LCOV - code coverage report
Current view: top level - mm - percpu.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 442 823 53.7 %
Date: 2022-12-09 01:23:36 Functions: 22 43 51.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * mm/percpu.c - percpu memory allocator
       4             :  *
       5             :  * Copyright (C) 2009           SUSE Linux Products GmbH
       6             :  * Copyright (C) 2009           Tejun Heo <tj@kernel.org>
       7             :  *
       8             :  * Copyright (C) 2017           Facebook Inc.
       9             :  * Copyright (C) 2017           Dennis Zhou <dennis@kernel.org>
      10             :  *
      11             :  * The percpu allocator handles both static and dynamic areas.  Percpu
      12             :  * areas are allocated in chunks which are divided into units.  There is
      13             :  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
      14             :  * based on NUMA properties of the machine.
      15             :  *
      16             :  *  c0                           c1                         c2
      17             :  *  -------------------          -------------------        ------------
      18             :  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
      19             :  *  -------------------  ......  -------------------  ....  ------------
      20             :  *
      21             :  * Allocation is done by offsets into a unit's address space.  Ie., an
      22             :  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
      23             :  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
      24             :  * and even sparse.  Access is handled by configuring percpu base
      25             :  * registers according to the cpu to unit mappings and offsetting the
      26             :  * base address using pcpu_unit_size.
      27             :  *
      28             :  * There is special consideration for the first chunk which must handle
      29             :  * the static percpu variables in the kernel image as allocation services
      30             :  * are not online yet.  In short, the first chunk is structured like so:
      31             :  *
      32             :  *                  <Static | [Reserved] | Dynamic>
      33             :  *
      34             :  * The static data is copied from the original section managed by the
      35             :  * linker.  The reserved section, if non-zero, primarily manages static
      36             :  * percpu variables from kernel modules.  Finally, the dynamic section
      37             :  * takes care of normal allocations.
      38             :  *
      39             :  * The allocator organizes chunks into lists according to free size and
      40             :  * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
      41             :  * flag should be passed.  All memcg-aware allocations are sharing one set
      42             :  * of chunks and all unaccounted allocations and allocations performed
      43             :  * by processes belonging to the root memory cgroup are using the second set.
      44             :  *
      45             :  * The allocator tries to allocate from the fullest chunk first. Each chunk
      46             :  * is managed by a bitmap with metadata blocks.  The allocation map is updated
      47             :  * on every allocation and free to reflect the current state while the boundary
      48             :  * map is only updated on allocation.  Each metadata block contains
      49             :  * information to help mitigate the need to iterate over large portions
      50             :  * of the bitmap.  The reverse mapping from page to chunk is stored in
      51             :  * the page's index.  Lastly, units are lazily backed and grow in unison.
      52             :  *
      53             :  * There is a unique conversion that goes on here between bytes and bits.
      54             :  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
      55             :  * tracks the number of pages it is responsible for in nr_pages.  Helper
      56             :  * functions are used to convert from between the bytes, bits, and blocks.
      57             :  * All hints are managed in bits unless explicitly stated.
      58             :  *
      59             :  * To use this allocator, arch code should do the following:
      60             :  *
      61             :  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
      62             :  *   regular address to percpu pointer and back if they need to be
      63             :  *   different from the default
      64             :  *
      65             :  * - use pcpu_setup_first_chunk() during percpu area initialization to
      66             :  *   setup the first chunk containing the kernel static percpu area
      67             :  */
      68             : 
      69             : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      70             : 
      71             : #include <linux/bitmap.h>
      72             : #include <linux/cpumask.h>
      73             : #include <linux/memblock.h>
      74             : #include <linux/err.h>
      75             : #include <linux/lcm.h>
      76             : #include <linux/list.h>
      77             : #include <linux/log2.h>
      78             : #include <linux/mm.h>
      79             : #include <linux/module.h>
      80             : #include <linux/mutex.h>
      81             : #include <linux/percpu.h>
      82             : #include <linux/pfn.h>
      83             : #include <linux/slab.h>
      84             : #include <linux/spinlock.h>
      85             : #include <linux/vmalloc.h>
      86             : #include <linux/workqueue.h>
      87             : #include <linux/kmemleak.h>
      88             : #include <linux/sched.h>
      89             : #include <linux/sched/mm.h>
      90             : #include <linux/memcontrol.h>
      91             : 
      92             : #include <asm/cacheflush.h>
      93             : #include <asm/sections.h>
      94             : #include <asm/tlbflush.h>
      95             : #include <asm/io.h>
      96             : 
      97             : #define CREATE_TRACE_POINTS
      98             : #include <trace/events/percpu.h>
      99             : 
     100             : #include "percpu-internal.h"
     101             : 
     102             : /*
     103             :  * The slots are sorted by the size of the biggest continuous free area.
     104             :  * 1-31 bytes share the same slot.
     105             :  */
     106             : #define PCPU_SLOT_BASE_SHIFT            5
     107             : /* chunks in slots below this are subject to being sidelined on failed alloc */
     108             : #define PCPU_SLOT_FAIL_THRESHOLD        3
     109             : 
     110             : #define PCPU_EMPTY_POP_PAGES_LOW        2
     111             : #define PCPU_EMPTY_POP_PAGES_HIGH       4
     112             : 
     113             : #ifdef CONFIG_SMP
     114             : /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
     115             : #ifndef __addr_to_pcpu_ptr
     116             : #define __addr_to_pcpu_ptr(addr)                                        \
     117             :         (void __percpu *)((unsigned long)(addr) -                       \
     118             :                           (unsigned long)pcpu_base_addr +               \
     119             :                           (unsigned long)__per_cpu_start)
     120             : #endif
     121             : #ifndef __pcpu_ptr_to_addr
     122             : #define __pcpu_ptr_to_addr(ptr)                                         \
     123             :         (void __force *)((unsigned long)(ptr) +                         \
     124             :                          (unsigned long)pcpu_base_addr -                \
     125             :                          (unsigned long)__per_cpu_start)
     126             : #endif
     127             : #else   /* CONFIG_SMP */
     128             : /* on UP, it's always identity mapped */
     129             : #define __addr_to_pcpu_ptr(addr)        (void __percpu *)(addr)
     130             : #define __pcpu_ptr_to_addr(ptr)         (void __force *)(ptr)
     131             : #endif  /* CONFIG_SMP */
     132             : 
     133             : static int pcpu_unit_pages __ro_after_init;
     134             : static int pcpu_unit_size __ro_after_init;
     135             : static int pcpu_nr_units __ro_after_init;
     136             : static int pcpu_atom_size __ro_after_init;
     137             : int pcpu_nr_slots __ro_after_init;
     138             : static int pcpu_free_slot __ro_after_init;
     139             : int pcpu_sidelined_slot __ro_after_init;
     140             : int pcpu_to_depopulate_slot __ro_after_init;
     141             : static size_t pcpu_chunk_struct_size __ro_after_init;
     142             : 
     143             : /* cpus with the lowest and highest unit addresses */
     144             : static unsigned int pcpu_low_unit_cpu __ro_after_init;
     145             : static unsigned int pcpu_high_unit_cpu __ro_after_init;
     146             : 
     147             : /* the address of the first chunk which starts with the kernel static area */
     148             : void *pcpu_base_addr __ro_after_init;
     149             : 
     150             : static const int *pcpu_unit_map __ro_after_init;                /* cpu -> unit */
     151             : const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
     152             : 
     153             : /* group information, used for vm allocation */
     154             : static int pcpu_nr_groups __ro_after_init;
     155             : static const unsigned long *pcpu_group_offsets __ro_after_init;
     156             : static const size_t *pcpu_group_sizes __ro_after_init;
     157             : 
     158             : /*
     159             :  * The first chunk which always exists.  Note that unlike other
     160             :  * chunks, this one can be allocated and mapped in several different
     161             :  * ways and thus often doesn't live in the vmalloc area.
     162             :  */
     163             : struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
     164             : 
     165             : /*
     166             :  * Optional reserved chunk.  This chunk reserves part of the first
     167             :  * chunk and serves it for reserved allocations.  When the reserved
     168             :  * region doesn't exist, the following variable is NULL.
     169             :  */
     170             : struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
     171             : 
     172             : DEFINE_SPINLOCK(pcpu_lock);     /* all internal data structures */
     173             : static DEFINE_MUTEX(pcpu_alloc_mutex);  /* chunk create/destroy, [de]pop, map ext */
     174             : 
     175             : struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
     176             : 
     177             : /* chunks which need their map areas extended, protected by pcpu_lock */
     178             : static LIST_HEAD(pcpu_map_extend_chunks);
     179             : 
     180             : /*
     181             :  * The number of empty populated pages, protected by pcpu_lock.
     182             :  * The reserved chunk doesn't contribute to the count.
     183             :  */
     184             : int pcpu_nr_empty_pop_pages;
     185             : 
     186             : /*
     187             :  * The number of populated pages in use by the allocator, protected by
     188             :  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
     189             :  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
     190             :  * and increments/decrements this count by 1).
     191             :  */
     192             : static unsigned long pcpu_nr_populated;
     193             : 
     194             : /*
     195             :  * Balance work is used to populate or destroy chunks asynchronously.  We
     196             :  * try to keep the number of populated free pages between
     197             :  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
     198             :  * empty chunk.
     199             :  */
     200             : static void pcpu_balance_workfn(struct work_struct *work);
     201             : static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
     202             : static bool pcpu_async_enabled __read_mostly;
     203             : static bool pcpu_atomic_alloc_failed;
     204             : 
     205             : static void pcpu_schedule_balance_work(void)
     206             : {
     207           0 :         if (pcpu_async_enabled)
     208             :                 schedule_work(&pcpu_balance_work);
     209             : }
     210             : 
     211             : /**
     212             :  * pcpu_addr_in_chunk - check if the address is served from this chunk
     213             :  * @chunk: chunk of interest
     214             :  * @addr: percpu address
     215             :  *
     216             :  * RETURNS:
     217             :  * True if the address is served from this chunk.
     218             :  */
     219             : static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
     220             : {
     221             :         void *start_addr, *end_addr;
     222             : 
     223           0 :         if (!chunk)
     224             :                 return false;
     225             : 
     226           0 :         start_addr = chunk->base_addr + chunk->start_offset;
     227           0 :         end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
     228           0 :                    chunk->end_offset;
     229             : 
     230           0 :         return addr >= start_addr && addr < end_addr;
     231             : }
     232             : 
     233             : static int __pcpu_size_to_slot(int size)
     234             : {
     235        1428 :         int highbit = fls(size);        /* size is in bytes */
     236         714 :         return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
     237             : }
     238             : 
     239             : static int pcpu_size_to_slot(int size)
     240             : {
     241         715 :         if (size == pcpu_unit_size)
     242           2 :                 return pcpu_free_slot;
     243         713 :         return __pcpu_size_to_slot(size);
     244             : }
     245             : 
     246             : static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
     247             : {
     248         477 :         const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
     249             : 
     250         954 :         if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
     251         477 :             chunk_md->contig_hint == 0)
     252             :                 return 0;
     253             : 
     254         477 :         return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
     255             : }
     256             : 
     257             : /* set the pointer to a chunk in a page struct */
     258             : static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
     259             : {
     260           0 :         page->index = (unsigned long)pcpu;
     261             : }
     262             : 
     263             : /* obtain pointer to a chunk from a page struct */
     264             : static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
     265             : {
     266           0 :         return (struct pcpu_chunk *)page->index;
     267             : }
     268             : 
     269             : static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
     270             : {
     271             :         return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
     272             : }
     273             : 
     274             : static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
     275             : {
     276         238 :         return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
     277             : }
     278             : 
     279             : static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
     280             :                                      unsigned int cpu, int page_idx)
     281             : {
     282         476 :         return (unsigned long)chunk->base_addr +
     283         238 :                pcpu_unit_page_offset(cpu, page_idx);
     284             : }
     285             : 
     286             : /*
     287             :  * The following are helper functions to help access bitmaps and convert
     288             :  * between bitmap offsets to address offsets.
     289             :  */
     290             : static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
     291             : {
     292         598 :         return chunk->alloc_map +
     293         299 :                (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
     294             : }
     295             : 
     296             : static unsigned long pcpu_off_to_block_index(int off)
     297             : {
     298         979 :         return off / PCPU_BITMAP_BLOCK_BITS;
     299             : }
     300             : 
     301             : static unsigned long pcpu_off_to_block_off(int off)
     302             : {
     303         238 :         return off & (PCPU_BITMAP_BLOCK_BITS - 1);
     304             : }
     305             : 
     306             : static unsigned long pcpu_block_off_to_off(int index, int off)
     307             : {
     308         255 :         return index * PCPU_BITMAP_BLOCK_BITS + off;
     309             : }
     310             : 
     311             : /**
     312             :  * pcpu_check_block_hint - check against the contig hint
     313             :  * @block: block of interest
     314             :  * @bits: size of allocation
     315             :  * @align: alignment of area (max PAGE_SIZE)
     316             :  *
     317             :  * Check to see if the allocation can fit in the block's contig hint.
     318             :  * Note, a chunk uses the same hints as a block so this can also check against
     319             :  * the chunk's contig hint.
     320             :  */
     321             : static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
     322             :                                   size_t align)
     323             : {
     324         238 :         int bit_off = ALIGN(block->contig_hint_start, align) -
     325             :                 block->contig_hint_start;
     326             : 
     327         238 :         return bit_off + bits <= block->contig_hint;
     328             : }
     329             : 
     330             : /*
     331             :  * pcpu_next_hint - determine which hint to use
     332             :  * @block: block of interest
     333             :  * @alloc_bits: size of allocation
     334             :  *
     335             :  * This determines if we should scan based on the scan_hint or first_free.
     336             :  * In general, we want to scan from first_free to fulfill allocations by
     337             :  * first fit.  However, if we know a scan_hint at position scan_hint_start
     338             :  * cannot fulfill an allocation, we can begin scanning from there knowing
     339             :  * the contig_hint will be our fallback.
     340             :  */
     341             : static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
     342             : {
     343             :         /*
     344             :          * The three conditions below determine if we can skip past the
     345             :          * scan_hint.  First, does the scan hint exist.  Second, is the
     346             :          * contig_hint after the scan_hint (possibly not true iff
     347             :          * contig_hint == scan_hint).  Third, is the allocation request
     348             :          * larger than the scan_hint.
     349             :          */
     350         663 :         if (block->scan_hint &&
     351         374 :             block->contig_hint_start > block->scan_hint_start &&
     352             :             alloc_bits > block->scan_hint)
     353          68 :                 return block->scan_hint_start + block->scan_hint;
     354             : 
     355         408 :         return block->first_free;
     356             : }
     357             : 
     358             : /**
     359             :  * pcpu_next_md_free_region - finds the next hint free area
     360             :  * @chunk: chunk of interest
     361             :  * @bit_off: chunk offset
     362             :  * @bits: size of free area
     363             :  *
     364             :  * Helper function for pcpu_for_each_md_free_region.  It checks
     365             :  * block->contig_hint and performs aggregation across blocks to find the
     366             :  * next hint.  It modifies bit_off and bits in-place to be consumed in the
     367             :  * loop.
     368             :  */
     369         265 : static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
     370             :                                      int *bits)
     371             : {
     372         530 :         int i = pcpu_off_to_block_index(*bit_off);
     373         265 :         int block_off = pcpu_off_to_block_off(*bit_off);
     374             :         struct pcpu_block_md *block;
     375             : 
     376         265 :         *bits = 0;
     377        1578 :         for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
     378        1048 :              block++, i++) {
     379             :                 /* handles contig area across blocks */
     380        1051 :                 if (*bits) {
     381         904 :                         *bits += block->left_free;
     382         904 :                         if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
     383         904 :                                 continue;
     384             :                         return;
     385             :                 }
     386             : 
     387             :                 /*
     388             :                  * This checks three things.  First is there a contig_hint to
     389             :                  * check.  Second, have we checked this hint before by
     390             :                  * comparing the block_off.  Third, is this the same as the
     391             :                  * right contig hint.  In the last case, it spills over into
     392             :                  * the next block and should be handled by the contig area
     393             :                  * across blocks code.
     394             :                  */
     395         147 :                 *bits = block->contig_hint;
     396         281 :                 if (*bits && block->contig_hint_start >= block_off &&
     397         134 :                     *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
     398           6 :                         *bit_off = pcpu_block_off_to_off(i,
     399             :                                         block->contig_hint_start);
     400           3 :                         return;
     401             :                 }
     402             :                 /* reset to satisfy the second predicate above */
     403         144 :                 block_off = 0;
     404             : 
     405         144 :                 *bits = block->right_free;
     406         144 :                 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
     407             :         }
     408             : }
     409             : 
     410             : /**
     411             :  * pcpu_next_fit_region - finds fit areas for a given allocation request
     412             :  * @chunk: chunk of interest
     413             :  * @alloc_bits: size of allocation
     414             :  * @align: alignment of area (max PAGE_SIZE)
     415             :  * @bit_off: chunk offset
     416             :  * @bits: size of free area
     417             :  *
     418             :  * Finds the next free region that is viable for use with a given size and
     419             :  * alignment.  This only returns if there is a valid area to be used for this
     420             :  * allocation.  block->first_free is returned if the allocation request fits
     421             :  * within the block to see if the request can be fulfilled prior to the contig
     422             :  * hint.
     423             :  */
     424         238 : static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
     425             :                                  int align, int *bit_off, int *bits)
     426             : {
     427         476 :         int i = pcpu_off_to_block_index(*bit_off);
     428         238 :         int block_off = pcpu_off_to_block_off(*bit_off);
     429             :         struct pcpu_block_md *block;
     430             : 
     431         238 :         *bits = 0;
     432         490 :         for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
     433          14 :              block++, i++) {
     434             :                 /* handles contig area across blocks */
     435         252 :                 if (*bits) {
     436           0 :                         *bits += block->left_free;
     437           0 :                         if (*bits >= alloc_bits)
     438             :                                 return;
     439           0 :                         if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
     440           0 :                                 continue;
     441             :                 }
     442             : 
     443             :                 /* check block->contig_hint */
     444         252 :                 *bits = ALIGN(block->contig_hint_start, align) -
     445             :                         block->contig_hint_start;
     446             :                 /*
     447             :                  * This uses the block offset to determine if this has been
     448             :                  * checked in the prior iteration.
     449             :                  */
     450         504 :                 if (block->contig_hint &&
     451         503 :                     block->contig_hint_start >= block_off &&
     452         251 :                     block->contig_hint >= *bits + alloc_bits) {
     453         238 :                         int start = pcpu_next_hint(block, alloc_bits);
     454             : 
     455         238 :                         *bits += alloc_bits + block->contig_hint_start -
     456             :                                  start;
     457         238 :                         *bit_off = pcpu_block_off_to_off(i, start);
     458         238 :                         return;
     459             :                 }
     460             :                 /* reset to satisfy the second predicate above */
     461          14 :                 block_off = 0;
     462             : 
     463          14 :                 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
     464             :                                  align);
     465          14 :                 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
     466          28 :                 *bit_off = pcpu_block_off_to_off(i, *bit_off);
     467          14 :                 if (*bits >= alloc_bits)
     468             :                         return;
     469             :         }
     470             : 
     471             :         /* no valid offsets were found - fail condition */
     472           0 :         *bit_off = pcpu_chunk_map_bits(chunk);
     473             : }
     474             : 
     475             : /*
     476             :  * Metadata free area iterators.  These perform aggregation of free areas
     477             :  * based on the metadata blocks and return the offset @bit_off and size in
     478             :  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
     479             :  * a fit is found for the allocation request.
     480             :  */
     481             : #define pcpu_for_each_md_free_region(chunk, bit_off, bits)              \
     482             :         for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));    \
     483             :              (bit_off) < pcpu_chunk_map_bits((chunk));                       \
     484             :              (bit_off) += (bits) + 1,                                   \
     485             :              pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
     486             : 
     487             : #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
     488             :         for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
     489             :                                   &(bits));                               \
     490             :              (bit_off) < pcpu_chunk_map_bits((chunk));                             \
     491             :              (bit_off) += (bits),                                             \
     492             :              pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
     493             :                                   &(bits)))
     494             : 
     495             : /**
     496             :  * pcpu_mem_zalloc - allocate memory
     497             :  * @size: bytes to allocate
     498             :  * @gfp: allocation flags
     499             :  *
     500             :  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
     501             :  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
     502             :  * This is to facilitate passing through whitelisted flags.  The
     503             :  * returned memory is always zeroed.
     504             :  *
     505             :  * RETURNS:
     506             :  * Pointer to the allocated area on success, NULL on failure.
     507             :  */
     508           0 : static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
     509             : {
     510           0 :         if (WARN_ON_ONCE(!slab_is_available()))
     511             :                 return NULL;
     512             : 
     513           0 :         if (size <= PAGE_SIZE)
     514           0 :                 return kzalloc(size, gfp);
     515             :         else
     516           0 :                 return __vmalloc(size, gfp | __GFP_ZERO);
     517             : }
     518             : 
     519             : /**
     520             :  * pcpu_mem_free - free memory
     521             :  * @ptr: memory to free
     522             :  *
     523             :  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
     524             :  */
     525             : static void pcpu_mem_free(void *ptr)
     526             : {
     527           0 :         kvfree(ptr);
     528             : }
     529             : 
     530           2 : static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
     531             :                               bool move_front)
     532             : {
     533           2 :         if (chunk != pcpu_reserved_chunk) {
     534           2 :                 if (move_front)
     535           1 :                         list_move(&chunk->list, &pcpu_chunk_lists[slot]);
     536             :                 else
     537           1 :                         list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
     538             :         }
     539           2 : }
     540             : 
     541             : static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
     542             : {
     543           0 :         __pcpu_chunk_move(chunk, slot, true);
     544             : }
     545             : 
     546             : /**
     547             :  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
     548             :  * @chunk: chunk of interest
     549             :  * @oslot: the previous slot it was on
     550             :  *
     551             :  * This function is called after an allocation or free changed @chunk.
     552             :  * New slot according to the changed state is determined and @chunk is
     553             :  * moved to the slot.  Note that the reserved chunk is never put on
     554             :  * chunk slots.
     555             :  *
     556             :  * CONTEXT:
     557             :  * pcpu_lock.
     558             :  */
     559         239 : static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
     560             : {
     561         239 :         int nslot = pcpu_chunk_slot(chunk);
     562             : 
     563             :         /* leave isolated chunks in-place */
     564         239 :         if (chunk->isolated)
     565             :                 return;
     566             : 
     567         239 :         if (oslot != nslot)
     568           2 :                 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
     569             : }
     570             : 
     571             : static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
     572             : {
     573             :         lockdep_assert_held(&pcpu_lock);
     574             : 
     575             :         if (!chunk->isolated) {
     576             :                 chunk->isolated = true;
     577             :                 pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
     578             :         }
     579             :         list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
     580             : }
     581             : 
     582         238 : static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
     583             : {
     584             :         lockdep_assert_held(&pcpu_lock);
     585             : 
     586         238 :         if (chunk->isolated) {
     587           0 :                 chunk->isolated = false;
     588           0 :                 pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
     589           0 :                 pcpu_chunk_relocate(chunk, -1);
     590             :         }
     591         238 : }
     592             : 
     593             : /*
     594             :  * pcpu_update_empty_pages - update empty page counters
     595             :  * @chunk: chunk of interest
     596             :  * @nr: nr of empty pages
     597             :  *
     598             :  * This is used to keep track of the empty pages now based on the premise
     599             :  * a md_block covers a page.  The hint update functions recognize if a block
     600             :  * is made full or broken to calculate deltas for keeping track of free pages.
     601             :  */
     602             : static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
     603             : {
     604           2 :         chunk->nr_empty_pop_pages += nr;
     605           2 :         if (chunk != pcpu_reserved_chunk && !chunk->isolated)
     606           2 :                 pcpu_nr_empty_pop_pages += nr;
     607             : }
     608             : 
     609             : /*
     610             :  * pcpu_region_overlap - determines if two regions overlap
     611             :  * @a: start of first region, inclusive
     612             :  * @b: end of first region, exclusive
     613             :  * @x: start of second region, inclusive
     614             :  * @y: end of second region, exclusive
     615             :  *
     616             :  * This is used to determine if the hint region [a, b) overlaps with the
     617             :  * allocated region [x, y).
     618             :  */
     619             : static inline bool pcpu_region_overlap(int a, int b, int x, int y)
     620             : {
     621         952 :         return (a < y) && (x < b);
     622             : }
     623             : 
     624             : /**
     625             :  * pcpu_block_update - updates a block given a free area
     626             :  * @block: block of interest
     627             :  * @start: start offset in block
     628             :  * @end: end offset in block
     629             :  *
     630             :  * Updates a block given a known free area.  The region [start, end) is
     631             :  * expected to be the entirety of the free area within a block.  Chooses
     632             :  * the best starting offset if the contig hints are equal.
     633             :  */
     634         459 : static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
     635             : {
     636         459 :         int contig = end - start;
     637             : 
     638         459 :         block->first_free = min(block->first_free, start);
     639         459 :         if (start == 0)
     640           0 :                 block->left_free = contig;
     641             : 
     642         459 :         if (end == block->nr_bits)
     643         261 :                 block->right_free = contig;
     644             : 
     645         459 :         if (contig > block->contig_hint) {
     646             :                 /* promote the old contig_hint to be the new scan_hint */
     647         276 :                 if (start > block->contig_hint_start) {
     648         268 :                         if (block->contig_hint > block->scan_hint) {
     649          42 :                                 block->scan_hint_start =
     650             :                                         block->contig_hint_start;
     651          42 :                                 block->scan_hint = block->contig_hint;
     652         226 :                         } else if (start < block->scan_hint_start) {
     653             :                                 /*
     654             :                                  * The old contig_hint == scan_hint.  But, the
     655             :                                  * new contig is larger so hold the invariant
     656             :                                  * scan_hint_start < contig_hint_start.
     657             :                                  */
     658           0 :                                 block->scan_hint = 0;
     659             :                         }
     660             :                 } else {
     661           8 :                         block->scan_hint = 0;
     662             :                 }
     663         276 :                 block->contig_hint_start = start;
     664         276 :                 block->contig_hint = contig;
     665         183 :         } else if (contig == block->contig_hint) {
     666          63 :                 if (block->contig_hint_start &&
     667          63 :                     (!start ||
     668         189 :                      __ffs(start) > __ffs(block->contig_hint_start))) {
     669             :                         /* start has a better alignment so use it */
     670           0 :                         block->contig_hint_start = start;
     671           0 :                         if (start < block->scan_hint_start &&
     672           0 :                             block->contig_hint > block->scan_hint)
     673           0 :                                 block->scan_hint = 0;
     674          64 :                 } else if (start > block->scan_hint_start ||
     675           1 :                            block->contig_hint > block->scan_hint) {
     676             :                         /*
     677             :                          * Knowing contig == contig_hint, update the scan_hint
     678             :                          * if it is farther than or larger than the current
     679             :                          * scan_hint.
     680             :                          */
     681          63 :                         block->scan_hint_start = start;
     682          63 :                         block->scan_hint = contig;
     683             :                 }
     684             :         } else {
     685             :                 /*
     686             :                  * The region is smaller than the contig_hint.  So only update
     687             :                  * the scan_hint if it is larger than or equal and farther than
     688             :                  * the current scan_hint.
     689             :                  */
     690         120 :                 if ((start < block->contig_hint_start &&
     691           0 :                      (contig > block->scan_hint ||
     692           0 :                       (contig == block->scan_hint &&
     693           0 :                        start > block->scan_hint_start)))) {
     694           0 :                         block->scan_hint_start = start;
     695           0 :                         block->scan_hint = contig;
     696             :                 }
     697             :         }
     698         459 : }
     699             : 
     700             : /*
     701             :  * pcpu_block_update_scan - update a block given a free area from a scan
     702             :  * @chunk: chunk of interest
     703             :  * @bit_off: chunk offset
     704             :  * @bits: size of free area
     705             :  *
     706             :  * Finding the final allocation spot first goes through pcpu_find_block_fit()
     707             :  * to find a block that can hold the allocation and then pcpu_alloc_area()
     708             :  * where a scan is used.  When allocations require specific alignments,
     709             :  * we can inadvertently create holes which will not be seen in the alloc
     710             :  * or free paths.
     711             :  *
     712             :  * This takes a given free area hole and updates a block as it may change the
     713             :  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
     714             :  * from alignment.
     715             :  */
     716           0 : static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
     717             :                                    int bits)
     718             : {
     719           0 :         int s_off = pcpu_off_to_block_off(bit_off);
     720           0 :         int e_off = s_off + bits;
     721             :         int s_index, l_bit;
     722             :         struct pcpu_block_md *block;
     723             : 
     724           0 :         if (e_off > PCPU_BITMAP_BLOCK_BITS)
     725             :                 return;
     726             : 
     727           0 :         s_index = pcpu_off_to_block_index(bit_off);
     728           0 :         block = chunk->md_blocks + s_index;
     729             : 
     730             :         /* scan backwards in case of alignment skipping free bits */
     731           0 :         l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
     732           0 :         s_off = (s_off == l_bit) ? 0 : l_bit + 1;
     733             : 
     734           0 :         pcpu_block_update(block, s_off, e_off);
     735             : }
     736             : 
     737             : /**
     738             :  * pcpu_chunk_refresh_hint - updates metadata about a chunk
     739             :  * @chunk: chunk of interest
     740             :  * @full_scan: if we should scan from the beginning
     741             :  *
     742             :  * Iterates over the metadata blocks to find the largest contig area.
     743             :  * A full scan can be avoided on the allocation path as this is triggered
     744             :  * if we broke the contig_hint.  In doing so, the scan_hint will be before
     745             :  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
     746             :  * be prevented on freeing as we want to find the largest area possibly
     747             :  * spanning blocks.
     748             :  */
     749         131 : static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
     750             : {
     751         131 :         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
     752             :         int bit_off, bits;
     753             : 
     754             :         /* promote scan_hint to contig_hint */
     755         131 :         if (!full_scan && chunk_md->scan_hint) {
     756          10 :                 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
     757          10 :                 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
     758          10 :                 chunk_md->contig_hint = chunk_md->scan_hint;
     759          10 :                 chunk_md->scan_hint = 0;
     760             :         } else {
     761         121 :                 bit_off = chunk_md->first_free;
     762         121 :                 chunk_md->contig_hint = 0;
     763             :         }
     764             : 
     765         131 :         bits = 0;
     766         530 :         pcpu_for_each_md_free_region(chunk, bit_off, bits)
     767         134 :                 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
     768         131 : }
     769             : 
     770             : /**
     771             :  * pcpu_block_refresh_hint
     772             :  * @chunk: chunk of interest
     773             :  * @index: index of the metadata block
     774             :  *
     775             :  * Scans over the block beginning at first_free and updates the block
     776             :  * metadata accordingly.
     777             :  */
     778         135 : static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
     779             : {
     780         135 :         struct pcpu_block_md *block = chunk->md_blocks + index;
     781         135 :         unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
     782             :         unsigned int start, end;        /* region start, region end */
     783             : 
     784             :         /* promote scan_hint to contig_hint */
     785         135 :         if (block->scan_hint) {
     786          67 :                 start = block->scan_hint_start + block->scan_hint;
     787          67 :                 block->contig_hint_start = block->scan_hint_start;
     788          67 :                 block->contig_hint = block->scan_hint;
     789          67 :                 block->scan_hint = 0;
     790             :         } else {
     791          68 :                 start = block->first_free;
     792          68 :                 block->contig_hint = 0;
     793             :         }
     794             : 
     795         135 :         block->right_free = 0;
     796             : 
     797             :         /* iterate over free areas and update the contig hints */
     798         460 :         for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
     799         325 :                 pcpu_block_update(block, start, end);
     800         135 : }
     801             : 
     802             : /**
     803             :  * pcpu_block_update_hint_alloc - update hint on allocation path
     804             :  * @chunk: chunk of interest
     805             :  * @bit_off: chunk offset
     806             :  * @bits: size of request
     807             :  *
     808             :  * Updates metadata for the allocation path.  The metadata only has to be
     809             :  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
     810             :  * scans are required if the block's contig hint is broken.
     811             :  */
     812         238 : static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
     813             :                                          int bits)
     814             : {
     815         238 :         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
     816         238 :         int nr_empty_pages = 0;
     817             :         struct pcpu_block_md *s_block, *e_block, *block;
     818             :         int s_index, e_index;   /* block indexes of the freed allocation */
     819             :         int s_off, e_off;       /* block offsets of the freed allocation */
     820             : 
     821             :         /*
     822             :          * Calculate per block offsets.
     823             :          * The calculation uses an inclusive range, but the resulting offsets
     824             :          * are [start, end).  e_index always points to the last block in the
     825             :          * range.
     826             :          */
     827         238 :         s_index = pcpu_off_to_block_index(bit_off);
     828         476 :         e_index = pcpu_off_to_block_index(bit_off + bits - 1);
     829         238 :         s_off = pcpu_off_to_block_off(bit_off);
     830         476 :         e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
     831             : 
     832         238 :         s_block = chunk->md_blocks + s_index;
     833         238 :         e_block = chunk->md_blocks + e_index;
     834             : 
     835             :         /*
     836             :          * Update s_block.
     837             :          * block->first_free must be updated if the allocation takes its place.
     838             :          * If the allocation breaks the contig_hint, a scan is required to
     839             :          * restore this hint.
     840             :          */
     841         238 :         if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
     842           2 :                 nr_empty_pages++;
     843             : 
     844         238 :         if (s_off == s_block->first_free)
     845         328 :                 s_block->first_free = find_next_zero_bit(
     846         164 :                                         pcpu_index_alloc_map(chunk, s_index),
     847             :                                         PCPU_BITMAP_BLOCK_BITS,
     848         164 :                                         s_off + bits);
     849             : 
     850         714 :         if (pcpu_region_overlap(s_block->scan_hint_start,
     851         238 :                                 s_block->scan_hint_start + s_block->scan_hint,
     852             :                                 s_off,
     853             :                                 s_off + bits))
     854           3 :                 s_block->scan_hint = 0;
     855             : 
     856         476 :         if (pcpu_region_overlap(s_block->contig_hint_start,
     857         238 :                                 s_block->contig_hint_start +
     858         238 :                                 s_block->contig_hint,
     859             :                                 s_off,
     860             :                                 s_off + bits)) {
     861             :                 /* block contig hint is broken - scan to fix it */
     862         135 :                 if (!s_off)
     863           2 :                         s_block->left_free = 0;
     864         135 :                 pcpu_block_refresh_hint(chunk, s_index);
     865             :         } else {
     866             :                 /* update left and right contig manually */
     867         103 :                 s_block->left_free = min(s_block->left_free, s_off);
     868         103 :                 if (s_index == e_index)
     869         103 :                         s_block->right_free = min_t(int, s_block->right_free,
     870             :                                         PCPU_BITMAP_BLOCK_BITS - e_off);
     871             :                 else
     872           0 :                         s_block->right_free = 0;
     873             :         }
     874             : 
     875             :         /*
     876             :          * Update e_block.
     877             :          */
     878         238 :         if (s_index != e_index) {
     879           0 :                 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
     880           0 :                         nr_empty_pages++;
     881             : 
     882             :                 /*
     883             :                  * When the allocation is across blocks, the end is along
     884             :                  * the left part of the e_block.
     885             :                  */
     886           0 :                 e_block->first_free = find_next_zero_bit(
     887           0 :                                 pcpu_index_alloc_map(chunk, e_index),
     888             :                                 PCPU_BITMAP_BLOCK_BITS, e_off);
     889             : 
     890           0 :                 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
     891             :                         /* reset the block */
     892           0 :                         e_block++;
     893             :                 } else {
     894           0 :                         if (e_off > e_block->scan_hint_start)
     895           0 :                                 e_block->scan_hint = 0;
     896             : 
     897           0 :                         e_block->left_free = 0;
     898           0 :                         if (e_off > e_block->contig_hint_start) {
     899             :                                 /* contig hint is broken - scan to fix it */
     900           0 :                                 pcpu_block_refresh_hint(chunk, e_index);
     901             :                         } else {
     902           0 :                                 e_block->right_free =
     903           0 :                                         min_t(int, e_block->right_free,
     904             :                                               PCPU_BITMAP_BLOCK_BITS - e_off);
     905             :                         }
     906             :                 }
     907             : 
     908             :                 /* update in-between md_blocks */
     909           0 :                 nr_empty_pages += (e_index - s_index - 1);
     910           0 :                 for (block = s_block + 1; block < e_block; block++) {
     911           0 :                         block->scan_hint = 0;
     912           0 :                         block->contig_hint = 0;
     913           0 :                         block->left_free = 0;
     914           0 :                         block->right_free = 0;
     915             :                 }
     916             :         }
     917             : 
     918         238 :         if (nr_empty_pages)
     919           2 :                 pcpu_update_empty_pages(chunk, -nr_empty_pages);
     920             : 
     921         476 :         if (pcpu_region_overlap(chunk_md->scan_hint_start,
     922         238 :                                 chunk_md->scan_hint_start +
     923         238 :                                 chunk_md->scan_hint,
     924             :                                 bit_off,
     925             :                                 bit_off + bits))
     926           3 :                 chunk_md->scan_hint = 0;
     927             : 
     928             :         /*
     929             :          * The only time a full chunk scan is required is if the chunk
     930             :          * contig hint is broken.  Otherwise, it means a smaller space
     931             :          * was used and therefore the chunk contig hint is still correct.
     932             :          */
     933         476 :         if (pcpu_region_overlap(chunk_md->contig_hint_start,
     934         238 :                                 chunk_md->contig_hint_start +
     935         238 :                                 chunk_md->contig_hint,
     936             :                                 bit_off,
     937             :                                 bit_off + bits))
     938         131 :                 pcpu_chunk_refresh_hint(chunk, false);
     939         238 : }
     940             : 
     941             : /**
     942             :  * pcpu_block_update_hint_free - updates the block hints on the free path
     943             :  * @chunk: chunk of interest
     944             :  * @bit_off: chunk offset
     945             :  * @bits: size of request
     946             :  *
     947             :  * Updates metadata for the allocation path.  This avoids a blind block
     948             :  * refresh by making use of the block contig hints.  If this fails, it scans
     949             :  * forward and backward to determine the extent of the free area.  This is
     950             :  * capped at the boundary of blocks.
     951             :  *
     952             :  * A chunk update is triggered if a page becomes free, a block becomes free,
     953             :  * or the free spans across blocks.  This tradeoff is to minimize iterating
     954             :  * over the block metadata to update chunk_md->contig_hint.
     955             :  * chunk_md->contig_hint may be off by up to a page, but it will never be more
     956             :  * than the available space.  If the contig hint is contained in one block, it
     957             :  * will be accurate.
     958             :  */
     959           0 : static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
     960             :                                         int bits)
     961             : {
     962           0 :         int nr_empty_pages = 0;
     963             :         struct pcpu_block_md *s_block, *e_block, *block;
     964             :         int s_index, e_index;   /* block indexes of the freed allocation */
     965             :         int s_off, e_off;       /* block offsets of the freed allocation */
     966             :         int start, end;         /* start and end of the whole free area */
     967             : 
     968             :         /*
     969             :          * Calculate per block offsets.
     970             :          * The calculation uses an inclusive range, but the resulting offsets
     971             :          * are [start, end).  e_index always points to the last block in the
     972             :          * range.
     973             :          */
     974           0 :         s_index = pcpu_off_to_block_index(bit_off);
     975           0 :         e_index = pcpu_off_to_block_index(bit_off + bits - 1);
     976           0 :         s_off = pcpu_off_to_block_off(bit_off);
     977           0 :         e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
     978             : 
     979           0 :         s_block = chunk->md_blocks + s_index;
     980           0 :         e_block = chunk->md_blocks + e_index;
     981             : 
     982             :         /*
     983             :          * Check if the freed area aligns with the block->contig_hint.
     984             :          * If it does, then the scan to find the beginning/end of the
     985             :          * larger free area can be avoided.
     986             :          *
     987             :          * start and end refer to beginning and end of the free area
     988             :          * within each their respective blocks.  This is not necessarily
     989             :          * the entire free area as it may span blocks past the beginning
     990             :          * or end of the block.
     991             :          */
     992           0 :         start = s_off;
     993           0 :         if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
     994             :                 start = s_block->contig_hint_start;
     995             :         } else {
     996             :                 /*
     997             :                  * Scan backwards to find the extent of the free area.
     998             :                  * find_last_bit returns the starting bit, so if the start bit
     999             :                  * is returned, that means there was no last bit and the
    1000             :                  * remainder of the chunk is free.
    1001             :                  */
    1002           0 :                 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
    1003             :                                           start);
    1004           0 :                 start = (start == l_bit) ? 0 : l_bit + 1;
    1005             :         }
    1006             : 
    1007           0 :         end = e_off;
    1008           0 :         if (e_off == e_block->contig_hint_start)
    1009           0 :                 end = e_block->contig_hint_start + e_block->contig_hint;
    1010             :         else
    1011           0 :                 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
    1012             :                                     PCPU_BITMAP_BLOCK_BITS, end);
    1013             : 
    1014             :         /* update s_block */
    1015           0 :         e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
    1016           0 :         if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
    1017           0 :                 nr_empty_pages++;
    1018           0 :         pcpu_block_update(s_block, start, e_off);
    1019             : 
    1020             :         /* freeing in the same block */
    1021           0 :         if (s_index != e_index) {
    1022             :                 /* update e_block */
    1023           0 :                 if (end == PCPU_BITMAP_BLOCK_BITS)
    1024           0 :                         nr_empty_pages++;
    1025           0 :                 pcpu_block_update(e_block, 0, end);
    1026             : 
    1027             :                 /* reset md_blocks in the middle */
    1028           0 :                 nr_empty_pages += (e_index - s_index - 1);
    1029           0 :                 for (block = s_block + 1; block < e_block; block++) {
    1030           0 :                         block->first_free = 0;
    1031           0 :                         block->scan_hint = 0;
    1032           0 :                         block->contig_hint_start = 0;
    1033           0 :                         block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
    1034           0 :                         block->left_free = PCPU_BITMAP_BLOCK_BITS;
    1035           0 :                         block->right_free = PCPU_BITMAP_BLOCK_BITS;
    1036             :                 }
    1037             :         }
    1038             : 
    1039           0 :         if (nr_empty_pages)
    1040             :                 pcpu_update_empty_pages(chunk, nr_empty_pages);
    1041             : 
    1042             :         /*
    1043             :          * Refresh chunk metadata when the free makes a block free or spans
    1044             :          * across blocks.  The contig_hint may be off by up to a page, but if
    1045             :          * the contig_hint is contained in a block, it will be accurate with
    1046             :          * the else condition below.
    1047             :          */
    1048           0 :         if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
    1049           0 :                 pcpu_chunk_refresh_hint(chunk, true);
    1050             :         else
    1051           0 :                 pcpu_block_update(&chunk->chunk_md,
    1052           0 :                                   pcpu_block_off_to_off(s_index, start),
    1053             :                                   end);
    1054           0 : }
    1055             : 
    1056             : /**
    1057             :  * pcpu_is_populated - determines if the region is populated
    1058             :  * @chunk: chunk of interest
    1059             :  * @bit_off: chunk offset
    1060             :  * @bits: size of area
    1061             :  * @next_off: return value for the next offset to start searching
    1062             :  *
    1063             :  * For atomic allocations, check if the backing pages are populated.
    1064             :  *
    1065             :  * RETURNS:
    1066             :  * Bool if the backing pages are populated.
    1067             :  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
    1068             :  */
    1069           0 : static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
    1070             :                               int *next_off)
    1071             : {
    1072             :         unsigned int start, end;
    1073             : 
    1074           0 :         start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
    1075           0 :         end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
    1076             : 
    1077           0 :         start = find_next_zero_bit(chunk->populated, end, start);
    1078           0 :         if (start >= end)
    1079             :                 return true;
    1080             : 
    1081           0 :         end = find_next_bit(chunk->populated, end, start + 1);
    1082             : 
    1083           0 :         *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
    1084           0 :         return false;
    1085             : }
    1086             : 
    1087             : /**
    1088             :  * pcpu_find_block_fit - finds the block index to start searching
    1089             :  * @chunk: chunk of interest
    1090             :  * @alloc_bits: size of request in allocation units
    1091             :  * @align: alignment of area (max PAGE_SIZE bytes)
    1092             :  * @pop_only: use populated regions only
    1093             :  *
    1094             :  * Given a chunk and an allocation spec, find the offset to begin searching
    1095             :  * for a free region.  This iterates over the bitmap metadata blocks to
    1096             :  * find an offset that will be guaranteed to fit the requirements.  It is
    1097             :  * not quite first fit as if the allocation does not fit in the contig hint
    1098             :  * of a block or chunk, it is skipped.  This errs on the side of caution
    1099             :  * to prevent excess iteration.  Poor alignment can cause the allocator to
    1100             :  * skip over blocks and chunks that have valid free areas.
    1101             :  *
    1102             :  * RETURNS:
    1103             :  * The offset in the bitmap to begin searching.
    1104             :  * -1 if no offset is found.
    1105             :  */
    1106         238 : static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
    1107             :                                size_t align, bool pop_only)
    1108             : {
    1109         238 :         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
    1110             :         int bit_off, bits, next_off;
    1111             : 
    1112             :         /*
    1113             :          * This is an optimization to prevent scanning by assuming if the
    1114             :          * allocation cannot fit in the global hint, there is memory pressure
    1115             :          * and creating a new chunk would happen soon.
    1116             :          */
    1117         476 :         if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
    1118             :                 return -1;
    1119             : 
    1120         238 :         bit_off = pcpu_next_hint(chunk_md, alloc_bits);
    1121         238 :         bits = 0;
    1122         476 :         pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
    1123         238 :                 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
    1124             :                                                    &next_off))
    1125             :                         break;
    1126             : 
    1127           0 :                 bit_off = next_off;
    1128           0 :                 bits = 0;
    1129             :         }
    1130             : 
    1131         238 :         if (bit_off == pcpu_chunk_map_bits(chunk))
    1132             :                 return -1;
    1133             : 
    1134         238 :         return bit_off;
    1135             : }
    1136             : 
    1137             : /*
    1138             :  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
    1139             :  * @map: the address to base the search on
    1140             :  * @size: the bitmap size in bits
    1141             :  * @start: the bitnumber to start searching at
    1142             :  * @nr: the number of zeroed bits we're looking for
    1143             :  * @align_mask: alignment mask for zero area
    1144             :  * @largest_off: offset of the largest area skipped
    1145             :  * @largest_bits: size of the largest area skipped
    1146             :  *
    1147             :  * The @align_mask should be one less than a power of 2.
    1148             :  *
    1149             :  * This is a modified version of bitmap_find_next_zero_area_off() to remember
    1150             :  * the largest area that was skipped.  This is imperfect, but in general is
    1151             :  * good enough.  The largest remembered region is the largest failed region
    1152             :  * seen.  This does not include anything we possibly skipped due to alignment.
    1153             :  * pcpu_block_update_scan() does scan backwards to try and recover what was
    1154             :  * lost to alignment.  While this can cause scanning to miss earlier possible
    1155             :  * free areas, smaller allocations will eventually fill those holes.
    1156             :  */
    1157         238 : static unsigned long pcpu_find_zero_area(unsigned long *map,
    1158             :                                          unsigned long size,
    1159             :                                          unsigned long start,
    1160             :                                          unsigned long nr,
    1161             :                                          unsigned long align_mask,
    1162             :                                          unsigned long *largest_off,
    1163             :                                          unsigned long *largest_bits)
    1164             : {
    1165             :         unsigned long index, end, i, area_off, area_bits;
    1166             : again:
    1167         375 :         index = find_next_zero_bit(map, size, start);
    1168             : 
    1169             :         /* Align allocation */
    1170         375 :         index = __ALIGN_MASK(index, align_mask);
    1171         375 :         area_off = index;
    1172             : 
    1173         375 :         end = index + nr;
    1174         375 :         if (end > size)
    1175             :                 return end;
    1176         375 :         i = find_next_bit(map, end, index);
    1177         375 :         if (i < end) {
    1178         137 :                 area_bits = i - area_off;
    1179             :                 /* remember largest unused area with best alignment */
    1180         137 :                 if (area_bits > *largest_bits ||
    1181         137 :                     (area_bits == *largest_bits && *largest_off &&
    1182           0 :                      (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
    1183           0 :                         *largest_off = area_off;
    1184           0 :                         *largest_bits = area_bits;
    1185             :                 }
    1186             : 
    1187         137 :                 start = i + 1;
    1188         137 :                 goto again;
    1189             :         }
    1190             :         return index;
    1191             : }
    1192             : 
    1193             : /**
    1194             :  * pcpu_alloc_area - allocates an area from a pcpu_chunk
    1195             :  * @chunk: chunk of interest
    1196             :  * @alloc_bits: size of request in allocation units
    1197             :  * @align: alignment of area (max PAGE_SIZE)
    1198             :  * @start: bit_off to start searching
    1199             :  *
    1200             :  * This function takes in a @start offset to begin searching to fit an
    1201             :  * allocation of @alloc_bits with alignment @align.  It needs to scan
    1202             :  * the allocation map because if it fits within the block's contig hint,
    1203             :  * @start will be block->first_free. This is an attempt to fill the
    1204             :  * allocation prior to breaking the contig hint.  The allocation and
    1205             :  * boundary maps are updated accordingly if it confirms a valid
    1206             :  * free area.
    1207             :  *
    1208             :  * RETURNS:
    1209             :  * Allocated addr offset in @chunk on success.
    1210             :  * -1 if no matching area is found.
    1211             :  */
    1212         238 : static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
    1213             :                            size_t align, int start)
    1214             : {
    1215         238 :         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
    1216         238 :         size_t align_mask = (align) ? (align - 1) : 0;
    1217         238 :         unsigned long area_off = 0, area_bits = 0;
    1218             :         int bit_off, end, oslot;
    1219             : 
    1220             :         lockdep_assert_held(&pcpu_lock);
    1221             : 
    1222         238 :         oslot = pcpu_chunk_slot(chunk);
    1223             : 
    1224             :         /*
    1225             :          * Search to find a fit.
    1226             :          */
    1227         476 :         end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
    1228             :                     pcpu_chunk_map_bits(chunk));
    1229         238 :         bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
    1230             :                                       align_mask, &area_off, &area_bits);
    1231         238 :         if (bit_off >= end)
    1232             :                 return -1;
    1233             : 
    1234         238 :         if (area_bits)
    1235           0 :                 pcpu_block_update_scan(chunk, area_off, area_bits);
    1236             : 
    1237             :         /* update alloc map */
    1238         476 :         bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
    1239             : 
    1240             :         /* update boundary map */
    1241         476 :         set_bit(bit_off, chunk->bound_map);
    1242         476 :         bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
    1243         476 :         set_bit(bit_off + alloc_bits, chunk->bound_map);
    1244             : 
    1245         238 :         chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
    1246             : 
    1247             :         /* update first free bit */
    1248         238 :         if (bit_off == chunk_md->first_free)
    1249         486 :                 chunk_md->first_free = find_next_zero_bit(
    1250         162 :                                         chunk->alloc_map,
    1251         162 :                                         pcpu_chunk_map_bits(chunk),
    1252             :                                         bit_off + alloc_bits);
    1253             : 
    1254         238 :         pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
    1255             : 
    1256         238 :         pcpu_chunk_relocate(chunk, oslot);
    1257             : 
    1258         238 :         return bit_off * PCPU_MIN_ALLOC_SIZE;
    1259             : }
    1260             : 
    1261             : /**
    1262             :  * pcpu_free_area - frees the corresponding offset
    1263             :  * @chunk: chunk of interest
    1264             :  * @off: addr offset into chunk
    1265             :  *
    1266             :  * This function determines the size of an allocation to free using
    1267             :  * the boundary bitmap and clears the allocation map.
    1268             :  *
    1269             :  * RETURNS:
    1270             :  * Number of freed bytes.
    1271             :  */
    1272           0 : static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
    1273             : {
    1274           0 :         struct pcpu_block_md *chunk_md = &chunk->chunk_md;
    1275             :         int bit_off, bits, end, oslot, freed;
    1276             : 
    1277             :         lockdep_assert_held(&pcpu_lock);
    1278           0 :         pcpu_stats_area_dealloc(chunk);
    1279             : 
    1280           0 :         oslot = pcpu_chunk_slot(chunk);
    1281             : 
    1282           0 :         bit_off = off / PCPU_MIN_ALLOC_SIZE;
    1283             : 
    1284             :         /* find end index */
    1285           0 :         end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
    1286           0 :                             bit_off + 1);
    1287           0 :         bits = end - bit_off;
    1288           0 :         bitmap_clear(chunk->alloc_map, bit_off, bits);
    1289             : 
    1290           0 :         freed = bits * PCPU_MIN_ALLOC_SIZE;
    1291             : 
    1292             :         /* update metadata */
    1293           0 :         chunk->free_bytes += freed;
    1294             : 
    1295             :         /* update first free bit */
    1296           0 :         chunk_md->first_free = min(chunk_md->first_free, bit_off);
    1297             : 
    1298           0 :         pcpu_block_update_hint_free(chunk, bit_off, bits);
    1299             : 
    1300           0 :         pcpu_chunk_relocate(chunk, oslot);
    1301             : 
    1302           0 :         return freed;
    1303             : }
    1304             : 
    1305             : static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
    1306             : {
    1307           9 :         block->scan_hint = 0;
    1308           9 :         block->contig_hint = nr_bits;
    1309           9 :         block->left_free = nr_bits;
    1310           9 :         block->right_free = nr_bits;
    1311           9 :         block->first_free = 0;
    1312           9 :         block->nr_bits = nr_bits;
    1313             : }
    1314             : 
    1315           1 : static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
    1316             : {
    1317             :         struct pcpu_block_md *md_block;
    1318             : 
    1319             :         /* init the chunk's block */
    1320           2 :         pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
    1321             : 
    1322          10 :         for (md_block = chunk->md_blocks;
    1323          18 :              md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
    1324           8 :              md_block++)
    1325           8 :                 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
    1326           1 : }
    1327             : 
    1328             : /**
    1329             :  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
    1330             :  * @tmp_addr: the start of the region served
    1331             :  * @map_size: size of the region served
    1332             :  *
    1333             :  * This is responsible for creating the chunks that serve the first chunk.  The
    1334             :  * base_addr is page aligned down of @tmp_addr while the region end is page
    1335             :  * aligned up.  Offsets are kept track of to determine the region served. All
    1336             :  * this is done to appease the bitmap allocator in avoiding partial blocks.
    1337             :  *
    1338             :  * RETURNS:
    1339             :  * Chunk serving the region at @tmp_addr of @map_size.
    1340             :  */
    1341           1 : static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
    1342             :                                                          int map_size)
    1343             : {
    1344             :         struct pcpu_chunk *chunk;
    1345             :         unsigned long aligned_addr, lcm_align;
    1346             :         int start_offset, offset_bits, region_size, region_bits;
    1347             :         size_t alloc_size;
    1348             : 
    1349             :         /* region calculations */
    1350           1 :         aligned_addr = tmp_addr & PAGE_MASK;
    1351             : 
    1352           1 :         start_offset = tmp_addr - aligned_addr;
    1353             : 
    1354             :         /*
    1355             :          * Align the end of the region with the LCM of PAGE_SIZE and
    1356             :          * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
    1357             :          * the other.
    1358             :          */
    1359           1 :         lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
    1360           1 :         region_size = ALIGN(start_offset + map_size, lcm_align);
    1361             : 
    1362             :         /* allocate chunk */
    1363           3 :         alloc_size = struct_size(chunk, populated,
    1364             :                                  BITS_TO_LONGS(region_size >> PAGE_SHIFT));
    1365           1 :         chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    1366           1 :         if (!chunk)
    1367           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    1368             :                       alloc_size);
    1369             : 
    1370           2 :         INIT_LIST_HEAD(&chunk->list);
    1371             : 
    1372           1 :         chunk->base_addr = (void *)aligned_addr;
    1373           1 :         chunk->start_offset = start_offset;
    1374           1 :         chunk->end_offset = region_size - chunk->start_offset - map_size;
    1375             : 
    1376           1 :         chunk->nr_pages = region_size >> PAGE_SHIFT;
    1377           1 :         region_bits = pcpu_chunk_map_bits(chunk);
    1378             : 
    1379           1 :         alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
    1380           1 :         chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    1381           1 :         if (!chunk->alloc_map)
    1382           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    1383             :                       alloc_size);
    1384             : 
    1385           1 :         alloc_size =
    1386           1 :                 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
    1387           1 :         chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    1388           1 :         if (!chunk->bound_map)
    1389           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    1390             :                       alloc_size);
    1391             : 
    1392           1 :         alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
    1393           1 :         chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    1394           1 :         if (!chunk->md_blocks)
    1395           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    1396             :                       alloc_size);
    1397             : 
    1398             : #ifdef CONFIG_MEMCG_KMEM
    1399             :         /* first chunk is free to use */
    1400             :         chunk->obj_cgroups = NULL;
    1401             : #endif
    1402           1 :         pcpu_init_md_blocks(chunk);
    1403             : 
    1404             :         /* manage populated page bitmap */
    1405           1 :         chunk->immutable = true;
    1406           2 :         bitmap_fill(chunk->populated, chunk->nr_pages);
    1407           1 :         chunk->nr_populated = chunk->nr_pages;
    1408           1 :         chunk->nr_empty_pop_pages = chunk->nr_pages;
    1409             : 
    1410           1 :         chunk->free_bytes = map_size;
    1411             : 
    1412           1 :         if (chunk->start_offset) {
    1413             :                 /* hide the beginning of the bitmap */
    1414           0 :                 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
    1415           0 :                 bitmap_set(chunk->alloc_map, 0, offset_bits);
    1416           0 :                 set_bit(0, chunk->bound_map);
    1417           0 :                 set_bit(offset_bits, chunk->bound_map);
    1418             : 
    1419           0 :                 chunk->chunk_md.first_free = offset_bits;
    1420             : 
    1421           0 :                 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
    1422             :         }
    1423             : 
    1424           1 :         if (chunk->end_offset) {
    1425             :                 /* hide the end of the bitmap */
    1426           0 :                 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
    1427           0 :                 bitmap_set(chunk->alloc_map,
    1428           0 :                            pcpu_chunk_map_bits(chunk) - offset_bits,
    1429             :                            offset_bits);
    1430           0 :                 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
    1431           0 :                         chunk->bound_map);
    1432           0 :                 set_bit(region_bits, chunk->bound_map);
    1433             : 
    1434           0 :                 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
    1435             :                                              - offset_bits, offset_bits);
    1436             :         }
    1437             : 
    1438           1 :         return chunk;
    1439             : }
    1440             : 
    1441           0 : static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
    1442             : {
    1443             :         struct pcpu_chunk *chunk;
    1444             :         int region_bits;
    1445             : 
    1446           0 :         chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
    1447           0 :         if (!chunk)
    1448             :                 return NULL;
    1449             : 
    1450           0 :         INIT_LIST_HEAD(&chunk->list);
    1451           0 :         chunk->nr_pages = pcpu_unit_pages;
    1452           0 :         region_bits = pcpu_chunk_map_bits(chunk);
    1453             : 
    1454           0 :         chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
    1455             :                                            sizeof(chunk->alloc_map[0]), gfp);
    1456           0 :         if (!chunk->alloc_map)
    1457             :                 goto alloc_map_fail;
    1458             : 
    1459           0 :         chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
    1460             :                                            sizeof(chunk->bound_map[0]), gfp);
    1461           0 :         if (!chunk->bound_map)
    1462             :                 goto bound_map_fail;
    1463             : 
    1464           0 :         chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
    1465             :                                            sizeof(chunk->md_blocks[0]), gfp);
    1466           0 :         if (!chunk->md_blocks)
    1467             :                 goto md_blocks_fail;
    1468             : 
    1469             : #ifdef CONFIG_MEMCG_KMEM
    1470             :         if (!mem_cgroup_kmem_disabled()) {
    1471             :                 chunk->obj_cgroups =
    1472             :                         pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
    1473             :                                         sizeof(struct obj_cgroup *), gfp);
    1474             :                 if (!chunk->obj_cgroups)
    1475             :                         goto objcg_fail;
    1476             :         }
    1477             : #endif
    1478             : 
    1479           0 :         pcpu_init_md_blocks(chunk);
    1480             : 
    1481             :         /* init metadata */
    1482           0 :         chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
    1483             : 
    1484           0 :         return chunk;
    1485             : 
    1486             : #ifdef CONFIG_MEMCG_KMEM
    1487             : objcg_fail:
    1488             :         pcpu_mem_free(chunk->md_blocks);
    1489             : #endif
    1490             : md_blocks_fail:
    1491           0 :         pcpu_mem_free(chunk->bound_map);
    1492             : bound_map_fail:
    1493           0 :         pcpu_mem_free(chunk->alloc_map);
    1494             : alloc_map_fail:
    1495           0 :         pcpu_mem_free(chunk);
    1496             : 
    1497           0 :         return NULL;
    1498             : }
    1499             : 
    1500           0 : static void pcpu_free_chunk(struct pcpu_chunk *chunk)
    1501             : {
    1502           0 :         if (!chunk)
    1503             :                 return;
    1504             : #ifdef CONFIG_MEMCG_KMEM
    1505             :         pcpu_mem_free(chunk->obj_cgroups);
    1506             : #endif
    1507           0 :         pcpu_mem_free(chunk->md_blocks);
    1508           0 :         pcpu_mem_free(chunk->bound_map);
    1509           0 :         pcpu_mem_free(chunk->alloc_map);
    1510             :         pcpu_mem_free(chunk);
    1511             : }
    1512             : 
    1513             : /**
    1514             :  * pcpu_chunk_populated - post-population bookkeeping
    1515             :  * @chunk: pcpu_chunk which got populated
    1516             :  * @page_start: the start page
    1517             :  * @page_end: the end page
    1518             :  *
    1519             :  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
    1520             :  * the bookkeeping information accordingly.  Must be called after each
    1521             :  * successful population.
    1522             :  */
    1523           0 : static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
    1524             :                                  int page_end)
    1525             : {
    1526           0 :         int nr = page_end - page_start;
    1527             : 
    1528             :         lockdep_assert_held(&pcpu_lock);
    1529             : 
    1530           0 :         bitmap_set(chunk->populated, page_start, nr);
    1531           0 :         chunk->nr_populated += nr;
    1532           0 :         pcpu_nr_populated += nr;
    1533             : 
    1534           0 :         pcpu_update_empty_pages(chunk, nr);
    1535           0 : }
    1536             : 
    1537             : /**
    1538             :  * pcpu_chunk_depopulated - post-depopulation bookkeeping
    1539             :  * @chunk: pcpu_chunk which got depopulated
    1540             :  * @page_start: the start page
    1541             :  * @page_end: the end page
    1542             :  *
    1543             :  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
    1544             :  * Update the bookkeeping information accordingly.  Must be called after
    1545             :  * each successful depopulation.
    1546             :  */
    1547           0 : static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
    1548             :                                    int page_start, int page_end)
    1549             : {
    1550           0 :         int nr = page_end - page_start;
    1551             : 
    1552             :         lockdep_assert_held(&pcpu_lock);
    1553             : 
    1554           0 :         bitmap_clear(chunk->populated, page_start, nr);
    1555           0 :         chunk->nr_populated -= nr;
    1556           0 :         pcpu_nr_populated -= nr;
    1557             : 
    1558           0 :         pcpu_update_empty_pages(chunk, -nr);
    1559           0 : }
    1560             : 
    1561             : /*
    1562             :  * Chunk management implementation.
    1563             :  *
    1564             :  * To allow different implementations, chunk alloc/free and
    1565             :  * [de]population are implemented in a separate file which is pulled
    1566             :  * into this file and compiled together.  The following functions
    1567             :  * should be implemented.
    1568             :  *
    1569             :  * pcpu_populate_chunk          - populate the specified range of a chunk
    1570             :  * pcpu_depopulate_chunk        - depopulate the specified range of a chunk
    1571             :  * pcpu_post_unmap_tlb_flush    - flush tlb for the specified range of a chunk
    1572             :  * pcpu_create_chunk            - create a new chunk
    1573             :  * pcpu_destroy_chunk           - destroy a chunk, always preceded by full depop
    1574             :  * pcpu_addr_to_page            - translate address to physical address
    1575             :  * pcpu_verify_alloc_info       - check alloc_info is acceptable during init
    1576             :  */
    1577             : static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
    1578             :                                int page_start, int page_end, gfp_t gfp);
    1579             : static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
    1580             :                                   int page_start, int page_end);
    1581             : static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
    1582             :                                       int page_start, int page_end);
    1583             : static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
    1584             : static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
    1585             : static struct page *pcpu_addr_to_page(void *addr);
    1586             : static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
    1587             : 
    1588             : #ifdef CONFIG_NEED_PER_CPU_KM
    1589             : #include "percpu-km.c"
    1590             : #else
    1591             : #include "percpu-vm.c"
    1592             : #endif
    1593             : 
    1594             : /**
    1595             :  * pcpu_chunk_addr_search - determine chunk containing specified address
    1596             :  * @addr: address for which the chunk needs to be determined.
    1597             :  *
    1598             :  * This is an internal function that handles all but static allocations.
    1599             :  * Static percpu address values should never be passed into the allocator.
    1600             :  *
    1601             :  * RETURNS:
    1602             :  * The address of the found chunk.
    1603             :  */
    1604           0 : static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
    1605             : {
    1606             :         /* is it in the dynamic region (first chunk)? */
    1607           0 :         if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
    1608             :                 return pcpu_first_chunk;
    1609             : 
    1610             :         /* is it in the reserved region? */
    1611           0 :         if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
    1612             :                 return pcpu_reserved_chunk;
    1613             : 
    1614             :         /*
    1615             :          * The address is relative to unit0 which might be unused and
    1616             :          * thus unmapped.  Offset the address to the unit space of the
    1617             :          * current processor before looking it up in the vmalloc
    1618             :          * space.  Note that any possible cpu id can be used here, so
    1619             :          * there's no need to worry about preemption or cpu hotplug.
    1620             :          */
    1621           0 :         addr += pcpu_unit_offsets[raw_smp_processor_id()];
    1622           0 :         return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
    1623             : }
    1624             : 
    1625             : #ifdef CONFIG_MEMCG_KMEM
    1626             : static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
    1627             :                                       struct obj_cgroup **objcgp)
    1628             : {
    1629             :         struct obj_cgroup *objcg;
    1630             : 
    1631             :         if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
    1632             :                 return true;
    1633             : 
    1634             :         objcg = get_obj_cgroup_from_current();
    1635             :         if (!objcg)
    1636             :                 return true;
    1637             : 
    1638             :         if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) {
    1639             :                 obj_cgroup_put(objcg);
    1640             :                 return false;
    1641             :         }
    1642             : 
    1643             :         *objcgp = objcg;
    1644             :         return true;
    1645             : }
    1646             : 
    1647             : static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
    1648             :                                        struct pcpu_chunk *chunk, int off,
    1649             :                                        size_t size)
    1650             : {
    1651             :         if (!objcg)
    1652             :                 return;
    1653             : 
    1654             :         if (likely(chunk && chunk->obj_cgroups)) {
    1655             :                 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
    1656             : 
    1657             :                 rcu_read_lock();
    1658             :                 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
    1659             :                                 pcpu_obj_full_size(size));
    1660             :                 rcu_read_unlock();
    1661             :         } else {
    1662             :                 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
    1663             :                 obj_cgroup_put(objcg);
    1664             :         }
    1665             : }
    1666             : 
    1667             : static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
    1668             : {
    1669             :         struct obj_cgroup *objcg;
    1670             : 
    1671             :         if (unlikely(!chunk->obj_cgroups))
    1672             :                 return;
    1673             : 
    1674             :         objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
    1675             :         if (!objcg)
    1676             :                 return;
    1677             :         chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
    1678             : 
    1679             :         obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
    1680             : 
    1681             :         rcu_read_lock();
    1682             :         mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
    1683             :                         -pcpu_obj_full_size(size));
    1684             :         rcu_read_unlock();
    1685             : 
    1686             :         obj_cgroup_put(objcg);
    1687             : }
    1688             : 
    1689             : #else /* CONFIG_MEMCG_KMEM */
    1690             : static bool
    1691             : pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
    1692             : {
    1693             :         return true;
    1694             : }
    1695             : 
    1696             : static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
    1697             :                                        struct pcpu_chunk *chunk, int off,
    1698             :                                        size_t size)
    1699             : {
    1700             : }
    1701             : 
    1702             : static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
    1703             : {
    1704             : }
    1705             : #endif /* CONFIG_MEMCG_KMEM */
    1706             : 
    1707             : /**
    1708             :  * pcpu_alloc - the percpu allocator
    1709             :  * @size: size of area to allocate in bytes
    1710             :  * @align: alignment of area (max PAGE_SIZE)
    1711             :  * @reserved: allocate from the reserved chunk if available
    1712             :  * @gfp: allocation flags
    1713             :  *
    1714             :  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
    1715             :  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
    1716             :  * then no warning will be triggered on invalid or failed allocation
    1717             :  * requests.
    1718             :  *
    1719             :  * RETURNS:
    1720             :  * Percpu pointer to the allocated area on success, NULL on failure.
    1721             :  */
    1722         238 : static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
    1723             :                                  gfp_t gfp)
    1724             : {
    1725             :         gfp_t pcpu_gfp;
    1726             :         bool is_atomic;
    1727             :         bool do_warn;
    1728         238 :         struct obj_cgroup *objcg = NULL;
    1729             :         static int warn_limit = 10;
    1730             :         struct pcpu_chunk *chunk, *next;
    1731             :         const char *err;
    1732             :         int slot, off, cpu, ret;
    1733             :         unsigned long flags;
    1734             :         void __percpu *ptr;
    1735             :         size_t bits, bit_align;
    1736             : 
    1737         238 :         gfp = current_gfp_context(gfp);
    1738             :         /* whitelisted flags that can be passed to the backing allocators */
    1739         238 :         pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
    1740         238 :         is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
    1741         238 :         do_warn = !(gfp & __GFP_NOWARN);
    1742             : 
    1743             :         /*
    1744             :          * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
    1745             :          * therefore alignment must be a minimum of that many bytes.
    1746             :          * An allocation may have internal fragmentation from rounding up
    1747             :          * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
    1748             :          */
    1749         238 :         if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
    1750           1 :                 align = PCPU_MIN_ALLOC_SIZE;
    1751             : 
    1752         238 :         size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
    1753         238 :         bits = size >> PCPU_MIN_ALLOC_SHIFT;
    1754         238 :         bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
    1755             : 
    1756         476 :         if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
    1757             :                      !is_power_of_2(align))) {
    1758           0 :                 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
    1759             :                      size, align);
    1760             :                 return NULL;
    1761             :         }
    1762             : 
    1763         238 :         if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
    1764             :                 return NULL;
    1765             : 
    1766         238 :         if (!is_atomic) {
    1767             :                 /*
    1768             :                  * pcpu_balance_workfn() allocates memory under this mutex,
    1769             :                  * and it may wait for memory reclaim. Allow current task
    1770             :                  * to become OOM victim, in case of memory pressure.
    1771             :                  */
    1772         238 :                 if (gfp & __GFP_NOFAIL) {
    1773           0 :                         mutex_lock(&pcpu_alloc_mutex);
    1774         238 :                 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
    1775             :                         pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
    1776             :                         return NULL;
    1777             :                 }
    1778             :         }
    1779             : 
    1780         238 :         spin_lock_irqsave(&pcpu_lock, flags);
    1781             : 
    1782             :         /* serve reserved allocations from the reserved chunk if available */
    1783         238 :         if (reserved && pcpu_reserved_chunk) {
    1784           0 :                 chunk = pcpu_reserved_chunk;
    1785             : 
    1786           0 :                 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
    1787           0 :                 if (off < 0) {
    1788             :                         err = "alloc from reserved chunk failed";
    1789             :                         goto fail_unlock;
    1790             :                 }
    1791             : 
    1792           0 :                 off = pcpu_alloc_area(chunk, bits, bit_align, off);
    1793           0 :                 if (off >= 0)
    1794             :                         goto area_found;
    1795             : 
    1796             :                 err = "alloc from reserved chunk failed";
    1797             :                 goto fail_unlock;
    1798             :         }
    1799             : 
    1800             : restart:
    1801             :         /* search through normal chunks */
    1802        2740 :         for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
    1803        2740 :                 list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
    1804             :                                          list) {
    1805         238 :                         off = pcpu_find_block_fit(chunk, bits, bit_align,
    1806             :                                                   is_atomic);
    1807         238 :                         if (off < 0) {
    1808           0 :                                 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
    1809             :                                         pcpu_chunk_move(chunk, 0);
    1810           0 :                                 continue;
    1811             :                         }
    1812             : 
    1813         238 :                         off = pcpu_alloc_area(chunk, bits, bit_align, off);
    1814         238 :                         if (off >= 0) {
    1815         238 :                                 pcpu_reintegrate_chunk(chunk);
    1816         238 :                                 goto area_found;
    1817             :                         }
    1818             :                 }
    1819             :         }
    1820             : 
    1821           0 :         spin_unlock_irqrestore(&pcpu_lock, flags);
    1822             : 
    1823             :         /*
    1824             :          * No space left.  Create a new chunk.  We don't want multiple
    1825             :          * tasks to create chunks simultaneously.  Serialize and create iff
    1826             :          * there's still no empty chunk after grabbing the mutex.
    1827             :          */
    1828           0 :         if (is_atomic) {
    1829             :                 err = "atomic alloc failed, no space left";
    1830             :                 goto fail;
    1831             :         }
    1832             : 
    1833           0 :         if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
    1834           0 :                 chunk = pcpu_create_chunk(pcpu_gfp);
    1835           0 :                 if (!chunk) {
    1836             :                         err = "failed to allocate new chunk";
    1837             :                         goto fail;
    1838             :                 }
    1839             : 
    1840           0 :                 spin_lock_irqsave(&pcpu_lock, flags);
    1841           0 :                 pcpu_chunk_relocate(chunk, -1);
    1842             :         } else {
    1843           0 :                 spin_lock_irqsave(&pcpu_lock, flags);
    1844             :         }
    1845             : 
    1846             :         goto restart;
    1847             : 
    1848             : area_found:
    1849         238 :         pcpu_stats_area_alloc(chunk, size);
    1850         238 :         spin_unlock_irqrestore(&pcpu_lock, flags);
    1851             : 
    1852             :         /* populate if not all pages are already there */
    1853         238 :         if (!is_atomic) {
    1854             :                 unsigned int page_end, rs, re;
    1855             : 
    1856         238 :                 rs = PFN_DOWN(off);
    1857         238 :                 page_end = PFN_UP(off + size);
    1858             : 
    1859         238 :                 for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
    1860           0 :                         WARN_ON(chunk->immutable);
    1861             : 
    1862           0 :                         ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
    1863             : 
    1864           0 :                         spin_lock_irqsave(&pcpu_lock, flags);
    1865             :                         if (ret) {
    1866             :                                 pcpu_free_area(chunk, off);
    1867             :                                 err = "failed to populate";
    1868             :                                 goto fail_unlock;
    1869             :                         }
    1870           0 :                         pcpu_chunk_populated(chunk, rs, re);
    1871           0 :                         spin_unlock_irqrestore(&pcpu_lock, flags);
    1872             :                 }
    1873             : 
    1874         238 :                 mutex_unlock(&pcpu_alloc_mutex);
    1875             :         }
    1876             : 
    1877         238 :         if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
    1878             :                 pcpu_schedule_balance_work();
    1879             : 
    1880             :         /* clear the areas and return address relative to base address */
    1881         238 :         for_each_possible_cpu(cpu)
    1882         476 :                 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
    1883             : 
    1884         238 :         ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
    1885         238 :         kmemleak_alloc_percpu(ptr, size, gfp);
    1886             : 
    1887         238 :         trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
    1888             :                         chunk->base_addr, off, ptr);
    1889             : 
    1890         238 :         pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
    1891             : 
    1892         238 :         return ptr;
    1893             : 
    1894             : fail_unlock:
    1895             :         spin_unlock_irqrestore(&pcpu_lock, flags);
    1896             : fail:
    1897           0 :         trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
    1898             : 
    1899           0 :         if (!is_atomic && do_warn && warn_limit) {
    1900           0 :                 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
    1901             :                         size, align, is_atomic, err);
    1902           0 :                 dump_stack();
    1903           0 :                 if (!--warn_limit)
    1904           0 :                         pr_info("limit reached, disable warning\n");
    1905             :         }
    1906           0 :         if (is_atomic) {
    1907             :                 /* see the flag handling in pcpu_balance_workfn() */
    1908           0 :                 pcpu_atomic_alloc_failed = true;
    1909             :                 pcpu_schedule_balance_work();
    1910             :         } else {
    1911           0 :                 mutex_unlock(&pcpu_alloc_mutex);
    1912             :         }
    1913             : 
    1914             :         pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
    1915             : 
    1916             :         return NULL;
    1917             : }
    1918             : 
    1919             : /**
    1920             :  * __alloc_percpu_gfp - allocate dynamic percpu area
    1921             :  * @size: size of area to allocate in bytes
    1922             :  * @align: alignment of area (max PAGE_SIZE)
    1923             :  * @gfp: allocation flags
    1924             :  *
    1925             :  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
    1926             :  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
    1927             :  * be called from any context but is a lot more likely to fail. If @gfp
    1928             :  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
    1929             :  * allocation requests.
    1930             :  *
    1931             :  * RETURNS:
    1932             :  * Percpu pointer to the allocated area on success, NULL on failure.
    1933             :  */
    1934           0 : void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
    1935             : {
    1936           0 :         return pcpu_alloc(size, align, false, gfp);
    1937             : }
    1938             : EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
    1939             : 
    1940             : /**
    1941             :  * __alloc_percpu - allocate dynamic percpu area
    1942             :  * @size: size of area to allocate in bytes
    1943             :  * @align: alignment of area (max PAGE_SIZE)
    1944             :  *
    1945             :  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
    1946             :  */
    1947         238 : void __percpu *__alloc_percpu(size_t size, size_t align)
    1948             : {
    1949         238 :         return pcpu_alloc(size, align, false, GFP_KERNEL);
    1950             : }
    1951             : EXPORT_SYMBOL_GPL(__alloc_percpu);
    1952             : 
    1953             : /**
    1954             :  * __alloc_reserved_percpu - allocate reserved percpu area
    1955             :  * @size: size of area to allocate in bytes
    1956             :  * @align: alignment of area (max PAGE_SIZE)
    1957             :  *
    1958             :  * Allocate zero-filled percpu area of @size bytes aligned at @align
    1959             :  * from reserved percpu area if arch has set it up; otherwise,
    1960             :  * allocation is served from the same dynamic area.  Might sleep.
    1961             :  * Might trigger writeouts.
    1962             :  *
    1963             :  * CONTEXT:
    1964             :  * Does GFP_KERNEL allocation.
    1965             :  *
    1966             :  * RETURNS:
    1967             :  * Percpu pointer to the allocated area on success, NULL on failure.
    1968             :  */
    1969           0 : void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
    1970             : {
    1971           0 :         return pcpu_alloc(size, align, true, GFP_KERNEL);
    1972             : }
    1973             : 
    1974             : /**
    1975             :  * pcpu_balance_free - manage the amount of free chunks
    1976             :  * @empty_only: free chunks only if there are no populated pages
    1977             :  *
    1978             :  * If empty_only is %false, reclaim all fully free chunks regardless of the
    1979             :  * number of populated pages.  Otherwise, only reclaim chunks that have no
    1980             :  * populated pages.
    1981             :  *
    1982             :  * CONTEXT:
    1983             :  * pcpu_lock (can be dropped temporarily)
    1984             :  */
    1985           0 : static void pcpu_balance_free(bool empty_only)
    1986             : {
    1987           0 :         LIST_HEAD(to_free);
    1988           0 :         struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
    1989             :         struct pcpu_chunk *chunk, *next;
    1990             : 
    1991             :         lockdep_assert_held(&pcpu_lock);
    1992             : 
    1993             :         /*
    1994             :          * There's no reason to keep around multiple unused chunks and VM
    1995             :          * areas can be scarce.  Destroy all free chunks except for one.
    1996             :          */
    1997           0 :         list_for_each_entry_safe(chunk, next, free_head, list) {
    1998           0 :                 WARN_ON(chunk->immutable);
    1999             : 
    2000             :                 /* spare the first one */
    2001           0 :                 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
    2002           0 :                         continue;
    2003             : 
    2004           0 :                 if (!empty_only || chunk->nr_empty_pop_pages == 0)
    2005           0 :                         list_move(&chunk->list, &to_free);
    2006             :         }
    2007             : 
    2008           0 :         if (list_empty(&to_free))
    2009           0 :                 return;
    2010             : 
    2011           0 :         spin_unlock_irq(&pcpu_lock);
    2012           0 :         list_for_each_entry_safe(chunk, next, &to_free, list) {
    2013             :                 unsigned int rs, re;
    2014             : 
    2015           0 :                 for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
    2016           0 :                         pcpu_depopulate_chunk(chunk, rs, re);
    2017           0 :                         spin_lock_irq(&pcpu_lock);
    2018           0 :                         pcpu_chunk_depopulated(chunk, rs, re);
    2019           0 :                         spin_unlock_irq(&pcpu_lock);
    2020             :                 }
    2021           0 :                 pcpu_destroy_chunk(chunk);
    2022           0 :                 cond_resched();
    2023             :         }
    2024           0 :         spin_lock_irq(&pcpu_lock);
    2025             : }
    2026             : 
    2027             : /**
    2028             :  * pcpu_balance_populated - manage the amount of populated pages
    2029             :  *
    2030             :  * Maintain a certain amount of populated pages to satisfy atomic allocations.
    2031             :  * It is possible that this is called when physical memory is scarce causing
    2032             :  * OOM killer to be triggered.  We should avoid doing so until an actual
    2033             :  * allocation causes the failure as it is possible that requests can be
    2034             :  * serviced from already backed regions.
    2035             :  *
    2036             :  * CONTEXT:
    2037             :  * pcpu_lock (can be dropped temporarily)
    2038             :  */
    2039           0 : static void pcpu_balance_populated(void)
    2040             : {
    2041             :         /* gfp flags passed to underlying allocators */
    2042           0 :         const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
    2043             :         struct pcpu_chunk *chunk;
    2044             :         int slot, nr_to_pop, ret;
    2045             : 
    2046             :         lockdep_assert_held(&pcpu_lock);
    2047             : 
    2048             :         /*
    2049             :          * Ensure there are certain number of free populated pages for
    2050             :          * atomic allocs.  Fill up from the most packed so that atomic
    2051             :          * allocs don't increase fragmentation.  If atomic allocation
    2052             :          * failed previously, always populate the maximum amount.  This
    2053             :          * should prevent atomic allocs larger than PAGE_SIZE from keeping
    2054             :          * failing indefinitely; however, large atomic allocs are not
    2055             :          * something we support properly and can be highly unreliable and
    2056             :          * inefficient.
    2057             :          */
    2058             : retry_pop:
    2059           0 :         if (pcpu_atomic_alloc_failed) {
    2060           0 :                 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
    2061             :                 /* best effort anyway, don't worry about synchronization */
    2062           0 :                 pcpu_atomic_alloc_failed = false;
    2063             :         } else {
    2064           0 :                 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
    2065             :                                   pcpu_nr_empty_pop_pages,
    2066             :                                   0, PCPU_EMPTY_POP_PAGES_HIGH);
    2067             :         }
    2068             : 
    2069           0 :         for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
    2070           0 :                 unsigned int nr_unpop = 0, rs, re;
    2071             : 
    2072           0 :                 if (!nr_to_pop)
    2073             :                         break;
    2074             : 
    2075           0 :                 list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
    2076           0 :                         nr_unpop = chunk->nr_pages - chunk->nr_populated;
    2077           0 :                         if (nr_unpop)
    2078             :                                 break;
    2079             :                 }
    2080             : 
    2081           0 :                 if (!nr_unpop)
    2082           0 :                         continue;
    2083             : 
    2084             :                 /* @chunk can't go away while pcpu_alloc_mutex is held */
    2085           0 :                 for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
    2086           0 :                         int nr = min_t(int, re - rs, nr_to_pop);
    2087             : 
    2088           0 :                         spin_unlock_irq(&pcpu_lock);
    2089           0 :                         ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
    2090           0 :                         cond_resched();
    2091           0 :                         spin_lock_irq(&pcpu_lock);
    2092             :                         if (!ret) {
    2093           0 :                                 nr_to_pop -= nr;
    2094           0 :                                 pcpu_chunk_populated(chunk, rs, rs + nr);
    2095             :                         } else {
    2096             :                                 nr_to_pop = 0;
    2097             :                         }
    2098             : 
    2099           0 :                         if (!nr_to_pop)
    2100             :                                 break;
    2101             :                 }
    2102             :         }
    2103             : 
    2104           0 :         if (nr_to_pop) {
    2105             :                 /* ran out of chunks to populate, create a new one and retry */
    2106           0 :                 spin_unlock_irq(&pcpu_lock);
    2107           0 :                 chunk = pcpu_create_chunk(gfp);
    2108           0 :                 cond_resched();
    2109           0 :                 spin_lock_irq(&pcpu_lock);
    2110           0 :                 if (chunk) {
    2111           0 :                         pcpu_chunk_relocate(chunk, -1);
    2112           0 :                         goto retry_pop;
    2113             :                 }
    2114             :         }
    2115           0 : }
    2116             : 
    2117             : /**
    2118             :  * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
    2119             :  *
    2120             :  * Scan over chunks in the depopulate list and try to release unused populated
    2121             :  * pages back to the system.  Depopulated chunks are sidelined to prevent
    2122             :  * repopulating these pages unless required.  Fully free chunks are reintegrated
    2123             :  * and freed accordingly (1 is kept around).  If we drop below the empty
    2124             :  * populated pages threshold, reintegrate the chunk if it has empty free pages.
    2125             :  * Each chunk is scanned in the reverse order to keep populated pages close to
    2126             :  * the beginning of the chunk.
    2127             :  *
    2128             :  * CONTEXT:
    2129             :  * pcpu_lock (can be dropped temporarily)
    2130             :  *
    2131             :  */
    2132           0 : static void pcpu_reclaim_populated(void)
    2133             : {
    2134             :         struct pcpu_chunk *chunk;
    2135             :         struct pcpu_block_md *block;
    2136             :         int freed_page_start, freed_page_end;
    2137             :         int i, end;
    2138             :         bool reintegrate;
    2139             : 
    2140             :         lockdep_assert_held(&pcpu_lock);
    2141             : 
    2142             :         /*
    2143             :          * Once a chunk is isolated to the to_depopulate list, the chunk is no
    2144             :          * longer discoverable to allocations whom may populate pages.  The only
    2145             :          * other accessor is the free path which only returns area back to the
    2146             :          * allocator not touching the populated bitmap.
    2147             :          */
    2148           0 :         while (!list_empty(&pcpu_chunk_lists[pcpu_to_depopulate_slot])) {
    2149           0 :                 chunk = list_first_entry(&pcpu_chunk_lists[pcpu_to_depopulate_slot],
    2150             :                                          struct pcpu_chunk, list);
    2151           0 :                 WARN_ON(chunk->immutable);
    2152             : 
    2153             :                 /*
    2154             :                  * Scan chunk's pages in the reverse order to keep populated
    2155             :                  * pages close to the beginning of the chunk.
    2156             :                  */
    2157           0 :                 freed_page_start = chunk->nr_pages;
    2158           0 :                 freed_page_end = 0;
    2159           0 :                 reintegrate = false;
    2160           0 :                 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
    2161             :                         /* no more work to do */
    2162           0 :                         if (chunk->nr_empty_pop_pages == 0)
    2163             :                                 break;
    2164             : 
    2165             :                         /* reintegrate chunk to prevent atomic alloc failures */
    2166           0 :                         if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
    2167             :                                 reintegrate = true;
    2168             :                                 goto end_chunk;
    2169             :                         }
    2170             : 
    2171             :                         /*
    2172             :                          * If the page is empty and populated, start or
    2173             :                          * extend the (i, end) range.  If i == 0, decrease
    2174             :                          * i and perform the depopulation to cover the last
    2175             :                          * (first) page in the chunk.
    2176             :                          */
    2177           0 :                         block = chunk->md_blocks + i;
    2178           0 :                         if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
    2179           0 :                             test_bit(i, chunk->populated)) {
    2180           0 :                                 if (end == -1)
    2181           0 :                                         end = i;
    2182           0 :                                 if (i > 0)
    2183           0 :                                         continue;
    2184           0 :                                 i--;
    2185             :                         }
    2186             : 
    2187             :                         /* depopulate if there is an active range */
    2188           0 :                         if (end == -1)
    2189           0 :                                 continue;
    2190             : 
    2191           0 :                         spin_unlock_irq(&pcpu_lock);
    2192           0 :                         pcpu_depopulate_chunk(chunk, i + 1, end + 1);
    2193           0 :                         cond_resched();
    2194           0 :                         spin_lock_irq(&pcpu_lock);
    2195             : 
    2196           0 :                         pcpu_chunk_depopulated(chunk, i + 1, end + 1);
    2197           0 :                         freed_page_start = min(freed_page_start, i + 1);
    2198           0 :                         freed_page_end = max(freed_page_end, end + 1);
    2199             : 
    2200             :                         /* reset the range and continue */
    2201           0 :                         end = -1;
    2202             :                 }
    2203             : 
    2204             : end_chunk:
    2205             :                 /* batch tlb flush per chunk to amortize cost */
    2206           0 :                 if (freed_page_start < freed_page_end) {
    2207           0 :                         spin_unlock_irq(&pcpu_lock);
    2208           0 :                         pcpu_post_unmap_tlb_flush(chunk,
    2209             :                                                   freed_page_start,
    2210             :                                                   freed_page_end);
    2211           0 :                         cond_resched();
    2212             :                         spin_lock_irq(&pcpu_lock);
    2213             :                 }
    2214             : 
    2215           0 :                 if (reintegrate || chunk->free_bytes == pcpu_unit_size)
    2216           0 :                         pcpu_reintegrate_chunk(chunk);
    2217             :                 else
    2218           0 :                         list_move_tail(&chunk->list,
    2219           0 :                                        &pcpu_chunk_lists[pcpu_sidelined_slot]);
    2220             :         }
    2221           0 : }
    2222             : 
    2223             : /**
    2224             :  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
    2225             :  * @work: unused
    2226             :  *
    2227             :  * For each chunk type, manage the number of fully free chunks and the number of
    2228             :  * populated pages.  An important thing to consider is when pages are freed and
    2229             :  * how they contribute to the global counts.
    2230             :  */
    2231           0 : static void pcpu_balance_workfn(struct work_struct *work)
    2232             : {
    2233             :         /*
    2234             :          * pcpu_balance_free() is called twice because the first time we may
    2235             :          * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
    2236             :          * to grow other chunks.  This then gives pcpu_reclaim_populated() time
    2237             :          * to move fully free chunks to the active list to be freed if
    2238             :          * appropriate.
    2239             :          */
    2240           0 :         mutex_lock(&pcpu_alloc_mutex);
    2241           0 :         spin_lock_irq(&pcpu_lock);
    2242             : 
    2243           0 :         pcpu_balance_free(false);
    2244           0 :         pcpu_reclaim_populated();
    2245           0 :         pcpu_balance_populated();
    2246           0 :         pcpu_balance_free(true);
    2247             : 
    2248           0 :         spin_unlock_irq(&pcpu_lock);
    2249           0 :         mutex_unlock(&pcpu_alloc_mutex);
    2250           0 : }
    2251             : 
    2252             : /**
    2253             :  * free_percpu - free percpu area
    2254             :  * @ptr: pointer to area to free
    2255             :  *
    2256             :  * Free percpu area @ptr.
    2257             :  *
    2258             :  * CONTEXT:
    2259             :  * Can be called from atomic context.
    2260             :  */
    2261           0 : void free_percpu(void __percpu *ptr)
    2262             : {
    2263             :         void *addr;
    2264             :         struct pcpu_chunk *chunk;
    2265             :         unsigned long flags;
    2266             :         int size, off;
    2267           0 :         bool need_balance = false;
    2268             : 
    2269           0 :         if (!ptr)
    2270             :                 return;
    2271             : 
    2272           0 :         kmemleak_free_percpu(ptr);
    2273             : 
    2274           0 :         addr = __pcpu_ptr_to_addr(ptr);
    2275             : 
    2276           0 :         spin_lock_irqsave(&pcpu_lock, flags);
    2277             : 
    2278           0 :         chunk = pcpu_chunk_addr_search(addr);
    2279           0 :         off = addr - chunk->base_addr;
    2280             : 
    2281           0 :         size = pcpu_free_area(chunk, off);
    2282             : 
    2283           0 :         pcpu_memcg_free_hook(chunk, off, size);
    2284             : 
    2285             :         /*
    2286             :          * If there are more than one fully free chunks, wake up grim reaper.
    2287             :          * If the chunk is isolated, it may be in the process of being
    2288             :          * reclaimed.  Let reclaim manage cleaning up of that chunk.
    2289             :          */
    2290           0 :         if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
    2291             :                 struct pcpu_chunk *pos;
    2292             : 
    2293           0 :                 list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
    2294           0 :                         if (pos != chunk) {
    2295             :                                 need_balance = true;
    2296             :                                 break;
    2297             :                         }
    2298             :         } else if (pcpu_should_reclaim_chunk(chunk)) {
    2299             :                 pcpu_isolate_chunk(chunk);
    2300             :                 need_balance = true;
    2301             :         }
    2302             : 
    2303           0 :         trace_percpu_free_percpu(chunk->base_addr, off, ptr);
    2304             : 
    2305           0 :         spin_unlock_irqrestore(&pcpu_lock, flags);
    2306             : 
    2307           0 :         if (need_balance)
    2308             :                 pcpu_schedule_balance_work();
    2309             : }
    2310             : EXPORT_SYMBOL_GPL(free_percpu);
    2311             : 
    2312           0 : bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
    2313             : {
    2314             : #ifdef CONFIG_SMP
    2315             :         const size_t static_size = __per_cpu_end - __per_cpu_start;
    2316             :         void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
    2317             :         unsigned int cpu;
    2318             : 
    2319             :         for_each_possible_cpu(cpu) {
    2320             :                 void *start = per_cpu_ptr(base, cpu);
    2321             :                 void *va = (void *)addr;
    2322             : 
    2323             :                 if (va >= start && va < start + static_size) {
    2324             :                         if (can_addr) {
    2325             :                                 *can_addr = (unsigned long) (va - start);
    2326             :                                 *can_addr += (unsigned long)
    2327             :                                         per_cpu_ptr(base, get_boot_cpu_id());
    2328             :                         }
    2329             :                         return true;
    2330             :                 }
    2331             :         }
    2332             : #endif
    2333             :         /* on UP, can't distinguish from other static vars, always false */
    2334           0 :         return false;
    2335             : }
    2336             : 
    2337             : /**
    2338             :  * is_kernel_percpu_address - test whether address is from static percpu area
    2339             :  * @addr: address to test
    2340             :  *
    2341             :  * Test whether @addr belongs to in-kernel static percpu area.  Module
    2342             :  * static percpu areas are not considered.  For those, use
    2343             :  * is_module_percpu_address().
    2344             :  *
    2345             :  * RETURNS:
    2346             :  * %true if @addr is from in-kernel static percpu area, %false otherwise.
    2347             :  */
    2348           0 : bool is_kernel_percpu_address(unsigned long addr)
    2349             : {
    2350           0 :         return __is_kernel_percpu_address(addr, NULL);
    2351             : }
    2352             : 
    2353             : /**
    2354             :  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
    2355             :  * @addr: the address to be converted to physical address
    2356             :  *
    2357             :  * Given @addr which is dereferenceable address obtained via one of
    2358             :  * percpu access macros, this function translates it into its physical
    2359             :  * address.  The caller is responsible for ensuring @addr stays valid
    2360             :  * until this function finishes.
    2361             :  *
    2362             :  * percpu allocator has special setup for the first chunk, which currently
    2363             :  * supports either embedding in linear address space or vmalloc mapping,
    2364             :  * and, from the second one, the backing allocator (currently either vm or
    2365             :  * km) provides translation.
    2366             :  *
    2367             :  * The addr can be translated simply without checking if it falls into the
    2368             :  * first chunk. But the current code reflects better how percpu allocator
    2369             :  * actually works, and the verification can discover both bugs in percpu
    2370             :  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
    2371             :  * code.
    2372             :  *
    2373             :  * RETURNS:
    2374             :  * The physical address for @addr.
    2375             :  */
    2376           0 : phys_addr_t per_cpu_ptr_to_phys(void *addr)
    2377             : {
    2378           0 :         void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
    2379           0 :         bool in_first_chunk = false;
    2380             :         unsigned long first_low, first_high;
    2381             :         unsigned int cpu;
    2382             : 
    2383             :         /*
    2384             :          * The following test on unit_low/high isn't strictly
    2385             :          * necessary but will speed up lookups of addresses which
    2386             :          * aren't in the first chunk.
    2387             :          *
    2388             :          * The address check is against full chunk sizes.  pcpu_base_addr
    2389             :          * points to the beginning of the first chunk including the
    2390             :          * static region.  Assumes good intent as the first chunk may
    2391             :          * not be full (ie. < pcpu_unit_pages in size).
    2392             :          */
    2393           0 :         first_low = (unsigned long)pcpu_base_addr +
    2394           0 :                     pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
    2395           0 :         first_high = (unsigned long)pcpu_base_addr +
    2396           0 :                      pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
    2397           0 :         if ((unsigned long)addr >= first_low &&
    2398           0 :             (unsigned long)addr < first_high) {
    2399           0 :                 for_each_possible_cpu(cpu) {
    2400           0 :                         void *start = per_cpu_ptr(base, cpu);
    2401             : 
    2402           0 :                         if (addr >= start && addr < start + pcpu_unit_size) {
    2403             :                                 in_first_chunk = true;
    2404             :                                 break;
    2405             :                         }
    2406             :                 }
    2407             :         }
    2408             : 
    2409           0 :         if (in_first_chunk) {
    2410           0 :                 if (!is_vmalloc_addr(addr))
    2411           0 :                         return __pa(addr);
    2412             :                 else
    2413           0 :                         return page_to_phys(vmalloc_to_page(addr)) +
    2414           0 :                                offset_in_page(addr);
    2415             :         } else
    2416           0 :                 return page_to_phys(pcpu_addr_to_page(addr)) +
    2417           0 :                        offset_in_page(addr);
    2418             : }
    2419             : 
    2420             : /**
    2421             :  * pcpu_alloc_alloc_info - allocate percpu allocation info
    2422             :  * @nr_groups: the number of groups
    2423             :  * @nr_units: the number of units
    2424             :  *
    2425             :  * Allocate ai which is large enough for @nr_groups groups containing
    2426             :  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
    2427             :  * cpu_map array which is long enough for @nr_units and filled with
    2428             :  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
    2429             :  * pointer of other groups.
    2430             :  *
    2431             :  * RETURNS:
    2432             :  * Pointer to the allocated pcpu_alloc_info on success, NULL on
    2433             :  * failure.
    2434             :  */
    2435           1 : struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
    2436             :                                                       int nr_units)
    2437             : {
    2438             :         struct pcpu_alloc_info *ai;
    2439             :         size_t base_size, ai_size;
    2440             :         void *ptr;
    2441             :         int unit;
    2442             : 
    2443           3 :         base_size = ALIGN(struct_size(ai, groups, nr_groups),
    2444             :                           __alignof__(ai->groups[0].cpu_map[0]));
    2445           1 :         ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
    2446             : 
    2447           2 :         ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
    2448           1 :         if (!ptr)
    2449             :                 return NULL;
    2450           1 :         ai = ptr;
    2451           1 :         ptr += base_size;
    2452             : 
    2453           1 :         ai->groups[0].cpu_map = ptr;
    2454             : 
    2455           2 :         for (unit = 0; unit < nr_units; unit++)
    2456           1 :                 ai->groups[0].cpu_map[unit] = NR_CPUS;
    2457             : 
    2458           1 :         ai->nr_groups = nr_groups;
    2459           1 :         ai->__ai_size = PFN_ALIGN(ai_size);
    2460             : 
    2461           1 :         return ai;
    2462             : }
    2463             : 
    2464             : /**
    2465             :  * pcpu_free_alloc_info - free percpu allocation info
    2466             :  * @ai: pcpu_alloc_info to free
    2467             :  *
    2468             :  * Free @ai which was allocated by pcpu_alloc_alloc_info().
    2469             :  */
    2470           1 : void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
    2471             : {
    2472           1 :         memblock_free(ai, ai->__ai_size);
    2473           1 : }
    2474             : 
    2475             : /**
    2476             :  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
    2477             :  * @lvl: loglevel
    2478             :  * @ai: allocation info to dump
    2479             :  *
    2480             :  * Print out information about @ai using loglevel @lvl.
    2481             :  */
    2482           1 : static void pcpu_dump_alloc_info(const char *lvl,
    2483             :                                  const struct pcpu_alloc_info *ai)
    2484             : {
    2485           1 :         int group_width = 1, cpu_width = 1, width;
    2486           1 :         char empty_str[] = "--------";
    2487           1 :         int alloc = 0, alloc_end = 0;
    2488             :         int group, v;
    2489             :         int upa, apl;   /* units per alloc, allocs per line */
    2490             : 
    2491           1 :         v = ai->nr_groups;
    2492           2 :         while (v /= 10)
    2493           0 :                 group_width++;
    2494             : 
    2495           1 :         v = num_possible_cpus();
    2496           1 :         while (v /= 10)
    2497             :                 cpu_width++;
    2498           1 :         empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
    2499             : 
    2500           1 :         upa = ai->alloc_size / ai->unit_size;
    2501           1 :         width = upa * (cpu_width + 1) + group_width + 3;
    2502           2 :         apl = rounddown_pow_of_two(max(60 / width, 1));
    2503             : 
    2504           1 :         printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
    2505             :                lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
    2506             :                ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
    2507             : 
    2508           2 :         for (group = 0; group < ai->nr_groups; group++) {
    2509           1 :                 const struct pcpu_group_info *gi = &ai->groups[group];
    2510           1 :                 int unit = 0, unit_end = 0;
    2511             : 
    2512           1 :                 BUG_ON(gi->nr_units % upa);
    2513           3 :                 for (alloc_end += gi->nr_units / upa;
    2514           1 :                      alloc < alloc_end; alloc++) {
    2515           1 :                         if (!(alloc % apl)) {
    2516           1 :                                 pr_cont("\n");
    2517           1 :                                 printk("%spcpu-alloc: ", lvl);
    2518             :                         }
    2519           1 :                         pr_cont("[%0*d] ", group_width, group);
    2520             : 
    2521           2 :                         for (unit_end += upa; unit < unit_end; unit++)
    2522           1 :                                 if (gi->cpu_map[unit] != NR_CPUS)
    2523           1 :                                         pr_cont("%0*d ",
    2524             :                                                 cpu_width, gi->cpu_map[unit]);
    2525             :                                 else
    2526           0 :                                         pr_cont("%s ", empty_str);
    2527             :                 }
    2528             :         }
    2529           1 :         pr_cont("\n");
    2530           1 : }
    2531             : 
    2532             : /**
    2533             :  * pcpu_setup_first_chunk - initialize the first percpu chunk
    2534             :  * @ai: pcpu_alloc_info describing how to percpu area is shaped
    2535             :  * @base_addr: mapped address
    2536             :  *
    2537             :  * Initialize the first percpu chunk which contains the kernel static
    2538             :  * percpu area.  This function is to be called from arch percpu area
    2539             :  * setup path.
    2540             :  *
    2541             :  * @ai contains all information necessary to initialize the first
    2542             :  * chunk and prime the dynamic percpu allocator.
    2543             :  *
    2544             :  * @ai->static_size is the size of static percpu area.
    2545             :  *
    2546             :  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
    2547             :  * reserve after the static area in the first chunk.  This reserves
    2548             :  * the first chunk such that it's available only through reserved
    2549             :  * percpu allocation.  This is primarily used to serve module percpu
    2550             :  * static areas on architectures where the addressing model has
    2551             :  * limited offset range for symbol relocations to guarantee module
    2552             :  * percpu symbols fall inside the relocatable range.
    2553             :  *
    2554             :  * @ai->dyn_size determines the number of bytes available for dynamic
    2555             :  * allocation in the first chunk.  The area between @ai->static_size +
    2556             :  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
    2557             :  *
    2558             :  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
    2559             :  * and equal to or larger than @ai->static_size + @ai->reserved_size +
    2560             :  * @ai->dyn_size.
    2561             :  *
    2562             :  * @ai->atom_size is the allocation atom size and used as alignment
    2563             :  * for vm areas.
    2564             :  *
    2565             :  * @ai->alloc_size is the allocation size and always multiple of
    2566             :  * @ai->atom_size.  This is larger than @ai->atom_size if
    2567             :  * @ai->unit_size is larger than @ai->atom_size.
    2568             :  *
    2569             :  * @ai->nr_groups and @ai->groups describe virtual memory layout of
    2570             :  * percpu areas.  Units which should be colocated are put into the
    2571             :  * same group.  Dynamic VM areas will be allocated according to these
    2572             :  * groupings.  If @ai->nr_groups is zero, a single group containing
    2573             :  * all units is assumed.
    2574             :  *
    2575             :  * The caller should have mapped the first chunk at @base_addr and
    2576             :  * copied static data to each unit.
    2577             :  *
    2578             :  * The first chunk will always contain a static and a dynamic region.
    2579             :  * However, the static region is not managed by any chunk.  If the first
    2580             :  * chunk also contains a reserved region, it is served by two chunks -
    2581             :  * one for the reserved region and one for the dynamic region.  They
    2582             :  * share the same vm, but use offset regions in the area allocation map.
    2583             :  * The chunk serving the dynamic region is circulated in the chunk slots
    2584             :  * and available for dynamic allocation like any other chunk.
    2585             :  */
    2586           1 : void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
    2587             :                                    void *base_addr)
    2588             : {
    2589           1 :         size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
    2590             :         size_t static_size, dyn_size;
    2591             :         struct pcpu_chunk *chunk;
    2592             :         unsigned long *group_offsets;
    2593             :         size_t *group_sizes;
    2594             :         unsigned long *unit_off;
    2595             :         unsigned int cpu;
    2596             :         int *unit_map;
    2597             :         int group, unit, i;
    2598             :         int map_size;
    2599             :         unsigned long tmp_addr;
    2600             :         size_t alloc_size;
    2601             : 
    2602             : #define PCPU_SETUP_BUG_ON(cond) do {                                    \
    2603             :         if (unlikely(cond)) {                                           \
    2604             :                 pr_emerg("failed to initialize, %s\n", #cond);                \
    2605             :                 pr_emerg("cpu_possible_mask=%*pb\n",                  \
    2606             :                          cpumask_pr_args(cpu_possible_mask));           \
    2607             :                 pcpu_dump_alloc_info(KERN_EMERG, ai);                   \
    2608             :                 BUG();                                                  \
    2609             :         }                                                               \
    2610             : } while (0)
    2611             : 
    2612             :         /* sanity checks */
    2613           1 :         PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
    2614             : #ifdef CONFIG_SMP
    2615             :         PCPU_SETUP_BUG_ON(!ai->static_size);
    2616             :         PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
    2617             : #endif
    2618           1 :         PCPU_SETUP_BUG_ON(!base_addr);
    2619           1 :         PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
    2620           1 :         PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
    2621           1 :         PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
    2622           1 :         PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
    2623             :         PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
    2624           1 :         PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
    2625           1 :         PCPU_SETUP_BUG_ON(!ai->dyn_size);
    2626           1 :         PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
    2627             :         PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
    2628             :                             IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
    2629           1 :         PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
    2630             : 
    2631             :         /* process group information and build config tables accordingly */
    2632           1 :         alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
    2633           1 :         group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    2634           1 :         if (!group_offsets)
    2635           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    2636             :                       alloc_size);
    2637             : 
    2638           1 :         alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
    2639           1 :         group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    2640           1 :         if (!group_sizes)
    2641           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    2642             :                       alloc_size);
    2643             : 
    2644           1 :         alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
    2645           1 :         unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    2646           1 :         if (!unit_map)
    2647           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    2648             :                       alloc_size);
    2649             : 
    2650           1 :         alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
    2651           1 :         unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
    2652           1 :         if (!unit_off)
    2653           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    2654             :                       alloc_size);
    2655             : 
    2656           1 :         for (cpu = 0; cpu < nr_cpu_ids; cpu++)
    2657           1 :                 unit_map[cpu] = UINT_MAX;
    2658             : 
    2659           1 :         pcpu_low_unit_cpu = NR_CPUS;
    2660           1 :         pcpu_high_unit_cpu = NR_CPUS;
    2661             : 
    2662           2 :         for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
    2663           1 :                 const struct pcpu_group_info *gi = &ai->groups[group];
    2664             : 
    2665           1 :                 group_offsets[group] = gi->base_offset;
    2666           1 :                 group_sizes[group] = gi->nr_units * ai->unit_size;
    2667             : 
    2668           2 :                 for (i = 0; i < gi->nr_units; i++) {
    2669           1 :                         cpu = gi->cpu_map[i];
    2670           1 :                         if (cpu == NR_CPUS)
    2671           0 :                                 continue;
    2672             : 
    2673           1 :                         PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
    2674           1 :                         PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
    2675           1 :                         PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
    2676             : 
    2677           1 :                         unit_map[cpu] = unit + i;
    2678           1 :                         unit_off[cpu] = gi->base_offset + i * ai->unit_size;
    2679             : 
    2680             :                         /* determine low/high unit_cpu */
    2681           1 :                         if (pcpu_low_unit_cpu == NR_CPUS ||
    2682           0 :                             unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
    2683           1 :                                 pcpu_low_unit_cpu = cpu;
    2684           1 :                         if (pcpu_high_unit_cpu == NR_CPUS ||
    2685           0 :                             unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
    2686           1 :                                 pcpu_high_unit_cpu = cpu;
    2687             :                 }
    2688             :         }
    2689           1 :         pcpu_nr_units = unit;
    2690             : 
    2691           2 :         for_each_possible_cpu(cpu)
    2692           1 :                 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
    2693             : 
    2694             :         /* we're done parsing the input, undefine BUG macro and dump config */
    2695             : #undef PCPU_SETUP_BUG_ON
    2696           1 :         pcpu_dump_alloc_info(KERN_DEBUG, ai);
    2697             : 
    2698           1 :         pcpu_nr_groups = ai->nr_groups;
    2699           1 :         pcpu_group_offsets = group_offsets;
    2700           1 :         pcpu_group_sizes = group_sizes;
    2701           1 :         pcpu_unit_map = unit_map;
    2702           1 :         pcpu_unit_offsets = unit_off;
    2703             : 
    2704             :         /* determine basic parameters */
    2705           1 :         pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
    2706           1 :         pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
    2707           1 :         pcpu_atom_size = ai->atom_size;
    2708           3 :         pcpu_chunk_struct_size = struct_size(chunk, populated,
    2709             :                                              BITS_TO_LONGS(pcpu_unit_pages));
    2710             : 
    2711           1 :         pcpu_stats_save_ai(ai);
    2712             : 
    2713             :         /*
    2714             :          * Allocate chunk slots.  The slots after the active slots are:
    2715             :          *   sidelined_slot - isolated, depopulated chunks
    2716             :          *   free_slot - fully free chunks
    2717             :          *   to_depopulate_slot - isolated, chunks to depopulate
    2718             :          */
    2719           2 :         pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
    2720           1 :         pcpu_free_slot = pcpu_sidelined_slot + 1;
    2721           1 :         pcpu_to_depopulate_slot = pcpu_free_slot + 1;
    2722           1 :         pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
    2723           2 :         pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
    2724             :                                           sizeof(pcpu_chunk_lists[0]),
    2725             :                                           SMP_CACHE_BYTES);
    2726           1 :         if (!pcpu_chunk_lists)
    2727           0 :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    2728             :                       pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
    2729             : 
    2730          17 :         for (i = 0; i < pcpu_nr_slots; i++)
    2731          34 :                 INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
    2732             : 
    2733             :         /*
    2734             :          * The end of the static region needs to be aligned with the
    2735             :          * minimum allocation size as this offsets the reserved and
    2736             :          * dynamic region.  The first chunk ends page aligned by
    2737             :          * expanding the dynamic region, therefore the dynamic region
    2738             :          * can be shrunk to compensate while still staying above the
    2739             :          * configured sizes.
    2740             :          */
    2741           1 :         static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
    2742           1 :         dyn_size = ai->dyn_size - (static_size - ai->static_size);
    2743             : 
    2744             :         /*
    2745             :          * Initialize first chunk.
    2746             :          * If the reserved_size is non-zero, this initializes the reserved
    2747             :          * chunk.  If the reserved_size is zero, the reserved chunk is NULL
    2748             :          * and the dynamic region is initialized here.  The first chunk,
    2749             :          * pcpu_first_chunk, will always point to the chunk that serves
    2750             :          * the dynamic region.
    2751             :          */
    2752           1 :         tmp_addr = (unsigned long)base_addr + static_size;
    2753           1 :         map_size = ai->reserved_size ?: dyn_size;
    2754           1 :         chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
    2755             : 
    2756             :         /* init dynamic chunk if necessary */
    2757           1 :         if (ai->reserved_size) {
    2758           0 :                 pcpu_reserved_chunk = chunk;
    2759             : 
    2760           0 :                 tmp_addr = (unsigned long)base_addr + static_size +
    2761             :                            ai->reserved_size;
    2762           0 :                 map_size = dyn_size;
    2763           0 :                 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
    2764             :         }
    2765             : 
    2766             :         /* link the first chunk in */
    2767           1 :         pcpu_first_chunk = chunk;
    2768           1 :         pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
    2769           1 :         pcpu_chunk_relocate(pcpu_first_chunk, -1);
    2770             : 
    2771             :         /* include all regions of the first chunk */
    2772           1 :         pcpu_nr_populated += PFN_DOWN(size_sum);
    2773             : 
    2774             :         pcpu_stats_chunk_alloc();
    2775           1 :         trace_percpu_create_chunk(base_addr);
    2776             : 
    2777             :         /* we're done */
    2778           1 :         pcpu_base_addr = base_addr;
    2779           1 : }
    2780             : 
    2781             : #ifdef CONFIG_SMP
    2782             : 
    2783             : const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
    2784             :         [PCPU_FC_AUTO]  = "auto",
    2785             :         [PCPU_FC_EMBED] = "embed",
    2786             :         [PCPU_FC_PAGE]  = "page",
    2787             : };
    2788             : 
    2789             : enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
    2790             : 
    2791             : static int __init percpu_alloc_setup(char *str)
    2792             : {
    2793             :         if (!str)
    2794             :                 return -EINVAL;
    2795             : 
    2796             :         if (0)
    2797             :                 /* nada */;
    2798             : #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
    2799             :         else if (!strcmp(str, "embed"))
    2800             :                 pcpu_chosen_fc = PCPU_FC_EMBED;
    2801             : #endif
    2802             : #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
    2803             :         else if (!strcmp(str, "page"))
    2804             :                 pcpu_chosen_fc = PCPU_FC_PAGE;
    2805             : #endif
    2806             :         else
    2807             :                 pr_warn("unknown allocator %s specified\n", str);
    2808             : 
    2809             :         return 0;
    2810             : }
    2811             : early_param("percpu_alloc", percpu_alloc_setup);
    2812             : 
    2813             : /*
    2814             :  * pcpu_embed_first_chunk() is used by the generic percpu setup.
    2815             :  * Build it if needed by the arch config or the generic setup is going
    2816             :  * to be used.
    2817             :  */
    2818             : #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
    2819             :         !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
    2820             : #define BUILD_EMBED_FIRST_CHUNK
    2821             : #endif
    2822             : 
    2823             : /* build pcpu_page_first_chunk() iff needed by the arch config */
    2824             : #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
    2825             : #define BUILD_PAGE_FIRST_CHUNK
    2826             : #endif
    2827             : 
    2828             : /* pcpu_build_alloc_info() is used by both embed and page first chunk */
    2829             : #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
    2830             : /**
    2831             :  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
    2832             :  * @reserved_size: the size of reserved percpu area in bytes
    2833             :  * @dyn_size: minimum free size for dynamic allocation in bytes
    2834             :  * @atom_size: allocation atom size
    2835             :  * @cpu_distance_fn: callback to determine distance between cpus, optional
    2836             :  *
    2837             :  * This function determines grouping of units, their mappings to cpus
    2838             :  * and other parameters considering needed percpu size, allocation
    2839             :  * atom size and distances between CPUs.
    2840             :  *
    2841             :  * Groups are always multiples of atom size and CPUs which are of
    2842             :  * LOCAL_DISTANCE both ways are grouped together and share space for
    2843             :  * units in the same group.  The returned configuration is guaranteed
    2844             :  * to have CPUs on different nodes on different groups and >=75% usage
    2845             :  * of allocated virtual address space.
    2846             :  *
    2847             :  * RETURNS:
    2848             :  * On success, pointer to the new allocation_info is returned.  On
    2849             :  * failure, ERR_PTR value is returned.
    2850             :  */
    2851             : static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
    2852             :                                 size_t reserved_size, size_t dyn_size,
    2853             :                                 size_t atom_size,
    2854             :                                 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
    2855             : {
    2856             :         static int group_map[NR_CPUS] __initdata;
    2857             :         static int group_cnt[NR_CPUS] __initdata;
    2858             :         static struct cpumask mask __initdata;
    2859             :         const size_t static_size = __per_cpu_end - __per_cpu_start;
    2860             :         int nr_groups = 1, nr_units = 0;
    2861             :         size_t size_sum, min_unit_size, alloc_size;
    2862             :         int upa, max_upa, best_upa;     /* units_per_alloc */
    2863             :         int last_allocs, group, unit;
    2864             :         unsigned int cpu, tcpu;
    2865             :         struct pcpu_alloc_info *ai;
    2866             :         unsigned int *cpu_map;
    2867             : 
    2868             :         /* this function may be called multiple times */
    2869             :         memset(group_map, 0, sizeof(group_map));
    2870             :         memset(group_cnt, 0, sizeof(group_cnt));
    2871             :         cpumask_clear(&mask);
    2872             : 
    2873             :         /* calculate size_sum and ensure dyn_size is enough for early alloc */
    2874             :         size_sum = PFN_ALIGN(static_size + reserved_size +
    2875             :                             max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
    2876             :         dyn_size = size_sum - static_size - reserved_size;
    2877             : 
    2878             :         /*
    2879             :          * Determine min_unit_size, alloc_size and max_upa such that
    2880             :          * alloc_size is multiple of atom_size and is the smallest
    2881             :          * which can accommodate 4k aligned segments which are equal to
    2882             :          * or larger than min_unit_size.
    2883             :          */
    2884             :         min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
    2885             : 
    2886             :         /* determine the maximum # of units that can fit in an allocation */
    2887             :         alloc_size = roundup(min_unit_size, atom_size);
    2888             :         upa = alloc_size / min_unit_size;
    2889             :         while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
    2890             :                 upa--;
    2891             :         max_upa = upa;
    2892             : 
    2893             :         cpumask_copy(&mask, cpu_possible_mask);
    2894             : 
    2895             :         /* group cpus according to their proximity */
    2896             :         for (group = 0; !cpumask_empty(&mask); group++) {
    2897             :                 /* pop the group's first cpu */
    2898             :                 cpu = cpumask_first(&mask);
    2899             :                 group_map[cpu] = group;
    2900             :                 group_cnt[group]++;
    2901             :                 cpumask_clear_cpu(cpu, &mask);
    2902             : 
    2903             :                 for_each_cpu(tcpu, &mask) {
    2904             :                         if (!cpu_distance_fn ||
    2905             :                             (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
    2906             :                              cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
    2907             :                                 group_map[tcpu] = group;
    2908             :                                 group_cnt[group]++;
    2909             :                                 cpumask_clear_cpu(tcpu, &mask);
    2910             :                         }
    2911             :                 }
    2912             :         }
    2913             :         nr_groups = group;
    2914             : 
    2915             :         /*
    2916             :          * Wasted space is caused by a ratio imbalance of upa to group_cnt.
    2917             :          * Expand the unit_size until we use >= 75% of the units allocated.
    2918             :          * Related to atom_size, which could be much larger than the unit_size.
    2919             :          */
    2920             :         last_allocs = INT_MAX;
    2921             :         best_upa = 0;
    2922             :         for (upa = max_upa; upa; upa--) {
    2923             :                 int allocs = 0, wasted = 0;
    2924             : 
    2925             :                 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
    2926             :                         continue;
    2927             : 
    2928             :                 for (group = 0; group < nr_groups; group++) {
    2929             :                         int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
    2930             :                         allocs += this_allocs;
    2931             :                         wasted += this_allocs * upa - group_cnt[group];
    2932             :                 }
    2933             : 
    2934             :                 /*
    2935             :                  * Don't accept if wastage is over 1/3.  The
    2936             :                  * greater-than comparison ensures upa==1 always
    2937             :                  * passes the following check.
    2938             :                  */
    2939             :                 if (wasted > num_possible_cpus() / 3)
    2940             :                         continue;
    2941             : 
    2942             :                 /* and then don't consume more memory */
    2943             :                 if (allocs > last_allocs)
    2944             :                         break;
    2945             :                 last_allocs = allocs;
    2946             :                 best_upa = upa;
    2947             :         }
    2948             :         BUG_ON(!best_upa);
    2949             :         upa = best_upa;
    2950             : 
    2951             :         /* allocate and fill alloc_info */
    2952             :         for (group = 0; group < nr_groups; group++)
    2953             :                 nr_units += roundup(group_cnt[group], upa);
    2954             : 
    2955             :         ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
    2956             :         if (!ai)
    2957             :                 return ERR_PTR(-ENOMEM);
    2958             :         cpu_map = ai->groups[0].cpu_map;
    2959             : 
    2960             :         for (group = 0; group < nr_groups; group++) {
    2961             :                 ai->groups[group].cpu_map = cpu_map;
    2962             :                 cpu_map += roundup(group_cnt[group], upa);
    2963             :         }
    2964             : 
    2965             :         ai->static_size = static_size;
    2966             :         ai->reserved_size = reserved_size;
    2967             :         ai->dyn_size = dyn_size;
    2968             :         ai->unit_size = alloc_size / upa;
    2969             :         ai->atom_size = atom_size;
    2970             :         ai->alloc_size = alloc_size;
    2971             : 
    2972             :         for (group = 0, unit = 0; group < nr_groups; group++) {
    2973             :                 struct pcpu_group_info *gi = &ai->groups[group];
    2974             : 
    2975             :                 /*
    2976             :                  * Initialize base_offset as if all groups are located
    2977             :                  * back-to-back.  The caller should update this to
    2978             :                  * reflect actual allocation.
    2979             :                  */
    2980             :                 gi->base_offset = unit * ai->unit_size;
    2981             : 
    2982             :                 for_each_possible_cpu(cpu)
    2983             :                         if (group_map[cpu] == group)
    2984             :                                 gi->cpu_map[gi->nr_units++] = cpu;
    2985             :                 gi->nr_units = roundup(gi->nr_units, upa);
    2986             :                 unit += gi->nr_units;
    2987             :         }
    2988             :         BUG_ON(unit != nr_units);
    2989             : 
    2990             :         return ai;
    2991             : }
    2992             : 
    2993             : static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
    2994             :                                    pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
    2995             : {
    2996             :         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
    2997             : #ifdef CONFIG_NUMA
    2998             :         int node = NUMA_NO_NODE;
    2999             :         void *ptr;
    3000             : 
    3001             :         if (cpu_to_nd_fn)
    3002             :                 node = cpu_to_nd_fn(cpu);
    3003             : 
    3004             :         if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
    3005             :                 ptr = memblock_alloc_from(size, align, goal);
    3006             :                 pr_info("cpu %d has no node %d or node-local memory\n",
    3007             :                         cpu, node);
    3008             :                 pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
    3009             :                          cpu, size, (u64)__pa(ptr));
    3010             :         } else {
    3011             :                 ptr = memblock_alloc_try_nid(size, align, goal,
    3012             :                                              MEMBLOCK_ALLOC_ACCESSIBLE,
    3013             :                                              node);
    3014             : 
    3015             :                 pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
    3016             :                          cpu, size, node, (u64)__pa(ptr));
    3017             :         }
    3018             :         return ptr;
    3019             : #else
    3020             :         return memblock_alloc_from(size, align, goal);
    3021             : #endif
    3022             : }
    3023             : 
    3024             : static void __init pcpu_fc_free(void *ptr, size_t size)
    3025             : {
    3026             :         memblock_free(ptr, size);
    3027             : }
    3028             : #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
    3029             : 
    3030             : #if defined(BUILD_EMBED_FIRST_CHUNK)
    3031             : /**
    3032             :  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
    3033             :  * @reserved_size: the size of reserved percpu area in bytes
    3034             :  * @dyn_size: minimum free size for dynamic allocation in bytes
    3035             :  * @atom_size: allocation atom size
    3036             :  * @cpu_distance_fn: callback to determine distance between cpus, optional
    3037             :  * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
    3038             :  *
    3039             :  * This is a helper to ease setting up embedded first percpu chunk and
    3040             :  * can be called where pcpu_setup_first_chunk() is expected.
    3041             :  *
    3042             :  * If this function is used to setup the first chunk, it is allocated
    3043             :  * by calling pcpu_fc_alloc and used as-is without being mapped into
    3044             :  * vmalloc area.  Allocations are always whole multiples of @atom_size
    3045             :  * aligned to @atom_size.
    3046             :  *
    3047             :  * This enables the first chunk to piggy back on the linear physical
    3048             :  * mapping which often uses larger page size.  Please note that this
    3049             :  * can result in very sparse cpu->unit mapping on NUMA machines thus
    3050             :  * requiring large vmalloc address space.  Don't use this allocator if
    3051             :  * vmalloc space is not orders of magnitude larger than distances
    3052             :  * between node memory addresses (ie. 32bit NUMA machines).
    3053             :  *
    3054             :  * @dyn_size specifies the minimum dynamic area size.
    3055             :  *
    3056             :  * If the needed size is smaller than the minimum or specified unit
    3057             :  * size, the leftover is returned using pcpu_fc_free.
    3058             :  *
    3059             :  * RETURNS:
    3060             :  * 0 on success, -errno on failure.
    3061             :  */
    3062             : int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
    3063             :                                   size_t atom_size,
    3064             :                                   pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
    3065             :                                   pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
    3066             : {
    3067             :         void *base = (void *)ULONG_MAX;
    3068             :         void **areas = NULL;
    3069             :         struct pcpu_alloc_info *ai;
    3070             :         size_t size_sum, areas_size;
    3071             :         unsigned long max_distance;
    3072             :         int group, i, highest_group, rc = 0;
    3073             : 
    3074             :         ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
    3075             :                                    cpu_distance_fn);
    3076             :         if (IS_ERR(ai))
    3077             :                 return PTR_ERR(ai);
    3078             : 
    3079             :         size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
    3080             :         areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
    3081             : 
    3082             :         areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
    3083             :         if (!areas) {
    3084             :                 rc = -ENOMEM;
    3085             :                 goto out_free;
    3086             :         }
    3087             : 
    3088             :         /* allocate, copy and determine base address & max_distance */
    3089             :         highest_group = 0;
    3090             :         for (group = 0; group < ai->nr_groups; group++) {
    3091             :                 struct pcpu_group_info *gi = &ai->groups[group];
    3092             :                 unsigned int cpu = NR_CPUS;
    3093             :                 void *ptr;
    3094             : 
    3095             :                 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
    3096             :                         cpu = gi->cpu_map[i];
    3097             :                 BUG_ON(cpu == NR_CPUS);
    3098             : 
    3099             :                 /* allocate space for the whole group */
    3100             :                 ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
    3101             :                 if (!ptr) {
    3102             :                         rc = -ENOMEM;
    3103             :                         goto out_free_areas;
    3104             :                 }
    3105             :                 /* kmemleak tracks the percpu allocations separately */
    3106             :                 kmemleak_free(ptr);
    3107             :                 areas[group] = ptr;
    3108             : 
    3109             :                 base = min(ptr, base);
    3110             :                 if (ptr > areas[highest_group])
    3111             :                         highest_group = group;
    3112             :         }
    3113             :         max_distance = areas[highest_group] - base;
    3114             :         max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
    3115             : 
    3116             :         /* warn if maximum distance is further than 75% of vmalloc space */
    3117             :         if (max_distance > VMALLOC_TOTAL * 3 / 4) {
    3118             :                 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
    3119             :                                 max_distance, VMALLOC_TOTAL);
    3120             : #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
    3121             :                 /* and fail if we have fallback */
    3122             :                 rc = -EINVAL;
    3123             :                 goto out_free_areas;
    3124             : #endif
    3125             :         }
    3126             : 
    3127             :         /*
    3128             :          * Copy data and free unused parts.  This should happen after all
    3129             :          * allocations are complete; otherwise, we may end up with
    3130             :          * overlapping groups.
    3131             :          */
    3132             :         for (group = 0; group < ai->nr_groups; group++) {
    3133             :                 struct pcpu_group_info *gi = &ai->groups[group];
    3134             :                 void *ptr = areas[group];
    3135             : 
    3136             :                 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
    3137             :                         if (gi->cpu_map[i] == NR_CPUS) {
    3138             :                                 /* unused unit, free whole */
    3139             :                                 pcpu_fc_free(ptr, ai->unit_size);
    3140             :                                 continue;
    3141             :                         }
    3142             :                         /* copy and return the unused part */
    3143             :                         memcpy(ptr, __per_cpu_load, ai->static_size);
    3144             :                         pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
    3145             :                 }
    3146             :         }
    3147             : 
    3148             :         /* base address is now known, determine group base offsets */
    3149             :         for (group = 0; group < ai->nr_groups; group++) {
    3150             :                 ai->groups[group].base_offset = areas[group] - base;
    3151             :         }
    3152             : 
    3153             :         pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
    3154             :                 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
    3155             :                 ai->dyn_size, ai->unit_size);
    3156             : 
    3157             :         pcpu_setup_first_chunk(ai, base);
    3158             :         goto out_free;
    3159             : 
    3160             : out_free_areas:
    3161             :         for (group = 0; group < ai->nr_groups; group++)
    3162             :                 if (areas[group])
    3163             :                         pcpu_fc_free(areas[group],
    3164             :                                 ai->groups[group].nr_units * ai->unit_size);
    3165             : out_free:
    3166             :         pcpu_free_alloc_info(ai);
    3167             :         if (areas)
    3168             :                 memblock_free(areas, areas_size);
    3169             :         return rc;
    3170             : }
    3171             : #endif /* BUILD_EMBED_FIRST_CHUNK */
    3172             : 
    3173             : #ifdef BUILD_PAGE_FIRST_CHUNK
    3174             : #include <asm/pgalloc.h>
    3175             : 
    3176             : #ifndef P4D_TABLE_SIZE
    3177             : #define P4D_TABLE_SIZE PAGE_SIZE
    3178             : #endif
    3179             : 
    3180             : #ifndef PUD_TABLE_SIZE
    3181             : #define PUD_TABLE_SIZE PAGE_SIZE
    3182             : #endif
    3183             : 
    3184             : #ifndef PMD_TABLE_SIZE
    3185             : #define PMD_TABLE_SIZE PAGE_SIZE
    3186             : #endif
    3187             : 
    3188             : #ifndef PTE_TABLE_SIZE
    3189             : #define PTE_TABLE_SIZE PAGE_SIZE
    3190             : #endif
    3191             : void __init __weak pcpu_populate_pte(unsigned long addr)
    3192             : {
    3193             :         pgd_t *pgd = pgd_offset_k(addr);
    3194             :         p4d_t *p4d;
    3195             :         pud_t *pud;
    3196             :         pmd_t *pmd;
    3197             : 
    3198             :         if (pgd_none(*pgd)) {
    3199             :                 p4d_t *new;
    3200             : 
    3201             :                 new = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
    3202             :                 if (!new)
    3203             :                         goto err_alloc;
    3204             :                 pgd_populate(&init_mm, pgd, new);
    3205             :         }
    3206             : 
    3207             :         p4d = p4d_offset(pgd, addr);
    3208             :         if (p4d_none(*p4d)) {
    3209             :                 pud_t *new;
    3210             : 
    3211             :                 new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
    3212             :                 if (!new)
    3213             :                         goto err_alloc;
    3214             :                 p4d_populate(&init_mm, p4d, new);
    3215             :         }
    3216             : 
    3217             :         pud = pud_offset(p4d, addr);
    3218             :         if (pud_none(*pud)) {
    3219             :                 pmd_t *new;
    3220             : 
    3221             :                 new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
    3222             :                 if (!new)
    3223             :                         goto err_alloc;
    3224             :                 pud_populate(&init_mm, pud, new);
    3225             :         }
    3226             : 
    3227             :         pmd = pmd_offset(pud, addr);
    3228             :         if (!pmd_present(*pmd)) {
    3229             :                 pte_t *new;
    3230             : 
    3231             :                 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
    3232             :                 if (!new)
    3233             :                         goto err_alloc;
    3234             :                 pmd_populate_kernel(&init_mm, pmd, new);
    3235             :         }
    3236             : 
    3237             :         return;
    3238             : 
    3239             : err_alloc:
    3240             :         panic("%s: Failed to allocate memory\n", __func__);
    3241             : }
    3242             : 
    3243             : /**
    3244             :  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
    3245             :  * @reserved_size: the size of reserved percpu area in bytes
    3246             :  * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
    3247             :  *
    3248             :  * This is a helper to ease setting up page-remapped first percpu
    3249             :  * chunk and can be called where pcpu_setup_first_chunk() is expected.
    3250             :  *
    3251             :  * This is the basic allocator.  Static percpu area is allocated
    3252             :  * page-by-page into vmalloc area.
    3253             :  *
    3254             :  * RETURNS:
    3255             :  * 0 on success, -errno on failure.
    3256             :  */
    3257             : int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
    3258             : {
    3259             :         static struct vm_struct vm;
    3260             :         struct pcpu_alloc_info *ai;
    3261             :         char psize_str[16];
    3262             :         int unit_pages;
    3263             :         size_t pages_size;
    3264             :         struct page **pages;
    3265             :         int unit, i, j, rc = 0;
    3266             :         int upa;
    3267             :         int nr_g0_units;
    3268             : 
    3269             :         snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
    3270             : 
    3271             :         ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
    3272             :         if (IS_ERR(ai))
    3273             :                 return PTR_ERR(ai);
    3274             :         BUG_ON(ai->nr_groups != 1);
    3275             :         upa = ai->alloc_size/ai->unit_size;
    3276             :         nr_g0_units = roundup(num_possible_cpus(), upa);
    3277             :         if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
    3278             :                 pcpu_free_alloc_info(ai);
    3279             :                 return -EINVAL;
    3280             :         }
    3281             : 
    3282             :         unit_pages = ai->unit_size >> PAGE_SHIFT;
    3283             : 
    3284             :         /* unaligned allocations can't be freed, round up to page size */
    3285             :         pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
    3286             :                                sizeof(pages[0]));
    3287             :         pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
    3288             :         if (!pages)
    3289             :                 panic("%s: Failed to allocate %zu bytes\n", __func__,
    3290             :                       pages_size);
    3291             : 
    3292             :         /* allocate pages */
    3293             :         j = 0;
    3294             :         for (unit = 0; unit < num_possible_cpus(); unit++) {
    3295             :                 unsigned int cpu = ai->groups[0].cpu_map[unit];
    3296             :                 for (i = 0; i < unit_pages; i++) {
    3297             :                         void *ptr;
    3298             : 
    3299             :                         ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
    3300             :                         if (!ptr) {
    3301             :                                 pr_warn("failed to allocate %s page for cpu%u\n",
    3302             :                                                 psize_str, cpu);
    3303             :                                 goto enomem;
    3304             :                         }
    3305             :                         /* kmemleak tracks the percpu allocations separately */
    3306             :                         kmemleak_free(ptr);
    3307             :                         pages[j++] = virt_to_page(ptr);
    3308             :                 }
    3309             :         }
    3310             : 
    3311             :         /* allocate vm area, map the pages and copy static data */
    3312             :         vm.flags = VM_ALLOC;
    3313             :         vm.size = num_possible_cpus() * ai->unit_size;
    3314             :         vm_area_register_early(&vm, PAGE_SIZE);
    3315             : 
    3316             :         for (unit = 0; unit < num_possible_cpus(); unit++) {
    3317             :                 unsigned long unit_addr =
    3318             :                         (unsigned long)vm.addr + unit * ai->unit_size;
    3319             : 
    3320             :                 for (i = 0; i < unit_pages; i++)
    3321             :                         pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
    3322             : 
    3323             :                 /* pte already populated, the following shouldn't fail */
    3324             :                 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
    3325             :                                       unit_pages);
    3326             :                 if (rc < 0)
    3327             :                         panic("failed to map percpu area, err=%d\n", rc);
    3328             : 
    3329             :                 /*
    3330             :                  * FIXME: Archs with virtual cache should flush local
    3331             :                  * cache for the linear mapping here - something
    3332             :                  * equivalent to flush_cache_vmap() on the local cpu.
    3333             :                  * flush_cache_vmap() can't be used as most supporting
    3334             :                  * data structures are not set up yet.
    3335             :                  */
    3336             : 
    3337             :                 /* copy static data */
    3338             :                 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
    3339             :         }
    3340             : 
    3341             :         /* we're ready, commit */
    3342             :         pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
    3343             :                 unit_pages, psize_str, ai->static_size,
    3344             :                 ai->reserved_size, ai->dyn_size);
    3345             : 
    3346             :         pcpu_setup_first_chunk(ai, vm.addr);
    3347             :         goto out_free_ar;
    3348             : 
    3349             : enomem:
    3350             :         while (--j >= 0)
    3351             :                 pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
    3352             :         rc = -ENOMEM;
    3353             : out_free_ar:
    3354             :         memblock_free(pages, pages_size);
    3355             :         pcpu_free_alloc_info(ai);
    3356             :         return rc;
    3357             : }
    3358             : #endif /* BUILD_PAGE_FIRST_CHUNK */
    3359             : 
    3360             : #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
    3361             : /*
    3362             :  * Generic SMP percpu area setup.
    3363             :  *
    3364             :  * The embedding helper is used because its behavior closely resembles
    3365             :  * the original non-dynamic generic percpu area setup.  This is
    3366             :  * important because many archs have addressing restrictions and might
    3367             :  * fail if the percpu area is located far away from the previous
    3368             :  * location.  As an added bonus, in non-NUMA cases, embedding is
    3369             :  * generally a good idea TLB-wise because percpu area can piggy back
    3370             :  * on the physical linear memory mapping which uses large page
    3371             :  * mappings on applicable archs.
    3372             :  */
    3373             : unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
    3374             : EXPORT_SYMBOL(__per_cpu_offset);
    3375             : 
    3376             : void __init setup_per_cpu_areas(void)
    3377             : {
    3378             :         unsigned long delta;
    3379             :         unsigned int cpu;
    3380             :         int rc;
    3381             : 
    3382             :         /*
    3383             :          * Always reserve area for module percpu variables.  That's
    3384             :          * what the legacy allocator did.
    3385             :          */
    3386             :         rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
    3387             :                                     PAGE_SIZE, NULL, NULL);
    3388             :         if (rc < 0)
    3389             :                 panic("Failed to initialize percpu areas.");
    3390             : 
    3391             :         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
    3392             :         for_each_possible_cpu(cpu)
    3393             :                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
    3394             : }
    3395             : #endif  /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
    3396             : 
    3397             : #else   /* CONFIG_SMP */
    3398             : 
    3399             : /*
    3400             :  * UP percpu area setup.
    3401             :  *
    3402             :  * UP always uses km-based percpu allocator with identity mapping.
    3403             :  * Static percpu variables are indistinguishable from the usual static
    3404             :  * variables and don't require any special preparation.
    3405             :  */
    3406           1 : void __init setup_per_cpu_areas(void)
    3407             : {
    3408           1 :         const size_t unit_size =
    3409             :                 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
    3410             :                                          PERCPU_DYNAMIC_RESERVE));
    3411             :         struct pcpu_alloc_info *ai;
    3412             :         void *fc;
    3413             : 
    3414           1 :         ai = pcpu_alloc_alloc_info(1, 1);
    3415           2 :         fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
    3416           1 :         if (!ai || !fc)
    3417           0 :                 panic("Failed to allocate memory for percpu areas.");
    3418             :         /* kmemleak tracks the percpu allocations separately */
    3419             :         kmemleak_free(fc);
    3420             : 
    3421           1 :         ai->dyn_size = unit_size;
    3422           1 :         ai->unit_size = unit_size;
    3423           1 :         ai->atom_size = unit_size;
    3424           1 :         ai->alloc_size = unit_size;
    3425           1 :         ai->groups[0].nr_units = 1;
    3426           1 :         ai->groups[0].cpu_map[0] = 0;
    3427             : 
    3428           1 :         pcpu_setup_first_chunk(ai, fc);
    3429           1 :         pcpu_free_alloc_info(ai);
    3430           1 : }
    3431             : 
    3432             : #endif  /* CONFIG_SMP */
    3433             : 
    3434             : /*
    3435             :  * pcpu_nr_pages - calculate total number of populated backing pages
    3436             :  *
    3437             :  * This reflects the number of pages populated to back chunks.  Metadata is
    3438             :  * excluded in the number exposed in meminfo as the number of backing pages
    3439             :  * scales with the number of cpus and can quickly outweigh the memory used for
    3440             :  * metadata.  It also keeps this calculation nice and simple.
    3441             :  *
    3442             :  * RETURNS:
    3443             :  * Total number of populated backing pages in use by the allocator.
    3444             :  */
    3445           0 : unsigned long pcpu_nr_pages(void)
    3446             : {
    3447           0 :         return pcpu_nr_populated * pcpu_nr_units;
    3448             : }
    3449             : 
    3450             : /*
    3451             :  * Percpu allocator is initialized early during boot when neither slab or
    3452             :  * workqueue is available.  Plug async management until everything is up
    3453             :  * and running.
    3454             :  */
    3455           1 : static int __init percpu_enable_async(void)
    3456             : {
    3457           1 :         pcpu_async_enabled = true;
    3458           1 :         return 0;
    3459             : }
    3460             : subsys_initcall(percpu_enable_async);

Generated by: LCOV version 1.14