 1 : if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6504 0 : page_group_by_mobility_disabled = 1;
6505 : else
6506 1 : page_group_by_mobility_disabled = 0;
6507 :
6508 1 : pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6509 : nr_online_nodes,
6510 : page_group_by_mobility_disabled ? "off" : "on",
6511 : vm_total_pages);
6512 : #ifdef CONFIG_NUMA
6513 : pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6514 : #endif
6515 1 : }
6516 :
6517 : /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6518 : static bool __meminit
6519 266125 : overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6520 : {
6521 : static struct memblock_region *r;
6522 :
6523 266125 : if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6524 0 : if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6525 0 : for_each_mem_region(r) {
6526 0 : if (*pfn < memblock_region_memory_end_pfn(r))
6527 : break;
6528 : }
6529 : }
6530 0 : if (*pfn >= memblock_region_memory_base_pfn(r) &&
6531 0 : memblock_is_mirror(r)) {
6532 0 : *pfn = memblock_region_memory_end_pfn(r);
6533 0 : return true;
6534 : }
6535 : }
6536 : return false;
6537 : }
6538 :
6539 : /*
6540 : * Initially all pages are reserved - free ones are freed
6541 : * up by memblock_free_all() once the early boot process is
6542 : * done. Non-atomic initialization, single-pass.
6543 : *
6544 : * All aligned pageblocks are initialized to the specified migratetype
6545 : * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6546 : * zone stats (e.g., nr_isolate_pageblock) are touched.
6547 : */
6548 1 : void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6549 : unsigned long start_pfn, unsigned long zone_end_pfn,
6550 : enum meminit_context context,
6551 : struct vmem_altmap *altmap, int migratetype)
6552 : {
6553 1 : unsigned long pfn, end_pfn = start_pfn + size;
6554 : struct page *page;
6555 :
6556 1 : if (highest_memmap_pfn < end_pfn - 1)
6557 1 : highest_memmap_pfn = end_pfn - 1;
6558 :
6559 : #ifdef CONFIG_ZONE_DEVICE
6560 : /*
6561 : * Honor reservation requested by the driver for this ZONE_DEVICE
6562 : * memory. We limit the total number of pages to initialize to just
6563 : * those that might contain the memory mapping. We will defer the
6564 : * ZONE_DEVICE page initialization until after we have released
6565 : * the hotplug lock.
6566 : */
6567 : if (zone == ZONE_DEVICE) {
6568 : if (!altmap)
6569 : return;
6570 :
6571 : if (start_pfn == altmap->base_pfn)
6572 : start_pfn += altmap->reserve;
6573 : end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6574 : }
6575 : #endif
6576 :
6577 266127 : for (pfn = start_pfn; pfn < end_pfn; ) {
6578 : /*
6579 : * There can be holes in boot-time mem_map[]s handed to this
6580 : * function. They do not exist on hotplugged memory.
6581 : */
6582 266125 : if (context == MEMINIT_EARLY) {
6583 266125 : if (overlap_memmap_init(zone, &pfn))
6584 0 : continue;
6585 : if (defer_init(nid, pfn, zone_end_pfn))
6586 : break;
6587 : }
6588 :
6589 266125 : page = pfn_to_page(pfn);
6590 266125 : __init_single_page(page, pfn, zone, nid);
6591 266125 : if (context == MEMINIT_HOTPLUG)
6592 : __SetPageReserved(page);
6593 :
6594 : /*
6595 : * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6596 : * such that unmovable allocations won't be scattered all
6597 : * over the place during system boot.
6598 : */
6599 266125 : if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6600 260 : set_pageblock_migratetype(page, migratetype);
6601 260 : cond_resched();
6602 : }
6603 266125 : pfn++;
6604 : }
6605 1 : }
6606 :
6607 : #ifdef CONFIG_ZONE_DEVICE
6608 : static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6609 : unsigned long zone_idx, int nid,
6610 : struct dev_pagemap *pgmap)
6611 : {
6612 :
6613 : __init_single_page(page, pfn, zone_idx, nid);
6614 :
6615 : /*
6616 : * Mark page reserved as it will need to wait for onlining
6617 : * phase for it to be fully associated with a zone.
6618 : *
6619 : * We can use the non-atomic __set_bit operation for setting
6620 : * the flag as we are still initializing the pages.
6621 : */
6622 : __SetPageReserved(page);
6623 :
6624 : /*
6625 : * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6626 : * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6627 : * ever freed or placed on a driver-private list.
6628 : */
6629 : page->pgmap = pgmap;
6630 : page->zone_device_data = NULL;
6631 :
6632 : /*
6633 : * Mark the block movable so that blocks are reserved for
6634 : * movable at startup. This will force kernel allocations
6635 : * to reserve their blocks rather than leaking throughout
6636 : * the address space during boot when many long-lived
6637 : * kernel allocations are made.
6638 : *
6639 : * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6640 : * because this is done early in section_activate()
6641 : */
6642 : if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6643 : set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6644 : cond_resched();
6645 : }
6646 : }
6647 :
6648 : static void __ref memmap_init_compound(struct page *head,
6649 : unsigned long head_pfn,
6650 : unsigned long zone_idx, int nid,
6651 : struct dev_pagemap *pgmap,
6652 : unsigned long nr_pages)
6653 : {
6654 : unsigned long pfn, end_pfn = head_pfn + nr_pages;
6655 : unsigned int order = pgmap->vmemmap_shift;
6656 :
6657 : __SetPageHead(head);
6658 : for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6659 : struct page *page = pfn_to_page(pfn);
6660 :
6661 : __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6662 : prep_compound_tail(head, pfn - head_pfn);
6663 : set_page_count(page, 0);
6664 :
6665 : /*
6666 : * The first tail page stores compound_mapcount_ptr() and
6667 : * compound_order() and the second tail page stores
6668 : * compound_pincount_ptr(). Call prep_compound_head() after
6669 : * the first and second tail pages have been initialized to
6670 : * not have the data overwritten.
6671 : */
6672 : if (pfn == head_pfn + 2)
6673 : prep_compound_head(head, order);
6674 : }
6675 : }
6676 :
6677 : void __ref memmap_init_zone_device(struct zone *zone,
6678 : unsigned long start_pfn,
6679 : unsigned long nr_pages,
6680 : struct dev_pagemap *pgmap)
6681 : {
6682 : unsigned long pfn, end_pfn = start_pfn + nr_pages;
6683 : struct pglist_data *pgdat = zone->zone_pgdat;
6684 : struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6685 : unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6686 : unsigned long zone_idx = zone_idx(zone);
6687 : unsigned long start = jiffies;
6688 : int nid = pgdat->node_id;
6689 :
6690 : if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6691 : return;
6692 :
6693 : /*
6694 : * The call to memmap_init should have already taken care
6695 : * of the pages reserved for the memmap, so we can just jump to
6696 : * the end of that region and start processing the device pages.
6697 : */
6698 : if (altmap) {
6699 : start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6700 : nr_pages = end_pfn - start_pfn;
6701 : }
6702 :
6703 : for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6704 : struct page *page = pfn_to_page(pfn);
6705 :
6706 : __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6707 :
6708 : if (pfns_per_compound == 1)
6709 : continue;
6710 :
6711 : memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6712 : pfns_per_compound);
6713 : }
6714 :
6715 : pr_info("%s initialised %lu pages in %ums\n", __func__,
6716 : nr_pages, jiffies_to_msecs(jiffies - start));
6717 : }
6718 :
6719 : #endif
6720 1 : static void __meminit zone_init_free_lists(struct zone *zone)
6721 : {
6722 : unsigned int order, t;
6723 45 : for_each_migratetype_order(order, t) {
6724 88 : INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6725 44 : zone->free_area[order].nr_free = 0;
6726 : }
6727 1 : }
6728 :
6729 : /*
6730 : * Only struct pages that correspond to ranges defined by memblock.memory
6731 : * are zeroed and initialized by going through __init_single_page() during
6732 : * memmap_init_zone_range().
6733 : *
6734 : * But, there could be struct pages that correspond to holes in
6735 : * memblock.memory. This can happen because of the following reasons:
6736 : * - physical memory bank size is not necessarily the exact multiple of the
6737 : * arbitrary section size
6738 : * - early reserved memory may not be listed in memblock.memory
6739 : * - memory layouts defined with memmap= kernel parameter may not align
6740 : * nicely with memmap sections
6741 : *
6742 : * Explicitly initialize those struct pages so that:
6743 : * - PG_Reserved is set
6744 : * - zone and node links point to zone and node that span the page if the
6745 : * hole is in the middle of a zone
6746 : * - zone and node links point to adjacent zone/node if the hole falls on
6747 : * the zone boundary; the pages in such holes will be prepended to the
6748 : * zone/node above the hole except for the trailing pages in the last
6749 : * section that will be appended to the zone/node below.
6750 : */
6751 1 : static void __init init_unavailable_range(unsigned long spfn,
6752 : unsigned long epfn,
6753 : int zone, int node)
6754 : {
6755 : unsigned long pfn;
6756 1 : u64 pgcnt = 0;
6757 :
6758 1 : for (pfn = spfn; pfn < epfn; pfn++) {
6759 0 : if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6760 0 : pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6761 : + pageblock_nr_pages - 1;
6762 0 : continue;
6763 : }
6764 0 : __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6765 0 : __SetPageReserved(pfn_to_page(pfn));
6766 0 : pgcnt++;
6767 : }
6768 :
6769 1 : if (pgcnt)
6770 0 : pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6771 : node, zone_names[zone], pgcnt);
6772 1 : }
6773 :
6774 1 : static void __init memmap_init_zone_range(struct zone *zone,
6775 : unsigned long start_pfn,
6776 : unsigned long end_pfn,
6777 : unsigned long *hole_pfn)
6778 : {
6779 1 : unsigned long zone_start_pfn = zone->zone_start_pfn;
6780 1 : unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6781 1 : int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6782 :
6783 1 : start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6784 1 : end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6785 :
6786 1 : if (start_pfn >= end_pfn)
6787 : return;
6788 :
6789 1 : memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6790 : zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6791 :
6792 1 : if (*hole_pfn < start_pfn)
6793 0 : init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6794 :
6795 1 : *hole_pfn = end_pfn;
6796 : }
6797 :
6798 1 : static void __init memmap_init(void)
6799 : {
6800 : unsigned long start_pfn, end_pfn;
6801 1 : unsigned long hole_pfn = 0;
6802 1 : int i, j, zone_id = 0, nid;
6803 :
6804 2 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6805 : struct pglist_data *node = NODE_DATA(nid);
6806 :
6807 2 : for (j = 0; j < MAX_NR_ZONES; j++) {
6808 2 : struct zone *zone = node->node_zones + j;
6809 :
6810 2 : if (!populated_zone(zone))
6811 1 : continue;
6812 :
6813 1 : memmap_init_zone_range(zone, start_pfn, end_pfn,
6814 : &hole_pfn);
6815 1 : zone_id = j;
6816 : }
6817 : }
6818 :
6819 : #ifdef CONFIG_SPARSEMEM
6820 : /*
6821 : * Initialize the memory map for hole in the range [memory_end,
6822 : * section_end].
6823 : * Append the pages in this hole to the highest zone in the last
6824 : * node.
6825 : * The call to init_unavailable_range() is outside the ifdef to
6826 : * silence the compiler warining about zone_id set but not used;
6827 : * for FLATMEM it is a nop anyway
6828 : */
6829 : end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6830 : if (hole_pfn < end_pfn)
6831 : #endif
6832 1 : init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6833 1 : }
6834 :
6835 1 : void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6836 : phys_addr_t min_addr, int nid, bool exact_nid)
6837 : {
6838 : void *ptr;
6839 :
6840 1 : if (exact_nid)
6841 0 : ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6842 : MEMBLOCK_ALLOC_ACCESSIBLE,
6843 : nid);
6844 : else
6845 1 : ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6846 : MEMBLOCK_ALLOC_ACCESSIBLE,
6847 : nid);
6848 :
6849 : if (ptr && size > 0)
6850 : page_init_poison(ptr, size);
6851 :
6852 1 : return ptr;
6853 : }
6854 :
6855 3 : static int zone_batchsize(struct zone *zone)
6856 : {
6857 : #ifdef CONFIG_MMU
6858 : int batch;
6859 :
6860 : /*
6861 : * The number of pages to batch allocate is either ~0.1%
6862 : * of the zone or 1MB, whichever is smaller. The batch
6863 : * size is striking a balance between allocation latency
6864 : * and zone lock contention.
6865 : */
6866 3 : batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6867 3 : batch /= 4; /* We effectively *= 4 below */
6868 3 : if (batch < 1)
6869 1 : batch = 1;
6870 :
6871 : /*
6872 : * Clamp the batch to a 2^n - 1 value. Having a power
6873 : * of 2 value was found to be more likely to have
6874 : * suboptimal cache aliasing properties in some cases.
6875 : *
6876 : * For example if 2 tasks are alternately allocating
6877 : * batches of pages, one task can end up with a lot
6878 : * of pages of one half of the possible page colors
6879 : * and the other with pages of the other colors.
6880 : */
6881 5 : batch = rounddown_pow_of_two(batch + batch/2) - 1;
6882 :
6883 3 : return batch;
6884 :
6885 : #else
6886 : /* The deferral and batching of frees should be suppressed under NOMMU
6887 : * conditions.
6888 : *
6889 : * The problem is that NOMMU needs to be able to allocate large chunks
6890 : * of contiguous memory as there's no hardware page translation to
6891 : * assemble apparent contiguous memory from discontiguous pages.
6892 : *
6893 : * Queueing large contiguous runs of pages for batching, however,
6894 : * causes the pages to actually be freed in smaller chunks. As there
6895 : * can be a significant delay between the individual batches being
6896 : * recycled, this leads to the once large chunks of space being
6897 : * fragmented and becoming unavailable for high-order allocations.
6898 : */
6899 : return 0;
6900 : #endif
6901 : }
6902 :
6903 3 : static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6904 : {
6905 : #ifdef CONFIG_MMU
6906 : int high;
6907 : int nr_split_cpus;
6908 : unsigned long total_pages;
6909 :
6910 3 : if (!percpu_pagelist_high_fraction) {
6911 : /*
6912 : * By default, the high value of the pcp is based on the zone
6913 : * low watermark so that if they are full then background
6914 : * reclaim will not be started prematurely.
6915 : */
6916 3 : total_pages = low_wmark_pages(zone);
6917 : } else {
6918 : /*
6919 : * If percpu_pagelist_high_fraction is configured, the high
6920 : * value is based on a fraction of the managed pages in the
6921 : * zone.
6922 : */
6923 0 : total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6924 : }
6925 :
6926 : /*
6927 : * Split the high value across all online CPUs local to the zone. Note
6928 : * that early in boot that CPUs may not be online yet and that during
6929 : * CPU hotplug that the cpumask is not yet updated when a CPU is being
6930 : * onlined. For memory nodes that have no CPUs, split pcp->high across
6931 : * all online CPUs to mitigate the risk that reclaim is triggered
6932 : * prematurely due to pages stored on pcp lists.
6933 : */
6934 6 : nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6935 3 : if (!nr_split_cpus)
6936 0 : nr_split_cpus = num_online_cpus();
6937 3 : high = total_pages / nr_split_cpus;
6938 :
6939 : /*
6940 : * Ensure high is at least batch*4. The multiple is based on the
6941 : * historical relationship between high and batch.
6942 : */
6943 3 : high = max(high, batch << 2);
6944 :
6945 3 : return high;
6946 : #else
6947 : return 0;
6948 : #endif
6949 : }
6950 :
6951 : /*
6952 : * pcp->high and pcp->batch values are related and generally batch is lower
6953 : * than high. They are also related to pcp->count such that count is lower
6954 : * than high, and as soon as it reaches high, the pcplist is flushed.
6955 : *
6956 : * However, guaranteeing these relations at all times would require e.g. write
6957 : * barriers here but also careful usage of read barriers at the read side, and
6958 : * thus be prone to error and bad for performance. Thus the update only prevents
6959 : * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6960 : * can cope with those fields changing asynchronously, and fully trust only the
6961 : * pcp->count field on the local CPU with interrupts disabled.
6962 : *
6963 : * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6964 : * outside of boot time (or some other assurance that no concurrent updaters
6965 : * exist).
6966 : */
6967 : static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6968 : unsigned long batch)
6969 : {
6970 3 : WRITE_ONCE(pcp->batch, batch);
6971 3 : WRITE_ONCE(pcp->high, high);
6972 : }
6973 :
6974 2 : static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6975 : {
6976 : int pindex;
6977 :
6978 2 : memset(pcp, 0, sizeof(*pcp));
6979 2 : memset(pzstats, 0, sizeof(*pzstats));
6980 :
6981 26 : for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6982 48 : INIT_LIST_HEAD(&pcp->lists[pindex]);
6983 :
6984 : /*
6985 : * Set batch and high values safe for a boot pageset. A true percpu
6986 : * pageset's initialization will update them subsequently. Here we don't
6987 : * need to be as careful as pageset_update() as nobody can access the
6988 : * pageset yet.
6989 : */
6990 2 : pcp->high = BOOT_PAGESET_HIGH;
6991 2 : pcp->batch = BOOT_PAGESET_BATCH;
6992 2 : pcp->free_factor = 0;
6993 2 : }
6994 :
6995 : static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6996 : unsigned long batch)
6997 : {
6998 : struct per_cpu_pages *pcp;
6999 : int cpu;
7000 :
7001 3 : for_each_possible_cpu(cpu) {
7002 3 : pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7003 3 : pageset_update(pcp, high, batch);
7004 : }
7005 : }
7006 :
7007 : /*
7008 : * Calculate and set new high and batch values for all per-cpu pagesets of a
7009 : * zone based on the zone's size.
7010 : */
7011 3 : static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7012 : {
7013 : int new_high, new_batch;
7014 :
7015 3 : new_batch = max(1, zone_batchsize(zone));
7016 3 : new_high = zone_highsize(zone, new_batch, cpu_online);
7017 :
7018 3 : if (zone->pageset_high == new_high &&
7019 0 : zone->pageset_batch == new_batch)
7020 : return;
7021 :
7022 3 : zone->pageset_high = new_high;
7023 3 : zone->pageset_batch = new_batch;
7024 :
7025 3 : __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7026 : }
7027 :
7028 1 : void __meminit setup_zone_pageset(struct zone *zone)
7029 : {
7030 : int cpu;
7031 :
7032 : /* Size may be 0 on !SMP && !NUMA */
7033 : if (sizeof(struct per_cpu_zonestat) > 0)
7034 : zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7035 :
7036 1 : zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7037 2 : for_each_possible_cpu(cpu) {
7038 : struct per_cpu_pages *pcp;
7039 : struct per_cpu_zonestat *pzstats;
7040 :
7041 1 : pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7042 1 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7043 1 : per_cpu_pages_init(pcp, pzstats);
7044 : }
7045 :
7046 1 : zone_set_pageset_high_and_batch(zone, 0);
7047 1 : }
7048 :
7049 : /*
7050 : * Allocate per cpu pagesets and initialize them.
7051 : * Before this call only boot pagesets were available.
7052 : */
7053 1 : void __init setup_per_cpu_pageset(void)
7054 : {
7055 : struct pglist_data *pgdat;
7056 : struct zone *zone;
7057 : int __maybe_unused cpu;
7058 :
7059 3 : for_each_populated_zone(zone)
7060 1 : setup_zone_pageset(zone);
7061 :
7062 : #ifdef CONFIG_NUMA
7063 : /*
7064 : * Unpopulated zones continue using the boot pagesets.
7065 : * The numa stats for these pagesets need to be reset.
7066 : * Otherwise, they will end up skewing the stats of
7067 : * the nodes these zones are associated with.
7068 : */
7069 : for_each_possible_cpu(cpu) {
7070 : struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7071 : memset(pzstats->vm_numa_event, 0,
7072 : sizeof(pzstats->vm_numa_event));
7073 : }
7074 : #endif
7075 :
7076 2 : for_each_online_pgdat(pgdat)
7077 1 : pgdat->per_cpu_nodestats =
7078 1 : alloc_percpu(struct per_cpu_nodestat);
7079 1 : }
7080 :
7081 : static __meminit void zone_pcp_init(struct zone *zone)
7082 : {
7083 : /*
7084 : * per cpu subsystem is not up at this point. The following code
7085 : * relies on the ability of the linker to provide the
7086 : * offset of a (static) per cpu variable into the per cpu area.
7087 : */
7088 2 : zone->per_cpu_pageset = &boot_pageset;
7089 2 : zone->per_cpu_zonestats = &boot_zonestats;
7090 2 : zone->pageset_high = BOOT_PAGESET_HIGH;
7091 2 : zone->pageset_batch = BOOT_PAGESET_BATCH;
7092 :
7093 2 : if (populated_zone(zone))
7094 : pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7095 : zone->present_pages, zone_batchsize(zone));
7096 : }
7097 :
7098 1 : void __meminit init_currently_empty_zone(struct zone *zone,
7099 : unsigned long zone_start_pfn,
7100 : unsigned long size)
7101 : {
7102 1 : struct pglist_data *pgdat = zone->zone_pgdat;
7103 1 : int zone_idx = zone_idx(zone) + 1;
7104 :
7105 1 : if (zone_idx > pgdat->nr_zones)
7106 1 : pgdat->nr_zones = zone_idx;
7107 :
7108 1 : zone->zone_start_pfn = zone_start_pfn;
7109 :
7110 1 : mminit_dprintk(MMINIT_TRACE, "memmap_init",
7111 : "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7112 : pgdat->node_id,
7113 : (unsigned long)zone_idx(zone),
7114 : zone_start_pfn, (zone_start_pfn + size));
7115 :
7116 1 : zone_init_free_lists(zone);
7117 1 : zone->initialized = 1;
7118 1 : }
7119 :
7120 : /**
7121 : * get_pfn_range_for_nid - Return the start and end page frames for a node
7122 : * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7123 : * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7124 : * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7125 : *
7126 : * It returns the start and end page frame of a node based on information
7127 : * provided by memblock_set_node(). If called for a node
7128 : * with no available memory, a warning is printed and the start and end
7129 : * PFNs will be 0.
7130 : */
7131 1 : void __init get_pfn_range_for_nid(unsigned int nid,
7132 : unsigned long *start_pfn, unsigned long *end_pfn)
7133 : {
7134 : unsigned long this_start_pfn, this_end_pfn;
7135 : int i;
7136 :
7137 1 : *start_pfn = -1UL;
7138 1 : *end_pfn = 0;
7139 :
7140 2 : for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7141 1 : *start_pfn = min(*start_pfn, this_start_pfn);
7142 1 : *end_pfn = max(*end_pfn, this_end_pfn);
7143 : }
7144 :
7145 1 : if (*start_pfn == -1UL)
7146 0 : *start_pfn = 0;
7147 1 : }
7148 :
7149 : /*
7150 : * This finds a zone that can be used for ZONE_MOVABLE pages. The
7151 : * assumption is made that zones within a node are ordered in monotonic
7152 : * increasing memory addresses so that the "highest" populated zone is used
7153 : */
7154 1 : static void __init find_usable_zone_for_movable(void)
7155 : {
7156 : int zone_index;
7157 2 : for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7158 2 : if (zone_index == ZONE_MOVABLE)
7159 1 : continue;
7160 :
7161 2 : if (arch_zone_highest_possible_pfn[zone_index] >
7162 1 : arch_zone_lowest_possible_pfn[zone_index])
7163 : break;
7164 : }
7165 :
7166 : VM_BUG_ON(zone_index == -1);
7167 1 : movable_zone = zone_index;
7168 1 : }
7169 :
7170 : /*
7171 : * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7172 : * because it is sized independent of architecture. Unlike the other zones,
7173 : * the starting point for ZONE_MOVABLE is not fixed. It may be different
7174 : * in each node depending on the size of each node and how evenly kernelcore
7175 : * is distributed. This helper function adjusts the zone ranges
7176 : * provided by the architecture for a given node by using the end of the
7177 : * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7178 : * zones within a node are in order of monotonic increases memory addresses
7179 : */
7180 4 : static void __init adjust_zone_range_for_zone_movable(int nid,
7181 : unsigned long zone_type,
7182 : unsigned long node_start_pfn,
7183 : unsigned long node_end_pfn,
7184 : unsigned long *zone_start_pfn,
7185 : unsigned long *zone_end_pfn)
7186 : {
7187 : /* Only adjust if ZONE_MOVABLE is on this node */
7188 4 : if (zone_movable_pfn[nid]) {
7189 : /* Size ZONE_MOVABLE */
7190 0 : if (zone_type == ZONE_MOVABLE) {
7191 0 : *zone_start_pfn = zone_movable_pfn[nid];
7192 0 : *zone_end_pfn = min(node_end_pfn,
7193 : arch_zone_highest_possible_pfn[movable_zone]);
7194 :
7195 : /* Adjust for ZONE_MOVABLE starting within this range */
7196 0 : } else if (!mirrored_kernelcore &&
7197 0 : *zone_start_pfn < zone_movable_pfn[nid] &&
7198 0 : *zone_end_pfn > zone_movable_pfn[nid]) {
7199 0 : *zone_end_pfn = zone_movable_pfn[nid];
7200 :
7201 : /* Check if this whole range is within ZONE_MOVABLE */
7202 0 : } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7203 0 : *zone_start_pfn = *zone_end_pfn;
7204 : }
7205 4 : }
7206 :
7207 : /*
7208 : * Return the number of pages a zone spans in a node, including holes
7209 : * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7210 : */
7211 2 : static unsigned long __init zone_spanned_pages_in_node(int nid,
7212 : unsigned long zone_type,
7213 : unsigned long node_start_pfn,
7214 : unsigned long node_end_pfn,
7215 : unsigned long *zone_start_pfn,
7216 : unsigned long *zone_end_pfn)
7217 : {
7218 2 : unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7219 2 : unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7220 : /* When hotadd a new node from cpu_up(), the node should be empty */
7221 2 : if (!node_start_pfn && !node_end_pfn)
7222 : return 0;
7223 :
7224 : /* Get the start and end of the zone */
7225 2 : *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7226 2 : *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7227 2 : adjust_zone_range_for_zone_movable(nid, zone_type,
7228 : node_start_pfn, node_end_pfn,
7229 : zone_start_pfn, zone_end_pfn);
7230 :
7231 : /* Check that this node has pages within the zone's required range */
7232 2 : if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7233 : return 0;
7234 :
7235 : /* Move the zone boundaries inside the node if necessary */
7236 2 : *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7237 2 : *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7238 :
7239 : /* Return the spanned pages */
7240 2 : return *zone_end_pfn - *zone_start_pfn;
7241 : }
7242 :
7243 : /*
7244 : * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7245 : * then all holes in the requested range will be accounted for.
7246 : */
7247 2 : unsigned long __init __absent_pages_in_range(int nid,
7248 : unsigned long range_start_pfn,
7249 : unsigned long range_end_pfn)
7250 : {
7251 2 : unsigned long nr_absent = range_end_pfn - range_start_pfn;
7252 : unsigned long start_pfn, end_pfn;
7253 : int i;
7254 :
7255 4 : for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7256 2 : start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7257 2 : end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7258 2 : nr_absent -= end_pfn - start_pfn;
7259 : }
7260 2 : return nr_absent;
7261 : }
7262 :
7263 : /**
7264 : * absent_pages_in_range - Return number of page frames in holes within a range
7265 : * @start_pfn: The start PFN to start searching for holes
7266 : * @end_pfn: The end PFN to stop searching for holes
7267 : *
7268 : * Return: the number of pages frames in memory holes within a range.
7269 : */
7270 0 : unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7271 : unsigned long end_pfn)
7272 : {
7273 0 : return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7274 : }
7275 :
7276 : /* Return the number of page frames in holes in a zone on a node */
7277 2 : static unsigned long __init zone_absent_pages_in_node(int nid,
7278 : unsigned long zone_type,
7279 : unsigned long node_start_pfn,
7280 : unsigned long node_end_pfn)
7281 : {
7282 2 : unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7283 2 : unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7284 : unsigned long zone_start_pfn, zone_end_pfn;
7285 : unsigned long nr_absent;
7286 :
7287 : /* When hotadd a new node from cpu_up(), the node should be empty */
7288 2 : if (!node_start_pfn && !node_end_pfn)
7289 : return 0;
7290 :
7291 2 : zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7292 2 : zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7293 :
7294 2 : adjust_zone_range_for_zone_movable(nid, zone_type,
7295 : node_start_pfn, node_end_pfn,
7296 : &zone_start_pfn, &zone_end_pfn);
7297 2 : nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7298 :
7299 : /*
7300 : * ZONE_MOVABLE handling.
7301 : * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7302 : * and vice versa.
7303 : */
7304 2 : if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7305 : unsigned long start_pfn, end_pfn;
7306 : struct memblock_region *r;
7307 :
7308 0 : for_each_mem_region(r) {
7309 0 : start_pfn = clamp(memblock_region_memory_base_pfn(r),
7310 : zone_start_pfn, zone_end_pfn);
7311 0 : end_pfn = clamp(memblock_region_memory_end_pfn(r),
7312 : zone_start_pfn, zone_end_pfn);
7313 :
7314 0 : if (zone_type == ZONE_MOVABLE &&
7315 0 : memblock_is_mirror(r))
7316 0 : nr_absent += end_pfn - start_pfn;
7317 :
7318 0 : if (zone_type == ZONE_NORMAL &&
7319 0 : !memblock_is_mirror(r))
7320 0 : nr_absent += end_pfn - start_pfn;
7321 : }
7322 : }
7323 :
7324 : return nr_absent;
7325 : }
7326 :
7327 1 : static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7328 : unsigned long node_start_pfn,
7329 : unsigned long node_end_pfn)
7330 : {
7331 1 : unsigned long realtotalpages = 0, totalpages = 0;
7332 : enum zone_type i;
7333 :
7334 3 : for (i = 0; i < MAX_NR_ZONES; i++) {
7335 2 : struct zone *zone = pgdat->node_zones + i;
7336 : unsigned long zone_start_pfn, zone_end_pfn;
7337 : unsigned long spanned, absent;
7338 : unsigned long size, real_size;
7339 :
7340 2 : spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7341 : node_start_pfn,
7342 : node_end_pfn,
7343 : &zone_start_pfn,
7344 : &zone_end_pfn);
7345 2 : absent = zone_absent_pages_in_node(pgdat->node_id, i,
7346 : node_start_pfn,
7347 : node_end_pfn);
7348 :
7349 2 : size = spanned;
7350 2 : real_size = size - absent;
7351 :
7352 2 : if (size)
7353 1 : zone->zone_start_pfn = zone_start_pfn;
7354 : else
7355 1 : zone->zone_start_pfn = 0;
7356 2 : zone->spanned_pages = size;
7357 2 : zone->present_pages = real_size;
7358 : #if defined(CONFIG_MEMORY_HOTPLUG)
7359 : zone->present_early_pages = real_size;
7360 : #endif
7361 :
7362 2 : totalpages += size;
7363 2 : realtotalpages += real_size;
7364 : }
7365 :
7366 1 : pgdat->node_spanned_pages = totalpages;
7367 1 : pgdat->node_present_pages = realtotalpages;
7368 : pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7369 1 : }
7370 :
7371 : #ifndef CONFIG_SPARSEMEM
7372 : /*
7373 : * Calculate the size of the zone->blockflags rounded to an unsigned long
7374 : * Start by making sure zonesize is a multiple of pageblock_order by rounding
7375 : * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7376 : * round what is now in bits to nearest long in bits, then return it in
7377 : * bytes.
7378 : */
7379 1 : static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7380 : {
7381 : unsigned long usemapsize;
7382 :
7383 1 : zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7384 1 : usemapsize = roundup(zonesize, pageblock_nr_pages);
7385 1 : usemapsize = usemapsize >> pageblock_order;
7386 1 : usemapsize *= NR_PAGEBLOCK_BITS;
7387 1 : usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7388 :
7389 1 : return usemapsize / 8;
7390 : }
7391 :
7392 1 : static void __ref setup_usemap(struct zone *zone)
7393 : {
7394 1 : unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7395 : zone->spanned_pages);
7396 1 : zone->pageblock_flags = NULL;
7397 1 : if (usemapsize) {
7398 1 : zone->pageblock_flags =
7399 2 : memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7400 : zone_to_nid(zone));
7401 1 : if (!zone->pageblock_flags)
7402 0 : panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7403 : usemapsize, zone->name, zone_to_nid(zone));
7404 : }
7405 1 : }
7406 : #else
7407 : static inline void setup_usemap(struct zone *zone) {}
7408 : #endif /* CONFIG_SPARSEMEM */
7409 :
7410 : #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7411 :
7412 : /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7413 : void __init set_pageblock_order(void)
7414 : {
7415 : unsigned int order = MAX_ORDER - 1;
7416 :
7417 : /* Check that pageblock_nr_pages has not already been setup */
7418 : if (pageblock_order)
7419 : return;
7420 :
7421 : /* Don't let pageblocks exceed the maximum allocation granularity. */
7422 : if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7423 : order = HUGETLB_PAGE_ORDER;
7424 :
7425 : /*
7426 : * Assume the largest contiguous order of interest is a huge page.
7427 : * This value may be variable depending on boot parameters on IA64 and
7428 : * powerpc.
7429 : */
7430 : pageblock_order = order;
7431 : }
7432 : #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7433 :
7434 : /*
7435 : * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7436 : * is unused as pageblock_order is set at compile-time. See
7437 : * include/linux/pageblock-flags.h for the values of pageblock_order based on
7438 : * the kernel config
7439 : */
7440 0 : void __init set_pageblock_order(void)
7441 : {
7442 0 : }
7443 :
7444 : #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7445 :
7446 : static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7447 : unsigned long present_pages)
7448 : {
7449 2 : unsigned long pages = spanned_pages;
7450 :
7451 : /*
7452 : * Provide a more accurate estimation if there are holes within
7453 : * the zone and SPARSEMEM is in use. If there are holes within the
7454 : * zone, each populated memory region may cost us one or two extra
7455 : * memmap pages due to alignment because memmap pages for each
7456 : * populated regions may not be naturally aligned on page boundary.
7457 : * So the (present_pages >> 4) heuristic is a tradeoff for that.
7458 : */
7459 : if (spanned_pages > present_pages + (present_pages >> 4) &&
7460 : IS_ENABLED(CONFIG_SPARSEMEM))
7461 : pages = present_pages;
7462 :
7463 2 : return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7464 : }
7465 :
7466 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7467 : static void pgdat_init_split_queue(struct pglist_data *pgdat)
7468 : {
7469 : struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7470 :
7471 : spin_lock_init(&ds_queue->split_queue_lock);
7472 : INIT_LIST_HEAD(&ds_queue->split_queue);
7473 : ds_queue->split_queue_len = 0;
7474 : }
7475 : #else
7476 : static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7477 : #endif
7478 :
7479 : #ifdef CONFIG_COMPACTION
7480 : static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7481 : {
7482 1 : init_waitqueue_head(&pgdat->kcompactd_wait);
7483 : }
7484 : #else
7485 : static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7486 : #endif
7487 :
7488 1 : static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7489 : {
7490 : int i;
7491 :
7492 1 : pgdat_resize_init(pgdat);
7493 :
7494 1 : pgdat_init_split_queue(pgdat);
7495 1 : pgdat_init_kcompactd(pgdat);
7496 :
7497 1 : init_waitqueue_head(&pgdat->kswapd_wait);
7498 1 : init_waitqueue_head(&pgdat->pfmemalloc_wait);
7499 :
7500 5 : for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7501 4 : init_waitqueue_head(&pgdat->reclaim_wait[i]);
7502 :
7503 1 : pgdat_page_ext_init(pgdat);
7504 1 : lruvec_init(&pgdat->__lruvec);
7505 1 : }
7506 :
7507 2 : static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7508 : unsigned long remaining_pages)
7509 : {
7510 4 : atomic_long_set(&zone->managed_pages, remaining_pages);
7511 2 : zone_set_nid(zone, nid);
7512 2 : zone->name = zone_names[idx];
7513 2 : zone->zone_pgdat = NODE_DATA(nid);
7514 2 : spin_lock_init(&zone->lock);
7515 2 : zone_seqlock_init(zone);
7516 2 : zone_pcp_init(zone);
7517 2 : }
7518 :
7519 : /*
7520 : * Set up the zone data structures
7521 : * - init pgdat internals
7522 : * - init all zones belonging to this node
7523 : *
7524 : * NOTE: this function is only called during memory hotplug
7525 : */
7526 : #ifdef CONFIG_MEMORY_HOTPLUG
7527 : void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7528 : {
7529 : int nid = pgdat->node_id;
7530 : enum zone_type z;
7531 : int cpu;
7532 :
7533 : pgdat_init_internals(pgdat);
7534 :
7535 : if (pgdat->per_cpu_nodestats == &boot_nodestats)
7536 : pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7537 :
7538 : /*
7539 : * Reset the nr_zones, order and highest_zoneidx before reuse.
7540 : * Note that kswapd will init kswapd_highest_zoneidx properly
7541 : * when it starts in the near future.
7542 : */
7543 : pgdat->nr_zones = 0;
7544 : pgdat->kswapd_order = 0;
7545 : pgdat->kswapd_highest_zoneidx = 0;
7546 : pgdat->node_start_pfn = 0;
7547 : for_each_online_cpu(cpu) {
7548 : struct per_cpu_nodestat *p;
7549 :
7550 : p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7551 : memset(p, 0, sizeof(*p));
7552 : }
7553 :
7554 : for (z = 0; z < MAX_NR_ZONES; z++)
7555 : zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7556 : }
7557 : #endif
7558 :
7559 : /*
7560 : * Set up the zone data structures:
7561 : * - mark all pages reserved
7562 : * - mark all memory queues empty
7563 : * - clear the memory bitmaps
7564 : *
7565 : * NOTE: pgdat should get zeroed by caller.
7566 : * NOTE: this function is only called during early init.
7567 : */
7568 1 : static void __init free_area_init_core(struct pglist_data *pgdat)
7569 : {
7570 : enum zone_type j;
7571 1 : int nid = pgdat->node_id;
7572 :
7573 1 : pgdat_init_internals(pgdat);
7574 1 : pgdat->per_cpu_nodestats = &boot_nodestats;
7575 :
7576 3 : for (j = 0; j < MAX_NR_ZONES; j++) {
7577 2 : struct zone *zone = pgdat->node_zones + j;
7578 : unsigned long size, freesize, memmap_pages;
7579 :
7580 2 : size = zone->spanned_pages;
7581 2 : freesize = zone->present_pages;
7582 :
7583 : /*
7584 : * Adjust freesize so that it accounts for how much memory
7585 : * is used by this zone for memmap. This affects the watermark
7586 : * and per-cpu initialisations
7587 : */
7588 4 : memmap_pages = calc_memmap_size(size, freesize);
7589 2 : if (!is_highmem_idx(j)) {
7590 2 : if (freesize >= memmap_pages) {
7591 2 : freesize -= memmap_pages;
7592 : if (memmap_pages)
7593 : pr_debug(" %s zone: %lu pages used for memmap\n",
7594 : zone_names[j], memmap_pages);
7595 : } else
7596 0 : pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7597 : zone_names[j], memmap_pages, freesize);
7598 : }
7599 :
7600 : /* Account for reserved pages */
7601 2 : if (j == 0 && freesize > dma_reserve) {
7602 1 : freesize -= dma_reserve;
7603 : pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7604 : }
7605 :
7606 2 : if (!is_highmem_idx(j))
7607 2 : nr_kernel_pages += freesize;
7608 : /* Charge for highmem memmap if there are enough kernel pages */
7609 : else if (nr_kernel_pages > memmap_pages * 2)
7610 : nr_kernel_pages -= memmap_pages;
7611 2 : nr_all_pages += freesize;
7612 :
7613 : /*
7614 : * Set an approximate value for lowmem here, it will be adjusted
7615 : * when the bootmem allocator frees pages into the buddy system.
7616 : * And all highmem pages will be managed by the buddy system.
7617 : */
7618 2 : zone_init_internals(zone, j, nid, freesize);
7619 :
7620 2 : if (!size)
7621 1 : continue;
7622 :
7623 : set_pageblock_order();
7624 1 : setup_usemap(zone);
7625 1 : init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7626 : }
7627 1 : }
7628 :
7629 : #ifdef CONFIG_FLATMEM
7630 1 : static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7631 : {
7632 1 : unsigned long __maybe_unused start = 0;
7633 1 : unsigned long __maybe_unused offset = 0;
7634 :
7635 : /* Skip empty nodes */
7636 1 : if (!pgdat->node_spanned_pages)
7637 : return;
7638 :
7639 1 : start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7640 1 : offset = pgdat->node_start_pfn - start;
7641 : /* ia64 gets its own node_mem_map, before this, without bootmem */
7642 1 : if (!pgdat->node_mem_map) {
7643 : unsigned long size, end;
7644 : struct page *map;
7645 :
7646 : /*
7647 : * The zone's endpoints aren't required to be MAX_ORDER
7648 : * aligned but the node_mem_map endpoints must be in order
7649 : * for the buddy allocator to function correctly.
7650 : */
7651 2 : end = pgdat_end_pfn(pgdat);
7652 1 : end = ALIGN(end, MAX_ORDER_NR_PAGES);
7653 1 : size = (end - start) * sizeof(struct page);
7654 1 : map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7655 : pgdat->node_id, false);
7656 1 : if (!map)
7657 0 : panic("Failed to allocate %ld bytes for node %d memory map\n",
7658 : size, pgdat->node_id);
7659 1 : pgdat->node_mem_map = map + offset;
7660 : }
7661 : pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7662 : __func__, pgdat->node_id, (unsigned long)pgdat,
7663 : (unsigned long)pgdat->node_mem_map);
7664 : #ifndef CONFIG_NUMA
7665 : /*
7666 : * With no DISCONTIG, the global mem_map is just set as node 0's
7667 : */
7668 1 : if (pgdat == NODE_DATA(0)) {
7669 1 : mem_map = NODE_DATA(0)->node_mem_map;
7670 1 : if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7671 0 : mem_map -= offset;
7672 : }
7673 : #endif
7674 : }
7675 : #else
7676 : static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7677 : #endif /* CONFIG_FLATMEM */
7678 :
7679 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7680 : static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7681 : {
7682 : pgdat->first_deferred_pfn = ULONG_MAX;
7683 : }
7684 : #else
7685 : static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7686 : #endif
7687 :
7688 1 : static void __init free_area_init_node(int nid)
7689 : {
7690 1 : pg_data_t *pgdat = NODE_DATA(nid);
7691 1 : unsigned long start_pfn = 0;
7692 1 : unsigned long end_pfn = 0;
7693 :
7694 : /* pg_data_t should be reset to zero when it's allocated */
7695 1 : WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7696 :
7697 1 : get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7698 :
7699 1 : pgdat->node_id = nid;
7700 1 : pgdat->node_start_pfn = start_pfn;
7701 1 : pgdat->per_cpu_nodestats = NULL;
7702 :
7703 1 : if (start_pfn != end_pfn) {
7704 1 : pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7705 : (u64)start_pfn << PAGE_SHIFT,
7706 : end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7707 : } else {
7708 0 : pr_info("Initmem setup node %d as memoryless\n", nid);
7709 : }
7710 :
7711 1 : calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7712 :
7713 1 : alloc_node_mem_map(pgdat);
7714 : pgdat_set_deferred_range(pgdat);
7715 :
7716 1 : free_area_init_core(pgdat);
7717 1 : }
7718 :
7719 : static void __init free_area_init_memoryless_node(int nid)
7720 : {
7721 : free_area_init_node(nid);
7722 : }
7723 :
7724 : #if MAX_NUMNODES > 1
7725 : /*
7726 : * Figure out the number of possible node ids.
7727 : */
7728 : void __init setup_nr_node_ids(void)
7729 : {
7730 : unsigned int highest;
7731 :
7732 : highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7733 : nr_node_ids = highest + 1;
7734 : }
7735 : #endif
7736 :
7737 : /**
7738 : * node_map_pfn_alignment - determine the maximum internode alignment
7739 : *
7740 : * This function should be called after node map is populated and sorted.
7741 : * It calculates the maximum power of two alignment which can distinguish
7742 : * all the nodes.
7743 : *
7744 : * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7745 : * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7746 : * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7747 : * shifted, 1GiB is enough and this function will indicate so.
7748 : *
7749 : * This is used to test whether pfn -> nid mapping of the chosen memory
7750 : * model has fine enough granularity to avoid incorrect mapping for the
7751 : * populated node map.
7752 : *
7753 : * Return: the determined alignment in pfn's. 0 if there is no alignment
7754 : * requirement (single node).
7755 : */
7756 0 : unsigned long __init node_map_pfn_alignment(void)
7757 : {
7758 0 : unsigned long accl_mask = 0, last_end = 0;
7759 : unsigned long start, end, mask;
7760 0 : int last_nid = NUMA_NO_NODE;
7761 : int i, nid;
7762 :
7763 0 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7764 0 : if (!start || last_nid < 0 || last_nid == nid) {
7765 0 : last_nid = nid;
7766 0 : last_end = end;
7767 0 : continue;
7768 : }
7769 :
7770 : /*
7771 : * Start with a mask granular enough to pin-point to the
7772 : * start pfn and tick off bits one-by-one until it becomes
7773 : * too coarse to separate the current node from the last.
7774 : */
7775 0 : mask = ~((1 << __ffs(start)) - 1);
7776 0 : while (mask && last_end <= (start & (mask << 1)))
7777 : mask <<= 1;
7778 :
7779 : /* accumulate all internode masks */
7780 0 : accl_mask |= mask;
7781 : }
7782 :
7783 : /* convert mask to number of pages */
7784 0 : return ~accl_mask + 1;
7785 : }
7786 :
7787 : /**
7788 : * find_min_pfn_with_active_regions - Find the minimum PFN registered
7789 : *
7790 : * Return: the minimum PFN based on information provided via
7791 : * memblock_set_node().
7792 : */
7793 1 : unsigned long __init find_min_pfn_with_active_regions(void)
7794 : {
7795 1 : return PHYS_PFN(memblock_start_of_DRAM());
7796 : }
7797 :
7798 : /*
7799 : * early_calculate_totalpages()
7800 : * Sum pages in active regions for movable zone.
7801 : * Populate N_MEMORY for calculating usable_nodes.
7802 : */
7803 1 : static unsigned long __init early_calculate_totalpages(void)
7804 : {
7805 1 : unsigned long totalpages = 0;
7806 : unsigned long start_pfn, end_pfn;
7807 : int i, nid;
7808 :
7809 2 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7810 1 : unsigned long pages = end_pfn - start_pfn;
7811 :
7812 1 : totalpages += pages;
7813 : if (pages)
7814 : node_set_state(nid, N_MEMORY);
7815 : }
7816 1 : return totalpages;
7817 : }
7818 :
7819 : /*
7820 : * Find the PFN the Movable zone begins in each node. Kernel memory
7821 : * is spread evenly between nodes as long as the nodes have enough
7822 : * memory. When they don't, some nodes will have more kernelcore than
7823 : * others
7824 : */
7825 1 : static void __init find_zone_movable_pfns_for_nodes(void)
7826 : {
7827 : int i, nid;
7828 : unsigned long usable_startpfn;
7829 : unsigned long kernelcore_node, kernelcore_remaining;
7830 : /* save the state before borrow the nodemask */
7831 1 : nodemask_t saved_node_state = node_states[N_MEMORY];
7832 1 : unsigned long totalpages = early_calculate_totalpages();
7833 1 : int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7834 : struct memblock_region *r;
7835 :
7836 : /* Need to find movable_zone earlier when movable_node is specified. */
7837 1 : find_usable_zone_for_movable();
7838 :
7839 : /*
7840 : * If movable_node is specified, ignore kernelcore and movablecore
7841 : * options.
7842 : */
7843 : if (movable_node_is_enabled()) {
7844 : for_each_mem_region(r) {
7845 : if (!memblock_is_hotpluggable(r))
7846 : continue;
7847 :
7848 : nid = memblock_get_region_node(r);
7849 :
7850 : usable_startpfn = PFN_DOWN(r->base);
7851 : zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7852 : min(usable_startpfn, zone_movable_pfn[nid]) :
7853 : usable_startpfn;
7854 : }
7855 :
7856 : goto out2;
7857 : }
7858 :
7859 : /*
7860 : * If kernelcore=mirror is specified, ignore movablecore option
7861 : */
7862 1 : if (mirrored_kernelcore) {
7863 0 : bool mem_below_4gb_not_mirrored = false;
7864 :
7865 0 : for_each_mem_region(r) {
7866 0 : if (memblock_is_mirror(r))
7867 0 : continue;
7868 :
7869 0 : nid = memblock_get_region_node(r);
7870 :
7871 0 : usable_startpfn = memblock_region_memory_base_pfn(r);
7872 :
7873 0 : if (usable_startpfn < 0x100000) {
7874 0 : mem_below_4gb_not_mirrored = true;
7875 0 : continue;
7876 : }
7877 :
7878 0 : zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7879 0 : min(usable_startpfn, zone_movable_pfn[nid]) :
7880 : usable_startpfn;
7881 : }
7882 :
7883 0 : if (mem_below_4gb_not_mirrored)
7884 0 : pr_warn("This configuration results in unmirrored kernel memory.\n");
7885 :
7886 : goto out2;
7887 : }
7888 :
7889 : /*
7890 : * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7891 : * amount of necessary memory.
7892 : */
7893 1 : if (required_kernelcore_percent)
7894 0 : required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7895 : 10000UL;
7896 1 : if (required_movablecore_percent)
7897 0 : required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7898 : 10000UL;
7899 :
7900 : /*
7901 : * If movablecore= was specified, calculate what size of
7902 : * kernelcore that corresponds so that memory usable for
7903 : * any allocation type is evenly spread. If both kernelcore
7904 : * and movablecore are specified, then the value of kernelcore
7905 : * will be used for required_kernelcore if it's greater than
7906 : * what movablecore would have allowed.
7907 : */
7908 1 : if (required_movablecore) {
7909 : unsigned long corepages;
7910 :
7911 : /*
7912 : * Round-up so that ZONE_MOVABLE is at least as large as what
7913 : * was requested by the user
7914 : */
7915 : required_movablecore =
7916 0 : roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7917 0 : required_movablecore = min(totalpages, required_movablecore);
7918 0 : corepages = totalpages - required_movablecore;
7919 :
7920 0 : required_kernelcore = max(required_kernelcore, corepages);
7921 : }
7922 :
7923 : /*
7924 : * If kernelcore was not specified or kernelcore size is larger
7925 : * than totalpages, there is no ZONE_MOVABLE.
7926 : */
7927 1 : if (!required_kernelcore || required_kernelcore >= totalpages)
7928 : goto out;
7929 :
7930 : /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7931 0 : usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7932 :
7933 : restart:
7934 : /* Spread kernelcore memory as evenly as possible throughout nodes */
7935 0 : kernelcore_node = required_kernelcore / usable_nodes;
7936 0 : for_each_node_state(nid, N_MEMORY) {
7937 : unsigned long start_pfn, end_pfn;
7938 :
7939 : /*
7940 : * Recalculate kernelcore_node if the division per node
7941 : * now exceeds what is necessary to satisfy the requested
7942 : * amount of memory for the kernel
7943 : */
7944 0 : if (required_kernelcore < kernelcore_node)
7945 0 : kernelcore_node = required_kernelcore / usable_nodes;
7946 :
7947 : /*
7948 : * As the map is walked, we track how much memory is usable
7949 : * by the kernel using kernelcore_remaining. When it is
7950 : * 0, the rest of the node is usable by ZONE_MOVABLE
7951 : */
7952 0 : kernelcore_remaining = kernelcore_node;
7953 :
7954 : /* Go through each range of PFNs within this node */
7955 0 : for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7956 : unsigned long size_pages;
7957 :
7958 0 : start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7959 0 : if (start_pfn >= end_pfn)
7960 0 : continue;
7961 :
7962 : /* Account for what is only usable for kernelcore */
7963 0 : if (start_pfn < usable_startpfn) {
7964 : unsigned long kernel_pages;
7965 0 : kernel_pages = min(end_pfn, usable_startpfn)
7966 : - start_pfn;
7967 :
7968 0 : kernelcore_remaining -= min(kernel_pages,
7969 : kernelcore_remaining);
7970 0 : required_kernelcore -= min(kernel_pages,
7971 : required_kernelcore);
7972 :
7973 : /* Continue if range is now fully accounted */
7974 0 : if (end_pfn <= usable_startpfn) {
7975 :
7976 : /*
7977 : * Push zone_movable_pfn to the end so
7978 : * that if we have to rebalance
7979 : * kernelcore across nodes, we will
7980 : * not double account here
7981 : */
7982 0 : zone_movable_pfn[nid] = end_pfn;
7983 0 : continue;
7984 : }
7985 0 : start_pfn = usable_startpfn;
7986 : }
7987 :
7988 : /*
7989 : * The usable PFN range for ZONE_MOVABLE is from
7990 : * start_pfn->end_pfn. Calculate size_pages as the
7991 : * number of pages used as kernelcore
7992 : */
7993 0 : size_pages = end_pfn - start_pfn;
7994 0 : if (size_pages > kernelcore_remaining)
7995 0 : size_pages = kernelcore_remaining;
7996 0 : zone_movable_pfn[nid] = start_pfn + size_pages;
7997 :
7998 : /*
7999 : * Some kernelcore has been met, update counts and
8000 : * break if the kernelcore for this node has been
8001 : * satisfied
8002 : */
8003 0 : required_kernelcore -= min(required_kernelcore,
8004 : size_pages);
8005 0 : kernelcore_remaining -= size_pages;
8006 0 : if (!kernelcore_remaining)
8007 : break;
8008 : }
8009 : }
8010 :
8011 : /*
8012 : * If there is still required_kernelcore, we do another pass with one
8013 : * less node in the count. This will push zone_movable_pfn[nid] further
8014 : * along on the nodes that still have memory until kernelcore is
8015 : * satisfied
8016 : */
8017 0 : usable_nodes--;
8018 0 : if (usable_nodes && required_kernelcore > usable_nodes)
8019 : goto restart;
8020 :
8021 : out2:
8022 : /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8023 0 : for (nid = 0; nid < MAX_NUMNODES; nid++) {
8024 : unsigned long start_pfn, end_pfn;
8025 :
8026 0 : zone_movable_pfn[nid] =
8027 0 : roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8028 :
8029 0 : get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8030 0 : if (zone_movable_pfn[nid] >= end_pfn)
8031 0 : zone_movable_pfn[nid] = 0;
8032 : }
8033 :
8034 : out:
8035 : /* restore the node_state */
8036 1 : node_states[N_MEMORY] = saved_node_state;
8037 1 : }
8038 :
8039 : /* Any regular or high memory on that node ? */
8040 : static void check_for_memory(pg_data_t *pgdat, int nid)
8041 : {
8042 : enum zone_type zone_type;
8043 :
8044 0 : for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8045 1 : struct zone *zone = &pgdat->node_zones[zone_type];
8046 1 : if (populated_zone(zone)) {
8047 : if (IS_ENABLED(CONFIG_HIGHMEM))
8048 : node_set_state(nid, N_HIGH_MEMORY);
8049 : if (zone_type <= ZONE_NORMAL)
8050 : node_set_state(nid, N_NORMAL_MEMORY);
8051 : break;
8052 : }
8053 : }
8054 : }
8055 :
8056 : /*
8057 : * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8058 : * such cases we allow max_zone_pfn sorted in the descending order
8059 : */
8060 1 : bool __weak arch_has_descending_max_zone_pfns(void)
8061 : {
8062 1 : return false;
8063 : }
8064 :
8065 : /**
8066 : * free_area_init - Initialise all pg_data_t and zone data
8067 : * @max_zone_pfn: an array of max PFNs for each zone
8068 : *
8069 : * This will call free_area_init_node() for each active node in the system.
8070 : * Using the page ranges provided by memblock_set_node(), the size of each
8071 : * zone in each node and their holes is calculated. If the maximum PFN
8072 : * between two adjacent zones match, it is assumed that the zone is empty.
8073 : * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8074 : * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8075 : * starts where the previous one ended. For example, ZONE_DMA32 starts
8076 : * at arch_max_dma_pfn.
8077 : */
8078 1 : void __init free_area_init(unsigned long *max_zone_pfn)
8079 : {
8080 : unsigned long start_pfn, end_pfn;
8081 : int i, nid, zone;
8082 : bool descending;
8083 :
8084 : /* Record where the zone boundaries are */
8085 1 : memset(arch_zone_lowest_possible_pfn, 0,
8086 : sizeof(arch_zone_lowest_possible_pfn));
8087 1 : memset(arch_zone_highest_possible_pfn, 0,
8088 : sizeof(arch_zone_highest_possible_pfn));
8089 :
8090 1 : start_pfn = find_min_pfn_with_active_regions();
8091 1 : descending = arch_has_descending_max_zone_pfns();
8092 :
8093 3 : for (i = 0; i < MAX_NR_ZONES; i++) {
8094 2 : if (descending)
8095 0 : zone = MAX_NR_ZONES - i - 1;
8096 : else
8097 : zone = i;
8098 :
8099 2 : if (zone == ZONE_MOVABLE)
8100 1 : continue;
8101 :
8102 1 : end_pfn = max(max_zone_pfn[zone], start_pfn);
8103 1 : arch_zone_lowest_possible_pfn[zone] = start_pfn;
8104 1 : arch_zone_highest_possible_pfn[zone] = end_pfn;
8105 :
8106 1 : start_pfn = end_pfn;
8107 : }
8108 :
8109 : /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8110 1 : memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8111 1 : find_zone_movable_pfns_for_nodes();
8112 :
8113 : /* Print out the zone ranges */
8114 1 : pr_info("Zone ranges:\n");
8115 3 : for (i = 0; i < MAX_NR_ZONES; i++) {
8116 2 : if (i == ZONE_MOVABLE)
8117 1 : continue;
8118 1 : pr_info(" %-8s ", zone_names[i]);
8119 2 : if (arch_zone_lowest_possible_pfn[i] ==
8120 1 : arch_zone_highest_possible_pfn[i])
8121 0 : pr_cont("empty\n");
8122 : else
8123 1 : pr_cont("[mem %#018Lx-%#018Lx]\n",
8124 : (u64)arch_zone_lowest_possible_pfn[i]
8125 : << PAGE_SHIFT,
8126 : ((u64)arch_zone_highest_possible_pfn[i]
8127 : << PAGE_SHIFT) - 1);
8128 : }
8129 :
8130 : /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8131 1 : pr_info("Movable zone start for each node\n");
8132 2 : for (i = 0; i < MAX_NUMNODES; i++) {
8133 1 : if (zone_movable_pfn[i])
8134 0 : pr_info(" Node %d: %#018Lx\n", i,
8135 : (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8136 : }
8137 :
8138 : /*
8139 : * Print out the early node map, and initialize the
8140 : * subsection-map relative to active online memory ranges to
8141 : * enable future "sub-section" extensions of the memory map.
8142 : */
8143 1 : pr_info("Early memory node ranges\n");
8144 2 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8145 1 : pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8146 : (u64)start_pfn << PAGE_SHIFT,
8147 : ((u64)end_pfn << PAGE_SHIFT) - 1);
8148 : subsection_map_init(start_pfn, end_pfn - start_pfn);
8149 : }
8150 :
8151 : /* Initialise every node */
8152 1 : mminit_verify_pageflags_layout();
8153 : setup_nr_node_ids();
8154 2 : for_each_node(nid) {
8155 : pg_data_t *pgdat;
8156 :
8157 1 : if (!node_online(nid)) {
8158 : pr_info("Initializing node %d as memoryless\n", nid);
8159 :
8160 : /* Allocator not initialized yet */
8161 : pgdat = arch_alloc_nodedata(nid);
8162 : if (!pgdat) {
8163 : pr_err("Cannot allocate %zuB for node %d.\n",
8164 : sizeof(*pgdat), nid);
8165 : continue;
8166 : }
8167 : arch_refresh_nodedata(nid, pgdat);
8168 : free_area_init_memoryless_node(nid);
8169 :
8170 : /*
8171 : * We do not want to confuse userspace by sysfs
8172 : * files/directories for node without any memory
8173 : * attached to it, so this node is not marked as
8174 : * N_MEMORY and not marked online so that no sysfs
8175 : * hierarchy will be created via register_one_node for
8176 : * it. The pgdat will get fully initialized by
8177 : * hotadd_init_pgdat() when memory is hotplugged into
8178 : * this node.
8179 : */
8180 : continue;
8181 : }
8182 :
8183 1 : pgdat = NODE_DATA(nid);
8184 1 : free_area_init_node(nid);
8185 :
8186 : /* Any memory on that node */
8187 : if (pgdat->node_present_pages)
8188 : node_set_state(nid, N_MEMORY);
8189 2 : check_for_memory(pgdat, nid);
8190 : }
8191 :
8192 1 : memmap_init();
8193 1 : }
8194 :
8195 0 : static int __init cmdline_parse_core(char *p, unsigned long *core,
8196 : unsigned long *percent)
8197 : {
8198 : unsigned long long coremem;
8199 : char *endptr;
8200 :
8201 0 : if (!p)
8202 : return -EINVAL;
8203 :
8204 : /* Value may be a percentage of total memory, otherwise bytes */
8205 0 : coremem = simple_strtoull(p, &endptr, 0);
8206 0 : if (*endptr == '%') {
8207 : /* Paranoid check for percent values greater than 100 */
8208 0 : WARN_ON(coremem > 100);
8209 :
8210 0 : *percent = coremem;
8211 : } else {
8212 0 : coremem = memparse(p, &p);
8213 : /* Paranoid check that UL is enough for the coremem value */
8214 0 : WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8215 :
8216 0 : *core = coremem >> PAGE_SHIFT;
8217 0 : *percent = 0UL;
8218 : }
8219 : return 0;
8220 : }
8221 :
8222 : /*
8223 : * kernelcore=size sets the amount of memory for use for allocations that
8224 : * cannot be reclaimed or migrated.
8225 : */
8226 0 : static int __init cmdline_parse_kernelcore(char *p)
8227 : {
8228 : /* parse kernelcore=mirror */
8229 0 : if (parse_option_str(p, "mirror")) {
8230 0 : mirrored_kernelcore = true;
8231 0 : return 0;
8232 : }
8233 :
8234 0 : return cmdline_parse_core(p, &required_kernelcore,
8235 : &required_kernelcore_percent);
8236 : }
8237 :
8238 : /*
8239 : * movablecore=size sets the amount of memory for use for allocations that
8240 : * can be reclaimed or migrated.
8241 : */
8242 0 : static int __init cmdline_parse_movablecore(char *p)
8243 : {
8244 0 : return cmdline_parse_core(p, &required_movablecore,
8245 : &required_movablecore_percent);
8246 : }
8247 :
8248 : early_param("kernelcore", cmdline_parse_kernelcore);
8249 : early_param("movablecore", cmdline_parse_movablecore);
8250 :
8251 0 : void adjust_managed_page_count(struct page *page, long count)
8252 : {
8253 0 : atomic_long_add(count, &page_zone(page)->managed_pages);
8254 0 : totalram_pages_add(count);
8255 : #ifdef CONFIG_HIGHMEM
8256 : if (PageHighMem(page))
8257 : totalhigh_pages_add(count);
8258 : #endif
8259 0 : }
8260 : EXPORT_SYMBOL(adjust_managed_page_count);
8261 :
8262 0 : unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8263 : {
8264 : void *pos;
8265 0 : unsigned long pages = 0;
8266 :
8267 0 : start = (void *)PAGE_ALIGN((unsigned long)start);
8268 0 : end = (void *)((unsigned long)end & PAGE_MASK);
8269 0 : for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8270 0 : struct page *page = virt_to_page(pos);
8271 : void *direct_map_addr;
8272 :
8273 : /*
8274 : * 'direct_map_addr' might be different from 'pos'
8275 : * because some architectures' virt_to_page()
8276 : * work with aliases. Getting the direct map
8277 : * address ensures that we get a _writeable_
8278 : * alias for the memset().
8279 : */
8280 0 : direct_map_addr = page_address(page);
8281 : /*
8282 : * Perform a kasan-unchecked memset() since this memory
8283 : * has not been initialized.
8284 : */
8285 0 : direct_map_addr = kasan_reset_tag(direct_map_addr);
8286 0 : if ((unsigned int)poison <= 0xFF)
8287 0 : memset(direct_map_addr, poison, PAGE_SIZE);
8288 :
8289 0 : free_reserved_page(page);
8290 : }
8291 :
8292 0 : if (pages && s)
8293 0 : pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8294 :
8295 0 : return pages;
8296 : }
8297 :
8298 1 : void __init mem_init_print_info(void)
8299 : {
8300 : unsigned long physpages, codesize, datasize, rosize, bss_size;
8301 : unsigned long init_code_size, init_data_size;
8302 :
8303 1 : physpages = get_num_physpages();
8304 1 : codesize = _etext - _stext;
8305 1 : datasize = _edata - _sdata;
8306 1 : rosize = __end_rodata - __start_rodata;
8307 1 : bss_size = __bss_stop - __bss_start;
8308 1 : init_data_size = __init_end - __init_begin;
8309 1 : init_code_size = _einittext - _sinittext;
8310 :
8311 : /*
8312 : * Detect special cases and adjust section sizes accordingly:
8313 : * 1) .init.* may be embedded into .data sections
8314 : * 2) .init.text.* may be out of [__init_begin, __init_end],
8315 : * please refer to arch/tile/kernel/vmlinux.lds.S.
8316 : * 3) .rodata.* may be embedded into .text or .data sections.
8317 : */
8318 : #define adj_init_size(start, end, size, pos, adj) \
8319 : do { \
8320 : if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8321 : size -= adj; \
8322 : } while (0)
8323 :
8324 1 : adj_init_size(__init_begin, __init_end, init_data_size,
8325 : _sinittext, init_code_size);
8326 1 : adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8327 1 : adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8328 1 : adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8329 1 : adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8330 :
8331 : #undef adj_init_size
8332 :
8333 3 : pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8334 : #ifdef CONFIG_HIGHMEM
8335 : ", %luK highmem"
8336 : #endif
8337 : ")\n",
8338 : K(nr_free_pages()), K(physpages),
8339 : codesize >> 10, datasize >> 10, rosize >> 10,
8340 : (init_data_size + init_code_size) >> 10, bss_size >> 10,
8341 : K(physpages - totalram_pages() - totalcma_pages),
8342 : K(totalcma_pages)
8343 : #ifdef CONFIG_HIGHMEM
8344 : , K(totalhigh_pages())
8345 : #endif
8346 : );
8347 1 : }
8348 :
8349 : /**
8350 : * set_dma_reserve - set the specified number of pages reserved in the first zone
8351 : * @new_dma_reserve: The number of pages to mark reserved
8352 : *
8353 : * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8354 : * In the DMA zone, a significant percentage may be consumed by kernel image
8355 : * and other unfreeable allocations which can skew the watermarks badly. This
8356 : * function may optionally be used to account for unfreeable pages in the
8357 : * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8358 : * smaller per-cpu batchsize.
8359 : */
8360 0 : void __init set_dma_reserve(unsigned long new_dma_reserve)
8361 : {
8362 0 : dma_reserve = new_dma_reserve;
8363 0 : }
8364 :
8365 0 : static int page_alloc_cpu_dead(unsigned int cpu)
8366 : {
8367 : struct zone *zone;
8368 :
8369 0 : lru_add_drain_cpu(cpu);
8370 0 : mlock_page_drain_remote(cpu);
8371 0 : drain_pages(cpu);
8372 :
8373 : /*
8374 : * Spill the event counters of the dead processor
8375 : * into the current processors event counters.
8376 : * This artificially elevates the count of the current
8377 : * processor.
8378 : */
8379 0 : vm_events_fold_cpu(cpu);
8380 :
8381 : /*
8382 : * Zero the differential counters of the dead processor
8383 : * so that the vm statistics are consistent.
8384 : *
8385 : * This is only okay since the processor is dead and cannot
8386 : * race with what we are doing.
8387 : */
8388 0 : cpu_vm_stats_fold(cpu);
8389 :
8390 0 : for_each_populated_zone(zone)
8391 0 : zone_pcp_update(zone, 0);
8392 :
8393 0 : return 0;
8394 : }
8395 :
8396 0 : static int page_alloc_cpu_online(unsigned int cpu)
8397 : {
8398 : struct zone *zone;
8399 :
8400 0 : for_each_populated_zone(zone)
8401 0 : zone_pcp_update(zone, 1);
8402 0 : return 0;
8403 : }
8404 :
8405 : #ifdef CONFIG_NUMA
8406 : int hashdist = HASHDIST_DEFAULT;
8407 :
8408 : static int __init set_hashdist(char *str)
8409 : {
8410 : if (!str)
8411 : return 0;
8412 : hashdist = simple_strtoul(str, &str, 0);
8413 : return 1;
8414 : }
8415 : __setup("hashdist=", set_hashdist);
8416 : #endif
8417 :
8418 1 : void __init page_alloc_init(void)
8419 : {
8420 : int ret;
8421 :
8422 : #ifdef CONFIG_NUMA
8423 : if (num_node_state(N_MEMORY) == 1)
8424 : hashdist = 0;
8425 : #endif
8426 :
8427 1 : ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8428 : "mm/page_alloc:pcp",
8429 : page_alloc_cpu_online,
8430 : page_alloc_cpu_dead);
8431 1 : WARN_ON(ret < 0);
8432 1 : }
8433 :
8434 : /*
8435 : * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8436 : * or min_free_kbytes changes.
8437 : */
8438 2 : static void calculate_totalreserve_pages(void)
8439 : {
8440 : struct pglist_data *pgdat;
8441 2 : unsigned long reserve_pages = 0;
8442 : enum zone_type i, j;
8443 :
8444 4 : for_each_online_pgdat(pgdat) {
8445 :
8446 2 : pgdat->totalreserve_pages = 0;
8447 :
8448 6 : for (i = 0; i < MAX_NR_ZONES; i++) {
8449 4 : struct zone *zone = pgdat->node_zones + i;
8450 4 : long max = 0;
8451 4 : unsigned long managed_pages = zone_managed_pages(zone);
8452 :
8453 : /* Find valid and maximum lowmem_reserve in the zone */
8454 10 : for (j = i; j < MAX_NR_ZONES; j++) {
8455 6 : if (zone->lowmem_reserve[j] > max)
8456 0 : max = zone->lowmem_reserve[j];
8457 : }
8458 :
8459 : /* we treat the high watermark as reserved pages. */
8460 4 : max += high_wmark_pages(zone);
8461 :
8462 4 : if (max > managed_pages)
8463 0 : max = managed_pages;
8464 :
8465 4 : pgdat->totalreserve_pages += max;
8466 :
8467 4 : reserve_pages += max;
8468 : }
8469 : }
8470 2 : totalreserve_pages = reserve_pages;
8471 2 : }
8472 :
8473 : /*
8474 : * setup_per_zone_lowmem_reserve - called whenever
8475 : * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8476 : * has a correct pages reserved value, so an adequate number of
8477 : * pages are left in the zone after a successful __alloc_pages().
8478 : */
8479 1 : static void setup_per_zone_lowmem_reserve(void)
8480 : {
8481 : struct pglist_data *pgdat;
8482 : enum zone_type i, j;
8483 :
8484 2 : for_each_online_pgdat(pgdat) {
8485 2 : for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8486 1 : struct zone *zone = &pgdat->node_zones[i];
8487 1 : int ratio = sysctl_lowmem_reserve_ratio[i];
8488 2 : bool clear = !ratio || !zone_managed_pages(zone);
8489 1 : unsigned long managed_pages = 0;
8490 :
8491 2 : for (j = i + 1; j < MAX_NR_ZONES; j++) {
8492 1 : struct zone *upper_zone = &pgdat->node_zones[j];
8493 :
8494 1 : managed_pages += zone_managed_pages(upper_zone);
8495 :
8496 1 : if (clear)
8497 0 : zone->lowmem_reserve[j] = 0;
8498 : else
8499 1 : zone->lowmem_reserve[j] = managed_pages / ratio;
8500 : }
8501 : }
8502 : }
8503 :
8504 : /* update totalreserve_pages */
8505 1 : calculate_totalreserve_pages();
8506 1 : }
8507 :
8508 1 : static void __setup_per_zone_wmarks(void)
8509 : {
8510 1 : unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8511 1 : unsigned long lowmem_pages = 0;
8512 : struct zone *zone;
8513 : unsigned long flags;
8514 :
8515 : /* Calculate total number of !ZONE_HIGHMEM pages */
8516 3 : for_each_zone(zone) {
8517 2 : if (!is_highmem(zone))
8518 2 : lowmem_pages += zone_managed_pages(zone);
8519 : }
8520 :
8521 3 : for_each_zone(zone) {
8522 : u64 tmp;
8523 :
8524 2 : spin_lock_irqsave(&zone->lock, flags);
8525 2 : tmp = (u64)pages_min * zone_managed_pages(zone);
8526 2 : do_div(tmp, lowmem_pages);
8527 2 : if (is_highmem(zone)) {
8528 : /*
8529 : * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8530 : * need highmem pages, so cap pages_min to a small
8531 : * value here.
8532 : *
8533 : * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8534 : * deltas control async page reclaim, and so should
8535 : * not be capped for highmem.
8536 : */
8537 : unsigned long min_pages;
8538 :
8539 : min_pages = zone_managed_pages(zone) / 1024;
8540 : min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8541 : zone->_watermark[WMARK_MIN] = min_pages;
8542 : } else {
8543 : /*
8544 : * If it's a lowmem zone, reserve a number of pages
8545 : * proportionate to the zone's size.
8546 : */
8547 2 : zone->_watermark[WMARK_MIN] = tmp;
8548 : }
8549 :
8550 : /*
8551 : * Set the kswapd watermarks distance according to the
8552 : * scale factor in proportion to available memory, but
8553 : * ensure a minimum size on small systems.
8554 : */
8555 6 : tmp = max_t(u64, tmp >> 2,
8556 : mult_frac(zone_managed_pages(zone),
8557 : watermark_scale_factor, 10000));
8558 :
8559 2 : zone->watermark_boost = 0;
8560 2 : zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8561 2 : zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8562 2 : zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8563 :
8564 4 : spin_unlock_irqrestore(&zone->lock, flags);
8565 : }
8566 :
8567 : /* update totalreserve_pages */
8568 1 : calculate_totalreserve_pages();
8569 1 : }
8570 :
8571 : /**
8572 : * setup_per_zone_wmarks - called when min_free_kbytes changes
8573 : * or when memory is hot-{added|removed}
8574 : *
8575 : * Ensures that the watermark[min,low,high] values for each zone are set
8576 : * correctly with respect to min_free_kbytes.
8577 : */
8578 1 : void setup_per_zone_wmarks(void)
8579 : {
8580 : struct zone *zone;
8581 : static DEFINE_SPINLOCK(lock);
8582 :
8583 1 : spin_lock(&lock);
8584 1 : __setup_per_zone_wmarks();
8585 1 : spin_unlock(&lock);
8586 :
8587 : /*
8588 : * The watermark size have changed so update the pcpu batch
8589 : * and high limits or the limits may be inappropriate.
8590 : */
8591 3 : for_each_zone(zone)
8592 2 : zone_pcp_update(zone, 0);
8593 1 : }
8594 :
8595 : /*
8596 : * Initialise min_free_kbytes.
8597 : *
8598 : * For small machines we want it small (128k min). For large machines
8599 : * we want it large (256MB max). But it is not linear, because network
8600 : * bandwidth does not increase linearly with machine size. We use
8601 : *
8602 : * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8603 : * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8604 : *
8605 : * which yields
8606 : *
8607 : * 16MB: 512k
8608 : * 32MB: 724k
8609 : * 64MB: 1024k
8610 : * 128MB: 1448k
8611 : * 256MB: 2048k
8612 : * 512MB: 2896k
8613 : * 1024MB: 4096k
8614 : * 2048MB: 5792k
8615 : * 4096MB: 8192k
8616 : * 8192MB: 11584k
8617 : * 16384MB: 16384k
8618 : */
8619 1 : void calculate_min_free_kbytes(void)
8620 : {
8621 : unsigned long lowmem_kbytes;
8622 : int new_min_free_kbytes;
8623 :
8624 1 : lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8625 1 : new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8626 :
8627 1 : if (new_min_free_kbytes > user_min_free_kbytes)
8628 1 : min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8629 : else
8630 0 : pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8631 : new_min_free_kbytes, user_min_free_kbytes);
8632 :
8633 1 : }
8634 :
8635 1 : int __meminit init_per_zone_wmark_min(void)
8636 : {
8637 1 : calculate_min_free_kbytes();
8638 1 : setup_per_zone_wmarks();
8639 : refresh_zone_stat_thresholds();
8640 1 : setup_per_zone_lowmem_reserve();
8641 :
8642 : #ifdef CONFIG_NUMA
8643 : setup_min_unmapped_ratio();
8644 : setup_min_slab_ratio();
8645 : #endif
8646 :
8647 : khugepaged_min_free_kbytes_update();
8648 :
8649 1 : return 0;
8650 : }
8651 : postcore_initcall(init_per_zone_wmark_min)
8652 :
8653 : /*
8654 : * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8655 : * that we can call two helper functions whenever min_free_kbytes
8656 : * changes.
8657 : */
8658 0 : int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8659 : void *buffer, size_t *length, loff_t *ppos)
8660 : {
8661 : int rc;
8662 :
8663 0 : rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8664 0 : if (rc)
8665 : return rc;
8666 :
8667 0 : if (write) {
8668 0 : user_min_free_kbytes = min_free_kbytes;
8669 0 : setup_per_zone_wmarks();
8670 : }
8671 : return 0;
8672 : }
8673 :
8674 0 : int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8675 : void *buffer, size_t *length, loff_t *ppos)
8676 : {
8677 : int rc;
8678 :
8679 0 : rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8680 0 : if (rc)
8681 : return rc;
8682 :
8683 0 : if (write)
8684 0 : setup_per_zone_wmarks();
8685 :
8686 : return 0;
8687 : }
8688 :
8689 : #ifdef CONFIG_NUMA
8690 : static void setup_min_unmapped_ratio(void)
8691 : {
8692 : pg_data_t *pgdat;
8693 : struct zone *zone;
8694 :
8695 : for_each_online_pgdat(pgdat)
8696 : pgdat->min_unmapped_pages = 0;
8697 :
8698 : for_each_zone(zone)
8699 : zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8700 : sysctl_min_unmapped_ratio) / 100;
8701 : }
8702 :
8703 :
8704 : int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8705 : void *buffer, size_t *length, loff_t *ppos)
8706 : {
8707 : int rc;
8708 :
8709 : rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8710 : if (rc)
8711 : return rc;
8712 :
8713 : setup_min_unmapped_ratio();
8714 :
8715 : return 0;
8716 : }
8717 :
8718 : static void setup_min_slab_ratio(void)
8719 : {
8720 : pg_data_t *pgdat;
8721 : struct zone *zone;
8722 :
8723 : for_each_online_pgdat(pgdat)
8724 : pgdat->min_slab_pages = 0;
8725 :
8726 : for_each_zone(zone)
8727 : zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8728 : sysctl_min_slab_ratio) / 100;
8729 : }
8730 :
8731 : int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8732 : void *buffer, size_t *length, loff_t *ppos)
8733 : {
8734 : int rc;
8735 :
8736 : rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8737 : if (rc)
8738 : return rc;
8739 :
8740 : setup_min_slab_ratio();
8741 :
8742 : return 0;
8743 : }
8744 : #endif
8745 :
8746 : /*
8747 : * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8748 : * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8749 : * whenever sysctl_lowmem_reserve_ratio changes.
8750 : *
8751 : * The reserve ratio obviously has absolutely no relation with the
8752 : * minimum watermarks. The lowmem reserve ratio can only make sense
8753 : * if in function of the boot time zone sizes.
8754 : */
8755 0 : int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8756 : void *buffer, size_t *length, loff_t *ppos)
8757 : {
8758 : int i;
8759 :
8760 0 : proc_dointvec_minmax(table, write, buffer, length, ppos);
8761 :
8762 0 : for (i = 0; i < MAX_NR_ZONES; i++) {
8763 0 : if (sysctl_lowmem_reserve_ratio[i] < 1)
8764 0 : sysctl_lowmem_reserve_ratio[i] = 0;
8765 : }
8766 :
8767 0 : setup_per_zone_lowmem_reserve();
8768 0 : return 0;
8769 : }
8770 :
8771 : /*
8772 : * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8773 : * cpu. It is the fraction of total pages in each zone that a hot per cpu
8774 : * pagelist can have before it gets flushed back to buddy allocator.
8775 : */
8776 0 : int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8777 : int write, void *buffer, size_t *length, loff_t *ppos)
8778 : {
8779 : struct zone *zone;
8780 : int old_percpu_pagelist_high_fraction;
8781 : int ret;
8782 :
8783 0 : mutex_lock(&pcp_batch_high_lock);
8784 0 : old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8785 :
8786 0 : ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8787 0 : if (!write || ret < 0)
8788 : goto out;
8789 :
8790 : /* Sanity checking to avoid pcp imbalance */
8791 0 : if (percpu_pagelist_high_fraction &&
8792 : percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8793 0 : percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8794 0 : ret = -EINVAL;
8795 0 : goto out;
8796 : }
8797 :
8798 : /* No change? */
8799 0 : if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8800 : goto out;
8801 :
8802 0 : for_each_populated_zone(zone)
8803 0 : zone_set_pageset_high_and_batch(zone, 0);
8804 : out:
8805 0 : mutex_unlock(&pcp_batch_high_lock);
8806 0 : return ret;
8807 : }
8808 :
8809 : #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8810 : /*
8811 : * Returns the number of pages that arch has reserved but
8812 : * is not known to alloc_large_system_hash().
8813 : */
8814 : static unsigned long __init arch_reserved_kernel_pages(void)
8815 : {
8816 : return 0;
8817 : }
8818 : #endif
8819 :
8820 : /*
8821 : * Adaptive scale is meant to reduce sizes of hash tables on large memory
8822 : * machines. As memory size is increased the scale is also increased but at
8823 : * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8824 : * quadruples the scale is increased by one, which means the size of hash table
8825 : * only doubles, instead of quadrupling as well.
8826 : * Because 32-bit systems cannot have large physical memory, where this scaling
8827 : * makes sense, it is disabled on such platforms.
8828 : */
8829 : #if __BITS_PER_LONG > 32
8830 : #define ADAPT_SCALE_BASE (64ul << 30)
8831 : #define ADAPT_SCALE_SHIFT 2
8832 : #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8833 : #endif
8834 :
8835 : /*
8836 : * allocate a large system hash table from bootmem
8837 : * - it is assumed that the hash table must contain an exact power-of-2
8838 : * quantity of entries
8839 : * - limit is the number of hash buckets, not the total allocation size
8840 : */
8841 5 : void *__init alloc_large_system_hash(const char *tablename,
8842 : unsigned long bucketsize,
8843 : unsigned long numentries,
8844 : int scale,
8845 : int flags,
8846 : unsigned int *_hash_shift,
8847 : unsigned int *_hash_mask,
8848 : unsigned long low_limit,
8849 : unsigned long high_limit)
8850 : {
8851 5 : unsigned long long max = high_limit;
8852 : unsigned long log2qty, size;
8853 5 : void *table = NULL;
8854 : gfp_t gfp_flags;
8855 : bool virt;
8856 : bool huge;
8857 :
8858 : /* allow the kernel cmdline to have a say */
8859 5 : if (!numentries) {
8860 : /* round applicable memory size up to nearest megabyte */
8861 4 : numentries = nr_kernel_pages;
8862 4 : numentries -= arch_reserved_kernel_pages();
8863 :
8864 : /* It isn't necessary when PAGE_SIZE >= 1MB */
8865 : if (PAGE_SHIFT < 20)
8866 4 : numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8867 :
8868 : #if __BITS_PER_LONG > 32
8869 4 : if (!high_limit) {
8870 : unsigned long adapt;
8871 :
8872 4 : for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8873 0 : adapt <<= ADAPT_SCALE_SHIFT)
8874 0 : scale++;
8875 : }
8876 : #endif
8877 :
8878 : /* limit to 1 bucket per 2^scale bytes of low memory */
8879 4 : if (scale > PAGE_SHIFT)
8880 4 : numentries >>= (scale - PAGE_SHIFT);
8881 : else
8882 0 : numentries <<= (PAGE_SHIFT - scale);
8883 :
8884 : /* Make sure we've got at least a 0-order allocation.. */
8885 4 : if (unlikely(flags & HASH_SMALL)) {
8886 : /* Makes no sense without HASH_EARLY */
8887 0 : WARN_ON(!(flags & HASH_EARLY));
8888 0 : if (!(numentries >> *_hash_shift)) {
8889 0 : numentries = 1UL << *_hash_shift;
8890 0 : BUG_ON(!numentries);
8891 : }
8892 4 : } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8893 0 : numentries = PAGE_SIZE / bucketsize;
8894 : }
8895 10 : numentries = roundup_pow_of_two(numentries);
8896 :
8897 : /* limit allocation size to 1/16 total memory by default */
8898 5 : if (max == 0) {
8899 4 : max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8900 4 : do_div(max, bucketsize);
8901 : }
8902 5 : max = min(max, 0x80000000ULL);
8903 :
8904 5 : if (numentries < low_limit)
8905 0 : numentries = low_limit;
8906 5 : if (numentries > max)
8907 0 : numentries = max;
8908 :
8909 10 : log2qty = ilog2(numentries);
8910 :
8911 5 : gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8912 : do {
8913 5 : virt = false;
8914 5 : size = bucketsize << log2qty;
8915 5 : if (flags & HASH_EARLY) {
8916 2 : if (flags & HASH_ZERO)
8917 2 : table = memblock_alloc(size, SMP_CACHE_BYTES);
8918 : else
8919 0 : table = memblock_alloc_raw(size,
8920 : SMP_CACHE_BYTES);
8921 3 : } else if (get_order(size) >= MAX_ORDER || hashdist) {
8922 0 : table = vmalloc_huge(size, gfp_flags);
8923 0 : virt = true;
8924 : if (table)
8925 : huge = is_vm_area_hugepages(table);
8926 : } else {
8927 : /*
8928 : * If bucketsize is not a power-of-two, we may free
8929 : * some pages at the end of hash table which
8930 : * alloc_pages_exact() automatically does
8931 : */
8932 3 : table = alloc_pages_exact(size, gfp_flags);
8933 3 : kmemleak_alloc(table, size, 1, gfp_flags);
8934 : }
8935 5 : } while (!table && size > PAGE_SIZE && --log2qty);
8936 :
8937 5 : if (!table)
8938 0 : panic("Failed to allocate %s hash table\n", tablename);
8939 :
8940 10 : pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8941 : tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8942 : virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8943 :
8944 5 : if (_hash_shift)
8945 5 : *_hash_shift = log2qty;
8946 5 : if (_hash_mask)
8947 3 : *_hash_mask = (1 << log2qty) - 1;
8948 :
8949 5 : return table;
8950 : }
8951 :
8952 : /*
8953 : * This function checks whether pageblock includes unmovable pages or not.
8954 : *
8955 : * PageLRU check without isolation or lru_lock could race so that
8956 : * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8957 : * check without lock_page also may miss some movable non-lru pages at
8958 : * race condition. So you can't expect this function should be exact.
8959 : *
8960 : * Returns a page without holding a reference. If the caller wants to
8961 : * dereference that page (e.g., dumping), it has to make sure that it
8962 : * cannot get removed (e.g., via memory unplug) concurrently.
8963 : *
8964 : */
8965 0 : struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8966 : int migratetype, int flags)
8967 : {
8968 0 : unsigned long iter = 0;
8969 0 : unsigned long pfn = page_to_pfn(page);
8970 0 : unsigned long offset = pfn % pageblock_nr_pages;
8971 :
8972 : if (is_migrate_cma_page(page)) {
8973 : /*
8974 : * CMA allocations (alloc_contig_range) really need to mark
8975 : * isolate CMA pageblocks even when they are not movable in fact
8976 : * so consider them movable here.
8977 : */
8978 : if (is_migrate_cma(migratetype))
8979 : return NULL;
8980 :
8981 : return page;
8982 : }
8983 :
8984 0 : for (; iter < pageblock_nr_pages - offset; iter++) {
8985 0 : page = pfn_to_page(pfn + iter);
8986 :
8987 : /*
8988 : * Both, bootmem allocations and memory holes are marked
8989 : * PG_reserved and are unmovable. We can even have unmovable
8990 : * allocations inside ZONE_MOVABLE, for example when
8991 : * specifying "movablecore".
8992 : */
8993 0 : if (PageReserved(page))
8994 : return page;
8995 :
8996 : /*
8997 : * If the zone is movable and we have ruled out all reserved
8998 : * pages then it should be reasonably safe to assume the rest
8999 : * is movable.
9000 : */
9001 0 : if (zone_idx(zone) == ZONE_MOVABLE)
9002 0 : continue;
9003 :
9004 : /*
9005 : * Hugepages are not in LRU lists, but they're movable.
9006 : * THPs are on the LRU, but need to be counted as #small pages.
9007 : * We need not scan over tail pages because we don't
9008 : * handle each tail page individually in migration.
9009 : */
9010 0 : if (PageHuge(page) || PageTransCompound(page)) {
9011 : struct page *head = compound_head(page);
9012 : unsigned int skip_pages;
9013 :
9014 : if (PageHuge(page)) {
9015 : if (!hugepage_migration_supported(page_hstate(head)))
9016 : return page;
9017 : } else if (!PageLRU(head) && !__PageMovable(head)) {
9018 : return page;
9019 : }
9020 :
9021 : skip_pages = compound_nr(head) - (page - head);
9022 : iter += skip_pages - 1;
9023 : continue;
9024 : }
9025 :
9026 : /*
9027 : * We can't use page_count without pin a page
9028 : * because another CPU can free compound page.
9029 : * This check already skips compound tails of THP
9030 : * because their page->_refcount is zero at all time.
9031 : */
9032 0 : if (!page_ref_count(page)) {
9033 0 : if (PageBuddy(page))
9034 0 : iter += (1 << buddy_order(page)) - 1;
9035 0 : continue;
9036 : }
9037 :
9038 : /*
9039 : * The HWPoisoned page may be not in buddy system, and
9040 : * page_count() is not 0.
9041 : */
9042 0 : if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
9043 : continue;
9044 :
9045 : /*
9046 : * We treat all PageOffline() pages as movable when offlining
9047 : * to give drivers a chance to decrement their reference count
9048 : * in MEM_GOING_OFFLINE in order to indicate that these pages
9049 : * can be offlined as there are no direct references anymore.
9050 : * For actually unmovable PageOffline() where the driver does
9051 : * not support this, we will fail later when trying to actually
9052 : * move these pages that still have a reference count > 0.
9053 : * (false negatives in this function only)
9054 : */
9055 0 : if ((flags & MEMORY_OFFLINE) && PageOffline(page))
9056 0 : continue;
9057 :
9058 0 : if (__PageMovable(page) || PageLRU(page))
9059 0 : continue;
9060 :
9061 : /*
9062 : * If there are RECLAIMABLE pages, we need to check
9063 : * it. But now, memory offline itself doesn't call
9064 : * shrink_node_slabs() and it still to be fixed.
9065 : */
9066 : return page;
9067 : }
9068 : return NULL;
9069 : }
9070 :
9071 : #ifdef CONFIG_CONTIG_ALLOC
9072 : static unsigned long pfn_max_align_down(unsigned long pfn)
9073 : {
9074 : return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES);
9075 : }
9076 :
9077 : static unsigned long pfn_max_align_up(unsigned long pfn)
9078 : {
9079 : return ALIGN(pfn, MAX_ORDER_NR_PAGES);
9080 : }
9081 :
9082 : #if defined(CONFIG_DYNAMIC_DEBUG) || \
9083 : (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9084 : /* Usage: See admin-guide/dynamic-debug-howto.rst */
9085 : static void alloc_contig_dump_pages(struct list_head *page_list)
9086 : {
9087 : DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9088 :
9089 : if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9090 : struct page *page;
9091 :
9092 : dump_stack();
9093 : list_for_each_entry(page, page_list, lru)
9094 : dump_page(page, "migration failure");
9095 : }
9096 : }
9097 : #else
9098 : static inline void alloc_contig_dump_pages(struct list_head *page_list)
9099 : {
9100 : }
9101 : #endif
9102 :
9103 : /* [start, end) must belong to a single zone. */
9104 : static int __alloc_contig_migrate_range(struct compact_control *cc,
9105 : unsigned long start, unsigned long end)
9106 : {
9107 : /* This function is based on compact_zone() from compaction.c. */
9108 : unsigned int nr_reclaimed;
9109 : unsigned long pfn = start;
9110 : unsigned int tries = 0;
9111 : int ret = 0;
9112 : struct migration_target_control mtc = {
9113 : .nid = zone_to_nid(cc->zone),
9114 : .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9115 : };
9116 :
9117 : lru_cache_disable();
9118 :
9119 : while (pfn < end || !list_empty(&cc->migratepages)) {
9120 : if (fatal_signal_pending(current)) {
9121 : ret = -EINTR;
9122 : break;
9123 : }
9124 :
9125 : if (list_empty(&cc->migratepages)) {
9126 : cc->nr_migratepages = 0;
9127 : ret = isolate_migratepages_range(cc, pfn, end);
9128 : if (ret && ret != -EAGAIN)
9129 : break;
9130 : pfn = cc->migrate_pfn;
9131 : tries = 0;
9132 : } else if (++tries == 5) {
9133 : ret = -EBUSY;
9134 : break;
9135 : }
9136 :
9137 : nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9138 : &cc->migratepages);
9139 : cc->nr_migratepages -= nr_reclaimed;
9140 :
9141 : ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9142 : NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9143 :
9144 : /*
9145 : * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9146 : * to retry again over this error, so do the same here.
9147 : */
9148 : if (ret == -ENOMEM)
9149 : break;
9150 : }
9151 :
9152 : lru_cache_enable();
9153 : if (ret < 0) {
9154 : if (ret == -EBUSY)
9155 : alloc_contig_dump_pages(&cc->migratepages);
9156 : putback_movable_pages(&cc->migratepages);
9157 : return ret;
9158 : }
9159 : return 0;
9160 : }
9161 :
9162 : /**
9163 : * alloc_contig_range() -- tries to allocate given range of pages
9164 : * @start: start PFN to allocate
9165 : * @end: one-past-the-last PFN to allocate
9166 : * @migratetype: migratetype of the underlying pageblocks (either
9167 : * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9168 : * in range must have the same migratetype and it must
9169 : * be either of the two.
9170 : * @gfp_mask: GFP mask to use during compaction
9171 : *
9172 : * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9173 : * aligned. The PFN range must belong to a single zone.
9174 : *
9175 : * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9176 : * pageblocks in the range. Once isolated, the pageblocks should not
9177 : * be modified by others.
9178 : *
9179 : * Return: zero on success or negative error code. On success all
9180 : * pages which PFN is in [start, end) are allocated for the caller and
9181 : * need to be freed with free_contig_range().
9182 : */
9183 : int alloc_contig_range(unsigned long start, unsigned long end,
9184 : unsigned migratetype, gfp_t gfp_mask)
9185 : {
9186 : unsigned long outer_start, outer_end;
9187 : unsigned int order;
9188 : int ret = 0;
9189 :
9190 : struct compact_control cc = {
9191 : .nr_migratepages = 0,
9192 : .order = -1,
9193 : .zone = page_zone(pfn_to_page(start)),
9194 : .mode = MIGRATE_SYNC,
9195 : .ignore_skip_hint = true,
9196 : .no_set_skip_hint = true,
9197 : .gfp_mask = current_gfp_context(gfp_mask),
9198 : .alloc_contig = true,
9199 : };
9200 : INIT_LIST_HEAD(&cc.migratepages);
9201 :
9202 : /*
9203 : * What we do here is we mark all pageblocks in range as
9204 : * MIGRATE_ISOLATE. Because pageblock and max order pages may
9205 : * have different sizes, and due to the way page allocator
9206 : * work, we align the range to biggest of the two pages so
9207 : * that page allocator won't try to merge buddies from
9208 : * different pageblocks and change MIGRATE_ISOLATE to some
9209 : * other migration type.
9210 : *
9211 : * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9212 : * migrate the pages from an unaligned range (ie. pages that
9213 : * we are interested in). This will put all the pages in
9214 : * range back to page allocator as MIGRATE_ISOLATE.
9215 : *
9216 : * When this is done, we take the pages in range from page
9217 : * allocator removing them from the buddy system. This way
9218 : * page allocator will never consider using them.
9219 : *
9220 : * This lets us mark the pageblocks back as
9221 : * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9222 : * aligned range but not in the unaligned, original range are
9223 : * put back to page allocator so that buddy can use them.
9224 : */
9225 :
9226 : ret = start_isolate_page_range(pfn_max_align_down(start),
9227 : pfn_max_align_up(end), migratetype, 0);
9228 : if (ret)
9229 : return ret;
9230 :
9231 : drain_all_pages(cc.zone);
9232 :
9233 : /*
9234 : * In case of -EBUSY, we'd like to know which page causes problem.
9235 : * So, just fall through. test_pages_isolated() has a tracepoint
9236 : * which will report the busy page.
9237 : *
9238 : * It is possible that busy pages could become available before
9239 : * the call to test_pages_isolated, and the range will actually be
9240 : * allocated. So, if we fall through be sure to clear ret so that
9241 : * -EBUSY is not accidentally used or returned to caller.
9242 : */
9243 : ret = __alloc_contig_migrate_range(&cc, start, end);
9244 : if (ret && ret != -EBUSY)
9245 : goto done;
9246 : ret = 0;
9247 :
9248 : /*
9249 : * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9250 : * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9251 : * more, all pages in [start, end) are free in page allocator.
9252 : * What we are going to do is to allocate all pages from
9253 : * [start, end) (that is remove them from page allocator).
9254 : *
9255 : * The only problem is that pages at the beginning and at the
9256 : * end of interesting range may be not aligned with pages that
9257 : * page allocator holds, ie. they can be part of higher order
9258 : * pages. Because of this, we reserve the bigger range and
9259 : * once this is done free the pages we are not interested in.
9260 : *
9261 : * We don't have to hold zone->lock here because the pages are
9262 : * isolated thus they won't get removed from buddy.
9263 : */
9264 :
9265 : order = 0;
9266 : outer_start = start;
9267 : while (!PageBuddy(pfn_to_page(outer_start))) {
9268 : if (++order >= MAX_ORDER) {
9269 : outer_start = start;
9270 : break;
9271 : }
9272 : outer_start &= ~0UL << order;
9273 : }
9274 :
9275 : if (outer_start != start) {
9276 : order = buddy_order(pfn_to_page(outer_start));
9277 :
9278 : /*
9279 : * outer_start page could be small order buddy page and
9280 : * it doesn't include start page. Adjust outer_start
9281 : * in this case to report failed page properly
9282 : * on tracepoint in test_pages_isolated()
9283 : */
9284 : if (outer_start + (1UL << order) <= start)
9285 : outer_start = start;
9286 : }
9287 :
9288 : /* Make sure the range is really isolated. */
9289 : if (test_pages_isolated(outer_start, end, 0)) {
9290 : ret = -EBUSY;
9291 : goto done;
9292 : }
9293 :
9294 : /* Grab isolated pages from freelists. */
9295 : outer_end = isolate_freepages_range(&cc, outer_start, end);
9296 : if (!outer_end) {
9297 : ret = -EBUSY;
9298 : goto done;
9299 : }
9300 :
9301 : /* Free head and tail (if any) */
9302 : if (start != outer_start)
9303 : free_contig_range(outer_start, start - outer_start);
9304 : if (end != outer_end)
9305 : free_contig_range(end, outer_end - end);
9306 :
9307 : done:
9308 : undo_isolate_page_range(pfn_max_align_down(start),
9309 : pfn_max_align_up(end), migratetype);
9310 : return ret;
9311 : }
9312 : EXPORT_SYMBOL(alloc_contig_range);
9313 :
9314 : static int __alloc_contig_pages(unsigned long start_pfn,
9315 : unsigned long nr_pages, gfp_t gfp_mask)
9316 : {
9317 : unsigned long end_pfn = start_pfn + nr_pages;
9318 :
9319 : return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9320 : gfp_mask);
9321 : }
9322 :
9323 : static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9324 : unsigned long nr_pages)
9325 : {
9326 : unsigned long i, end_pfn = start_pfn + nr_pages;
9327 : struct page *page;
9328 :
9329 : for (i = start_pfn; i < end_pfn; i++) {
9330 : page = pfn_to_online_page(i);
9331 : if (!page)
9332 : return false;
9333 :
9334 : if (page_zone(page) != z)
9335 : return false;
9336 :
9337 : if (PageReserved(page))
9338 : return false;
9339 : }
9340 : return true;
9341 : }
9342 :
9343 : static bool zone_spans_last_pfn(const struct zone *zone,
9344 : unsigned long start_pfn, unsigned long nr_pages)
9345 : {
9346 : unsigned long last_pfn = start_pfn + nr_pages - 1;
9347 :
9348 : return zone_spans_pfn(zone, last_pfn);
9349 : }
9350 :
9351 : /**
9352 : * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9353 : * @nr_pages: Number of contiguous pages to allocate
9354 : * @gfp_mask: GFP mask to limit search and used during compaction
9355 : * @nid: Target node
9356 : * @nodemask: Mask for other possible nodes
9357 : *
9358 : * This routine is a wrapper around alloc_contig_range(). It scans over zones
9359 : * on an applicable zonelist to find a contiguous pfn range which can then be
9360 : * tried for allocation with alloc_contig_range(). This routine is intended
9361 : * for allocation requests which can not be fulfilled with the buddy allocator.
9362 : *
9363 : * The allocated memory is always aligned to a page boundary. If nr_pages is a
9364 : * power of two, then allocated range is also guaranteed to be aligned to same
9365 : * nr_pages (e.g. 1GB request would be aligned to 1GB).
9366 : *
9367 : * Allocated pages can be freed with free_contig_range() or by manually calling
9368 : * __free_page() on each allocated page.
9369 : *
9370 : * Return: pointer to contiguous pages on success, or NULL if not successful.
9371 : */
9372 : struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9373 : int nid, nodemask_t *nodemask)
9374 : {
9375 : unsigned long ret, pfn, flags;
9376 : struct zonelist *zonelist;
9377 : struct zone *zone;
9378 : struct zoneref *z;
9379 :
9380 : zonelist = node_zonelist(nid, gfp_mask);
9381 : for_each_zone_zonelist_nodemask(zone, z, zonelist,
9382 : gfp_zone(gfp_mask), nodemask) {
9383 : spin_lock_irqsave(&zone->lock, flags);
9384 :
9385 : pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9386 : while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9387 : if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9388 : /*
9389 : * We release the zone lock here because
9390 : * alloc_contig_range() will also lock the zone
9391 : * at some point. If there's an allocation
9392 : * spinning on this lock, it may win the race
9393 : * and cause alloc_contig_range() to fail...
9394 : */
9395 : spin_unlock_irqrestore(&zone->lock, flags);
9396 : ret = __alloc_contig_pages(pfn, nr_pages,
9397 : gfp_mask);
9398 : if (!ret)
9399 : return pfn_to_page(pfn);
9400 : spin_lock_irqsave(&zone->lock, flags);
9401 : }
9402 : pfn += nr_pages;
9403 : }
9404 : spin_unlock_irqrestore(&zone->lock, flags);
9405 : }
9406 : return NULL;
9407 : }
9408 : #endif /* CONFIG_CONTIG_ALLOC */
9409 :
9410 0 : void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9411 : {
9412 0 : unsigned long count = 0;
9413 :
9414 0 : for (; nr_pages--; pfn++) {
9415 0 : struct page *page = pfn_to_page(pfn);
9416 :
9417 0 : count += page_count(page) != 1;
9418 0 : __free_page(page);
9419 : }
9420 0 : WARN(count != 0, "%lu pages are still in use!\n", count);
9421 0 : }
9422 : EXPORT_SYMBOL(free_contig_range);
9423 :
9424 : /*
9425 : * The zone indicated has a new number of managed_pages; batch sizes and percpu
9426 : * page high values need to be recalculated.
9427 : */
9428 2 : void zone_pcp_update(struct zone *zone, int cpu_online)
9429 : {
9430 2 : mutex_lock(&pcp_batch_high_lock);
9431 2 : zone_set_pageset_high_and_batch(zone, cpu_online);
9432 2 : mutex_unlock(&pcp_batch_high_lock);
9433 2 : }
9434 :
9435 : /*
9436 : * Effectively disable pcplists for the zone by setting the high limit to 0
9437 : * and draining all cpus. A concurrent page freeing on another CPU that's about
9438 : * to put the page on pcplist will either finish before the drain and the page
9439 : * will be drained, or observe the new high limit and skip the pcplist.
9440 : *
9441 : * Must be paired with a call to zone_pcp_enable().
9442 : */
9443 0 : void zone_pcp_disable(struct zone *zone)
9444 : {
9445 0 : mutex_lock(&pcp_batch_high_lock);
9446 0 : __zone_set_pageset_high_and_batch(zone, 0, 1);
9447 0 : __drain_all_pages(zone, true);
9448 0 : }
9449 :
9450 0 : void zone_pcp_enable(struct zone *zone)
9451 : {
9452 0 : __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9453 0 : mutex_unlock(&pcp_batch_high_lock);
9454 0 : }
9455 :
9456 0 : void zone_pcp_reset(struct zone *zone)
9457 : {
9458 : int cpu;
9459 : struct per_cpu_zonestat *pzstats;
9460 :
9461 0 : if (zone->per_cpu_pageset != &boot_pageset) {
9462 : for_each_online_cpu(cpu) {
9463 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9464 : drain_zonestat(zone, pzstats);
9465 : }
9466 0 : free_percpu(zone->per_cpu_pageset);
9467 0 : free_percpu(zone->per_cpu_zonestats);
9468 0 : zone->per_cpu_pageset = &boot_pageset;
9469 0 : zone->per_cpu_zonestats = &boot_zonestats;
9470 : }
9471 0 : }
9472 :
9473 : #ifdef CONFIG_MEMORY_HOTREMOVE
9474 : /*
9475 : * All pages in the range must be in a single zone, must not contain holes,
9476 : * must span full sections, and must be isolated before calling this function.
9477 : */
9478 : void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9479 : {
9480 : unsigned long pfn = start_pfn;
9481 : struct page *page;
9482 : struct zone *zone;
9483 : unsigned int order;
9484 : unsigned long flags;
9485 :
9486 : offline_mem_sections(pfn, end_pfn);
9487 : zone = page_zone(pfn_to_page(pfn));
9488 : spin_lock_irqsave(&zone->lock, flags);
9489 : while (pfn < end_pfn) {
9490 : page = pfn_to_page(pfn);
9491 : /*
9492 : * The HWPoisoned page may be not in buddy system, and
9493 : * page_count() is not 0.
9494 : */
9495 : if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9496 : pfn++;
9497 : continue;
9498 : }
9499 : /*
9500 : * At this point all remaining PageOffline() pages have a
9501 : * reference count of 0 and can simply be skipped.
9502 : */
9503 : if (PageOffline(page)) {
9504 : BUG_ON(page_count(page));
9505 : BUG_ON(PageBuddy(page));
9506 : pfn++;
9507 : continue;
9508 : }
9509 :
9510 : BUG_ON(page_count(page));
9511 : BUG_ON(!PageBuddy(page));
9512 : order = buddy_order(page);
9513 : del_page_from_free_list(page, zone, order);
9514 : pfn += (1 << order);
9515 : }
9516 : spin_unlock_irqrestore(&zone->lock, flags);
9517 : }
9518 : #endif
9519 :
9520 : /*
9521 : * This function returns a stable result only if called under zone lock.
9522 : */
9523 0 : bool is_free_buddy_page(struct page *page)
9524 : {
9525 0 : unsigned long pfn = page_to_pfn(page);
9526 : unsigned int order;
9527 :
9528 0 : for (order = 0; order < MAX_ORDER; order++) {
9529 0 : struct page *page_head = page - (pfn & ((1 << order) - 1));
9530 :
9531 0 : if (PageBuddy(page_head) &&
9532 0 : buddy_order_unsafe(page_head) >= order)
9533 : break;
9534 : }
9535 :
9536 0 : return order < MAX_ORDER;
9537 : }
9538 : EXPORT_SYMBOL(is_free_buddy_page);
9539 :
9540 : #ifdef CONFIG_MEMORY_FAILURE
9541 : /*
9542 : * Break down a higher-order page in sub-pages, and keep our target out of
9543 : * buddy allocator.
9544 : */
9545 : static void break_down_buddy_pages(struct zone *zone, struct page *page,
9546 : struct page *target, int low, int high,
9547 : int migratetype)
9548 : {
9549 : unsigned long size = 1 << high;
9550 : struct page *current_buddy, *next_page;
9551 :
9552 : while (high > low) {
9553 : high--;
9554 : size >>= 1;
9555 :
9556 : if (target >= &page[size]) {
9557 : next_page = page + size;
9558 : current_buddy = page;
9559 : } else {
9560 : next_page = page;
9561 : current_buddy = page + size;
9562 : }
9563 :
9564 : if (set_page_guard(zone, current_buddy, high, migratetype))
9565 : continue;
9566 :
9567 : if (current_buddy != target) {
9568 : add_to_free_list(current_buddy, zone, high, migratetype);
9569 : set_buddy_order(current_buddy, high);
9570 : page = next_page;
9571 : }
9572 : }
9573 : }
9574 :
9575 : /*
9576 : * Take a page that will be marked as poisoned off the buddy allocator.
9577 : */
9578 : bool take_page_off_buddy(struct page *page)
9579 : {
9580 : struct zone *zone = page_zone(page);
9581 : unsigned long pfn = page_to_pfn(page);
9582 : unsigned long flags;
9583 : unsigned int order;
9584 : bool ret = false;
9585 :
9586 : spin_lock_irqsave(&zone->lock, flags);
9587 : for (order = 0; order < MAX_ORDER; order++) {
9588 : struct page *page_head = page - (pfn & ((1 << order) - 1));
9589 : int page_order = buddy_order(page_head);
9590 :
9591 : if (PageBuddy(page_head) && page_order >= order) {
9592 : unsigned long pfn_head = page_to_pfn(page_head);
9593 : int migratetype = get_pfnblock_migratetype(page_head,
9594 : pfn_head);
9595 :
9596 : del_page_from_free_list(page_head, zone, page_order);
9597 : break_down_buddy_pages(zone, page_head, page, 0,
9598 : page_order, migratetype);
9599 : SetPageHWPoisonTakenOff(page);
9600 : if (!is_migrate_isolate(migratetype))
9601 : __mod_zone_freepage_state(zone, -1, migratetype);
9602 : ret = true;
9603 : break;
9604 : }
9605 : if (page_count(page_head) > 0)
9606 : break;
9607 : }
9608 : spin_unlock_irqrestore(&zone->lock, flags);
9609 : return ret;
9610 : }
9611 :
9612 : /*
9613 : * Cancel takeoff done by take_page_off_buddy().
9614 : */
9615 : bool put_page_back_buddy(struct page *page)
9616 : {
9617 : struct zone *zone = page_zone(page);
9618 : unsigned long pfn = page_to_pfn(page);
9619 : unsigned long flags;
9620 : int migratetype = get_pfnblock_migratetype(page, pfn);
9621 : bool ret = false;
9622 :
9623 : spin_lock_irqsave(&zone->lock, flags);
9624 : if (put_page_testzero(page)) {
9625 : ClearPageHWPoisonTakenOff(page);
9626 : __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9627 : if (TestClearPageHWPoison(page)) {
9628 : num_poisoned_pages_dec();
9629 : ret = true;
9630 : }
9631 : }
9632 : spin_unlock_irqrestore(&zone->lock, flags);
9633 :
9634 : return ret;
9635 : }
9636 : #endif
9637 :
9638 : #ifdef CONFIG_ZONE_DMA
9639 : bool has_managed_dma(void)
9640 : {
9641 : struct pglist_data *pgdat;
9642 :
9643 : for_each_online_pgdat(pgdat) {
9644 : struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9645 :
9646 : if (managed_zone(zone))
9647 : return true;
9648 : }
9649 : return false;
9650 : }
9651 : #endif /* CONFIG_ZONE_DMA */
|