Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef MM_SLAB_H
3 : #define MM_SLAB_H
4 : /*
5 : * Internal slab definitions
6 : */
7 :
8 : /* Reuses the bits in struct page */
9 : struct slab {
10 : unsigned long __page_flags;
11 :
12 : #if defined(CONFIG_SLAB)
13 :
14 : union {
15 : struct list_head slab_list;
16 : struct rcu_head rcu_head;
17 : };
18 : struct kmem_cache *slab_cache;
19 : void *freelist; /* array of free object indexes */
20 : void *s_mem; /* first object */
21 : unsigned int active;
22 :
23 : #elif defined(CONFIG_SLUB)
24 :
25 : union {
26 : struct list_head slab_list;
27 : struct rcu_head rcu_head;
28 : #ifdef CONFIG_SLUB_CPU_PARTIAL
29 : struct {
30 : struct slab *next;
31 : int slabs; /* Nr of slabs left */
32 : };
33 : #endif
34 : };
35 : struct kmem_cache *slab_cache;
36 : /* Double-word boundary */
37 : void *freelist; /* first free object */
38 : union {
39 : unsigned long counters;
40 : struct {
41 : unsigned inuse:16;
42 : unsigned objects:15;
43 : unsigned frozen:1;
44 : };
45 : };
46 : unsigned int __unused;
47 :
48 : #elif defined(CONFIG_SLOB)
49 :
50 : struct list_head slab_list;
51 : void *__unused_1;
52 : void *freelist; /* first free block */
53 : long units;
54 : unsigned int __unused_2;
55 :
56 : #else
57 : #error "Unexpected slab allocator configured"
58 : #endif
59 :
60 : atomic_t __page_refcount;
61 : #ifdef CONFIG_MEMCG
62 : unsigned long memcg_data;
63 : #endif
64 : };
65 :
66 : #define SLAB_MATCH(pg, sl) \
67 : static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
68 : SLAB_MATCH(flags, __page_flags);
69 : SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
70 : #ifndef CONFIG_SLOB
71 : SLAB_MATCH(rcu_head, rcu_head);
72 : #endif
73 : SLAB_MATCH(_refcount, __page_refcount);
74 : #ifdef CONFIG_MEMCG
75 : SLAB_MATCH(memcg_data, memcg_data);
76 : #endif
77 : #undef SLAB_MATCH
78 : static_assert(sizeof(struct slab) <= sizeof(struct page));
79 :
80 : /**
81 : * folio_slab - Converts from folio to slab.
82 : * @folio: The folio.
83 : *
84 : * Currently struct slab is a different representation of a folio where
85 : * folio_test_slab() is true.
86 : *
87 : * Return: The slab which contains this folio.
88 : */
89 : #define folio_slab(folio) (_Generic((folio), \
90 : const struct folio *: (const struct slab *)(folio), \
91 : struct folio *: (struct slab *)(folio)))
92 :
93 : /**
94 : * slab_folio - The folio allocated for a slab
95 : * @slab: The slab.
96 : *
97 : * Slabs are allocated as folios that contain the individual objects and are
98 : * using some fields in the first struct page of the folio - those fields are
99 : * now accessed by struct slab. It is occasionally necessary to convert back to
100 : * a folio in order to communicate with the rest of the mm. Please use this
101 : * helper function instead of casting yourself, as the implementation may change
102 : * in the future.
103 : */
104 : #define slab_folio(s) (_Generic((s), \
105 : const struct slab *: (const struct folio *)s, \
106 : struct slab *: (struct folio *)s))
107 :
108 : /**
109 : * page_slab - Converts from first struct page to slab.
110 : * @p: The first (either head of compound or single) page of slab.
111 : *
112 : * A temporary wrapper to convert struct page to struct slab in situations where
113 : * we know the page is the compound head, or single order-0 page.
114 : *
115 : * Long-term ideally everything would work with struct slab directly or go
116 : * through folio to struct slab.
117 : *
118 : * Return: The slab which contains this page
119 : */
120 : #define page_slab(p) (_Generic((p), \
121 : const struct page *: (const struct slab *)(p), \
122 : struct page *: (struct slab *)(p)))
123 :
124 : /**
125 : * slab_page - The first struct page allocated for a slab
126 : * @slab: The slab.
127 : *
128 : * A convenience wrapper for converting slab to the first struct page of the
129 : * underlying folio, to communicate with code not yet converted to folio or
130 : * struct slab.
131 : */
132 : #define slab_page(s) folio_page(slab_folio(s), 0)
133 :
134 : /*
135 : * If network-based swap is enabled, sl*b must keep track of whether pages
136 : * were allocated from pfmemalloc reserves.
137 : */
138 : static inline bool slab_test_pfmemalloc(const struct slab *slab)
139 : {
140 1008 : return folio_test_active((struct folio *)slab_folio(slab));
141 : }
142 :
143 : static inline void slab_set_pfmemalloc(struct slab *slab)
144 : {
145 0 : folio_set_active(slab_folio(slab));
146 : }
147 :
148 : static inline void slab_clear_pfmemalloc(struct slab *slab)
149 : {
150 : folio_clear_active(slab_folio(slab));
151 : }
152 :
153 : static inline void __slab_clear_pfmemalloc(struct slab *slab)
154 : {
155 3 : __folio_clear_active(slab_folio(slab));
156 : }
157 :
158 : static inline void *slab_address(const struct slab *slab)
159 : {
160 454 : return folio_address(slab_folio(slab));
161 : }
162 :
163 : static inline int slab_nid(const struct slab *slab)
164 : {
165 551 : return folio_nid(slab_folio(slab));
166 : }
167 :
168 : static inline pg_data_t *slab_pgdat(const struct slab *slab)
169 : {
170 457 : return folio_pgdat(slab_folio(slab));
171 : }
172 :
173 : static inline struct slab *virt_to_slab(const void *addr)
174 : {
175 2969 : struct folio *folio = virt_to_folio(addr);
176 :
177 2969 : if (!folio_test_slab(folio))
178 : return NULL;
179 :
180 : return folio_slab(folio);
181 : }
182 :
183 : static inline int slab_order(const struct slab *slab)
184 : {
185 0 : return folio_order((struct folio *)slab_folio(slab));
186 : }
187 :
188 : static inline size_t slab_size(const struct slab *slab)
189 : {
190 0 : return PAGE_SIZE << slab_order(slab);
191 : }
192 :
193 : #ifdef CONFIG_SLOB
194 : /*
195 : * Common fields provided in kmem_cache by all slab allocators
196 : * This struct is either used directly by the allocator (SLOB)
197 : * or the allocator must include definitions for all fields
198 : * provided in kmem_cache_common in their definition of kmem_cache.
199 : *
200 : * Once we can do anonymous structs (C11 standard) we could put a
201 : * anonymous struct definition in these allocators so that the
202 : * separate allocations in the kmem_cache structure of SLAB and
203 : * SLUB is no longer needed.
204 : */
205 : struct kmem_cache {
206 : unsigned int object_size;/* The original size of the object */
207 : unsigned int size; /* The aligned/padded/added on size */
208 : unsigned int align; /* Alignment as calculated */
209 : slab_flags_t flags; /* Active flags on the slab */
210 : unsigned int useroffset;/* Usercopy region offset */
211 : unsigned int usersize; /* Usercopy region size */
212 : const char *name; /* Slab name for sysfs */
213 : int refcount; /* Use counter */
214 : void (*ctor)(void *); /* Called on object slot creation */
215 : struct list_head list; /* List of all slab caches on the system */
216 : };
217 :
218 : #endif /* CONFIG_SLOB */
219 :
220 : #ifdef CONFIG_SLAB
221 : #include <linux/slab_def.h>
222 : #endif
223 :
224 : #ifdef CONFIG_SLUB
225 : #include <linux/slub_def.h>
226 : #endif
227 :
228 : #include <linux/memcontrol.h>
229 : #include <linux/fault-inject.h>
230 : #include <linux/kasan.h>
231 : #include <linux/kmemleak.h>
232 : #include <linux/random.h>
233 : #include <linux/sched/mm.h>
234 : #include <linux/list_lru.h>
235 :
236 : /*
237 : * State of the slab allocator.
238 : *
239 : * This is used to describe the states of the allocator during bootup.
240 : * Allocators use this to gradually bootstrap themselves. Most allocators
241 : * have the problem that the structures used for managing slab caches are
242 : * allocated from slab caches themselves.
243 : */
244 : enum slab_state {
245 : DOWN, /* No slab functionality yet */
246 : PARTIAL, /* SLUB: kmem_cache_node available */
247 : PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
248 : UP, /* Slab caches usable but not all extras yet */
249 : FULL /* Everything is working */
250 : };
251 :
252 : extern enum slab_state slab_state;
253 :
254 : /* The slab cache mutex protects the management structures during changes */
255 : extern struct mutex slab_mutex;
256 :
257 : /* The list of all slab caches on the system */
258 : extern struct list_head slab_caches;
259 :
260 : /* The slab cache that manages slab cache information */
261 : extern struct kmem_cache *kmem_cache;
262 :
263 : /* A table of kmalloc cache names and sizes */
264 : extern const struct kmalloc_info_struct {
265 : const char *name[NR_KMALLOC_TYPES];
266 : unsigned int size;
267 : } kmalloc_info[];
268 :
269 : #ifndef CONFIG_SLOB
270 : /* Kmalloc array related functions */
271 : void setup_kmalloc_cache_index_table(void);
272 : void create_kmalloc_caches(slab_flags_t);
273 :
274 : /* Find the kmalloc slab corresponding for a certain size */
275 : struct kmem_cache *kmalloc_slab(size_t, gfp_t);
276 : #endif
277 :
278 : gfp_t kmalloc_fix_flags(gfp_t flags);
279 :
280 : /* Functions provided by the slab allocators */
281 : int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
282 :
283 : struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
284 : slab_flags_t flags, unsigned int useroffset,
285 : unsigned int usersize);
286 : extern void create_boot_cache(struct kmem_cache *, const char *name,
287 : unsigned int size, slab_flags_t flags,
288 : unsigned int useroffset, unsigned int usersize);
289 :
290 : int slab_unmergeable(struct kmem_cache *s);
291 : struct kmem_cache *find_mergeable(unsigned size, unsigned align,
292 : slab_flags_t flags, const char *name, void (*ctor)(void *));
293 : #ifndef CONFIG_SLOB
294 : struct kmem_cache *
295 : __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
296 : slab_flags_t flags, void (*ctor)(void *));
297 :
298 : slab_flags_t kmem_cache_flags(unsigned int object_size,
299 : slab_flags_t flags, const char *name);
300 : #else
301 : static inline struct kmem_cache *
302 : __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
303 : slab_flags_t flags, void (*ctor)(void *))
304 : { return NULL; }
305 :
306 : static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
307 : slab_flags_t flags, const char *name)
308 : {
309 : return flags;
310 : }
311 : #endif
312 :
313 :
314 : /* Legal flag mask for kmem_cache_create(), for various configurations */
315 : #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
316 : SLAB_CACHE_DMA32 | SLAB_PANIC | \
317 : SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
318 :
319 : #if defined(CONFIG_DEBUG_SLAB)
320 : #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
321 : #elif defined(CONFIG_SLUB_DEBUG)
322 : #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
323 : SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
324 : #else
325 : #define SLAB_DEBUG_FLAGS (0)
326 : #endif
327 :
328 : #if defined(CONFIG_SLAB)
329 : #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
330 : SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
331 : SLAB_ACCOUNT)
332 : #elif defined(CONFIG_SLUB)
333 : #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
334 : SLAB_TEMPORARY | SLAB_ACCOUNT)
335 : #else
336 : #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
337 : #endif
338 :
339 : /* Common flags available with current configuration */
340 : #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
341 :
342 : /* Common flags permitted for kmem_cache_create */
343 : #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
344 : SLAB_RED_ZONE | \
345 : SLAB_POISON | \
346 : SLAB_STORE_USER | \
347 : SLAB_TRACE | \
348 : SLAB_CONSISTENCY_CHECKS | \
349 : SLAB_MEM_SPREAD | \
350 : SLAB_NOLEAKTRACE | \
351 : SLAB_RECLAIM_ACCOUNT | \
352 : SLAB_TEMPORARY | \
353 : SLAB_ACCOUNT)
354 :
355 : bool __kmem_cache_empty(struct kmem_cache *);
356 : int __kmem_cache_shutdown(struct kmem_cache *);
357 : void __kmem_cache_release(struct kmem_cache *);
358 : int __kmem_cache_shrink(struct kmem_cache *);
359 : void slab_kmem_cache_release(struct kmem_cache *);
360 :
361 : struct seq_file;
362 : struct file;
363 :
364 : struct slabinfo {
365 : unsigned long active_objs;
366 : unsigned long num_objs;
367 : unsigned long active_slabs;
368 : unsigned long num_slabs;
369 : unsigned long shared_avail;
370 : unsigned int limit;
371 : unsigned int batchcount;
372 : unsigned int shared;
373 : unsigned int objects_per_slab;
374 : unsigned int cache_order;
375 : };
376 :
377 : void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
378 : void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
379 : ssize_t slabinfo_write(struct file *file, const char __user *buffer,
380 : size_t count, loff_t *ppos);
381 :
382 : /*
383 : * Generic implementation of bulk operations
384 : * These are useful for situations in which the allocator cannot
385 : * perform optimizations. In that case segments of the object listed
386 : * may be allocated or freed using these operations.
387 : */
388 : void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
389 : int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
390 :
391 : static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
392 : {
393 457 : return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
394 457 : NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
395 : }
396 :
397 : #ifdef CONFIG_SLUB_DEBUG
398 : #ifdef CONFIG_SLUB_DEBUG_ON
399 : DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
400 : #else
401 : DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
402 : #endif
403 : extern void print_tracking(struct kmem_cache *s, void *object);
404 : long validate_slab_cache(struct kmem_cache *s);
405 : static inline bool __slub_debug_enabled(void)
406 : {
407 19844 : return static_branch_unlikely(&slub_debug_enabled);
408 : }
409 : #else
410 : static inline void print_tracking(struct kmem_cache *s, void *object)
411 : {
412 : }
413 : static inline bool __slub_debug_enabled(void)
414 : {
415 : return false;
416 : }
417 : #endif
418 :
419 : /*
420 : * Returns true if any of the specified slub_debug flags is enabled for the
421 : * cache. Use only for flags parsed by setup_slub_debug() as it also enables
422 : * the static key.
423 : */
424 : static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
425 : {
426 : if (IS_ENABLED(CONFIG_SLUB_DEBUG))
427 : VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
428 19843 : if (__slub_debug_enabled())
429 0 : return s->flags & flags;
430 : return false;
431 : }
432 :
433 : #ifdef CONFIG_MEMCG_KMEM
434 : /*
435 : * slab_objcgs - get the object cgroups vector associated with a slab
436 : * @slab: a pointer to the slab struct
437 : *
438 : * Returns a pointer to the object cgroups vector associated with the slab,
439 : * or NULL if no such vector has been associated yet.
440 : */
441 : static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
442 : {
443 : unsigned long memcg_data = READ_ONCE(slab->memcg_data);
444 :
445 : VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
446 : slab_page(slab));
447 : VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
448 :
449 : return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
450 : }
451 :
452 : int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
453 : gfp_t gfp, bool new_slab);
454 : void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
455 : enum node_stat_item idx, int nr);
456 :
457 : static inline void memcg_free_slab_cgroups(struct slab *slab)
458 : {
459 : kfree(slab_objcgs(slab));
460 : slab->memcg_data = 0;
461 : }
462 :
463 : static inline size_t obj_full_size(struct kmem_cache *s)
464 : {
465 : /*
466 : * For each accounted object there is an extra space which is used
467 : * to store obj_cgroup membership. Charge it too.
468 : */
469 : return s->size + sizeof(struct obj_cgroup *);
470 : }
471 :
472 : /*
473 : * Returns false if the allocation should fail.
474 : */
475 : static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
476 : struct list_lru *lru,
477 : struct obj_cgroup **objcgp,
478 : size_t objects, gfp_t flags)
479 : {
480 : struct obj_cgroup *objcg;
481 :
482 : if (!memcg_kmem_enabled())
483 : return true;
484 :
485 : if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
486 : return true;
487 :
488 : objcg = get_obj_cgroup_from_current();
489 : if (!objcg)
490 : return true;
491 :
492 : if (lru) {
493 : int ret;
494 : struct mem_cgroup *memcg;
495 :
496 : memcg = get_mem_cgroup_from_objcg(objcg);
497 : ret = memcg_list_lru_alloc(memcg, lru, flags);
498 : css_put(&memcg->css);
499 :
500 : if (ret)
501 : goto out;
502 : }
503 :
504 : if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
505 : goto out;
506 :
507 : *objcgp = objcg;
508 : return true;
509 : out:
510 : obj_cgroup_put(objcg);
511 : return false;
512 : }
513 :
514 : static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
515 : struct obj_cgroup *objcg,
516 : gfp_t flags, size_t size,
517 : void **p)
518 : {
519 : struct slab *slab;
520 : unsigned long off;
521 : size_t i;
522 :
523 : if (!memcg_kmem_enabled() || !objcg)
524 : return;
525 :
526 : for (i = 0; i < size; i++) {
527 : if (likely(p[i])) {
528 : slab = virt_to_slab(p[i]);
529 :
530 : if (!slab_objcgs(slab) &&
531 : memcg_alloc_slab_cgroups(slab, s, flags,
532 : false)) {
533 : obj_cgroup_uncharge(objcg, obj_full_size(s));
534 : continue;
535 : }
536 :
537 : off = obj_to_index(s, slab, p[i]);
538 : obj_cgroup_get(objcg);
539 : slab_objcgs(slab)[off] = objcg;
540 : mod_objcg_state(objcg, slab_pgdat(slab),
541 : cache_vmstat_idx(s), obj_full_size(s));
542 : } else {
543 : obj_cgroup_uncharge(objcg, obj_full_size(s));
544 : }
545 : }
546 : obj_cgroup_put(objcg);
547 : }
548 :
549 : static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
550 : void **p, int objects)
551 : {
552 : struct kmem_cache *s;
553 : struct obj_cgroup **objcgs;
554 : struct obj_cgroup *objcg;
555 : struct slab *slab;
556 : unsigned int off;
557 : int i;
558 :
559 : if (!memcg_kmem_enabled())
560 : return;
561 :
562 : for (i = 0; i < objects; i++) {
563 : if (unlikely(!p[i]))
564 : continue;
565 :
566 : slab = virt_to_slab(p[i]);
567 : /* we could be given a kmalloc_large() object, skip those */
568 : if (!slab)
569 : continue;
570 :
571 : objcgs = slab_objcgs(slab);
572 : if (!objcgs)
573 : continue;
574 :
575 : if (!s_orig)
576 : s = slab->slab_cache;
577 : else
578 : s = s_orig;
579 :
580 : off = obj_to_index(s, slab, p[i]);
581 : objcg = objcgs[off];
582 : if (!objcg)
583 : continue;
584 :
585 : objcgs[off] = NULL;
586 : obj_cgroup_uncharge(objcg, obj_full_size(s));
587 : mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
588 : -obj_full_size(s));
589 : obj_cgroup_put(objcg);
590 : }
591 : }
592 :
593 : #else /* CONFIG_MEMCG_KMEM */
594 : static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
595 : {
596 : return NULL;
597 : }
598 :
599 : static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
600 : {
601 : return NULL;
602 : }
603 :
604 : static inline int memcg_alloc_slab_cgroups(struct slab *slab,
605 : struct kmem_cache *s, gfp_t gfp,
606 : bool new_slab)
607 : {
608 : return 0;
609 : }
610 :
611 : static inline void memcg_free_slab_cgroups(struct slab *slab)
612 : {
613 : }
614 :
615 : static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
616 : struct list_lru *lru,
617 : struct obj_cgroup **objcgp,
618 : size_t objects, gfp_t flags)
619 : {
620 : return true;
621 : }
622 :
623 : static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
624 : struct obj_cgroup *objcg,
625 : gfp_t flags, size_t size,
626 : void **p)
627 : {
628 : }
629 :
630 : static inline void memcg_slab_free_hook(struct kmem_cache *s,
631 : void **p, int objects)
632 : {
633 : }
634 : #endif /* CONFIG_MEMCG_KMEM */
635 :
636 : #ifndef CONFIG_SLOB
637 0 : static inline struct kmem_cache *virt_to_cache(const void *obj)
638 : {
639 : struct slab *slab;
640 :
641 0 : slab = virt_to_slab(obj);
642 0 : if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
643 : __func__))
644 : return NULL;
645 0 : return slab->slab_cache;
646 : }
647 :
648 : static __always_inline void account_slab(struct slab *slab, int order,
649 : struct kmem_cache *s, gfp_t gfp)
650 : {
651 : if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
652 : memcg_alloc_slab_cgroups(slab, s, gfp, true);
653 :
654 1816 : mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
655 454 : PAGE_SIZE << order);
656 : }
657 :
658 : static __always_inline void unaccount_slab(struct slab *slab, int order,
659 : struct kmem_cache *s)
660 : {
661 : if (memcg_kmem_enabled())
662 : memcg_free_slab_cgroups(slab);
663 :
664 12 : mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
665 3 : -(PAGE_SIZE << order));
666 : }
667 :
668 2969 : static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
669 : {
670 : struct kmem_cache *cachep;
671 :
672 2969 : if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
673 5938 : !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
674 : return s;
675 :
676 0 : cachep = virt_to_cache(x);
677 0 : if (WARN(cachep && cachep != s,
678 : "%s: Wrong slab cache. %s but object is from %s\n",
679 : __func__, s->name, cachep->name))
680 0 : print_tracking(cachep, x);
681 : return cachep;
682 : }
683 : #endif /* CONFIG_SLOB */
684 :
685 : static inline size_t slab_ksize(const struct kmem_cache *s)
686 : {
687 : #ifndef CONFIG_SLUB
688 : return s->object_size;
689 :
690 : #else /* CONFIG_SLUB */
691 : # ifdef CONFIG_SLUB_DEBUG
692 : /*
693 : * Debugging requires use of the padding between object
694 : * and whatever may come after it.
695 : */
696 228 : if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
697 0 : return s->object_size;
698 : # endif
699 : if (s->flags & SLAB_KASAN)
700 : return s->object_size;
701 : /*
702 : * If we have the need to store the freelist pointer
703 : * back there or track user information then we can
704 : * only use the space before that information.
705 : */
706 228 : if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
707 0 : return s->inuse;
708 : /*
709 : * Else we can use all the padding etc for the allocation
710 : */
711 228 : return s->size;
712 : #endif
713 : }
714 :
715 : static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
716 : struct list_lru *lru,
717 : struct obj_cgroup **objcgp,
718 : size_t size, gfp_t flags)
719 : {
720 18327 : flags &= gfp_allowed_mask;
721 :
722 18327 : might_alloc(flags);
723 :
724 18327 : if (should_failslab(s, flags))
725 : return NULL;
726 :
727 18327 : if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
728 : return NULL;
729 :
730 : return s;
731 : }
732 :
733 18327 : static inline void slab_post_alloc_hook(struct kmem_cache *s,
734 : struct obj_cgroup *objcg, gfp_t flags,
735 : size_t size, void **p, bool init)
736 : {
737 : size_t i;
738 :
739 18327 : flags &= gfp_allowed_mask;
740 :
741 : /*
742 : * As memory initialization might be integrated into KASAN,
743 : * kasan_slab_alloc and initialization memset must be
744 : * kept together to avoid discrepancies in behavior.
745 : *
746 : * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
747 : */
748 36654 : for (i = 0; i < size; i++) {
749 18327 : p[i] = kasan_slab_alloc(s, p[i], flags, init);
750 18327 : if (p[i] && init && !kasan_has_integrated_init())
751 14794 : memset(p[i], 0, s->object_size);
752 18327 : kmemleak_alloc_recursive(p[i], s->object_size, 1,
753 : s->flags, flags);
754 : }
755 :
756 18327 : memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
757 18327 : }
758 :
759 : #ifndef CONFIG_SLOB
760 : /*
761 : * The slab lists for all objects.
762 : */
763 : struct kmem_cache_node {
764 : spinlock_t list_lock;
765 :
766 : #ifdef CONFIG_SLAB
767 : struct list_head slabs_partial; /* partial list first, better asm code */
768 : struct list_head slabs_full;
769 : struct list_head slabs_free;
770 : unsigned long total_slabs; /* length of all slab lists */
771 : unsigned long free_slabs; /* length of free slab list only */
772 : unsigned long free_objects;
773 : unsigned int free_limit;
774 : unsigned int colour_next; /* Per-node cache coloring */
775 : struct array_cache *shared; /* shared per node */
776 : struct alien_cache **alien; /* on other nodes */
777 : unsigned long next_reap; /* updated without locking */
778 : int free_touched; /* updated without locking */
779 : #endif
780 :
781 : #ifdef CONFIG_SLUB
782 : unsigned long nr_partial;
783 : struct list_head partial;
784 : #ifdef CONFIG_SLUB_DEBUG
785 : atomic_long_t nr_slabs;
786 : atomic_long_t total_objects;
787 : struct list_head full;
788 : #endif
789 : #endif
790 :
791 : };
792 :
793 : static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
794 : {
795 1052 : return s->node[node];
796 : }
797 :
798 : /*
799 : * Iterator over all nodes. The body will be executed for each node that has
800 : * a kmem_cache_node structure allocated (which is true for all online nodes)
801 : */
802 : #define for_each_kmem_cache_node(__s, __node, __n) \
803 : for (__node = 0; __node < nr_node_ids; __node++) \
804 : if ((__n = get_node(__s, __node)))
805 :
806 : #endif
807 :
808 : #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
809 : void dump_unreclaimable_slab(void);
810 : #else
811 : static inline void dump_unreclaimable_slab(void)
812 : {
813 : }
814 : #endif
815 :
816 : void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
817 :
818 : #ifdef CONFIG_SLAB_FREELIST_RANDOM
819 : int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
820 : gfp_t gfp);
821 : void cache_random_seq_destroy(struct kmem_cache *cachep);
822 : #else
823 : static inline int cache_random_seq_create(struct kmem_cache *cachep,
824 : unsigned int count, gfp_t gfp)
825 : {
826 : return 0;
827 : }
828 : static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
829 : #endif /* CONFIG_SLAB_FREELIST_RANDOM */
830 :
831 : static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
832 : {
833 18327 : if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
834 : &init_on_alloc)) {
835 0 : if (c->ctor)
836 : return false;
837 0 : if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
838 0 : return flags & __GFP_ZERO;
839 : return true;
840 : }
841 18327 : return flags & __GFP_ZERO;
842 : }
843 :
844 : static inline bool slab_want_init_on_free(struct kmem_cache *c)
845 : {
846 23638 : if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
847 : &init_on_free))
848 0 : return !(c->ctor ||
849 0 : (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
850 : return false;
851 : }
852 :
853 : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
854 : void debugfs_slab_release(struct kmem_cache *);
855 : #else
856 : static inline void debugfs_slab_release(struct kmem_cache *s) { }
857 : #endif
858 :
859 : #ifdef CONFIG_PRINTK
860 : #define KS_ADDRS_COUNT 16
861 : struct kmem_obj_info {
862 : void *kp_ptr;
863 : struct slab *kp_slab;
864 : void *kp_objp;
865 : unsigned long kp_data_offset;
866 : struct kmem_cache *kp_slab_cache;
867 : void *kp_ret;
868 : void *kp_stack[KS_ADDRS_COUNT];
869 : void *kp_free_stack[KS_ADDRS_COUNT];
870 : };
871 : void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
872 : #endif
873 :
874 : #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
875 : void __check_heap_object(const void *ptr, unsigned long n,
876 : const struct slab *slab, bool to_user);
877 : #else
878 : static inline
879 : void __check_heap_object(const void *ptr, unsigned long n,
880 : const struct slab *slab, bool to_user)
881 : {
882 : }
883 : #endif
884 :
885 : #endif /* MM_SLAB_H */
|