LCOV - code coverage report
Current view: top level - mm - swapfile.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 8 1357 0.6 %
Date: 2022-12-09 01:23:36 Functions: 2 82 2.4 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  linux/mm/swapfile.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
       6             :  *  Swap reorganised 29.12.95, Stephen Tweedie
       7             :  */
       8             : 
       9             : #include <linux/mm.h>
      10             : #include <linux/sched/mm.h>
      11             : #include <linux/sched/task.h>
      12             : #include <linux/hugetlb.h>
      13             : #include <linux/mman.h>
      14             : #include <linux/slab.h>
      15             : #include <linux/kernel_stat.h>
      16             : #include <linux/swap.h>
      17             : #include <linux/vmalloc.h>
      18             : #include <linux/pagemap.h>
      19             : #include <linux/namei.h>
      20             : #include <linux/shmem_fs.h>
      21             : #include <linux/blk-cgroup.h>
      22             : #include <linux/random.h>
      23             : #include <linux/writeback.h>
      24             : #include <linux/proc_fs.h>
      25             : #include <linux/seq_file.h>
      26             : #include <linux/init.h>
      27             : #include <linux/ksm.h>
      28             : #include <linux/rmap.h>
      29             : #include <linux/security.h>
      30             : #include <linux/backing-dev.h>
      31             : #include <linux/mutex.h>
      32             : #include <linux/capability.h>
      33             : #include <linux/syscalls.h>
      34             : #include <linux/memcontrol.h>
      35             : #include <linux/poll.h>
      36             : #include <linux/oom.h>
      37             : #include <linux/frontswap.h>
      38             : #include <linux/swapfile.h>
      39             : #include <linux/export.h>
      40             : #include <linux/swap_slots.h>
      41             : #include <linux/sort.h>
      42             : #include <linux/completion.h>
      43             : 
      44             : #include <asm/tlbflush.h>
      45             : #include <linux/swapops.h>
      46             : #include <linux/swap_cgroup.h>
      47             : 
      48             : static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
      49             :                                  unsigned char);
      50             : static void free_swap_count_continuations(struct swap_info_struct *);
      51             : 
      52             : static DEFINE_SPINLOCK(swap_lock);
      53             : static unsigned int nr_swapfiles;
      54             : atomic_long_t nr_swap_pages;
      55             : /*
      56             :  * Some modules use swappable objects and may try to swap them out under
      57             :  * memory pressure (via the shrinker). Before doing so, they may wish to
      58             :  * check to see if any swap space is available.
      59             :  */
      60             : EXPORT_SYMBOL_GPL(nr_swap_pages);
      61             : /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
      62             : long total_swap_pages;
      63             : static int least_priority = -1;
      64             : 
      65             : static const char Bad_file[] = "Bad swap file entry ";
      66             : static const char Unused_file[] = "Unused swap file entry ";
      67             : static const char Bad_offset[] = "Bad swap offset entry ";
      68             : static const char Unused_offset[] = "Unused swap offset entry ";
      69             : 
      70             : /*
      71             :  * all active swap_info_structs
      72             :  * protected with swap_lock, and ordered by priority.
      73             :  */
      74             : static PLIST_HEAD(swap_active_head);
      75             : 
      76             : /*
      77             :  * all available (active, not full) swap_info_structs
      78             :  * protected with swap_avail_lock, ordered by priority.
      79             :  * This is used by get_swap_page() instead of swap_active_head
      80             :  * because swap_active_head includes all swap_info_structs,
      81             :  * but get_swap_page() doesn't need to look at full ones.
      82             :  * This uses its own lock instead of swap_lock because when a
      83             :  * swap_info_struct changes between not-full/full, it needs to
      84             :  * add/remove itself to/from this list, but the swap_info_struct->lock
      85             :  * is held and the locking order requires swap_lock to be taken
      86             :  * before any swap_info_struct->lock.
      87             :  */
      88             : static struct plist_head *swap_avail_heads;
      89             : static DEFINE_SPINLOCK(swap_avail_lock);
      90             : 
      91             : struct swap_info_struct *swap_info[MAX_SWAPFILES];
      92             : 
      93             : static DEFINE_MUTEX(swapon_mutex);
      94             : 
      95             : static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
      96             : /* Activity counter to indicate that a swapon or swapoff has occurred */
      97             : static atomic_t proc_poll_event = ATOMIC_INIT(0);
      98             : 
      99             : atomic_t nr_rotate_swap = ATOMIC_INIT(0);
     100             : 
     101             : static struct swap_info_struct *swap_type_to_swap_info(int type)
     102             : {
     103           0 :         if (type >= MAX_SWAPFILES)
     104             :                 return NULL;
     105             : 
     106           0 :         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
     107             : }
     108             : 
     109             : static inline unsigned char swap_count(unsigned char ent)
     110             : {
     111           0 :         return ent & ~SWAP_HAS_CACHE;       /* may include COUNT_CONTINUED flag */
     112             : }
     113             : 
     114             : /* Reclaim the swap entry anyway if possible */
     115             : #define TTRS_ANYWAY             0x1
     116             : /*
     117             :  * Reclaim the swap entry if there are no more mappings of the
     118             :  * corresponding page
     119             :  */
     120             : #define TTRS_UNMAPPED           0x2
     121             : /* Reclaim the swap entry if swap is getting full*/
     122             : #define TTRS_FULL               0x4
     123             : 
     124             : /* returns 1 if swap entry is freed */
     125           0 : static int __try_to_reclaim_swap(struct swap_info_struct *si,
     126             :                                  unsigned long offset, unsigned long flags)
     127             : {
     128           0 :         swp_entry_t entry = swp_entry(si->type, offset);
     129             :         struct page *page;
     130           0 :         int ret = 0;
     131             : 
     132           0 :         page = find_get_page(swap_address_space(entry), offset);
     133           0 :         if (!page)
     134             :                 return 0;
     135             :         /*
     136             :          * When this function is called from scan_swap_map_slots() and it's
     137             :          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
     138             :          * here. We have to use trylock for avoiding deadlock. This is a special
     139             :          * case and you should use try_to_free_swap() with explicit lock_page()
     140             :          * in usual operations.
     141             :          */
     142           0 :         if (trylock_page(page)) {
     143           0 :                 if ((flags & TTRS_ANYWAY) ||
     144           0 :                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
     145           0 :                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
     146           0 :                         ret = try_to_free_swap(page);
     147           0 :                 unlock_page(page);
     148             :         }
     149           0 :         put_page(page);
     150           0 :         return ret;
     151             : }
     152             : 
     153             : static inline struct swap_extent *first_se(struct swap_info_struct *sis)
     154             : {
     155           0 :         struct rb_node *rb = rb_first(&sis->swap_extent_root);
     156           0 :         return rb_entry(rb, struct swap_extent, rb_node);
     157             : }
     158             : 
     159             : static inline struct swap_extent *next_se(struct swap_extent *se)
     160             : {
     161           0 :         struct rb_node *rb = rb_next(&se->rb_node);
     162           0 :         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
     163             : }
     164             : 
     165             : /*
     166             :  * swapon tell device that all the old swap contents can be discarded,
     167             :  * to allow the swap device to optimize its wear-levelling.
     168             :  */
     169           0 : static int discard_swap(struct swap_info_struct *si)
     170             : {
     171             :         struct swap_extent *se;
     172             :         sector_t start_block;
     173             :         sector_t nr_blocks;
     174           0 :         int err = 0;
     175             : 
     176             :         /* Do not discard the swap header page! */
     177           0 :         se = first_se(si);
     178           0 :         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
     179           0 :         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
     180           0 :         if (nr_blocks) {
     181           0 :                 err = blkdev_issue_discard(si->bdev, start_block,
     182             :                                 nr_blocks, GFP_KERNEL, 0);
     183           0 :                 if (err)
     184             :                         return err;
     185           0 :                 cond_resched();
     186             :         }
     187             : 
     188           0 :         for (se = next_se(se); se; se = next_se(se)) {
     189           0 :                 start_block = se->start_block << (PAGE_SHIFT - 9);
     190           0 :                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
     191             : 
     192           0 :                 err = blkdev_issue_discard(si->bdev, start_block,
     193             :                                 nr_blocks, GFP_KERNEL, 0);
     194           0 :                 if (err)
     195             :                         break;
     196             : 
     197           0 :                 cond_resched();
     198             :         }
     199             :         return err;             /* That will often be -EOPNOTSUPP */
     200             : }
     201             : 
     202             : static struct swap_extent *
     203           0 : offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
     204             : {
     205             :         struct swap_extent *se;
     206             :         struct rb_node *rb;
     207             : 
     208           0 :         rb = sis->swap_extent_root.rb_node;
     209           0 :         while (rb) {
     210           0 :                 se = rb_entry(rb, struct swap_extent, rb_node);
     211           0 :                 if (offset < se->start_page)
     212           0 :                         rb = rb->rb_left;
     213           0 :                 else if (offset >= se->start_page + se->nr_pages)
     214           0 :                         rb = rb->rb_right;
     215             :                 else
     216           0 :                         return se;
     217             :         }
     218             :         /* It *must* be present */
     219           0 :         BUG();
     220             : }
     221             : 
     222           0 : sector_t swap_page_sector(struct page *page)
     223             : {
     224           0 :         struct swap_info_struct *sis = page_swap_info(page);
     225             :         struct swap_extent *se;
     226             :         sector_t sector;
     227             :         pgoff_t offset;
     228             : 
     229           0 :         offset = __page_file_index(page);
     230           0 :         se = offset_to_swap_extent(sis, offset);
     231           0 :         sector = se->start_block + (offset - se->start_page);
     232           0 :         return sector << (PAGE_SHIFT - 9);
     233             : }
     234             : 
     235             : /*
     236             :  * swap allocation tell device that a cluster of swap can now be discarded,
     237             :  * to allow the swap device to optimize its wear-levelling.
     238             :  */
     239           0 : static void discard_swap_cluster(struct swap_info_struct *si,
     240             :                                  pgoff_t start_page, pgoff_t nr_pages)
     241             : {
     242           0 :         struct swap_extent *se = offset_to_swap_extent(si, start_page);
     243             : 
     244           0 :         while (nr_pages) {
     245           0 :                 pgoff_t offset = start_page - se->start_page;
     246           0 :                 sector_t start_block = se->start_block + offset;
     247           0 :                 sector_t nr_blocks = se->nr_pages - offset;
     248             : 
     249           0 :                 if (nr_blocks > nr_pages)
     250           0 :                         nr_blocks = nr_pages;
     251           0 :                 start_page += nr_blocks;
     252           0 :                 nr_pages -= nr_blocks;
     253             : 
     254           0 :                 start_block <<= PAGE_SHIFT - 9;
     255           0 :                 nr_blocks <<= PAGE_SHIFT - 9;
     256           0 :                 if (blkdev_issue_discard(si->bdev, start_block,
     257             :                                         nr_blocks, GFP_NOIO, 0))
     258             :                         break;
     259             : 
     260             :                 se = next_se(se);
     261             :         }
     262           0 : }
     263             : 
     264             : #ifdef CONFIG_THP_SWAP
     265             : #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
     266             : 
     267             : #define swap_entry_size(size)   (size)
     268             : #else
     269             : #define SWAPFILE_CLUSTER        256
     270             : 
     271             : /*
     272             :  * Define swap_entry_size() as constant to let compiler to optimize
     273             :  * out some code if !CONFIG_THP_SWAP
     274             :  */
     275             : #define swap_entry_size(size)   1
     276             : #endif
     277             : #define LATENCY_LIMIT           256
     278             : 
     279             : static inline void cluster_set_flag(struct swap_cluster_info *info,
     280             :         unsigned int flag)
     281             : {
     282           0 :         info->flags = flag;
     283             : }
     284             : 
     285             : static inline unsigned int cluster_count(struct swap_cluster_info *info)
     286             : {
     287           0 :         return info->data;
     288             : }
     289             : 
     290             : static inline void cluster_set_count(struct swap_cluster_info *info,
     291             :                                      unsigned int c)
     292             : {
     293           0 :         info->data = c;
     294             : }
     295             : 
     296             : static inline void cluster_set_count_flag(struct swap_cluster_info *info,
     297             :                                          unsigned int c, unsigned int f)
     298             : {
     299           0 :         info->flags = f;
     300           0 :         info->data = c;
     301             : }
     302             : 
     303             : static inline unsigned int cluster_next(struct swap_cluster_info *info)
     304             : {
     305           0 :         return info->data;
     306             : }
     307             : 
     308             : static inline void cluster_set_next(struct swap_cluster_info *info,
     309             :                                     unsigned int n)
     310             : {
     311           0 :         info->data = n;
     312             : }
     313             : 
     314             : static inline void cluster_set_next_flag(struct swap_cluster_info *info,
     315             :                                          unsigned int n, unsigned int f)
     316             : {
     317           0 :         info->flags = f;
     318           0 :         info->data = n;
     319             : }
     320             : 
     321             : static inline bool cluster_is_free(struct swap_cluster_info *info)
     322             : {
     323           0 :         return info->flags & CLUSTER_FLAG_FREE;
     324             : }
     325             : 
     326             : static inline bool cluster_is_null(struct swap_cluster_info *info)
     327             : {
     328           0 :         return info->flags & CLUSTER_FLAG_NEXT_NULL;
     329             : }
     330             : 
     331             : static inline void cluster_set_null(struct swap_cluster_info *info)
     332             : {
     333           0 :         info->flags = CLUSTER_FLAG_NEXT_NULL;
     334           0 :         info->data = 0;
     335             : }
     336             : 
     337             : static inline bool cluster_is_huge(struct swap_cluster_info *info)
     338             : {
     339             :         if (IS_ENABLED(CONFIG_THP_SWAP))
     340             :                 return info->flags & CLUSTER_FLAG_HUGE;
     341             :         return false;
     342             : }
     343             : 
     344             : static inline void cluster_clear_huge(struct swap_cluster_info *info)
     345             : {
     346             :         info->flags &= ~CLUSTER_FLAG_HUGE;
     347             : }
     348             : 
     349             : static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
     350             :                                                      unsigned long offset)
     351             : {
     352             :         struct swap_cluster_info *ci;
     353             : 
     354           0 :         ci = si->cluster_info;
     355           0 :         if (ci) {
     356           0 :                 ci += offset / SWAPFILE_CLUSTER;
     357           0 :                 spin_lock(&ci->lock);
     358             :         }
     359             :         return ci;
     360             : }
     361             : 
     362             : static inline void unlock_cluster(struct swap_cluster_info *ci)
     363             : {
     364           0 :         if (ci)
     365           0 :                 spin_unlock(&ci->lock);
     366             : }
     367             : 
     368             : /*
     369             :  * Determine the locking method in use for this device.  Return
     370             :  * swap_cluster_info if SSD-style cluster-based locking is in place.
     371             :  */
     372             : static inline struct swap_cluster_info *lock_cluster_or_swap_info(
     373             :                 struct swap_info_struct *si, unsigned long offset)
     374             : {
     375             :         struct swap_cluster_info *ci;
     376             : 
     377             :         /* Try to use fine-grained SSD-style locking if available: */
     378           0 :         ci = lock_cluster(si, offset);
     379             :         /* Otherwise, fall back to traditional, coarse locking: */
     380           0 :         if (!ci)
     381           0 :                 spin_lock(&si->lock);
     382             : 
     383             :         return ci;
     384             : }
     385             : 
     386             : static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
     387             :                                                struct swap_cluster_info *ci)
     388             : {
     389           0 :         if (ci)
     390             :                 unlock_cluster(ci);
     391             :         else
     392           0 :                 spin_unlock(&si->lock);
     393             : }
     394             : 
     395             : static inline bool cluster_list_empty(struct swap_cluster_list *list)
     396             : {
     397           0 :         return cluster_is_null(&list->head);
     398             : }
     399             : 
     400             : static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
     401             : {
     402           0 :         return cluster_next(&list->head);
     403             : }
     404             : 
     405             : static void cluster_list_init(struct swap_cluster_list *list)
     406             : {
     407           0 :         cluster_set_null(&list->head);
     408           0 :         cluster_set_null(&list->tail);
     409             : }
     410             : 
     411             : static void cluster_list_add_tail(struct swap_cluster_list *list,
     412             :                                   struct swap_cluster_info *ci,
     413             :                                   unsigned int idx)
     414             : {
     415           0 :         if (cluster_list_empty(list)) {
     416           0 :                 cluster_set_next_flag(&list->head, idx, 0);
     417           0 :                 cluster_set_next_flag(&list->tail, idx, 0);
     418             :         } else {
     419             :                 struct swap_cluster_info *ci_tail;
     420           0 :                 unsigned int tail = cluster_next(&list->tail);
     421             : 
     422             :                 /*
     423             :                  * Nested cluster lock, but both cluster locks are
     424             :                  * only acquired when we held swap_info_struct->lock
     425             :                  */
     426           0 :                 ci_tail = ci + tail;
     427           0 :                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
     428           0 :                 cluster_set_next(ci_tail, idx);
     429           0 :                 spin_unlock(&ci_tail->lock);
     430           0 :                 cluster_set_next_flag(&list->tail, idx, 0);
     431             :         }
     432             : }
     433             : 
     434             : static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
     435             :                                            struct swap_cluster_info *ci)
     436             : {
     437             :         unsigned int idx;
     438             : 
     439           0 :         idx = cluster_next(&list->head);
     440           0 :         if (cluster_next(&list->tail) == idx) {
     441           0 :                 cluster_set_null(&list->head);
     442           0 :                 cluster_set_null(&list->tail);
     443             :         } else
     444           0 :                 cluster_set_next_flag(&list->head,
     445           0 :                                       cluster_next(&ci[idx]), 0);
     446             : 
     447             :         return idx;
     448             : }
     449             : 
     450             : /* Add a cluster to discard list and schedule it to do discard */
     451           0 : static void swap_cluster_schedule_discard(struct swap_info_struct *si,
     452             :                 unsigned int idx)
     453             : {
     454             :         /*
     455             :          * If scan_swap_map_slots() can't find a free cluster, it will check
     456             :          * si->swap_map directly. To make sure the discarding cluster isn't
     457             :          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
     458             :          * It will be cleared after discard
     459             :          */
     460           0 :         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
     461             :                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
     462             : 
     463           0 :         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
     464             : 
     465           0 :         schedule_work(&si->discard_work);
     466           0 : }
     467             : 
     468             : static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
     469             : {
     470           0 :         struct swap_cluster_info *ci = si->cluster_info;
     471             : 
     472           0 :         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
     473           0 :         cluster_list_add_tail(&si->free_clusters, ci, idx);
     474             : }
     475             : 
     476             : /*
     477             :  * Doing discard actually. After a cluster discard is finished, the cluster
     478             :  * will be added to free cluster list. caller should hold si->lock.
     479             : */
     480           0 : static void swap_do_scheduled_discard(struct swap_info_struct *si)
     481             : {
     482             :         struct swap_cluster_info *info, *ci;
     483             :         unsigned int idx;
     484             : 
     485           0 :         info = si->cluster_info;
     486             : 
     487           0 :         while (!cluster_list_empty(&si->discard_clusters)) {
     488           0 :                 idx = cluster_list_del_first(&si->discard_clusters, info);
     489           0 :                 spin_unlock(&si->lock);
     490             : 
     491           0 :                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
     492             :                                 SWAPFILE_CLUSTER);
     493             : 
     494           0 :                 spin_lock(&si->lock);
     495           0 :                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
     496           0 :                 __free_cluster(si, idx);
     497           0 :                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
     498             :                                 0, SWAPFILE_CLUSTER);
     499             :                 unlock_cluster(ci);
     500             :         }
     501           0 : }
     502             : 
     503           0 : static void swap_discard_work(struct work_struct *work)
     504             : {
     505             :         struct swap_info_struct *si;
     506             : 
     507           0 :         si = container_of(work, struct swap_info_struct, discard_work);
     508             : 
     509           0 :         spin_lock(&si->lock);
     510           0 :         swap_do_scheduled_discard(si);
     511           0 :         spin_unlock(&si->lock);
     512           0 : }
     513             : 
     514           0 : static void swap_users_ref_free(struct percpu_ref *ref)
     515             : {
     516             :         struct swap_info_struct *si;
     517             : 
     518           0 :         si = container_of(ref, struct swap_info_struct, users);
     519           0 :         complete(&si->comp);
     520           0 : }
     521             : 
     522             : static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
     523             : {
     524           0 :         struct swap_cluster_info *ci = si->cluster_info;
     525             : 
     526             :         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
     527           0 :         cluster_list_del_first(&si->free_clusters, ci);
     528           0 :         cluster_set_count_flag(ci + idx, 0, 0);
     529             : }
     530             : 
     531           0 : static void free_cluster(struct swap_info_struct *si, unsigned long idx)
     532             : {
     533           0 :         struct swap_cluster_info *ci = si->cluster_info + idx;
     534             : 
     535             :         VM_BUG_ON(cluster_count(ci) != 0);
     536             :         /*
     537             :          * If the swap is discardable, prepare discard the cluster
     538             :          * instead of free it immediately. The cluster will be freed
     539             :          * after discard.
     540             :          */
     541           0 :         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
     542             :             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
     543           0 :                 swap_cluster_schedule_discard(si, idx);
     544           0 :                 return;
     545             :         }
     546             : 
     547             :         __free_cluster(si, idx);
     548             : }
     549             : 
     550             : /*
     551             :  * The cluster corresponding to page_nr will be used. The cluster will be
     552             :  * removed from free cluster list and its usage counter will be increased.
     553             :  */
     554           0 : static void inc_cluster_info_page(struct swap_info_struct *p,
     555             :         struct swap_cluster_info *cluster_info, unsigned long page_nr)
     556             : {
     557           0 :         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
     558             : 
     559           0 :         if (!cluster_info)
     560             :                 return;
     561           0 :         if (cluster_is_free(&cluster_info[idx]))
     562             :                 alloc_cluster(p, idx);
     563             : 
     564             :         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
     565           0 :         cluster_set_count(&cluster_info[idx],
     566           0 :                 cluster_count(&cluster_info[idx]) + 1);
     567             : }
     568             : 
     569             : /*
     570             :  * The cluster corresponding to page_nr decreases one usage. If the usage
     571             :  * counter becomes 0, which means no page in the cluster is in using, we can
     572             :  * optionally discard the cluster and add it to free cluster list.
     573             :  */
     574           0 : static void dec_cluster_info_page(struct swap_info_struct *p,
     575             :         struct swap_cluster_info *cluster_info, unsigned long page_nr)
     576             : {
     577           0 :         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
     578             : 
     579           0 :         if (!cluster_info)
     580             :                 return;
     581             : 
     582             :         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
     583           0 :         cluster_set_count(&cluster_info[idx],
     584           0 :                 cluster_count(&cluster_info[idx]) - 1);
     585             : 
     586           0 :         if (cluster_count(&cluster_info[idx]) == 0)
     587           0 :                 free_cluster(p, idx);
     588             : }
     589             : 
     590             : /*
     591             :  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
     592             :  * cluster list. Avoiding such abuse to avoid list corruption.
     593             :  */
     594             : static bool
     595             : scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
     596             :         unsigned long offset)
     597             : {
     598             :         struct percpu_cluster *percpu_cluster;
     599             :         bool conflict;
     600             : 
     601           0 :         offset /= SWAPFILE_CLUSTER;
     602           0 :         conflict = !cluster_list_empty(&si->free_clusters) &&
     603           0 :                 offset != cluster_list_first(&si->free_clusters) &&
     604           0 :                 cluster_is_free(&si->cluster_info[offset]);
     605             : 
     606           0 :         if (!conflict)
     607             :                 return false;
     608             : 
     609           0 :         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
     610           0 :         cluster_set_null(&percpu_cluster->index);
     611             :         return true;
     612             : }
     613             : 
     614             : /*
     615             :  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
     616             :  * might involve allocating a new cluster for current CPU too.
     617             :  */
     618           0 : static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
     619             :         unsigned long *offset, unsigned long *scan_base)
     620             : {
     621             :         struct percpu_cluster *cluster;
     622             :         struct swap_cluster_info *ci;
     623             :         unsigned long tmp, max;
     624             : 
     625             : new_cluster:
     626           0 :         cluster = this_cpu_ptr(si->percpu_cluster);
     627           0 :         if (cluster_is_null(&cluster->index)) {
     628           0 :                 if (!cluster_list_empty(&si->free_clusters)) {
     629           0 :                         cluster->index = si->free_clusters.head;
     630           0 :                         cluster->next = cluster_next(&cluster->index) *
     631             :                                         SWAPFILE_CLUSTER;
     632           0 :                 } else if (!cluster_list_empty(&si->discard_clusters)) {
     633             :                         /*
     634             :                          * we don't have free cluster but have some clusters in
     635             :                          * discarding, do discard now and reclaim them, then
     636             :                          * reread cluster_next_cpu since we dropped si->lock
     637             :                          */
     638           0 :                         swap_do_scheduled_discard(si);
     639           0 :                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
     640           0 :                         *offset = *scan_base;
     641           0 :                         goto new_cluster;
     642             :                 } else
     643             :                         return false;
     644             :         }
     645             : 
     646             :         /*
     647             :          * Other CPUs can use our cluster if they can't find a free cluster,
     648             :          * check if there is still free entry in the cluster
     649             :          */
     650           0 :         tmp = cluster->next;
     651           0 :         max = min_t(unsigned long, si->max,
     652             :                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
     653           0 :         if (tmp < max) {
     654           0 :                 ci = lock_cluster(si, tmp);
     655           0 :                 while (tmp < max) {
     656           0 :                         if (!si->swap_map[tmp])
     657             :                                 break;
     658           0 :                         tmp++;
     659             :                 }
     660             :                 unlock_cluster(ci);
     661             :         }
     662           0 :         if (tmp >= max) {
     663           0 :                 cluster_set_null(&cluster->index);
     664             :                 goto new_cluster;
     665             :         }
     666           0 :         cluster->next = tmp + 1;
     667           0 :         *offset = tmp;
     668           0 :         *scan_base = tmp;
     669           0 :         return true;
     670             : }
     671             : 
     672             : static void __del_from_avail_list(struct swap_info_struct *p)
     673             : {
     674             :         int nid;
     675             : 
     676           0 :         for_each_node(nid)
     677           0 :                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
     678             : }
     679             : 
     680             : static void del_from_avail_list(struct swap_info_struct *p)
     681             : {
     682             :         spin_lock(&swap_avail_lock);
     683           0 :         __del_from_avail_list(p);
     684           0 :         spin_unlock(&swap_avail_lock);
     685             : }
     686             : 
     687           0 : static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
     688             :                              unsigned int nr_entries)
     689             : {
     690           0 :         unsigned int end = offset + nr_entries - 1;
     691             : 
     692           0 :         if (offset == si->lowest_bit)
     693           0 :                 si->lowest_bit += nr_entries;
     694           0 :         if (end == si->highest_bit)
     695           0 :                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
     696           0 :         si->inuse_pages += nr_entries;
     697           0 :         if (si->inuse_pages == si->pages) {
     698           0 :                 si->lowest_bit = si->max;
     699           0 :                 si->highest_bit = 0;
     700             :                 del_from_avail_list(si);
     701             :         }
     702           0 : }
     703             : 
     704           0 : static void add_to_avail_list(struct swap_info_struct *p)
     705             : {
     706             :         int nid;
     707             : 
     708           0 :         spin_lock(&swap_avail_lock);
     709           0 :         for_each_node(nid) {
     710           0 :                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
     711           0 :                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
     712             :         }
     713           0 :         spin_unlock(&swap_avail_lock);
     714           0 : }
     715             : 
     716           0 : static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
     717             :                             unsigned int nr_entries)
     718             : {
     719           0 :         unsigned long begin = offset;
     720           0 :         unsigned long end = offset + nr_entries - 1;
     721             :         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
     722             : 
     723           0 :         if (offset < si->lowest_bit)
     724           0 :                 si->lowest_bit = offset;
     725           0 :         if (end > si->highest_bit) {
     726           0 :                 bool was_full = !si->highest_bit;
     727             : 
     728           0 :                 WRITE_ONCE(si->highest_bit, end);
     729           0 :                 if (was_full && (si->flags & SWP_WRITEOK))
     730           0 :                         add_to_avail_list(si);
     731             :         }
     732           0 :         atomic_long_add(nr_entries, &nr_swap_pages);
     733           0 :         si->inuse_pages -= nr_entries;
     734           0 :         if (si->flags & SWP_BLKDEV)
     735           0 :                 swap_slot_free_notify =
     736           0 :                         si->bdev->bd_disk->fops->swap_slot_free_notify;
     737             :         else
     738             :                 swap_slot_free_notify = NULL;
     739           0 :         while (offset <= end) {
     740           0 :                 arch_swap_invalidate_page(si->type, offset);
     741           0 :                 frontswap_invalidate_page(si->type, offset);
     742           0 :                 if (swap_slot_free_notify)
     743           0 :                         swap_slot_free_notify(si->bdev, offset);
     744           0 :                 offset++;
     745             :         }
     746           0 :         clear_shadow_from_swap_cache(si->type, begin, end);
     747           0 : }
     748             : 
     749           0 : static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
     750             : {
     751             :         unsigned long prev;
     752             : 
     753           0 :         if (!(si->flags & SWP_SOLIDSTATE)) {
     754           0 :                 si->cluster_next = next;
     755           0 :                 return;
     756             :         }
     757             : 
     758           0 :         prev = this_cpu_read(*si->cluster_next_cpu);
     759             :         /*
     760             :          * Cross the swap address space size aligned trunk, choose
     761             :          * another trunk randomly to avoid lock contention on swap
     762             :          * address space if possible.
     763             :          */
     764           0 :         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
     765           0 :             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
     766             :                 /* No free swap slots available */
     767           0 :                 if (si->highest_bit <= si->lowest_bit)
     768             :                         return;
     769           0 :                 next = si->lowest_bit +
     770           0 :                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
     771           0 :                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
     772           0 :                 next = max_t(unsigned int, next, si->lowest_bit);
     773             :         }
     774           0 :         this_cpu_write(*si->cluster_next_cpu, next);
     775             : }
     776             : 
     777           0 : static int scan_swap_map_slots(struct swap_info_struct *si,
     778             :                                unsigned char usage, int nr,
     779             :                                swp_entry_t slots[])
     780             : {
     781             :         struct swap_cluster_info *ci;
     782             :         unsigned long offset;
     783             :         unsigned long scan_base;
     784           0 :         unsigned long last_in_cluster = 0;
     785           0 :         int latency_ration = LATENCY_LIMIT;
     786           0 :         int n_ret = 0;
     787           0 :         bool scanned_many = false;
     788             : 
     789             :         /*
     790             :          * We try to cluster swap pages by allocating them sequentially
     791             :          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
     792             :          * way, however, we resort to first-free allocation, starting
     793             :          * a new cluster.  This prevents us from scattering swap pages
     794             :          * all over the entire swap partition, so that we reduce
     795             :          * overall disk seek times between swap pages.  -- sct
     796             :          * But we do now try to find an empty cluster.  -Andrea
     797             :          * And we let swap pages go all over an SSD partition.  Hugh
     798             :          */
     799             : 
     800           0 :         si->flags += SWP_SCANNING;
     801             :         /*
     802             :          * Use percpu scan base for SSD to reduce lock contention on
     803             :          * cluster and swap cache.  For HDD, sequential access is more
     804             :          * important.
     805             :          */
     806           0 :         if (si->flags & SWP_SOLIDSTATE)
     807           0 :                 scan_base = this_cpu_read(*si->cluster_next_cpu);
     808             :         else
     809           0 :                 scan_base = si->cluster_next;
     810           0 :         offset = scan_base;
     811             : 
     812             :         /* SSD algorithm */
     813           0 :         if (si->cluster_info) {
     814           0 :                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
     815             :                         goto scan;
     816           0 :         } else if (unlikely(!si->cluster_nr--)) {
     817           0 :                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
     818           0 :                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
     819           0 :                         goto checks;
     820             :                 }
     821             : 
     822           0 :                 spin_unlock(&si->lock);
     823             : 
     824             :                 /*
     825             :                  * If seek is expensive, start searching for new cluster from
     826             :                  * start of partition, to minimize the span of allocated swap.
     827             :                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
     828             :                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
     829             :                  */
     830           0 :                 scan_base = offset = si->lowest_bit;
     831           0 :                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
     832             : 
     833             :                 /* Locate the first empty (unaligned) cluster */
     834           0 :                 for (; last_in_cluster <= si->highest_bit; offset++) {
     835           0 :                         if (si->swap_map[offset])
     836           0 :                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
     837           0 :                         else if (offset == last_in_cluster) {
     838           0 :                                 spin_lock(&si->lock);
     839           0 :                                 offset -= SWAPFILE_CLUSTER - 1;
     840           0 :                                 si->cluster_next = offset;
     841           0 :                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
     842           0 :                                 goto checks;
     843             :                         }
     844           0 :                         if (unlikely(--latency_ration < 0)) {
     845           0 :                                 cond_resched();
     846           0 :                                 latency_ration = LATENCY_LIMIT;
     847             :                         }
     848             :                 }
     849             : 
     850           0 :                 offset = scan_base;
     851           0 :                 spin_lock(&si->lock);
     852           0 :                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
     853             :         }
     854             : 
     855             : checks:
     856           0 :         if (si->cluster_info) {
     857           0 :                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
     858             :                 /* take a break if we already got some slots */
     859           0 :                         if (n_ret)
     860             :                                 goto done;
     861           0 :                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
     862             :                                                         &scan_base))
     863             :                                 goto scan;
     864             :                 }
     865             :         }
     866           0 :         if (!(si->flags & SWP_WRITEOK))
     867             :                 goto no_page;
     868           0 :         if (!si->highest_bit)
     869             :                 goto no_page;
     870           0 :         if (offset > si->highest_bit)
     871           0 :                 scan_base = offset = si->lowest_bit;
     872             : 
     873           0 :         ci = lock_cluster(si, offset);
     874             :         /* reuse swap entry of cache-only swap if not busy. */
     875           0 :         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
     876             :                 int swap_was_freed;
     877           0 :                 unlock_cluster(ci);
     878           0 :                 spin_unlock(&si->lock);
     879           0 :                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
     880           0 :                 spin_lock(&si->lock);
     881             :                 /* entry was freed successfully, try to use this again */
     882           0 :                 if (swap_was_freed)
     883             :                         goto checks;
     884             :                 goto scan; /* check next one */
     885             :         }
     886             : 
     887           0 :         if (si->swap_map[offset]) {
     888           0 :                 unlock_cluster(ci);
     889           0 :                 if (!n_ret)
     890             :                         goto scan;
     891             :                 else
     892             :                         goto done;
     893             :         }
     894           0 :         WRITE_ONCE(si->swap_map[offset], usage);
     895           0 :         inc_cluster_info_page(si, si->cluster_info, offset);
     896           0 :         unlock_cluster(ci);
     897             : 
     898           0 :         swap_range_alloc(si, offset, 1);
     899           0 :         slots[n_ret++] = swp_entry(si->type, offset);
     900             : 
     901             :         /* got enough slots or reach max slots? */
     902           0 :         if ((n_ret == nr) || (offset >= si->highest_bit))
     903             :                 goto done;
     904             : 
     905             :         /* search for next available slot */
     906             : 
     907             :         /* time to take a break? */
     908           0 :         if (unlikely(--latency_ration < 0)) {
     909           0 :                 if (n_ret)
     910             :                         goto done;
     911           0 :                 spin_unlock(&si->lock);
     912           0 :                 cond_resched();
     913           0 :                 spin_lock(&si->lock);
     914           0 :                 latency_ration = LATENCY_LIMIT;
     915             :         }
     916             : 
     917             :         /* try to get more slots in cluster */
     918           0 :         if (si->cluster_info) {
     919           0 :                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
     920             :                         goto checks;
     921           0 :         } else if (si->cluster_nr && !si->swap_map[++offset]) {
     922             :                 /* non-ssd case, still more slots in cluster? */
     923           0 :                 --si->cluster_nr;
     924           0 :                 goto checks;
     925             :         }
     926             : 
     927             :         /*
     928             :          * Even if there's no free clusters available (fragmented),
     929             :          * try to scan a little more quickly with lock held unless we
     930             :          * have scanned too many slots already.
     931             :          */
     932           0 :         if (!scanned_many) {
     933             :                 unsigned long scan_limit;
     934             : 
     935           0 :                 if (offset < scan_base)
     936             :                         scan_limit = scan_base;
     937             :                 else
     938           0 :                         scan_limit = si->highest_bit;
     939           0 :                 for (; offset <= scan_limit && --latency_ration > 0;
     940           0 :                      offset++) {
     941           0 :                         if (!si->swap_map[offset])
     942             :                                 goto checks;
     943             :                 }
     944             :         }
     945             : 
     946             : done:
     947           0 :         set_cluster_next(si, offset + 1);
     948           0 :         si->flags -= SWP_SCANNING;
     949           0 :         return n_ret;
     950             : 
     951             : scan:
     952           0 :         spin_unlock(&si->lock);
     953           0 :         while (++offset <= READ_ONCE(si->highest_bit)) {
     954           0 :                 if (data_race(!si->swap_map[offset])) {
     955           0 :                         spin_lock(&si->lock);
     956             :                         goto checks;
     957             :                 }
     958           0 :                 if (vm_swap_full() &&
     959           0 :                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
     960           0 :                         spin_lock(&si->lock);
     961             :                         goto checks;
     962             :                 }
     963           0 :                 if (unlikely(--latency_ration < 0)) {
     964           0 :                         cond_resched();
     965           0 :                         latency_ration = LATENCY_LIMIT;
     966           0 :                         scanned_many = true;
     967             :                 }
     968             :         }
     969           0 :         offset = si->lowest_bit;
     970           0 :         while (offset < scan_base) {
     971           0 :                 if (data_race(!si->swap_map[offset])) {
     972           0 :                         spin_lock(&si->lock);
     973             :                         goto checks;
     974             :                 }
     975           0 :                 if (vm_swap_full() &&
     976           0 :                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
     977           0 :                         spin_lock(&si->lock);
     978             :                         goto checks;
     979             :                 }
     980           0 :                 if (unlikely(--latency_ration < 0)) {
     981           0 :                         cond_resched();
     982           0 :                         latency_ration = LATENCY_LIMIT;
     983           0 :                         scanned_many = true;
     984             :                 }
     985           0 :                 offset++;
     986             :         }
     987           0 :         spin_lock(&si->lock);
     988             : 
     989             : no_page:
     990           0 :         si->flags -= SWP_SCANNING;
     991           0 :         return n_ret;
     992             : }
     993             : 
     994             : static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
     995             : {
     996             :         unsigned long idx;
     997             :         struct swap_cluster_info *ci;
     998             :         unsigned long offset;
     999             : 
    1000             :         /*
    1001             :          * Should not even be attempting cluster allocations when huge
    1002             :          * page swap is disabled.  Warn and fail the allocation.
    1003             :          */
    1004             :         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
    1005             :                 VM_WARN_ON_ONCE(1);
    1006             :                 return 0;
    1007             :         }
    1008             : 
    1009             :         if (cluster_list_empty(&si->free_clusters))
    1010             :                 return 0;
    1011             : 
    1012             :         idx = cluster_list_first(&si->free_clusters);
    1013             :         offset = idx * SWAPFILE_CLUSTER;
    1014             :         ci = lock_cluster(si, offset);
    1015             :         alloc_cluster(si, idx);
    1016             :         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
    1017             : 
    1018             :         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
    1019             :         unlock_cluster(ci);
    1020             :         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
    1021             :         *slot = swp_entry(si->type, offset);
    1022             : 
    1023             :         return 1;
    1024             : }
    1025             : 
    1026             : static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
    1027             : {
    1028             :         unsigned long offset = idx * SWAPFILE_CLUSTER;
    1029             :         struct swap_cluster_info *ci;
    1030             : 
    1031             :         ci = lock_cluster(si, offset);
    1032             :         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
    1033             :         cluster_set_count_flag(ci, 0, 0);
    1034             :         free_cluster(si, idx);
    1035             :         unlock_cluster(ci);
    1036             :         swap_range_free(si, offset, SWAPFILE_CLUSTER);
    1037             : }
    1038             : 
    1039           0 : int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
    1040             : {
    1041           0 :         unsigned long size = swap_entry_size(entry_size);
    1042             :         struct swap_info_struct *si, *next;
    1043             :         long avail_pgs;
    1044           0 :         int n_ret = 0;
    1045             :         int node;
    1046             : 
    1047             :         /* Only single cluster request supported */
    1048           0 :         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
    1049             : 
    1050           0 :         spin_lock(&swap_avail_lock);
    1051             : 
    1052           0 :         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
    1053           0 :         if (avail_pgs <= 0) {
    1054             :                 spin_unlock(&swap_avail_lock);
    1055             :                 goto noswap;
    1056             :         }
    1057             : 
    1058           0 :         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
    1059             : 
    1060           0 :         atomic_long_sub(n_goal * size, &nr_swap_pages);
    1061             : 
    1062             : start_over:
    1063           0 :         node = numa_node_id();
    1064           0 :         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
    1065             :                 /* requeue si to after same-priority siblings */
    1066           0 :                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
    1067           0 :                 spin_unlock(&swap_avail_lock);
    1068           0 :                 spin_lock(&si->lock);
    1069           0 :                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
    1070           0 :                         spin_lock(&swap_avail_lock);
    1071           0 :                         if (plist_node_empty(&si->avail_lists[node])) {
    1072           0 :                                 spin_unlock(&si->lock);
    1073             :                                 goto nextsi;
    1074             :                         }
    1075           0 :                         WARN(!si->highest_bit,
    1076             :                              "swap_info %d in list but !highest_bit\n",
    1077             :                              si->type);
    1078           0 :                         WARN(!(si->flags & SWP_WRITEOK),
    1079             :                              "swap_info %d in list but !SWP_WRITEOK\n",
    1080             :                              si->type);
    1081           0 :                         __del_from_avail_list(si);
    1082           0 :                         spin_unlock(&si->lock);
    1083             :                         goto nextsi;
    1084             :                 }
    1085             :                 if (size == SWAPFILE_CLUSTER) {
    1086             :                         if (si->flags & SWP_BLKDEV)
    1087             :                                 n_ret = swap_alloc_cluster(si, swp_entries);
    1088             :                 } else
    1089           0 :                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
    1090             :                                                     n_goal, swp_entries);
    1091           0 :                 spin_unlock(&si->lock);
    1092           0 :                 if (n_ret || size == SWAPFILE_CLUSTER)
    1093             :                         goto check_out;
    1094           0 :                 pr_debug("scan_swap_map of si %d failed to find offset\n",
    1095             :                         si->type);
    1096             : 
    1097             :                 spin_lock(&swap_avail_lock);
    1098             : nextsi:
    1099             :                 /*
    1100             :                  * if we got here, it's likely that si was almost full before,
    1101             :                  * and since scan_swap_map_slots() can drop the si->lock,
    1102             :                  * multiple callers probably all tried to get a page from the
    1103             :                  * same si and it filled up before we could get one; or, the si
    1104             :                  * filled up between us dropping swap_avail_lock and taking
    1105             :                  * si->lock. Since we dropped the swap_avail_lock, the
    1106             :                  * swap_avail_head list may have been modified; so if next is
    1107             :                  * still in the swap_avail_head list then try it, otherwise
    1108             :                  * start over if we have not gotten any slots.
    1109             :                  */
    1110           0 :                 if (plist_node_empty(&next->avail_lists[node]))
    1111             :                         goto start_over;
    1112             :         }
    1113             : 
    1114             :         spin_unlock(&swap_avail_lock);
    1115             : 
    1116             : check_out:
    1117           0 :         if (n_ret < n_goal)
    1118           0 :                 atomic_long_add((long)(n_goal - n_ret) * size,
    1119             :                                 &nr_swap_pages);
    1120             : noswap:
    1121           0 :         return n_ret;
    1122             : }
    1123             : 
    1124           0 : static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
    1125             : {
    1126             :         struct swap_info_struct *p;
    1127             :         unsigned long offset;
    1128             : 
    1129           0 :         if (!entry.val)
    1130             :                 goto out;
    1131           0 :         p = swp_swap_info(entry);
    1132           0 :         if (!p)
    1133             :                 goto bad_nofile;
    1134           0 :         if (data_race(!(p->flags & SWP_USED)))
    1135             :                 goto bad_device;
    1136           0 :         offset = swp_offset(entry);
    1137           0 :         if (offset >= p->max)
    1138             :                 goto bad_offset;
    1139             :         return p;
    1140             : 
    1141             : bad_offset:
    1142           0 :         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
    1143           0 :         goto out;
    1144             : bad_device:
    1145           0 :         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
    1146           0 :         goto out;
    1147             : bad_nofile:
    1148           0 :         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
    1149             : out:
    1150             :         return NULL;
    1151             : }
    1152             : 
    1153           0 : static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
    1154             : {
    1155             :         struct swap_info_struct *p;
    1156             : 
    1157           0 :         p = __swap_info_get(entry);
    1158           0 :         if (!p)
    1159             :                 goto out;
    1160           0 :         if (data_race(!p->swap_map[swp_offset(entry)]))
    1161             :                 goto bad_free;
    1162             :         return p;
    1163             : 
    1164             : bad_free:
    1165           0 :         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
    1166             : out:
    1167             :         return NULL;
    1168             : }
    1169             : 
    1170             : static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
    1171             :                                         struct swap_info_struct *q)
    1172             : {
    1173             :         struct swap_info_struct *p;
    1174             : 
    1175           0 :         p = _swap_info_get(entry);
    1176             : 
    1177           0 :         if (p != q) {
    1178           0 :                 if (q != NULL)
    1179           0 :                         spin_unlock(&q->lock);
    1180           0 :                 if (p != NULL)
    1181           0 :                         spin_lock(&p->lock);
    1182             :         }
    1183             :         return p;
    1184             : }
    1185             : 
    1186           0 : static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
    1187             :                                               unsigned long offset,
    1188             :                                               unsigned char usage)
    1189             : {
    1190             :         unsigned char count;
    1191             :         unsigned char has_cache;
    1192             : 
    1193           0 :         count = p->swap_map[offset];
    1194             : 
    1195           0 :         has_cache = count & SWAP_HAS_CACHE;
    1196           0 :         count &= ~SWAP_HAS_CACHE;
    1197             : 
    1198           0 :         if (usage == SWAP_HAS_CACHE) {
    1199             :                 VM_BUG_ON(!has_cache);
    1200             :                 has_cache = 0;
    1201           0 :         } else if (count == SWAP_MAP_SHMEM) {
    1202             :                 /*
    1203             :                  * Or we could insist on shmem.c using a special
    1204             :                  * swap_shmem_free() and free_shmem_swap_and_cache()...
    1205             :                  */
    1206             :                 count = 0;
    1207           0 :         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
    1208           0 :                 if (count == COUNT_CONTINUED) {
    1209           0 :                         if (swap_count_continued(p, offset, count))
    1210             :                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
    1211             :                         else
    1212           0 :                                 count = SWAP_MAP_MAX;
    1213             :                 } else
    1214           0 :                         count--;
    1215             :         }
    1216             : 
    1217           0 :         usage = count | has_cache;
    1218           0 :         if (usage)
    1219           0 :                 WRITE_ONCE(p->swap_map[offset], usage);
    1220             :         else
    1221           0 :                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
    1222             : 
    1223           0 :         return usage;
    1224             : }
    1225             : 
    1226             : /*
    1227             :  * Check whether swap entry is valid in the swap device.  If so,
    1228             :  * return pointer to swap_info_struct, and keep the swap entry valid
    1229             :  * via preventing the swap device from being swapoff, until
    1230             :  * put_swap_device() is called.  Otherwise return NULL.
    1231             :  *
    1232             :  * Notice that swapoff or swapoff+swapon can still happen before the
    1233             :  * percpu_ref_tryget_live() in get_swap_device() or after the
    1234             :  * percpu_ref_put() in put_swap_device() if there isn't any other way
    1235             :  * to prevent swapoff, such as page lock, page table lock, etc.  The
    1236             :  * caller must be prepared for that.  For example, the following
    1237             :  * situation is possible.
    1238             :  *
    1239             :  *   CPU1                               CPU2
    1240             :  *   do_swap_page()
    1241             :  *     ...                              swapoff+swapon
    1242             :  *     __read_swap_cache_async()
    1243             :  *       swapcache_prepare()
    1244             :  *         __swap_duplicate()
    1245             :  *           // check swap_map
    1246             :  *     // verify PTE not changed
    1247             :  *
    1248             :  * In __swap_duplicate(), the swap_map need to be checked before
    1249             :  * changing partly because the specified swap entry may be for another
    1250             :  * swap device which has been swapoff.  And in do_swap_page(), after
    1251             :  * the page is read from the swap device, the PTE is verified not
    1252             :  * changed with the page table locked to check whether the swap device
    1253             :  * has been swapoff or swapoff+swapon.
    1254             :  */
    1255           0 : struct swap_info_struct *get_swap_device(swp_entry_t entry)
    1256             : {
    1257             :         struct swap_info_struct *si;
    1258             :         unsigned long offset;
    1259             : 
    1260           0 :         if (!entry.val)
    1261             :                 goto out;
    1262           0 :         si = swp_swap_info(entry);
    1263           0 :         if (!si)
    1264             :                 goto bad_nofile;
    1265           0 :         if (!percpu_ref_tryget_live(&si->users))
    1266             :                 goto out;
    1267             :         /*
    1268             :          * Guarantee the si->users are checked before accessing other
    1269             :          * fields of swap_info_struct.
    1270             :          *
    1271             :          * Paired with the spin_unlock() after setup_swap_info() in
    1272             :          * enable_swap_info().
    1273             :          */
    1274           0 :         smp_rmb();
    1275           0 :         offset = swp_offset(entry);
    1276           0 :         if (offset >= si->max)
    1277             :                 goto put_out;
    1278             : 
    1279             :         return si;
    1280             : bad_nofile:
    1281           0 :         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
    1282             : out:
    1283             :         return NULL;
    1284             : put_out:
    1285           0 :         percpu_ref_put(&si->users);
    1286           0 :         return NULL;
    1287             : }
    1288             : 
    1289           0 : static unsigned char __swap_entry_free(struct swap_info_struct *p,
    1290             :                                        swp_entry_t entry)
    1291             : {
    1292             :         struct swap_cluster_info *ci;
    1293           0 :         unsigned long offset = swp_offset(entry);
    1294             :         unsigned char usage;
    1295             : 
    1296           0 :         ci = lock_cluster_or_swap_info(p, offset);
    1297           0 :         usage = __swap_entry_free_locked(p, offset, 1);
    1298           0 :         unlock_cluster_or_swap_info(p, ci);
    1299           0 :         if (!usage)
    1300           0 :                 free_swap_slot(entry);
    1301             : 
    1302           0 :         return usage;
    1303             : }
    1304             : 
    1305           0 : static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
    1306             : {
    1307             :         struct swap_cluster_info *ci;
    1308           0 :         unsigned long offset = swp_offset(entry);
    1309             :         unsigned char count;
    1310             : 
    1311           0 :         ci = lock_cluster(p, offset);
    1312           0 :         count = p->swap_map[offset];
    1313             :         VM_BUG_ON(count != SWAP_HAS_CACHE);
    1314           0 :         p->swap_map[offset] = 0;
    1315           0 :         dec_cluster_info_page(p, p->cluster_info, offset);
    1316           0 :         unlock_cluster(ci);
    1317             : 
    1318           0 :         mem_cgroup_uncharge_swap(entry, 1);
    1319           0 :         swap_range_free(p, offset, 1);
    1320           0 : }
    1321             : 
    1322             : /*
    1323             :  * Caller has made sure that the swap device corresponding to entry
    1324             :  * is still around or has not been recycled.
    1325             :  */
    1326           0 : void swap_free(swp_entry_t entry)
    1327             : {
    1328             :         struct swap_info_struct *p;
    1329             : 
    1330           0 :         p = _swap_info_get(entry);
    1331           0 :         if (p)
    1332           0 :                 __swap_entry_free(p, entry);
    1333           0 : }
    1334             : 
    1335             : /*
    1336             :  * Called after dropping swapcache to decrease refcnt to swap entries.
    1337             :  */
    1338           0 : void put_swap_page(struct page *page, swp_entry_t entry)
    1339             : {
    1340           0 :         unsigned long offset = swp_offset(entry);
    1341           0 :         unsigned long idx = offset / SWAPFILE_CLUSTER;
    1342             :         struct swap_cluster_info *ci;
    1343             :         struct swap_info_struct *si;
    1344             :         unsigned char *map;
    1345           0 :         unsigned int i, free_entries = 0;
    1346             :         unsigned char val;
    1347           0 :         int size = swap_entry_size(thp_nr_pages(page));
    1348             : 
    1349           0 :         si = _swap_info_get(entry);
    1350           0 :         if (!si)
    1351             :                 return;
    1352             : 
    1353             :         ci = lock_cluster_or_swap_info(si, offset);
    1354             :         if (size == SWAPFILE_CLUSTER) {
    1355             :                 VM_BUG_ON(!cluster_is_huge(ci));
    1356             :                 map = si->swap_map + offset;
    1357             :                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
    1358             :                         val = map[i];
    1359             :                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
    1360             :                         if (val == SWAP_HAS_CACHE)
    1361             :                                 free_entries++;
    1362             :                 }
    1363             :                 cluster_clear_huge(ci);
    1364             :                 if (free_entries == SWAPFILE_CLUSTER) {
    1365             :                         unlock_cluster_or_swap_info(si, ci);
    1366             :                         spin_lock(&si->lock);
    1367             :                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
    1368             :                         swap_free_cluster(si, idx);
    1369             :                         spin_unlock(&si->lock);
    1370             :                         return;
    1371             :                 }
    1372             :         }
    1373           0 :         for (i = 0; i < size; i++, entry.val++) {
    1374           0 :                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
    1375           0 :                         unlock_cluster_or_swap_info(si, ci);
    1376           0 :                         free_swap_slot(entry);
    1377             :                         if (i == size - 1)
    1378             :                                 return;
    1379             :                         lock_cluster_or_swap_info(si, offset);
    1380             :                 }
    1381             :         }
    1382           0 :         unlock_cluster_or_swap_info(si, ci);
    1383             : }
    1384             : 
    1385             : #ifdef CONFIG_THP_SWAP
    1386             : int split_swap_cluster(swp_entry_t entry)
    1387             : {
    1388             :         struct swap_info_struct *si;
    1389             :         struct swap_cluster_info *ci;
    1390             :         unsigned long offset = swp_offset(entry);
    1391             : 
    1392             :         si = _swap_info_get(entry);
    1393             :         if (!si)
    1394             :                 return -EBUSY;
    1395             :         ci = lock_cluster(si, offset);
    1396             :         cluster_clear_huge(ci);
    1397             :         unlock_cluster(ci);
    1398             :         return 0;
    1399             : }
    1400             : #endif
    1401             : 
    1402           0 : static int swp_entry_cmp(const void *ent1, const void *ent2)
    1403             : {
    1404           0 :         const swp_entry_t *e1 = ent1, *e2 = ent2;
    1405             : 
    1406           0 :         return (int)swp_type(*e1) - (int)swp_type(*e2);
    1407             : }
    1408             : 
    1409           0 : void swapcache_free_entries(swp_entry_t *entries, int n)
    1410             : {
    1411             :         struct swap_info_struct *p, *prev;
    1412             :         int i;
    1413             : 
    1414           0 :         if (n <= 0)
    1415             :                 return;
    1416             : 
    1417           0 :         prev = NULL;
    1418           0 :         p = NULL;
    1419             : 
    1420             :         /*
    1421             :          * Sort swap entries by swap device, so each lock is only taken once.
    1422             :          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
    1423             :          * so low that it isn't necessary to optimize further.
    1424             :          */
    1425           0 :         if (nr_swapfiles > 1)
    1426           0 :                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
    1427           0 :         for (i = 0; i < n; ++i) {
    1428           0 :                 p = swap_info_get_cont(entries[i], prev);
    1429           0 :                 if (p)
    1430           0 :                         swap_entry_free(p, entries[i]);
    1431           0 :                 prev = p;
    1432             :         }
    1433           0 :         if (p)
    1434           0 :                 spin_unlock(&p->lock);
    1435             : }
    1436             : 
    1437             : /*
    1438             :  * How many references to page are currently swapped out?
    1439             :  * This does not give an exact answer when swap count is continued,
    1440             :  * but does include the high COUNT_CONTINUED flag to allow for that.
    1441             :  */
    1442           0 : int page_swapcount(struct page *page)
    1443             : {
    1444           0 :         int count = 0;
    1445             :         struct swap_info_struct *p;
    1446             :         struct swap_cluster_info *ci;
    1447             :         swp_entry_t entry;
    1448             :         unsigned long offset;
    1449             : 
    1450           0 :         entry.val = page_private(page);
    1451           0 :         p = _swap_info_get(entry);
    1452           0 :         if (p) {
    1453           0 :                 offset = swp_offset(entry);
    1454           0 :                 ci = lock_cluster_or_swap_info(p, offset);
    1455           0 :                 count = swap_count(p->swap_map[offset]);
    1456           0 :                 unlock_cluster_or_swap_info(p, ci);
    1457             :         }
    1458           0 :         return count;
    1459             : }
    1460             : 
    1461           0 : int __swap_count(swp_entry_t entry)
    1462             : {
    1463             :         struct swap_info_struct *si;
    1464           0 :         pgoff_t offset = swp_offset(entry);
    1465           0 :         int count = 0;
    1466             : 
    1467           0 :         si = get_swap_device(entry);
    1468           0 :         if (si) {
    1469           0 :                 count = swap_count(si->swap_map[offset]);
    1470             :                 put_swap_device(si);
    1471             :         }
    1472           0 :         return count;
    1473             : }
    1474             : 
    1475             : static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
    1476             : {
    1477           0 :         int count = 0;
    1478           0 :         pgoff_t offset = swp_offset(entry);
    1479             :         struct swap_cluster_info *ci;
    1480             : 
    1481           0 :         ci = lock_cluster_or_swap_info(si, offset);
    1482           0 :         count = swap_count(si->swap_map[offset]);
    1483           0 :         unlock_cluster_or_swap_info(si, ci);
    1484             :         return count;
    1485             : }
    1486             : 
    1487             : /*
    1488             :  * How many references to @entry are currently swapped out?
    1489             :  * This does not give an exact answer when swap count is continued,
    1490             :  * but does include the high COUNT_CONTINUED flag to allow for that.
    1491             :  */
    1492           0 : int __swp_swapcount(swp_entry_t entry)
    1493             : {
    1494           0 :         int count = 0;
    1495             :         struct swap_info_struct *si;
    1496             : 
    1497           0 :         si = get_swap_device(entry);
    1498           0 :         if (si) {
    1499           0 :                 count = swap_swapcount(si, entry);
    1500             :                 put_swap_device(si);
    1501             :         }
    1502           0 :         return count;
    1503             : }
    1504             : 
    1505             : /*
    1506             :  * How many references to @entry are currently swapped out?
    1507             :  * This considers COUNT_CONTINUED so it returns exact answer.
    1508             :  */
    1509           0 : int swp_swapcount(swp_entry_t entry)
    1510             : {
    1511             :         int count, tmp_count, n;
    1512             :         struct swap_info_struct *p;
    1513             :         struct swap_cluster_info *ci;
    1514             :         struct page *page;
    1515             :         pgoff_t offset;
    1516             :         unsigned char *map;
    1517             : 
    1518           0 :         p = _swap_info_get(entry);
    1519           0 :         if (!p)
    1520             :                 return 0;
    1521             : 
    1522           0 :         offset = swp_offset(entry);
    1523             : 
    1524           0 :         ci = lock_cluster_or_swap_info(p, offset);
    1525             : 
    1526           0 :         count = swap_count(p->swap_map[offset]);
    1527           0 :         if (!(count & COUNT_CONTINUED))
    1528             :                 goto out;
    1529             : 
    1530           0 :         count &= ~COUNT_CONTINUED;
    1531           0 :         n = SWAP_MAP_MAX + 1;
    1532             : 
    1533           0 :         page = vmalloc_to_page(p->swap_map + offset);
    1534           0 :         offset &= ~PAGE_MASK;
    1535             :         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
    1536             : 
    1537             :         do {
    1538           0 :                 page = list_next_entry(page, lru);
    1539           0 :                 map = kmap_atomic(page);
    1540           0 :                 tmp_count = map[offset];
    1541           0 :                 kunmap_atomic(map);
    1542             : 
    1543           0 :                 count += (tmp_count & ~COUNT_CONTINUED) * n;
    1544           0 :                 n *= (SWAP_CONT_MAX + 1);
    1545           0 :         } while (tmp_count & COUNT_CONTINUED);
    1546             : out:
    1547           0 :         unlock_cluster_or_swap_info(p, ci);
    1548             :         return count;
    1549             : }
    1550             : 
    1551             : static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
    1552             :                                          swp_entry_t entry)
    1553             : {
    1554             :         struct swap_cluster_info *ci;
    1555           0 :         unsigned char *map = si->swap_map;
    1556           0 :         unsigned long roffset = swp_offset(entry);
    1557           0 :         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
    1558             :         int i;
    1559           0 :         bool ret = false;
    1560             : 
    1561           0 :         ci = lock_cluster_or_swap_info(si, offset);
    1562             :         if (!ci || !cluster_is_huge(ci)) {
    1563           0 :                 if (swap_count(map[roffset]))
    1564           0 :                         ret = true;
    1565             :                 goto unlock_out;
    1566             :         }
    1567             :         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
    1568             :                 if (swap_count(map[offset + i])) {
    1569             :                         ret = true;
    1570             :                         break;
    1571             :                 }
    1572             :         }
    1573             : unlock_out:
    1574           0 :         unlock_cluster_or_swap_info(si, ci);
    1575             :         return ret;
    1576             : }
    1577             : 
    1578             : static bool page_swapped(struct page *page)
    1579             : {
    1580             :         swp_entry_t entry;
    1581             :         struct swap_info_struct *si;
    1582             : 
    1583             :         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
    1584           0 :                 return page_swapcount(page) != 0;
    1585             : 
    1586             :         page = compound_head(page);
    1587             :         entry.val = page_private(page);
    1588             :         si = _swap_info_get(entry);
    1589             :         if (si)
    1590             :                 return swap_page_trans_huge_swapped(si, entry);
    1591             :         return false;
    1592             : }
    1593             : 
    1594             : /*
    1595             :  * If swap is getting full, or if there are no more mappings of this page,
    1596             :  * then try_to_free_swap is called to free its swap space.
    1597             :  */
    1598           0 : int try_to_free_swap(struct page *page)
    1599             : {
    1600             :         VM_BUG_ON_PAGE(!PageLocked(page), page);
    1601             : 
    1602           0 :         if (!PageSwapCache(page))
    1603             :                 return 0;
    1604           0 :         if (PageWriteback(page))
    1605             :                 return 0;
    1606           0 :         if (page_swapped(page))
    1607             :                 return 0;
    1608             : 
    1609             :         /*
    1610             :          * Once hibernation has begun to create its image of memory,
    1611             :          * there's a danger that one of the calls to try_to_free_swap()
    1612             :          * - most probably a call from __try_to_reclaim_swap() while
    1613             :          * hibernation is allocating its own swap pages for the image,
    1614             :          * but conceivably even a call from memory reclaim - will free
    1615             :          * the swap from a page which has already been recorded in the
    1616             :          * image as a clean swapcache page, and then reuse its swap for
    1617             :          * another page of the image.  On waking from hibernation, the
    1618             :          * original page might be freed under memory pressure, then
    1619             :          * later read back in from swap, now with the wrong data.
    1620             :          *
    1621             :          * Hibernation suspends storage while it is writing the image
    1622             :          * to disk so check that here.
    1623             :          */
    1624           0 :         if (pm_suspended_storage())
    1625             :                 return 0;
    1626             : 
    1627           0 :         page = compound_head(page);
    1628           0 :         delete_from_swap_cache(page);
    1629           0 :         SetPageDirty(page);
    1630           0 :         return 1;
    1631             : }
    1632             : 
    1633             : /*
    1634             :  * Free the swap entry like above, but also try to
    1635             :  * free the page cache entry if it is the last user.
    1636             :  */
    1637           0 : int free_swap_and_cache(swp_entry_t entry)
    1638             : {
    1639             :         struct swap_info_struct *p;
    1640             :         unsigned char count;
    1641             : 
    1642           0 :         if (non_swap_entry(entry))
    1643             :                 return 1;
    1644             : 
    1645           0 :         p = _swap_info_get(entry);
    1646           0 :         if (p) {
    1647           0 :                 count = __swap_entry_free(p, entry);
    1648           0 :                 if (count == SWAP_HAS_CACHE &&
    1649           0 :                     !swap_page_trans_huge_swapped(p, entry))
    1650           0 :                         __try_to_reclaim_swap(p, swp_offset(entry),
    1651             :                                               TTRS_UNMAPPED | TTRS_FULL);
    1652             :         }
    1653           0 :         return p != NULL;
    1654             : }
    1655             : 
    1656             : #ifdef CONFIG_HIBERNATION
    1657             : 
    1658             : swp_entry_t get_swap_page_of_type(int type)
    1659             : {
    1660             :         struct swap_info_struct *si = swap_type_to_swap_info(type);
    1661             :         swp_entry_t entry = {0};
    1662             : 
    1663             :         if (!si)
    1664             :                 goto fail;
    1665             : 
    1666             :         /* This is called for allocating swap entry, not cache */
    1667             :         spin_lock(&si->lock);
    1668             :         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
    1669             :                 atomic_long_dec(&nr_swap_pages);
    1670             :         spin_unlock(&si->lock);
    1671             : fail:
    1672             :         return entry;
    1673             : }
    1674             : 
    1675             : /*
    1676             :  * Find the swap type that corresponds to given device (if any).
    1677             :  *
    1678             :  * @offset - number of the PAGE_SIZE-sized block of the device, starting
    1679             :  * from 0, in which the swap header is expected to be located.
    1680             :  *
    1681             :  * This is needed for the suspend to disk (aka swsusp).
    1682             :  */
    1683             : int swap_type_of(dev_t device, sector_t offset)
    1684             : {
    1685             :         int type;
    1686             : 
    1687             :         if (!device)
    1688             :                 return -1;
    1689             : 
    1690             :         spin_lock(&swap_lock);
    1691             :         for (type = 0; type < nr_swapfiles; type++) {
    1692             :                 struct swap_info_struct *sis = swap_info[type];
    1693             : 
    1694             :                 if (!(sis->flags & SWP_WRITEOK))
    1695             :                         continue;
    1696             : 
    1697             :                 if (device == sis->bdev->bd_dev) {
    1698             :                         struct swap_extent *se = first_se(sis);
    1699             : 
    1700             :                         if (se->start_block == offset) {
    1701             :                                 spin_unlock(&swap_lock);
    1702             :                                 return type;
    1703             :                         }
    1704             :                 }
    1705             :         }
    1706             :         spin_unlock(&swap_lock);
    1707             :         return -ENODEV;
    1708             : }
    1709             : 
    1710             : int find_first_swap(dev_t *device)
    1711             : {
    1712             :         int type;
    1713             : 
    1714             :         spin_lock(&swap_lock);
    1715             :         for (type = 0; type < nr_swapfiles; type++) {
    1716             :                 struct swap_info_struct *sis = swap_info[type];
    1717             : 
    1718             :                 if (!(sis->flags & SWP_WRITEOK))
    1719             :                         continue;
    1720             :                 *device = sis->bdev->bd_dev;
    1721             :                 spin_unlock(&swap_lock);
    1722             :                 return type;
    1723             :         }
    1724             :         spin_unlock(&swap_lock);
    1725             :         return -ENODEV;
    1726             : }
    1727             : 
    1728             : /*
    1729             :  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
    1730             :  * corresponding to given index in swap_info (swap type).
    1731             :  */
    1732             : sector_t swapdev_block(int type, pgoff_t offset)
    1733             : {
    1734             :         struct swap_info_struct *si = swap_type_to_swap_info(type);
    1735             :         struct swap_extent *se;
    1736             : 
    1737             :         if (!si || !(si->flags & SWP_WRITEOK))
    1738             :                 return 0;
    1739             :         se = offset_to_swap_extent(si, offset);
    1740             :         return se->start_block + (offset - se->start_page);
    1741             : }
    1742             : 
    1743             : /*
    1744             :  * Return either the total number of swap pages of given type, or the number
    1745             :  * of free pages of that type (depending on @free)
    1746             :  *
    1747             :  * This is needed for software suspend
    1748             :  */
    1749             : unsigned int count_swap_pages(int type, int free)
    1750             : {
    1751             :         unsigned int n = 0;
    1752             : 
    1753             :         spin_lock(&swap_lock);
    1754             :         if ((unsigned int)type < nr_swapfiles) {
    1755             :                 struct swap_info_struct *sis = swap_info[type];
    1756             : 
    1757             :                 spin_lock(&sis->lock);
    1758             :                 if (sis->flags & SWP_WRITEOK) {
    1759             :                         n = sis->pages;
    1760             :                         if (free)
    1761             :                                 n -= sis->inuse_pages;
    1762             :                 }
    1763             :                 spin_unlock(&sis->lock);
    1764             :         }
    1765             :         spin_unlock(&swap_lock);
    1766             :         return n;
    1767             : }
    1768             : #endif /* CONFIG_HIBERNATION */
    1769             : 
    1770             : static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
    1771             : {
    1772             :         return pte_same(pte_swp_clear_flags(pte), swp_pte);
    1773             : }
    1774             : 
    1775             : /*
    1776             :  * No need to decide whether this PTE shares the swap entry with others,
    1777             :  * just let do_wp_page work it out if a write is requested later - to
    1778             :  * force COW, vm_page_prot omits write permission from any private vma.
    1779             :  */
    1780           0 : static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
    1781             :                 unsigned long addr, swp_entry_t entry, struct page *page)
    1782             : {
    1783             :         struct page *swapcache;
    1784             :         spinlock_t *ptl;
    1785             :         pte_t *pte;
    1786           0 :         int ret = 1;
    1787             : 
    1788           0 :         swapcache = page;
    1789           0 :         page = ksm_might_need_to_copy(page, vma, addr);
    1790           0 :         if (unlikely(!page))
    1791             :                 return -ENOMEM;
    1792             : 
    1793           0 :         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
    1794           0 :         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
    1795             :                 ret = 0;
    1796             :                 goto out;
    1797             :         }
    1798             : 
    1799           0 :         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
    1800           0 :         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
    1801           0 :         get_page(page);
    1802             :         if (page == swapcache) {
    1803           0 :                 page_add_anon_rmap(page, vma, addr, false);
    1804             :         } else { /* ksm created a completely new copy */
    1805             :                 page_add_new_anon_rmap(page, vma, addr, false);
    1806             :                 lru_cache_add_inactive_or_unevictable(page, vma);
    1807             :         }
    1808           0 :         set_pte_at(vma->vm_mm, addr, pte,
    1809           0 :                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
    1810           0 :         swap_free(entry);
    1811             : out:
    1812           0 :         pte_unmap_unlock(pte, ptl);
    1813             :         if (page != swapcache) {
    1814             :                 unlock_page(page);
    1815             :                 put_page(page);
    1816             :         }
    1817           0 :         return ret;
    1818             : }
    1819             : 
    1820           0 : static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
    1821             :                         unsigned long addr, unsigned long end,
    1822             :                         unsigned int type)
    1823             : {
    1824             :         struct page *page;
    1825             :         swp_entry_t entry;
    1826             :         pte_t *pte;
    1827             :         struct swap_info_struct *si;
    1828             :         unsigned long offset;
    1829           0 :         int ret = 0;
    1830             :         volatile unsigned char *swap_map;
    1831             : 
    1832           0 :         si = swap_info[type];
    1833           0 :         pte = pte_offset_map(pmd, addr);
    1834             :         do {
    1835           0 :                 if (!is_swap_pte(*pte))
    1836           0 :                         continue;
    1837             : 
    1838           0 :                 entry = pte_to_swp_entry(*pte);
    1839           0 :                 if (swp_type(entry) != type)
    1840           0 :                         continue;
    1841             : 
    1842           0 :                 offset = swp_offset(entry);
    1843             :                 pte_unmap(pte);
    1844           0 :                 swap_map = &si->swap_map[offset];
    1845           0 :                 page = lookup_swap_cache(entry, vma, addr);
    1846           0 :                 if (!page) {
    1847           0 :                         struct vm_fault vmf = {
    1848             :                                 .vma = vma,
    1849             :                                 .address = addr,
    1850             :                                 .real_address = addr,
    1851             :                                 .pmd = pmd,
    1852             :                         };
    1853             : 
    1854           0 :                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
    1855             :                                                 &vmf);
    1856             :                 }
    1857           0 :                 if (!page) {
    1858           0 :                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
    1859             :                                 goto try_next;
    1860             :                         return -ENOMEM;
    1861             :                 }
    1862             : 
    1863           0 :                 lock_page(page);
    1864           0 :                 wait_on_page_writeback(page);
    1865           0 :                 ret = unuse_pte(vma, pmd, addr, entry, page);
    1866           0 :                 if (ret < 0) {
    1867           0 :                         unlock_page(page);
    1868           0 :                         put_page(page);
    1869           0 :                         goto out;
    1870             :                 }
    1871             : 
    1872           0 :                 try_to_free_swap(page);
    1873           0 :                 unlock_page(page);
    1874           0 :                 put_page(page);
    1875             : try_next:
    1876           0 :                 pte = pte_offset_map(pmd, addr);
    1877           0 :         } while (pte++, addr += PAGE_SIZE, addr != end);
    1878             :         pte_unmap(pte - 1);
    1879             : 
    1880             :         ret = 0;
    1881             : out:
    1882             :         return ret;
    1883             : }
    1884             : 
    1885           0 : static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
    1886             :                                 unsigned long addr, unsigned long end,
    1887             :                                 unsigned int type)
    1888             : {
    1889             :         pmd_t *pmd;
    1890             :         unsigned long next;
    1891             :         int ret;
    1892             : 
    1893           0 :         pmd = pmd_offset(pud, addr);
    1894             :         do {
    1895           0 :                 cond_resched();
    1896           0 :                 next = pmd_addr_end(addr, end);
    1897           0 :                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
    1898           0 :                         continue;
    1899           0 :                 ret = unuse_pte_range(vma, pmd, addr, next, type);
    1900           0 :                 if (ret)
    1901             :                         return ret;
    1902           0 :         } while (pmd++, addr = next, addr != end);
    1903             :         return 0;
    1904             : }
    1905             : 
    1906           0 : static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
    1907             :                                 unsigned long addr, unsigned long end,
    1908             :                                 unsigned int type)
    1909             : {
    1910             :         pud_t *pud;
    1911             :         unsigned long next;
    1912             :         int ret;
    1913             : 
    1914           0 :         pud = pud_offset(p4d, addr);
    1915             :         do {
    1916           0 :                 next = pud_addr_end(addr, end);
    1917           0 :                 if (pud_none_or_clear_bad(pud))
    1918           0 :                         continue;
    1919           0 :                 ret = unuse_pmd_range(vma, pud, addr, next, type);
    1920           0 :                 if (ret)
    1921             :                         return ret;
    1922           0 :         } while (pud++, addr = next, addr != end);
    1923           0 :         return 0;
    1924             : }
    1925             : 
    1926             : static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
    1927             :                                 unsigned long addr, unsigned long end,
    1928             :                                 unsigned int type)
    1929             : {
    1930             :         p4d_t *p4d;
    1931             :         unsigned long next;
    1932             :         int ret;
    1933             : 
    1934           0 :         p4d = p4d_offset(pgd, addr);
    1935             :         do {
    1936           0 :                 next = p4d_addr_end(addr, end);
    1937           0 :                 if (p4d_none_or_clear_bad(p4d))
    1938             :                         continue;
    1939           0 :                 ret = unuse_pud_range(vma, p4d, addr, next, type);
    1940           0 :                 if (ret)
    1941             :                         return ret;
    1942           0 :         } while (p4d++, addr = next, addr != end);
    1943             :         return 0;
    1944             : }
    1945             : 
    1946           0 : static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
    1947             : {
    1948             :         pgd_t *pgd;
    1949             :         unsigned long addr, end, next;
    1950             :         int ret;
    1951             : 
    1952           0 :         addr = vma->vm_start;
    1953           0 :         end = vma->vm_end;
    1954             : 
    1955           0 :         pgd = pgd_offset(vma->vm_mm, addr);
    1956             :         do {
    1957           0 :                 next = pgd_addr_end(addr, end);
    1958           0 :                 if (pgd_none_or_clear_bad(pgd))
    1959             :                         continue;
    1960           0 :                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
    1961           0 :                 if (ret)
    1962             :                         return ret;
    1963           0 :         } while (pgd++, addr = next, addr != end);
    1964             :         return 0;
    1965             : }
    1966             : 
    1967           0 : static int unuse_mm(struct mm_struct *mm, unsigned int type)
    1968             : {
    1969             :         struct vm_area_struct *vma;
    1970           0 :         int ret = 0;
    1971             : 
    1972           0 :         mmap_read_lock(mm);
    1973           0 :         for (vma = mm->mmap; vma; vma = vma->vm_next) {
    1974           0 :                 if (vma->anon_vma) {
    1975           0 :                         ret = unuse_vma(vma, type);
    1976           0 :                         if (ret)
    1977             :                                 break;
    1978             :                 }
    1979           0 :                 cond_resched();
    1980             :         }
    1981           0 :         mmap_read_unlock(mm);
    1982           0 :         return ret;
    1983             : }
    1984             : 
    1985             : /*
    1986             :  * Scan swap_map (or frontswap_map if frontswap parameter is true)
    1987             :  * from current position to next entry still in use. Return 0
    1988             :  * if there are no inuse entries after prev till end of the map.
    1989             :  */
    1990           0 : static unsigned int find_next_to_unuse(struct swap_info_struct *si,
    1991             :                                         unsigned int prev)
    1992             : {
    1993             :         unsigned int i;
    1994             :         unsigned char count;
    1995             : 
    1996             :         /*
    1997             :          * No need for swap_lock here: we're just looking
    1998             :          * for whether an entry is in use, not modifying it; false
    1999             :          * hits are okay, and sys_swapoff() has already prevented new
    2000             :          * allocations from this area (while holding swap_lock).
    2001             :          */
    2002           0 :         for (i = prev + 1; i < si->max; i++) {
    2003           0 :                 count = READ_ONCE(si->swap_map[i]);
    2004           0 :                 if (count && swap_count(count) != SWAP_MAP_BAD)
    2005             :                         break;
    2006           0 :                 if ((i % LATENCY_LIMIT) == 0)
    2007           0 :                         cond_resched();
    2008             :         }
    2009             : 
    2010           0 :         if (i == si->max)
    2011           0 :                 i = 0;
    2012             : 
    2013           0 :         return i;
    2014             : }
    2015             : 
    2016           0 : static int try_to_unuse(unsigned int type)
    2017             : {
    2018             :         struct mm_struct *prev_mm;
    2019             :         struct mm_struct *mm;
    2020             :         struct list_head *p;
    2021           0 :         int retval = 0;
    2022           0 :         struct swap_info_struct *si = swap_info[type];
    2023             :         struct page *page;
    2024             :         swp_entry_t entry;
    2025             :         unsigned int i;
    2026             : 
    2027           0 :         if (!READ_ONCE(si->inuse_pages))
    2028             :                 return 0;
    2029             : 
    2030             : retry:
    2031           0 :         retval = shmem_unuse(type);
    2032           0 :         if (retval)
    2033             :                 return retval;
    2034             : 
    2035           0 :         prev_mm = &init_mm;
    2036           0 :         mmget(prev_mm);
    2037             : 
    2038           0 :         spin_lock(&mmlist_lock);
    2039           0 :         p = &init_mm.mmlist;
    2040           0 :         while (READ_ONCE(si->inuse_pages) &&
    2041           0 :                !signal_pending(current) &&
    2042           0 :                (p = p->next) != &init_mm.mmlist) {
    2043             : 
    2044           0 :                 mm = list_entry(p, struct mm_struct, mmlist);
    2045           0 :                 if (!mmget_not_zero(mm))
    2046           0 :                         continue;
    2047           0 :                 spin_unlock(&mmlist_lock);
    2048           0 :                 mmput(prev_mm);
    2049           0 :                 prev_mm = mm;
    2050           0 :                 retval = unuse_mm(mm, type);
    2051           0 :                 if (retval) {
    2052           0 :                         mmput(prev_mm);
    2053           0 :                         return retval;
    2054             :                 }
    2055             : 
    2056             :                 /*
    2057             :                  * Make sure that we aren't completely killing
    2058             :                  * interactive performance.
    2059             :                  */
    2060           0 :                 cond_resched();
    2061             :                 spin_lock(&mmlist_lock);
    2062             :         }
    2063           0 :         spin_unlock(&mmlist_lock);
    2064             : 
    2065           0 :         mmput(prev_mm);
    2066             : 
    2067           0 :         i = 0;
    2068           0 :         while (READ_ONCE(si->inuse_pages) &&
    2069           0 :                !signal_pending(current) &&
    2070             :                (i = find_next_to_unuse(si, i)) != 0) {
    2071             : 
    2072           0 :                 entry = swp_entry(type, i);
    2073           0 :                 page = find_get_page(swap_address_space(entry), i);
    2074           0 :                 if (!page)
    2075           0 :                         continue;
    2076             : 
    2077             :                 /*
    2078             :                  * It is conceivable that a racing task removed this page from
    2079             :                  * swap cache just before we acquired the page lock. The page
    2080             :                  * might even be back in swap cache on another swap area. But
    2081             :                  * that is okay, try_to_free_swap() only removes stale pages.
    2082             :                  */
    2083           0 :                 lock_page(page);
    2084           0 :                 wait_on_page_writeback(page);
    2085           0 :                 try_to_free_swap(page);
    2086           0 :                 unlock_page(page);
    2087           0 :                 put_page(page);
    2088             :         }
    2089             : 
    2090             :         /*
    2091             :          * Lets check again to see if there are still swap entries in the map.
    2092             :          * If yes, we would need to do retry the unuse logic again.
    2093             :          * Under global memory pressure, swap entries can be reinserted back
    2094             :          * into process space after the mmlist loop above passes over them.
    2095             :          *
    2096             :          * Limit the number of retries? No: when mmget_not_zero() above fails,
    2097             :          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
    2098             :          * at its own independent pace; and even shmem_writepage() could have
    2099             :          * been preempted after get_swap_page(), temporarily hiding that swap.
    2100             :          * It's easy and robust (though cpu-intensive) just to keep retrying.
    2101             :          */
    2102           0 :         if (READ_ONCE(si->inuse_pages)) {
    2103           0 :                 if (!signal_pending(current))
    2104             :                         goto retry;
    2105             :                 return -EINTR;
    2106             :         }
    2107             : 
    2108             :         return 0;
    2109             : }
    2110             : 
    2111             : /*
    2112             :  * After a successful try_to_unuse, if no swap is now in use, we know
    2113             :  * we can empty the mmlist.  swap_lock must be held on entry and exit.
    2114             :  * Note that mmlist_lock nests inside swap_lock, and an mm must be
    2115             :  * added to the mmlist just after page_duplicate - before would be racy.
    2116             :  */
    2117           0 : static void drain_mmlist(void)
    2118             : {
    2119             :         struct list_head *p, *next;
    2120             :         unsigned int type;
    2121             : 
    2122           0 :         for (type = 0; type < nr_swapfiles; type++)
    2123           0 :                 if (swap_info[type]->inuse_pages)
    2124             :                         return;
    2125           0 :         spin_lock(&mmlist_lock);
    2126           0 :         list_for_each_safe(p, next, &init_mm.mmlist)
    2127           0 :                 list_del_init(p);
    2128             :         spin_unlock(&mmlist_lock);
    2129             : }
    2130             : 
    2131             : /*
    2132             :  * Free all of a swapdev's extent information
    2133             :  */
    2134           0 : static void destroy_swap_extents(struct swap_info_struct *sis)
    2135             : {
    2136           0 :         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
    2137           0 :                 struct rb_node *rb = sis->swap_extent_root.rb_node;
    2138           0 :                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
    2139             : 
    2140           0 :                 rb_erase(rb, &sis->swap_extent_root);
    2141           0 :                 kfree(se);
    2142             :         }
    2143             : 
    2144           0 :         if (sis->flags & SWP_ACTIVATED) {
    2145           0 :                 struct file *swap_file = sis->swap_file;
    2146           0 :                 struct address_space *mapping = swap_file->f_mapping;
    2147             : 
    2148           0 :                 sis->flags &= ~SWP_ACTIVATED;
    2149           0 :                 if (mapping->a_ops->swap_deactivate)
    2150           0 :                         mapping->a_ops->swap_deactivate(swap_file);
    2151             :         }
    2152           0 : }
    2153             : 
    2154             : /*
    2155             :  * Add a block range (and the corresponding page range) into this swapdev's
    2156             :  * extent tree.
    2157             :  *
    2158             :  * This function rather assumes that it is called in ascending page order.
    2159             :  */
    2160             : int
    2161           0 : add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
    2162             :                 unsigned long nr_pages, sector_t start_block)
    2163             : {
    2164           0 :         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
    2165             :         struct swap_extent *se;
    2166             :         struct swap_extent *new_se;
    2167             : 
    2168             :         /*
    2169             :          * place the new node at the right most since the
    2170             :          * function is called in ascending page order.
    2171             :          */
    2172           0 :         while (*link) {
    2173           0 :                 parent = *link;
    2174           0 :                 link = &parent->rb_right;
    2175             :         }
    2176             : 
    2177           0 :         if (parent) {
    2178           0 :                 se = rb_entry(parent, struct swap_extent, rb_node);
    2179           0 :                 BUG_ON(se->start_page + se->nr_pages != start_page);
    2180           0 :                 if (se->start_block + se->nr_pages == start_block) {
    2181             :                         /* Merge it */
    2182           0 :                         se->nr_pages += nr_pages;
    2183           0 :                         return 0;
    2184             :                 }
    2185             :         }
    2186             : 
    2187             :         /* No merge, insert a new extent. */
    2188           0 :         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
    2189           0 :         if (new_se == NULL)
    2190             :                 return -ENOMEM;
    2191           0 :         new_se->start_page = start_page;
    2192           0 :         new_se->nr_pages = nr_pages;
    2193           0 :         new_se->start_block = start_block;
    2194             : 
    2195           0 :         rb_link_node(&new_se->rb_node, parent, link);
    2196           0 :         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
    2197           0 :         return 1;
    2198             : }
    2199             : EXPORT_SYMBOL_GPL(add_swap_extent);
    2200             : 
    2201             : /*
    2202             :  * A `swap extent' is a simple thing which maps a contiguous range of pages
    2203             :  * onto a contiguous range of disk blocks.  An ordered list of swap extents
    2204             :  * is built at swapon time and is then used at swap_writepage/swap_readpage
    2205             :  * time for locating where on disk a page belongs.
    2206             :  *
    2207             :  * If the swapfile is an S_ISBLK block device, a single extent is installed.
    2208             :  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
    2209             :  * swap files identically.
    2210             :  *
    2211             :  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
    2212             :  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
    2213             :  * swapfiles are handled *identically* after swapon time.
    2214             :  *
    2215             :  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
    2216             :  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
    2217             :  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
    2218             :  * requirements, they are simply tossed out - we will never use those blocks
    2219             :  * for swapping.
    2220             :  *
    2221             :  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
    2222             :  * prevents users from writing to the swap device, which will corrupt memory.
    2223             :  *
    2224             :  * The amount of disk space which a single swap extent represents varies.
    2225             :  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
    2226             :  * extents in the list.  To avoid much list walking, we cache the previous
    2227             :  * search location in `curr_swap_extent', and start new searches from there.
    2228             :  * This is extremely effective.  The average number of iterations in
    2229             :  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
    2230             :  */
    2231           0 : static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
    2232             : {
    2233           0 :         struct file *swap_file = sis->swap_file;
    2234           0 :         struct address_space *mapping = swap_file->f_mapping;
    2235           0 :         struct inode *inode = mapping->host;
    2236             :         int ret;
    2237             : 
    2238           0 :         if (S_ISBLK(inode->i_mode)) {
    2239           0 :                 ret = add_swap_extent(sis, 0, sis->max, 0);
    2240           0 :                 *span = sis->pages;
    2241           0 :                 return ret;
    2242             :         }
    2243             : 
    2244           0 :         if (mapping->a_ops->swap_activate) {
    2245           0 :                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
    2246           0 :                 if (ret >= 0)
    2247           0 :                         sis->flags |= SWP_ACTIVATED;
    2248           0 :                 if (!ret) {
    2249           0 :                         sis->flags |= SWP_FS_OPS;
    2250           0 :                         ret = add_swap_extent(sis, 0, sis->max, 0);
    2251           0 :                         *span = sis->pages;
    2252             :                 }
    2253             :                 return ret;
    2254             :         }
    2255             : 
    2256           0 :         return generic_swapfile_activate(sis, swap_file, span);
    2257             : }
    2258             : 
    2259             : static int swap_node(struct swap_info_struct *p)
    2260             : {
    2261             :         struct block_device *bdev;
    2262             : 
    2263           0 :         if (p->bdev)
    2264             :                 bdev = p->bdev;
    2265             :         else
    2266           0 :                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
    2267             : 
    2268           0 :         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
    2269             : }
    2270             : 
    2271           0 : static void setup_swap_info(struct swap_info_struct *p, int prio,
    2272             :                             unsigned char *swap_map,
    2273             :                             struct swap_cluster_info *cluster_info)
    2274             : {
    2275             :         int i;
    2276             : 
    2277           0 :         if (prio >= 0)
    2278           0 :                 p->prio = prio;
    2279             :         else
    2280           0 :                 p->prio = --least_priority;
    2281             :         /*
    2282             :          * the plist prio is negated because plist ordering is
    2283             :          * low-to-high, while swap ordering is high-to-low
    2284             :          */
    2285           0 :         p->list.prio = -p->prio;
    2286           0 :         for_each_node(i) {
    2287           0 :                 if (p->prio >= 0)
    2288           0 :                         p->avail_lists[i].prio = -p->prio;
    2289             :                 else {
    2290           0 :                         if (swap_node(p) == i)
    2291           0 :                                 p->avail_lists[i].prio = 1;
    2292             :                         else
    2293           0 :                                 p->avail_lists[i].prio = -p->prio;
    2294             :                 }
    2295             :         }
    2296           0 :         p->swap_map = swap_map;
    2297           0 :         p->cluster_info = cluster_info;
    2298           0 : }
    2299             : 
    2300           0 : static void _enable_swap_info(struct swap_info_struct *p)
    2301             : {
    2302           0 :         p->flags |= SWP_WRITEOK;
    2303           0 :         atomic_long_add(p->pages, &nr_swap_pages);
    2304           0 :         total_swap_pages += p->pages;
    2305             : 
    2306             :         assert_spin_locked(&swap_lock);
    2307             :         /*
    2308             :          * both lists are plists, and thus priority ordered.
    2309             :          * swap_active_head needs to be priority ordered for swapoff(),
    2310             :          * which on removal of any swap_info_struct with an auto-assigned
    2311             :          * (i.e. negative) priority increments the auto-assigned priority
    2312             :          * of any lower-priority swap_info_structs.
    2313             :          * swap_avail_head needs to be priority ordered for get_swap_page(),
    2314             :          * which allocates swap pages from the highest available priority
    2315             :          * swap_info_struct.
    2316             :          */
    2317           0 :         plist_add(&p->list, &swap_active_head);
    2318           0 :         add_to_avail_list(p);
    2319           0 : }
    2320             : 
    2321           0 : static void enable_swap_info(struct swap_info_struct *p, int prio,
    2322             :                                 unsigned char *swap_map,
    2323             :                                 struct swap_cluster_info *cluster_info,
    2324             :                                 unsigned long *frontswap_map)
    2325             : {
    2326             :         if (IS_ENABLED(CONFIG_FRONTSWAP))
    2327             :                 frontswap_init(p->type, frontswap_map);
    2328           0 :         spin_lock(&swap_lock);
    2329           0 :         spin_lock(&p->lock);
    2330           0 :         setup_swap_info(p, prio, swap_map, cluster_info);
    2331           0 :         spin_unlock(&p->lock);
    2332           0 :         spin_unlock(&swap_lock);
    2333             :         /*
    2334             :          * Finished initializing swap device, now it's safe to reference it.
    2335             :          */
    2336           0 :         percpu_ref_resurrect(&p->users);
    2337           0 :         spin_lock(&swap_lock);
    2338           0 :         spin_lock(&p->lock);
    2339           0 :         _enable_swap_info(p);
    2340           0 :         spin_unlock(&p->lock);
    2341           0 :         spin_unlock(&swap_lock);
    2342           0 : }
    2343             : 
    2344           0 : static void reinsert_swap_info(struct swap_info_struct *p)
    2345             : {
    2346           0 :         spin_lock(&swap_lock);
    2347           0 :         spin_lock(&p->lock);
    2348           0 :         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
    2349           0 :         _enable_swap_info(p);
    2350           0 :         spin_unlock(&p->lock);
    2351           0 :         spin_unlock(&swap_lock);
    2352           0 : }
    2353             : 
    2354           0 : bool has_usable_swap(void)
    2355             : {
    2356           0 :         bool ret = true;
    2357             : 
    2358           0 :         spin_lock(&swap_lock);
    2359           0 :         if (plist_head_empty(&swap_active_head))
    2360           0 :                 ret = false;
    2361           0 :         spin_unlock(&swap_lock);
    2362           0 :         return ret;
    2363             : }
    2364             : 
    2365           0 : SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
    2366             : {
    2367           0 :         struct swap_info_struct *p = NULL;
    2368             :         unsigned char *swap_map;
    2369             :         struct swap_cluster_info *cluster_info;
    2370             :         unsigned long *frontswap_map;
    2371             :         struct file *swap_file, *victim;
    2372             :         struct address_space *mapping;
    2373             :         struct inode *inode;
    2374             :         struct filename *pathname;
    2375           0 :         int err, found = 0;
    2376             :         unsigned int old_block_size;
    2377             : 
    2378           0 :         if (!capable(CAP_SYS_ADMIN))
    2379             :                 return -EPERM;
    2380             : 
    2381           0 :         BUG_ON(!current->mm);
    2382             : 
    2383           0 :         pathname = getname(specialfile);
    2384           0 :         if (IS_ERR(pathname))
    2385           0 :                 return PTR_ERR(pathname);
    2386             : 
    2387           0 :         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
    2388           0 :         err = PTR_ERR(victim);
    2389           0 :         if (IS_ERR(victim))
    2390             :                 goto out;
    2391             : 
    2392           0 :         mapping = victim->f_mapping;
    2393           0 :         spin_lock(&swap_lock);
    2394           0 :         plist_for_each_entry(p, &swap_active_head, list) {
    2395           0 :                 if (p->flags & SWP_WRITEOK) {
    2396           0 :                         if (p->swap_file->f_mapping == mapping) {
    2397             :                                 found = 1;
    2398             :                                 break;
    2399             :                         }
    2400             :                 }
    2401             :         }
    2402           0 :         if (!found) {
    2403           0 :                 err = -EINVAL;
    2404             :                 spin_unlock(&swap_lock);
    2405             :                 goto out_dput;
    2406             :         }
    2407           0 :         if (!security_vm_enough_memory_mm(current->mm, p->pages))
    2408           0 :                 vm_unacct_memory(p->pages);
    2409             :         else {
    2410           0 :                 err = -ENOMEM;
    2411             :                 spin_unlock(&swap_lock);
    2412             :                 goto out_dput;
    2413             :         }
    2414           0 :         del_from_avail_list(p);
    2415           0 :         spin_lock(&p->lock);
    2416           0 :         if (p->prio < 0) {
    2417           0 :                 struct swap_info_struct *si = p;
    2418             :                 int nid;
    2419             : 
    2420           0 :                 plist_for_each_entry_continue(si, &swap_active_head, list) {
    2421           0 :                         si->prio++;
    2422           0 :                         si->list.prio--;
    2423           0 :                         for_each_node(nid) {
    2424           0 :                                 if (si->avail_lists[nid].prio != 1)
    2425           0 :                                         si->avail_lists[nid].prio--;
    2426             :                         }
    2427             :                 }
    2428           0 :                 least_priority++;
    2429             :         }
    2430           0 :         plist_del(&p->list, &swap_active_head);
    2431           0 :         atomic_long_sub(p->pages, &nr_swap_pages);
    2432           0 :         total_swap_pages -= p->pages;
    2433           0 :         p->flags &= ~SWP_WRITEOK;
    2434           0 :         spin_unlock(&p->lock);
    2435           0 :         spin_unlock(&swap_lock);
    2436             : 
    2437           0 :         disable_swap_slots_cache_lock();
    2438             : 
    2439           0 :         set_current_oom_origin();
    2440           0 :         err = try_to_unuse(p->type);
    2441           0 :         clear_current_oom_origin();
    2442             : 
    2443           0 :         if (err) {
    2444             :                 /* re-insert swap space back into swap_list */
    2445           0 :                 reinsert_swap_info(p);
    2446           0 :                 reenable_swap_slots_cache_unlock();
    2447           0 :                 goto out_dput;
    2448             :         }
    2449             : 
    2450           0 :         reenable_swap_slots_cache_unlock();
    2451             : 
    2452             :         /*
    2453             :          * Wait for swap operations protected by get/put_swap_device()
    2454             :          * to complete.
    2455             :          *
    2456             :          * We need synchronize_rcu() here to protect the accessing to
    2457             :          * the swap cache data structure.
    2458             :          */
    2459           0 :         percpu_ref_kill(&p->users);
    2460           0 :         synchronize_rcu();
    2461           0 :         wait_for_completion(&p->comp);
    2462             : 
    2463           0 :         flush_work(&p->discard_work);
    2464             : 
    2465           0 :         destroy_swap_extents(p);
    2466           0 :         if (p->flags & SWP_CONTINUED)
    2467           0 :                 free_swap_count_continuations(p);
    2468             : 
    2469           0 :         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
    2470             :                 atomic_dec(&nr_rotate_swap);
    2471             : 
    2472           0 :         mutex_lock(&swapon_mutex);
    2473           0 :         spin_lock(&swap_lock);
    2474           0 :         spin_lock(&p->lock);
    2475           0 :         drain_mmlist();
    2476             : 
    2477             :         /* wait for anyone still in scan_swap_map_slots */
    2478           0 :         p->highest_bit = 0;          /* cuts scans short */
    2479           0 :         while (p->flags >= SWP_SCANNING) {
    2480           0 :                 spin_unlock(&p->lock);
    2481           0 :                 spin_unlock(&swap_lock);
    2482           0 :                 schedule_timeout_uninterruptible(1);
    2483           0 :                 spin_lock(&swap_lock);
    2484           0 :                 spin_lock(&p->lock);
    2485             :         }
    2486             : 
    2487           0 :         swap_file = p->swap_file;
    2488           0 :         old_block_size = p->old_block_size;
    2489           0 :         p->swap_file = NULL;
    2490           0 :         p->max = 0;
    2491           0 :         swap_map = p->swap_map;
    2492           0 :         p->swap_map = NULL;
    2493           0 :         cluster_info = p->cluster_info;
    2494           0 :         p->cluster_info = NULL;
    2495           0 :         frontswap_map = frontswap_map_get(p);
    2496           0 :         spin_unlock(&p->lock);
    2497           0 :         spin_unlock(&swap_lock);
    2498           0 :         arch_swap_invalidate_area(p->type);
    2499           0 :         frontswap_invalidate_area(p->type);
    2500           0 :         frontswap_map_set(p, NULL);
    2501           0 :         mutex_unlock(&swapon_mutex);
    2502           0 :         free_percpu(p->percpu_cluster);
    2503           0 :         p->percpu_cluster = NULL;
    2504           0 :         free_percpu(p->cluster_next_cpu);
    2505           0 :         p->cluster_next_cpu = NULL;
    2506           0 :         vfree(swap_map);
    2507           0 :         kvfree(cluster_info);
    2508           0 :         kvfree(frontswap_map);
    2509             :         /* Destroy swap account information */
    2510           0 :         swap_cgroup_swapoff(p->type);
    2511           0 :         exit_swap_address_space(p->type);
    2512             : 
    2513           0 :         inode = mapping->host;
    2514           0 :         if (S_ISBLK(inode->i_mode)) {
    2515           0 :                 struct block_device *bdev = I_BDEV(inode);
    2516             : 
    2517           0 :                 set_blocksize(bdev, old_block_size);
    2518           0 :                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
    2519             :         }
    2520             : 
    2521           0 :         inode_lock(inode);
    2522           0 :         inode->i_flags &= ~S_SWAPFILE;
    2523           0 :         inode_unlock(inode);
    2524           0 :         filp_close(swap_file, NULL);
    2525             : 
    2526             :         /*
    2527             :          * Clear the SWP_USED flag after all resources are freed so that swapon
    2528             :          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
    2529             :          * not hold p->lock after we cleared its SWP_WRITEOK.
    2530             :          */
    2531           0 :         spin_lock(&swap_lock);
    2532           0 :         p->flags = 0;
    2533           0 :         spin_unlock(&swap_lock);
    2534             : 
    2535           0 :         err = 0;
    2536           0 :         atomic_inc(&proc_poll_event);
    2537           0 :         wake_up_interruptible(&proc_poll_wait);
    2538             : 
    2539             : out_dput:
    2540           0 :         filp_close(victim, NULL);
    2541             : out:
    2542           0 :         putname(pathname);
    2543           0 :         return err;
    2544             : }
    2545             : 
    2546             : #ifdef CONFIG_PROC_FS
    2547           0 : static __poll_t swaps_poll(struct file *file, poll_table *wait)
    2548             : {
    2549           0 :         struct seq_file *seq = file->private_data;
    2550             : 
    2551           0 :         poll_wait(file, &proc_poll_wait, wait);
    2552             : 
    2553           0 :         if (seq->poll_event != atomic_read(&proc_poll_event)) {
    2554           0 :                 seq->poll_event = atomic_read(&proc_poll_event);
    2555           0 :                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
    2556             :         }
    2557             : 
    2558             :         return EPOLLIN | EPOLLRDNORM;
    2559             : }
    2560             : 
    2561             : /* iterator */
    2562           0 : static void *swap_start(struct seq_file *swap, loff_t *pos)
    2563             : {
    2564             :         struct swap_info_struct *si;
    2565             :         int type;
    2566           0 :         loff_t l = *pos;
    2567             : 
    2568           0 :         mutex_lock(&swapon_mutex);
    2569             : 
    2570           0 :         if (!l)
    2571             :                 return SEQ_START_TOKEN;
    2572             : 
    2573           0 :         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
    2574           0 :                 if (!(si->flags & SWP_USED) || !si->swap_map)
    2575           0 :                         continue;
    2576           0 :                 if (!--l)
    2577             :                         return si;
    2578             :         }
    2579             : 
    2580             :         return NULL;
    2581             : }
    2582             : 
    2583           0 : static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
    2584             : {
    2585           0 :         struct swap_info_struct *si = v;
    2586             :         int type;
    2587             : 
    2588           0 :         if (v == SEQ_START_TOKEN)
    2589             :                 type = 0;
    2590             :         else
    2591           0 :                 type = si->type + 1;
    2592             : 
    2593           0 :         ++(*pos);
    2594           0 :         for (; (si = swap_type_to_swap_info(type)); type++) {
    2595           0 :                 if (!(si->flags & SWP_USED) || !si->swap_map)
    2596           0 :                         continue;
    2597             :                 return si;
    2598             :         }
    2599             : 
    2600             :         return NULL;
    2601             : }
    2602             : 
    2603           0 : static void swap_stop(struct seq_file *swap, void *v)
    2604             : {
    2605           0 :         mutex_unlock(&swapon_mutex);
    2606           0 : }
    2607             : 
    2608           0 : static int swap_show(struct seq_file *swap, void *v)
    2609             : {
    2610           0 :         struct swap_info_struct *si = v;
    2611             :         struct file *file;
    2612             :         int len;
    2613             :         unsigned long bytes, inuse;
    2614             : 
    2615           0 :         if (si == SEQ_START_TOKEN) {
    2616           0 :                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
    2617           0 :                 return 0;
    2618             :         }
    2619             : 
    2620           0 :         bytes = si->pages << (PAGE_SHIFT - 10);
    2621           0 :         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
    2622             : 
    2623           0 :         file = si->swap_file;
    2624           0 :         len = seq_file_path(swap, file, " \t\n\\");
    2625           0 :         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
    2626             :                         len < 40 ? 40 - len : 1, " ",
    2627           0 :                         S_ISBLK(file_inode(file)->i_mode) ?
    2628             :                                 "partition" : "file\t",
    2629             :                         bytes, bytes < 10000000 ? "\t" : "",
    2630             :                         inuse, inuse < 10000000 ? "\t" : "",
    2631           0 :                         si->prio);
    2632           0 :         return 0;
    2633             : }
    2634             : 
    2635             : static const struct seq_operations swaps_op = {
    2636             :         .start =        swap_start,
    2637             :         .next =         swap_next,
    2638             :         .stop =         swap_stop,
    2639             :         .show =         swap_show
    2640             : };
    2641             : 
    2642           0 : static int swaps_open(struct inode *inode, struct file *file)
    2643             : {
    2644             :         struct seq_file *seq;
    2645             :         int ret;
    2646             : 
    2647           0 :         ret = seq_open(file, &swaps_op);
    2648           0 :         if (ret)
    2649             :                 return ret;
    2650             : 
    2651           0 :         seq = file->private_data;
    2652           0 :         seq->poll_event = atomic_read(&proc_poll_event);
    2653           0 :         return 0;
    2654             : }
    2655             : 
    2656             : static const struct proc_ops swaps_proc_ops = {
    2657             :         .proc_flags     = PROC_ENTRY_PERMANENT,
    2658             :         .proc_open      = swaps_open,
    2659             :         .proc_read      = seq_read,
    2660             :         .proc_lseek     = seq_lseek,
    2661             :         .proc_release   = seq_release,
    2662             :         .proc_poll      = swaps_poll,
    2663             : };
    2664             : 
    2665           1 : static int __init procswaps_init(void)
    2666             : {
    2667           1 :         proc_create("swaps", 0, NULL, &swaps_proc_ops);
    2668           1 :         return 0;
    2669             : }
    2670             : __initcall(procswaps_init);
    2671             : #endif /* CONFIG_PROC_FS */
    2672             : 
    2673             : #ifdef MAX_SWAPFILES_CHECK
    2674             : static int __init max_swapfiles_check(void)
    2675             : {
    2676             :         MAX_SWAPFILES_CHECK();
    2677             :         return 0;
    2678             : }
    2679             : late_initcall(max_swapfiles_check);
    2680             : #endif
    2681             : 
    2682           0 : static struct swap_info_struct *alloc_swap_info(void)
    2683             : {
    2684             :         struct swap_info_struct *p;
    2685           0 :         struct swap_info_struct *defer = NULL;
    2686             :         unsigned int type;
    2687             :         int i;
    2688             : 
    2689           0 :         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
    2690           0 :         if (!p)
    2691             :                 return ERR_PTR(-ENOMEM);
    2692             : 
    2693           0 :         if (percpu_ref_init(&p->users, swap_users_ref_free,
    2694             :                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
    2695           0 :                 kvfree(p);
    2696           0 :                 return ERR_PTR(-ENOMEM);
    2697             :         }
    2698             : 
    2699           0 :         spin_lock(&swap_lock);
    2700           0 :         for (type = 0; type < nr_swapfiles; type++) {
    2701           0 :                 if (!(swap_info[type]->flags & SWP_USED))
    2702             :                         break;
    2703             :         }
    2704           0 :         if (type >= MAX_SWAPFILES) {
    2705           0 :                 spin_unlock(&swap_lock);
    2706           0 :                 percpu_ref_exit(&p->users);
    2707           0 :                 kvfree(p);
    2708           0 :                 return ERR_PTR(-EPERM);
    2709             :         }
    2710           0 :         if (type >= nr_swapfiles) {
    2711           0 :                 p->type = type;
    2712             :                 /*
    2713             :                  * Publish the swap_info_struct after initializing it.
    2714             :                  * Note that kvzalloc() above zeroes all its fields.
    2715             :                  */
    2716           0 :                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
    2717           0 :                 nr_swapfiles++;
    2718             :         } else {
    2719           0 :                 defer = p;
    2720           0 :                 p = swap_info[type];
    2721             :                 /*
    2722             :                  * Do not memset this entry: a racing procfs swap_next()
    2723             :                  * would be relying on p->type to remain valid.
    2724             :                  */
    2725             :         }
    2726           0 :         p->swap_extent_root = RB_ROOT;
    2727           0 :         plist_node_init(&p->list, 0);
    2728           0 :         for_each_node(i)
    2729           0 :                 plist_node_init(&p->avail_lists[i], 0);
    2730           0 :         p->flags = SWP_USED;
    2731           0 :         spin_unlock(&swap_lock);
    2732           0 :         if (defer) {
    2733           0 :                 percpu_ref_exit(&defer->users);
    2734           0 :                 kvfree(defer);
    2735             :         }
    2736           0 :         spin_lock_init(&p->lock);
    2737           0 :         spin_lock_init(&p->cont_lock);
    2738           0 :         init_completion(&p->comp);
    2739             : 
    2740           0 :         return p;
    2741             : }
    2742             : 
    2743           0 : static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
    2744             : {
    2745             :         int error;
    2746             : 
    2747           0 :         if (S_ISBLK(inode->i_mode)) {
    2748           0 :                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
    2749             :                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
    2750           0 :                 if (IS_ERR(p->bdev)) {
    2751           0 :                         error = PTR_ERR(p->bdev);
    2752           0 :                         p->bdev = NULL;
    2753           0 :                         return error;
    2754             :                 }
    2755           0 :                 p->old_block_size = block_size(p->bdev);
    2756           0 :                 error = set_blocksize(p->bdev, PAGE_SIZE);
    2757           0 :                 if (error < 0)
    2758             :                         return error;
    2759             :                 /*
    2760             :                  * Zoned block devices contain zones that have a sequential
    2761             :                  * write only restriction.  Hence zoned block devices are not
    2762             :                  * suitable for swapping.  Disallow them here.
    2763             :                  */
    2764           0 :                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
    2765             :                         return -EINVAL;
    2766           0 :                 p->flags |= SWP_BLKDEV;
    2767           0 :         } else if (S_ISREG(inode->i_mode)) {
    2768           0 :                 p->bdev = inode->i_sb->s_bdev;
    2769             :         }
    2770             : 
    2771             :         return 0;
    2772             : }
    2773             : 
    2774             : 
    2775             : /*
    2776             :  * Find out how many pages are allowed for a single swap device. There
    2777             :  * are two limiting factors:
    2778             :  * 1) the number of bits for the swap offset in the swp_entry_t type, and
    2779             :  * 2) the number of bits in the swap pte, as defined by the different
    2780             :  * architectures.
    2781             :  *
    2782             :  * In order to find the largest possible bit mask, a swap entry with
    2783             :  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
    2784             :  * decoded to a swp_entry_t again, and finally the swap offset is
    2785             :  * extracted.
    2786             :  *
    2787             :  * This will mask all the bits from the initial ~0UL mask that can't
    2788             :  * be encoded in either the swp_entry_t or the architecture definition
    2789             :  * of a swap pte.
    2790             :  */
    2791           0 : unsigned long generic_max_swapfile_size(void)
    2792             : {
    2793           0 :         return swp_offset(pte_to_swp_entry(
    2794           0 :                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
    2795             : }
    2796             : 
    2797             : /* Can be overridden by an architecture for additional checks. */
    2798           0 : __weak unsigned long max_swapfile_size(void)
    2799             : {
    2800           0 :         return generic_max_swapfile_size();
    2801             : }
    2802             : 
    2803           0 : static unsigned long read_swap_header(struct swap_info_struct *p,
    2804             :                                         union swap_header *swap_header,
    2805             :                                         struct inode *inode)
    2806             : {
    2807             :         int i;
    2808             :         unsigned long maxpages;
    2809             :         unsigned long swapfilepages;
    2810             :         unsigned long last_page;
    2811             : 
    2812           0 :         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
    2813           0 :                 pr_err("Unable to find swap-space signature\n");
    2814           0 :                 return 0;
    2815             :         }
    2816             : 
    2817             :         /* swap partition endianness hack... */
    2818           0 :         if (swab32(swap_header->info.version) == 1) {
    2819           0 :                 swab32s(&swap_header->info.version);
    2820           0 :                 swab32s(&swap_header->info.last_page);
    2821           0 :                 swab32s(&swap_header->info.nr_badpages);
    2822           0 :                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
    2823             :                         return 0;
    2824           0 :                 for (i = 0; i < swap_header->info.nr_badpages; i++)
    2825           0 :                         swab32s(&swap_header->info.badpages[i]);
    2826             :         }
    2827             :         /* Check the swap header's sub-version */
    2828           0 :         if (swap_header->info.version != 1) {
    2829           0 :                 pr_warn("Unable to handle swap header version %d\n",
    2830             :                         swap_header->info.version);
    2831           0 :                 return 0;
    2832             :         }
    2833             : 
    2834           0 :         p->lowest_bit  = 1;
    2835           0 :         p->cluster_next = 1;
    2836           0 :         p->cluster_nr = 0;
    2837             : 
    2838           0 :         maxpages = max_swapfile_size();
    2839           0 :         last_page = swap_header->info.last_page;
    2840           0 :         if (!last_page) {
    2841           0 :                 pr_warn("Empty swap-file\n");
    2842           0 :                 return 0;
    2843             :         }
    2844           0 :         if (last_page > maxpages) {
    2845           0 :                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
    2846             :                         maxpages << (PAGE_SHIFT - 10),
    2847             :                         last_page << (PAGE_SHIFT - 10));
    2848             :         }
    2849           0 :         if (maxpages > last_page) {
    2850           0 :                 maxpages = last_page + 1;
    2851             :                 /* p->max is an unsigned int: don't overflow it */
    2852           0 :                 if ((unsigned int)maxpages == 0)
    2853           0 :                         maxpages = UINT_MAX;
    2854             :         }
    2855           0 :         p->highest_bit = maxpages - 1;
    2856             : 
    2857           0 :         if (!maxpages)
    2858             :                 return 0;
    2859           0 :         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
    2860           0 :         if (swapfilepages && maxpages > swapfilepages) {
    2861           0 :                 pr_warn("Swap area shorter than signature indicates\n");
    2862           0 :                 return 0;
    2863             :         }
    2864           0 :         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
    2865             :                 return 0;
    2866           0 :         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
    2867             :                 return 0;
    2868             : 
    2869           0 :         return maxpages;
    2870             : }
    2871             : 
    2872             : #define SWAP_CLUSTER_INFO_COLS                                          \
    2873             :         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
    2874             : #define SWAP_CLUSTER_SPACE_COLS                                         \
    2875             :         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
    2876             : #define SWAP_CLUSTER_COLS                                               \
    2877             :         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
    2878             : 
    2879           0 : static int setup_swap_map_and_extents(struct swap_info_struct *p,
    2880             :                                         union swap_header *swap_header,
    2881             :                                         unsigned char *swap_map,
    2882             :                                         struct swap_cluster_info *cluster_info,
    2883             :                                         unsigned long maxpages,
    2884             :                                         sector_t *span)
    2885             : {
    2886             :         unsigned int j, k;
    2887             :         unsigned int nr_good_pages;
    2888             :         int nr_extents;
    2889           0 :         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
    2890           0 :         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
    2891             :         unsigned long i, idx;
    2892             : 
    2893           0 :         nr_good_pages = maxpages - 1;   /* omit header page */
    2894             : 
    2895           0 :         cluster_list_init(&p->free_clusters);
    2896           0 :         cluster_list_init(&p->discard_clusters);
    2897             : 
    2898           0 :         for (i = 0; i < swap_header->info.nr_badpages; i++) {
    2899           0 :                 unsigned int page_nr = swap_header->info.badpages[i];
    2900           0 :                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
    2901             :                         return -EINVAL;
    2902           0 :                 if (page_nr < maxpages) {
    2903           0 :                         swap_map[page_nr] = SWAP_MAP_BAD;
    2904           0 :                         nr_good_pages--;
    2905             :                         /*
    2906             :                          * Haven't marked the cluster free yet, no list
    2907             :                          * operation involved
    2908             :                          */
    2909           0 :                         inc_cluster_info_page(p, cluster_info, page_nr);
    2910             :                 }
    2911             :         }
    2912             : 
    2913             :         /* Haven't marked the cluster free yet, no list operation involved */
    2914           0 :         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
    2915           0 :                 inc_cluster_info_page(p, cluster_info, i);
    2916             : 
    2917           0 :         if (nr_good_pages) {
    2918           0 :                 swap_map[0] = SWAP_MAP_BAD;
    2919             :                 /*
    2920             :                  * Not mark the cluster free yet, no list
    2921             :                  * operation involved
    2922             :                  */
    2923           0 :                 inc_cluster_info_page(p, cluster_info, 0);
    2924           0 :                 p->max = maxpages;
    2925           0 :                 p->pages = nr_good_pages;
    2926           0 :                 nr_extents = setup_swap_extents(p, span);
    2927           0 :                 if (nr_extents < 0)
    2928             :                         return nr_extents;
    2929           0 :                 nr_good_pages = p->pages;
    2930             :         }
    2931           0 :         if (!nr_good_pages) {
    2932           0 :                 pr_warn("Empty swap-file\n");
    2933           0 :                 return -EINVAL;
    2934             :         }
    2935             : 
    2936           0 :         if (!cluster_info)
    2937             :                 return nr_extents;
    2938             : 
    2939             : 
    2940             :         /*
    2941             :          * Reduce false cache line sharing between cluster_info and
    2942             :          * sharing same address space.
    2943             :          */
    2944           0 :         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
    2945           0 :                 j = (k + col) % SWAP_CLUSTER_COLS;
    2946           0 :                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
    2947           0 :                         idx = i * SWAP_CLUSTER_COLS + j;
    2948           0 :                         if (idx >= nr_clusters)
    2949           0 :                                 continue;
    2950           0 :                         if (cluster_count(&cluster_info[idx]))
    2951           0 :                                 continue;
    2952           0 :                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
    2953           0 :                         cluster_list_add_tail(&p->free_clusters, cluster_info,
    2954             :                                               idx);
    2955             :                 }
    2956             :         }
    2957             :         return nr_extents;
    2958             : }
    2959             : 
    2960             : /*
    2961             :  * Helper to sys_swapon determining if a given swap
    2962             :  * backing device queue supports DISCARD operations.
    2963             :  */
    2964             : static bool swap_discardable(struct swap_info_struct *si)
    2965             : {
    2966           0 :         struct request_queue *q = bdev_get_queue(si->bdev);
    2967             : 
    2968           0 :         if (!blk_queue_discard(q))
    2969             :                 return false;
    2970             : 
    2971             :         return true;
    2972             : }
    2973             : 
    2974           0 : SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
    2975             : {
    2976             :         struct swap_info_struct *p;
    2977             :         struct filename *name;
    2978           0 :         struct file *swap_file = NULL;
    2979             :         struct address_space *mapping;
    2980             :         struct dentry *dentry;
    2981             :         int prio;
    2982             :         int error;
    2983             :         union swap_header *swap_header;
    2984             :         int nr_extents;
    2985             :         sector_t span;
    2986             :         unsigned long maxpages;
    2987           0 :         unsigned char *swap_map = NULL;
    2988           0 :         struct swap_cluster_info *cluster_info = NULL;
    2989           0 :         unsigned long *frontswap_map = NULL;
    2990           0 :         struct page *page = NULL;
    2991           0 :         struct inode *inode = NULL;
    2992           0 :         bool inced_nr_rotate_swap = false;
    2993             : 
    2994           0 :         if (swap_flags & ~SWAP_FLAGS_VALID)
    2995             :                 return -EINVAL;
    2996             : 
    2997           0 :         if (!capable(CAP_SYS_ADMIN))
    2998             :                 return -EPERM;
    2999             : 
    3000           0 :         if (!swap_avail_heads)
    3001             :                 return -ENOMEM;
    3002             : 
    3003           0 :         p = alloc_swap_info();
    3004           0 :         if (IS_ERR(p))
    3005           0 :                 return PTR_ERR(p);
    3006             : 
    3007           0 :         INIT_WORK(&p->discard_work, swap_discard_work);
    3008             : 
    3009           0 :         name = getname(specialfile);
    3010           0 :         if (IS_ERR(name)) {
    3011           0 :                 error = PTR_ERR(name);
    3012           0 :                 name = NULL;
    3013           0 :                 goto bad_swap;
    3014             :         }
    3015           0 :         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
    3016           0 :         if (IS_ERR(swap_file)) {
    3017           0 :                 error = PTR_ERR(swap_file);
    3018           0 :                 swap_file = NULL;
    3019           0 :                 goto bad_swap;
    3020             :         }
    3021             : 
    3022           0 :         p->swap_file = swap_file;
    3023           0 :         mapping = swap_file->f_mapping;
    3024           0 :         dentry = swap_file->f_path.dentry;
    3025           0 :         inode = mapping->host;
    3026             : 
    3027           0 :         error = claim_swapfile(p, inode);
    3028           0 :         if (unlikely(error))
    3029             :                 goto bad_swap;
    3030             : 
    3031           0 :         inode_lock(inode);
    3032           0 :         if (d_unlinked(dentry) || cant_mount(dentry)) {
    3033             :                 error = -ENOENT;
    3034             :                 goto bad_swap_unlock_inode;
    3035             :         }
    3036           0 :         if (IS_SWAPFILE(inode)) {
    3037             :                 error = -EBUSY;
    3038             :                 goto bad_swap_unlock_inode;
    3039             :         }
    3040             : 
    3041             :         /*
    3042             :          * Read the swap header.
    3043             :          */
    3044           0 :         if (!mapping->a_ops->readpage) {
    3045             :                 error = -EINVAL;
    3046             :                 goto bad_swap_unlock_inode;
    3047             :         }
    3048           0 :         page = read_mapping_page(mapping, 0, swap_file);
    3049           0 :         if (IS_ERR(page)) {
    3050           0 :                 error = PTR_ERR(page);
    3051           0 :                 goto bad_swap_unlock_inode;
    3052             :         }
    3053           0 :         swap_header = kmap(page);
    3054             : 
    3055           0 :         maxpages = read_swap_header(p, swap_header, inode);
    3056           0 :         if (unlikely(!maxpages)) {
    3057             :                 error = -EINVAL;
    3058             :                 goto bad_swap_unlock_inode;
    3059             :         }
    3060             : 
    3061             :         /* OK, set up the swap map and apply the bad block list */
    3062           0 :         swap_map = vzalloc(maxpages);
    3063           0 :         if (!swap_map) {
    3064             :                 error = -ENOMEM;
    3065             :                 goto bad_swap_unlock_inode;
    3066             :         }
    3067             : 
    3068           0 :         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
    3069           0 :                 p->flags |= SWP_STABLE_WRITES;
    3070             : 
    3071           0 :         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
    3072           0 :                 p->flags |= SWP_SYNCHRONOUS_IO;
    3073             : 
    3074           0 :         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
    3075             :                 int cpu;
    3076             :                 unsigned long ci, nr_cluster;
    3077             : 
    3078           0 :                 p->flags |= SWP_SOLIDSTATE;
    3079           0 :                 p->cluster_next_cpu = alloc_percpu(unsigned int);
    3080           0 :                 if (!p->cluster_next_cpu) {
    3081             :                         error = -ENOMEM;
    3082             :                         goto bad_swap_unlock_inode;
    3083             :                 }
    3084             :                 /*
    3085             :                  * select a random position to start with to help wear leveling
    3086             :                  * SSD
    3087             :                  */
    3088           0 :                 for_each_possible_cpu(cpu) {
    3089           0 :                         per_cpu(*p->cluster_next_cpu, cpu) =
    3090           0 :                                 1 + prandom_u32_max(p->highest_bit);
    3091             :                 }
    3092           0 :                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
    3093             : 
    3094           0 :                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
    3095             :                                         GFP_KERNEL);
    3096           0 :                 if (!cluster_info) {
    3097             :                         error = -ENOMEM;
    3098             :                         goto bad_swap_unlock_inode;
    3099             :                 }
    3100             : 
    3101             :                 for (ci = 0; ci < nr_cluster; ci++)
    3102             :                         spin_lock_init(&((cluster_info + ci)->lock));
    3103             : 
    3104           0 :                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
    3105           0 :                 if (!p->percpu_cluster) {
    3106             :                         error = -ENOMEM;
    3107             :                         goto bad_swap_unlock_inode;
    3108             :                 }
    3109           0 :                 for_each_possible_cpu(cpu) {
    3110             :                         struct percpu_cluster *cluster;
    3111           0 :                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
    3112           0 :                         cluster_set_null(&cluster->index);
    3113             :                 }
    3114             :         } else {
    3115           0 :                 atomic_inc(&nr_rotate_swap);
    3116           0 :                 inced_nr_rotate_swap = true;
    3117             :         }
    3118             : 
    3119           0 :         error = swap_cgroup_swapon(p->type, maxpages);
    3120             :         if (error)
    3121             :                 goto bad_swap_unlock_inode;
    3122             : 
    3123           0 :         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
    3124             :                 cluster_info, maxpages, &span);
    3125           0 :         if (unlikely(nr_extents < 0)) {
    3126             :                 error = nr_extents;
    3127             :                 goto bad_swap_unlock_inode;
    3128             :         }
    3129             :         /* frontswap enabled? set up bit-per-page map for frontswap */
    3130             :         if (IS_ENABLED(CONFIG_FRONTSWAP))
    3131             :                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
    3132             :                                          sizeof(long),
    3133             :                                          GFP_KERNEL);
    3134             : 
    3135           0 :         if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
    3136             :                 /*
    3137             :                  * When discard is enabled for swap with no particular
    3138             :                  * policy flagged, we set all swap discard flags here in
    3139             :                  * order to sustain backward compatibility with older
    3140             :                  * swapon(8) releases.
    3141             :                  */
    3142           0 :                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
    3143             :                              SWP_PAGE_DISCARD);
    3144             : 
    3145             :                 /*
    3146             :                  * By flagging sys_swapon, a sysadmin can tell us to
    3147             :                  * either do single-time area discards only, or to just
    3148             :                  * perform discards for released swap page-clusters.
    3149             :                  * Now it's time to adjust the p->flags accordingly.
    3150             :                  */
    3151           0 :                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
    3152           0 :                         p->flags &= ~SWP_PAGE_DISCARD;
    3153           0 :                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
    3154           0 :                         p->flags &= ~SWP_AREA_DISCARD;
    3155             : 
    3156             :                 /* issue a swapon-time discard if it's still required */
    3157           0 :                 if (p->flags & SWP_AREA_DISCARD) {
    3158           0 :                         int err = discard_swap(p);
    3159           0 :                         if (unlikely(err))
    3160           0 :                                 pr_err("swapon: discard_swap(%p): %d\n",
    3161             :                                         p, err);
    3162             :                 }
    3163             :         }
    3164             : 
    3165           0 :         error = init_swap_address_space(p->type, maxpages);
    3166           0 :         if (error)
    3167             :                 goto bad_swap_unlock_inode;
    3168             : 
    3169             :         /*
    3170             :          * Flush any pending IO and dirty mappings before we start using this
    3171             :          * swap device.
    3172             :          */
    3173           0 :         inode->i_flags |= S_SWAPFILE;
    3174           0 :         error = inode_drain_writes(inode);
    3175           0 :         if (error) {
    3176           0 :                 inode->i_flags &= ~S_SWAPFILE;
    3177             :                 goto free_swap_address_space;
    3178             :         }
    3179             : 
    3180           0 :         mutex_lock(&swapon_mutex);
    3181           0 :         prio = -1;
    3182           0 :         if (swap_flags & SWAP_FLAG_PREFER)
    3183           0 :                 prio =
    3184             :                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
    3185           0 :         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
    3186             : 
    3187           0 :         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
    3188             :                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
    3189             :                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
    3190             :                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
    3191             :                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
    3192             :                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
    3193             :                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
    3194             :                 (frontswap_map) ? "FS" : "");
    3195             : 
    3196           0 :         mutex_unlock(&swapon_mutex);
    3197           0 :         atomic_inc(&proc_poll_event);
    3198           0 :         wake_up_interruptible(&proc_poll_wait);
    3199             : 
    3200           0 :         error = 0;
    3201           0 :         goto out;
    3202             : free_swap_address_space:
    3203           0 :         exit_swap_address_space(p->type);
    3204             : bad_swap_unlock_inode:
    3205             :         inode_unlock(inode);
    3206             : bad_swap:
    3207           0 :         free_percpu(p->percpu_cluster);
    3208           0 :         p->percpu_cluster = NULL;
    3209           0 :         free_percpu(p->cluster_next_cpu);
    3210           0 :         p->cluster_next_cpu = NULL;
    3211           0 :         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
    3212           0 :                 set_blocksize(p->bdev, p->old_block_size);
    3213           0 :                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
    3214             :         }
    3215           0 :         inode = NULL;
    3216           0 :         destroy_swap_extents(p);
    3217           0 :         swap_cgroup_swapoff(p->type);
    3218           0 :         spin_lock(&swap_lock);
    3219           0 :         p->swap_file = NULL;
    3220           0 :         p->flags = 0;
    3221           0 :         spin_unlock(&swap_lock);
    3222           0 :         vfree(swap_map);
    3223           0 :         kvfree(cluster_info);
    3224           0 :         kvfree(frontswap_map);
    3225           0 :         if (inced_nr_rotate_swap)
    3226             :                 atomic_dec(&nr_rotate_swap);
    3227           0 :         if (swap_file)
    3228           0 :                 filp_close(swap_file, NULL);
    3229             : out:
    3230           0 :         if (page && !IS_ERR(page)) {
    3231           0 :                 kunmap(page);
    3232           0 :                 put_page(page);
    3233             :         }
    3234           0 :         if (name)
    3235           0 :                 putname(name);
    3236           0 :         if (inode)
    3237             :                 inode_unlock(inode);
    3238           0 :         if (!error)
    3239           0 :                 enable_swap_slots_cache();
    3240           0 :         return error;
    3241             : }
    3242             : 
    3243           0 : void si_swapinfo(struct sysinfo *val)
    3244             : {
    3245             :         unsigned int type;
    3246           0 :         unsigned long nr_to_be_unused = 0;
    3247             : 
    3248           0 :         spin_lock(&swap_lock);
    3249           0 :         for (type = 0; type < nr_swapfiles; type++) {
    3250           0 :                 struct swap_info_struct *si = swap_info[type];
    3251             : 
    3252           0 :                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
    3253           0 :                         nr_to_be_unused += si->inuse_pages;
    3254             :         }
    3255           0 :         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
    3256           0 :         val->totalswap = total_swap_pages + nr_to_be_unused;
    3257           0 :         spin_unlock(&swap_lock);
    3258           0 : }
    3259             : 
    3260             : /*
    3261             :  * Verify that a swap entry is valid and increment its swap map count.
    3262             :  *
    3263             :  * Returns error code in following case.
    3264             :  * - success -> 0
    3265             :  * - swp_entry is invalid -> EINVAL
    3266             :  * - swp_entry is migration entry -> EINVAL
    3267             :  * - swap-cache reference is requested but there is already one. -> EEXIST
    3268             :  * - swap-cache reference is requested but the entry is not used. -> ENOENT
    3269             :  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
    3270             :  */
    3271           0 : static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
    3272             : {
    3273             :         struct swap_info_struct *p;
    3274             :         struct swap_cluster_info *ci;
    3275             :         unsigned long offset;
    3276             :         unsigned char count;
    3277             :         unsigned char has_cache;
    3278             :         int err;
    3279             : 
    3280           0 :         p = get_swap_device(entry);
    3281           0 :         if (!p)
    3282             :                 return -EINVAL;
    3283             : 
    3284           0 :         offset = swp_offset(entry);
    3285           0 :         ci = lock_cluster_or_swap_info(p, offset);
    3286             : 
    3287           0 :         count = p->swap_map[offset];
    3288             : 
    3289             :         /*
    3290             :          * swapin_readahead() doesn't check if a swap entry is valid, so the
    3291             :          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
    3292             :          */
    3293           0 :         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
    3294             :                 err = -ENOENT;
    3295             :                 goto unlock_out;
    3296             :         }
    3297             : 
    3298           0 :         has_cache = count & SWAP_HAS_CACHE;
    3299           0 :         count &= ~SWAP_HAS_CACHE;
    3300           0 :         err = 0;
    3301             : 
    3302           0 :         if (usage == SWAP_HAS_CACHE) {
    3303             : 
    3304             :                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
    3305           0 :                 if (!has_cache && count)
    3306             :                         has_cache = SWAP_HAS_CACHE;
    3307           0 :                 else if (has_cache)             /* someone else added cache */
    3308             :                         err = -EEXIST;
    3309             :                 else                            /* no users remaining */
    3310           0 :                         err = -ENOENT;
    3311             : 
    3312           0 :         } else if (count || has_cache) {
    3313             : 
    3314           0 :                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
    3315           0 :                         count += usage;
    3316           0 :                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
    3317             :                         err = -EINVAL;
    3318           0 :                 else if (swap_count_continued(p, offset, count))
    3319             :                         count = COUNT_CONTINUED;
    3320             :                 else
    3321           0 :                         err = -ENOMEM;
    3322             :         } else
    3323             :                 err = -ENOENT;                  /* unused swap entry */
    3324             : 
    3325           0 :         WRITE_ONCE(p->swap_map[offset], count | has_cache);
    3326             : 
    3327             : unlock_out:
    3328           0 :         unlock_cluster_or_swap_info(p, ci);
    3329             :         if (p)
    3330             :                 put_swap_device(p);
    3331           0 :         return err;
    3332             : }
    3333             : 
    3334             : /*
    3335             :  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
    3336             :  * (in which case its reference count is never incremented).
    3337             :  */
    3338           0 : void swap_shmem_alloc(swp_entry_t entry)
    3339             : {
    3340           0 :         __swap_duplicate(entry, SWAP_MAP_SHMEM);
    3341           0 : }
    3342             : 
    3343             : /*
    3344             :  * Increase reference count of swap entry by 1.
    3345             :  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
    3346             :  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
    3347             :  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
    3348             :  * might occur if a page table entry has got corrupted.
    3349             :  */
    3350           0 : int swap_duplicate(swp_entry_t entry)
    3351             : {
    3352           0 :         int err = 0;
    3353             : 
    3354           0 :         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
    3355           0 :                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
    3356           0 :         return err;
    3357             : }
    3358             : 
    3359             : /*
    3360             :  * @entry: swap entry for which we allocate swap cache.
    3361             :  *
    3362             :  * Called when allocating swap cache for existing swap entry,
    3363             :  * This can return error codes. Returns 0 at success.
    3364             :  * -EEXIST means there is a swap cache.
    3365             :  * Note: return code is different from swap_duplicate().
    3366             :  */
    3367           0 : int swapcache_prepare(swp_entry_t entry)
    3368             : {
    3369           0 :         return __swap_duplicate(entry, SWAP_HAS_CACHE);
    3370             : }
    3371             : 
    3372           0 : struct swap_info_struct *swp_swap_info(swp_entry_t entry)
    3373             : {
    3374           0 :         return swap_type_to_swap_info(swp_type(entry));
    3375             : }
    3376             : 
    3377           0 : struct swap_info_struct *page_swap_info(struct page *page)
    3378             : {
    3379           0 :         swp_entry_t entry = { .val = page_private(page) };
    3380           0 :         return swp_swap_info(entry);
    3381             : }
    3382             : 
    3383             : /*
    3384             :  * out-of-line methods to avoid include hell.
    3385             :  */
    3386           0 : struct address_space *swapcache_mapping(struct folio *folio)
    3387             : {
    3388           0 :         return page_swap_info(&folio->page)->swap_file->f_mapping;
    3389             : }
    3390             : EXPORT_SYMBOL_GPL(swapcache_mapping);
    3391             : 
    3392           0 : pgoff_t __page_file_index(struct page *page)
    3393             : {
    3394           0 :         swp_entry_t swap = { .val = page_private(page) };
    3395           0 :         return swp_offset(swap);
    3396             : }
    3397             : EXPORT_SYMBOL_GPL(__page_file_index);
    3398             : 
    3399             : /*
    3400             :  * add_swap_count_continuation - called when a swap count is duplicated
    3401             :  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
    3402             :  * page of the original vmalloc'ed swap_map, to hold the continuation count
    3403             :  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
    3404             :  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
    3405             :  *
    3406             :  * These continuation pages are seldom referenced: the common paths all work
    3407             :  * on the original swap_map, only referring to a continuation page when the
    3408             :  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
    3409             :  *
    3410             :  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
    3411             :  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
    3412             :  * can be called after dropping locks.
    3413             :  */
    3414           0 : int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
    3415             : {
    3416             :         struct swap_info_struct *si;
    3417             :         struct swap_cluster_info *ci;
    3418             :         struct page *head;
    3419             :         struct page *page;
    3420             :         struct page *list_page;
    3421             :         pgoff_t offset;
    3422             :         unsigned char count;
    3423           0 :         int ret = 0;
    3424             : 
    3425             :         /*
    3426             :          * When debugging, it's easier to use __GFP_ZERO here; but it's better
    3427             :          * for latency not to zero a page while GFP_ATOMIC and holding locks.
    3428             :          */
    3429           0 :         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
    3430             : 
    3431           0 :         si = get_swap_device(entry);
    3432           0 :         if (!si) {
    3433             :                 /*
    3434             :                  * An acceptable race has occurred since the failing
    3435             :                  * __swap_duplicate(): the swap device may be swapoff
    3436             :                  */
    3437             :                 goto outer;
    3438             :         }
    3439           0 :         spin_lock(&si->lock);
    3440             : 
    3441           0 :         offset = swp_offset(entry);
    3442             : 
    3443           0 :         ci = lock_cluster(si, offset);
    3444             : 
    3445           0 :         count = swap_count(si->swap_map[offset]);
    3446             : 
    3447           0 :         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
    3448             :                 /*
    3449             :                  * The higher the swap count, the more likely it is that tasks
    3450             :                  * will race to add swap count continuation: we need to avoid
    3451             :                  * over-provisioning.
    3452             :                  */
    3453             :                 goto out;
    3454             :         }
    3455             : 
    3456           0 :         if (!page) {
    3457             :                 ret = -ENOMEM;
    3458             :                 goto out;
    3459             :         }
    3460             : 
    3461             :         /*
    3462             :          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
    3463             :          * no architecture is using highmem pages for kernel page tables: so it
    3464             :          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
    3465             :          */
    3466           0 :         head = vmalloc_to_page(si->swap_map + offset);
    3467           0 :         offset &= ~PAGE_MASK;
    3468             : 
    3469           0 :         spin_lock(&si->cont_lock);
    3470             :         /*
    3471             :          * Page allocation does not initialize the page's lru field,
    3472             :          * but it does always reset its private field.
    3473             :          */
    3474           0 :         if (!page_private(head)) {
    3475           0 :                 BUG_ON(count & COUNT_CONTINUED);
    3476           0 :                 INIT_LIST_HEAD(&head->lru);
    3477           0 :                 set_page_private(head, SWP_CONTINUED);
    3478           0 :                 si->flags |= SWP_CONTINUED;
    3479             :         }
    3480             : 
    3481           0 :         list_for_each_entry(list_page, &head->lru, lru) {
    3482             :                 unsigned char *map;
    3483             : 
    3484             :                 /*
    3485             :                  * If the previous map said no continuation, but we've found
    3486             :                  * a continuation page, free our allocation and use this one.
    3487             :                  */
    3488           0 :                 if (!(count & COUNT_CONTINUED))
    3489             :                         goto out_unlock_cont;
    3490             : 
    3491           0 :                 map = kmap_atomic(list_page) + offset;
    3492           0 :                 count = *map;
    3493           0 :                 kunmap_atomic(map);
    3494             : 
    3495             :                 /*
    3496             :                  * If this continuation count now has some space in it,
    3497             :                  * free our allocation and use this one.
    3498             :                  */
    3499           0 :                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
    3500             :                         goto out_unlock_cont;
    3501             :         }
    3502             : 
    3503           0 :         list_add_tail(&page->lru, &head->lru);
    3504           0 :         page = NULL;                    /* now it's attached, don't free it */
    3505             : out_unlock_cont:
    3506           0 :         spin_unlock(&si->cont_lock);
    3507             : out:
    3508           0 :         unlock_cluster(ci);
    3509           0 :         spin_unlock(&si->lock);
    3510             :         put_swap_device(si);
    3511             : outer:
    3512           0 :         if (page)
    3513           0 :                 __free_page(page);
    3514           0 :         return ret;
    3515             : }
    3516             : 
    3517             : /*
    3518             :  * swap_count_continued - when the original swap_map count is incremented
    3519             :  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
    3520             :  * into, carry if so, or else fail until a new continuation page is allocated;
    3521             :  * when the original swap_map count is decremented from 0 with continuation,
    3522             :  * borrow from the continuation and report whether it still holds more.
    3523             :  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
    3524             :  * lock.
    3525             :  */
    3526           0 : static bool swap_count_continued(struct swap_info_struct *si,
    3527             :                                  pgoff_t offset, unsigned char count)
    3528             : {
    3529             :         struct page *head;
    3530             :         struct page *page;
    3531             :         unsigned char *map;
    3532             :         bool ret;
    3533             : 
    3534           0 :         head = vmalloc_to_page(si->swap_map + offset);
    3535           0 :         if (page_private(head) != SWP_CONTINUED) {
    3536           0 :                 BUG_ON(count & COUNT_CONTINUED);
    3537             :                 return false;           /* need to add count continuation */
    3538             :         }
    3539             : 
    3540           0 :         spin_lock(&si->cont_lock);
    3541           0 :         offset &= ~PAGE_MASK;
    3542           0 :         page = list_next_entry(head, lru);
    3543           0 :         map = kmap_atomic(page) + offset;
    3544             : 
    3545           0 :         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
    3546             :                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
    3547             : 
    3548           0 :         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
    3549             :                 /*
    3550             :                  * Think of how you add 1 to 999
    3551             :                  */
    3552           0 :                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
    3553           0 :                         kunmap_atomic(map);
    3554           0 :                         page = list_next_entry(page, lru);
    3555           0 :                         BUG_ON(page == head);
    3556           0 :                         map = kmap_atomic(page) + offset;
    3557             :                 }
    3558           0 :                 if (*map == SWAP_CONT_MAX) {
    3559           0 :                         kunmap_atomic(map);
    3560           0 :                         page = list_next_entry(page, lru);
    3561           0 :                         if (page == head) {
    3562             :                                 ret = false;    /* add count continuation */
    3563             :                                 goto out;
    3564             :                         }
    3565           0 :                         map = kmap_atomic(page) + offset;
    3566           0 : init_map:               *map = 0;               /* we didn't zero the page */
    3567             :                 }
    3568           0 :                 *map += 1;
    3569           0 :                 kunmap_atomic(map);
    3570           0 :                 while ((page = list_prev_entry(page, lru)) != head) {
    3571           0 :                         map = kmap_atomic(page) + offset;
    3572           0 :                         *map = COUNT_CONTINUED;
    3573           0 :                         kunmap_atomic(map);
    3574             :                 }
    3575             :                 ret = true;                     /* incremented */
    3576             : 
    3577             :         } else {                                /* decrementing */
    3578             :                 /*
    3579             :                  * Think of how you subtract 1 from 1000
    3580             :                  */
    3581           0 :                 BUG_ON(count != COUNT_CONTINUED);
    3582           0 :                 while (*map == COUNT_CONTINUED) {
    3583           0 :                         kunmap_atomic(map);
    3584           0 :                         page = list_next_entry(page, lru);
    3585           0 :                         BUG_ON(page == head);
    3586           0 :                         map = kmap_atomic(page) + offset;
    3587             :                 }
    3588           0 :                 BUG_ON(*map == 0);
    3589           0 :                 *map -= 1;
    3590           0 :                 if (*map == 0)
    3591           0 :                         count = 0;
    3592           0 :                 kunmap_atomic(map);
    3593           0 :                 while ((page = list_prev_entry(page, lru)) != head) {
    3594           0 :                         map = kmap_atomic(page) + offset;
    3595           0 :                         *map = SWAP_CONT_MAX | count;
    3596           0 :                         count = COUNT_CONTINUED;
    3597           0 :                         kunmap_atomic(map);
    3598             :                 }
    3599           0 :                 ret = count == COUNT_CONTINUED;
    3600             :         }
    3601             : out:
    3602           0 :         spin_unlock(&si->cont_lock);
    3603           0 :         return ret;
    3604             : }
    3605             : 
    3606             : /*
    3607             :  * free_swap_count_continuations - swapoff free all the continuation pages
    3608             :  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
    3609             :  */
    3610           0 : static void free_swap_count_continuations(struct swap_info_struct *si)
    3611             : {
    3612             :         pgoff_t offset;
    3613             : 
    3614           0 :         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
    3615             :                 struct page *head;
    3616           0 :                 head = vmalloc_to_page(si->swap_map + offset);
    3617           0 :                 if (page_private(head)) {
    3618             :                         struct page *page, *next;
    3619             : 
    3620           0 :                         list_for_each_entry_safe(page, next, &head->lru, lru) {
    3621           0 :                                 list_del(&page->lru);
    3622           0 :                                 __free_page(page);
    3623             :                         }
    3624             :                 }
    3625             :         }
    3626           0 : }
    3627             : 
    3628             : #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
    3629             : void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
    3630             : {
    3631             :         struct swap_info_struct *si, *next;
    3632             :         int nid = page_to_nid(page);
    3633             : 
    3634             :         if (!(gfp_mask & __GFP_IO))
    3635             :                 return;
    3636             : 
    3637             :         if (!blk_cgroup_congested())
    3638             :                 return;
    3639             : 
    3640             :         /*
    3641             :          * We've already scheduled a throttle, avoid taking the global swap
    3642             :          * lock.
    3643             :          */
    3644             :         if (current->throttle_queue)
    3645             :                 return;
    3646             : 
    3647             :         spin_lock(&swap_avail_lock);
    3648             :         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
    3649             :                                   avail_lists[nid]) {
    3650             :                 if (si->bdev) {
    3651             :                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
    3652             :                         break;
    3653             :                 }
    3654             :         }
    3655             :         spin_unlock(&swap_avail_lock);
    3656             : }
    3657             : #endif
    3658             : 
    3659           1 : static int __init swapfile_init(void)
    3660             : {
    3661             :         int nid;
    3662             : 
    3663           1 :         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
    3664             :                                          GFP_KERNEL);
    3665           1 :         if (!swap_avail_heads) {
    3666           0 :                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
    3667           0 :                 return -ENOMEM;
    3668             :         }
    3669             : 
    3670           1 :         for_each_node(nid)
    3671           2 :                 plist_head_init(&swap_avail_heads[nid]);
    3672             : 
    3673             :         return 0;
    3674             : }
    3675             : subsys_initcall(swapfile_init);

Generated by: LCOV version 1.14