Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Copyright (C) 1993 Linus Torvalds
4 : * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 : * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 : * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 : * Numa awareness, Christoph Lameter, SGI, June 2005
8 : * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 : */
10 :
11 : #include <linux/vmalloc.h>
12 : #include <linux/mm.h>
13 : #include <linux/module.h>
14 : #include <linux/highmem.h>
15 : #include <linux/sched/signal.h>
16 : #include <linux/slab.h>
17 : #include <linux/spinlock.h>
18 : #include <linux/interrupt.h>
19 : #include <linux/proc_fs.h>
20 : #include <linux/seq_file.h>
21 : #include <linux/set_memory.h>
22 : #include <linux/debugobjects.h>
23 : #include <linux/kallsyms.h>
24 : #include <linux/list.h>
25 : #include <linux/notifier.h>
26 : #include <linux/rbtree.h>
27 : #include <linux/xarray.h>
28 : #include <linux/io.h>
29 : #include <linux/rcupdate.h>
30 : #include <linux/pfn.h>
31 : #include <linux/kmemleak.h>
32 : #include <linux/atomic.h>
33 : #include <linux/compiler.h>
34 : #include <linux/memcontrol.h>
35 : #include <linux/llist.h>
36 : #include <linux/bitops.h>
37 : #include <linux/rbtree_augmented.h>
38 : #include <linux/overflow.h>
39 : #include <linux/pgtable.h>
40 : #include <linux/uaccess.h>
41 : #include <linux/hugetlb.h>
42 : #include <linux/sched/mm.h>
43 : #include <asm/tlbflush.h>
44 : #include <asm/shmparam.h>
45 :
46 : #include "internal.h"
47 : #include "pgalloc-track.h"
48 :
49 : #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50 : static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
51 :
52 : static int __init set_nohugeiomap(char *str)
53 : {
54 : ioremap_max_page_shift = PAGE_SHIFT;
55 : return 0;
56 : }
57 : early_param("nohugeiomap", set_nohugeiomap);
58 : #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 : static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60 : #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
61 :
62 : #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63 : static bool __ro_after_init vmap_allow_huge = true;
64 :
65 : static int __init set_nohugevmalloc(char *str)
66 : {
67 : vmap_allow_huge = false;
68 : return 0;
69 : }
70 : early_param("nohugevmalloc", set_nohugevmalloc);
71 : #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 : static const bool vmap_allow_huge = false;
73 : #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
74 :
75 0 : bool is_vmalloc_addr(const void *x)
76 : {
77 0 : unsigned long addr = (unsigned long)kasan_reset_tag(x);
78 :
79 0 : return addr >= VMALLOC_START && addr < VMALLOC_END;
80 : }
81 : EXPORT_SYMBOL(is_vmalloc_addr);
82 :
83 : struct vfree_deferred {
84 : struct llist_head list;
85 : struct work_struct wq;
86 : };
87 : static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
88 :
89 : static void __vunmap(const void *, int);
90 :
91 0 : static void free_work(struct work_struct *w)
92 : {
93 0 : struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
94 : struct llist_node *t, *llnode;
95 :
96 0 : llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97 0 : __vunmap((void *)llnode, 1);
98 0 : }
99 :
100 : /*** Page table manipulation functions ***/
101 0 : static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102 : phys_addr_t phys_addr, pgprot_t prot,
103 : unsigned int max_page_shift, pgtbl_mod_mask *mask)
104 : {
105 : pte_t *pte;
106 : u64 pfn;
107 0 : unsigned long size = PAGE_SIZE;
108 :
109 0 : pfn = phys_addr >> PAGE_SHIFT;
110 0 : pte = pte_alloc_kernel_track(pmd, addr, mask);
111 0 : if (!pte)
112 : return -ENOMEM;
113 : do {
114 0 : BUG_ON(!pte_none(*pte));
115 :
116 : #ifdef CONFIG_HUGETLB_PAGE
117 : size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 : if (size != PAGE_SIZE) {
119 : pte_t entry = pfn_pte(pfn, prot);
120 :
121 : entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 : set_huge_pte_at(&init_mm, addr, pte, entry);
123 : pfn += PFN_DOWN(size);
124 : continue;
125 : }
126 : #endif
127 0 : set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 0 : pfn++;
129 0 : } while (pte += PFN_DOWN(size), addr += size, addr != end);
130 0 : *mask |= PGTBL_PTE_MODIFIED;
131 : return 0;
132 : }
133 :
134 : static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 : phys_addr_t phys_addr, pgprot_t prot,
136 : unsigned int max_page_shift)
137 : {
138 : if (max_page_shift < PMD_SHIFT)
139 : return 0;
140 :
141 : if (!arch_vmap_pmd_supported(prot))
142 : return 0;
143 :
144 : if ((end - addr) != PMD_SIZE)
145 : return 0;
146 :
147 : if (!IS_ALIGNED(addr, PMD_SIZE))
148 : return 0;
149 :
150 : if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 : return 0;
152 :
153 : if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 : return 0;
155 :
156 : return pmd_set_huge(pmd, phys_addr, prot);
157 : }
158 :
159 0 : static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 : phys_addr_t phys_addr, pgprot_t prot,
161 : unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 : {
163 : pmd_t *pmd;
164 : unsigned long next;
165 :
166 0 : pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 0 : if (!pmd)
168 : return -ENOMEM;
169 : do {
170 0 : next = pmd_addr_end(addr, end);
171 :
172 0 : if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 : max_page_shift)) {
174 : *mask |= PGTBL_PMD_MODIFIED;
175 : continue;
176 : }
177 :
178 0 : if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 : return -ENOMEM;
180 0 : } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 : return 0;
182 : }
183 :
184 : static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 : phys_addr_t phys_addr, pgprot_t prot,
186 : unsigned int max_page_shift)
187 : {
188 : if (max_page_shift < PUD_SHIFT)
189 : return 0;
190 :
191 : if (!arch_vmap_pud_supported(prot))
192 : return 0;
193 :
194 : if ((end - addr) != PUD_SIZE)
195 : return 0;
196 :
197 : if (!IS_ALIGNED(addr, PUD_SIZE))
198 : return 0;
199 :
200 : if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 : return 0;
202 :
203 : if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 : return 0;
205 :
206 : return pud_set_huge(pud, phys_addr, prot);
207 : }
208 :
209 : static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 : phys_addr_t phys_addr, pgprot_t prot,
211 : unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 : {
213 : pud_t *pud;
214 : unsigned long next;
215 :
216 0 : pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 : if (!pud)
218 : return -ENOMEM;
219 : do {
220 0 : next = pud_addr_end(addr, end);
221 :
222 0 : if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 : max_page_shift)) {
224 : *mask |= PGTBL_PUD_MODIFIED;
225 : continue;
226 : }
227 :
228 0 : if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 : max_page_shift, mask))
230 : return -ENOMEM;
231 0 : } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 : return 0;
233 : }
234 :
235 : static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 : phys_addr_t phys_addr, pgprot_t prot,
237 : unsigned int max_page_shift)
238 : {
239 : if (max_page_shift < P4D_SHIFT)
240 : return 0;
241 :
242 : if (!arch_vmap_p4d_supported(prot))
243 : return 0;
244 :
245 : if ((end - addr) != P4D_SIZE)
246 : return 0;
247 :
248 : if (!IS_ALIGNED(addr, P4D_SIZE))
249 : return 0;
250 :
251 : if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 : return 0;
253 :
254 : if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 : return 0;
256 :
257 : return p4d_set_huge(p4d, phys_addr, prot);
258 : }
259 :
260 0 : static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 : phys_addr_t phys_addr, pgprot_t prot,
262 : unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 : {
264 : p4d_t *p4d;
265 : unsigned long next;
266 :
267 0 : p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 0 : if (!p4d)
269 : return -ENOMEM;
270 : do {
271 0 : next = p4d_addr_end(addr, end);
272 :
273 0 : if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 : max_page_shift)) {
275 : *mask |= PGTBL_P4D_MODIFIED;
276 : continue;
277 : }
278 :
279 0 : if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 : max_page_shift, mask))
281 : return -ENOMEM;
282 0 : } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 : return 0;
284 : }
285 :
286 0 : static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 : phys_addr_t phys_addr, pgprot_t prot,
288 : unsigned int max_page_shift)
289 : {
290 : pgd_t *pgd;
291 : unsigned long start;
292 : unsigned long next;
293 : int err;
294 0 : pgtbl_mod_mask mask = 0;
295 :
296 : might_sleep();
297 0 : BUG_ON(addr >= end);
298 :
299 0 : start = addr;
300 0 : pgd = pgd_offset_k(addr);
301 : do {
302 0 : next = pgd_addr_end(addr, end);
303 0 : err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 : max_page_shift, &mask);
305 0 : if (err)
306 : break;
307 0 : } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 :
309 : if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 : arch_sync_kernel_mappings(start, end);
311 :
312 0 : return err;
313 : }
314 :
315 0 : int ioremap_page_range(unsigned long addr, unsigned long end,
316 : phys_addr_t phys_addr, pgprot_t prot)
317 : {
318 : int err;
319 :
320 0 : err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 : ioremap_max_page_shift);
322 0 : flush_cache_vmap(addr, end);
323 0 : return err;
324 : }
325 :
326 0 : static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
327 : pgtbl_mod_mask *mask)
328 : {
329 : pte_t *pte;
330 :
331 0 : pte = pte_offset_kernel(pmd, addr);
332 : do {
333 0 : pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
334 0 : WARN_ON(!pte_none(ptent) && !pte_present(ptent));
335 0 : } while (pte++, addr += PAGE_SIZE, addr != end);
336 0 : *mask |= PGTBL_PTE_MODIFIED;
337 0 : }
338 :
339 0 : static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
340 : pgtbl_mod_mask *mask)
341 : {
342 : pmd_t *pmd;
343 : unsigned long next;
344 : int cleared;
345 :
346 0 : pmd = pmd_offset(pud, addr);
347 : do {
348 0 : next = pmd_addr_end(addr, end);
349 :
350 0 : cleared = pmd_clear_huge(pmd);
351 0 : if (cleared || pmd_bad(*pmd))
352 0 : *mask |= PGTBL_PMD_MODIFIED;
353 :
354 : if (cleared)
355 : continue;
356 0 : if (pmd_none_or_clear_bad(pmd))
357 0 : continue;
358 0 : vunmap_pte_range(pmd, addr, next, mask);
359 :
360 0 : cond_resched();
361 0 : } while (pmd++, addr = next, addr != end);
362 0 : }
363 :
364 0 : static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
365 : pgtbl_mod_mask *mask)
366 : {
367 : pud_t *pud;
368 : unsigned long next;
369 : int cleared;
370 :
371 0 : pud = pud_offset(p4d, addr);
372 : do {
373 0 : next = pud_addr_end(addr, end);
374 :
375 0 : cleared = pud_clear_huge(pud);
376 0 : if (cleared || pud_bad(*pud))
377 0 : *mask |= PGTBL_PUD_MODIFIED;
378 :
379 : if (cleared)
380 : continue;
381 0 : if (pud_none_or_clear_bad(pud))
382 0 : continue;
383 0 : vunmap_pmd_range(pud, addr, next, mask);
384 0 : } while (pud++, addr = next, addr != end);
385 0 : }
386 :
387 : static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
388 : pgtbl_mod_mask *mask)
389 : {
390 : p4d_t *p4d;
391 : unsigned long next;
392 : int cleared;
393 :
394 0 : p4d = p4d_offset(pgd, addr);
395 : do {
396 0 : next = p4d_addr_end(addr, end);
397 :
398 0 : cleared = p4d_clear_huge(p4d);
399 0 : if (cleared || p4d_bad(*p4d))
400 : *mask |= PGTBL_P4D_MODIFIED;
401 :
402 : if (cleared)
403 : continue;
404 0 : if (p4d_none_or_clear_bad(p4d))
405 : continue;
406 0 : vunmap_pud_range(p4d, addr, next, mask);
407 0 : } while (p4d++, addr = next, addr != end);
408 : }
409 :
410 : /*
411 : * vunmap_range_noflush is similar to vunmap_range, but does not
412 : * flush caches or TLBs.
413 : *
414 : * The caller is responsible for calling flush_cache_vmap() before calling
415 : * this function, and flush_tlb_kernel_range after it has returned
416 : * successfully (and before the addresses are expected to cause a page fault
417 : * or be re-mapped for something else, if TLB flushes are being delayed or
418 : * coalesced).
419 : *
420 : * This is an internal function only. Do not use outside mm/.
421 : */
422 0 : void vunmap_range_noflush(unsigned long start, unsigned long end)
423 : {
424 : unsigned long next;
425 : pgd_t *pgd;
426 0 : unsigned long addr = start;
427 0 : pgtbl_mod_mask mask = 0;
428 :
429 0 : BUG_ON(addr >= end);
430 0 : pgd = pgd_offset_k(addr);
431 : do {
432 0 : next = pgd_addr_end(addr, end);
433 0 : if (pgd_bad(*pgd))
434 : mask |= PGTBL_PGD_MODIFIED;
435 0 : if (pgd_none_or_clear_bad(pgd))
436 : continue;
437 : vunmap_p4d_range(pgd, addr, next, &mask);
438 0 : } while (pgd++, addr = next, addr != end);
439 :
440 : if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
441 : arch_sync_kernel_mappings(start, end);
442 0 : }
443 :
444 : /**
445 : * vunmap_range - unmap kernel virtual addresses
446 : * @addr: start of the VM area to unmap
447 : * @end: end of the VM area to unmap (non-inclusive)
448 : *
449 : * Clears any present PTEs in the virtual address range, flushes TLBs and
450 : * caches. Any subsequent access to the address before it has been re-mapped
451 : * is a kernel bug.
452 : */
453 0 : void vunmap_range(unsigned long addr, unsigned long end)
454 : {
455 0 : flush_cache_vunmap(addr, end);
456 0 : vunmap_range_noflush(addr, end);
457 0 : flush_tlb_kernel_range(addr, end);
458 0 : }
459 :
460 15 : static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
461 : unsigned long end, pgprot_t prot, struct page **pages, int *nr,
462 : pgtbl_mod_mask *mask)
463 : {
464 : pte_t *pte;
465 :
466 : /*
467 : * nr is a running index into the array which helps higher level
468 : * callers keep track of where we're up to.
469 : */
470 :
471 30 : pte = pte_alloc_kernel_track(pmd, addr, mask);
472 15 : if (!pte)
473 : return -ENOMEM;
474 : do {
475 60 : struct page *page = pages[*nr];
476 :
477 60 : if (WARN_ON(!pte_none(*pte)))
478 : return -EBUSY;
479 60 : if (WARN_ON(!page))
480 : return -ENOMEM;
481 120 : set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
482 60 : (*nr)++;
483 60 : } while (pte++, addr += PAGE_SIZE, addr != end);
484 15 : *mask |= PGTBL_PTE_MODIFIED;
485 15 : return 0;
486 : }
487 :
488 15 : static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
489 : unsigned long end, pgprot_t prot, struct page **pages, int *nr,
490 : pgtbl_mod_mask *mask)
491 : {
492 : pmd_t *pmd;
493 : unsigned long next;
494 :
495 15 : pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
496 15 : if (!pmd)
497 : return -ENOMEM;
498 : do {
499 15 : next = pmd_addr_end(addr, end);
500 15 : if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
501 : return -ENOMEM;
502 15 : } while (pmd++, addr = next, addr != end);
503 : return 0;
504 : }
505 :
506 : static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
507 : unsigned long end, pgprot_t prot, struct page **pages, int *nr,
508 : pgtbl_mod_mask *mask)
509 : {
510 : pud_t *pud;
511 : unsigned long next;
512 :
513 30 : pud = pud_alloc_track(&init_mm, p4d, addr, mask);
514 : if (!pud)
515 : return -ENOMEM;
516 : do {
517 15 : next = pud_addr_end(addr, end);
518 15 : if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
519 : return -ENOMEM;
520 15 : } while (pud++, addr = next, addr != end);
521 : return 0;
522 : }
523 :
524 15 : static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
525 : unsigned long end, pgprot_t prot, struct page **pages, int *nr,
526 : pgtbl_mod_mask *mask)
527 : {
528 : p4d_t *p4d;
529 : unsigned long next;
530 :
531 30 : p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
532 15 : if (!p4d)
533 : return -ENOMEM;
534 : do {
535 15 : next = p4d_addr_end(addr, end);
536 15 : if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
537 : return -ENOMEM;
538 15 : } while (p4d++, addr = next, addr != end);
539 15 : return 0;
540 : }
541 :
542 15 : static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
543 : pgprot_t prot, struct page **pages)
544 : {
545 15 : unsigned long start = addr;
546 : pgd_t *pgd;
547 : unsigned long next;
548 15 : int err = 0;
549 15 : int nr = 0;
550 15 : pgtbl_mod_mask mask = 0;
551 :
552 15 : BUG_ON(addr >= end);
553 30 : pgd = pgd_offset_k(addr);
554 : do {
555 15 : next = pgd_addr_end(addr, end);
556 15 : if (pgd_bad(*pgd))
557 : mask |= PGTBL_PGD_MODIFIED;
558 15 : err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
559 15 : if (err)
560 : return err;
561 15 : } while (pgd++, addr = next, addr != end);
562 :
563 : if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
564 : arch_sync_kernel_mappings(start, end);
565 :
566 : return 0;
567 : }
568 :
569 : /*
570 : * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
571 : * flush caches.
572 : *
573 : * The caller is responsible for calling flush_cache_vmap() after this
574 : * function returns successfully and before the addresses are accessed.
575 : *
576 : * This is an internal function only. Do not use outside mm/.
577 : */
578 15 : int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
579 : pgprot_t prot, struct page **pages, unsigned int page_shift)
580 : {
581 15 : unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
582 :
583 15 : WARN_ON(page_shift < PAGE_SHIFT);
584 :
585 : if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
586 : page_shift == PAGE_SHIFT)
587 15 : return vmap_small_pages_range_noflush(addr, end, prot, pages);
588 :
589 : for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
590 : int err;
591 :
592 : err = vmap_range_noflush(addr, addr + (1UL << page_shift),
593 : __pa(page_address(pages[i])), prot,
594 : page_shift);
595 : if (err)
596 : return err;
597 :
598 : addr += 1UL << page_shift;
599 : }
600 :
601 : return 0;
602 : }
603 :
604 : /**
605 : * vmap_pages_range - map pages to a kernel virtual address
606 : * @addr: start of the VM area to map
607 : * @end: end of the VM area to map (non-inclusive)
608 : * @prot: page protection flags to use
609 : * @pages: pages to map (always PAGE_SIZE pages)
610 : * @page_shift: maximum shift that the pages may be mapped with, @pages must
611 : * be aligned and contiguous up to at least this shift.
612 : *
613 : * RETURNS:
614 : * 0 on success, -errno on failure.
615 : */
616 : static int vmap_pages_range(unsigned long addr, unsigned long end,
617 : pgprot_t prot, struct page **pages, unsigned int page_shift)
618 : {
619 : int err;
620 :
621 15 : err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
622 15 : flush_cache_vmap(addr, end);
623 : return err;
624 : }
625 :
626 0 : int is_vmalloc_or_module_addr(const void *x)
627 : {
628 : /*
629 : * ARM, x86-64 and sparc64 put modules in a special place,
630 : * and fall back on vmalloc() if that fails. Others
631 : * just put it in the vmalloc space.
632 : */
633 : #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
634 : unsigned long addr = (unsigned long)kasan_reset_tag(x);
635 : if (addr >= MODULES_VADDR && addr < MODULES_END)
636 : return 1;
637 : #endif
638 0 : return is_vmalloc_addr(x);
639 : }
640 :
641 : /*
642 : * Walk a vmap address to the struct page it maps. Huge vmap mappings will
643 : * return the tail page that corresponds to the base page address, which
644 : * matches small vmap mappings.
645 : */
646 0 : struct page *vmalloc_to_page(const void *vmalloc_addr)
647 : {
648 0 : unsigned long addr = (unsigned long) vmalloc_addr;
649 0 : struct page *page = NULL;
650 0 : pgd_t *pgd = pgd_offset_k(addr);
651 : p4d_t *p4d;
652 : pud_t *pud;
653 : pmd_t *pmd;
654 : pte_t *ptep, pte;
655 :
656 : /*
657 : * XXX we might need to change this if we add VIRTUAL_BUG_ON for
658 : * architectures that do not vmalloc module space
659 : */
660 : VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
661 :
662 : if (pgd_none(*pgd))
663 : return NULL;
664 0 : if (WARN_ON_ONCE(pgd_leaf(*pgd)))
665 : return NULL; /* XXX: no allowance for huge pgd */
666 0 : if (WARN_ON_ONCE(pgd_bad(*pgd)))
667 : return NULL;
668 :
669 0 : p4d = p4d_offset(pgd, addr);
670 : if (p4d_none(*p4d))
671 : return NULL;
672 : if (p4d_leaf(*p4d))
673 : return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
674 0 : if (WARN_ON_ONCE(p4d_bad(*p4d)))
675 : return NULL;
676 :
677 0 : pud = pud_offset(p4d, addr);
678 0 : if (pud_none(*pud))
679 : return NULL;
680 : if (pud_leaf(*pud))
681 : return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
682 0 : if (WARN_ON_ONCE(pud_bad(*pud)))
683 : return NULL;
684 :
685 0 : pmd = pmd_offset(pud, addr);
686 0 : if (pmd_none(*pmd))
687 : return NULL;
688 : if (pmd_leaf(*pmd))
689 : return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
690 0 : if (WARN_ON_ONCE(pmd_bad(*pmd)))
691 : return NULL;
692 :
693 0 : ptep = pte_offset_map(pmd, addr);
694 0 : pte = *ptep;
695 0 : if (pte_present(pte))
696 0 : page = pte_page(pte);
697 : pte_unmap(ptep);
698 :
699 : return page;
700 : }
701 : EXPORT_SYMBOL(vmalloc_to_page);
702 :
703 : /*
704 : * Map a vmalloc()-space virtual address to the physical page frame number.
705 : */
706 0 : unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
707 : {
708 0 : return page_to_pfn(vmalloc_to_page(vmalloc_addr));
709 : }
710 : EXPORT_SYMBOL(vmalloc_to_pfn);
711 :
712 :
713 : /*** Global kva allocator ***/
714 :
715 : #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
716 : #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
717 :
718 :
719 : static DEFINE_SPINLOCK(vmap_area_lock);
720 : static DEFINE_SPINLOCK(free_vmap_area_lock);
721 : /* Export for kexec only */
722 : LIST_HEAD(vmap_area_list);
723 : static struct rb_root vmap_area_root = RB_ROOT;
724 : static bool vmap_initialized __read_mostly;
725 :
726 : static struct rb_root purge_vmap_area_root = RB_ROOT;
727 : static LIST_HEAD(purge_vmap_area_list);
728 : static DEFINE_SPINLOCK(purge_vmap_area_lock);
729 :
730 : /*
731 : * This kmem_cache is used for vmap_area objects. Instead of
732 : * allocating from slab we reuse an object from this cache to
733 : * make things faster. Especially in "no edge" splitting of
734 : * free block.
735 : */
736 : static struct kmem_cache *vmap_area_cachep;
737 :
738 : /*
739 : * This linked list is used in pair with free_vmap_area_root.
740 : * It gives O(1) access to prev/next to perform fast coalescing.
741 : */
742 : static LIST_HEAD(free_vmap_area_list);
743 :
744 : /*
745 : * This augment red-black tree represents the free vmap space.
746 : * All vmap_area objects in this tree are sorted by va->va_start
747 : * address. It is used for allocation and merging when a vmap
748 : * object is released.
749 : *
750 : * Each vmap_area node contains a maximum available free block
751 : * of its sub-tree, right or left. Therefore it is possible to
752 : * find a lowest match of free area.
753 : */
754 : static struct rb_root free_vmap_area_root = RB_ROOT;
755 :
756 : /*
757 : * Preload a CPU with one object for "no edge" split case. The
758 : * aim is to get rid of allocations from the atomic context, thus
759 : * to use more permissive allocation masks.
760 : */
761 : static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
762 :
763 : static __always_inline unsigned long
764 : va_size(struct vmap_area *va)
765 : {
766 99 : return (va->va_end - va->va_start);
767 : }
768 :
769 : static __always_inline unsigned long
770 : get_subtree_max_size(struct rb_node *node)
771 : {
772 : struct vmap_area *va;
773 :
774 133 : va = rb_entry_safe(node, struct vmap_area, rb_node);
775 133 : return va ? va->subtree_max_size : 0;
776 : }
777 :
778 147 : RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
779 : struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
780 :
781 : static void purge_vmap_area_lazy(void);
782 : static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
783 : static void drain_vmap_area_work(struct work_struct *work);
784 : static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
785 :
786 : static atomic_long_t nr_vmalloc_pages;
787 :
788 0 : unsigned long vmalloc_nr_pages(void)
789 : {
790 0 : return atomic_long_read(&nr_vmalloc_pages);
791 : }
792 :
793 : static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
794 : {
795 0 : struct vmap_area *va = NULL;
796 0 : struct rb_node *n = vmap_area_root.rb_node;
797 :
798 0 : addr = (unsigned long)kasan_reset_tag((void *)addr);
799 :
800 0 : while (n) {
801 : struct vmap_area *tmp;
802 :
803 0 : tmp = rb_entry(n, struct vmap_area, rb_node);
804 0 : if (tmp->va_end > addr) {
805 0 : va = tmp;
806 0 : if (tmp->va_start <= addr)
807 : break;
808 :
809 0 : n = n->rb_left;
810 : } else
811 0 : n = n->rb_right;
812 : }
813 :
814 : return va;
815 : }
816 :
817 : static struct vmap_area *__find_vmap_area(unsigned long addr)
818 : {
819 15 : struct rb_node *n = vmap_area_root.rb_node;
820 :
821 15 : addr = (unsigned long)kasan_reset_tag((void *)addr);
822 :
823 59 : while (n) {
824 : struct vmap_area *va;
825 :
826 59 : va = rb_entry(n, struct vmap_area, rb_node);
827 59 : if (addr < va->va_start)
828 0 : n = n->rb_left;
829 59 : else if (addr >= va->va_end)
830 44 : n = n->rb_right;
831 : else
832 : return va;
833 : }
834 :
835 : return NULL;
836 : }
837 :
838 : /*
839 : * This function returns back addresses of parent node
840 : * and its left or right link for further processing.
841 : *
842 : * Otherwise NULL is returned. In that case all further
843 : * steps regarding inserting of conflicting overlap range
844 : * have to be declined and actually considered as a bug.
845 : */
846 : static __always_inline struct rb_node **
847 : find_va_links(struct vmap_area *va,
848 : struct rb_root *root, struct rb_node *from,
849 : struct rb_node **parent)
850 : {
851 : struct vmap_area *tmp_va;
852 : struct rb_node **link;
853 :
854 16 : if (root) {
855 16 : link = &root->rb_node;
856 16 : if (unlikely(!*link)) {
857 : *parent = NULL;
858 : return link;
859 : }
860 : } else {
861 : link = &from;
862 : }
863 :
864 : /*
865 : * Go to the bottom of the tree. When we hit the last point
866 : * we end up with parent rb_node and correct direction, i name
867 : * it link, where the new va->rb_node will be attached to.
868 : */
869 : do {
870 75 : tmp_va = rb_entry(*link, struct vmap_area, rb_node);
871 :
872 : /*
873 : * During the traversal we also do some sanity check.
874 : * Trigger the BUG() if there are sides(left/right)
875 : * or full overlaps.
876 : */
877 90 : if (va->va_start < tmp_va->va_end &&
878 15 : va->va_end <= tmp_va->va_start)
879 15 : link = &(*link)->rb_left;
880 60 : else if (va->va_end > tmp_va->va_start &&
881 : va->va_start >= tmp_va->va_end)
882 60 : link = &(*link)->rb_right;
883 : else {
884 0 : WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
885 : va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
886 :
887 : return NULL;
888 : }
889 75 : } while (*link);
890 :
891 29 : *parent = &tmp_va->rb_node;
892 : return link;
893 : }
894 :
895 : static __always_inline struct list_head *
896 : get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
897 : {
898 : struct list_head *list;
899 :
900 0 : if (unlikely(!parent))
901 : /*
902 : * The red-black tree where we try to find VA neighbors
903 : * before merging or inserting is empty, i.e. it means
904 : * there is no free vmap space. Normally it does not
905 : * happen but we handle this case anyway.
906 : */
907 : return NULL;
908 :
909 0 : list = &rb_entry(parent, struct vmap_area, rb_node)->list;
910 0 : return (&parent->rb_right == link ? list->next : list);
911 : }
912 :
913 : static __always_inline void
914 : link_va(struct vmap_area *va, struct rb_root *root,
915 : struct rb_node *parent, struct rb_node **link, struct list_head *head)
916 : {
917 : /*
918 : * VA is still not in the list, but we can
919 : * identify its future previous list_head node.
920 : */
921 31 : if (likely(parent)) {
922 29 : head = &rb_entry(parent, struct vmap_area, rb_node)->list;
923 29 : if (&parent->rb_right != link)
924 8 : head = head->prev;
925 : }
926 :
927 : /* Insert to the rb-tree */
928 62 : rb_link_node(&va->rb_node, parent, link);
929 31 : if (root == &free_vmap_area_root) {
930 : /*
931 : * Some explanation here. Just perform simple insertion
932 : * to the tree. We do not set va->subtree_max_size to
933 : * its current size before calling rb_insert_augmented().
934 : * It is because of we populate the tree from the bottom
935 : * to parent levels when the node _is_ in the tree.
936 : *
937 : * Therefore we set subtree_max_size to zero after insertion,
938 : * to let __augment_tree_propagate_from() puts everything to
939 : * the correct order later on.
940 : */
941 16 : rb_insert_augmented(&va->rb_node,
942 : root, &free_vmap_area_rb_augment_cb);
943 16 : va->subtree_max_size = 0;
944 : } else {
945 15 : rb_insert_color(&va->rb_node, root);
946 : }
947 :
948 : /* Address-sort this list */
949 47 : list_add(&va->list, head);
950 : }
951 :
952 : static __always_inline void
953 : unlink_va(struct vmap_area *va, struct rb_root *root)
954 : {
955 0 : if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
956 : return;
957 :
958 : if (root == &free_vmap_area_root)
959 0 : rb_erase_augmented(&va->rb_node,
960 : root, &free_vmap_area_rb_augment_cb);
961 : else
962 0 : rb_erase(&va->rb_node, root);
963 :
964 0 : list_del(&va->list);
965 0 : RB_CLEAR_NODE(&va->rb_node);
966 : }
967 :
968 : #if DEBUG_AUGMENT_PROPAGATE_CHECK
969 : /*
970 : * Gets called when remove the node and rotate.
971 : */
972 : static __always_inline unsigned long
973 : compute_subtree_max_size(struct vmap_area *va)
974 : {
975 : return max3(va_size(va),
976 : get_subtree_max_size(va->rb_node.rb_left),
977 : get_subtree_max_size(va->rb_node.rb_right));
978 : }
979 :
980 : static void
981 : augment_tree_propagate_check(void)
982 : {
983 : struct vmap_area *va;
984 : unsigned long computed_size;
985 :
986 : list_for_each_entry(va, &free_vmap_area_list, list) {
987 : computed_size = compute_subtree_max_size(va);
988 : if (computed_size != va->subtree_max_size)
989 : pr_emerg("tree is corrupted: %lu, %lu\n",
990 : va_size(va), va->subtree_max_size);
991 : }
992 : }
993 : #endif
994 :
995 : /*
996 : * This function populates subtree_max_size from bottom to upper
997 : * levels starting from VA point. The propagation must be done
998 : * when VA size is modified by changing its va_start/va_end. Or
999 : * in case of newly inserting of VA to the tree.
1000 : *
1001 : * It means that __augment_tree_propagate_from() must be called:
1002 : * - After VA has been inserted to the tree(free path);
1003 : * - After VA has been shrunk(allocation path);
1004 : * - After VA has been increased(merging path).
1005 : *
1006 : * Please note that, it does not mean that upper parent nodes
1007 : * and their subtree_max_size are recalculated all the time up
1008 : * to the root node.
1009 : *
1010 : * 4--8
1011 : * /\
1012 : * / \
1013 : * / \
1014 : * 2--2 8--8
1015 : *
1016 : * For example if we modify the node 4, shrinking it to 2, then
1017 : * no any modification is required. If we shrink the node 2 to 1
1018 : * its subtree_max_size is updated only, and set to 1. If we shrink
1019 : * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1020 : * node becomes 4--6.
1021 : */
1022 : static __always_inline void
1023 : augment_tree_propagate_from(struct vmap_area *va)
1024 : {
1025 : /*
1026 : * Populate the tree from bottom towards the root until
1027 : * the calculated maximum available size of checked node
1028 : * is equal to its current one.
1029 : */
1030 31 : free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1031 :
1032 : #if DEBUG_AUGMENT_PROPAGATE_CHECK
1033 : augment_tree_propagate_check();
1034 : #endif
1035 : }
1036 :
1037 : static void
1038 15 : insert_vmap_area(struct vmap_area *va,
1039 : struct rb_root *root, struct list_head *head)
1040 : {
1041 : struct rb_node **link;
1042 : struct rb_node *parent;
1043 :
1044 15 : link = find_va_links(va, root, NULL, &parent);
1045 15 : if (link)
1046 15 : link_va(va, root, parent, link, head);
1047 15 : }
1048 :
1049 : static void
1050 16 : insert_vmap_area_augment(struct vmap_area *va,
1051 : struct rb_node *from, struct rb_root *root,
1052 : struct list_head *head)
1053 : {
1054 : struct rb_node **link;
1055 : struct rb_node *parent;
1056 :
1057 16 : if (from)
1058 : link = find_va_links(va, NULL, from, &parent);
1059 : else
1060 : link = find_va_links(va, root, NULL, &parent);
1061 :
1062 16 : if (link) {
1063 32 : link_va(va, root, parent, link, head);
1064 : augment_tree_propagate_from(va);
1065 : }
1066 16 : }
1067 :
1068 : /*
1069 : * Merge de-allocated chunk of VA memory with previous
1070 : * and next free blocks. If coalesce is not done a new
1071 : * free area is inserted. If VA has been merged, it is
1072 : * freed.
1073 : *
1074 : * Please note, it can return NULL in case of overlap
1075 : * ranges, followed by WARN() report. Despite it is a
1076 : * buggy behaviour, a system can be alive and keep
1077 : * ongoing.
1078 : */
1079 : static __always_inline struct vmap_area *
1080 : merge_or_add_vmap_area(struct vmap_area *va,
1081 : struct rb_root *root, struct list_head *head)
1082 : {
1083 : struct vmap_area *sibling;
1084 : struct list_head *next;
1085 : struct rb_node **link;
1086 : struct rb_node *parent;
1087 0 : bool merged = false;
1088 :
1089 : /*
1090 : * Find a place in the tree where VA potentially will be
1091 : * inserted, unless it is merged with its sibling/siblings.
1092 : */
1093 0 : link = find_va_links(va, root, NULL, &parent);
1094 0 : if (!link)
1095 : return NULL;
1096 :
1097 : /*
1098 : * Get next node of VA to check if merging can be done.
1099 : */
1100 0 : next = get_va_next_sibling(parent, link);
1101 0 : if (unlikely(next == NULL))
1102 : goto insert;
1103 :
1104 : /*
1105 : * start end
1106 : * | |
1107 : * |<------VA------>|<-----Next----->|
1108 : * | |
1109 : * start end
1110 : */
1111 0 : if (next != head) {
1112 0 : sibling = list_entry(next, struct vmap_area, list);
1113 0 : if (sibling->va_start == va->va_end) {
1114 0 : sibling->va_start = va->va_start;
1115 :
1116 : /* Free vmap_area object. */
1117 0 : kmem_cache_free(vmap_area_cachep, va);
1118 :
1119 : /* Point to the new merged area. */
1120 0 : va = sibling;
1121 0 : merged = true;
1122 : }
1123 : }
1124 :
1125 : /*
1126 : * start end
1127 : * | |
1128 : * |<-----Prev----->|<------VA------>|
1129 : * | |
1130 : * start end
1131 : */
1132 0 : if (next->prev != head) {
1133 0 : sibling = list_entry(next->prev, struct vmap_area, list);
1134 0 : if (sibling->va_end == va->va_start) {
1135 : /*
1136 : * If both neighbors are coalesced, it is important
1137 : * to unlink the "next" node first, followed by merging
1138 : * with "previous" one. Otherwise the tree might not be
1139 : * fully populated if a sibling's augmented value is
1140 : * "normalized" because of rotation operations.
1141 : */
1142 0 : if (merged)
1143 : unlink_va(va, root);
1144 :
1145 0 : sibling->va_end = va->va_end;
1146 :
1147 : /* Free vmap_area object. */
1148 0 : kmem_cache_free(vmap_area_cachep, va);
1149 :
1150 : /* Point to the new merged area. */
1151 0 : va = sibling;
1152 0 : merged = true;
1153 : }
1154 : }
1155 :
1156 : insert:
1157 0 : if (!merged)
1158 0 : link_va(va, root, parent, link, head);
1159 :
1160 : return va;
1161 : }
1162 :
1163 : static __always_inline struct vmap_area *
1164 : merge_or_add_vmap_area_augment(struct vmap_area *va,
1165 : struct rb_root *root, struct list_head *head)
1166 : {
1167 0 : va = merge_or_add_vmap_area(va, root, head);
1168 0 : if (va)
1169 : augment_tree_propagate_from(va);
1170 :
1171 : return va;
1172 : }
1173 :
1174 : static __always_inline bool
1175 : is_within_this_va(struct vmap_area *va, unsigned long size,
1176 : unsigned long align, unsigned long vstart)
1177 : {
1178 : unsigned long nva_start_addr;
1179 :
1180 74 : if (va->va_start > vstart)
1181 59 : nva_start_addr = ALIGN(va->va_start, align);
1182 : else
1183 15 : nva_start_addr = ALIGN(vstart, align);
1184 :
1185 : /* Can be overflowed due to big size or alignment. */
1186 74 : if (nva_start_addr + size < nva_start_addr ||
1187 : nva_start_addr < vstart)
1188 : return false;
1189 :
1190 74 : return (nva_start_addr + size <= va->va_end);
1191 : }
1192 :
1193 : /*
1194 : * Find the first free block(lowest start address) in the tree,
1195 : * that will accomplish the request corresponding to passing
1196 : * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1197 : * a search length is adjusted to account for worst case alignment
1198 : * overhead.
1199 : */
1200 : static __always_inline struct vmap_area *
1201 : find_vmap_lowest_match(unsigned long size, unsigned long align,
1202 : unsigned long vstart, bool adjust_search_size)
1203 : {
1204 : struct vmap_area *va;
1205 : struct rb_node *node;
1206 : unsigned long length;
1207 :
1208 : /* Start from the root. */
1209 15 : node = free_vmap_area_root.rb_node;
1210 :
1211 : /* Adjust the search size for alignment overhead. */
1212 15 : length = adjust_search_size ? size + align - 1 : size;
1213 :
1214 74 : while (node) {
1215 74 : va = rb_entry(node, struct vmap_area, rb_node);
1216 :
1217 170 : if (get_subtree_max_size(node->rb_left) >= length &&
1218 22 : vstart < va->va_start) {
1219 : node = node->rb_left;
1220 : } else {
1221 52 : if (is_within_this_va(va, size, align, vstart))
1222 : return va;
1223 :
1224 : /*
1225 : * Does not make sense to go deeper towards the right
1226 : * sub-tree if it does not have a free block that is
1227 : * equal or bigger to the requested search length.
1228 : */
1229 76 : if (get_subtree_max_size(node->rb_right) >= length) {
1230 24 : node = node->rb_right;
1231 24 : continue;
1232 : }
1233 :
1234 : /*
1235 : * OK. We roll back and find the first right sub-tree,
1236 : * that will satisfy the search criteria. It can happen
1237 : * due to "vstart" restriction or an alignment overhead
1238 : * that is bigger then PAGE_SIZE.
1239 : */
1240 22 : while ((node = rb_parent(node))) {
1241 22 : va = rb_entry(node, struct vmap_area, rb_node);
1242 22 : if (is_within_this_va(va, size, align, vstart))
1243 : return va;
1244 :
1245 42 : if (get_subtree_max_size(node->rb_right) >= length &&
1246 : vstart <= va->va_start) {
1247 : /*
1248 : * Shift the vstart forward. Please note, we update it with
1249 : * parent's start address adding "1" because we do not want
1250 : * to enter same sub-tree after it has already been checked
1251 : * and no suitable free block found there.
1252 : */
1253 13 : vstart = va->va_start + 1;
1254 13 : node = node->rb_right;
1255 : break;
1256 : }
1257 : }
1258 : }
1259 : }
1260 :
1261 : return NULL;
1262 : }
1263 :
1264 : #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1265 : #include <linux/random.h>
1266 :
1267 : static struct vmap_area *
1268 : find_vmap_lowest_linear_match(unsigned long size,
1269 : unsigned long align, unsigned long vstart)
1270 : {
1271 : struct vmap_area *va;
1272 :
1273 : list_for_each_entry(va, &free_vmap_area_list, list) {
1274 : if (!is_within_this_va(va, size, align, vstart))
1275 : continue;
1276 :
1277 : return va;
1278 : }
1279 :
1280 : return NULL;
1281 : }
1282 :
1283 : static void
1284 : find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1285 : {
1286 : struct vmap_area *va_1, *va_2;
1287 : unsigned long vstart;
1288 : unsigned int rnd;
1289 :
1290 : get_random_bytes(&rnd, sizeof(rnd));
1291 : vstart = VMALLOC_START + rnd;
1292 :
1293 : va_1 = find_vmap_lowest_match(size, align, vstart, false);
1294 : va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1295 :
1296 : if (va_1 != va_2)
1297 : pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1298 : va_1, va_2, vstart);
1299 : }
1300 : #endif
1301 :
1302 : enum fit_type {
1303 : NOTHING_FIT = 0,
1304 : FL_FIT_TYPE = 1, /* full fit */
1305 : LE_FIT_TYPE = 2, /* left edge fit */
1306 : RE_FIT_TYPE = 3, /* right edge fit */
1307 : NE_FIT_TYPE = 4 /* no edge fit */
1308 : };
1309 :
1310 : static __always_inline enum fit_type
1311 : classify_va_fit_type(struct vmap_area *va,
1312 : unsigned long nva_start_addr, unsigned long size)
1313 : {
1314 : enum fit_type type;
1315 :
1316 : /* Check if it is within VA. */
1317 30 : if (nva_start_addr < va->va_start ||
1318 15 : nva_start_addr + size > va->va_end)
1319 : return NOTHING_FIT;
1320 :
1321 : /* Now classify. */
1322 15 : if (va->va_start == nva_start_addr) {
1323 0 : if (va->va_end == nva_start_addr + size)
1324 : type = FL_FIT_TYPE;
1325 : else
1326 0 : type = LE_FIT_TYPE;
1327 15 : } else if (va->va_end == nva_start_addr + size) {
1328 : type = RE_FIT_TYPE;
1329 : } else {
1330 15 : type = NE_FIT_TYPE;
1331 : }
1332 :
1333 : return type;
1334 : }
1335 :
1336 : static __always_inline int
1337 : adjust_va_to_fit_type(struct vmap_area *va,
1338 : unsigned long nva_start_addr, unsigned long size,
1339 : enum fit_type type)
1340 : {
1341 15 : struct vmap_area *lva = NULL;
1342 :
1343 15 : if (type == FL_FIT_TYPE) {
1344 : /*
1345 : * No need to split VA, it fully fits.
1346 : *
1347 : * | |
1348 : * V NVA V
1349 : * |---------------|
1350 : */
1351 0 : unlink_va(va, &free_vmap_area_root);
1352 0 : kmem_cache_free(vmap_area_cachep, va);
1353 15 : } else if (type == LE_FIT_TYPE) {
1354 : /*
1355 : * Split left edge of fit VA.
1356 : *
1357 : * | |
1358 : * V NVA V R
1359 : * |-------|-------|
1360 : */
1361 0 : va->va_start += size;
1362 15 : } else if (type == RE_FIT_TYPE) {
1363 : /*
1364 : * Split right edge of fit VA.
1365 : *
1366 : * | |
1367 : * L V NVA V
1368 : * |-------|-------|
1369 : */
1370 0 : va->va_end = nva_start_addr;
1371 15 : } else if (type == NE_FIT_TYPE) {
1372 : /*
1373 : * Split no edge of fit VA.
1374 : *
1375 : * | |
1376 : * L V NVA V R
1377 : * |---|-------|---|
1378 : */
1379 15 : lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1380 15 : if (unlikely(!lva)) {
1381 : /*
1382 : * For percpu allocator we do not do any pre-allocation
1383 : * and leave it as it is. The reason is it most likely
1384 : * never ends up with NE_FIT_TYPE splitting. In case of
1385 : * percpu allocations offsets and sizes are aligned to
1386 : * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1387 : * are its main fitting cases.
1388 : *
1389 : * There are a few exceptions though, as an example it is
1390 : * a first allocation (early boot up) when we have "one"
1391 : * big free space that has to be split.
1392 : *
1393 : * Also we can hit this path in case of regular "vmap"
1394 : * allocations, if "this" current CPU was not preloaded.
1395 : * See the comment in alloc_vmap_area() why. If so, then
1396 : * GFP_NOWAIT is used instead to get an extra object for
1397 : * split purpose. That is rare and most time does not
1398 : * occur.
1399 : *
1400 : * What happens if an allocation gets failed. Basically,
1401 : * an "overflow" path is triggered to purge lazily freed
1402 : * areas to free some memory, then, the "retry" path is
1403 : * triggered to repeat one more time. See more details
1404 : * in alloc_vmap_area() function.
1405 : */
1406 0 : lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1407 0 : if (!lva)
1408 : return -1;
1409 : }
1410 :
1411 : /*
1412 : * Build the remainder.
1413 : */
1414 15 : lva->va_start = va->va_start;
1415 15 : lva->va_end = nva_start_addr;
1416 :
1417 : /*
1418 : * Shrink this VA to remaining size.
1419 : */
1420 15 : va->va_start = nva_start_addr + size;
1421 : } else {
1422 : return -1;
1423 : }
1424 :
1425 15 : if (type != FL_FIT_TYPE) {
1426 15 : augment_tree_propagate_from(va);
1427 :
1428 15 : if (lva) /* type == NE_FIT_TYPE */
1429 15 : insert_vmap_area_augment(lva, &va->rb_node,
1430 : &free_vmap_area_root, &free_vmap_area_list);
1431 : }
1432 :
1433 : return 0;
1434 : }
1435 :
1436 : /*
1437 : * Returns a start address of the newly allocated area, if success.
1438 : * Otherwise a vend is returned that indicates failure.
1439 : */
1440 : static __always_inline unsigned long
1441 : __alloc_vmap_area(unsigned long size, unsigned long align,
1442 : unsigned long vstart, unsigned long vend)
1443 : {
1444 15 : bool adjust_search_size = true;
1445 : unsigned long nva_start_addr;
1446 : struct vmap_area *va;
1447 : enum fit_type type;
1448 : int ret;
1449 :
1450 : /*
1451 : * Do not adjust when:
1452 : * a) align <= PAGE_SIZE, because it does not make any sense.
1453 : * All blocks(their start addresses) are at least PAGE_SIZE
1454 : * aligned anyway;
1455 : * b) a short range where a requested size corresponds to exactly
1456 : * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1457 : * With adjusted search length an allocation would not succeed.
1458 : */
1459 15 : if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1460 0 : adjust_search_size = false;
1461 :
1462 30 : va = find_vmap_lowest_match(size, align, vstart, adjust_search_size);
1463 15 : if (unlikely(!va))
1464 : return vend;
1465 :
1466 15 : if (va->va_start > vstart)
1467 14 : nva_start_addr = ALIGN(va->va_start, align);
1468 : else
1469 1 : nva_start_addr = ALIGN(vstart, align);
1470 :
1471 : /* Check the "vend" restriction. */
1472 15 : if (nva_start_addr + size > vend)
1473 : return vend;
1474 :
1475 : /* Classify what we have found. */
1476 15 : type = classify_va_fit_type(va, nva_start_addr, size);
1477 15 : if (WARN_ON_ONCE(type == NOTHING_FIT))
1478 : return vend;
1479 :
1480 : /* Update the free vmap_area. */
1481 15 : ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1482 15 : if (ret)
1483 : return vend;
1484 :
1485 : #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1486 : find_vmap_lowest_match_check(size, align);
1487 : #endif
1488 :
1489 : return nva_start_addr;
1490 : }
1491 :
1492 : /*
1493 : * Free a region of KVA allocated by alloc_vmap_area
1494 : */
1495 0 : static void free_vmap_area(struct vmap_area *va)
1496 : {
1497 : /*
1498 : * Remove from the busy tree/list.
1499 : */
1500 0 : spin_lock(&vmap_area_lock);
1501 0 : unlink_va(va, &vmap_area_root);
1502 0 : spin_unlock(&vmap_area_lock);
1503 :
1504 : /*
1505 : * Insert/Merge it back to the free tree/list.
1506 : */
1507 0 : spin_lock(&free_vmap_area_lock);
1508 0 : merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1509 0 : spin_unlock(&free_vmap_area_lock);
1510 0 : }
1511 :
1512 : static inline void
1513 15 : preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1514 : {
1515 15 : struct vmap_area *va = NULL;
1516 :
1517 : /*
1518 : * Preload this CPU with one extra vmap_area object. It is used
1519 : * when fit type of free area is NE_FIT_TYPE. It guarantees that
1520 : * a CPU that does an allocation is preloaded.
1521 : *
1522 : * We do it in non-atomic context, thus it allows us to use more
1523 : * permissive allocation masks to be more stable under low memory
1524 : * condition and high memory pressure.
1525 : */
1526 15 : if (!this_cpu_read(ne_fit_preload_node))
1527 30 : va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1528 :
1529 15 : spin_lock(lock);
1530 :
1531 15 : if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1532 0 : kmem_cache_free(vmap_area_cachep, va);
1533 15 : }
1534 :
1535 : /*
1536 : * Allocate a region of KVA of the specified size and alignment, within the
1537 : * vstart and vend.
1538 : */
1539 15 : static struct vmap_area *alloc_vmap_area(unsigned long size,
1540 : unsigned long align,
1541 : unsigned long vstart, unsigned long vend,
1542 : int node, gfp_t gfp_mask)
1543 : {
1544 : struct vmap_area *va;
1545 : unsigned long freed;
1546 : unsigned long addr;
1547 15 : int purged = 0;
1548 : int ret;
1549 :
1550 15 : BUG_ON(!size);
1551 15 : BUG_ON(offset_in_page(size));
1552 15 : BUG_ON(!is_power_of_2(align));
1553 :
1554 15 : if (unlikely(!vmap_initialized))
1555 : return ERR_PTR(-EBUSY);
1556 :
1557 : might_sleep();
1558 15 : gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1559 :
1560 30 : va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1561 15 : if (unlikely(!va))
1562 : return ERR_PTR(-ENOMEM);
1563 :
1564 : /*
1565 : * Only scan the relevant parts containing pointers to other objects
1566 : * to avoid false negatives.
1567 : */
1568 : kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1569 :
1570 : retry:
1571 15 : preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1572 15 : addr = __alloc_vmap_area(size, align, vstart, vend);
1573 15 : spin_unlock(&free_vmap_area_lock);
1574 :
1575 : /*
1576 : * If an allocation fails, the "vend" address is
1577 : * returned. Therefore trigger the overflow path.
1578 : */
1579 15 : if (unlikely(addr == vend))
1580 : goto overflow;
1581 :
1582 15 : va->va_start = addr;
1583 15 : va->va_end = addr + size;
1584 15 : va->vm = NULL;
1585 :
1586 15 : spin_lock(&vmap_area_lock);
1587 15 : insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1588 15 : spin_unlock(&vmap_area_lock);
1589 :
1590 15 : BUG_ON(!IS_ALIGNED(va->va_start, align));
1591 15 : BUG_ON(va->va_start < vstart);
1592 15 : BUG_ON(va->va_end > vend);
1593 :
1594 : ret = kasan_populate_vmalloc(addr, size);
1595 : if (ret) {
1596 : free_vmap_area(va);
1597 : return ERR_PTR(ret);
1598 : }
1599 :
1600 : return va;
1601 :
1602 : overflow:
1603 0 : if (!purged) {
1604 0 : purge_vmap_area_lazy();
1605 0 : purged = 1;
1606 : goto retry;
1607 : }
1608 :
1609 0 : freed = 0;
1610 0 : blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1611 :
1612 0 : if (freed > 0) {
1613 : purged = 0;
1614 : goto retry;
1615 : }
1616 :
1617 0 : if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1618 0 : pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1619 : size);
1620 :
1621 0 : kmem_cache_free(vmap_area_cachep, va);
1622 0 : return ERR_PTR(-EBUSY);
1623 : }
1624 :
1625 0 : int register_vmap_purge_notifier(struct notifier_block *nb)
1626 : {
1627 0 : return blocking_notifier_chain_register(&vmap_notify_list, nb);
1628 : }
1629 : EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1630 :
1631 0 : int unregister_vmap_purge_notifier(struct notifier_block *nb)
1632 : {
1633 0 : return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1634 : }
1635 : EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1636 :
1637 : /*
1638 : * lazy_max_pages is the maximum amount of virtual address space we gather up
1639 : * before attempting to purge with a TLB flush.
1640 : *
1641 : * There is a tradeoff here: a larger number will cover more kernel page tables
1642 : * and take slightly longer to purge, but it will linearly reduce the number of
1643 : * global TLB flushes that must be performed. It would seem natural to scale
1644 : * this number up linearly with the number of CPUs (because vmapping activity
1645 : * could also scale linearly with the number of CPUs), however it is likely
1646 : * that in practice, workloads might be constrained in other ways that mean
1647 : * vmap activity will not scale linearly with CPUs. Also, I want to be
1648 : * conservative and not introduce a big latency on huge systems, so go with
1649 : * a less aggressive log scale. It will still be an improvement over the old
1650 : * code, and it will be simple to change the scale factor if we find that it
1651 : * becomes a problem on bigger systems.
1652 : */
1653 : static unsigned long lazy_max_pages(void)
1654 : {
1655 : unsigned int log;
1656 :
1657 0 : log = fls(num_online_cpus());
1658 :
1659 0 : return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1660 : }
1661 :
1662 : static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1663 :
1664 : /*
1665 : * Serialize vmap purging. There is no actual critical section protected
1666 : * by this look, but we want to avoid concurrent calls for performance
1667 : * reasons and to make the pcpu_get_vm_areas more deterministic.
1668 : */
1669 : static DEFINE_MUTEX(vmap_purge_lock);
1670 :
1671 : /* for per-CPU blocks */
1672 : static void purge_fragmented_blocks_allcpus(void);
1673 :
1674 : /*
1675 : * Purges all lazily-freed vmap areas.
1676 : */
1677 0 : static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1678 : {
1679 : unsigned long resched_threshold;
1680 : struct list_head local_pure_list;
1681 : struct vmap_area *va, *n_va;
1682 :
1683 : lockdep_assert_held(&vmap_purge_lock);
1684 :
1685 0 : spin_lock(&purge_vmap_area_lock);
1686 0 : purge_vmap_area_root = RB_ROOT;
1687 0 : list_replace_init(&purge_vmap_area_list, &local_pure_list);
1688 0 : spin_unlock(&purge_vmap_area_lock);
1689 :
1690 0 : if (unlikely(list_empty(&local_pure_list)))
1691 : return false;
1692 :
1693 0 : start = min(start,
1694 : list_first_entry(&local_pure_list,
1695 : struct vmap_area, list)->va_start);
1696 :
1697 0 : end = max(end,
1698 : list_last_entry(&local_pure_list,
1699 : struct vmap_area, list)->va_end);
1700 :
1701 0 : flush_tlb_kernel_range(start, end);
1702 0 : resched_threshold = lazy_max_pages() << 1;
1703 :
1704 0 : spin_lock(&free_vmap_area_lock);
1705 0 : list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1706 0 : unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1707 0 : unsigned long orig_start = va->va_start;
1708 0 : unsigned long orig_end = va->va_end;
1709 :
1710 : /*
1711 : * Finally insert or merge lazily-freed area. It is
1712 : * detached and there is no need to "unlink" it from
1713 : * anything.
1714 : */
1715 0 : va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1716 : &free_vmap_area_list);
1717 :
1718 0 : if (!va)
1719 0 : continue;
1720 :
1721 0 : if (is_vmalloc_or_module_addr((void *)orig_start))
1722 : kasan_release_vmalloc(orig_start, orig_end,
1723 : va->va_start, va->va_end);
1724 :
1725 0 : atomic_long_sub(nr, &vmap_lazy_nr);
1726 :
1727 0 : if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1728 0 : cond_resched_lock(&free_vmap_area_lock);
1729 : }
1730 0 : spin_unlock(&free_vmap_area_lock);
1731 0 : return true;
1732 : }
1733 :
1734 : /*
1735 : * Kick off a purge of the outstanding lazy areas.
1736 : */
1737 0 : static void purge_vmap_area_lazy(void)
1738 : {
1739 0 : mutex_lock(&vmap_purge_lock);
1740 0 : purge_fragmented_blocks_allcpus();
1741 0 : __purge_vmap_area_lazy(ULONG_MAX, 0);
1742 0 : mutex_unlock(&vmap_purge_lock);
1743 0 : }
1744 :
1745 0 : static void drain_vmap_area_work(struct work_struct *work)
1746 : {
1747 : unsigned long nr_lazy;
1748 :
1749 : do {
1750 0 : mutex_lock(&vmap_purge_lock);
1751 0 : __purge_vmap_area_lazy(ULONG_MAX, 0);
1752 0 : mutex_unlock(&vmap_purge_lock);
1753 :
1754 : /* Recheck if further work is required. */
1755 0 : nr_lazy = atomic_long_read(&vmap_lazy_nr);
1756 0 : } while (nr_lazy > lazy_max_pages());
1757 0 : }
1758 :
1759 : /*
1760 : * Free a vmap area, caller ensuring that the area has been unmapped
1761 : * and flush_cache_vunmap had been called for the correct range
1762 : * previously.
1763 : */
1764 0 : static void free_vmap_area_noflush(struct vmap_area *va)
1765 : {
1766 : unsigned long nr_lazy;
1767 :
1768 0 : spin_lock(&vmap_area_lock);
1769 0 : unlink_va(va, &vmap_area_root);
1770 0 : spin_unlock(&vmap_area_lock);
1771 :
1772 0 : nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1773 : PAGE_SHIFT, &vmap_lazy_nr);
1774 :
1775 : /*
1776 : * Merge or place it to the purge tree/list.
1777 : */
1778 0 : spin_lock(&purge_vmap_area_lock);
1779 0 : merge_or_add_vmap_area(va,
1780 : &purge_vmap_area_root, &purge_vmap_area_list);
1781 0 : spin_unlock(&purge_vmap_area_lock);
1782 :
1783 : /* After this point, we may free va at any time */
1784 0 : if (unlikely(nr_lazy > lazy_max_pages()))
1785 : schedule_work(&drain_vmap_work);
1786 0 : }
1787 :
1788 : /*
1789 : * Free and unmap a vmap area
1790 : */
1791 0 : static void free_unmap_vmap_area(struct vmap_area *va)
1792 : {
1793 0 : flush_cache_vunmap(va->va_start, va->va_end);
1794 0 : vunmap_range_noflush(va->va_start, va->va_end);
1795 : if (debug_pagealloc_enabled_static())
1796 : flush_tlb_kernel_range(va->va_start, va->va_end);
1797 :
1798 0 : free_vmap_area_noflush(va);
1799 0 : }
1800 :
1801 : static struct vmap_area *find_vmap_area(unsigned long addr)
1802 : {
1803 : struct vmap_area *va;
1804 :
1805 15 : spin_lock(&vmap_area_lock);
1806 15 : va = __find_vmap_area(addr);
1807 15 : spin_unlock(&vmap_area_lock);
1808 :
1809 : return va;
1810 : }
1811 :
1812 : /*** Per cpu kva allocator ***/
1813 :
1814 : /*
1815 : * vmap space is limited especially on 32 bit architectures. Ensure there is
1816 : * room for at least 16 percpu vmap blocks per CPU.
1817 : */
1818 : /*
1819 : * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1820 : * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1821 : * instead (we just need a rough idea)
1822 : */
1823 : #if BITS_PER_LONG == 32
1824 : #define VMALLOC_SPACE (128UL*1024*1024)
1825 : #else
1826 : #define VMALLOC_SPACE (128UL*1024*1024*1024)
1827 : #endif
1828 :
1829 : #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1830 : #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1831 : #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1832 : #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1833 : #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1834 : #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1835 : #define VMAP_BBMAP_BITS \
1836 : VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1837 : VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1838 : VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1839 :
1840 : #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1841 :
1842 : struct vmap_block_queue {
1843 : spinlock_t lock;
1844 : struct list_head free;
1845 : };
1846 :
1847 : struct vmap_block {
1848 : spinlock_t lock;
1849 : struct vmap_area *va;
1850 : unsigned long free, dirty;
1851 : unsigned long dirty_min, dirty_max; /*< dirty range */
1852 : struct list_head free_list;
1853 : struct rcu_head rcu_head;
1854 : struct list_head purge;
1855 : };
1856 :
1857 : /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1858 : static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1859 :
1860 : /*
1861 : * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1862 : * in the free path. Could get rid of this if we change the API to return a
1863 : * "cookie" from alloc, to be passed to free. But no big deal yet.
1864 : */
1865 : static DEFINE_XARRAY(vmap_blocks);
1866 :
1867 : /*
1868 : * We should probably have a fallback mechanism to allocate virtual memory
1869 : * out of partially filled vmap blocks. However vmap block sizing should be
1870 : * fairly reasonable according to the vmalloc size, so it shouldn't be a
1871 : * big problem.
1872 : */
1873 :
1874 : static unsigned long addr_to_vb_idx(unsigned long addr)
1875 : {
1876 0 : addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1877 0 : addr /= VMAP_BLOCK_SIZE;
1878 : return addr;
1879 : }
1880 :
1881 0 : static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1882 : {
1883 : unsigned long addr;
1884 :
1885 0 : addr = va_start + (pages_off << PAGE_SHIFT);
1886 0 : BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1887 0 : return (void *)addr;
1888 : }
1889 :
1890 : /**
1891 : * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1892 : * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1893 : * @order: how many 2^order pages should be occupied in newly allocated block
1894 : * @gfp_mask: flags for the page level allocator
1895 : *
1896 : * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1897 : */
1898 0 : static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1899 : {
1900 : struct vmap_block_queue *vbq;
1901 : struct vmap_block *vb;
1902 : struct vmap_area *va;
1903 : unsigned long vb_idx;
1904 : int node, err;
1905 : void *vaddr;
1906 :
1907 0 : node = numa_node_id();
1908 :
1909 0 : vb = kmalloc_node(sizeof(struct vmap_block),
1910 : gfp_mask & GFP_RECLAIM_MASK, node);
1911 0 : if (unlikely(!vb))
1912 : return ERR_PTR(-ENOMEM);
1913 :
1914 0 : va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1915 0 : VMALLOC_START, VMALLOC_END,
1916 : node, gfp_mask);
1917 0 : if (IS_ERR(va)) {
1918 0 : kfree(vb);
1919 0 : return ERR_CAST(va);
1920 : }
1921 :
1922 0 : vaddr = vmap_block_vaddr(va->va_start, 0);
1923 0 : spin_lock_init(&vb->lock);
1924 0 : vb->va = va;
1925 : /* At least something should be left free */
1926 0 : BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1927 0 : vb->free = VMAP_BBMAP_BITS - (1UL << order);
1928 0 : vb->dirty = 0;
1929 0 : vb->dirty_min = VMAP_BBMAP_BITS;
1930 0 : vb->dirty_max = 0;
1931 0 : INIT_LIST_HEAD(&vb->free_list);
1932 :
1933 0 : vb_idx = addr_to_vb_idx(va->va_start);
1934 0 : err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1935 0 : if (err) {
1936 0 : kfree(vb);
1937 0 : free_vmap_area(va);
1938 0 : return ERR_PTR(err);
1939 : }
1940 :
1941 0 : vbq = &get_cpu_var(vmap_block_queue);
1942 0 : spin_lock(&vbq->lock);
1943 0 : list_add_tail_rcu(&vb->free_list, &vbq->free);
1944 0 : spin_unlock(&vbq->lock);
1945 0 : put_cpu_var(vmap_block_queue);
1946 :
1947 0 : return vaddr;
1948 : }
1949 :
1950 0 : static void free_vmap_block(struct vmap_block *vb)
1951 : {
1952 : struct vmap_block *tmp;
1953 :
1954 0 : tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1955 0 : BUG_ON(tmp != vb);
1956 :
1957 0 : free_vmap_area_noflush(vb->va);
1958 0 : kfree_rcu(vb, rcu_head);
1959 0 : }
1960 :
1961 0 : static void purge_fragmented_blocks(int cpu)
1962 : {
1963 0 : LIST_HEAD(purge);
1964 : struct vmap_block *vb;
1965 : struct vmap_block *n_vb;
1966 0 : struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1967 :
1968 : rcu_read_lock();
1969 0 : list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1970 :
1971 0 : if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1972 0 : continue;
1973 :
1974 0 : spin_lock(&vb->lock);
1975 0 : if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1976 0 : vb->free = 0; /* prevent further allocs after releasing lock */
1977 0 : vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1978 0 : vb->dirty_min = 0;
1979 0 : vb->dirty_max = VMAP_BBMAP_BITS;
1980 0 : spin_lock(&vbq->lock);
1981 0 : list_del_rcu(&vb->free_list);
1982 0 : spin_unlock(&vbq->lock);
1983 0 : spin_unlock(&vb->lock);
1984 0 : list_add_tail(&vb->purge, &purge);
1985 : } else
1986 0 : spin_unlock(&vb->lock);
1987 : }
1988 : rcu_read_unlock();
1989 :
1990 0 : list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1991 0 : list_del(&vb->purge);
1992 0 : free_vmap_block(vb);
1993 : }
1994 0 : }
1995 :
1996 : static void purge_fragmented_blocks_allcpus(void)
1997 : {
1998 : int cpu;
1999 :
2000 0 : for_each_possible_cpu(cpu)
2001 0 : purge_fragmented_blocks(cpu);
2002 : }
2003 :
2004 0 : static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2005 : {
2006 : struct vmap_block_queue *vbq;
2007 : struct vmap_block *vb;
2008 0 : void *vaddr = NULL;
2009 : unsigned int order;
2010 :
2011 0 : BUG_ON(offset_in_page(size));
2012 0 : BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2013 0 : if (WARN_ON(size == 0)) {
2014 : /*
2015 : * Allocating 0 bytes isn't what caller wants since
2016 : * get_order(0) returns funny result. Just warn and terminate
2017 : * early.
2018 : */
2019 : return NULL;
2020 : }
2021 0 : order = get_order(size);
2022 :
2023 : rcu_read_lock();
2024 0 : vbq = &get_cpu_var(vmap_block_queue);
2025 0 : list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2026 : unsigned long pages_off;
2027 :
2028 0 : spin_lock(&vb->lock);
2029 0 : if (vb->free < (1UL << order)) {
2030 0 : spin_unlock(&vb->lock);
2031 0 : continue;
2032 : }
2033 :
2034 0 : pages_off = VMAP_BBMAP_BITS - vb->free;
2035 0 : vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2036 0 : vb->free -= 1UL << order;
2037 0 : if (vb->free == 0) {
2038 0 : spin_lock(&vbq->lock);
2039 0 : list_del_rcu(&vb->free_list);
2040 0 : spin_unlock(&vbq->lock);
2041 : }
2042 :
2043 0 : spin_unlock(&vb->lock);
2044 : break;
2045 : }
2046 :
2047 0 : put_cpu_var(vmap_block_queue);
2048 : rcu_read_unlock();
2049 :
2050 : /* Allocate new block if nothing was found */
2051 0 : if (!vaddr)
2052 0 : vaddr = new_vmap_block(order, gfp_mask);
2053 :
2054 : return vaddr;
2055 : }
2056 :
2057 0 : static void vb_free(unsigned long addr, unsigned long size)
2058 : {
2059 : unsigned long offset;
2060 : unsigned int order;
2061 : struct vmap_block *vb;
2062 :
2063 0 : BUG_ON(offset_in_page(size));
2064 0 : BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2065 :
2066 0 : flush_cache_vunmap(addr, addr + size);
2067 :
2068 0 : order = get_order(size);
2069 0 : offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2070 0 : vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2071 :
2072 0 : vunmap_range_noflush(addr, addr + size);
2073 :
2074 : if (debug_pagealloc_enabled_static())
2075 : flush_tlb_kernel_range(addr, addr + size);
2076 :
2077 0 : spin_lock(&vb->lock);
2078 :
2079 : /* Expand dirty range */
2080 0 : vb->dirty_min = min(vb->dirty_min, offset);
2081 0 : vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2082 :
2083 0 : vb->dirty += 1UL << order;
2084 0 : if (vb->dirty == VMAP_BBMAP_BITS) {
2085 0 : BUG_ON(vb->free);
2086 0 : spin_unlock(&vb->lock);
2087 0 : free_vmap_block(vb);
2088 : } else
2089 0 : spin_unlock(&vb->lock);
2090 0 : }
2091 :
2092 0 : static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2093 : {
2094 : int cpu;
2095 :
2096 0 : if (unlikely(!vmap_initialized))
2097 : return;
2098 :
2099 : might_sleep();
2100 :
2101 0 : for_each_possible_cpu(cpu) {
2102 0 : struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2103 : struct vmap_block *vb;
2104 :
2105 : rcu_read_lock();
2106 0 : list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2107 0 : spin_lock(&vb->lock);
2108 0 : if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2109 0 : unsigned long va_start = vb->va->va_start;
2110 : unsigned long s, e;
2111 :
2112 0 : s = va_start + (vb->dirty_min << PAGE_SHIFT);
2113 0 : e = va_start + (vb->dirty_max << PAGE_SHIFT);
2114 :
2115 0 : start = min(s, start);
2116 0 : end = max(e, end);
2117 :
2118 0 : flush = 1;
2119 : }
2120 0 : spin_unlock(&vb->lock);
2121 : }
2122 : rcu_read_unlock();
2123 : }
2124 :
2125 0 : mutex_lock(&vmap_purge_lock);
2126 0 : purge_fragmented_blocks_allcpus();
2127 0 : if (!__purge_vmap_area_lazy(start, end) && flush)
2128 0 : flush_tlb_kernel_range(start, end);
2129 0 : mutex_unlock(&vmap_purge_lock);
2130 : }
2131 :
2132 : /**
2133 : * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2134 : *
2135 : * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2136 : * to amortize TLB flushing overheads. What this means is that any page you
2137 : * have now, may, in a former life, have been mapped into kernel virtual
2138 : * address by the vmap layer and so there might be some CPUs with TLB entries
2139 : * still referencing that page (additional to the regular 1:1 kernel mapping).
2140 : *
2141 : * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2142 : * be sure that none of the pages we have control over will have any aliases
2143 : * from the vmap layer.
2144 : */
2145 0 : void vm_unmap_aliases(void)
2146 : {
2147 0 : unsigned long start = ULONG_MAX, end = 0;
2148 0 : int flush = 0;
2149 :
2150 0 : _vm_unmap_aliases(start, end, flush);
2151 0 : }
2152 : EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2153 :
2154 : /**
2155 : * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2156 : * @mem: the pointer returned by vm_map_ram
2157 : * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2158 : */
2159 0 : void vm_unmap_ram(const void *mem, unsigned int count)
2160 : {
2161 0 : unsigned long size = (unsigned long)count << PAGE_SHIFT;
2162 0 : unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2163 : struct vmap_area *va;
2164 :
2165 : might_sleep();
2166 0 : BUG_ON(!addr);
2167 0 : BUG_ON(addr < VMALLOC_START);
2168 0 : BUG_ON(addr > VMALLOC_END);
2169 0 : BUG_ON(!PAGE_ALIGNED(addr));
2170 :
2171 0 : kasan_poison_vmalloc(mem, size);
2172 :
2173 0 : if (likely(count <= VMAP_MAX_ALLOC)) {
2174 0 : debug_check_no_locks_freed(mem, size);
2175 0 : vb_free(addr, size);
2176 0 : return;
2177 : }
2178 :
2179 0 : va = find_vmap_area(addr);
2180 0 : BUG_ON(!va);
2181 0 : debug_check_no_locks_freed((void *)va->va_start,
2182 0 : (va->va_end - va->va_start));
2183 0 : free_unmap_vmap_area(va);
2184 : }
2185 : EXPORT_SYMBOL(vm_unmap_ram);
2186 :
2187 : /**
2188 : * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2189 : * @pages: an array of pointers to the pages to be mapped
2190 : * @count: number of pages
2191 : * @node: prefer to allocate data structures on this node
2192 : *
2193 : * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2194 : * faster than vmap so it's good. But if you mix long-life and short-life
2195 : * objects with vm_map_ram(), it could consume lots of address space through
2196 : * fragmentation (especially on a 32bit machine). You could see failures in
2197 : * the end. Please use this function for short-lived objects.
2198 : *
2199 : * Returns: a pointer to the address that has been mapped, or %NULL on failure
2200 : */
2201 0 : void *vm_map_ram(struct page **pages, unsigned int count, int node)
2202 : {
2203 0 : unsigned long size = (unsigned long)count << PAGE_SHIFT;
2204 : unsigned long addr;
2205 : void *mem;
2206 :
2207 0 : if (likely(count <= VMAP_MAX_ALLOC)) {
2208 0 : mem = vb_alloc(size, GFP_KERNEL);
2209 0 : if (IS_ERR(mem))
2210 : return NULL;
2211 : addr = (unsigned long)mem;
2212 : } else {
2213 : struct vmap_area *va;
2214 0 : va = alloc_vmap_area(size, PAGE_SIZE,
2215 0 : VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2216 0 : if (IS_ERR(va))
2217 : return NULL;
2218 :
2219 0 : addr = va->va_start;
2220 0 : mem = (void *)addr;
2221 : }
2222 :
2223 0 : if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2224 : pages, PAGE_SHIFT) < 0) {
2225 0 : vm_unmap_ram(mem, count);
2226 0 : return NULL;
2227 : }
2228 :
2229 : /*
2230 : * Mark the pages as accessible, now that they are mapped.
2231 : * With hardware tag-based KASAN, marking is skipped for
2232 : * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2233 : */
2234 : mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2235 :
2236 : return mem;
2237 : }
2238 : EXPORT_SYMBOL(vm_map_ram);
2239 :
2240 : static struct vm_struct *vmlist __initdata;
2241 :
2242 : static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2243 : {
2244 : #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2245 : return vm->page_order;
2246 : #else
2247 : return 0;
2248 : #endif
2249 : }
2250 :
2251 15 : static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2252 : {
2253 : #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2254 : vm->page_order = order;
2255 : #else
2256 15 : BUG_ON(order != 0);
2257 : #endif
2258 15 : }
2259 :
2260 : /**
2261 : * vm_area_add_early - add vmap area early during boot
2262 : * @vm: vm_struct to add
2263 : *
2264 : * This function is used to add fixed kernel vm area to vmlist before
2265 : * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2266 : * should contain proper values and the other fields should be zero.
2267 : *
2268 : * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2269 : */
2270 0 : void __init vm_area_add_early(struct vm_struct *vm)
2271 : {
2272 : struct vm_struct *tmp, **p;
2273 :
2274 0 : BUG_ON(vmap_initialized);
2275 0 : for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2276 0 : if (tmp->addr >= vm->addr) {
2277 0 : BUG_ON(tmp->addr < vm->addr + vm->size);
2278 : break;
2279 : } else
2280 0 : BUG_ON(tmp->addr + tmp->size > vm->addr);
2281 : }
2282 0 : vm->next = *p;
2283 0 : *p = vm;
2284 0 : }
2285 :
2286 : /**
2287 : * vm_area_register_early - register vmap area early during boot
2288 : * @vm: vm_struct to register
2289 : * @align: requested alignment
2290 : *
2291 : * This function is used to register kernel vm area before
2292 : * vmalloc_init() is called. @vm->size and @vm->flags should contain
2293 : * proper values on entry and other fields should be zero. On return,
2294 : * vm->addr contains the allocated address.
2295 : *
2296 : * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2297 : */
2298 0 : void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2299 : {
2300 0 : unsigned long addr = ALIGN(VMALLOC_START, align);
2301 : struct vm_struct *cur, **p;
2302 :
2303 0 : BUG_ON(vmap_initialized);
2304 :
2305 0 : for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2306 0 : if ((unsigned long)cur->addr - addr >= vm->size)
2307 : break;
2308 0 : addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2309 : }
2310 :
2311 0 : BUG_ON(addr > VMALLOC_END - vm->size);
2312 0 : vm->addr = (void *)addr;
2313 0 : vm->next = *p;
2314 0 : *p = vm;
2315 0 : kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2316 0 : }
2317 :
2318 1 : static void vmap_init_free_space(void)
2319 : {
2320 1 : unsigned long vmap_start = 1;
2321 1 : const unsigned long vmap_end = ULONG_MAX;
2322 : struct vmap_area *busy, *free;
2323 :
2324 : /*
2325 : * B F B B B F
2326 : * -|-----|.....|-----|-----|-----|.....|-
2327 : * | The KVA space |
2328 : * |<--------------------------------->|
2329 : */
2330 1 : list_for_each_entry(busy, &vmap_area_list, list) {
2331 0 : if (busy->va_start - vmap_start > 0) {
2332 0 : free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2333 0 : if (!WARN_ON_ONCE(!free)) {
2334 0 : free->va_start = vmap_start;
2335 0 : free->va_end = busy->va_start;
2336 :
2337 0 : insert_vmap_area_augment(free, NULL,
2338 : &free_vmap_area_root,
2339 : &free_vmap_area_list);
2340 : }
2341 : }
2342 :
2343 0 : vmap_start = busy->va_end;
2344 : }
2345 :
2346 1 : if (vmap_end - vmap_start > 0) {
2347 2 : free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2348 1 : if (!WARN_ON_ONCE(!free)) {
2349 1 : free->va_start = vmap_start;
2350 1 : free->va_end = vmap_end;
2351 :
2352 1 : insert_vmap_area_augment(free, NULL,
2353 : &free_vmap_area_root,
2354 : &free_vmap_area_list);
2355 : }
2356 : }
2357 1 : }
2358 :
2359 1 : void __init vmalloc_init(void)
2360 : {
2361 : struct vmap_area *va;
2362 : struct vm_struct *tmp;
2363 : int i;
2364 :
2365 : /*
2366 : * Create the cache for vmap_area objects.
2367 : */
2368 1 : vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2369 :
2370 2 : for_each_possible_cpu(i) {
2371 : struct vmap_block_queue *vbq;
2372 : struct vfree_deferred *p;
2373 :
2374 1 : vbq = &per_cpu(vmap_block_queue, i);
2375 1 : spin_lock_init(&vbq->lock);
2376 2 : INIT_LIST_HEAD(&vbq->free);
2377 1 : p = &per_cpu(vfree_deferred, i);
2378 2 : init_llist_head(&p->list);
2379 2 : INIT_WORK(&p->wq, free_work);
2380 : }
2381 :
2382 : /* Import existing vmlist entries. */
2383 1 : for (tmp = vmlist; tmp; tmp = tmp->next) {
2384 0 : va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2385 0 : if (WARN_ON_ONCE(!va))
2386 0 : continue;
2387 :
2388 0 : va->va_start = (unsigned long)tmp->addr;
2389 0 : va->va_end = va->va_start + tmp->size;
2390 0 : va->vm = tmp;
2391 0 : insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2392 : }
2393 :
2394 : /*
2395 : * Now we can initialize a free vmap space.
2396 : */
2397 1 : vmap_init_free_space();
2398 1 : vmap_initialized = true;
2399 1 : }
2400 :
2401 : static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2402 : struct vmap_area *va, unsigned long flags, const void *caller)
2403 : {
2404 15 : vm->flags = flags;
2405 15 : vm->addr = (void *)va->va_start;
2406 15 : vm->size = va->va_end - va->va_start;
2407 15 : vm->caller = caller;
2408 15 : va->vm = vm;
2409 : }
2410 :
2411 : static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2412 : unsigned long flags, const void *caller)
2413 : {
2414 15 : spin_lock(&vmap_area_lock);
2415 15 : setup_vmalloc_vm_locked(vm, va, flags, caller);
2416 15 : spin_unlock(&vmap_area_lock);
2417 : }
2418 :
2419 : static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2420 : {
2421 : /*
2422 : * Before removing VM_UNINITIALIZED,
2423 : * we should make sure that vm has proper values.
2424 : * Pair with smp_rmb() in show_numa_info().
2425 : */
2426 15 : smp_wmb();
2427 15 : vm->flags &= ~VM_UNINITIALIZED;
2428 : }
2429 :
2430 15 : static struct vm_struct *__get_vm_area_node(unsigned long size,
2431 : unsigned long align, unsigned long shift, unsigned long flags,
2432 : unsigned long start, unsigned long end, int node,
2433 : gfp_t gfp_mask, const void *caller)
2434 : {
2435 : struct vmap_area *va;
2436 : struct vm_struct *area;
2437 15 : unsigned long requested_size = size;
2438 :
2439 15 : BUG_ON(in_interrupt());
2440 15 : size = ALIGN(size, 1ul << shift);
2441 15 : if (unlikely(!size))
2442 : return NULL;
2443 :
2444 15 : if (flags & VM_IOREMAP)
2445 0 : align = 1ul << clamp_t(int, get_count_order_long(size),
2446 : PAGE_SHIFT, IOREMAP_MAX_ORDER);
2447 :
2448 15 : area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2449 15 : if (unlikely(!area))
2450 : return NULL;
2451 :
2452 15 : if (!(flags & VM_NO_GUARD))
2453 15 : size += PAGE_SIZE;
2454 :
2455 15 : va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2456 15 : if (IS_ERR(va)) {
2457 0 : kfree(area);
2458 : return NULL;
2459 : }
2460 :
2461 15 : setup_vmalloc_vm(area, va, flags, caller);
2462 :
2463 : /*
2464 : * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2465 : * best-effort approach, as they can be mapped outside of vmalloc code.
2466 : * For VM_ALLOC mappings, the pages are marked as accessible after
2467 : * getting mapped in __vmalloc_node_range().
2468 : * With hardware tag-based KASAN, marking is skipped for
2469 : * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2470 : */
2471 15 : if (!(flags & VM_ALLOC))
2472 : area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2473 : KASAN_VMALLOC_PROT_NORMAL);
2474 :
2475 : return area;
2476 : }
2477 :
2478 0 : struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2479 : unsigned long start, unsigned long end,
2480 : const void *caller)
2481 : {
2482 0 : return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2483 : NUMA_NO_NODE, GFP_KERNEL, caller);
2484 : }
2485 :
2486 : /**
2487 : * get_vm_area - reserve a contiguous kernel virtual area
2488 : * @size: size of the area
2489 : * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2490 : *
2491 : * Search an area of @size in the kernel virtual mapping area,
2492 : * and reserved it for out purposes. Returns the area descriptor
2493 : * on success or %NULL on failure.
2494 : *
2495 : * Return: the area descriptor on success or %NULL on failure.
2496 : */
2497 0 : struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2498 : {
2499 0 : return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2500 0 : VMALLOC_START, VMALLOC_END,
2501 : NUMA_NO_NODE, GFP_KERNEL,
2502 0 : __builtin_return_address(0));
2503 : }
2504 :
2505 0 : struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2506 : const void *caller)
2507 : {
2508 0 : return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2509 0 : VMALLOC_START, VMALLOC_END,
2510 : NUMA_NO_NODE, GFP_KERNEL, caller);
2511 : }
2512 :
2513 : /**
2514 : * find_vm_area - find a continuous kernel virtual area
2515 : * @addr: base address
2516 : *
2517 : * Search for the kernel VM area starting at @addr, and return it.
2518 : * It is up to the caller to do all required locking to keep the returned
2519 : * pointer valid.
2520 : *
2521 : * Return: the area descriptor on success or %NULL on failure.
2522 : */
2523 15 : struct vm_struct *find_vm_area(const void *addr)
2524 : {
2525 : struct vmap_area *va;
2526 :
2527 30 : va = find_vmap_area((unsigned long)addr);
2528 15 : if (!va)
2529 : return NULL;
2530 :
2531 15 : return va->vm;
2532 : }
2533 :
2534 : /**
2535 : * remove_vm_area - find and remove a continuous kernel virtual area
2536 : * @addr: base address
2537 : *
2538 : * Search for the kernel VM area starting at @addr, and remove it.
2539 : * This function returns the found VM area, but using it is NOT safe
2540 : * on SMP machines, except for its size or flags.
2541 : *
2542 : * Return: the area descriptor on success or %NULL on failure.
2543 : */
2544 0 : struct vm_struct *remove_vm_area(const void *addr)
2545 : {
2546 : struct vmap_area *va;
2547 :
2548 : might_sleep();
2549 :
2550 0 : spin_lock(&vmap_area_lock);
2551 0 : va = __find_vmap_area((unsigned long)addr);
2552 0 : if (va && va->vm) {
2553 0 : struct vm_struct *vm = va->vm;
2554 :
2555 0 : va->vm = NULL;
2556 0 : spin_unlock(&vmap_area_lock);
2557 :
2558 0 : kasan_free_module_shadow(vm);
2559 0 : free_unmap_vmap_area(va);
2560 :
2561 0 : return vm;
2562 : }
2563 :
2564 0 : spin_unlock(&vmap_area_lock);
2565 0 : return NULL;
2566 : }
2567 :
2568 0 : static inline void set_area_direct_map(const struct vm_struct *area,
2569 : int (*set_direct_map)(struct page *page))
2570 : {
2571 : int i;
2572 :
2573 : /* HUGE_VMALLOC passes small pages to set_direct_map */
2574 0 : for (i = 0; i < area->nr_pages; i++)
2575 0 : if (page_address(area->pages[i]))
2576 0 : set_direct_map(area->pages[i]);
2577 0 : }
2578 :
2579 : /* Handle removing and resetting vm mappings related to the vm_struct. */
2580 0 : static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2581 : {
2582 0 : unsigned long start = ULONG_MAX, end = 0;
2583 0 : unsigned int page_order = vm_area_page_order(area);
2584 0 : int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2585 0 : int flush_dmap = 0;
2586 : int i;
2587 :
2588 0 : remove_vm_area(area->addr);
2589 :
2590 : /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2591 0 : if (!flush_reset)
2592 : return;
2593 :
2594 : /*
2595 : * If not deallocating pages, just do the flush of the VM area and
2596 : * return.
2597 : */
2598 0 : if (!deallocate_pages) {
2599 : vm_unmap_aliases();
2600 : return;
2601 : }
2602 :
2603 : /*
2604 : * If execution gets here, flush the vm mapping and reset the direct
2605 : * map. Find the start and end range of the direct mappings to make sure
2606 : * the vm_unmap_aliases() flush includes the direct map.
2607 : */
2608 0 : for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2609 0 : unsigned long addr = (unsigned long)page_address(area->pages[i]);
2610 0 : if (addr) {
2611 : unsigned long page_size;
2612 :
2613 0 : page_size = PAGE_SIZE << page_order;
2614 0 : start = min(addr, start);
2615 0 : end = max(addr + page_size, end);
2616 0 : flush_dmap = 1;
2617 : }
2618 : }
2619 :
2620 : /*
2621 : * Set direct map to something invalid so that it won't be cached if
2622 : * there are any accesses after the TLB flush, then flush the TLB and
2623 : * reset the direct map permissions to the default.
2624 : */
2625 0 : set_area_direct_map(area, set_direct_map_invalid_noflush);
2626 0 : _vm_unmap_aliases(start, end, flush_dmap);
2627 0 : set_area_direct_map(area, set_direct_map_default_noflush);
2628 : }
2629 :
2630 0 : static void __vunmap(const void *addr, int deallocate_pages)
2631 : {
2632 : struct vm_struct *area;
2633 :
2634 0 : if (!addr)
2635 : return;
2636 :
2637 0 : if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2638 : addr))
2639 : return;
2640 :
2641 0 : area = find_vm_area(addr);
2642 0 : if (unlikely(!area)) {
2643 0 : WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2644 : addr);
2645 0 : return;
2646 : }
2647 :
2648 0 : debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2649 0 : debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2650 :
2651 0 : kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2652 :
2653 0 : vm_remove_mappings(area, deallocate_pages);
2654 :
2655 0 : if (deallocate_pages) {
2656 : int i;
2657 :
2658 0 : for (i = 0; i < area->nr_pages; i++) {
2659 0 : struct page *page = area->pages[i];
2660 :
2661 0 : BUG_ON(!page);
2662 0 : mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2663 : /*
2664 : * High-order allocs for huge vmallocs are split, so
2665 : * can be freed as an array of order-0 allocations
2666 : */
2667 0 : __free_pages(page, 0);
2668 0 : cond_resched();
2669 : }
2670 0 : atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2671 :
2672 0 : kvfree(area->pages);
2673 : }
2674 :
2675 0 : kfree(area);
2676 : }
2677 :
2678 0 : static inline void __vfree_deferred(const void *addr)
2679 : {
2680 : /*
2681 : * Use raw_cpu_ptr() because this can be called from preemptible
2682 : * context. Preemption is absolutely fine here, because the llist_add()
2683 : * implementation is lockless, so it works even if we are adding to
2684 : * another cpu's list. schedule_work() should be fine with this too.
2685 : */
2686 0 : struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2687 :
2688 0 : if (llist_add((struct llist_node *)addr, &p->list))
2689 0 : schedule_work(&p->wq);
2690 0 : }
2691 :
2692 : /**
2693 : * vfree_atomic - release memory allocated by vmalloc()
2694 : * @addr: memory base address
2695 : *
2696 : * This one is just like vfree() but can be called in any atomic context
2697 : * except NMIs.
2698 : */
2699 0 : void vfree_atomic(const void *addr)
2700 : {
2701 0 : BUG_ON(in_nmi());
2702 :
2703 0 : kmemleak_free(addr);
2704 :
2705 0 : if (!addr)
2706 : return;
2707 0 : __vfree_deferred(addr);
2708 : }
2709 :
2710 0 : static void __vfree(const void *addr)
2711 : {
2712 0 : if (unlikely(in_interrupt()))
2713 0 : __vfree_deferred(addr);
2714 : else
2715 0 : __vunmap(addr, 1);
2716 0 : }
2717 :
2718 : /**
2719 : * vfree - Release memory allocated by vmalloc()
2720 : * @addr: Memory base address
2721 : *
2722 : * Free the virtually continuous memory area starting at @addr, as obtained
2723 : * from one of the vmalloc() family of APIs. This will usually also free the
2724 : * physical memory underlying the virtual allocation, but that memory is
2725 : * reference counted, so it will not be freed until the last user goes away.
2726 : *
2727 : * If @addr is NULL, no operation is performed.
2728 : *
2729 : * Context:
2730 : * May sleep if called *not* from interrupt context.
2731 : * Must not be called in NMI context (strictly speaking, it could be
2732 : * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2733 : * conventions for vfree() arch-dependent would be a really bad idea).
2734 : */
2735 0 : void vfree(const void *addr)
2736 : {
2737 0 : BUG_ON(in_nmi());
2738 :
2739 0 : kmemleak_free(addr);
2740 :
2741 : might_sleep_if(!in_interrupt());
2742 :
2743 0 : if (!addr)
2744 : return;
2745 :
2746 0 : __vfree(addr);
2747 : }
2748 : EXPORT_SYMBOL(vfree);
2749 :
2750 : /**
2751 : * vunmap - release virtual mapping obtained by vmap()
2752 : * @addr: memory base address
2753 : *
2754 : * Free the virtually contiguous memory area starting at @addr,
2755 : * which was created from the page array passed to vmap().
2756 : *
2757 : * Must not be called in interrupt context.
2758 : */
2759 0 : void vunmap(const void *addr)
2760 : {
2761 0 : BUG_ON(in_interrupt());
2762 : might_sleep();
2763 0 : if (addr)
2764 0 : __vunmap(addr, 0);
2765 0 : }
2766 : EXPORT_SYMBOL(vunmap);
2767 :
2768 : /**
2769 : * vmap - map an array of pages into virtually contiguous space
2770 : * @pages: array of page pointers
2771 : * @count: number of pages to map
2772 : * @flags: vm_area->flags
2773 : * @prot: page protection for the mapping
2774 : *
2775 : * Maps @count pages from @pages into contiguous kernel virtual space.
2776 : * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2777 : * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2778 : * are transferred from the caller to vmap(), and will be freed / dropped when
2779 : * vfree() is called on the return value.
2780 : *
2781 : * Return: the address of the area or %NULL on failure
2782 : */
2783 0 : void *vmap(struct page **pages, unsigned int count,
2784 : unsigned long flags, pgprot_t prot)
2785 : {
2786 : struct vm_struct *area;
2787 : unsigned long addr;
2788 : unsigned long size; /* In bytes */
2789 :
2790 : might_sleep();
2791 :
2792 : /*
2793 : * Your top guard is someone else's bottom guard. Not having a top
2794 : * guard compromises someone else's mappings too.
2795 : */
2796 0 : if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2797 0 : flags &= ~VM_NO_GUARD;
2798 :
2799 0 : if (count > totalram_pages())
2800 : return NULL;
2801 :
2802 0 : size = (unsigned long)count << PAGE_SHIFT;
2803 0 : area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2804 0 : if (!area)
2805 : return NULL;
2806 :
2807 0 : addr = (unsigned long)area->addr;
2808 0 : if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2809 : pages, PAGE_SHIFT) < 0) {
2810 0 : vunmap(area->addr);
2811 0 : return NULL;
2812 : }
2813 :
2814 0 : if (flags & VM_MAP_PUT_PAGES) {
2815 0 : area->pages = pages;
2816 0 : area->nr_pages = count;
2817 : }
2818 0 : return area->addr;
2819 : }
2820 : EXPORT_SYMBOL(vmap);
2821 :
2822 : #ifdef CONFIG_VMAP_PFN
2823 : struct vmap_pfn_data {
2824 : unsigned long *pfns;
2825 : pgprot_t prot;
2826 : unsigned int idx;
2827 : };
2828 :
2829 : static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2830 : {
2831 : struct vmap_pfn_data *data = private;
2832 :
2833 : if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2834 : return -EINVAL;
2835 : *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2836 : return 0;
2837 : }
2838 :
2839 : /**
2840 : * vmap_pfn - map an array of PFNs into virtually contiguous space
2841 : * @pfns: array of PFNs
2842 : * @count: number of pages to map
2843 : * @prot: page protection for the mapping
2844 : *
2845 : * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2846 : * the start address of the mapping.
2847 : */
2848 : void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2849 : {
2850 : struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2851 : struct vm_struct *area;
2852 :
2853 : area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2854 : __builtin_return_address(0));
2855 : if (!area)
2856 : return NULL;
2857 : if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2858 : count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2859 : free_vm_area(area);
2860 : return NULL;
2861 : }
2862 : return area->addr;
2863 : }
2864 : EXPORT_SYMBOL_GPL(vmap_pfn);
2865 : #endif /* CONFIG_VMAP_PFN */
2866 :
2867 : static inline unsigned int
2868 15 : vm_area_alloc_pages(gfp_t gfp, int nid,
2869 : unsigned int order, unsigned int nr_pages, struct page **pages)
2870 : {
2871 15 : unsigned int nr_allocated = 0;
2872 : struct page *page;
2873 : int i;
2874 :
2875 : /*
2876 : * For order-0 pages we make use of bulk allocator, if
2877 : * the page array is partly or not at all populated due
2878 : * to fails, fallback to a single page allocator that is
2879 : * more permissive.
2880 : */
2881 15 : if (!order) {
2882 15 : gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2883 :
2884 45 : while (nr_allocated < nr_pages) {
2885 : unsigned int nr, nr_pages_request;
2886 :
2887 : /*
2888 : * A maximum allowed request is hard-coded and is 100
2889 : * pages per call. That is done in order to prevent a
2890 : * long preemption off scenario in the bulk-allocator
2891 : * so the range is [1:100].
2892 : */
2893 15 : nr_pages_request = min(100U, nr_pages - nr_allocated);
2894 :
2895 : /* memory allocation should consider mempolicy, we can't
2896 : * wrongly use nearest node when nid == NUMA_NO_NODE,
2897 : * otherwise memory may be allocated in only one node,
2898 : * but mempolcy want to alloc memory by interleaving.
2899 : */
2900 : if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2901 : nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2902 : nr_pages_request,
2903 : pages + nr_allocated);
2904 :
2905 : else
2906 30 : nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2907 : nr_pages_request,
2908 15 : pages + nr_allocated);
2909 :
2910 15 : nr_allocated += nr;
2911 15 : cond_resched();
2912 :
2913 : /*
2914 : * If zero or pages were obtained partly,
2915 : * fallback to a single page allocator.
2916 : */
2917 15 : if (nr != nr_pages_request)
2918 : break;
2919 : }
2920 : }
2921 :
2922 : /* High-order pages or fallback path if "bulk" fails. */
2923 :
2924 15 : while (nr_allocated < nr_pages) {
2925 0 : if (fatal_signal_pending(current))
2926 : break;
2927 :
2928 0 : if (nid == NUMA_NO_NODE)
2929 0 : page = alloc_pages(gfp, order);
2930 : else
2931 0 : page = alloc_pages_node(nid, gfp, order);
2932 0 : if (unlikely(!page))
2933 : break;
2934 : /*
2935 : * Higher order allocations must be able to be treated as
2936 : * indepdenent small pages by callers (as they can with
2937 : * small-page vmallocs). Some drivers do their own refcounting
2938 : * on vmalloc_to_page() pages, some use page->mapping,
2939 : * page->lru, etc.
2940 : */
2941 0 : if (order)
2942 0 : split_page(page, order);
2943 :
2944 : /*
2945 : * Careful, we allocate and map page-order pages, but
2946 : * tracking is done per PAGE_SIZE page so as to keep the
2947 : * vm_struct APIs independent of the physical/mapped size.
2948 : */
2949 0 : for (i = 0; i < (1U << order); i++)
2950 0 : pages[nr_allocated + i] = page + i;
2951 :
2952 0 : cond_resched();
2953 0 : nr_allocated += 1U << order;
2954 : }
2955 :
2956 15 : return nr_allocated;
2957 : }
2958 :
2959 15 : static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2960 : pgprot_t prot, unsigned int page_shift,
2961 : int node)
2962 : {
2963 15 : const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2964 15 : bool nofail = gfp_mask & __GFP_NOFAIL;
2965 15 : unsigned long addr = (unsigned long)area->addr;
2966 30 : unsigned long size = get_vm_area_size(area);
2967 : unsigned long array_size;
2968 15 : unsigned int nr_small_pages = size >> PAGE_SHIFT;
2969 : unsigned int page_order;
2970 : unsigned int flags;
2971 : int ret;
2972 :
2973 15 : array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2974 15 : gfp_mask |= __GFP_NOWARN;
2975 15 : if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2976 15 : gfp_mask |= __GFP_HIGHMEM;
2977 :
2978 : /* Please note that the recursion is strictly bounded. */
2979 15 : if (array_size > PAGE_SIZE) {
2980 0 : area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2981 : area->caller);
2982 : } else {
2983 15 : area->pages = kmalloc_node(array_size, nested_gfp, node);
2984 : }
2985 :
2986 15 : if (!area->pages) {
2987 0 : warn_alloc(gfp_mask, NULL,
2988 : "vmalloc error: size %lu, failed to allocated page array size %lu",
2989 : nr_small_pages * PAGE_SIZE, array_size);
2990 0 : free_vm_area(area);
2991 0 : return NULL;
2992 : }
2993 :
2994 15 : set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2995 15 : page_order = vm_area_page_order(area);
2996 :
2997 15 : area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
2998 : node, page_order, nr_small_pages, area->pages);
2999 :
3000 30 : atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3001 15 : if (gfp_mask & __GFP_ACCOUNT) {
3002 : int i;
3003 :
3004 0 : for (i = 0; i < area->nr_pages; i++)
3005 0 : mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3006 : }
3007 :
3008 : /*
3009 : * If not enough pages were obtained to accomplish an
3010 : * allocation request, free them via __vfree() if any.
3011 : */
3012 15 : if (area->nr_pages != nr_small_pages) {
3013 0 : warn_alloc(gfp_mask, NULL,
3014 : "vmalloc error: size %lu, page order %u, failed to allocate pages",
3015 0 : area->nr_pages * PAGE_SIZE, page_order);
3016 0 : goto fail;
3017 : }
3018 :
3019 : /*
3020 : * page tables allocations ignore external gfp mask, enforce it
3021 : * by the scope API
3022 : */
3023 15 : if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3024 0 : flags = memalloc_nofs_save();
3025 15 : else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3026 0 : flags = memalloc_noio_save();
3027 :
3028 : do {
3029 30 : ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3030 : page_shift);
3031 15 : if (nofail && (ret < 0))
3032 0 : schedule_timeout_uninterruptible(1);
3033 15 : } while (nofail && (ret < 0));
3034 :
3035 15 : if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3036 : memalloc_nofs_restore(flags);
3037 15 : else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3038 : memalloc_noio_restore(flags);
3039 :
3040 15 : if (ret < 0) {
3041 0 : warn_alloc(gfp_mask, NULL,
3042 : "vmalloc error: size %lu, failed to map pages",
3043 0 : area->nr_pages * PAGE_SIZE);
3044 0 : goto fail;
3045 : }
3046 :
3047 15 : return area->addr;
3048 :
3049 : fail:
3050 0 : __vfree(area->addr);
3051 0 : return NULL;
3052 : }
3053 :
3054 : /**
3055 : * __vmalloc_node_range - allocate virtually contiguous memory
3056 : * @size: allocation size
3057 : * @align: desired alignment
3058 : * @start: vm area range start
3059 : * @end: vm area range end
3060 : * @gfp_mask: flags for the page level allocator
3061 : * @prot: protection mask for the allocated pages
3062 : * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3063 : * @node: node to use for allocation or NUMA_NO_NODE
3064 : * @caller: caller's return address
3065 : *
3066 : * Allocate enough pages to cover @size from the page level
3067 : * allocator with @gfp_mask flags. Please note that the full set of gfp
3068 : * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3069 : * supported.
3070 : * Zone modifiers are not supported. From the reclaim modifiers
3071 : * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3072 : * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3073 : * __GFP_RETRY_MAYFAIL are not supported).
3074 : *
3075 : * __GFP_NOWARN can be used to suppress failures messages.
3076 : *
3077 : * Map them into contiguous kernel virtual space, using a pagetable
3078 : * protection of @prot.
3079 : *
3080 : * Return: the address of the area or %NULL on failure
3081 : */
3082 15 : void *__vmalloc_node_range(unsigned long size, unsigned long align,
3083 : unsigned long start, unsigned long end, gfp_t gfp_mask,
3084 : pgprot_t prot, unsigned long vm_flags, int node,
3085 : const void *caller)
3086 : {
3087 : struct vm_struct *area;
3088 : void *ret;
3089 15 : kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3090 15 : unsigned long real_size = size;
3091 15 : unsigned long real_align = align;
3092 15 : unsigned int shift = PAGE_SHIFT;
3093 :
3094 15 : if (WARN_ON_ONCE(!size))
3095 : return NULL;
3096 :
3097 30 : if ((size >> PAGE_SHIFT) > totalram_pages()) {
3098 0 : warn_alloc(gfp_mask, NULL,
3099 : "vmalloc error: size %lu, exceeds total pages",
3100 : real_size);
3101 0 : return NULL;
3102 : }
3103 :
3104 : if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3105 : unsigned long size_per_node;
3106 :
3107 : /*
3108 : * Try huge pages. Only try for PAGE_KERNEL allocations,
3109 : * others like modules don't yet expect huge pages in
3110 : * their allocations due to apply_to_page_range not
3111 : * supporting them.
3112 : */
3113 :
3114 : size_per_node = size;
3115 : if (node == NUMA_NO_NODE)
3116 : size_per_node /= num_online_nodes();
3117 : if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3118 : shift = PMD_SHIFT;
3119 : else
3120 : shift = arch_vmap_pte_supported_shift(size_per_node);
3121 :
3122 : align = max(real_align, 1UL << shift);
3123 : size = ALIGN(real_size, 1UL << shift);
3124 : }
3125 :
3126 : again:
3127 15 : area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3128 : VM_UNINITIALIZED | vm_flags, start, end, node,
3129 : gfp_mask, caller);
3130 15 : if (!area) {
3131 0 : bool nofail = gfp_mask & __GFP_NOFAIL;
3132 0 : warn_alloc(gfp_mask, NULL,
3133 : "vmalloc error: size %lu, vm_struct allocation failed%s",
3134 : real_size, (nofail) ? ". Retrying." : "");
3135 0 : if (nofail) {
3136 0 : schedule_timeout_uninterruptible(1);
3137 0 : goto again;
3138 : }
3139 : goto fail;
3140 : }
3141 :
3142 : /*
3143 : * Prepare arguments for __vmalloc_area_node() and
3144 : * kasan_unpoison_vmalloc().
3145 : */
3146 15 : if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3147 : if (kasan_hw_tags_enabled()) {
3148 : /*
3149 : * Modify protection bits to allow tagging.
3150 : * This must be done before mapping.
3151 : */
3152 : prot = arch_vmap_pgprot_tagged(prot);
3153 :
3154 : /*
3155 : * Skip page_alloc poisoning and zeroing for physical
3156 : * pages backing VM_ALLOC mapping. Memory is instead
3157 : * poisoned and zeroed by kasan_unpoison_vmalloc().
3158 : */
3159 : gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3160 : }
3161 :
3162 : /* Take note that the mapping is PAGE_KERNEL. */
3163 : kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3164 : }
3165 :
3166 : /* Allocate physical pages and map them into vmalloc space. */
3167 15 : ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3168 15 : if (!ret)
3169 : goto fail;
3170 :
3171 : /*
3172 : * Mark the pages as accessible, now that they are mapped.
3173 : * The init condition should match the one in post_alloc_hook()
3174 : * (except for the should_skip_init() check) to make sure that memory
3175 : * is initialized under the same conditions regardless of the enabled
3176 : * KASAN mode.
3177 : * Tag-based KASAN modes only assign tags to normal non-executable
3178 : * allocations, see __kasan_unpoison_vmalloc().
3179 : */
3180 15 : kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3181 30 : if (!want_init_on_free() && want_init_on_alloc(gfp_mask))
3182 : kasan_flags |= KASAN_VMALLOC_INIT;
3183 : /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3184 15 : area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3185 :
3186 : /*
3187 : * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3188 : * flag. It means that vm_struct is not fully initialized.
3189 : * Now, it is fully initialized, so remove this flag here.
3190 : */
3191 15 : clear_vm_uninitialized_flag(area);
3192 :
3193 15 : size = PAGE_ALIGN(size);
3194 : if (!(vm_flags & VM_DEFER_KMEMLEAK))
3195 15 : kmemleak_vmalloc(area, size, gfp_mask);
3196 :
3197 15 : return area->addr;
3198 :
3199 : fail:
3200 : if (shift > PAGE_SHIFT) {
3201 : shift = PAGE_SHIFT;
3202 : align = real_align;
3203 : size = real_size;
3204 : goto again;
3205 : }
3206 :
3207 : return NULL;
3208 : }
3209 :
3210 : /**
3211 : * __vmalloc_node - allocate virtually contiguous memory
3212 : * @size: allocation size
3213 : * @align: desired alignment
3214 : * @gfp_mask: flags for the page level allocator
3215 : * @node: node to use for allocation or NUMA_NO_NODE
3216 : * @caller: caller's return address
3217 : *
3218 : * Allocate enough pages to cover @size from the page level allocator with
3219 : * @gfp_mask flags. Map them into contiguous kernel virtual space.
3220 : *
3221 : * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3222 : * and __GFP_NOFAIL are not supported
3223 : *
3224 : * Any use of gfp flags outside of GFP_KERNEL should be consulted
3225 : * with mm people.
3226 : *
3227 : * Return: pointer to the allocated memory or %NULL on error
3228 : */
3229 0 : void *__vmalloc_node(unsigned long size, unsigned long align,
3230 : gfp_t gfp_mask, int node, const void *caller)
3231 : {
3232 0 : return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3233 0 : gfp_mask, PAGE_KERNEL, 0, node, caller);
3234 : }
3235 : /*
3236 : * This is only for performance analysis of vmalloc and stress purpose.
3237 : * It is required by vmalloc test module, therefore do not use it other
3238 : * than that.
3239 : */
3240 : #ifdef CONFIG_TEST_VMALLOC_MODULE
3241 : EXPORT_SYMBOL_GPL(__vmalloc_node);
3242 : #endif
3243 :
3244 0 : void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3245 : {
3246 0 : return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3247 0 : __builtin_return_address(0));
3248 : }
3249 : EXPORT_SYMBOL(__vmalloc);
3250 :
3251 : /**
3252 : * vmalloc - allocate virtually contiguous memory
3253 : * @size: allocation size
3254 : *
3255 : * Allocate enough pages to cover @size from the page level
3256 : * allocator and map them into contiguous kernel virtual space.
3257 : *
3258 : * For tight control over page level allocator and protection flags
3259 : * use __vmalloc() instead.
3260 : *
3261 : * Return: pointer to the allocated memory or %NULL on error
3262 : */
3263 0 : void *vmalloc(unsigned long size)
3264 : {
3265 0 : return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3266 0 : __builtin_return_address(0));
3267 : }
3268 : EXPORT_SYMBOL(vmalloc);
3269 :
3270 : /**
3271 : * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3272 : * @size: allocation size
3273 : * @gfp_mask: flags for the page level allocator
3274 : *
3275 : * Allocate enough pages to cover @size from the page level
3276 : * allocator and map them into contiguous kernel virtual space.
3277 : * If @size is greater than or equal to PMD_SIZE, allow using
3278 : * huge pages for the memory
3279 : *
3280 : * Return: pointer to the allocated memory or %NULL on error
3281 : */
3282 0 : void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3283 : {
3284 0 : return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3285 0 : gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3286 0 : NUMA_NO_NODE, __builtin_return_address(0));
3287 : }
3288 : EXPORT_SYMBOL_GPL(vmalloc_huge);
3289 :
3290 : /**
3291 : * vzalloc - allocate virtually contiguous memory with zero fill
3292 : * @size: allocation size
3293 : *
3294 : * Allocate enough pages to cover @size from the page level
3295 : * allocator and map them into contiguous kernel virtual space.
3296 : * The memory allocated is set to zero.
3297 : *
3298 : * For tight control over page level allocator and protection flags
3299 : * use __vmalloc() instead.
3300 : *
3301 : * Return: pointer to the allocated memory or %NULL on error
3302 : */
3303 0 : void *vzalloc(unsigned long size)
3304 : {
3305 0 : return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3306 0 : __builtin_return_address(0));
3307 : }
3308 : EXPORT_SYMBOL(vzalloc);
3309 :
3310 : /**
3311 : * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3312 : * @size: allocation size
3313 : *
3314 : * The resulting memory area is zeroed so it can be mapped to userspace
3315 : * without leaking data.
3316 : *
3317 : * Return: pointer to the allocated memory or %NULL on error
3318 : */
3319 0 : void *vmalloc_user(unsigned long size)
3320 : {
3321 0 : return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3322 0 : GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3323 : VM_USERMAP, NUMA_NO_NODE,
3324 0 : __builtin_return_address(0));
3325 : }
3326 : EXPORT_SYMBOL(vmalloc_user);
3327 :
3328 : /**
3329 : * vmalloc_node - allocate memory on a specific node
3330 : * @size: allocation size
3331 : * @node: numa node
3332 : *
3333 : * Allocate enough pages to cover @size from the page level
3334 : * allocator and map them into contiguous kernel virtual space.
3335 : *
3336 : * For tight control over page level allocator and protection flags
3337 : * use __vmalloc() instead.
3338 : *
3339 : * Return: pointer to the allocated memory or %NULL on error
3340 : */
3341 0 : void *vmalloc_node(unsigned long size, int node)
3342 : {
3343 0 : return __vmalloc_node(size, 1, GFP_KERNEL, node,
3344 0 : __builtin_return_address(0));
3345 : }
3346 : EXPORT_SYMBOL(vmalloc_node);
3347 :
3348 : /**
3349 : * vzalloc_node - allocate memory on a specific node with zero fill
3350 : * @size: allocation size
3351 : * @node: numa node
3352 : *
3353 : * Allocate enough pages to cover @size from the page level
3354 : * allocator and map them into contiguous kernel virtual space.
3355 : * The memory allocated is set to zero.
3356 : *
3357 : * Return: pointer to the allocated memory or %NULL on error
3358 : */
3359 0 : void *vzalloc_node(unsigned long size, int node)
3360 : {
3361 0 : return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3362 0 : __builtin_return_address(0));
3363 : }
3364 : EXPORT_SYMBOL(vzalloc_node);
3365 :
3366 : #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3367 : #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3368 : #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3369 : #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3370 : #else
3371 : /*
3372 : * 64b systems should always have either DMA or DMA32 zones. For others
3373 : * GFP_DMA32 should do the right thing and use the normal zone.
3374 : */
3375 : #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3376 : #endif
3377 :
3378 : /**
3379 : * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3380 : * @size: allocation size
3381 : *
3382 : * Allocate enough 32bit PA addressable pages to cover @size from the
3383 : * page level allocator and map them into contiguous kernel virtual space.
3384 : *
3385 : * Return: pointer to the allocated memory or %NULL on error
3386 : */
3387 0 : void *vmalloc_32(unsigned long size)
3388 : {
3389 0 : return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3390 0 : __builtin_return_address(0));
3391 : }
3392 : EXPORT_SYMBOL(vmalloc_32);
3393 :
3394 : /**
3395 : * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3396 : * @size: allocation size
3397 : *
3398 : * The resulting memory area is 32bit addressable and zeroed so it can be
3399 : * mapped to userspace without leaking data.
3400 : *
3401 : * Return: pointer to the allocated memory or %NULL on error
3402 : */
3403 0 : void *vmalloc_32_user(unsigned long size)
3404 : {
3405 0 : return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3406 0 : GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3407 : VM_USERMAP, NUMA_NO_NODE,
3408 0 : __builtin_return_address(0));
3409 : }
3410 : EXPORT_SYMBOL(vmalloc_32_user);
3411 :
3412 : /*
3413 : * small helper routine , copy contents to buf from addr.
3414 : * If the page is not present, fill zero.
3415 : */
3416 :
3417 0 : static int aligned_vread(char *buf, char *addr, unsigned long count)
3418 : {
3419 : struct page *p;
3420 0 : int copied = 0;
3421 :
3422 0 : while (count) {
3423 : unsigned long offset, length;
3424 :
3425 0 : offset = offset_in_page(addr);
3426 0 : length = PAGE_SIZE - offset;
3427 0 : if (length > count)
3428 0 : length = count;
3429 0 : p = vmalloc_to_page(addr);
3430 : /*
3431 : * To do safe access to this _mapped_ area, we need
3432 : * lock. But adding lock here means that we need to add
3433 : * overhead of vmalloc()/vfree() calls for this _debug_
3434 : * interface, rarely used. Instead of that, we'll use
3435 : * kmap() and get small overhead in this access function.
3436 : */
3437 0 : if (p) {
3438 : /* We can expect USER0 is not used -- see vread() */
3439 0 : void *map = kmap_atomic(p);
3440 0 : memcpy(buf, map + offset, length);
3441 : kunmap_atomic(map);
3442 : } else
3443 0 : memset(buf, 0, length);
3444 :
3445 0 : addr += length;
3446 0 : buf += length;
3447 0 : copied += length;
3448 0 : count -= length;
3449 : }
3450 0 : return copied;
3451 : }
3452 :
3453 : /**
3454 : * vread() - read vmalloc area in a safe way.
3455 : * @buf: buffer for reading data
3456 : * @addr: vm address.
3457 : * @count: number of bytes to be read.
3458 : *
3459 : * This function checks that addr is a valid vmalloc'ed area, and
3460 : * copy data from that area to a given buffer. If the given memory range
3461 : * of [addr...addr+count) includes some valid address, data is copied to
3462 : * proper area of @buf. If there are memory holes, they'll be zero-filled.
3463 : * IOREMAP area is treated as memory hole and no copy is done.
3464 : *
3465 : * If [addr...addr+count) doesn't includes any intersects with alive
3466 : * vm_struct area, returns 0. @buf should be kernel's buffer.
3467 : *
3468 : * Note: In usual ops, vread() is never necessary because the caller
3469 : * should know vmalloc() area is valid and can use memcpy().
3470 : * This is for routines which have to access vmalloc area without
3471 : * any information, as /proc/kcore.
3472 : *
3473 : * Return: number of bytes for which addr and buf should be increased
3474 : * (same number as @count) or %0 if [addr...addr+count) doesn't
3475 : * include any intersection with valid vmalloc area
3476 : */
3477 0 : long vread(char *buf, char *addr, unsigned long count)
3478 : {
3479 : struct vmap_area *va;
3480 : struct vm_struct *vm;
3481 0 : char *vaddr, *buf_start = buf;
3482 0 : unsigned long buflen = count;
3483 : unsigned long n;
3484 :
3485 0 : addr = kasan_reset_tag(addr);
3486 :
3487 : /* Don't allow overflow */
3488 0 : if ((unsigned long) addr + count < count)
3489 0 : count = -(unsigned long) addr;
3490 :
3491 0 : spin_lock(&vmap_area_lock);
3492 0 : va = find_vmap_area_exceed_addr((unsigned long)addr);
3493 0 : if (!va)
3494 : goto finished;
3495 :
3496 : /* no intersects with alive vmap_area */
3497 0 : if ((unsigned long)addr + count <= va->va_start)
3498 : goto finished;
3499 :
3500 0 : list_for_each_entry_from(va, &vmap_area_list, list) {
3501 0 : if (!count)
3502 : break;
3503 :
3504 0 : if (!va->vm)
3505 0 : continue;
3506 :
3507 0 : vm = va->vm;
3508 0 : vaddr = (char *) vm->addr;
3509 0 : if (addr >= vaddr + get_vm_area_size(vm))
3510 0 : continue;
3511 0 : while (addr < vaddr) {
3512 0 : if (count == 0)
3513 : goto finished;
3514 0 : *buf = '\0';
3515 0 : buf++;
3516 0 : addr++;
3517 0 : count--;
3518 : }
3519 0 : n = vaddr + get_vm_area_size(vm) - addr;
3520 0 : if (n > count)
3521 0 : n = count;
3522 0 : if (!(vm->flags & VM_IOREMAP))
3523 0 : aligned_vread(buf, addr, n);
3524 : else /* IOREMAP area is treated as memory hole */
3525 0 : memset(buf, 0, n);
3526 0 : buf += n;
3527 0 : addr += n;
3528 0 : count -= n;
3529 : }
3530 : finished:
3531 0 : spin_unlock(&vmap_area_lock);
3532 :
3533 0 : if (buf == buf_start)
3534 : return 0;
3535 : /* zero-fill memory holes */
3536 0 : if (buf != buf_start + buflen)
3537 0 : memset(buf, 0, buflen - (buf - buf_start));
3538 :
3539 0 : return buflen;
3540 : }
3541 :
3542 : /**
3543 : * remap_vmalloc_range_partial - map vmalloc pages to userspace
3544 : * @vma: vma to cover
3545 : * @uaddr: target user address to start at
3546 : * @kaddr: virtual address of vmalloc kernel memory
3547 : * @pgoff: offset from @kaddr to start at
3548 : * @size: size of map area
3549 : *
3550 : * Returns: 0 for success, -Exxx on failure
3551 : *
3552 : * This function checks that @kaddr is a valid vmalloc'ed area,
3553 : * and that it is big enough to cover the range starting at
3554 : * @uaddr in @vma. Will return failure if that criteria isn't
3555 : * met.
3556 : *
3557 : * Similar to remap_pfn_range() (see mm/memory.c)
3558 : */
3559 0 : int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3560 : void *kaddr, unsigned long pgoff,
3561 : unsigned long size)
3562 : {
3563 : struct vm_struct *area;
3564 : unsigned long off;
3565 : unsigned long end_index;
3566 :
3567 0 : if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3568 : return -EINVAL;
3569 :
3570 0 : size = PAGE_ALIGN(size);
3571 :
3572 0 : if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3573 : return -EINVAL;
3574 :
3575 0 : area = find_vm_area(kaddr);
3576 0 : if (!area)
3577 : return -EINVAL;
3578 :
3579 0 : if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3580 : return -EINVAL;
3581 :
3582 0 : if (check_add_overflow(size, off, &end_index) ||
3583 : end_index > get_vm_area_size(area))
3584 : return -EINVAL;
3585 0 : kaddr += off;
3586 :
3587 : do {
3588 0 : struct page *page = vmalloc_to_page(kaddr);
3589 : int ret;
3590 :
3591 0 : ret = vm_insert_page(vma, uaddr, page);
3592 0 : if (ret)
3593 : return ret;
3594 :
3595 0 : uaddr += PAGE_SIZE;
3596 0 : kaddr += PAGE_SIZE;
3597 0 : size -= PAGE_SIZE;
3598 0 : } while (size > 0);
3599 :
3600 0 : vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3601 :
3602 0 : return 0;
3603 : }
3604 :
3605 : /**
3606 : * remap_vmalloc_range - map vmalloc pages to userspace
3607 : * @vma: vma to cover (map full range of vma)
3608 : * @addr: vmalloc memory
3609 : * @pgoff: number of pages into addr before first page to map
3610 : *
3611 : * Returns: 0 for success, -Exxx on failure
3612 : *
3613 : * This function checks that addr is a valid vmalloc'ed area, and
3614 : * that it is big enough to cover the vma. Will return failure if
3615 : * that criteria isn't met.
3616 : *
3617 : * Similar to remap_pfn_range() (see mm/memory.c)
3618 : */
3619 0 : int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3620 : unsigned long pgoff)
3621 : {
3622 0 : return remap_vmalloc_range_partial(vma, vma->vm_start,
3623 : addr, pgoff,
3624 0 : vma->vm_end - vma->vm_start);
3625 : }
3626 : EXPORT_SYMBOL(remap_vmalloc_range);
3627 :
3628 0 : void free_vm_area(struct vm_struct *area)
3629 : {
3630 : struct vm_struct *ret;
3631 0 : ret = remove_vm_area(area->addr);
3632 0 : BUG_ON(ret != area);
3633 0 : kfree(area);
3634 0 : }
3635 : EXPORT_SYMBOL_GPL(free_vm_area);
3636 :
3637 : #ifdef CONFIG_SMP
3638 : static struct vmap_area *node_to_va(struct rb_node *n)
3639 : {
3640 : return rb_entry_safe(n, struct vmap_area, rb_node);
3641 : }
3642 :
3643 : /**
3644 : * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3645 : * @addr: target address
3646 : *
3647 : * Returns: vmap_area if it is found. If there is no such area
3648 : * the first highest(reverse order) vmap_area is returned
3649 : * i.e. va->va_start < addr && va->va_end < addr or NULL
3650 : * if there are no any areas before @addr.
3651 : */
3652 : static struct vmap_area *
3653 : pvm_find_va_enclose_addr(unsigned long addr)
3654 : {
3655 : struct vmap_area *va, *tmp;
3656 : struct rb_node *n;
3657 :
3658 : n = free_vmap_area_root.rb_node;
3659 : va = NULL;
3660 :
3661 : while (n) {
3662 : tmp = rb_entry(n, struct vmap_area, rb_node);
3663 : if (tmp->va_start <= addr) {
3664 : va = tmp;
3665 : if (tmp->va_end >= addr)
3666 : break;
3667 :
3668 : n = n->rb_right;
3669 : } else {
3670 : n = n->rb_left;
3671 : }
3672 : }
3673 :
3674 : return va;
3675 : }
3676 :
3677 : /**
3678 : * pvm_determine_end_from_reverse - find the highest aligned address
3679 : * of free block below VMALLOC_END
3680 : * @va:
3681 : * in - the VA we start the search(reverse order);
3682 : * out - the VA with the highest aligned end address.
3683 : * @align: alignment for required highest address
3684 : *
3685 : * Returns: determined end address within vmap_area
3686 : */
3687 : static unsigned long
3688 : pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3689 : {
3690 : unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3691 : unsigned long addr;
3692 :
3693 : if (likely(*va)) {
3694 : list_for_each_entry_from_reverse((*va),
3695 : &free_vmap_area_list, list) {
3696 : addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3697 : if ((*va)->va_start < addr)
3698 : return addr;
3699 : }
3700 : }
3701 :
3702 : return 0;
3703 : }
3704 :
3705 : /**
3706 : * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3707 : * @offsets: array containing offset of each area
3708 : * @sizes: array containing size of each area
3709 : * @nr_vms: the number of areas to allocate
3710 : * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3711 : *
3712 : * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3713 : * vm_structs on success, %NULL on failure
3714 : *
3715 : * Percpu allocator wants to use congruent vm areas so that it can
3716 : * maintain the offsets among percpu areas. This function allocates
3717 : * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3718 : * be scattered pretty far, distance between two areas easily going up
3719 : * to gigabytes. To avoid interacting with regular vmallocs, these
3720 : * areas are allocated from top.
3721 : *
3722 : * Despite its complicated look, this allocator is rather simple. It
3723 : * does everything top-down and scans free blocks from the end looking
3724 : * for matching base. While scanning, if any of the areas do not fit the
3725 : * base address is pulled down to fit the area. Scanning is repeated till
3726 : * all the areas fit and then all necessary data structures are inserted
3727 : * and the result is returned.
3728 : */
3729 : struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3730 : const size_t *sizes, int nr_vms,
3731 : size_t align)
3732 : {
3733 : const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3734 : const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3735 : struct vmap_area **vas, *va;
3736 : struct vm_struct **vms;
3737 : int area, area2, last_area, term_area;
3738 : unsigned long base, start, size, end, last_end, orig_start, orig_end;
3739 : bool purged = false;
3740 : enum fit_type type;
3741 :
3742 : /* verify parameters and allocate data structures */
3743 : BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3744 : for (last_area = 0, area = 0; area < nr_vms; area++) {
3745 : start = offsets[area];
3746 : end = start + sizes[area];
3747 :
3748 : /* is everything aligned properly? */
3749 : BUG_ON(!IS_ALIGNED(offsets[area], align));
3750 : BUG_ON(!IS_ALIGNED(sizes[area], align));
3751 :
3752 : /* detect the area with the highest address */
3753 : if (start > offsets[last_area])
3754 : last_area = area;
3755 :
3756 : for (area2 = area + 1; area2 < nr_vms; area2++) {
3757 : unsigned long start2 = offsets[area2];
3758 : unsigned long end2 = start2 + sizes[area2];
3759 :
3760 : BUG_ON(start2 < end && start < end2);
3761 : }
3762 : }
3763 : last_end = offsets[last_area] + sizes[last_area];
3764 :
3765 : if (vmalloc_end - vmalloc_start < last_end) {
3766 : WARN_ON(true);
3767 : return NULL;
3768 : }
3769 :
3770 : vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3771 : vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3772 : if (!vas || !vms)
3773 : goto err_free2;
3774 :
3775 : for (area = 0; area < nr_vms; area++) {
3776 : vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3777 : vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3778 : if (!vas[area] || !vms[area])
3779 : goto err_free;
3780 : }
3781 : retry:
3782 : spin_lock(&free_vmap_area_lock);
3783 :
3784 : /* start scanning - we scan from the top, begin with the last area */
3785 : area = term_area = last_area;
3786 : start = offsets[area];
3787 : end = start + sizes[area];
3788 :
3789 : va = pvm_find_va_enclose_addr(vmalloc_end);
3790 : base = pvm_determine_end_from_reverse(&va, align) - end;
3791 :
3792 : while (true) {
3793 : /*
3794 : * base might have underflowed, add last_end before
3795 : * comparing.
3796 : */
3797 : if (base + last_end < vmalloc_start + last_end)
3798 : goto overflow;
3799 :
3800 : /*
3801 : * Fitting base has not been found.
3802 : */
3803 : if (va == NULL)
3804 : goto overflow;
3805 :
3806 : /*
3807 : * If required width exceeds current VA block, move
3808 : * base downwards and then recheck.
3809 : */
3810 : if (base + end > va->va_end) {
3811 : base = pvm_determine_end_from_reverse(&va, align) - end;
3812 : term_area = area;
3813 : continue;
3814 : }
3815 :
3816 : /*
3817 : * If this VA does not fit, move base downwards and recheck.
3818 : */
3819 : if (base + start < va->va_start) {
3820 : va = node_to_va(rb_prev(&va->rb_node));
3821 : base = pvm_determine_end_from_reverse(&va, align) - end;
3822 : term_area = area;
3823 : continue;
3824 : }
3825 :
3826 : /*
3827 : * This area fits, move on to the previous one. If
3828 : * the previous one is the terminal one, we're done.
3829 : */
3830 : area = (area + nr_vms - 1) % nr_vms;
3831 : if (area == term_area)
3832 : break;
3833 :
3834 : start = offsets[area];
3835 : end = start + sizes[area];
3836 : va = pvm_find_va_enclose_addr(base + end);
3837 : }
3838 :
3839 : /* we've found a fitting base, insert all va's */
3840 : for (area = 0; area < nr_vms; area++) {
3841 : int ret;
3842 :
3843 : start = base + offsets[area];
3844 : size = sizes[area];
3845 :
3846 : va = pvm_find_va_enclose_addr(start);
3847 : if (WARN_ON_ONCE(va == NULL))
3848 : /* It is a BUG(), but trigger recovery instead. */
3849 : goto recovery;
3850 :
3851 : type = classify_va_fit_type(va, start, size);
3852 : if (WARN_ON_ONCE(type == NOTHING_FIT))
3853 : /* It is a BUG(), but trigger recovery instead. */
3854 : goto recovery;
3855 :
3856 : ret = adjust_va_to_fit_type(va, start, size, type);
3857 : if (unlikely(ret))
3858 : goto recovery;
3859 :
3860 : /* Allocated area. */
3861 : va = vas[area];
3862 : va->va_start = start;
3863 : va->va_end = start + size;
3864 : }
3865 :
3866 : spin_unlock(&free_vmap_area_lock);
3867 :
3868 : /* populate the kasan shadow space */
3869 : for (area = 0; area < nr_vms; area++) {
3870 : if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3871 : goto err_free_shadow;
3872 : }
3873 :
3874 : /* insert all vm's */
3875 : spin_lock(&vmap_area_lock);
3876 : for (area = 0; area < nr_vms; area++) {
3877 : insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3878 :
3879 : setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3880 : pcpu_get_vm_areas);
3881 : }
3882 : spin_unlock(&vmap_area_lock);
3883 :
3884 : /*
3885 : * Mark allocated areas as accessible. Do it now as a best-effort
3886 : * approach, as they can be mapped outside of vmalloc code.
3887 : * With hardware tag-based KASAN, marking is skipped for
3888 : * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3889 : */
3890 : for (area = 0; area < nr_vms; area++)
3891 : vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3892 : vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3893 :
3894 : kfree(vas);
3895 : return vms;
3896 :
3897 : recovery:
3898 : /*
3899 : * Remove previously allocated areas. There is no
3900 : * need in removing these areas from the busy tree,
3901 : * because they are inserted only on the final step
3902 : * and when pcpu_get_vm_areas() is success.
3903 : */
3904 : while (area--) {
3905 : orig_start = vas[area]->va_start;
3906 : orig_end = vas[area]->va_end;
3907 : va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3908 : &free_vmap_area_list);
3909 : if (va)
3910 : kasan_release_vmalloc(orig_start, orig_end,
3911 : va->va_start, va->va_end);
3912 : vas[area] = NULL;
3913 : }
3914 :
3915 : overflow:
3916 : spin_unlock(&free_vmap_area_lock);
3917 : if (!purged) {
3918 : purge_vmap_area_lazy();
3919 : purged = true;
3920 :
3921 : /* Before "retry", check if we recover. */
3922 : for (area = 0; area < nr_vms; area++) {
3923 : if (vas[area])
3924 : continue;
3925 :
3926 : vas[area] = kmem_cache_zalloc(
3927 : vmap_area_cachep, GFP_KERNEL);
3928 : if (!vas[area])
3929 : goto err_free;
3930 : }
3931 :
3932 : goto retry;
3933 : }
3934 :
3935 : err_free:
3936 : for (area = 0; area < nr_vms; area++) {
3937 : if (vas[area])
3938 : kmem_cache_free(vmap_area_cachep, vas[area]);
3939 :
3940 : kfree(vms[area]);
3941 : }
3942 : err_free2:
3943 : kfree(vas);
3944 : kfree(vms);
3945 : return NULL;
3946 :
3947 : err_free_shadow:
3948 : spin_lock(&free_vmap_area_lock);
3949 : /*
3950 : * We release all the vmalloc shadows, even the ones for regions that
3951 : * hadn't been successfully added. This relies on kasan_release_vmalloc
3952 : * being able to tolerate this case.
3953 : */
3954 : for (area = 0; area < nr_vms; area++) {
3955 : orig_start = vas[area]->va_start;
3956 : orig_end = vas[area]->va_end;
3957 : va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3958 : &free_vmap_area_list);
3959 : if (va)
3960 : kasan_release_vmalloc(orig_start, orig_end,
3961 : va->va_start, va->va_end);
3962 : vas[area] = NULL;
3963 : kfree(vms[area]);
3964 : }
3965 : spin_unlock(&free_vmap_area_lock);
3966 : kfree(vas);
3967 : kfree(vms);
3968 : return NULL;
3969 : }
3970 :
3971 : /**
3972 : * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3973 : * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3974 : * @nr_vms: the number of allocated areas
3975 : *
3976 : * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3977 : */
3978 : void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3979 : {
3980 : int i;
3981 :
3982 : for (i = 0; i < nr_vms; i++)
3983 : free_vm_area(vms[i]);
3984 : kfree(vms);
3985 : }
3986 : #endif /* CONFIG_SMP */
3987 :
3988 : #ifdef CONFIG_PRINTK
3989 0 : bool vmalloc_dump_obj(void *object)
3990 : {
3991 : struct vm_struct *vm;
3992 0 : void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3993 :
3994 0 : vm = find_vm_area(objp);
3995 0 : if (!vm)
3996 : return false;
3997 0 : pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3998 : vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3999 0 : return true;
4000 : }
4001 : #endif
4002 :
4003 : #ifdef CONFIG_PROC_FS
4004 0 : static void *s_start(struct seq_file *m, loff_t *pos)
4005 : __acquires(&vmap_purge_lock)
4006 : __acquires(&vmap_area_lock)
4007 : {
4008 0 : mutex_lock(&vmap_purge_lock);
4009 0 : spin_lock(&vmap_area_lock);
4010 :
4011 0 : return seq_list_start(&vmap_area_list, *pos);
4012 : }
4013 :
4014 0 : static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4015 : {
4016 0 : return seq_list_next(p, &vmap_area_list, pos);
4017 : }
4018 :
4019 0 : static void s_stop(struct seq_file *m, void *p)
4020 : __releases(&vmap_area_lock)
4021 : __releases(&vmap_purge_lock)
4022 : {
4023 0 : spin_unlock(&vmap_area_lock);
4024 0 : mutex_unlock(&vmap_purge_lock);
4025 0 : }
4026 :
4027 : static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4028 : {
4029 : if (IS_ENABLED(CONFIG_NUMA)) {
4030 : unsigned int nr, *counters = m->private;
4031 : unsigned int step = 1U << vm_area_page_order(v);
4032 :
4033 : if (!counters)
4034 : return;
4035 :
4036 : if (v->flags & VM_UNINITIALIZED)
4037 : return;
4038 : /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4039 : smp_rmb();
4040 :
4041 : memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4042 :
4043 : for (nr = 0; nr < v->nr_pages; nr += step)
4044 : counters[page_to_nid(v->pages[nr])] += step;
4045 : for_each_node_state(nr, N_HIGH_MEMORY)
4046 : if (counters[nr])
4047 : seq_printf(m, " N%u=%u", nr, counters[nr]);
4048 : }
4049 : }
4050 :
4051 0 : static void show_purge_info(struct seq_file *m)
4052 : {
4053 : struct vmap_area *va;
4054 :
4055 0 : spin_lock(&purge_vmap_area_lock);
4056 0 : list_for_each_entry(va, &purge_vmap_area_list, list) {
4057 0 : seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4058 : (void *)va->va_start, (void *)va->va_end,
4059 0 : va->va_end - va->va_start);
4060 : }
4061 0 : spin_unlock(&purge_vmap_area_lock);
4062 0 : }
4063 :
4064 0 : static int s_show(struct seq_file *m, void *p)
4065 : {
4066 : struct vmap_area *va;
4067 : struct vm_struct *v;
4068 :
4069 0 : va = list_entry(p, struct vmap_area, list);
4070 :
4071 : /*
4072 : * s_show can encounter race with remove_vm_area, !vm on behalf
4073 : * of vmap area is being tear down or vm_map_ram allocation.
4074 : */
4075 0 : if (!va->vm) {
4076 0 : seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4077 : (void *)va->va_start, (void *)va->va_end,
4078 0 : va->va_end - va->va_start);
4079 :
4080 0 : goto final;
4081 : }
4082 :
4083 0 : v = va->vm;
4084 :
4085 0 : seq_printf(m, "0x%pK-0x%pK %7ld",
4086 0 : v->addr, v->addr + v->size, v->size);
4087 :
4088 0 : if (v->caller)
4089 0 : seq_printf(m, " %pS", v->caller);
4090 :
4091 0 : if (v->nr_pages)
4092 0 : seq_printf(m, " pages=%d", v->nr_pages);
4093 :
4094 0 : if (v->phys_addr)
4095 0 : seq_printf(m, " phys=%pa", &v->phys_addr);
4096 :
4097 0 : if (v->flags & VM_IOREMAP)
4098 0 : seq_puts(m, " ioremap");
4099 :
4100 0 : if (v->flags & VM_ALLOC)
4101 0 : seq_puts(m, " vmalloc");
4102 :
4103 0 : if (v->flags & VM_MAP)
4104 0 : seq_puts(m, " vmap");
4105 :
4106 0 : if (v->flags & VM_USERMAP)
4107 0 : seq_puts(m, " user");
4108 :
4109 0 : if (v->flags & VM_DMA_COHERENT)
4110 0 : seq_puts(m, " dma-coherent");
4111 :
4112 0 : if (is_vmalloc_addr(v->pages))
4113 0 : seq_puts(m, " vpages");
4114 :
4115 0 : show_numa_info(m, v);
4116 0 : seq_putc(m, '\n');
4117 :
4118 : /*
4119 : * As a final step, dump "unpurged" areas.
4120 : */
4121 : final:
4122 0 : if (list_is_last(&va->list, &vmap_area_list))
4123 0 : show_purge_info(m);
4124 :
4125 0 : return 0;
4126 : }
4127 :
4128 : static const struct seq_operations vmalloc_op = {
4129 : .start = s_start,
4130 : .next = s_next,
4131 : .stop = s_stop,
4132 : .show = s_show,
4133 : };
4134 :
4135 1 : static int __init proc_vmalloc_init(void)
4136 : {
4137 : if (IS_ENABLED(CONFIG_NUMA))
4138 : proc_create_seq_private("vmallocinfo", 0400, NULL,
4139 : &vmalloc_op,
4140 : nr_node_ids * sizeof(unsigned int), NULL);
4141 : else
4142 1 : proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4143 1 : return 0;
4144 : }
4145 : module_init(proc_vmalloc_init);
4146 :
4147 : #endif
|