LCOV - code coverage report
Current view: top level - mm - vmscan.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 66 1209 5.5 %
Date: 2022-12-09 01:23:36 Functions: 8 60 13.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
       4             :  *
       5             :  *  Swap reorganised 29.12.95, Stephen Tweedie.
       6             :  *  kswapd added: 7.1.96  sct
       7             :  *  Removed kswapd_ctl limits, and swap out as many pages as needed
       8             :  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
       9             :  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
      10             :  *  Multiqueue VM started 5.8.00, Rik van Riel.
      11             :  */
      12             : 
      13             : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      14             : 
      15             : #include <linux/mm.h>
      16             : #include <linux/sched/mm.h>
      17             : #include <linux/module.h>
      18             : #include <linux/gfp.h>
      19             : #include <linux/kernel_stat.h>
      20             : #include <linux/swap.h>
      21             : #include <linux/pagemap.h>
      22             : #include <linux/init.h>
      23             : #include <linux/highmem.h>
      24             : #include <linux/vmpressure.h>
      25             : #include <linux/vmstat.h>
      26             : #include <linux/file.h>
      27             : #include <linux/writeback.h>
      28             : #include <linux/blkdev.h>
      29             : #include <linux/buffer_head.h>    /* for try_to_release_page(),
      30             :                                         buffer_heads_over_limit */
      31             : #include <linux/mm_inline.h>
      32             : #include <linux/backing-dev.h>
      33             : #include <linux/rmap.h>
      34             : #include <linux/topology.h>
      35             : #include <linux/cpu.h>
      36             : #include <linux/cpuset.h>
      37             : #include <linux/compaction.h>
      38             : #include <linux/notifier.h>
      39             : #include <linux/rwsem.h>
      40             : #include <linux/delay.h>
      41             : #include <linux/kthread.h>
      42             : #include <linux/freezer.h>
      43             : #include <linux/memcontrol.h>
      44             : #include <linux/migrate.h>
      45             : #include <linux/delayacct.h>
      46             : #include <linux/sysctl.h>
      47             : #include <linux/oom.h>
      48             : #include <linux/pagevec.h>
      49             : #include <linux/prefetch.h>
      50             : #include <linux/printk.h>
      51             : #include <linux/dax.h>
      52             : #include <linux/psi.h>
      53             : 
      54             : #include <asm/tlbflush.h>
      55             : #include <asm/div64.h>
      56             : 
      57             : #include <linux/swapops.h>
      58             : #include <linux/balloon_compaction.h>
      59             : #include <linux/sched/sysctl.h>
      60             : 
      61             : #include "internal.h"
      62             : 
      63             : #define CREATE_TRACE_POINTS
      64             : #include <trace/events/vmscan.h>
      65             : 
      66             : struct scan_control {
      67             :         /* How many pages shrink_list() should reclaim */
      68             :         unsigned long nr_to_reclaim;
      69             : 
      70             :         /*
      71             :          * Nodemask of nodes allowed by the caller. If NULL, all nodes
      72             :          * are scanned.
      73             :          */
      74             :         nodemask_t      *nodemask;
      75             : 
      76             :         /*
      77             :          * The memory cgroup that hit its limit and as a result is the
      78             :          * primary target of this reclaim invocation.
      79             :          */
      80             :         struct mem_cgroup *target_mem_cgroup;
      81             : 
      82             :         /*
      83             :          * Scan pressure balancing between anon and file LRUs
      84             :          */
      85             :         unsigned long   anon_cost;
      86             :         unsigned long   file_cost;
      87             : 
      88             :         /* Can active pages be deactivated as part of reclaim? */
      89             : #define DEACTIVATE_ANON 1
      90             : #define DEACTIVATE_FILE 2
      91             :         unsigned int may_deactivate:2;
      92             :         unsigned int force_deactivate:1;
      93             :         unsigned int skipped_deactivate:1;
      94             : 
      95             :         /* Writepage batching in laptop mode; RECLAIM_WRITE */
      96             :         unsigned int may_writepage:1;
      97             : 
      98             :         /* Can mapped pages be reclaimed? */
      99             :         unsigned int may_unmap:1;
     100             : 
     101             :         /* Can pages be swapped as part of reclaim? */
     102             :         unsigned int may_swap:1;
     103             : 
     104             :         /*
     105             :          * Cgroup memory below memory.low is protected as long as we
     106             :          * don't threaten to OOM. If any cgroup is reclaimed at
     107             :          * reduced force or passed over entirely due to its memory.low
     108             :          * setting (memcg_low_skipped), and nothing is reclaimed as a
     109             :          * result, then go back for one more cycle that reclaims the protected
     110             :          * memory (memcg_low_reclaim) to avert OOM.
     111             :          */
     112             :         unsigned int memcg_low_reclaim:1;
     113             :         unsigned int memcg_low_skipped:1;
     114             : 
     115             :         unsigned int hibernation_mode:1;
     116             : 
     117             :         /* One of the zones is ready for compaction */
     118             :         unsigned int compaction_ready:1;
     119             : 
     120             :         /* There is easily reclaimable cold cache in the current node */
     121             :         unsigned int cache_trim_mode:1;
     122             : 
     123             :         /* The file pages on the current node are dangerously low */
     124             :         unsigned int file_is_tiny:1;
     125             : 
     126             :         /* Always discard instead of demoting to lower tier memory */
     127             :         unsigned int no_demotion:1;
     128             : 
     129             :         /* Allocation order */
     130             :         s8 order;
     131             : 
     132             :         /* Scan (total_size >> priority) pages at once */
     133             :         s8 priority;
     134             : 
     135             :         /* The highest zone to isolate pages for reclaim from */
     136             :         s8 reclaim_idx;
     137             : 
     138             :         /* This context's GFP mask */
     139             :         gfp_t gfp_mask;
     140             : 
     141             :         /* Incremented by the number of inactive pages that were scanned */
     142             :         unsigned long nr_scanned;
     143             : 
     144             :         /* Number of pages freed so far during a call to shrink_zones() */
     145             :         unsigned long nr_reclaimed;
     146             : 
     147             :         struct {
     148             :                 unsigned int dirty;
     149             :                 unsigned int unqueued_dirty;
     150             :                 unsigned int congested;
     151             :                 unsigned int writeback;
     152             :                 unsigned int immediate;
     153             :                 unsigned int file_taken;
     154             :                 unsigned int taken;
     155             :         } nr;
     156             : 
     157             :         /* for recording the reclaimed slab by now */
     158             :         struct reclaim_state reclaim_state;
     159             : };
     160             : 
     161             : #ifdef ARCH_HAS_PREFETCHW
     162             : #define prefetchw_prev_lru_page(_page, _base, _field)                   \
     163             :         do {                                                            \
     164             :                 if ((_page)->lru.prev != _base) {                    \
     165             :                         struct page *prev;                              \
     166             :                                                                         \
     167             :                         prev = lru_to_page(&(_page->lru));               \
     168             :                         prefetchw(&prev->_field);                        \
     169             :                 }                                                       \
     170             :         } while (0)
     171             : #else
     172             : #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
     173             : #endif
     174             : 
     175             : /*
     176             :  * From 0 .. 200.  Higher means more swappy.
     177             :  */
     178             : int vm_swappiness = 60;
     179             : 
     180           0 : static void set_task_reclaim_state(struct task_struct *task,
     181             :                                    struct reclaim_state *rs)
     182             : {
     183             :         /* Check for an overwrite */
     184           0 :         WARN_ON_ONCE(rs && task->reclaim_state);
     185             : 
     186             :         /* Check for the nulling of an already-nulled member */
     187           0 :         WARN_ON_ONCE(!rs && !task->reclaim_state);
     188             : 
     189           0 :         task->reclaim_state = rs;
     190           0 : }
     191             : 
     192             : static LIST_HEAD(shrinker_list);
     193             : static DECLARE_RWSEM(shrinker_rwsem);
     194             : 
     195             : #ifdef CONFIG_MEMCG
     196             : static int shrinker_nr_max;
     197             : 
     198             : /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
     199             : static inline int shrinker_map_size(int nr_items)
     200             : {
     201             :         return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
     202             : }
     203             : 
     204             : static inline int shrinker_defer_size(int nr_items)
     205             : {
     206             :         return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
     207             : }
     208             : 
     209             : static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
     210             :                                                      int nid)
     211             : {
     212             :         return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
     213             :                                          lockdep_is_held(&shrinker_rwsem));
     214             : }
     215             : 
     216             : static int expand_one_shrinker_info(struct mem_cgroup *memcg,
     217             :                                     int map_size, int defer_size,
     218             :                                     int old_map_size, int old_defer_size)
     219             : {
     220             :         struct shrinker_info *new, *old;
     221             :         struct mem_cgroup_per_node *pn;
     222             :         int nid;
     223             :         int size = map_size + defer_size;
     224             : 
     225             :         for_each_node(nid) {
     226             :                 pn = memcg->nodeinfo[nid];
     227             :                 old = shrinker_info_protected(memcg, nid);
     228             :                 /* Not yet online memcg */
     229             :                 if (!old)
     230             :                         return 0;
     231             : 
     232             :                 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
     233             :                 if (!new)
     234             :                         return -ENOMEM;
     235             : 
     236             :                 new->nr_deferred = (atomic_long_t *)(new + 1);
     237             :                 new->map = (void *)new->nr_deferred + defer_size;
     238             : 
     239             :                 /* map: set all old bits, clear all new bits */
     240             :                 memset(new->map, (int)0xff, old_map_size);
     241             :                 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
     242             :                 /* nr_deferred: copy old values, clear all new values */
     243             :                 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
     244             :                 memset((void *)new->nr_deferred + old_defer_size, 0,
     245             :                        defer_size - old_defer_size);
     246             : 
     247             :                 rcu_assign_pointer(pn->shrinker_info, new);
     248             :                 kvfree_rcu(old, rcu);
     249             :         }
     250             : 
     251             :         return 0;
     252             : }
     253             : 
     254             : void free_shrinker_info(struct mem_cgroup *memcg)
     255             : {
     256             :         struct mem_cgroup_per_node *pn;
     257             :         struct shrinker_info *info;
     258             :         int nid;
     259             : 
     260             :         for_each_node(nid) {
     261             :                 pn = memcg->nodeinfo[nid];
     262             :                 info = rcu_dereference_protected(pn->shrinker_info, true);
     263             :                 kvfree(info);
     264             :                 rcu_assign_pointer(pn->shrinker_info, NULL);
     265             :         }
     266             : }
     267             : 
     268             : int alloc_shrinker_info(struct mem_cgroup *memcg)
     269             : {
     270             :         struct shrinker_info *info;
     271             :         int nid, size, ret = 0;
     272             :         int map_size, defer_size = 0;
     273             : 
     274             :         down_write(&shrinker_rwsem);
     275             :         map_size = shrinker_map_size(shrinker_nr_max);
     276             :         defer_size = shrinker_defer_size(shrinker_nr_max);
     277             :         size = map_size + defer_size;
     278             :         for_each_node(nid) {
     279             :                 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
     280             :                 if (!info) {
     281             :                         free_shrinker_info(memcg);
     282             :                         ret = -ENOMEM;
     283             :                         break;
     284             :                 }
     285             :                 info->nr_deferred = (atomic_long_t *)(info + 1);
     286             :                 info->map = (void *)info->nr_deferred + defer_size;
     287             :                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
     288             :         }
     289             :         up_write(&shrinker_rwsem);
     290             : 
     291             :         return ret;
     292             : }
     293             : 
     294             : static inline bool need_expand(int nr_max)
     295             : {
     296             :         return round_up(nr_max, BITS_PER_LONG) >
     297             :                round_up(shrinker_nr_max, BITS_PER_LONG);
     298             : }
     299             : 
     300             : static int expand_shrinker_info(int new_id)
     301             : {
     302             :         int ret = 0;
     303             :         int new_nr_max = new_id + 1;
     304             :         int map_size, defer_size = 0;
     305             :         int old_map_size, old_defer_size = 0;
     306             :         struct mem_cgroup *memcg;
     307             : 
     308             :         if (!need_expand(new_nr_max))
     309             :                 goto out;
     310             : 
     311             :         if (!root_mem_cgroup)
     312             :                 goto out;
     313             : 
     314             :         lockdep_assert_held(&shrinker_rwsem);
     315             : 
     316             :         map_size = shrinker_map_size(new_nr_max);
     317             :         defer_size = shrinker_defer_size(new_nr_max);
     318             :         old_map_size = shrinker_map_size(shrinker_nr_max);
     319             :         old_defer_size = shrinker_defer_size(shrinker_nr_max);
     320             : 
     321             :         memcg = mem_cgroup_iter(NULL, NULL, NULL);
     322             :         do {
     323             :                 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
     324             :                                                old_map_size, old_defer_size);
     325             :                 if (ret) {
     326             :                         mem_cgroup_iter_break(NULL, memcg);
     327             :                         goto out;
     328             :                 }
     329             :         } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
     330             : out:
     331             :         if (!ret)
     332             :                 shrinker_nr_max = new_nr_max;
     333             : 
     334             :         return ret;
     335             : }
     336             : 
     337             : void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
     338             : {
     339             :         if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
     340             :                 struct shrinker_info *info;
     341             : 
     342             :                 rcu_read_lock();
     343             :                 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
     344             :                 /* Pairs with smp mb in shrink_slab() */
     345             :                 smp_mb__before_atomic();
     346             :                 set_bit(shrinker_id, info->map);
     347             :                 rcu_read_unlock();
     348             :         }
     349             : }
     350             : 
     351             : static DEFINE_IDR(shrinker_idr);
     352             : 
     353             : static int prealloc_memcg_shrinker(struct shrinker *shrinker)
     354             : {
     355             :         int id, ret = -ENOMEM;
     356             : 
     357             :         if (mem_cgroup_disabled())
     358             :                 return -ENOSYS;
     359             : 
     360             :         down_write(&shrinker_rwsem);
     361             :         /* This may call shrinker, so it must use down_read_trylock() */
     362             :         id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
     363             :         if (id < 0)
     364             :                 goto unlock;
     365             : 
     366             :         if (id >= shrinker_nr_max) {
     367             :                 if (expand_shrinker_info(id)) {
     368             :                         idr_remove(&shrinker_idr, id);
     369             :                         goto unlock;
     370             :                 }
     371             :         }
     372             :         shrinker->id = id;
     373             :         ret = 0;
     374             : unlock:
     375             :         up_write(&shrinker_rwsem);
     376             :         return ret;
     377             : }
     378             : 
     379             : static void unregister_memcg_shrinker(struct shrinker *shrinker)
     380             : {
     381             :         int id = shrinker->id;
     382             : 
     383             :         BUG_ON(id < 0);
     384             : 
     385             :         lockdep_assert_held(&shrinker_rwsem);
     386             : 
     387             :         idr_remove(&shrinker_idr, id);
     388             : }
     389             : 
     390             : static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
     391             :                                    struct mem_cgroup *memcg)
     392             : {
     393             :         struct shrinker_info *info;
     394             : 
     395             :         info = shrinker_info_protected(memcg, nid);
     396             :         return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
     397             : }
     398             : 
     399             : static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
     400             :                                   struct mem_cgroup *memcg)
     401             : {
     402             :         struct shrinker_info *info;
     403             : 
     404             :         info = shrinker_info_protected(memcg, nid);
     405             :         return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
     406             : }
     407             : 
     408             : void reparent_shrinker_deferred(struct mem_cgroup *memcg)
     409             : {
     410             :         int i, nid;
     411             :         long nr;
     412             :         struct mem_cgroup *parent;
     413             :         struct shrinker_info *child_info, *parent_info;
     414             : 
     415             :         parent = parent_mem_cgroup(memcg);
     416             :         if (!parent)
     417             :                 parent = root_mem_cgroup;
     418             : 
     419             :         /* Prevent from concurrent shrinker_info expand */
     420             :         down_read(&shrinker_rwsem);
     421             :         for_each_node(nid) {
     422             :                 child_info = shrinker_info_protected(memcg, nid);
     423             :                 parent_info = shrinker_info_protected(parent, nid);
     424             :                 for (i = 0; i < shrinker_nr_max; i++) {
     425             :                         nr = atomic_long_read(&child_info->nr_deferred[i]);
     426             :                         atomic_long_add(nr, &parent_info->nr_deferred[i]);
     427             :                 }
     428             :         }
     429             :         up_read(&shrinker_rwsem);
     430             : }
     431             : 
     432             : static bool cgroup_reclaim(struct scan_control *sc)
     433             : {
     434             :         return sc->target_mem_cgroup;
     435             : }
     436             : 
     437             : /**
     438             :  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
     439             :  * @sc: scan_control in question
     440             :  *
     441             :  * The normal page dirty throttling mechanism in balance_dirty_pages() is
     442             :  * completely broken with the legacy memcg and direct stalling in
     443             :  * shrink_page_list() is used for throttling instead, which lacks all the
     444             :  * niceties such as fairness, adaptive pausing, bandwidth proportional
     445             :  * allocation and configurability.
     446             :  *
     447             :  * This function tests whether the vmscan currently in progress can assume
     448             :  * that the normal dirty throttling mechanism is operational.
     449             :  */
     450             : static bool writeback_throttling_sane(struct scan_control *sc)
     451             : {
     452             :         if (!cgroup_reclaim(sc))
     453             :                 return true;
     454             : #ifdef CONFIG_CGROUP_WRITEBACK
     455             :         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
     456             :                 return true;
     457             : #endif
     458             :         return false;
     459             : }
     460             : #else
     461             : static int prealloc_memcg_shrinker(struct shrinker *shrinker)
     462             : {
     463             :         return -ENOSYS;
     464             : }
     465             : 
     466             : static void unregister_memcg_shrinker(struct shrinker *shrinker)
     467             : {
     468             : }
     469             : 
     470             : static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
     471             :                                    struct mem_cgroup *memcg)
     472             : {
     473             :         return 0;
     474             : }
     475             : 
     476             : static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
     477             :                                   struct mem_cgroup *memcg)
     478             : {
     479             :         return 0;
     480             : }
     481             : 
     482             : static bool cgroup_reclaim(struct scan_control *sc)
     483             : {
     484             :         return false;
     485             : }
     486             : 
     487             : static bool writeback_throttling_sane(struct scan_control *sc)
     488             : {
     489             :         return true;
     490             : }
     491             : #endif
     492             : 
     493             : static long xchg_nr_deferred(struct shrinker *shrinker,
     494             :                              struct shrink_control *sc)
     495             : {
     496           0 :         int nid = sc->nid;
     497             : 
     498           0 :         if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
     499           0 :                 nid = 0;
     500             : 
     501           0 :         if (sc->memcg &&
     502           0 :             (shrinker->flags & SHRINKER_MEMCG_AWARE))
     503             :                 return xchg_nr_deferred_memcg(nid, shrinker,
     504             :                                               sc->memcg);
     505             : 
     506           0 :         return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
     507             : }
     508             : 
     509             : 
     510             : static long add_nr_deferred(long nr, struct shrinker *shrinker,
     511             :                             struct shrink_control *sc)
     512             : {
     513           0 :         int nid = sc->nid;
     514             : 
     515           0 :         if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
     516           0 :                 nid = 0;
     517             : 
     518           0 :         if (sc->memcg &&
     519           0 :             (shrinker->flags & SHRINKER_MEMCG_AWARE))
     520             :                 return add_nr_deferred_memcg(nr, nid, shrinker,
     521             :                                              sc->memcg);
     522             : 
     523           0 :         return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
     524             : }
     525             : 
     526           0 : static bool can_demote(int nid, struct scan_control *sc)
     527             : {
     528           0 :         if (!numa_demotion_enabled)
     529             :                 return false;
     530           0 :         if (sc) {
     531           0 :                 if (sc->no_demotion)
     532             :                         return false;
     533             :                 /* It is pointless to do demotion in memcg reclaim */
     534             :                 if (cgroup_reclaim(sc))
     535             :                         return false;
     536             :         }
     537           0 :         if (next_demotion_node(nid) == NUMA_NO_NODE)
     538             :                 return false;
     539             : 
     540           0 :         return true;
     541             : }
     542             : 
     543             : static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
     544             :                                           int nid,
     545             :                                           struct scan_control *sc)
     546             : {
     547             :         if (memcg == NULL) {
     548             :                 /*
     549             :                  * For non-memcg reclaim, is there
     550             :                  * space in any swap device?
     551             :                  */
     552           0 :                 if (get_nr_swap_pages() > 0)
     553             :                         return true;
     554             :         } else {
     555             :                 /* Is the memcg below its swap limit? */
     556             :                 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
     557             :                         return true;
     558             :         }
     559             : 
     560             :         /*
     561             :          * The page can not be swapped.
     562             :          *
     563             :          * Can it be reclaimed from this node via demotion?
     564             :          */
     565           0 :         return can_demote(nid, sc);
     566             : }
     567             : 
     568             : /*
     569             :  * This misses isolated pages which are not accounted for to save counters.
     570             :  * As the data only determines if reclaim or compaction continues, it is
     571             :  * not expected that isolated pages will be a dominating factor.
     572             :  */
     573           0 : unsigned long zone_reclaimable_pages(struct zone *zone)
     574             : {
     575             :         unsigned long nr;
     576             : 
     577           0 :         nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
     578           0 :                 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
     579           0 :         if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
     580           0 :                 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
     581           0 :                         zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
     582             : 
     583           0 :         return nr;
     584             : }
     585             : 
     586             : /**
     587             :  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
     588             :  * @lruvec: lru vector
     589             :  * @lru: lru to use
     590             :  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
     591             :  */
     592             : static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
     593             :                                      int zone_idx)
     594             : {
     595             :         unsigned long size = 0;
     596             :         int zid;
     597             : 
     598           0 :         for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
     599           0 :                 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
     600             : 
     601           0 :                 if (!managed_zone(zone))
     602           0 :                         continue;
     603             : 
     604             :                 if (!mem_cgroup_disabled())
     605             :                         size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
     606             :                 else
     607           0 :                         size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
     608             :         }
     609             :         return size;
     610             : }
     611             : 
     612             : /*
     613             :  * Add a shrinker callback to be called from the vm.
     614             :  */
     615          11 : int prealloc_shrinker(struct shrinker *shrinker)
     616             : {
     617             :         unsigned int size;
     618             :         int err;
     619             : 
     620          11 :         if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
     621          11 :                 err = prealloc_memcg_shrinker(shrinker);
     622             :                 if (err != -ENOSYS)
     623             :                         return err;
     624             : 
     625          11 :                 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
     626             :         }
     627             : 
     628          11 :         size = sizeof(*shrinker->nr_deferred);
     629             :         if (shrinker->flags & SHRINKER_NUMA_AWARE)
     630             :                 size *= nr_node_ids;
     631             : 
     632          11 :         shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
     633          11 :         if (!shrinker->nr_deferred)
     634             :                 return -ENOMEM;
     635             : 
     636          11 :         return 0;
     637             : }
     638             : 
     639           0 : void free_prealloced_shrinker(struct shrinker *shrinker)
     640             : {
     641           0 :         if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
     642           0 :                 down_write(&shrinker_rwsem);
     643           0 :                 unregister_memcg_shrinker(shrinker);
     644           0 :                 up_write(&shrinker_rwsem);
     645           0 :                 return;
     646             :         }
     647             : 
     648           0 :         kfree(shrinker->nr_deferred);
     649           0 :         shrinker->nr_deferred = NULL;
     650             : }
     651             : 
     652          11 : void register_shrinker_prepared(struct shrinker *shrinker)
     653             : {
     654          11 :         down_write(&shrinker_rwsem);
     655          22 :         list_add_tail(&shrinker->list, &shrinker_list);
     656          11 :         shrinker->flags |= SHRINKER_REGISTERED;
     657          11 :         up_write(&shrinker_rwsem);
     658          11 : }
     659             : 
     660           0 : int register_shrinker(struct shrinker *shrinker)
     661             : {
     662           0 :         int err = prealloc_shrinker(shrinker);
     663             : 
     664           0 :         if (err)
     665             :                 return err;
     666           0 :         register_shrinker_prepared(shrinker);
     667           0 :         return 0;
     668             : }
     669             : EXPORT_SYMBOL(register_shrinker);
     670             : 
     671             : /*
     672             :  * Remove one
     673             :  */
     674           0 : void unregister_shrinker(struct shrinker *shrinker)
     675             : {
     676           0 :         if (!(shrinker->flags & SHRINKER_REGISTERED))
     677             :                 return;
     678             : 
     679           0 :         down_write(&shrinker_rwsem);
     680           0 :         list_del(&shrinker->list);
     681           0 :         shrinker->flags &= ~SHRINKER_REGISTERED;
     682             :         if (shrinker->flags & SHRINKER_MEMCG_AWARE)
     683             :                 unregister_memcg_shrinker(shrinker);
     684           0 :         up_write(&shrinker_rwsem);
     685             : 
     686           0 :         kfree(shrinker->nr_deferred);
     687           0 :         shrinker->nr_deferred = NULL;
     688             : }
     689             : EXPORT_SYMBOL(unregister_shrinker);
     690             : 
     691             : /**
     692             :  * synchronize_shrinkers - Wait for all running shrinkers to complete.
     693             :  *
     694             :  * This is equivalent to calling unregister_shrink() and register_shrinker(),
     695             :  * but atomically and with less overhead. This is useful to guarantee that all
     696             :  * shrinker invocations have seen an update, before freeing memory, similar to
     697             :  * rcu.
     698             :  */
     699           0 : void synchronize_shrinkers(void)
     700             : {
     701           0 :         down_write(&shrinker_rwsem);
     702           0 :         up_write(&shrinker_rwsem);
     703           0 : }
     704             : EXPORT_SYMBOL(synchronize_shrinkers);
     705             : 
     706             : #define SHRINK_BATCH 128
     707             : 
     708           0 : static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
     709             :                                     struct shrinker *shrinker, int priority)
     710             : {
     711           0 :         unsigned long freed = 0;
     712             :         unsigned long long delta;
     713             :         long total_scan;
     714             :         long freeable;
     715             :         long nr;
     716             :         long new_nr;
     717           0 :         long batch_size = shrinker->batch ? shrinker->batch
     718           0 :                                           : SHRINK_BATCH;
     719           0 :         long scanned = 0, next_deferred;
     720             : 
     721           0 :         freeable = shrinker->count_objects(shrinker, shrinkctl);
     722           0 :         if (freeable == 0 || freeable == SHRINK_EMPTY)
     723             :                 return freeable;
     724             : 
     725             :         /*
     726             :          * copy the current shrinker scan count into a local variable
     727             :          * and zero it so that other concurrent shrinker invocations
     728             :          * don't also do this scanning work.
     729             :          */
     730           0 :         nr = xchg_nr_deferred(shrinker, shrinkctl);
     731             : 
     732           0 :         if (shrinker->seeks) {
     733           0 :                 delta = freeable >> priority;
     734           0 :                 delta *= 4;
     735           0 :                 do_div(delta, shrinker->seeks);
     736             :         } else {
     737             :                 /*
     738             :                  * These objects don't require any IO to create. Trim
     739             :                  * them aggressively under memory pressure to keep
     740             :                  * them from causing refetches in the IO caches.
     741             :                  */
     742           0 :                 delta = freeable / 2;
     743             :         }
     744             : 
     745           0 :         total_scan = nr >> priority;
     746           0 :         total_scan += delta;
     747           0 :         total_scan = min(total_scan, (2 * freeable));
     748             : 
     749           0 :         trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
     750             :                                    freeable, delta, total_scan, priority);
     751             : 
     752             :         /*
     753             :          * Normally, we should not scan less than batch_size objects in one
     754             :          * pass to avoid too frequent shrinker calls, but if the slab has less
     755             :          * than batch_size objects in total and we are really tight on memory,
     756             :          * we will try to reclaim all available objects, otherwise we can end
     757             :          * up failing allocations although there are plenty of reclaimable
     758             :          * objects spread over several slabs with usage less than the
     759             :          * batch_size.
     760             :          *
     761             :          * We detect the "tight on memory" situations by looking at the total
     762             :          * number of objects we want to scan (total_scan). If it is greater
     763             :          * than the total number of objects on slab (freeable), we must be
     764             :          * scanning at high prio and therefore should try to reclaim as much as
     765             :          * possible.
     766             :          */
     767           0 :         while (total_scan >= batch_size ||
     768           0 :                total_scan >= freeable) {
     769             :                 unsigned long ret;
     770           0 :                 unsigned long nr_to_scan = min(batch_size, total_scan);
     771             : 
     772           0 :                 shrinkctl->nr_to_scan = nr_to_scan;
     773           0 :                 shrinkctl->nr_scanned = nr_to_scan;
     774           0 :                 ret = shrinker->scan_objects(shrinker, shrinkctl);
     775           0 :                 if (ret == SHRINK_STOP)
     776             :                         break;
     777           0 :                 freed += ret;
     778             : 
     779           0 :                 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
     780           0 :                 total_scan -= shrinkctl->nr_scanned;
     781           0 :                 scanned += shrinkctl->nr_scanned;
     782             : 
     783           0 :                 cond_resched();
     784             :         }
     785             : 
     786             :         /*
     787             :          * The deferred work is increased by any new work (delta) that wasn't
     788             :          * done, decreased by old deferred work that was done now.
     789             :          *
     790             :          * And it is capped to two times of the freeable items.
     791             :          */
     792           0 :         next_deferred = max_t(long, (nr + delta - scanned), 0);
     793           0 :         next_deferred = min(next_deferred, (2 * freeable));
     794             : 
     795             :         /*
     796             :          * move the unused scan count back into the shrinker in a
     797             :          * manner that handles concurrent updates.
     798             :          */
     799           0 :         new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
     800             : 
     801           0 :         trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
     802           0 :         return freed;
     803             : }
     804             : 
     805             : #ifdef CONFIG_MEMCG
     806             : static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
     807             :                         struct mem_cgroup *memcg, int priority)
     808             : {
     809             :         struct shrinker_info *info;
     810             :         unsigned long ret, freed = 0;
     811             :         int i;
     812             : 
     813             :         if (!mem_cgroup_online(memcg))
     814             :                 return 0;
     815             : 
     816             :         if (!down_read_trylock(&shrinker_rwsem))
     817             :                 return 0;
     818             : 
     819             :         info = shrinker_info_protected(memcg, nid);
     820             :         if (unlikely(!info))
     821             :                 goto unlock;
     822             : 
     823             :         for_each_set_bit(i, info->map, shrinker_nr_max) {
     824             :                 struct shrink_control sc = {
     825             :                         .gfp_mask = gfp_mask,
     826             :                         .nid = nid,
     827             :                         .memcg = memcg,
     828             :                 };
     829             :                 struct shrinker *shrinker;
     830             : 
     831             :                 shrinker = idr_find(&shrinker_idr, i);
     832             :                 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
     833             :                         if (!shrinker)
     834             :                                 clear_bit(i, info->map);
     835             :                         continue;
     836             :                 }
     837             : 
     838             :                 /* Call non-slab shrinkers even though kmem is disabled */
     839             :                 if (!memcg_kmem_enabled() &&
     840             :                     !(shrinker->flags & SHRINKER_NONSLAB))
     841             :                         continue;
     842             : 
     843             :                 ret = do_shrink_slab(&sc, shrinker, priority);
     844             :                 if (ret == SHRINK_EMPTY) {
     845             :                         clear_bit(i, info->map);
     846             :                         /*
     847             :                          * After the shrinker reported that it had no objects to
     848             :                          * free, but before we cleared the corresponding bit in
     849             :                          * the memcg shrinker map, a new object might have been
     850             :                          * added. To make sure, we have the bit set in this
     851             :                          * case, we invoke the shrinker one more time and reset
     852             :                          * the bit if it reports that it is not empty anymore.
     853             :                          * The memory barrier here pairs with the barrier in
     854             :                          * set_shrinker_bit():
     855             :                          *
     856             :                          * list_lru_add()     shrink_slab_memcg()
     857             :                          *   list_add_tail()    clear_bit()
     858             :                          *   <MB>               <MB>
     859             :                          *   set_bit()          do_shrink_slab()
     860             :                          */
     861             :                         smp_mb__after_atomic();
     862             :                         ret = do_shrink_slab(&sc, shrinker, priority);
     863             :                         if (ret == SHRINK_EMPTY)
     864             :                                 ret = 0;
     865             :                         else
     866             :                                 set_shrinker_bit(memcg, nid, i);
     867             :                 }
     868             :                 freed += ret;
     869             : 
     870             :                 if (rwsem_is_contended(&shrinker_rwsem)) {
     871             :                         freed = freed ? : 1;
     872             :                         break;
     873             :                 }
     874             :         }
     875             : unlock:
     876             :         up_read(&shrinker_rwsem);
     877             :         return freed;
     878             : }
     879             : #else /* CONFIG_MEMCG */
     880             : static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
     881             :                         struct mem_cgroup *memcg, int priority)
     882             : {
     883             :         return 0;
     884             : }
     885             : #endif /* CONFIG_MEMCG */
     886             : 
     887             : /**
     888             :  * shrink_slab - shrink slab caches
     889             :  * @gfp_mask: allocation context
     890             :  * @nid: node whose slab caches to target
     891             :  * @memcg: memory cgroup whose slab caches to target
     892             :  * @priority: the reclaim priority
     893             :  *
     894             :  * Call the shrink functions to age shrinkable caches.
     895             :  *
     896             :  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
     897             :  * unaware shrinkers will receive a node id of 0 instead.
     898             :  *
     899             :  * @memcg specifies the memory cgroup to target. Unaware shrinkers
     900             :  * are called only if it is the root cgroup.
     901             :  *
     902             :  * @priority is sc->priority, we take the number of objects and >> by priority
     903             :  * in order to get the scan target.
     904             :  *
     905             :  * Returns the number of reclaimed slab objects.
     906             :  */
     907           0 : static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
     908             :                                  struct mem_cgroup *memcg,
     909             :                                  int priority)
     910             : {
     911           0 :         unsigned long ret, freed = 0;
     912             :         struct shrinker *shrinker;
     913             : 
     914             :         /*
     915             :          * The root memcg might be allocated even though memcg is disabled
     916             :          * via "cgroup_disable=memory" boot parameter.  This could make
     917             :          * mem_cgroup_is_root() return false, then just run memcg slab
     918             :          * shrink, but skip global shrink.  This may result in premature
     919             :          * oom.
     920             :          */
     921             :         if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
     922             :                 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
     923             : 
     924           0 :         if (!down_read_trylock(&shrinker_rwsem))
     925             :                 goto out;
     926             : 
     927           0 :         list_for_each_entry(shrinker, &shrinker_list, list) {
     928           0 :                 struct shrink_control sc = {
     929             :                         .gfp_mask = gfp_mask,
     930             :                         .nid = nid,
     931             :                         .memcg = memcg,
     932             :                 };
     933             : 
     934           0 :                 ret = do_shrink_slab(&sc, shrinker, priority);
     935           0 :                 if (ret == SHRINK_EMPTY)
     936           0 :                         ret = 0;
     937           0 :                 freed += ret;
     938             :                 /*
     939             :                  * Bail out if someone want to register a new shrinker to
     940             :                  * prevent the registration from being stalled for long periods
     941             :                  * by parallel ongoing shrinking.
     942             :                  */
     943           0 :                 if (rwsem_is_contended(&shrinker_rwsem)) {
     944           0 :                         freed = freed ? : 1;
     945           0 :                         break;
     946             :                 }
     947             :         }
     948             : 
     949           0 :         up_read(&shrinker_rwsem);
     950             : out:
     951           0 :         cond_resched();
     952             :         return freed;
     953             : }
     954             : 
     955           0 : static void drop_slab_node(int nid)
     956             : {
     957             :         unsigned long freed;
     958           0 :         int shift = 0;
     959             : 
     960             :         do {
     961           0 :                 struct mem_cgroup *memcg = NULL;
     962             : 
     963           0 :                 if (fatal_signal_pending(current))
     964             :                         return;
     965             : 
     966           0 :                 freed = 0;
     967           0 :                 memcg = mem_cgroup_iter(NULL, NULL, NULL);
     968             :                 do {
     969           0 :                         freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
     970           0 :                 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
     971           0 :         } while ((freed >> shift++) > 1);
     972             : }
     973             : 
     974           0 : void drop_slab(void)
     975             : {
     976             :         int nid;
     977             : 
     978           0 :         for_each_online_node(nid)
     979           0 :                 drop_slab_node(nid);
     980           0 : }
     981             : 
     982             : static inline int is_page_cache_freeable(struct folio *folio)
     983             : {
     984             :         /*
     985             :          * A freeable page cache page is referenced only by the caller
     986             :          * that isolated the page, the page cache and optional buffer
     987             :          * heads at page->private.
     988             :          */
     989           0 :         return folio_ref_count(folio) - folio_test_private(folio) ==
     990           0 :                 1 + folio_nr_pages(folio);
     991             : }
     992             : 
     993             : /*
     994             :  * We detected a synchronous write error writing a folio out.  Probably
     995             :  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
     996             :  * fsync(), msync() or close().
     997             :  *
     998             :  * The tricky part is that after writepage we cannot touch the mapping: nothing
     999             :  * prevents it from being freed up.  But we have a ref on the folio and once
    1000             :  * that folio is locked, the mapping is pinned.
    1001             :  *
    1002             :  * We're allowed to run sleeping folio_lock() here because we know the caller has
    1003             :  * __GFP_FS.
    1004             :  */
    1005           0 : static void handle_write_error(struct address_space *mapping,
    1006             :                                 struct folio *folio, int error)
    1007             : {
    1008           0 :         folio_lock(folio);
    1009           0 :         if (folio_mapping(folio) == mapping)
    1010           0 :                 mapping_set_error(mapping, error);
    1011           0 :         folio_unlock(folio);
    1012           0 : }
    1013             : 
    1014           0 : static bool skip_throttle_noprogress(pg_data_t *pgdat)
    1015             : {
    1016           0 :         int reclaimable = 0, write_pending = 0;
    1017             :         int i;
    1018             : 
    1019             :         /*
    1020             :          * If kswapd is disabled, reschedule if necessary but do not
    1021             :          * throttle as the system is likely near OOM.
    1022             :          */
    1023           0 :         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
    1024             :                 return true;
    1025             : 
    1026             :         /*
    1027             :          * If there are a lot of dirty/writeback pages then do not
    1028             :          * throttle as throttling will occur when the pages cycle
    1029             :          * towards the end of the LRU if still under writeback.
    1030             :          */
    1031           0 :         for (i = 0; i < MAX_NR_ZONES; i++) {
    1032           0 :                 struct zone *zone = pgdat->node_zones + i;
    1033             : 
    1034           0 :                 if (!populated_zone(zone))
    1035           0 :                         continue;
    1036             : 
    1037           0 :                 reclaimable += zone_reclaimable_pages(zone);
    1038           0 :                 write_pending += zone_page_state_snapshot(zone,
    1039             :                                                   NR_ZONE_WRITE_PENDING);
    1040             :         }
    1041           0 :         if (2 * write_pending <= reclaimable)
    1042             :                 return true;
    1043             : 
    1044           0 :         return false;
    1045             : }
    1046             : 
    1047           0 : void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
    1048             : {
    1049           0 :         wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
    1050             :         long timeout, ret;
    1051           0 :         DEFINE_WAIT(wait);
    1052             : 
    1053             :         /*
    1054             :          * Do not throttle IO workers, kthreads other than kswapd or
    1055             :          * workqueues. They may be required for reclaim to make
    1056             :          * forward progress (e.g. journalling workqueues or kthreads).
    1057             :          */
    1058           0 :         if (!current_is_kswapd() &&
    1059           0 :             current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
    1060           0 :                 cond_resched();
    1061           0 :                 return;
    1062             :         }
    1063             : 
    1064             :         /*
    1065             :          * These figures are pulled out of thin air.
    1066             :          * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
    1067             :          * parallel reclaimers which is a short-lived event so the timeout is
    1068             :          * short. Failing to make progress or waiting on writeback are
    1069             :          * potentially long-lived events so use a longer timeout. This is shaky
    1070             :          * logic as a failure to make progress could be due to anything from
    1071             :          * writeback to a slow device to excessive references pages at the tail
    1072             :          * of the inactive LRU.
    1073             :          */
    1074           0 :         switch(reason) {
    1075             :         case VMSCAN_THROTTLE_WRITEBACK:
    1076           0 :                 timeout = HZ/10;
    1077             : 
    1078           0 :                 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
    1079           0 :                         WRITE_ONCE(pgdat->nr_reclaim_start,
    1080             :                                 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
    1081             :                 }
    1082             : 
    1083             :                 break;
    1084             :         case VMSCAN_THROTTLE_CONGESTED:
    1085             :                 fallthrough;
    1086             :         case VMSCAN_THROTTLE_NOPROGRESS:
    1087           0 :                 if (skip_throttle_noprogress(pgdat)) {
    1088           0 :                         cond_resched();
    1089           0 :                         return;
    1090             :                 }
    1091             : 
    1092             :                 timeout = 1;
    1093             : 
    1094             :                 break;
    1095             :         case VMSCAN_THROTTLE_ISOLATED:
    1096             :                 timeout = HZ/50;
    1097             :                 break;
    1098             :         default:
    1099           0 :                 WARN_ON_ONCE(1);
    1100             :                 timeout = HZ;
    1101             :                 break;
    1102             :         }
    1103             : 
    1104           0 :         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
    1105           0 :         ret = schedule_timeout(timeout);
    1106           0 :         finish_wait(wqh, &wait);
    1107             : 
    1108           0 :         if (reason == VMSCAN_THROTTLE_WRITEBACK)
    1109           0 :                 atomic_dec(&pgdat->nr_writeback_throttled);
    1110             : 
    1111           0 :         trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
    1112           0 :                                 jiffies_to_usecs(timeout - ret),
    1113             :                                 reason);
    1114             : }
    1115             : 
    1116             : /*
    1117             :  * Account for pages written if tasks are throttled waiting on dirty
    1118             :  * pages to clean. If enough pages have been cleaned since throttling
    1119             :  * started then wakeup the throttled tasks.
    1120             :  */
    1121           0 : void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
    1122             :                                                         int nr_throttled)
    1123             : {
    1124             :         unsigned long nr_written;
    1125             : 
    1126           0 :         node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
    1127             : 
    1128             :         /*
    1129             :          * This is an inaccurate read as the per-cpu deltas may not
    1130             :          * be synchronised. However, given that the system is
    1131             :          * writeback throttled, it is not worth taking the penalty
    1132             :          * of getting an accurate count. At worst, the throttle
    1133             :          * timeout guarantees forward progress.
    1134             :          */
    1135           0 :         nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
    1136           0 :                 READ_ONCE(pgdat->nr_reclaim_start);
    1137             : 
    1138           0 :         if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
    1139           0 :                 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
    1140           0 : }
    1141             : 
    1142             : /* possible outcome of pageout() */
    1143             : typedef enum {
    1144             :         /* failed to write page out, page is locked */
    1145             :         PAGE_KEEP,
    1146             :         /* move page to the active list, page is locked */
    1147             :         PAGE_ACTIVATE,
    1148             :         /* page has been sent to the disk successfully, page is unlocked */
    1149             :         PAGE_SUCCESS,
    1150             :         /* page is clean and locked */
    1151             :         PAGE_CLEAN,
    1152             : } pageout_t;
    1153             : 
    1154             : /*
    1155             :  * pageout is called by shrink_page_list() for each dirty page.
    1156             :  * Calls ->writepage().
    1157             :  */
    1158           0 : static pageout_t pageout(struct folio *folio, struct address_space *mapping)
    1159             : {
    1160             :         /*
    1161             :          * If the folio is dirty, only perform writeback if that write
    1162             :          * will be non-blocking.  To prevent this allocation from being
    1163             :          * stalled by pagecache activity.  But note that there may be
    1164             :          * stalls if we need to run get_block().  We could test
    1165             :          * PagePrivate for that.
    1166             :          *
    1167             :          * If this process is currently in __generic_file_write_iter() against
    1168             :          * this folio's queue, we can perform writeback even if that
    1169             :          * will block.
    1170             :          *
    1171             :          * If the folio is swapcache, write it back even if that would
    1172             :          * block, for some throttling. This happens by accident, because
    1173             :          * swap_backing_dev_info is bust: it doesn't reflect the
    1174             :          * congestion state of the swapdevs.  Easy to fix, if needed.
    1175             :          */
    1176           0 :         if (!is_page_cache_freeable(folio))
    1177             :                 return PAGE_KEEP;
    1178           0 :         if (!mapping) {
    1179             :                 /*
    1180             :                  * Some data journaling orphaned folios can have
    1181             :                  * folio->mapping == NULL while being dirty with clean buffers.
    1182             :                  */
    1183           0 :                 if (folio_test_private(folio)) {
    1184           0 :                         if (try_to_free_buffers(&folio->page)) {
    1185           0 :                                 folio_clear_dirty(folio);
    1186           0 :                                 pr_info("%s: orphaned folio\n", __func__);
    1187           0 :                                 return PAGE_CLEAN;
    1188             :                         }
    1189             :                 }
    1190             :                 return PAGE_KEEP;
    1191             :         }
    1192           0 :         if (mapping->a_ops->writepage == NULL)
    1193             :                 return PAGE_ACTIVATE;
    1194             : 
    1195           0 :         if (folio_clear_dirty_for_io(folio)) {
    1196             :                 int res;
    1197           0 :                 struct writeback_control wbc = {
    1198             :                         .sync_mode = WB_SYNC_NONE,
    1199             :                         .nr_to_write = SWAP_CLUSTER_MAX,
    1200             :                         .range_start = 0,
    1201             :                         .range_end = LLONG_MAX,
    1202             :                         .for_reclaim = 1,
    1203             :                 };
    1204             : 
    1205           0 :                 folio_set_reclaim(folio);
    1206           0 :                 res = mapping->a_ops->writepage(&folio->page, &wbc);
    1207           0 :                 if (res < 0)
    1208           0 :                         handle_write_error(mapping, folio, res);
    1209           0 :                 if (res == AOP_WRITEPAGE_ACTIVATE) {
    1210           0 :                         folio_clear_reclaim(folio);
    1211           0 :                         return PAGE_ACTIVATE;
    1212             :                 }
    1213             : 
    1214           0 :                 if (!folio_test_writeback(folio)) {
    1215             :                         /* synchronous write or broken a_ops? */
    1216             :                         folio_clear_reclaim(folio);
    1217             :                 }
    1218           0 :                 trace_mm_vmscan_write_folio(folio);
    1219           0 :                 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
    1220           0 :                 return PAGE_SUCCESS;
    1221             :         }
    1222             : 
    1223             :         return PAGE_CLEAN;
    1224             : }
    1225             : 
    1226             : /*
    1227             :  * Same as remove_mapping, but if the page is removed from the mapping, it
    1228             :  * gets returned with a refcount of 0.
    1229             :  */
    1230           0 : static int __remove_mapping(struct address_space *mapping, struct folio *folio,
    1231             :                             bool reclaimed, struct mem_cgroup *target_memcg)
    1232             : {
    1233             :         int refcount;
    1234           0 :         void *shadow = NULL;
    1235             : 
    1236           0 :         BUG_ON(!folio_test_locked(folio));
    1237           0 :         BUG_ON(mapping != folio_mapping(folio));
    1238             : 
    1239           0 :         if (!folio_test_swapcache(folio))
    1240           0 :                 spin_lock(&mapping->host->i_lock);
    1241           0 :         xa_lock_irq(&mapping->i_pages);
    1242             :         /*
    1243             :          * The non racy check for a busy page.
    1244             :          *
    1245             :          * Must be careful with the order of the tests. When someone has
    1246             :          * a ref to the page, it may be possible that they dirty it then
    1247             :          * drop the reference. So if PageDirty is tested before page_count
    1248             :          * here, then the following race may occur:
    1249             :          *
    1250             :          * get_user_pages(&page);
    1251             :          * [user mapping goes away]
    1252             :          * write_to(page);
    1253             :          *                              !PageDirty(page)    [good]
    1254             :          * SetPageDirty(page);
    1255             :          * put_page(page);
    1256             :          *                              !page_count(page)   [good, discard it]
    1257             :          *
    1258             :          * [oops, our write_to data is lost]
    1259             :          *
    1260             :          * Reversing the order of the tests ensures such a situation cannot
    1261             :          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
    1262             :          * load is not satisfied before that of page->_refcount.
    1263             :          *
    1264             :          * Note that if SetPageDirty is always performed via set_page_dirty,
    1265             :          * and thus under the i_pages lock, then this ordering is not required.
    1266             :          */
    1267           0 :         refcount = 1 + folio_nr_pages(folio);
    1268           0 :         if (!folio_ref_freeze(folio, refcount))
    1269             :                 goto cannot_free;
    1270             :         /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
    1271           0 :         if (unlikely(folio_test_dirty(folio))) {
    1272             :                 folio_ref_unfreeze(folio, refcount);
    1273             :                 goto cannot_free;
    1274             :         }
    1275             : 
    1276           0 :         if (folio_test_swapcache(folio)) {
    1277           0 :                 swp_entry_t swap = folio_swap_entry(folio);
    1278           0 :                 mem_cgroup_swapout(folio, swap);
    1279           0 :                 if (reclaimed && !mapping_exiting(mapping))
    1280           0 :                         shadow = workingset_eviction(folio, target_memcg);
    1281           0 :                 __delete_from_swap_cache(&folio->page, swap, shadow);
    1282           0 :                 xa_unlock_irq(&mapping->i_pages);
    1283           0 :                 put_swap_page(&folio->page, swap);
    1284             :         } else {
    1285             :                 void (*freepage)(struct page *);
    1286             : 
    1287           0 :                 freepage = mapping->a_ops->freepage;
    1288             :                 /*
    1289             :                  * Remember a shadow entry for reclaimed file cache in
    1290             :                  * order to detect refaults, thus thrashing, later on.
    1291             :                  *
    1292             :                  * But don't store shadows in an address space that is
    1293             :                  * already exiting.  This is not just an optimization,
    1294             :                  * inode reclaim needs to empty out the radix tree or
    1295             :                  * the nodes are lost.  Don't plant shadows behind its
    1296             :                  * back.
    1297             :                  *
    1298             :                  * We also don't store shadows for DAX mappings because the
    1299             :                  * only page cache pages found in these are zero pages
    1300             :                  * covering holes, and because we don't want to mix DAX
    1301             :                  * exceptional entries and shadow exceptional entries in the
    1302             :                  * same address_space.
    1303             :                  */
    1304           0 :                 if (reclaimed && folio_is_file_lru(folio) &&
    1305           0 :                     !mapping_exiting(mapping) && !dax_mapping(mapping))
    1306           0 :                         shadow = workingset_eviction(folio, target_memcg);
    1307           0 :                 __filemap_remove_folio(folio, shadow);
    1308           0 :                 xa_unlock_irq(&mapping->i_pages);
    1309           0 :                 if (mapping_shrinkable(mapping))
    1310           0 :                         inode_add_lru(mapping->host);
    1311           0 :                 spin_unlock(&mapping->host->i_lock);
    1312             : 
    1313           0 :                 if (freepage != NULL)
    1314           0 :                         freepage(&folio->page);
    1315             :         }
    1316             : 
    1317             :         return 1;
    1318             : 
    1319             : cannot_free:
    1320           0 :         xa_unlock_irq(&mapping->i_pages);
    1321           0 :         if (!folio_test_swapcache(folio))
    1322           0 :                 spin_unlock(&mapping->host->i_lock);
    1323             :         return 0;
    1324             : }
    1325             : 
    1326             : /**
    1327             :  * remove_mapping() - Attempt to remove a folio from its mapping.
    1328             :  * @mapping: The address space.
    1329             :  * @folio: The folio to remove.
    1330             :  *
    1331             :  * If the folio is dirty, under writeback or if someone else has a ref
    1332             :  * on it, removal will fail.
    1333             :  * Return: The number of pages removed from the mapping.  0 if the folio
    1334             :  * could not be removed.
    1335             :  * Context: The caller should have a single refcount on the folio and
    1336             :  * hold its lock.
    1337             :  */
    1338           0 : long remove_mapping(struct address_space *mapping, struct folio *folio)
    1339             : {
    1340           0 :         if (__remove_mapping(mapping, folio, false, NULL)) {
    1341             :                 /*
    1342             :                  * Unfreezing the refcount with 1 effectively
    1343             :                  * drops the pagecache ref for us without requiring another
    1344             :                  * atomic operation.
    1345             :                  */
    1346           0 :                 folio_ref_unfreeze(folio, 1);
    1347           0 :                 return folio_nr_pages(folio);
    1348             :         }
    1349             :         return 0;
    1350             : }
    1351             : 
    1352             : /**
    1353             :  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
    1354             :  * @folio: Folio to be returned to an LRU list.
    1355             :  *
    1356             :  * Add previously isolated @folio to appropriate LRU list.
    1357             :  * The folio may still be unevictable for other reasons.
    1358             :  *
    1359             :  * Context: lru_lock must not be held, interrupts must be enabled.
    1360             :  */
    1361           0 : void folio_putback_lru(struct folio *folio)
    1362             : {
    1363           0 :         folio_add_lru(folio);
    1364           0 :         folio_put(folio);               /* drop ref from isolate */
    1365           0 : }
    1366             : 
    1367             : enum page_references {
    1368             :         PAGEREF_RECLAIM,
    1369             :         PAGEREF_RECLAIM_CLEAN,
    1370             :         PAGEREF_KEEP,
    1371             :         PAGEREF_ACTIVATE,
    1372             : };
    1373             : 
    1374           0 : static enum page_references folio_check_references(struct folio *folio,
    1375             :                                                   struct scan_control *sc)
    1376             : {
    1377             :         int referenced_ptes, referenced_folio;
    1378             :         unsigned long vm_flags;
    1379             : 
    1380           0 :         referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
    1381             :                                            &vm_flags);
    1382           0 :         referenced_folio = folio_test_clear_referenced(folio);
    1383             : 
    1384             :         /*
    1385             :          * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
    1386             :          * Let the folio, now marked Mlocked, be moved to the unevictable list.
    1387             :          */
    1388           0 :         if (vm_flags & VM_LOCKED)
    1389             :                 return PAGEREF_ACTIVATE;
    1390             : 
    1391           0 :         if (referenced_ptes) {
    1392             :                 /*
    1393             :                  * All mapped folios start out with page table
    1394             :                  * references from the instantiating fault, so we need
    1395             :                  * to look twice if a mapped file/anon folio is used more
    1396             :                  * than once.
    1397             :                  *
    1398             :                  * Mark it and spare it for another trip around the
    1399             :                  * inactive list.  Another page table reference will
    1400             :                  * lead to its activation.
    1401             :                  *
    1402             :                  * Note: the mark is set for activated folios as well
    1403             :                  * so that recently deactivated but used folios are
    1404             :                  * quickly recovered.
    1405             :                  */
    1406           0 :                 folio_set_referenced(folio);
    1407             : 
    1408           0 :                 if (referenced_folio || referenced_ptes > 1)
    1409             :                         return PAGEREF_ACTIVATE;
    1410             : 
    1411             :                 /*
    1412             :                  * Activate file-backed executable folios after first usage.
    1413             :                  */
    1414           0 :                 if ((vm_flags & VM_EXEC) && !folio_test_swapbacked(folio))
    1415             :                         return PAGEREF_ACTIVATE;
    1416             : 
    1417             :                 return PAGEREF_KEEP;
    1418             :         }
    1419             : 
    1420             :         /* Reclaim if clean, defer dirty folios to writeback */
    1421           0 :         if (referenced_folio && !folio_test_swapbacked(folio))
    1422             :                 return PAGEREF_RECLAIM_CLEAN;
    1423             : 
    1424             :         return PAGEREF_RECLAIM;
    1425             : }
    1426             : 
    1427             : /* Check if a page is dirty or under writeback */
    1428           0 : static void folio_check_dirty_writeback(struct folio *folio,
    1429             :                                        bool *dirty, bool *writeback)
    1430             : {
    1431             :         struct address_space *mapping;
    1432             : 
    1433             :         /*
    1434             :          * Anonymous pages are not handled by flushers and must be written
    1435             :          * from reclaim context. Do not stall reclaim based on them
    1436             :          */
    1437           0 :         if (!folio_is_file_lru(folio) ||
    1438           0 :             (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
    1439           0 :                 *dirty = false;
    1440           0 :                 *writeback = false;
    1441           0 :                 return;
    1442             :         }
    1443             : 
    1444             :         /* By default assume that the folio flags are accurate */
    1445           0 :         *dirty = folio_test_dirty(folio);
    1446           0 :         *writeback = folio_test_writeback(folio);
    1447             : 
    1448             :         /* Verify dirty/writeback state if the filesystem supports it */
    1449           0 :         if (!folio_test_private(folio))
    1450             :                 return;
    1451             : 
    1452           0 :         mapping = folio_mapping(folio);
    1453           0 :         if (mapping && mapping->a_ops->is_dirty_writeback)
    1454           0 :                 mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
    1455             : }
    1456             : 
    1457           0 : static struct page *alloc_demote_page(struct page *page, unsigned long node)
    1458             : {
    1459           0 :         struct migration_target_control mtc = {
    1460             :                 /*
    1461             :                  * Allocate from 'node', or fail quickly and quietly.
    1462             :                  * When this happens, 'page' will likely just be discarded
    1463             :                  * instead of migrated.
    1464             :                  */
    1465             :                 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
    1466             :                             __GFP_THISNODE  | __GFP_NOWARN |
    1467             :                             __GFP_NOMEMALLOC | GFP_NOWAIT,
    1468             :                 .nid = node
    1469             :         };
    1470             : 
    1471           0 :         return alloc_migration_target(page, (unsigned long)&mtc);
    1472             : }
    1473             : 
    1474             : /*
    1475             :  * Take pages on @demote_list and attempt to demote them to
    1476             :  * another node.  Pages which are not demoted are left on
    1477             :  * @demote_pages.
    1478             :  */
    1479           0 : static unsigned int demote_page_list(struct list_head *demote_pages,
    1480             :                                      struct pglist_data *pgdat)
    1481             : {
    1482           0 :         int target_nid = next_demotion_node(pgdat->node_id);
    1483             :         unsigned int nr_succeeded;
    1484             : 
    1485           0 :         if (list_empty(demote_pages))
    1486             :                 return 0;
    1487             : 
    1488           0 :         if (target_nid == NUMA_NO_NODE)
    1489             :                 return 0;
    1490             : 
    1491             :         /* Demotion ignores all cpuset and mempolicy settings */
    1492           0 :         migrate_pages(demote_pages, alloc_demote_page, NULL,
    1493             :                             target_nid, MIGRATE_ASYNC, MR_DEMOTION,
    1494             :                             &nr_succeeded);
    1495             : 
    1496           0 :         if (current_is_kswapd())
    1497           0 :                 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
    1498             :         else
    1499           0 :                 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
    1500             : 
    1501           0 :         return nr_succeeded;
    1502             : }
    1503             : 
    1504             : /*
    1505             :  * shrink_page_list() returns the number of reclaimed pages
    1506             :  */
    1507           0 : static unsigned int shrink_page_list(struct list_head *page_list,
    1508             :                                      struct pglist_data *pgdat,
    1509             :                                      struct scan_control *sc,
    1510             :                                      struct reclaim_stat *stat,
    1511             :                                      bool ignore_references)
    1512             : {
    1513           0 :         LIST_HEAD(ret_pages);
    1514           0 :         LIST_HEAD(free_pages);
    1515           0 :         LIST_HEAD(demote_pages);
    1516           0 :         unsigned int nr_reclaimed = 0;
    1517           0 :         unsigned int pgactivate = 0;
    1518             :         bool do_demote_pass;
    1519             : 
    1520           0 :         memset(stat, 0, sizeof(*stat));
    1521           0 :         cond_resched();
    1522           0 :         do_demote_pass = can_demote(pgdat->node_id, sc);
    1523             : 
    1524             : retry:
    1525           0 :         while (!list_empty(page_list)) {
    1526             :                 struct address_space *mapping;
    1527             :                 struct page *page;
    1528             :                 struct folio *folio;
    1529           0 :                 enum page_references references = PAGEREF_RECLAIM;
    1530             :                 bool dirty, writeback, may_enter_fs;
    1531             :                 unsigned int nr_pages;
    1532             : 
    1533           0 :                 cond_resched();
    1534             : 
    1535           0 :                 folio = lru_to_folio(page_list);
    1536           0 :                 list_del(&folio->lru);
    1537           0 :                 page = &folio->page;
    1538             : 
    1539           0 :                 if (!trylock_page(page))
    1540             :                         goto keep;
    1541             : 
    1542             :                 VM_BUG_ON_PAGE(PageActive(page), page);
    1543             : 
    1544           0 :                 nr_pages = compound_nr(page);
    1545             : 
    1546             :                 /* Account the number of base pages even though THP */
    1547           0 :                 sc->nr_scanned += nr_pages;
    1548             : 
    1549           0 :                 if (unlikely(!page_evictable(page)))
    1550             :                         goto activate_locked;
    1551             : 
    1552           0 :                 if (!sc->may_unmap && page_mapped(page))
    1553             :                         goto keep_locked;
    1554             : 
    1555           0 :                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
    1556           0 :                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
    1557             : 
    1558             :                 /*
    1559             :                  * The number of dirty pages determines if a node is marked
    1560             :                  * reclaim_congested. kswapd will stall and start writing
    1561             :                  * pages if the tail of the LRU is all dirty unqueued pages.
    1562             :                  */
    1563           0 :                 folio_check_dirty_writeback(folio, &dirty, &writeback);
    1564           0 :                 if (dirty || writeback)
    1565           0 :                         stat->nr_dirty += nr_pages;
    1566             : 
    1567           0 :                 if (dirty && !writeback)
    1568           0 :                         stat->nr_unqueued_dirty += nr_pages;
    1569             : 
    1570             :                 /*
    1571             :                  * Treat this page as congested if the underlying BDI is or if
    1572             :                  * pages are cycling through the LRU so quickly that the
    1573             :                  * pages marked for immediate reclaim are making it to the
    1574             :                  * end of the LRU a second time.
    1575             :                  */
    1576           0 :                 mapping = page_mapping(page);
    1577           0 :                 if (writeback && PageReclaim(page))
    1578           0 :                         stat->nr_congested += nr_pages;
    1579             : 
    1580             :                 /*
    1581             :                  * If a page at the tail of the LRU is under writeback, there
    1582             :                  * are three cases to consider.
    1583             :                  *
    1584             :                  * 1) If reclaim is encountering an excessive number of pages
    1585             :                  *    under writeback and this page is both under writeback and
    1586             :                  *    PageReclaim then it indicates that pages are being queued
    1587             :                  *    for IO but are being recycled through the LRU before the
    1588             :                  *    IO can complete. Waiting on the page itself risks an
    1589             :                  *    indefinite stall if it is impossible to writeback the
    1590             :                  *    page due to IO error or disconnected storage so instead
    1591             :                  *    note that the LRU is being scanned too quickly and the
    1592             :                  *    caller can stall after page list has been processed.
    1593             :                  *
    1594             :                  * 2) Global or new memcg reclaim encounters a page that is
    1595             :                  *    not marked for immediate reclaim, or the caller does not
    1596             :                  *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
    1597             :                  *    not to fs). In this case mark the page for immediate
    1598             :                  *    reclaim and continue scanning.
    1599             :                  *
    1600             :                  *    Require may_enter_fs because we would wait on fs, which
    1601             :                  *    may not have submitted IO yet. And the loop driver might
    1602             :                  *    enter reclaim, and deadlock if it waits on a page for
    1603             :                  *    which it is needed to do the write (loop masks off
    1604             :                  *    __GFP_IO|__GFP_FS for this reason); but more thought
    1605             :                  *    would probably show more reasons.
    1606             :                  *
    1607             :                  * 3) Legacy memcg encounters a page that is already marked
    1608             :                  *    PageReclaim. memcg does not have any dirty pages
    1609             :                  *    throttling so we could easily OOM just because too many
    1610             :                  *    pages are in writeback and there is nothing else to
    1611             :                  *    reclaim. Wait for the writeback to complete.
    1612             :                  *
    1613             :                  * In cases 1) and 2) we activate the pages to get them out of
    1614             :                  * the way while we continue scanning for clean pages on the
    1615             :                  * inactive list and refilling from the active list. The
    1616             :                  * observation here is that waiting for disk writes is more
    1617             :                  * expensive than potentially causing reloads down the line.
    1618             :                  * Since they're marked for immediate reclaim, they won't put
    1619             :                  * memory pressure on the cache working set any longer than it
    1620             :                  * takes to write them to disk.
    1621             :                  */
    1622           0 :                 if (PageWriteback(page)) {
    1623             :                         /* Case 1 above */
    1624           0 :                         if (current_is_kswapd() &&
    1625           0 :                             PageReclaim(page) &&
    1626           0 :                             test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
    1627           0 :                                 stat->nr_immediate += nr_pages;
    1628           0 :                                 goto activate_locked;
    1629             : 
    1630             :                         /* Case 2 above */
    1631           0 :                         } else if (writeback_throttling_sane(sc) ||
    1632             :                             !PageReclaim(page) || !may_enter_fs) {
    1633             :                                 /*
    1634             :                                  * This is slightly racy - end_page_writeback()
    1635             :                                  * might have just cleared PageReclaim, then
    1636             :                                  * setting PageReclaim here end up interpreted
    1637             :                                  * as PageReadahead - but that does not matter
    1638             :                                  * enough to care.  What we do want is for this
    1639             :                                  * page to have PageReclaim set next time memcg
    1640             :                                  * reclaim reaches the tests above, so it will
    1641             :                                  * then wait_on_page_writeback() to avoid OOM;
    1642             :                                  * and it's also appropriate in global reclaim.
    1643             :                                  */
    1644           0 :                                 SetPageReclaim(page);
    1645           0 :                                 stat->nr_writeback += nr_pages;
    1646           0 :                                 goto activate_locked;
    1647             : 
    1648             :                         /* Case 3 above */
    1649             :                         } else {
    1650             :                                 unlock_page(page);
    1651             :                                 wait_on_page_writeback(page);
    1652             :                                 /* then go back and try same page again */
    1653             :                                 list_add_tail(&page->lru, page_list);
    1654           0 :                                 continue;
    1655             :                         }
    1656             :                 }
    1657             : 
    1658           0 :                 if (!ignore_references)
    1659           0 :                         references = folio_check_references(folio, sc);
    1660             : 
    1661           0 :                 switch (references) {
    1662             :                 case PAGEREF_ACTIVATE:
    1663             :                         goto activate_locked;
    1664             :                 case PAGEREF_KEEP:
    1665           0 :                         stat->nr_ref_keep += nr_pages;
    1666           0 :                         goto keep_locked;
    1667             :                 case PAGEREF_RECLAIM:
    1668             :                 case PAGEREF_RECLAIM_CLEAN:
    1669             :                         ; /* try to reclaim the page below */
    1670             :                 }
    1671             : 
    1672             :                 /*
    1673             :                  * Before reclaiming the page, try to relocate
    1674             :                  * its contents to another node.
    1675             :                  */
    1676           0 :                 if (do_demote_pass &&
    1677           0 :                     (thp_migration_supported() || !PageTransHuge(page))) {
    1678           0 :                         list_add(&page->lru, &demote_pages);
    1679           0 :                         unlock_page(page);
    1680           0 :                         continue;
    1681             :                 }
    1682             : 
    1683             :                 /*
    1684             :                  * Anonymous process memory has backing store?
    1685             :                  * Try to allocate it some swap space here.
    1686             :                  * Lazyfree page could be freed directly
    1687             :                  */
    1688           0 :                 if (PageAnon(page) && PageSwapBacked(page)) {
    1689           0 :                         if (!PageSwapCache(page)) {
    1690           0 :                                 if (!(sc->gfp_mask & __GFP_IO))
    1691             :                                         goto keep_locked;
    1692           0 :                                 if (folio_maybe_dma_pinned(folio))
    1693             :                                         goto keep_locked;
    1694           0 :                                 if (PageTransHuge(page)) {
    1695             :                                         /* cannot split THP, skip it */
    1696             :                                         if (!can_split_folio(folio, NULL))
    1697             :                                                 goto activate_locked;
    1698             :                                         /*
    1699             :                                          * Split pages without a PMD map right
    1700             :                                          * away. Chances are some or all of the
    1701             :                                          * tail pages can be freed without IO.
    1702             :                                          */
    1703             :                                         if (!folio_entire_mapcount(folio) &&
    1704             :                                             split_folio_to_list(folio,
    1705             :                                                                 page_list))
    1706             :                                                 goto activate_locked;
    1707             :                                 }
    1708           0 :                                 if (!add_to_swap(page)) {
    1709           0 :                                         if (!PageTransHuge(page))
    1710             :                                                 goto activate_locked_split;
    1711             :                                         /* Fallback to swap normal pages */
    1712             :                                         if (split_folio_to_list(folio,
    1713             :                                                                 page_list))
    1714             :                                                 goto activate_locked;
    1715             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1716             :                                         count_vm_event(THP_SWPOUT_FALLBACK);
    1717             : #endif
    1718             :                                         if (!add_to_swap(page))
    1719             :                                                 goto activate_locked_split;
    1720             :                                 }
    1721             : 
    1722           0 :                                 may_enter_fs = true;
    1723             : 
    1724             :                                 /* Adding to swap updated mapping */
    1725           0 :                                 mapping = page_mapping(page);
    1726             :                         }
    1727           0 :                 } else if (PageSwapBacked(page) && PageTransHuge(page)) {
    1728             :                         /* Split shmem THP */
    1729             :                         if (split_folio_to_list(folio, page_list))
    1730             :                                 goto keep_locked;
    1731             :                 }
    1732             : 
    1733             :                 /*
    1734             :                  * THP may get split above, need minus tail pages and update
    1735             :                  * nr_pages to avoid accounting tail pages twice.
    1736             :                  *
    1737             :                  * The tail pages that are added into swap cache successfully
    1738             :                  * reach here.
    1739             :                  */
    1740           0 :                 if ((nr_pages > 1) && !PageTransHuge(page)) {
    1741           0 :                         sc->nr_scanned -= (nr_pages - 1);
    1742           0 :                         nr_pages = 1;
    1743             :                 }
    1744             : 
    1745             :                 /*
    1746             :                  * The page is mapped into the page tables of one or more
    1747             :                  * processes. Try to unmap it here.
    1748             :                  */
    1749           0 :                 if (page_mapped(page)) {
    1750           0 :                         enum ttu_flags flags = TTU_BATCH_FLUSH;
    1751           0 :                         bool was_swapbacked = PageSwapBacked(page);
    1752             : 
    1753           0 :                         if (PageTransHuge(page) &&
    1754             :                                         thp_order(page) >= HPAGE_PMD_ORDER)
    1755             :                                 flags |= TTU_SPLIT_HUGE_PMD;
    1756             : 
    1757           0 :                         try_to_unmap(folio, flags);
    1758           0 :                         if (page_mapped(page)) {
    1759           0 :                                 stat->nr_unmap_fail += nr_pages;
    1760           0 :                                 if (!was_swapbacked && PageSwapBacked(page))
    1761           0 :                                         stat->nr_lazyfree_fail += nr_pages;
    1762             :                                 goto activate_locked;
    1763             :                         }
    1764             :                 }
    1765             : 
    1766           0 :                 if (PageDirty(page)) {
    1767             :                         /*
    1768             :                          * Only kswapd can writeback filesystem pages
    1769             :                          * to avoid risk of stack overflow. But avoid
    1770             :                          * injecting inefficient single-page IO into
    1771             :                          * flusher writeback as much as possible: only
    1772             :                          * write pages when we've encountered many
    1773             :                          * dirty pages, and when we've already scanned
    1774             :                          * the rest of the LRU for clean pages and see
    1775             :                          * the same dirty pages again (PageReclaim).
    1776             :                          */
    1777           0 :                         if (page_is_file_lru(page) &&
    1778           0 :                             (!current_is_kswapd() || !PageReclaim(page) ||
    1779           0 :                              !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
    1780             :                                 /*
    1781             :                                  * Immediately reclaim when written back.
    1782             :                                  * Similar in principal to deactivate_page()
    1783             :                                  * except we already have the page isolated
    1784             :                                  * and know it's dirty
    1785             :                                  */
    1786           0 :                                 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
    1787             :                                 SetPageReclaim(page);
    1788             : 
    1789             :                                 goto activate_locked;
    1790             :                         }
    1791             : 
    1792           0 :                         if (references == PAGEREF_RECLAIM_CLEAN)
    1793             :                                 goto keep_locked;
    1794           0 :                         if (!may_enter_fs)
    1795             :                                 goto keep_locked;
    1796           0 :                         if (!sc->may_writepage)
    1797             :                                 goto keep_locked;
    1798             : 
    1799             :                         /*
    1800             :                          * Page is dirty. Flush the TLB if a writable entry
    1801             :                          * potentially exists to avoid CPU writes after IO
    1802             :                          * starts and then write it out here.
    1803             :                          */
    1804             :                         try_to_unmap_flush_dirty();
    1805           0 :                         switch (pageout(folio, mapping)) {
    1806             :                         case PAGE_KEEP:
    1807             :                                 goto keep_locked;
    1808             :                         case PAGE_ACTIVATE:
    1809             :                                 goto activate_locked;
    1810             :                         case PAGE_SUCCESS:
    1811           0 :                                 stat->nr_pageout += nr_pages;
    1812             : 
    1813           0 :                                 if (PageWriteback(page))
    1814             :                                         goto keep;
    1815           0 :                                 if (PageDirty(page))
    1816             :                                         goto keep;
    1817             : 
    1818             :                                 /*
    1819             :                                  * A synchronous write - probably a ramdisk.  Go
    1820             :                                  * ahead and try to reclaim the page.
    1821             :                                  */
    1822           0 :                                 if (!trylock_page(page))
    1823             :                                         goto keep;
    1824           0 :                                 if (PageDirty(page) || PageWriteback(page))
    1825             :                                         goto keep_locked;
    1826           0 :                                 mapping = page_mapping(page);
    1827             :                                 fallthrough;
    1828             :                         case PAGE_CLEAN:
    1829             :                                 ; /* try to free the page below */
    1830             :                         }
    1831             :                 }
    1832             : 
    1833             :                 /*
    1834             :                  * If the page has buffers, try to free the buffer mappings
    1835             :                  * associated with this page. If we succeed we try to free
    1836             :                  * the page as well.
    1837             :                  *
    1838             :                  * We do this even if the page is PageDirty().
    1839             :                  * try_to_release_page() does not perform I/O, but it is
    1840             :                  * possible for a page to have PageDirty set, but it is actually
    1841             :                  * clean (all its buffers are clean).  This happens if the
    1842             :                  * buffers were written out directly, with submit_bh(). ext3
    1843             :                  * will do this, as well as the blockdev mapping.
    1844             :                  * try_to_release_page() will discover that cleanness and will
    1845             :                  * drop the buffers and mark the page clean - it can be freed.
    1846             :                  *
    1847             :                  * Rarely, pages can have buffers and no ->mapping.  These are
    1848             :                  * the pages which were not successfully invalidated in
    1849             :                  * truncate_cleanup_page().  We try to drop those buffers here
    1850             :                  * and if that worked, and the page is no longer mapped into
    1851             :                  * process address space (page_count == 1) it can be freed.
    1852             :                  * Otherwise, leave the page on the LRU so it is swappable.
    1853             :                  */
    1854           0 :                 if (page_has_private(page)) {
    1855           0 :                         if (!try_to_release_page(page, sc->gfp_mask))
    1856             :                                 goto activate_locked;
    1857           0 :                         if (!mapping && page_count(page) == 1) {
    1858           0 :                                 unlock_page(page);
    1859           0 :                                 if (put_page_testzero(page))
    1860             :                                         goto free_it;
    1861             :                                 else {
    1862             :                                         /*
    1863             :                                          * rare race with speculative reference.
    1864             :                                          * the speculative reference will free
    1865             :                                          * this page shortly, so we may
    1866             :                                          * increment nr_reclaimed here (and
    1867             :                                          * leave it off the LRU).
    1868             :                                          */
    1869           0 :                                         nr_reclaimed++;
    1870           0 :                                         continue;
    1871             :                                 }
    1872             :                         }
    1873             :                 }
    1874             : 
    1875           0 :                 if (PageAnon(page) && !PageSwapBacked(page)) {
    1876             :                         /* follow __remove_mapping for reference */
    1877           0 :                         if (!page_ref_freeze(page, 1))
    1878             :                                 goto keep_locked;
    1879             :                         /*
    1880             :                          * The page has only one reference left, which is
    1881             :                          * from the isolation. After the caller puts the
    1882             :                          * page back on lru and drops the reference, the
    1883             :                          * page will be freed anyway. It doesn't matter
    1884             :                          * which lru it goes. So we don't bother checking
    1885             :                          * PageDirty here.
    1886             :                          */
    1887           0 :                         count_vm_event(PGLAZYFREED);
    1888           0 :                         count_memcg_page_event(page, PGLAZYFREED);
    1889           0 :                 } else if (!mapping || !__remove_mapping(mapping, folio, true,
    1890             :                                                          sc->target_mem_cgroup))
    1891             :                         goto keep_locked;
    1892             : 
    1893           0 :                 unlock_page(page);
    1894             : free_it:
    1895             :                 /*
    1896             :                  * THP may get swapped out in a whole, need account
    1897             :                  * all base pages.
    1898             :                  */
    1899           0 :                 nr_reclaimed += nr_pages;
    1900             : 
    1901             :                 /*
    1902             :                  * Is there need to periodically free_page_list? It would
    1903             :                  * appear not as the counts should be low
    1904             :                  */
    1905           0 :                 if (unlikely(PageTransHuge(page)))
    1906             :                         destroy_compound_page(page);
    1907             :                 else
    1908           0 :                         list_add(&page->lru, &free_pages);
    1909           0 :                 continue;
    1910             : 
    1911             : activate_locked_split:
    1912             :                 /*
    1913             :                  * The tail pages that are failed to add into swap cache
    1914             :                  * reach here.  Fixup nr_scanned and nr_pages.
    1915             :                  */
    1916           0 :                 if (nr_pages > 1) {
    1917           0 :                         sc->nr_scanned -= (nr_pages - 1);
    1918           0 :                         nr_pages = 1;
    1919             :                 }
    1920             : activate_locked:
    1921             :                 /* Not a candidate for swapping, so reclaim swap space. */
    1922           0 :                 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
    1923           0 :                                                 PageMlocked(page)))
    1924           0 :                         try_to_free_swap(page);
    1925             :                 VM_BUG_ON_PAGE(PageActive(page), page);
    1926           0 :                 if (!PageMlocked(page)) {
    1927           0 :                         int type = page_is_file_lru(page);
    1928           0 :                         SetPageActive(page);
    1929           0 :                         stat->nr_activate[type] += nr_pages;
    1930           0 :                         count_memcg_page_event(page, PGACTIVATE);
    1931             :                 }
    1932             : keep_locked:
    1933           0 :                 unlock_page(page);
    1934             : keep:
    1935           0 :                 list_add(&page->lru, &ret_pages);
    1936             :                 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
    1937             :         }
    1938             :         /* 'page_list' is always empty here */
    1939             : 
    1940             :         /* Migrate pages selected for demotion */
    1941           0 :         nr_reclaimed += demote_page_list(&demote_pages, pgdat);
    1942             :         /* Pages that could not be demoted are still in @demote_pages */
    1943           0 :         if (!list_empty(&demote_pages)) {
    1944             :                 /* Pages which failed to demoted go back on @page_list for retry: */
    1945             :                 list_splice_init(&demote_pages, page_list);
    1946             :                 do_demote_pass = false;
    1947             :                 goto retry;
    1948             :         }
    1949             : 
    1950           0 :         pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
    1951             : 
    1952           0 :         mem_cgroup_uncharge_list(&free_pages);
    1953             :         try_to_unmap_flush();
    1954           0 :         free_unref_page_list(&free_pages);
    1955             : 
    1956           0 :         list_splice(&ret_pages, page_list);
    1957           0 :         count_vm_events(PGACTIVATE, pgactivate);
    1958             : 
    1959           0 :         return nr_reclaimed;
    1960             : }
    1961             : 
    1962           0 : unsigned int reclaim_clean_pages_from_list(struct zone *zone,
    1963             :                                             struct list_head *page_list)
    1964             : {
    1965           0 :         struct scan_control sc = {
    1966             :                 .gfp_mask = GFP_KERNEL,
    1967             :                 .may_unmap = 1,
    1968             :         };
    1969             :         struct reclaim_stat stat;
    1970             :         unsigned int nr_reclaimed;
    1971             :         struct page *page, *next;
    1972           0 :         LIST_HEAD(clean_pages);
    1973             :         unsigned int noreclaim_flag;
    1974             : 
    1975           0 :         list_for_each_entry_safe(page, next, page_list, lru) {
    1976           0 :                 if (!PageHuge(page) && page_is_file_lru(page) &&
    1977           0 :                     !PageDirty(page) && !__PageMovable(page) &&
    1978           0 :                     !PageUnevictable(page)) {
    1979           0 :                         ClearPageActive(page);
    1980           0 :                         list_move(&page->lru, &clean_pages);
    1981             :                 }
    1982             :         }
    1983             : 
    1984             :         /*
    1985             :          * We should be safe here since we are only dealing with file pages and
    1986             :          * we are not kswapd and therefore cannot write dirty file pages. But
    1987             :          * call memalloc_noreclaim_save() anyway, just in case these conditions
    1988             :          * change in the future.
    1989             :          */
    1990           0 :         noreclaim_flag = memalloc_noreclaim_save();
    1991           0 :         nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
    1992             :                                         &stat, true);
    1993           0 :         memalloc_noreclaim_restore(noreclaim_flag);
    1994             : 
    1995           0 :         list_splice(&clean_pages, page_list);
    1996           0 :         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
    1997             :                             -(long)nr_reclaimed);
    1998             :         /*
    1999             :          * Since lazyfree pages are isolated from file LRU from the beginning,
    2000             :          * they will rotate back to anonymous LRU in the end if it failed to
    2001             :          * discard so isolated count will be mismatched.
    2002             :          * Compensate the isolated count for both LRU lists.
    2003             :          */
    2004           0 :         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
    2005           0 :                             stat.nr_lazyfree_fail);
    2006           0 :         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
    2007           0 :                             -(long)stat.nr_lazyfree_fail);
    2008           0 :         return nr_reclaimed;
    2009             : }
    2010             : 
    2011             : /*
    2012             :  * Update LRU sizes after isolating pages. The LRU size updates must
    2013             :  * be complete before mem_cgroup_update_lru_size due to a sanity check.
    2014             :  */
    2015             : static __always_inline void update_lru_sizes(struct lruvec *lruvec,
    2016             :                         enum lru_list lru, unsigned long *nr_zone_taken)
    2017             : {
    2018             :         int zid;
    2019             : 
    2020           0 :         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    2021           0 :                 if (!nr_zone_taken[zid])
    2022           0 :                         continue;
    2023             : 
    2024           0 :                 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
    2025             :         }
    2026             : 
    2027             : }
    2028             : 
    2029             : /*
    2030             :  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
    2031             :  *
    2032             :  * lruvec->lru_lock is heavily contended.  Some of the functions that
    2033             :  * shrink the lists perform better by taking out a batch of pages
    2034             :  * and working on them outside the LRU lock.
    2035             :  *
    2036             :  * For pagecache intensive workloads, this function is the hottest
    2037             :  * spot in the kernel (apart from copy_*_user functions).
    2038             :  *
    2039             :  * Lru_lock must be held before calling this function.
    2040             :  *
    2041             :  * @nr_to_scan: The number of eligible pages to look through on the list.
    2042             :  * @lruvec:     The LRU vector to pull pages from.
    2043             :  * @dst:        The temp list to put pages on to.
    2044             :  * @nr_scanned: The number of pages that were scanned.
    2045             :  * @sc:         The scan_control struct for this reclaim session
    2046             :  * @lru:        LRU list id for isolating
    2047             :  *
    2048             :  * returns how many pages were moved onto *@dst.
    2049             :  */
    2050           0 : static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
    2051             :                 struct lruvec *lruvec, struct list_head *dst,
    2052             :                 unsigned long *nr_scanned, struct scan_control *sc,
    2053             :                 enum lru_list lru)
    2054             : {
    2055           0 :         struct list_head *src = &lruvec->lists[lru];
    2056           0 :         unsigned long nr_taken = 0;
    2057           0 :         unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
    2058           0 :         unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
    2059           0 :         unsigned long skipped = 0;
    2060             :         unsigned long scan, total_scan, nr_pages;
    2061           0 :         LIST_HEAD(pages_skipped);
    2062             : 
    2063           0 :         total_scan = 0;
    2064           0 :         scan = 0;
    2065           0 :         while (scan < nr_to_scan && !list_empty(src)) {
    2066           0 :                 struct list_head *move_to = src;
    2067             :                 struct page *page;
    2068             : 
    2069           0 :                 page = lru_to_page(src);
    2070             :                 prefetchw_prev_lru_page(page, src, flags);
    2071             : 
    2072           0 :                 nr_pages = compound_nr(page);
    2073           0 :                 total_scan += nr_pages;
    2074             : 
    2075           0 :                 if (page_zonenum(page) > sc->reclaim_idx) {
    2076           0 :                         nr_skipped[page_zonenum(page)] += nr_pages;
    2077           0 :                         move_to = &pages_skipped;
    2078           0 :                         goto move;
    2079             :                 }
    2080             : 
    2081             :                 /*
    2082             :                  * Do not count skipped pages because that makes the function
    2083             :                  * return with no isolated pages if the LRU mostly contains
    2084             :                  * ineligible pages.  This causes the VM to not reclaim any
    2085             :                  * pages, triggering a premature OOM.
    2086             :                  * Account all tail pages of THP.
    2087             :                  */
    2088           0 :                 scan += nr_pages;
    2089             : 
    2090           0 :                 if (!PageLRU(page))
    2091             :                         goto move;
    2092           0 :                 if (!sc->may_unmap && page_mapped(page))
    2093             :                         goto move;
    2094             : 
    2095             :                 /*
    2096             :                  * Be careful not to clear PageLRU until after we're
    2097             :                  * sure the page is not being freed elsewhere -- the
    2098             :                  * page release code relies on it.
    2099             :                  */
    2100           0 :                 if (unlikely(!get_page_unless_zero(page)))
    2101             :                         goto move;
    2102             : 
    2103           0 :                 if (!TestClearPageLRU(page)) {
    2104             :                         /* Another thread is already isolating this page */
    2105           0 :                         put_page(page);
    2106           0 :                         goto move;
    2107             :                 }
    2108             : 
    2109           0 :                 nr_taken += nr_pages;
    2110           0 :                 nr_zone_taken[page_zonenum(page)] += nr_pages;
    2111           0 :                 move_to = dst;
    2112             : move:
    2113           0 :                 list_move(&page->lru, move_to);
    2114             :         }
    2115             : 
    2116             :         /*
    2117             :          * Splice any skipped pages to the start of the LRU list. Note that
    2118             :          * this disrupts the LRU order when reclaiming for lower zones but
    2119             :          * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
    2120             :          * scanning would soon rescan the same pages to skip and put the
    2121             :          * system at risk of premature OOM.
    2122             :          */
    2123           0 :         if (!list_empty(&pages_skipped)) {
    2124             :                 int zid;
    2125             : 
    2126             :                 list_splice(&pages_skipped, src);
    2127           0 :                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    2128           0 :                         if (!nr_skipped[zid])
    2129           0 :                                 continue;
    2130             : 
    2131           0 :                         __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
    2132           0 :                         skipped += nr_skipped[zid];
    2133             :                 }
    2134             :         }
    2135           0 :         *nr_scanned = total_scan;
    2136           0 :         trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
    2137             :                                     total_scan, skipped, nr_taken,
    2138             :                                     sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
    2139           0 :         update_lru_sizes(lruvec, lru, nr_zone_taken);
    2140           0 :         return nr_taken;
    2141             : }
    2142             : 
    2143             : /**
    2144             :  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
    2145             :  * @folio: Folio to isolate from its LRU list.
    2146             :  *
    2147             :  * Isolate a @folio from an LRU list and adjust the vmstat statistic
    2148             :  * corresponding to whatever LRU list the folio was on.
    2149             :  *
    2150             :  * The folio will have its LRU flag cleared.  If it was found on the
    2151             :  * active list, it will have the Active flag set.  If it was found on the
    2152             :  * unevictable list, it will have the Unevictable flag set.  These flags
    2153             :  * may need to be cleared by the caller before letting the page go.
    2154             :  *
    2155             :  * Context:
    2156             :  *
    2157             :  * (1) Must be called with an elevated refcount on the page. This is a
    2158             :  *     fundamental difference from isolate_lru_pages() (which is called
    2159             :  *     without a stable reference).
    2160             :  * (2) The lru_lock must not be held.
    2161             :  * (3) Interrupts must be enabled.
    2162             :  *
    2163             :  * Return: 0 if the folio was removed from an LRU list.
    2164             :  * -EBUSY if the folio was not on an LRU list.
    2165             :  */
    2166           0 : int folio_isolate_lru(struct folio *folio)
    2167             : {
    2168           0 :         int ret = -EBUSY;
    2169             : 
    2170             :         VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
    2171             : 
    2172           0 :         if (folio_test_clear_lru(folio)) {
    2173             :                 struct lruvec *lruvec;
    2174             : 
    2175           0 :                 folio_get(folio);
    2176           0 :                 lruvec = folio_lruvec_lock_irq(folio);
    2177           0 :                 lruvec_del_folio(lruvec, folio);
    2178             :                 unlock_page_lruvec_irq(lruvec);
    2179           0 :                 ret = 0;
    2180             :         }
    2181             : 
    2182           0 :         return ret;
    2183             : }
    2184             : 
    2185             : /*
    2186             :  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
    2187             :  * then get rescheduled. When there are massive number of tasks doing page
    2188             :  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
    2189             :  * the LRU list will go small and be scanned faster than necessary, leading to
    2190             :  * unnecessary swapping, thrashing and OOM.
    2191             :  */
    2192           0 : static int too_many_isolated(struct pglist_data *pgdat, int file,
    2193             :                 struct scan_control *sc)
    2194             : {
    2195             :         unsigned long inactive, isolated;
    2196             :         bool too_many;
    2197             : 
    2198           0 :         if (current_is_kswapd())
    2199             :                 return 0;
    2200             : 
    2201           0 :         if (!writeback_throttling_sane(sc))
    2202             :                 return 0;
    2203             : 
    2204           0 :         if (file) {
    2205           0 :                 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
    2206           0 :                 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
    2207             :         } else {
    2208           0 :                 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
    2209           0 :                 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
    2210             :         }
    2211             : 
    2212             :         /*
    2213             :          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
    2214             :          * won't get blocked by normal direct-reclaimers, forming a circular
    2215             :          * deadlock.
    2216             :          */
    2217           0 :         if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
    2218           0 :                 inactive >>= 3;
    2219             : 
    2220           0 :         too_many = isolated > inactive;
    2221             : 
    2222             :         /* Wake up tasks throttled due to too_many_isolated. */
    2223           0 :         if (!too_many)
    2224             :                 wake_throttle_isolated(pgdat);
    2225             : 
    2226           0 :         return too_many;
    2227             : }
    2228             : 
    2229             : /*
    2230             :  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
    2231             :  * On return, @list is reused as a list of pages to be freed by the caller.
    2232             :  *
    2233             :  * Returns the number of pages moved to the given lruvec.
    2234             :  */
    2235           0 : static unsigned int move_pages_to_lru(struct lruvec *lruvec,
    2236             :                                       struct list_head *list)
    2237             : {
    2238           0 :         int nr_pages, nr_moved = 0;
    2239           0 :         LIST_HEAD(pages_to_free);
    2240             :         struct page *page;
    2241             : 
    2242           0 :         while (!list_empty(list)) {
    2243           0 :                 page = lru_to_page(list);
    2244             :                 VM_BUG_ON_PAGE(PageLRU(page), page);
    2245           0 :                 list_del(&page->lru);
    2246           0 :                 if (unlikely(!page_evictable(page))) {
    2247           0 :                         spin_unlock_irq(&lruvec->lru_lock);
    2248           0 :                         putback_lru_page(page);
    2249           0 :                         spin_lock_irq(&lruvec->lru_lock);
    2250           0 :                         continue;
    2251             :                 }
    2252             : 
    2253             :                 /*
    2254             :                  * The SetPageLRU needs to be kept here for list integrity.
    2255             :                  * Otherwise:
    2256             :                  *   #0 move_pages_to_lru             #1 release_pages
    2257             :                  *   if !put_page_testzero
    2258             :                  *                                    if (put_page_testzero())
    2259             :                  *                                      !PageLRU //skip lru_lock
    2260             :                  *     SetPageLRU()
    2261             :                  *     list_add(&page->lru,)
    2262             :                  *                                        list_add(&page->lru,)
    2263             :                  */
    2264           0 :                 SetPageLRU(page);
    2265             : 
    2266           0 :                 if (unlikely(put_page_testzero(page))) {
    2267           0 :                         __clear_page_lru_flags(page);
    2268             : 
    2269           0 :                         if (unlikely(PageCompound(page))) {
    2270           0 :                                 spin_unlock_irq(&lruvec->lru_lock);
    2271           0 :                                 destroy_compound_page(page);
    2272           0 :                                 spin_lock_irq(&lruvec->lru_lock);
    2273             :                         } else
    2274           0 :                                 list_add(&page->lru, &pages_to_free);
    2275             : 
    2276           0 :                         continue;
    2277             :                 }
    2278             : 
    2279             :                 /*
    2280             :                  * All pages were isolated from the same lruvec (and isolation
    2281             :                  * inhibits memcg migration).
    2282             :                  */
    2283             :                 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
    2284           0 :                 add_page_to_lru_list(page, lruvec);
    2285           0 :                 nr_pages = thp_nr_pages(page);
    2286           0 :                 nr_moved += nr_pages;
    2287           0 :                 if (PageActive(page))
    2288           0 :                         workingset_age_nonresident(lruvec, nr_pages);
    2289             :         }
    2290             : 
    2291             :         /*
    2292             :          * To save our caller's stack, now use input list for pages to free.
    2293             :          */
    2294           0 :         list_splice(&pages_to_free, list);
    2295             : 
    2296           0 :         return nr_moved;
    2297             : }
    2298             : 
    2299             : /*
    2300             :  * If a kernel thread (such as nfsd for loop-back mounts) services
    2301             :  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
    2302             :  * In that case we should only throttle if the backing device it is
    2303             :  * writing to is congested.  In other cases it is safe to throttle.
    2304             :  */
    2305             : static int current_may_throttle(void)
    2306             : {
    2307           0 :         return !(current->flags & PF_LOCAL_THROTTLE);
    2308             : }
    2309             : 
    2310             : /*
    2311             :  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
    2312             :  * of reclaimed pages
    2313             :  */
    2314             : static unsigned long
    2315           0 : shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
    2316             :                      struct scan_control *sc, enum lru_list lru)
    2317             : {
    2318           0 :         LIST_HEAD(page_list);
    2319             :         unsigned long nr_scanned;
    2320           0 :         unsigned int nr_reclaimed = 0;
    2321             :         unsigned long nr_taken;
    2322             :         struct reclaim_stat stat;
    2323           0 :         bool file = is_file_lru(lru);
    2324             :         enum vm_event_item item;
    2325           0 :         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    2326           0 :         bool stalled = false;
    2327             : 
    2328           0 :         while (unlikely(too_many_isolated(pgdat, file, sc))) {
    2329           0 :                 if (stalled)
    2330             :                         return 0;
    2331             : 
    2332             :                 /* wait a bit for the reclaimer. */
    2333           0 :                 stalled = true;
    2334           0 :                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
    2335             : 
    2336             :                 /* We are about to die and free our memory. Return now. */
    2337           0 :                 if (fatal_signal_pending(current))
    2338             :                         return SWAP_CLUSTER_MAX;
    2339             :         }
    2340             : 
    2341           0 :         lru_add_drain();
    2342             : 
    2343           0 :         spin_lock_irq(&lruvec->lru_lock);
    2344             : 
    2345           0 :         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
    2346             :                                      &nr_scanned, sc, lru);
    2347             : 
    2348           0 :         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
    2349           0 :         item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
    2350           0 :         if (!cgroup_reclaim(sc))
    2351           0 :                 __count_vm_events(item, nr_scanned);
    2352           0 :         __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
    2353           0 :         __count_vm_events(PGSCAN_ANON + file, nr_scanned);
    2354             : 
    2355           0 :         spin_unlock_irq(&lruvec->lru_lock);
    2356             : 
    2357           0 :         if (nr_taken == 0)
    2358             :                 return 0;
    2359             : 
    2360           0 :         nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
    2361             : 
    2362           0 :         spin_lock_irq(&lruvec->lru_lock);
    2363           0 :         move_pages_to_lru(lruvec, &page_list);
    2364             : 
    2365           0 :         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
    2366           0 :         item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
    2367           0 :         if (!cgroup_reclaim(sc))
    2368           0 :                 __count_vm_events(item, nr_reclaimed);
    2369           0 :         __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
    2370           0 :         __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
    2371           0 :         spin_unlock_irq(&lruvec->lru_lock);
    2372             : 
    2373           0 :         lru_note_cost(lruvec, file, stat.nr_pageout);
    2374           0 :         mem_cgroup_uncharge_list(&page_list);
    2375           0 :         free_unref_page_list(&page_list);
    2376             : 
    2377             :         /*
    2378             :          * If dirty pages are scanned that are not queued for IO, it
    2379             :          * implies that flushers are not doing their job. This can
    2380             :          * happen when memory pressure pushes dirty pages to the end of
    2381             :          * the LRU before the dirty limits are breached and the dirty
    2382             :          * data has expired. It can also happen when the proportion of
    2383             :          * dirty pages grows not through writes but through memory
    2384             :          * pressure reclaiming all the clean cache. And in some cases,
    2385             :          * the flushers simply cannot keep up with the allocation
    2386             :          * rate. Nudge the flusher threads in case they are asleep.
    2387             :          */
    2388           0 :         if (stat.nr_unqueued_dirty == nr_taken)
    2389           0 :                 wakeup_flusher_threads(WB_REASON_VMSCAN);
    2390             : 
    2391           0 :         sc->nr.dirty += stat.nr_dirty;
    2392           0 :         sc->nr.congested += stat.nr_congested;
    2393           0 :         sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
    2394           0 :         sc->nr.writeback += stat.nr_writeback;
    2395           0 :         sc->nr.immediate += stat.nr_immediate;
    2396           0 :         sc->nr.taken += nr_taken;
    2397           0 :         if (file)
    2398           0 :                 sc->nr.file_taken += nr_taken;
    2399             : 
    2400           0 :         trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
    2401           0 :                         nr_scanned, nr_reclaimed, &stat, sc->priority, file);
    2402           0 :         return nr_reclaimed;
    2403             : }
    2404             : 
    2405             : /*
    2406             :  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
    2407             :  *
    2408             :  * We move them the other way if the page is referenced by one or more
    2409             :  * processes.
    2410             :  *
    2411             :  * If the pages are mostly unmapped, the processing is fast and it is
    2412             :  * appropriate to hold lru_lock across the whole operation.  But if
    2413             :  * the pages are mapped, the processing is slow (folio_referenced()), so
    2414             :  * we should drop lru_lock around each page.  It's impossible to balance
    2415             :  * this, so instead we remove the pages from the LRU while processing them.
    2416             :  * It is safe to rely on PG_active against the non-LRU pages in here because
    2417             :  * nobody will play with that bit on a non-LRU page.
    2418             :  *
    2419             :  * The downside is that we have to touch page->_refcount against each page.
    2420             :  * But we had to alter page->flags anyway.
    2421             :  */
    2422           0 : static void shrink_active_list(unsigned long nr_to_scan,
    2423             :                                struct lruvec *lruvec,
    2424             :                                struct scan_control *sc,
    2425             :                                enum lru_list lru)
    2426             : {
    2427             :         unsigned long nr_taken;
    2428             :         unsigned long nr_scanned;
    2429             :         unsigned long vm_flags;
    2430           0 :         LIST_HEAD(l_hold);      /* The pages which were snipped off */
    2431           0 :         LIST_HEAD(l_active);
    2432           0 :         LIST_HEAD(l_inactive);
    2433             :         unsigned nr_deactivate, nr_activate;
    2434           0 :         unsigned nr_rotated = 0;
    2435           0 :         int file = is_file_lru(lru);
    2436           0 :         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    2437             : 
    2438           0 :         lru_add_drain();
    2439             : 
    2440           0 :         spin_lock_irq(&lruvec->lru_lock);
    2441             : 
    2442           0 :         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
    2443             :                                      &nr_scanned, sc, lru);
    2444             : 
    2445           0 :         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
    2446             : 
    2447           0 :         if (!cgroup_reclaim(sc))
    2448           0 :                 __count_vm_events(PGREFILL, nr_scanned);
    2449           0 :         __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
    2450             : 
    2451           0 :         spin_unlock_irq(&lruvec->lru_lock);
    2452             : 
    2453           0 :         while (!list_empty(&l_hold)) {
    2454             :                 struct folio *folio;
    2455             :                 struct page *page;
    2456             : 
    2457           0 :                 cond_resched();
    2458           0 :                 folio = lru_to_folio(&l_hold);
    2459           0 :                 list_del(&folio->lru);
    2460           0 :                 page = &folio->page;
    2461             : 
    2462           0 :                 if (unlikely(!page_evictable(page))) {
    2463           0 :                         putback_lru_page(page);
    2464           0 :                         continue;
    2465             :                 }
    2466             : 
    2467           0 :                 if (unlikely(buffer_heads_over_limit)) {
    2468           0 :                         if (page_has_private(page) && trylock_page(page)) {
    2469           0 :                                 if (page_has_private(page))
    2470           0 :                                         try_to_release_page(page, 0);
    2471           0 :                                 unlock_page(page);
    2472             :                         }
    2473             :                 }
    2474             : 
    2475           0 :                 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
    2476             :                                      &vm_flags)) {
    2477             :                         /*
    2478             :                          * Identify referenced, file-backed active pages and
    2479             :                          * give them one more trip around the active list. So
    2480             :                          * that executable code get better chances to stay in
    2481             :                          * memory under moderate memory pressure.  Anon pages
    2482             :                          * are not likely to be evicted by use-once streaming
    2483             :                          * IO, plus JVM can create lots of anon VM_EXEC pages,
    2484             :                          * so we ignore them here.
    2485             :                          */
    2486           0 :                         if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
    2487           0 :                                 nr_rotated += thp_nr_pages(page);
    2488           0 :                                 list_add(&page->lru, &l_active);
    2489           0 :                                 continue;
    2490             :                         }
    2491             :                 }
    2492             : 
    2493           0 :                 ClearPageActive(page);  /* we are de-activating */
    2494           0 :                 SetPageWorkingset(page);
    2495           0 :                 list_add(&page->lru, &l_inactive);
    2496             :         }
    2497             : 
    2498             :         /*
    2499             :          * Move pages back to the lru list.
    2500             :          */
    2501           0 :         spin_lock_irq(&lruvec->lru_lock);
    2502             : 
    2503           0 :         nr_activate = move_pages_to_lru(lruvec, &l_active);
    2504           0 :         nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
    2505             :         /* Keep all free pages in l_active list */
    2506           0 :         list_splice(&l_inactive, &l_active);
    2507             : 
    2508           0 :         __count_vm_events(PGDEACTIVATE, nr_deactivate);
    2509           0 :         __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
    2510             : 
    2511           0 :         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
    2512           0 :         spin_unlock_irq(&lruvec->lru_lock);
    2513             : 
    2514           0 :         mem_cgroup_uncharge_list(&l_active);
    2515           0 :         free_unref_page_list(&l_active);
    2516           0 :         trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
    2517           0 :                         nr_deactivate, nr_rotated, sc->priority, file);
    2518           0 : }
    2519             : 
    2520           0 : unsigned long reclaim_pages(struct list_head *page_list)
    2521             : {
    2522           0 :         int nid = NUMA_NO_NODE;
    2523           0 :         unsigned int nr_reclaimed = 0;
    2524           0 :         LIST_HEAD(node_page_list);
    2525             :         struct reclaim_stat dummy_stat;
    2526             :         struct page *page;
    2527             :         unsigned int noreclaim_flag;
    2528           0 :         struct scan_control sc = {
    2529             :                 .gfp_mask = GFP_KERNEL,
    2530             :                 .may_writepage = 1,
    2531             :                 .may_unmap = 1,
    2532             :                 .may_swap = 1,
    2533             :                 .no_demotion = 1,
    2534             :         };
    2535             : 
    2536           0 :         noreclaim_flag = memalloc_noreclaim_save();
    2537             : 
    2538           0 :         while (!list_empty(page_list)) {
    2539           0 :                 page = lru_to_page(page_list);
    2540           0 :                 if (nid == NUMA_NO_NODE) {
    2541           0 :                         nid = page_to_nid(page);
    2542             :                         INIT_LIST_HEAD(&node_page_list);
    2543             :                 }
    2544             : 
    2545           0 :                 if (nid == page_to_nid(page)) {
    2546           0 :                         ClearPageActive(page);
    2547           0 :                         list_move(&page->lru, &node_page_list);
    2548           0 :                         continue;
    2549             :                 }
    2550             : 
    2551           0 :                 nr_reclaimed += shrink_page_list(&node_page_list,
    2552             :                                                 NODE_DATA(nid),
    2553             :                                                 &sc, &dummy_stat, false);
    2554           0 :                 while (!list_empty(&node_page_list)) {
    2555           0 :                         page = lru_to_page(&node_page_list);
    2556           0 :                         list_del(&page->lru);
    2557           0 :                         putback_lru_page(page);
    2558             :                 }
    2559             : 
    2560             :                 nid = NUMA_NO_NODE;
    2561             :         }
    2562             : 
    2563           0 :         if (!list_empty(&node_page_list)) {
    2564           0 :                 nr_reclaimed += shrink_page_list(&node_page_list,
    2565             :                                                 NODE_DATA(nid),
    2566             :                                                 &sc, &dummy_stat, false);
    2567           0 :                 while (!list_empty(&node_page_list)) {
    2568           0 :                         page = lru_to_page(&node_page_list);
    2569           0 :                         list_del(&page->lru);
    2570           0 :                         putback_lru_page(page);
    2571             :                 }
    2572             :         }
    2573             : 
    2574           0 :         memalloc_noreclaim_restore(noreclaim_flag);
    2575             : 
    2576           0 :         return nr_reclaimed;
    2577             : }
    2578             : 
    2579           0 : static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
    2580             :                                  struct lruvec *lruvec, struct scan_control *sc)
    2581             : {
    2582           0 :         if (is_active_lru(lru)) {
    2583           0 :                 if (sc->may_deactivate & (1 << is_file_lru(lru)))
    2584           0 :                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
    2585             :                 else
    2586           0 :                         sc->skipped_deactivate = 1;
    2587             :                 return 0;
    2588             :         }
    2589             : 
    2590           0 :         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
    2591             : }
    2592             : 
    2593             : /*
    2594             :  * The inactive anon list should be small enough that the VM never has
    2595             :  * to do too much work.
    2596             :  *
    2597             :  * The inactive file list should be small enough to leave most memory
    2598             :  * to the established workingset on the scan-resistant active list,
    2599             :  * but large enough to avoid thrashing the aggregate readahead window.
    2600             :  *
    2601             :  * Both inactive lists should also be large enough that each inactive
    2602             :  * page has a chance to be referenced again before it is reclaimed.
    2603             :  *
    2604             :  * If that fails and refaulting is observed, the inactive list grows.
    2605             :  *
    2606             :  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
    2607             :  * on this LRU, maintained by the pageout code. An inactive_ratio
    2608             :  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
    2609             :  *
    2610             :  * total     target    max
    2611             :  * memory    ratio     inactive
    2612             :  * -------------------------------------
    2613             :  *   10MB       1         5MB
    2614             :  *  100MB       1        50MB
    2615             :  *    1GB       3       250MB
    2616             :  *   10GB      10       0.9GB
    2617             :  *  100GB      31         3GB
    2618             :  *    1TB     101        10GB
    2619             :  *   10TB     320        32GB
    2620             :  */
    2621           0 : static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
    2622             : {
    2623           0 :         enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
    2624             :         unsigned long inactive, active;
    2625             :         unsigned long inactive_ratio;
    2626             :         unsigned long gb;
    2627             : 
    2628           0 :         inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
    2629           0 :         active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
    2630             : 
    2631           0 :         gb = (inactive + active) >> (30 - PAGE_SHIFT);
    2632           0 :         if (gb)
    2633           0 :                 inactive_ratio = int_sqrt(10 * gb);
    2634             :         else
    2635             :                 inactive_ratio = 1;
    2636             : 
    2637           0 :         return inactive * inactive_ratio < active;
    2638             : }
    2639             : 
    2640             : enum scan_balance {
    2641             :         SCAN_EQUAL,
    2642             :         SCAN_FRACT,
    2643             :         SCAN_ANON,
    2644             :         SCAN_FILE,
    2645             : };
    2646             : 
    2647             : /*
    2648             :  * Determine how aggressively the anon and file LRU lists should be
    2649             :  * scanned.  The relative value of each set of LRU lists is determined
    2650             :  * by looking at the fraction of the pages scanned we did rotate back
    2651             :  * onto the active list instead of evict.
    2652             :  *
    2653             :  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
    2654             :  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
    2655             :  */
    2656           0 : static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
    2657             :                            unsigned long *nr)
    2658             : {
    2659           0 :         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    2660           0 :         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    2661             :         unsigned long anon_cost, file_cost, total_cost;
    2662           0 :         int swappiness = mem_cgroup_swappiness(memcg);
    2663             :         u64 fraction[ANON_AND_FILE];
    2664           0 :         u64 denominator = 0;    /* gcc */
    2665             :         enum scan_balance scan_balance;
    2666             :         unsigned long ap, fp;
    2667             :         enum lru_list lru;
    2668             : 
    2669             :         /* If we have no swap space, do not bother scanning anon pages. */
    2670           0 :         if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
    2671             :                 scan_balance = SCAN_FILE;
    2672             :                 goto out;
    2673             :         }
    2674             : 
    2675             :         /*
    2676             :          * Global reclaim will swap to prevent OOM even with no
    2677             :          * swappiness, but memcg users want to use this knob to
    2678             :          * disable swapping for individual groups completely when
    2679             :          * using the memory controller's swap limit feature would be
    2680             :          * too expensive.
    2681             :          */
    2682           0 :         if (cgroup_reclaim(sc) && !swappiness) {
    2683             :                 scan_balance = SCAN_FILE;
    2684             :                 goto out;
    2685             :         }
    2686             : 
    2687             :         /*
    2688             :          * Do not apply any pressure balancing cleverness when the
    2689             :          * system is close to OOM, scan both anon and file equally
    2690             :          * (unless the swappiness setting disagrees with swapping).
    2691             :          */
    2692           0 :         if (!sc->priority && swappiness) {
    2693             :                 scan_balance = SCAN_EQUAL;
    2694             :                 goto out;
    2695             :         }
    2696             : 
    2697             :         /*
    2698             :          * If the system is almost out of file pages, force-scan anon.
    2699             :          */
    2700           0 :         if (sc->file_is_tiny) {
    2701             :                 scan_balance = SCAN_ANON;
    2702             :                 goto out;
    2703             :         }
    2704             : 
    2705             :         /*
    2706             :          * If there is enough inactive page cache, we do not reclaim
    2707             :          * anything from the anonymous working right now.
    2708             :          */
    2709           0 :         if (sc->cache_trim_mode) {
    2710             :                 scan_balance = SCAN_FILE;
    2711             :                 goto out;
    2712             :         }
    2713             : 
    2714           0 :         scan_balance = SCAN_FRACT;
    2715             :         /*
    2716             :          * Calculate the pressure balance between anon and file pages.
    2717             :          *
    2718             :          * The amount of pressure we put on each LRU is inversely
    2719             :          * proportional to the cost of reclaiming each list, as
    2720             :          * determined by the share of pages that are refaulting, times
    2721             :          * the relative IO cost of bringing back a swapped out
    2722             :          * anonymous page vs reloading a filesystem page (swappiness).
    2723             :          *
    2724             :          * Although we limit that influence to ensure no list gets
    2725             :          * left behind completely: at least a third of the pressure is
    2726             :          * applied, before swappiness.
    2727             :          *
    2728             :          * With swappiness at 100, anon and file have equal IO cost.
    2729             :          */
    2730           0 :         total_cost = sc->anon_cost + sc->file_cost;
    2731           0 :         anon_cost = total_cost + sc->anon_cost;
    2732           0 :         file_cost = total_cost + sc->file_cost;
    2733           0 :         total_cost = anon_cost + file_cost;
    2734             : 
    2735           0 :         ap = swappiness * (total_cost + 1);
    2736           0 :         ap /= anon_cost + 1;
    2737             : 
    2738           0 :         fp = (200 - swappiness) * (total_cost + 1);
    2739           0 :         fp /= file_cost + 1;
    2740             : 
    2741           0 :         fraction[0] = ap;
    2742           0 :         fraction[1] = fp;
    2743           0 :         denominator = ap + fp;
    2744             : out:
    2745           0 :         for_each_evictable_lru(lru) {
    2746           0 :                 int file = is_file_lru(lru);
    2747             :                 unsigned long lruvec_size;
    2748             :                 unsigned long low, min;
    2749             :                 unsigned long scan;
    2750             : 
    2751           0 :                 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
    2752           0 :                 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
    2753             :                                       &min, &low);
    2754             : 
    2755             :                 if (min || low) {
    2756             :                         /*
    2757             :                          * Scale a cgroup's reclaim pressure by proportioning
    2758             :                          * its current usage to its memory.low or memory.min
    2759             :                          * setting.
    2760             :                          *
    2761             :                          * This is important, as otherwise scanning aggression
    2762             :                          * becomes extremely binary -- from nothing as we
    2763             :                          * approach the memory protection threshold, to totally
    2764             :                          * nominal as we exceed it.  This results in requiring
    2765             :                          * setting extremely liberal protection thresholds. It
    2766             :                          * also means we simply get no protection at all if we
    2767             :                          * set it too low, which is not ideal.
    2768             :                          *
    2769             :                          * If there is any protection in place, we reduce scan
    2770             :                          * pressure by how much of the total memory used is
    2771             :                          * within protection thresholds.
    2772             :                          *
    2773             :                          * There is one special case: in the first reclaim pass,
    2774             :                          * we skip over all groups that are within their low
    2775             :                          * protection. If that fails to reclaim enough pages to
    2776             :                          * satisfy the reclaim goal, we come back and override
    2777             :                          * the best-effort low protection. However, we still
    2778             :                          * ideally want to honor how well-behaved groups are in
    2779             :                          * that case instead of simply punishing them all
    2780             :                          * equally. As such, we reclaim them based on how much
    2781             :                          * memory they are using, reducing the scan pressure
    2782             :                          * again by how much of the total memory used is under
    2783             :                          * hard protection.
    2784             :                          */
    2785             :                         unsigned long cgroup_size = mem_cgroup_size(memcg);
    2786             :                         unsigned long protection;
    2787             : 
    2788             :                         /* memory.low scaling, make sure we retry before OOM */
    2789             :                         if (!sc->memcg_low_reclaim && low > min) {
    2790             :                                 protection = low;
    2791             :                                 sc->memcg_low_skipped = 1;
    2792             :                         } else {
    2793             :                                 protection = min;
    2794             :                         }
    2795             : 
    2796             :                         /* Avoid TOCTOU with earlier protection check */
    2797             :                         cgroup_size = max(cgroup_size, protection);
    2798             : 
    2799             :                         scan = lruvec_size - lruvec_size * protection /
    2800             :                                 (cgroup_size + 1);
    2801             : 
    2802             :                         /*
    2803             :                          * Minimally target SWAP_CLUSTER_MAX pages to keep
    2804             :                          * reclaim moving forwards, avoiding decrementing
    2805             :                          * sc->priority further than desirable.
    2806             :                          */
    2807             :                         scan = max(scan, SWAP_CLUSTER_MAX);
    2808             :                 } else {
    2809           0 :                         scan = lruvec_size;
    2810             :                 }
    2811             : 
    2812           0 :                 scan >>= sc->priority;
    2813             : 
    2814             :                 /*
    2815             :                  * If the cgroup's already been deleted, make sure to
    2816             :                  * scrape out the remaining cache.
    2817             :                  */
    2818             :                 if (!scan && !mem_cgroup_online(memcg))
    2819             :                         scan = min(lruvec_size, SWAP_CLUSTER_MAX);
    2820             : 
    2821           0 :                 switch (scan_balance) {
    2822             :                 case SCAN_EQUAL:
    2823             :                         /* Scan lists relative to size */
    2824             :                         break;
    2825             :                 case SCAN_FRACT:
    2826             :                         /*
    2827             :                          * Scan types proportional to swappiness and
    2828             :                          * their relative recent reclaim efficiency.
    2829             :                          * Make sure we don't miss the last page on
    2830             :                          * the offlined memory cgroups because of a
    2831             :                          * round-off error.
    2832             :                          */
    2833           0 :                         scan = mem_cgroup_online(memcg) ?
    2834           0 :                                div64_u64(scan * fraction[file], denominator) :
    2835             :                                DIV64_U64_ROUND_UP(scan * fraction[file],
    2836             :                                                   denominator);
    2837           0 :                         break;
    2838             :                 case SCAN_FILE:
    2839             :                 case SCAN_ANON:
    2840             :                         /* Scan one type exclusively */
    2841           0 :                         if ((scan_balance == SCAN_FILE) != file)
    2842           0 :                                 scan = 0;
    2843             :                         break;
    2844             :                 default:
    2845             :                         /* Look ma, no brain */
    2846           0 :                         BUG();
    2847             :                 }
    2848             : 
    2849           0 :                 nr[lru] = scan;
    2850             :         }
    2851           0 : }
    2852             : 
    2853             : /*
    2854             :  * Anonymous LRU management is a waste if there is
    2855             :  * ultimately no way to reclaim the memory.
    2856             :  */
    2857             : static bool can_age_anon_pages(struct pglist_data *pgdat,
    2858             :                                struct scan_control *sc)
    2859             : {
    2860             :         /* Aging the anon LRU is valuable if swap is present: */
    2861           0 :         if (total_swap_pages > 0)
    2862             :                 return true;
    2863             : 
    2864             :         /* Also valuable if anon pages can be demoted: */
    2865           0 :         return can_demote(pgdat->node_id, sc);
    2866             : }
    2867             : 
    2868           0 : static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
    2869             : {
    2870             :         unsigned long nr[NR_LRU_LISTS];
    2871             :         unsigned long targets[NR_LRU_LISTS];
    2872             :         unsigned long nr_to_scan;
    2873             :         enum lru_list lru;
    2874           0 :         unsigned long nr_reclaimed = 0;
    2875           0 :         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
    2876             :         struct blk_plug plug;
    2877             :         bool scan_adjusted;
    2878             : 
    2879           0 :         get_scan_count(lruvec, sc, nr);
    2880             : 
    2881             :         /* Record the original scan target for proportional adjustments later */
    2882           0 :         memcpy(targets, nr, sizeof(nr));
    2883             : 
    2884             :         /*
    2885             :          * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
    2886             :          * event that can occur when there is little memory pressure e.g.
    2887             :          * multiple streaming readers/writers. Hence, we do not abort scanning
    2888             :          * when the requested number of pages are reclaimed when scanning at
    2889             :          * DEF_PRIORITY on the assumption that the fact we are direct
    2890             :          * reclaiming implies that kswapd is not keeping up and it is best to
    2891             :          * do a batch of work at once. For memcg reclaim one check is made to
    2892             :          * abort proportional reclaim if either the file or anon lru has already
    2893             :          * dropped to zero at the first pass.
    2894             :          */
    2895           0 :         scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
    2896           0 :                          sc->priority == DEF_PRIORITY);
    2897             : 
    2898           0 :         blk_start_plug(&plug);
    2899           0 :         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
    2900           0 :                                         nr[LRU_INACTIVE_FILE]) {
    2901             :                 unsigned long nr_anon, nr_file, percentage;
    2902             :                 unsigned long nr_scanned;
    2903             : 
    2904           0 :                 for_each_evictable_lru(lru) {
    2905           0 :                         if (nr[lru]) {
    2906           0 :                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
    2907           0 :                                 nr[lru] -= nr_to_scan;
    2908             : 
    2909           0 :                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
    2910             :                                                             lruvec, sc);
    2911             :                         }
    2912             :                 }
    2913             : 
    2914           0 :                 cond_resched();
    2915             : 
    2916           0 :                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
    2917           0 :                         continue;
    2918             : 
    2919             :                 /*
    2920             :                  * For kswapd and memcg, reclaim at least the number of pages
    2921             :                  * requested. Ensure that the anon and file LRUs are scanned
    2922             :                  * proportionally what was requested by get_scan_count(). We
    2923             :                  * stop reclaiming one LRU and reduce the amount scanning
    2924             :                  * proportional to the original scan target.
    2925             :                  */
    2926           0 :                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
    2927           0 :                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
    2928             : 
    2929             :                 /*
    2930             :                  * It's just vindictive to attack the larger once the smaller
    2931             :                  * has gone to zero.  And given the way we stop scanning the
    2932             :                  * smaller below, this makes sure that we only make one nudge
    2933             :                  * towards proportionality once we've got nr_to_reclaim.
    2934             :                  */
    2935           0 :                 if (!nr_file || !nr_anon)
    2936             :                         break;
    2937             : 
    2938           0 :                 if (nr_file > nr_anon) {
    2939           0 :                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
    2940           0 :                                                 targets[LRU_ACTIVE_ANON] + 1;
    2941           0 :                         lru = LRU_BASE;
    2942           0 :                         percentage = nr_anon * 100 / scan_target;
    2943             :                 } else {
    2944           0 :                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
    2945           0 :                                                 targets[LRU_ACTIVE_FILE] + 1;
    2946           0 :                         lru = LRU_FILE;
    2947           0 :                         percentage = nr_file * 100 / scan_target;
    2948             :                 }
    2949             : 
    2950             :                 /* Stop scanning the smaller of the LRU */
    2951           0 :                 nr[lru] = 0;
    2952           0 :                 nr[lru + LRU_ACTIVE] = 0;
    2953             : 
    2954             :                 /*
    2955             :                  * Recalculate the other LRU scan count based on its original
    2956             :                  * scan target and the percentage scanning already complete
    2957             :                  */
    2958           0 :                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
    2959           0 :                 nr_scanned = targets[lru] - nr[lru];
    2960           0 :                 nr[lru] = targets[lru] * (100 - percentage) / 100;
    2961           0 :                 nr[lru] -= min(nr[lru], nr_scanned);
    2962             : 
    2963           0 :                 lru += LRU_ACTIVE;
    2964           0 :                 nr_scanned = targets[lru] - nr[lru];
    2965           0 :                 nr[lru] = targets[lru] * (100 - percentage) / 100;
    2966           0 :                 nr[lru] -= min(nr[lru], nr_scanned);
    2967             : 
    2968           0 :                 scan_adjusted = true;
    2969             :         }
    2970           0 :         blk_finish_plug(&plug);
    2971           0 :         sc->nr_reclaimed += nr_reclaimed;
    2972             : 
    2973             :         /*
    2974             :          * Even if we did not try to evict anon pages at all, we want to
    2975             :          * rebalance the anon lru active/inactive ratio.
    2976             :          */
    2977           0 :         if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
    2978           0 :             inactive_is_low(lruvec, LRU_INACTIVE_ANON))
    2979           0 :                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
    2980             :                                    sc, LRU_ACTIVE_ANON);
    2981           0 : }
    2982             : 
    2983             : /* Use reclaim/compaction for costly allocs or under memory pressure */
    2984             : static bool in_reclaim_compaction(struct scan_control *sc)
    2985             : {
    2986           0 :         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
    2987           0 :                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
    2988           0 :                          sc->priority < DEF_PRIORITY - 2))
    2989             :                 return true;
    2990             : 
    2991             :         return false;
    2992             : }
    2993             : 
    2994             : /*
    2995             :  * Reclaim/compaction is used for high-order allocation requests. It reclaims
    2996             :  * order-0 pages before compacting the zone. should_continue_reclaim() returns
    2997             :  * true if more pages should be reclaimed such that when the page allocator
    2998             :  * calls try_to_compact_pages() that it will have enough free pages to succeed.
    2999             :  * It will give up earlier than that if there is difficulty reclaiming pages.
    3000             :  */
    3001           0 : static inline bool should_continue_reclaim(struct pglist_data *pgdat,
    3002             :                                         unsigned long nr_reclaimed,
    3003             :                                         struct scan_control *sc)
    3004             : {
    3005             :         unsigned long pages_for_compaction;
    3006             :         unsigned long inactive_lru_pages;
    3007             :         int z;
    3008             : 
    3009             :         /* If not in reclaim/compaction mode, stop */
    3010           0 :         if (!in_reclaim_compaction(sc))
    3011             :                 return false;
    3012             : 
    3013             :         /*
    3014             :          * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
    3015             :          * number of pages that were scanned. This will return to the caller
    3016             :          * with the risk reclaim/compaction and the resulting allocation attempt
    3017             :          * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
    3018             :          * allocations through requiring that the full LRU list has been scanned
    3019             :          * first, by assuming that zero delta of sc->nr_scanned means full LRU
    3020             :          * scan, but that approximation was wrong, and there were corner cases
    3021             :          * where always a non-zero amount of pages were scanned.
    3022             :          */
    3023           0 :         if (!nr_reclaimed)
    3024             :                 return false;
    3025             : 
    3026             :         /* If compaction would go ahead or the allocation would succeed, stop */
    3027           0 :         for (z = 0; z <= sc->reclaim_idx; z++) {
    3028           0 :                 struct zone *zone = &pgdat->node_zones[z];
    3029           0 :                 if (!managed_zone(zone))
    3030           0 :                         continue;
    3031             : 
    3032           0 :                 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
    3033             :                 case COMPACT_SUCCESS:
    3034             :                 case COMPACT_CONTINUE:
    3035             :                         return false;
    3036             :                 default:
    3037             :                         /* check next zone */
    3038             :                         ;
    3039             :                 }
    3040             :         }
    3041             : 
    3042             :         /*
    3043             :          * If we have not reclaimed enough pages for compaction and the
    3044             :          * inactive lists are large enough, continue reclaiming
    3045             :          */
    3046           0 :         pages_for_compaction = compact_gap(sc->order);
    3047           0 :         inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
    3048           0 :         if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
    3049           0 :                 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
    3050             : 
    3051           0 :         return inactive_lru_pages > pages_for_compaction;
    3052             : }
    3053             : 
    3054           0 : static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
    3055             : {
    3056           0 :         struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
    3057             :         struct mem_cgroup *memcg;
    3058             : 
    3059           0 :         memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
    3060             :         do {
    3061           0 :                 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
    3062             :                 unsigned long reclaimed;
    3063             :                 unsigned long scanned;
    3064             : 
    3065             :                 /*
    3066             :                  * This loop can become CPU-bound when target memcgs
    3067             :                  * aren't eligible for reclaim - either because they
    3068             :                  * don't have any reclaimable pages, or because their
    3069             :                  * memory is explicitly protected. Avoid soft lockups.
    3070             :                  */
    3071           0 :                 cond_resched();
    3072             : 
    3073           0 :                 mem_cgroup_calculate_protection(target_memcg, memcg);
    3074             : 
    3075           0 :                 if (mem_cgroup_below_min(memcg)) {
    3076             :                         /*
    3077             :                          * Hard protection.
    3078             :                          * If there is no reclaimable memory, OOM.
    3079             :                          */
    3080             :                         continue;
    3081           0 :                 } else if (mem_cgroup_below_low(memcg)) {
    3082             :                         /*
    3083             :                          * Soft protection.
    3084             :                          * Respect the protection only as long as
    3085             :                          * there is an unprotected supply
    3086             :                          * of reclaimable memory from other cgroups.
    3087             :                          */
    3088             :                         if (!sc->memcg_low_reclaim) {
    3089             :                                 sc->memcg_low_skipped = 1;
    3090             :                                 continue;
    3091             :                         }
    3092             :                         memcg_memory_event(memcg, MEMCG_LOW);
    3093             :                 }
    3094             : 
    3095           0 :                 reclaimed = sc->nr_reclaimed;
    3096           0 :                 scanned = sc->nr_scanned;
    3097             : 
    3098           0 :                 shrink_lruvec(lruvec, sc);
    3099             : 
    3100           0 :                 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
    3101           0 :                             sc->priority);
    3102             : 
    3103             :                 /* Record the group's reclaim efficiency */
    3104           0 :                 vmpressure(sc->gfp_mask, memcg, false,
    3105           0 :                            sc->nr_scanned - scanned,
    3106           0 :                            sc->nr_reclaimed - reclaimed);
    3107             : 
    3108           0 :         } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
    3109           0 : }
    3110             : 
    3111           0 : static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
    3112             : {
    3113           0 :         struct reclaim_state *reclaim_state = current->reclaim_state;
    3114             :         unsigned long nr_reclaimed, nr_scanned;
    3115             :         struct lruvec *target_lruvec;
    3116           0 :         bool reclaimable = false;
    3117             :         unsigned long file;
    3118             : 
    3119           0 :         target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
    3120             : 
    3121             : again:
    3122             :         /*
    3123             :          * Flush the memory cgroup stats, so that we read accurate per-memcg
    3124             :          * lruvec stats for heuristics.
    3125             :          */
    3126             :         mem_cgroup_flush_stats();
    3127             : 
    3128           0 :         memset(&sc->nr, 0, sizeof(sc->nr));
    3129             : 
    3130           0 :         nr_reclaimed = sc->nr_reclaimed;
    3131           0 :         nr_scanned = sc->nr_scanned;
    3132             : 
    3133             :         /*
    3134             :          * Determine the scan balance between anon and file LRUs.
    3135             :          */
    3136           0 :         spin_lock_irq(&target_lruvec->lru_lock);
    3137           0 :         sc->anon_cost = target_lruvec->anon_cost;
    3138           0 :         sc->file_cost = target_lruvec->file_cost;
    3139           0 :         spin_unlock_irq(&target_lruvec->lru_lock);
    3140             : 
    3141             :         /*
    3142             :          * Target desirable inactive:active list ratios for the anon
    3143             :          * and file LRU lists.
    3144             :          */
    3145           0 :         if (!sc->force_deactivate) {
    3146             :                 unsigned long refaults;
    3147             : 
    3148           0 :                 refaults = lruvec_page_state(target_lruvec,
    3149             :                                 WORKINGSET_ACTIVATE_ANON);
    3150           0 :                 if (refaults != target_lruvec->refaults[0] ||
    3151           0 :                         inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
    3152           0 :                         sc->may_deactivate |= DEACTIVATE_ANON;
    3153             :                 else
    3154           0 :                         sc->may_deactivate &= ~DEACTIVATE_ANON;
    3155             : 
    3156             :                 /*
    3157             :                  * When refaults are being observed, it means a new
    3158             :                  * workingset is being established. Deactivate to get
    3159             :                  * rid of any stale active pages quickly.
    3160             :                  */
    3161           0 :                 refaults = lruvec_page_state(target_lruvec,
    3162             :                                 WORKINGSET_ACTIVATE_FILE);
    3163           0 :                 if (refaults != target_lruvec->refaults[1] ||
    3164           0 :                     inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
    3165           0 :                         sc->may_deactivate |= DEACTIVATE_FILE;
    3166             :                 else
    3167           0 :                         sc->may_deactivate &= ~DEACTIVATE_FILE;
    3168             :         } else
    3169           0 :                 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
    3170             : 
    3171             :         /*
    3172             :          * If we have plenty of inactive file pages that aren't
    3173             :          * thrashing, try to reclaim those first before touching
    3174             :          * anonymous pages.
    3175             :          */
    3176           0 :         file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
    3177           0 :         if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
    3178           0 :                 sc->cache_trim_mode = 1;
    3179             :         else
    3180           0 :                 sc->cache_trim_mode = 0;
    3181             : 
    3182             :         /*
    3183             :          * Prevent the reclaimer from falling into the cache trap: as
    3184             :          * cache pages start out inactive, every cache fault will tip
    3185             :          * the scan balance towards the file LRU.  And as the file LRU
    3186             :          * shrinks, so does the window for rotation from references.
    3187             :          * This means we have a runaway feedback loop where a tiny
    3188             :          * thrashing file LRU becomes infinitely more attractive than
    3189             :          * anon pages.  Try to detect this based on file LRU size.
    3190             :          */
    3191           0 :         if (!cgroup_reclaim(sc)) {
    3192           0 :                 unsigned long total_high_wmark = 0;
    3193             :                 unsigned long free, anon;
    3194             :                 int z;
    3195             : 
    3196           0 :                 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
    3197           0 :                 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
    3198           0 :                            node_page_state(pgdat, NR_INACTIVE_FILE);
    3199             : 
    3200           0 :                 for (z = 0; z < MAX_NR_ZONES; z++) {
    3201           0 :                         struct zone *zone = &pgdat->node_zones[z];
    3202           0 :                         if (!managed_zone(zone))
    3203           0 :                                 continue;
    3204             : 
    3205           0 :                         total_high_wmark += high_wmark_pages(zone);
    3206             :                 }
    3207             : 
    3208             :                 /*
    3209             :                  * Consider anon: if that's low too, this isn't a
    3210             :                  * runaway file reclaim problem, but rather just
    3211             :                  * extreme pressure. Reclaim as per usual then.
    3212             :                  */
    3213           0 :                 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
    3214             : 
    3215           0 :                 sc->file_is_tiny =
    3216           0 :                         file + free <= total_high_wmark &&
    3217           0 :                         !(sc->may_deactivate & DEACTIVATE_ANON) &&
    3218           0 :                         anon >> sc->priority;
    3219             :         }
    3220             : 
    3221           0 :         shrink_node_memcgs(pgdat, sc);
    3222             : 
    3223           0 :         if (reclaim_state) {
    3224           0 :                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
    3225           0 :                 reclaim_state->reclaimed_slab = 0;
    3226             :         }
    3227             : 
    3228             :         /* Record the subtree's reclaim efficiency */
    3229           0 :         vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
    3230           0 :                    sc->nr_scanned - nr_scanned,
    3231           0 :                    sc->nr_reclaimed - nr_reclaimed);
    3232             : 
    3233           0 :         if (sc->nr_reclaimed - nr_reclaimed)
    3234           0 :                 reclaimable = true;
    3235             : 
    3236           0 :         if (current_is_kswapd()) {
    3237             :                 /*
    3238             :                  * If reclaim is isolating dirty pages under writeback,
    3239             :                  * it implies that the long-lived page allocation rate
    3240             :                  * is exceeding the page laundering rate. Either the
    3241             :                  * global limits are not being effective at throttling
    3242             :                  * processes due to the page distribution throughout
    3243             :                  * zones or there is heavy usage of a slow backing
    3244             :                  * device. The only option is to throttle from reclaim
    3245             :                  * context which is not ideal as there is no guarantee
    3246             :                  * the dirtying process is throttled in the same way
    3247             :                  * balance_dirty_pages() manages.
    3248             :                  *
    3249             :                  * Once a node is flagged PGDAT_WRITEBACK, kswapd will
    3250             :                  * count the number of pages under pages flagged for
    3251             :                  * immediate reclaim and stall if any are encountered
    3252             :                  * in the nr_immediate check below.
    3253             :                  */
    3254           0 :                 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
    3255           0 :                         set_bit(PGDAT_WRITEBACK, &pgdat->flags);
    3256             : 
    3257             :                 /* Allow kswapd to start writing pages during reclaim.*/
    3258           0 :                 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
    3259           0 :                         set_bit(PGDAT_DIRTY, &pgdat->flags);
    3260             : 
    3261             :                 /*
    3262             :                  * If kswapd scans pages marked for immediate
    3263             :                  * reclaim and under writeback (nr_immediate), it
    3264             :                  * implies that pages are cycling through the LRU
    3265             :                  * faster than they are written so forcibly stall
    3266             :                  * until some pages complete writeback.
    3267             :                  */
    3268           0 :                 if (sc->nr.immediate)
    3269           0 :                         reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
    3270             :         }
    3271             : 
    3272             :         /*
    3273             :          * Tag a node/memcg as congested if all the dirty pages were marked
    3274             :          * for writeback and immediate reclaim (counted in nr.congested).
    3275             :          *
    3276             :          * Legacy memcg will stall in page writeback so avoid forcibly
    3277             :          * stalling in reclaim_throttle().
    3278             :          */
    3279           0 :         if ((current_is_kswapd() ||
    3280           0 :              (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
    3281           0 :             sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
    3282           0 :                 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
    3283             : 
    3284             :         /*
    3285             :          * Stall direct reclaim for IO completions if the lruvec is
    3286             :          * node is congested. Allow kswapd to continue until it
    3287             :          * starts encountering unqueued dirty pages or cycling through
    3288             :          * the LRU too quickly.
    3289             :          */
    3290           0 :         if (!current_is_kswapd() && current_may_throttle() &&
    3291           0 :             !sc->hibernation_mode &&
    3292           0 :             test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
    3293           0 :                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
    3294             : 
    3295           0 :         if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
    3296             :                                     sc))
    3297             :                 goto again;
    3298             : 
    3299             :         /*
    3300             :          * Kswapd gives up on balancing particular nodes after too
    3301             :          * many failures to reclaim anything from them and goes to
    3302             :          * sleep. On reclaim progress, reset the failure counter. A
    3303             :          * successful direct reclaim run will revive a dormant kswapd.
    3304             :          */
    3305           0 :         if (reclaimable)
    3306           0 :                 pgdat->kswapd_failures = 0;
    3307           0 : }
    3308             : 
    3309             : /*
    3310             :  * Returns true if compaction should go ahead for a costly-order request, or
    3311             :  * the allocation would already succeed without compaction. Return false if we
    3312             :  * should reclaim first.
    3313             :  */
    3314           0 : static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
    3315             : {
    3316             :         unsigned long watermark;
    3317             :         enum compact_result suitable;
    3318             : 
    3319           0 :         suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
    3320           0 :         if (suitable == COMPACT_SUCCESS)
    3321             :                 /* Allocation should succeed already. Don't reclaim. */
    3322             :                 return true;
    3323           0 :         if (suitable == COMPACT_SKIPPED)
    3324             :                 /* Compaction cannot yet proceed. Do reclaim. */
    3325             :                 return false;
    3326             : 
    3327             :         /*
    3328             :          * Compaction is already possible, but it takes time to run and there
    3329             :          * are potentially other callers using the pages just freed. So proceed
    3330             :          * with reclaim to make a buffer of free pages available to give
    3331             :          * compaction a reasonable chance of completing and allocating the page.
    3332             :          * Note that we won't actually reclaim the whole buffer in one attempt
    3333             :          * as the target watermark in should_continue_reclaim() is lower. But if
    3334             :          * we are already above the high+gap watermark, don't reclaim at all.
    3335             :          */
    3336           0 :         watermark = high_wmark_pages(zone) + compact_gap(sc->order);
    3337             : 
    3338           0 :         return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
    3339             : }
    3340             : 
    3341           0 : static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
    3342             : {
    3343             :         /*
    3344             :          * If reclaim is making progress greater than 12% efficiency then
    3345             :          * wake all the NOPROGRESS throttled tasks.
    3346             :          */
    3347           0 :         if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
    3348             :                 wait_queue_head_t *wqh;
    3349             : 
    3350           0 :                 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
    3351           0 :                 if (waitqueue_active(wqh))
    3352           0 :                         wake_up(wqh);
    3353             : 
    3354             :                 return;
    3355             :         }
    3356             : 
    3357             :         /*
    3358             :          * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
    3359             :          * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
    3360             :          * under writeback and marked for immediate reclaim at the tail of the
    3361             :          * LRU.
    3362             :          */
    3363           0 :         if (current_is_kswapd() || cgroup_reclaim(sc))
    3364             :                 return;
    3365             : 
    3366             :         /* Throttle if making no progress at high prioities. */
    3367           0 :         if (sc->priority == 1 && !sc->nr_reclaimed)
    3368           0 :                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
    3369             : }
    3370             : 
    3371             : /*
    3372             :  * This is the direct reclaim path, for page-allocating processes.  We only
    3373             :  * try to reclaim pages from zones which will satisfy the caller's allocation
    3374             :  * request.
    3375             :  *
    3376             :  * If a zone is deemed to be full of pinned pages then just give it a light
    3377             :  * scan then give up on it.
    3378             :  */
    3379           0 : static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
    3380             : {
    3381             :         struct zoneref *z;
    3382             :         struct zone *zone;
    3383             :         unsigned long nr_soft_reclaimed;
    3384             :         unsigned long nr_soft_scanned;
    3385             :         gfp_t orig_mask;
    3386           0 :         pg_data_t *last_pgdat = NULL;
    3387           0 :         pg_data_t *first_pgdat = NULL;
    3388             : 
    3389             :         /*
    3390             :          * If the number of buffer_heads in the machine exceeds the maximum
    3391             :          * allowed level, force direct reclaim to scan the highmem zone as
    3392             :          * highmem pages could be pinning lowmem pages storing buffer_heads
    3393             :          */
    3394           0 :         orig_mask = sc->gfp_mask;
    3395           0 :         if (buffer_heads_over_limit) {
    3396           0 :                 sc->gfp_mask |= __GFP_HIGHMEM;
    3397           0 :                 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
    3398             :         }
    3399             : 
    3400           0 :         for_each_zone_zonelist_nodemask(zone, z, zonelist,
    3401             :                                         sc->reclaim_idx, sc->nodemask) {
    3402             :                 /*
    3403             :                  * Take care memory controller reclaiming has small influence
    3404             :                  * to global LRU.
    3405             :                  */
    3406           0 :                 if (!cgroup_reclaim(sc)) {
    3407           0 :                         if (!cpuset_zone_allowed(zone,
    3408             :                                                  GFP_KERNEL | __GFP_HARDWALL))
    3409             :                                 continue;
    3410             : 
    3411             :                         /*
    3412             :                          * If we already have plenty of memory free for
    3413             :                          * compaction in this zone, don't free any more.
    3414             :                          * Even though compaction is invoked for any
    3415             :                          * non-zero order, only frequent costly order
    3416             :                          * reclamation is disruptive enough to become a
    3417             :                          * noticeable problem, like transparent huge
    3418             :                          * page allocations.
    3419             :                          */
    3420           0 :                         if (IS_ENABLED(CONFIG_COMPACTION) &&
    3421           0 :                             sc->order > PAGE_ALLOC_COSTLY_ORDER &&
    3422           0 :                             compaction_ready(zone, sc)) {
    3423           0 :                                 sc->compaction_ready = true;
    3424           0 :                                 continue;
    3425             :                         }
    3426             : 
    3427             :                         /*
    3428             :                          * Shrink each node in the zonelist once. If the
    3429             :                          * zonelist is ordered by zone (not the default) then a
    3430             :                          * node may be shrunk multiple times but in that case
    3431             :                          * the user prefers lower zones being preserved.
    3432             :                          */
    3433           0 :                         if (zone->zone_pgdat == last_pgdat)
    3434           0 :                                 continue;
    3435             : 
    3436             :                         /*
    3437             :                          * This steals pages from memory cgroups over softlimit
    3438             :                          * and returns the number of reclaimed pages and
    3439             :                          * scanned pages. This works for global memory pressure
    3440             :                          * and balancing, not for a memcg's limit.
    3441             :                          */
    3442           0 :                         nr_soft_scanned = 0;
    3443           0 :                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
    3444           0 :                                                 sc->order, sc->gfp_mask,
    3445             :                                                 &nr_soft_scanned);
    3446             :                         sc->nr_reclaimed += nr_soft_reclaimed;
    3447             :                         sc->nr_scanned += nr_soft_scanned;
    3448             :                         /* need some check for avoid more shrink_zone() */
    3449             :                 }
    3450             : 
    3451           0 :                 if (!first_pgdat)
    3452           0 :                         first_pgdat = zone->zone_pgdat;
    3453             : 
    3454             :                 /* See comment about same check for global reclaim above */
    3455             :                 if (zone->zone_pgdat == last_pgdat)
    3456             :                         continue;
    3457           0 :                 last_pgdat = zone->zone_pgdat;
    3458           0 :                 shrink_node(zone->zone_pgdat, sc);
    3459             :         }
    3460             : 
    3461           0 :         if (first_pgdat)
    3462           0 :                 consider_reclaim_throttle(first_pgdat, sc);
    3463             : 
    3464             :         /*
    3465             :          * Restore to original mask to avoid the impact on the caller if we
    3466             :          * promoted it to __GFP_HIGHMEM.
    3467             :          */
    3468           0 :         sc->gfp_mask = orig_mask;
    3469           0 : }
    3470             : 
    3471             : static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
    3472             : {
    3473             :         struct lruvec *target_lruvec;
    3474             :         unsigned long refaults;
    3475             : 
    3476           0 :         target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
    3477           0 :         refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
    3478           0 :         target_lruvec->refaults[0] = refaults;
    3479           0 :         refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
    3480           0 :         target_lruvec->refaults[1] = refaults;
    3481             : }
    3482             : 
    3483             : /*
    3484             :  * This is the main entry point to direct page reclaim.
    3485             :  *
    3486             :  * If a full scan of the inactive list fails to free enough memory then we
    3487             :  * are "out of memory" and something needs to be killed.
    3488             :  *
    3489             :  * If the caller is !__GFP_FS then the probability of a failure is reasonably
    3490             :  * high - the zone may be full of dirty or under-writeback pages, which this
    3491             :  * caller can't do much about.  We kick the writeback threads and take explicit
    3492             :  * naps in the hope that some of these pages can be written.  But if the
    3493             :  * allocating task holds filesystem locks which prevent writeout this might not
    3494             :  * work, and the allocation attempt will fail.
    3495             :  *
    3496             :  * returns:     0, if no pages reclaimed
    3497             :  *              else, the number of pages reclaimed
    3498             :  */
    3499           0 : static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
    3500             :                                           struct scan_control *sc)
    3501             : {
    3502           0 :         int initial_priority = sc->priority;
    3503             :         pg_data_t *last_pgdat;
    3504             :         struct zoneref *z;
    3505             :         struct zone *zone;
    3506             : retry:
    3507             :         delayacct_freepages_start();
    3508             : 
    3509           0 :         if (!cgroup_reclaim(sc))
    3510           0 :                 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
    3511             : 
    3512             :         do {
    3513           0 :                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
    3514           0 :                                 sc->priority);
    3515           0 :                 sc->nr_scanned = 0;
    3516           0 :                 shrink_zones(zonelist, sc);
    3517             : 
    3518           0 :                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
    3519             :                         break;
    3520             : 
    3521           0 :                 if (sc->compaction_ready)
    3522             :                         break;
    3523             : 
    3524             :                 /*
    3525             :                  * If we're getting trouble reclaiming, start doing
    3526             :                  * writepage even in laptop mode.
    3527             :                  */
    3528           0 :                 if (sc->priority < DEF_PRIORITY - 2)
    3529           0 :                         sc->may_writepage = 1;
    3530           0 :         } while (--sc->priority >= 0);
    3531             : 
    3532           0 :         last_pgdat = NULL;
    3533           0 :         for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
    3534             :                                         sc->nodemask) {
    3535           0 :                 if (zone->zone_pgdat == last_pgdat)
    3536           0 :                         continue;
    3537           0 :                 last_pgdat = zone->zone_pgdat;
    3538             : 
    3539           0 :                 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
    3540             : 
    3541           0 :                 if (cgroup_reclaim(sc)) {
    3542             :                         struct lruvec *lruvec;
    3543             : 
    3544             :                         lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
    3545             :                                                    zone->zone_pgdat);
    3546             :                         clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
    3547             :                 }
    3548             :         }
    3549             : 
    3550             :         delayacct_freepages_end();
    3551             : 
    3552           0 :         if (sc->nr_reclaimed)
    3553             :                 return sc->nr_reclaimed;
    3554             : 
    3555             :         /* Aborted reclaim to try compaction? don't OOM, then */
    3556           0 :         if (sc->compaction_ready)
    3557             :                 return 1;
    3558             : 
    3559             :         /*
    3560             :          * We make inactive:active ratio decisions based on the node's
    3561             :          * composition of memory, but a restrictive reclaim_idx or a
    3562             :          * memory.low cgroup setting can exempt large amounts of
    3563             :          * memory from reclaim. Neither of which are very common, so
    3564             :          * instead of doing costly eligibility calculations of the
    3565             :          * entire cgroup subtree up front, we assume the estimates are
    3566             :          * good, and retry with forcible deactivation if that fails.
    3567             :          */
    3568           0 :         if (sc->skipped_deactivate) {
    3569           0 :                 sc->priority = initial_priority;
    3570           0 :                 sc->force_deactivate = 1;
    3571           0 :                 sc->skipped_deactivate = 0;
    3572           0 :                 goto retry;
    3573             :         }
    3574             : 
    3575             :         /* Untapped cgroup reserves?  Don't OOM, retry. */
    3576           0 :         if (sc->memcg_low_skipped) {
    3577           0 :                 sc->priority = initial_priority;
    3578           0 :                 sc->force_deactivate = 0;
    3579           0 :                 sc->memcg_low_reclaim = 1;
    3580           0 :                 sc->memcg_low_skipped = 0;
    3581           0 :                 goto retry;
    3582             :         }
    3583             : 
    3584             :         return 0;
    3585             : }
    3586             : 
    3587           0 : static bool allow_direct_reclaim(pg_data_t *pgdat)
    3588             : {
    3589             :         struct zone *zone;
    3590           0 :         unsigned long pfmemalloc_reserve = 0;
    3591           0 :         unsigned long free_pages = 0;
    3592             :         int i;
    3593             :         bool wmark_ok;
    3594             : 
    3595           0 :         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
    3596             :                 return true;
    3597             : 
    3598           0 :         for (i = 0; i <= ZONE_NORMAL; i++) {
    3599           0 :                 zone = &pgdat->node_zones[i];
    3600           0 :                 if (!managed_zone(zone))
    3601           0 :                         continue;
    3602             : 
    3603           0 :                 if (!zone_reclaimable_pages(zone))
    3604           0 :                         continue;
    3605             : 
    3606           0 :                 pfmemalloc_reserve += min_wmark_pages(zone);
    3607           0 :                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
    3608             :         }
    3609             : 
    3610             :         /* If there are no reserves (unexpected config) then do not throttle */
    3611           0 :         if (!pfmemalloc_reserve)
    3612             :                 return true;
    3613             : 
    3614           0 :         wmark_ok = free_pages > pfmemalloc_reserve / 2;
    3615             : 
    3616             :         /* kswapd must be awake if processes are being throttled */
    3617           0 :         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
    3618           0 :                 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
    3619           0 :                         WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
    3620             : 
    3621           0 :                 wake_up_interruptible(&pgdat->kswapd_wait);
    3622             :         }
    3623             : 
    3624             :         return wmark_ok;
    3625             : }
    3626             : 
    3627             : /*
    3628             :  * Throttle direct reclaimers if backing storage is backed by the network
    3629             :  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
    3630             :  * depleted. kswapd will continue to make progress and wake the processes
    3631             :  * when the low watermark is reached.
    3632             :  *
    3633             :  * Returns true if a fatal signal was delivered during throttling. If this
    3634             :  * happens, the page allocator should not consider triggering the OOM killer.
    3635             :  */
    3636           0 : static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
    3637             :                                         nodemask_t *nodemask)
    3638             : {
    3639             :         struct zoneref *z;
    3640             :         struct zone *zone;
    3641           0 :         pg_data_t *pgdat = NULL;
    3642             : 
    3643             :         /*
    3644             :          * Kernel threads should not be throttled as they may be indirectly
    3645             :          * responsible for cleaning pages necessary for reclaim to make forward
    3646             :          * progress. kjournald for example may enter direct reclaim while
    3647             :          * committing a transaction where throttling it could forcing other
    3648             :          * processes to block on log_wait_commit().
    3649             :          */
    3650           0 :         if (current->flags & PF_KTHREAD)
    3651             :                 goto out;
    3652             : 
    3653             :         /*
    3654             :          * If a fatal signal is pending, this process should not throttle.
    3655             :          * It should return quickly so it can exit and free its memory
    3656             :          */
    3657           0 :         if (fatal_signal_pending(current))
    3658             :                 goto out;
    3659             : 
    3660             :         /*
    3661             :          * Check if the pfmemalloc reserves are ok by finding the first node
    3662             :          * with a usable ZONE_NORMAL or lower zone. The expectation is that
    3663             :          * GFP_KERNEL will be required for allocating network buffers when
    3664             :          * swapping over the network so ZONE_HIGHMEM is unusable.
    3665             :          *
    3666             :          * Throttling is based on the first usable node and throttled processes
    3667             :          * wait on a queue until kswapd makes progress and wakes them. There
    3668             :          * is an affinity then between processes waking up and where reclaim
    3669             :          * progress has been made assuming the process wakes on the same node.
    3670             :          * More importantly, processes running on remote nodes will not compete
    3671             :          * for remote pfmemalloc reserves and processes on different nodes
    3672             :          * should make reasonable progress.
    3673             :          */
    3674           0 :         for_each_zone_zonelist_nodemask(zone, z, zonelist,
    3675             :                                         gfp_zone(gfp_mask), nodemask) {
    3676           0 :                 if (zone_idx(zone) > ZONE_NORMAL)
    3677           0 :                         continue;
    3678             : 
    3679             :                 /* Throttle based on the first usable node */
    3680           0 :                 pgdat = zone->zone_pgdat;
    3681           0 :                 if (allow_direct_reclaim(pgdat))
    3682             :                         goto out;
    3683             :                 break;
    3684             :         }
    3685             : 
    3686             :         /* If no zone was usable by the allocation flags then do not throttle */
    3687           0 :         if (!pgdat)
    3688             :                 goto out;
    3689             : 
    3690             :         /* Account for the throttling */
    3691           0 :         count_vm_event(PGSCAN_DIRECT_THROTTLE);
    3692             : 
    3693             :         /*
    3694             :          * If the caller cannot enter the filesystem, it's possible that it
    3695             :          * is due to the caller holding an FS lock or performing a journal
    3696             :          * transaction in the case of a filesystem like ext[3|4]. In this case,
    3697             :          * it is not safe to block on pfmemalloc_wait as kswapd could be
    3698             :          * blocked waiting on the same lock. Instead, throttle for up to a
    3699             :          * second before continuing.
    3700             :          */
    3701           0 :         if (!(gfp_mask & __GFP_FS))
    3702           0 :                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
    3703             :                         allow_direct_reclaim(pgdat), HZ);
    3704             :         else
    3705             :                 /* Throttle until kswapd wakes the process */
    3706           0 :                 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
    3707             :                         allow_direct_reclaim(pgdat));
    3708             : 
    3709           0 :         if (fatal_signal_pending(current))
    3710             :                 return true;
    3711             : 
    3712             : out:
    3713             :         return false;
    3714             : }
    3715             : 
    3716           0 : unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
    3717             :                                 gfp_t gfp_mask, nodemask_t *nodemask)
    3718             : {
    3719             :         unsigned long nr_reclaimed;
    3720           0 :         struct scan_control sc = {
    3721             :                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
    3722           0 :                 .gfp_mask = current_gfp_context(gfp_mask),
    3723           0 :                 .reclaim_idx = gfp_zone(gfp_mask),
    3724             :                 .order = order,
    3725             :                 .nodemask = nodemask,
    3726             :                 .priority = DEF_PRIORITY,
    3727           0 :                 .may_writepage = !laptop_mode,
    3728             :                 .may_unmap = 1,
    3729             :                 .may_swap = 1,
    3730             :         };
    3731             : 
    3732             :         /*
    3733             :          * scan_control uses s8 fields for order, priority, and reclaim_idx.
    3734             :          * Confirm they are large enough for max values.
    3735             :          */
    3736             :         BUILD_BUG_ON(MAX_ORDER > S8_MAX);
    3737             :         BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
    3738             :         BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
    3739             : 
    3740             :         /*
    3741             :          * Do not enter reclaim if fatal signal was delivered while throttled.
    3742             :          * 1 is returned so that the page allocator does not OOM kill at this
    3743             :          * point.
    3744             :          */
    3745           0 :         if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
    3746             :                 return 1;
    3747             : 
    3748           0 :         set_task_reclaim_state(current, &sc.reclaim_state);
    3749           0 :         trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
    3750             : 
    3751           0 :         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    3752             : 
    3753           0 :         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
    3754           0 :         set_task_reclaim_state(current, NULL);
    3755             : 
    3756           0 :         return nr_reclaimed;
    3757             : }
    3758             : 
    3759             : #ifdef CONFIG_MEMCG
    3760             : 
    3761             : /* Only used by soft limit reclaim. Do not reuse for anything else. */
    3762             : unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
    3763             :                                                 gfp_t gfp_mask, bool noswap,
    3764             :                                                 pg_data_t *pgdat,
    3765             :                                                 unsigned long *nr_scanned)
    3766             : {
    3767             :         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
    3768             :         struct scan_control sc = {
    3769             :                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
    3770             :                 .target_mem_cgroup = memcg,
    3771             :                 .may_writepage = !laptop_mode,
    3772             :                 .may_unmap = 1,
    3773             :                 .reclaim_idx = MAX_NR_ZONES - 1,
    3774             :                 .may_swap = !noswap,
    3775             :         };
    3776             : 
    3777             :         WARN_ON_ONCE(!current->reclaim_state);
    3778             : 
    3779             :         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
    3780             :                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
    3781             : 
    3782             :         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
    3783             :                                                       sc.gfp_mask);
    3784             : 
    3785             :         /*
    3786             :          * NOTE: Although we can get the priority field, using it
    3787             :          * here is not a good idea, since it limits the pages we can scan.
    3788             :          * if we don't reclaim here, the shrink_node from balance_pgdat
    3789             :          * will pick up pages from other mem cgroup's as well. We hack
    3790             :          * the priority and make it zero.
    3791             :          */
    3792             :         shrink_lruvec(lruvec, &sc);
    3793             : 
    3794             :         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
    3795             : 
    3796             :         *nr_scanned = sc.nr_scanned;
    3797             : 
    3798             :         return sc.nr_reclaimed;
    3799             : }
    3800             : 
    3801             : unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
    3802             :                                            unsigned long nr_pages,
    3803             :                                            gfp_t gfp_mask,
    3804             :                                            bool may_swap)
    3805             : {
    3806             :         unsigned long nr_reclaimed;
    3807             :         unsigned int noreclaim_flag;
    3808             :         struct scan_control sc = {
    3809             :                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
    3810             :                 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
    3811             :                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
    3812             :                 .reclaim_idx = MAX_NR_ZONES - 1,
    3813             :                 .target_mem_cgroup = memcg,
    3814             :                 .priority = DEF_PRIORITY,
    3815             :                 .may_writepage = !laptop_mode,
    3816             :                 .may_unmap = 1,
    3817             :                 .may_swap = may_swap,
    3818             :         };
    3819             :         /*
    3820             :          * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
    3821             :          * equal pressure on all the nodes. This is based on the assumption that
    3822             :          * the reclaim does not bail out early.
    3823             :          */
    3824             :         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
    3825             : 
    3826             :         set_task_reclaim_state(current, &sc.reclaim_state);
    3827             :         trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
    3828             :         noreclaim_flag = memalloc_noreclaim_save();
    3829             : 
    3830             :         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    3831             : 
    3832             :         memalloc_noreclaim_restore(noreclaim_flag);
    3833             :         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
    3834             :         set_task_reclaim_state(current, NULL);
    3835             : 
    3836             :         return nr_reclaimed;
    3837             : }
    3838             : #endif
    3839             : 
    3840           0 : static void age_active_anon(struct pglist_data *pgdat,
    3841             :                                 struct scan_control *sc)
    3842             : {
    3843             :         struct mem_cgroup *memcg;
    3844             :         struct lruvec *lruvec;
    3845             : 
    3846           0 :         if (!can_age_anon_pages(pgdat, sc))
    3847             :                 return;
    3848             : 
    3849           0 :         lruvec = mem_cgroup_lruvec(NULL, pgdat);
    3850           0 :         if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
    3851             :                 return;
    3852             : 
    3853           0 :         memcg = mem_cgroup_iter(NULL, NULL, NULL);
    3854             :         do {
    3855           0 :                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
    3856           0 :                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
    3857             :                                    sc, LRU_ACTIVE_ANON);
    3858           0 :                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
    3859             :         } while (memcg);
    3860             : }
    3861             : 
    3862             : static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
    3863             : {
    3864             :         int i;
    3865             :         struct zone *zone;
    3866             : 
    3867             :         /*
    3868             :          * Check for watermark boosts top-down as the higher zones
    3869             :          * are more likely to be boosted. Both watermarks and boosts
    3870             :          * should not be checked at the same time as reclaim would
    3871             :          * start prematurely when there is no boosting and a lower
    3872             :          * zone is balanced.
    3873             :          */
    3874           0 :         for (i = highest_zoneidx; i >= 0; i--) {
    3875           0 :                 zone = pgdat->node_zones + i;
    3876           0 :                 if (!managed_zone(zone))
    3877           0 :                         continue;
    3878             : 
    3879           0 :                 if (zone->watermark_boost)
    3880             :                         return true;
    3881             :         }
    3882             : 
    3883             :         return false;
    3884             : }
    3885             : 
    3886             : /*
    3887             :  * Returns true if there is an eligible zone balanced for the request order
    3888             :  * and highest_zoneidx
    3889             :  */
    3890           1 : static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
    3891             : {
    3892             :         int i;
    3893           1 :         unsigned long mark = -1;
    3894             :         struct zone *zone;
    3895             : 
    3896             :         /*
    3897             :          * Check watermarks bottom-up as lower zones are more likely to
    3898             :          * meet watermarks.
    3899             :          */
    3900           1 :         for (i = 0; i <= highest_zoneidx; i++) {
    3901           1 :                 zone = pgdat->node_zones + i;
    3902             : 
    3903           1 :                 if (!managed_zone(zone))
    3904           0 :                         continue;
    3905             : 
    3906             :                 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
    3907             :                         mark = wmark_pages(zone, WMARK_PROMO);
    3908             :                 else
    3909           1 :                         mark = high_wmark_pages(zone);
    3910           1 :                 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
    3911             :                         return true;
    3912             :         }
    3913             : 
    3914             :         /*
    3915             :          * If a node has no populated zone within highest_zoneidx, it does not
    3916             :          * need balancing by definition. This can happen if a zone-restricted
    3917             :          * allocation tries to wake a remote kswapd.
    3918             :          */
    3919           0 :         if (mark == -1)
    3920             :                 return true;
    3921             : 
    3922           0 :         return false;
    3923             : }
    3924             : 
    3925             : /* Clear pgdat state for congested, dirty or under writeback. */
    3926             : static void clear_pgdat_congested(pg_data_t *pgdat)
    3927             : {
    3928           1 :         struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
    3929             : 
    3930           2 :         clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
    3931           2 :         clear_bit(PGDAT_DIRTY, &pgdat->flags);
    3932           2 :         clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
    3933             : }
    3934             : 
    3935             : /*
    3936             :  * Prepare kswapd for sleeping. This verifies that there are no processes
    3937             :  * waiting in throttle_direct_reclaim() and that watermarks have been met.
    3938             :  *
    3939             :  * Returns true if kswapd is ready to sleep
    3940             :  */
    3941           1 : static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
    3942             :                                 int highest_zoneidx)
    3943             : {
    3944             :         /*
    3945             :          * The throttled processes are normally woken up in balance_pgdat() as
    3946             :          * soon as allow_direct_reclaim() is true. But there is a potential
    3947             :          * race between when kswapd checks the watermarks and a process gets
    3948             :          * throttled. There is also a potential race if processes get
    3949             :          * throttled, kswapd wakes, a large process exits thereby balancing the
    3950             :          * zones, which causes kswapd to exit balance_pgdat() before reaching
    3951             :          * the wake up checks. If kswapd is going to sleep, no process should
    3952             :          * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
    3953             :          * the wake up is premature, processes will wake kswapd and get
    3954             :          * throttled again. The difference from wake ups in balance_pgdat() is
    3955             :          * that here we are under prepare_to_wait().
    3956             :          */
    3957           2 :         if (waitqueue_active(&pgdat->pfmemalloc_wait))
    3958           0 :                 wake_up_all(&pgdat->pfmemalloc_wait);
    3959             : 
    3960             :         /* Hopeless node, leave it to direct reclaim */
    3961           1 :         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
    3962             :                 return true;
    3963             : 
    3964           1 :         if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
    3965           1 :                 clear_pgdat_congested(pgdat);
    3966           1 :                 return true;
    3967             :         }
    3968             : 
    3969             :         return false;
    3970             : }
    3971             : 
    3972             : /*
    3973             :  * kswapd shrinks a node of pages that are at or below the highest usable
    3974             :  * zone that is currently unbalanced.
    3975             :  *
    3976             :  * Returns true if kswapd scanned at least the requested number of pages to
    3977             :  * reclaim or if the lack of progress was due to pages under writeback.
    3978             :  * This is used to determine if the scanning priority needs to be raised.
    3979             :  */
    3980           0 : static bool kswapd_shrink_node(pg_data_t *pgdat,
    3981             :                                struct scan_control *sc)
    3982             : {
    3983             :         struct zone *zone;
    3984             :         int z;
    3985             : 
    3986             :         /* Reclaim a number of pages proportional to the number of zones */
    3987           0 :         sc->nr_to_reclaim = 0;
    3988           0 :         for (z = 0; z <= sc->reclaim_idx; z++) {
    3989           0 :                 zone = pgdat->node_zones + z;
    3990           0 :                 if (!managed_zone(zone))
    3991           0 :                         continue;
    3992             : 
    3993           0 :                 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
    3994             :         }
    3995             : 
    3996             :         /*
    3997             :          * Historically care was taken to put equal pressure on all zones but
    3998             :          * now pressure is applied based on node LRU order.
    3999             :          */
    4000           0 :         shrink_node(pgdat, sc);
    4001             : 
    4002             :         /*
    4003             :          * Fragmentation may mean that the system cannot be rebalanced for
    4004             :          * high-order allocations. If twice the allocation size has been
    4005             :          * reclaimed then recheck watermarks only at order-0 to prevent
    4006             :          * excessive reclaim. Assume that a process requested a high-order
    4007             :          * can direct reclaim/compact.
    4008             :          */
    4009           0 :         if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
    4010           0 :                 sc->order = 0;
    4011             : 
    4012           0 :         return sc->nr_scanned >= sc->nr_to_reclaim;
    4013             : }
    4014             : 
    4015             : /* Page allocator PCP high watermark is lowered if reclaim is active. */
    4016             : static inline void
    4017             : update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
    4018             : {
    4019             :         int i;
    4020             :         struct zone *zone;
    4021             : 
    4022           0 :         for (i = 0; i <= highest_zoneidx; i++) {
    4023           0 :                 zone = pgdat->node_zones + i;
    4024             : 
    4025           0 :                 if (!managed_zone(zone))
    4026           0 :                         continue;
    4027             : 
    4028             :                 if (active)
    4029           0 :                         set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
    4030             :                 else
    4031           0 :                         clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
    4032             :         }
    4033             : }
    4034             : 
    4035             : static inline void
    4036             : set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
    4037             : {
    4038           0 :         update_reclaim_active(pgdat, highest_zoneidx, true);
    4039             : }
    4040             : 
    4041             : static inline void
    4042             : clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
    4043             : {
    4044           0 :         update_reclaim_active(pgdat, highest_zoneidx, false);
    4045             : }
    4046             : 
    4047             : /*
    4048             :  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
    4049             :  * that are eligible for use by the caller until at least one zone is
    4050             :  * balanced.
    4051             :  *
    4052             :  * Returns the order kswapd finished reclaiming at.
    4053             :  *
    4054             :  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
    4055             :  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
    4056             :  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
    4057             :  * or lower is eligible for reclaim until at least one usable zone is
    4058             :  * balanced.
    4059             :  */
    4060           0 : static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
    4061             : {
    4062             :         int i;
    4063             :         unsigned long nr_soft_reclaimed;
    4064             :         unsigned long nr_soft_scanned;
    4065             :         unsigned long pflags;
    4066             :         unsigned long nr_boost_reclaim;
    4067           0 :         unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
    4068             :         bool boosted;
    4069             :         struct zone *zone;
    4070           0 :         struct scan_control sc = {
    4071             :                 .gfp_mask = GFP_KERNEL,
    4072             :                 .order = order,
    4073             :                 .may_unmap = 1,
    4074             :         };
    4075             : 
    4076           0 :         set_task_reclaim_state(current, &sc.reclaim_state);
    4077           0 :         psi_memstall_enter(&pflags);
    4078           0 :         __fs_reclaim_acquire(_THIS_IP_);
    4079             : 
    4080           0 :         count_vm_event(PAGEOUTRUN);
    4081             : 
    4082             :         /*
    4083             :          * Account for the reclaim boost. Note that the zone boost is left in
    4084             :          * place so that parallel allocations that are near the watermark will
    4085             :          * stall or direct reclaim until kswapd is finished.
    4086             :          */
    4087           0 :         nr_boost_reclaim = 0;
    4088           0 :         for (i = 0; i <= highest_zoneidx; i++) {
    4089           0 :                 zone = pgdat->node_zones + i;
    4090           0 :                 if (!managed_zone(zone))
    4091           0 :                         continue;
    4092             : 
    4093           0 :                 nr_boost_reclaim += zone->watermark_boost;
    4094           0 :                 zone_boosts[i] = zone->watermark_boost;
    4095             :         }
    4096             :         boosted = nr_boost_reclaim;
    4097             : 
    4098             : restart:
    4099           0 :         set_reclaim_active(pgdat, highest_zoneidx);
    4100           0 :         sc.priority = DEF_PRIORITY;
    4101             :         do {
    4102           0 :                 unsigned long nr_reclaimed = sc.nr_reclaimed;
    4103           0 :                 bool raise_priority = true;
    4104             :                 bool balanced;
    4105             :                 bool ret;
    4106             : 
    4107           0 :                 sc.reclaim_idx = highest_zoneidx;
    4108             : 
    4109             :                 /*
    4110             :                  * If the number of buffer_heads exceeds the maximum allowed
    4111             :                  * then consider reclaiming from all zones. This has a dual
    4112             :                  * purpose -- on 64-bit systems it is expected that
    4113             :                  * buffer_heads are stripped during active rotation. On 32-bit
    4114             :                  * systems, highmem pages can pin lowmem memory and shrinking
    4115             :                  * buffers can relieve lowmem pressure. Reclaim may still not
    4116             :                  * go ahead if all eligible zones for the original allocation
    4117             :                  * request are balanced to avoid excessive reclaim from kswapd.
    4118             :                  */
    4119           0 :                 if (buffer_heads_over_limit) {
    4120           0 :                         for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
    4121           0 :                                 zone = pgdat->node_zones + i;
    4122           0 :                                 if (!managed_zone(zone))
    4123           0 :                                         continue;
    4124             : 
    4125           0 :                                 sc.reclaim_idx = i;
    4126           0 :                                 break;
    4127             :                         }
    4128             :                 }
    4129             : 
    4130             :                 /*
    4131             :                  * If the pgdat is imbalanced then ignore boosting and preserve
    4132             :                  * the watermarks for a later time and restart. Note that the
    4133             :                  * zone watermarks will be still reset at the end of balancing
    4134             :                  * on the grounds that the normal reclaim should be enough to
    4135             :                  * re-evaluate if boosting is required when kswapd next wakes.
    4136             :                  */
    4137           0 :                 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
    4138           0 :                 if (!balanced && nr_boost_reclaim) {
    4139             :                         nr_boost_reclaim = 0;
    4140             :                         goto restart;
    4141             :                 }
    4142             : 
    4143             :                 /*
    4144             :                  * If boosting is not active then only reclaim if there are no
    4145             :                  * eligible zones. Note that sc.reclaim_idx is not used as
    4146             :                  * buffer_heads_over_limit may have adjusted it.
    4147             :                  */
    4148           0 :                 if (!nr_boost_reclaim && balanced)
    4149             :                         goto out;
    4150             : 
    4151             :                 /* Limit the priority of boosting to avoid reclaim writeback */
    4152           0 :                 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
    4153           0 :                         raise_priority = false;
    4154             : 
    4155             :                 /*
    4156             :                  * Do not writeback or swap pages for boosted reclaim. The
    4157             :                  * intent is to relieve pressure not issue sub-optimal IO
    4158             :                  * from reclaim context. If no pages are reclaimed, the
    4159             :                  * reclaim will be aborted.
    4160             :                  */
    4161           0 :                 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
    4162           0 :                 sc.may_swap = !nr_boost_reclaim;
    4163             : 
    4164             :                 /*
    4165             :                  * Do some background aging of the anon list, to give
    4166             :                  * pages a chance to be referenced before reclaiming. All
    4167             :                  * pages are rotated regardless of classzone as this is
    4168             :                  * about consistent aging.
    4169             :                  */
    4170           0 :                 age_active_anon(pgdat, &sc);
    4171             : 
    4172             :                 /*
    4173             :                  * If we're getting trouble reclaiming, start doing writepage
    4174             :                  * even in laptop mode.
    4175             :                  */
    4176           0 :                 if (sc.priority < DEF_PRIORITY - 2)
    4177           0 :                         sc.may_writepage = 1;
    4178             : 
    4179             :                 /* Call soft limit reclaim before calling shrink_node. */
    4180           0 :                 sc.nr_scanned = 0;
    4181           0 :                 nr_soft_scanned = 0;
    4182           0 :                 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
    4183             :                                                 sc.gfp_mask, &nr_soft_scanned);
    4184             :                 sc.nr_reclaimed += nr_soft_reclaimed;
    4185             : 
    4186             :                 /*
    4187             :                  * There should be no need to raise the scanning priority if
    4188             :                  * enough pages are already being scanned that that high
    4189             :                  * watermark would be met at 100% efficiency.
    4190             :                  */
    4191           0 :                 if (kswapd_shrink_node(pgdat, &sc))
    4192           0 :                         raise_priority = false;
    4193             : 
    4194             :                 /*
    4195             :                  * If the low watermark is met there is no need for processes
    4196             :                  * to be throttled on pfmemalloc_wait as they should not be
    4197             :                  * able to safely make forward progress. Wake them
    4198             :                  */
    4199           0 :                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
    4200           0 :                                 allow_direct_reclaim(pgdat))
    4201           0 :                         wake_up_all(&pgdat->pfmemalloc_wait);
    4202             : 
    4203             :                 /* Check if kswapd should be suspending */
    4204           0 :                 __fs_reclaim_release(_THIS_IP_);
    4205           0 :                 ret = try_to_freeze();
    4206           0 :                 __fs_reclaim_acquire(_THIS_IP_);
    4207           0 :                 if (ret || kthread_should_stop())
    4208             :                         break;
    4209             : 
    4210             :                 /*
    4211             :                  * Raise priority if scanning rate is too low or there was no
    4212             :                  * progress in reclaiming pages
    4213             :                  */
    4214           0 :                 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
    4215           0 :                 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
    4216             : 
    4217             :                 /*
    4218             :                  * If reclaim made no progress for a boost, stop reclaim as
    4219             :                  * IO cannot be queued and it could be an infinite loop in
    4220             :                  * extreme circumstances.
    4221             :                  */
    4222           0 :                 if (nr_boost_reclaim && !nr_reclaimed)
    4223             :                         break;
    4224             : 
    4225           0 :                 if (raise_priority || !nr_reclaimed)
    4226           0 :                         sc.priority--;
    4227           0 :         } while (sc.priority >= 1);
    4228             : 
    4229           0 :         if (!sc.nr_reclaimed)
    4230           0 :                 pgdat->kswapd_failures++;
    4231             : 
    4232             : out:
    4233           0 :         clear_reclaim_active(pgdat, highest_zoneidx);
    4234             : 
    4235             :         /* If reclaim was boosted, account for the reclaim done in this pass */
    4236           0 :         if (boosted) {
    4237             :                 unsigned long flags;
    4238             : 
    4239           0 :                 for (i = 0; i <= highest_zoneidx; i++) {
    4240           0 :                         if (!zone_boosts[i])
    4241           0 :                                 continue;
    4242             : 
    4243             :                         /* Increments are under the zone lock */
    4244           0 :                         zone = pgdat->node_zones + i;
    4245           0 :                         spin_lock_irqsave(&zone->lock, flags);
    4246           0 :                         zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
    4247           0 :                         spin_unlock_irqrestore(&zone->lock, flags);
    4248             :                 }
    4249             : 
    4250             :                 /*
    4251             :                  * As there is now likely space, wakeup kcompact to defragment
    4252             :                  * pageblocks.
    4253             :                  */
    4254           0 :                 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
    4255             :         }
    4256             : 
    4257           0 :         snapshot_refaults(NULL, pgdat);
    4258           0 :         __fs_reclaim_release(_THIS_IP_);
    4259           0 :         psi_memstall_leave(&pflags);
    4260           0 :         set_task_reclaim_state(current, NULL);
    4261             : 
    4262             :         /*
    4263             :          * Return the order kswapd stopped reclaiming at as
    4264             :          * prepare_kswapd_sleep() takes it into account. If another caller
    4265             :          * entered the allocator slow path while kswapd was awake, order will
    4266             :          * remain at the higher level.
    4267             :          */
    4268           0 :         return sc.order;
    4269             : }
    4270             : 
    4271             : /*
    4272             :  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
    4273             :  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
    4274             :  * not a valid index then either kswapd runs for first time or kswapd couldn't
    4275             :  * sleep after previous reclaim attempt (node is still unbalanced). In that
    4276             :  * case return the zone index of the previous kswapd reclaim cycle.
    4277             :  */
    4278             : static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
    4279             :                                            enum zone_type prev_highest_zoneidx)
    4280             : {
    4281           1 :         enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
    4282             : 
    4283           1 :         return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
    4284             : }
    4285             : 
    4286           1 : static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
    4287             :                                 unsigned int highest_zoneidx)
    4288             : {
    4289           1 :         long remaining = 0;
    4290           2 :         DEFINE_WAIT(wait);
    4291             : 
    4292           2 :         if (freezing(current) || kthread_should_stop())
    4293           0 :                 return;
    4294             : 
    4295           1 :         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
    4296             : 
    4297             :         /*
    4298             :          * Try to sleep for a short interval. Note that kcompactd will only be
    4299             :          * woken if it is possible to sleep for a short interval. This is
    4300             :          * deliberate on the assumption that if reclaim cannot keep an
    4301             :          * eligible zone balanced that it's also unlikely that compaction will
    4302             :          * succeed.
    4303             :          */
    4304           1 :         if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
    4305             :                 /*
    4306             :                  * Compaction records what page blocks it recently failed to
    4307             :                  * isolate pages from and skips them in the future scanning.
    4308             :                  * When kswapd is going to sleep, it is reasonable to assume
    4309             :                  * that pages and compaction may succeed so reset the cache.
    4310             :                  */
    4311           1 :                 reset_isolation_suitable(pgdat);
    4312             : 
    4313             :                 /*
    4314             :                  * We have freed the memory, now we should compact it to make
    4315             :                  * allocation of the requested order possible.
    4316             :                  */
    4317           1 :                 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
    4318             : 
    4319           1 :                 remaining = schedule_timeout(HZ/10);
    4320             : 
    4321             :                 /*
    4322             :                  * If woken prematurely then reset kswapd_highest_zoneidx and
    4323             :                  * order. The values will either be from a wakeup request or
    4324             :                  * the previous request that slept prematurely.
    4325             :                  */
    4326           0 :                 if (remaining) {
    4327           0 :                         WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
    4328             :                                         kswapd_highest_zoneidx(pgdat,
    4329             :                                                         highest_zoneidx));
    4330             : 
    4331           0 :                         if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
    4332           0 :                                 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
    4333             :                 }
    4334             : 
    4335           0 :                 finish_wait(&pgdat->kswapd_wait, &wait);
    4336           0 :                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
    4337             :         }
    4338             : 
    4339             :         /*
    4340             :          * After a short sleep, check if it was a premature sleep. If not, then
    4341             :          * go fully to sleep until explicitly woken up.
    4342             :          */
    4343           0 :         if (!remaining &&
    4344           0 :             prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
    4345           0 :                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
    4346             : 
    4347             :                 /*
    4348             :                  * vmstat counters are not perfectly accurate and the estimated
    4349             :                  * value for counters such as NR_FREE_PAGES can deviate from the
    4350             :                  * true value by nr_online_cpus * threshold. To avoid the zone
    4351             :                  * watermarks being breached while under pressure, we reduce the
    4352             :                  * per-cpu vmstat threshold while kswapd is awake and restore
    4353             :                  * them before going back to sleep.
    4354             :                  */
    4355             :                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
    4356             : 
    4357           0 :                 if (!kthread_should_stop())
    4358           0 :                         schedule();
    4359             : 
    4360             :                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
    4361             :         } else {
    4362           0 :                 if (remaining)
    4363           0 :                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
    4364             :                 else
    4365           0 :                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
    4366             :         }
    4367           0 :         finish_wait(&pgdat->kswapd_wait, &wait);
    4368             : }
    4369             : 
    4370             : /*
    4371             :  * The background pageout daemon, started as a kernel thread
    4372             :  * from the init process.
    4373             :  *
    4374             :  * This basically trickles out pages so that we have _some_
    4375             :  * free memory available even if there is no other activity
    4376             :  * that frees anything up. This is needed for things like routing
    4377             :  * etc, where we otherwise might have all activity going on in
    4378             :  * asynchronous contexts that cannot page things out.
    4379             :  *
    4380             :  * If there are applications that are active memory-allocators
    4381             :  * (most normal use), this basically shouldn't matter.
    4382             :  */
    4383           1 : static int kswapd(void *p)
    4384             : {
    4385             :         unsigned int alloc_order, reclaim_order;
    4386           1 :         unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
    4387           1 :         pg_data_t *pgdat = (pg_data_t *)p;
    4388           1 :         struct task_struct *tsk = current;
    4389           1 :         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
    4390             : 
    4391           1 :         if (!cpumask_empty(cpumask))
    4392           1 :                 set_cpus_allowed_ptr(tsk, cpumask);
    4393             : 
    4394             :         /*
    4395             :          * Tell the memory management that we're a "memory allocator",
    4396             :          * and that if we need more memory we should get access to it
    4397             :          * regardless (see "__alloc_pages()"). "kswapd" should
    4398             :          * never get caught in the normal page freeing logic.
    4399             :          *
    4400             :          * (Kswapd normally doesn't need memory anyway, but sometimes
    4401             :          * you need a small amount of memory in order to be able to
    4402             :          * page out something else, and this flag essentially protects
    4403             :          * us from recursively trying to free more memory as we're
    4404             :          * trying to free the first piece of memory in the first place).
    4405             :          */
    4406           1 :         tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
    4407           1 :         set_freezable();
    4408             : 
    4409           1 :         WRITE_ONCE(pgdat->kswapd_order, 0);
    4410           1 :         WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
    4411           1 :         atomic_set(&pgdat->nr_writeback_throttled, 0);
    4412             :         for ( ; ; ) {
    4413             :                 bool ret;
    4414             : 
    4415           1 :                 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
    4416             :                 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
    4417             :                                                         highest_zoneidx);
    4418             : 
    4419             : kswapd_try_sleep:
    4420           1 :                 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
    4421             :                                         highest_zoneidx);
    4422             : 
    4423             :                 /* Read the new order and highest_zoneidx */
    4424           0 :                 alloc_order = READ_ONCE(pgdat->kswapd_order);
    4425           0 :                 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
    4426             :                                                         highest_zoneidx);
    4427           0 :                 WRITE_ONCE(pgdat->kswapd_order, 0);
    4428           0 :                 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
    4429             : 
    4430           0 :                 ret = try_to_freeze();
    4431           0 :                 if (kthread_should_stop())
    4432             :                         break;
    4433             : 
    4434             :                 /*
    4435             :                  * We can speed up thawing tasks if we don't call balance_pgdat
    4436             :                  * after returning from the refrigerator
    4437             :                  */
    4438           0 :                 if (ret)
    4439           0 :                         continue;
    4440             : 
    4441             :                 /*
    4442             :                  * Reclaim begins at the requested order but if a high-order
    4443             :                  * reclaim fails then kswapd falls back to reclaiming for
    4444             :                  * order-0. If that happens, kswapd will consider sleeping
    4445             :                  * for the order it finished reclaiming at (reclaim_order)
    4446             :                  * but kcompactd is woken to compact for the original
    4447             :                  * request (alloc_order).
    4448             :                  */
    4449           0 :                 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
    4450             :                                                 alloc_order);
    4451           0 :                 reclaim_order = balance_pgdat(pgdat, alloc_order,
    4452             :                                                 highest_zoneidx);
    4453           0 :                 if (reclaim_order < alloc_order)
    4454             :                         goto kswapd_try_sleep;
    4455             :         }
    4456             : 
    4457           0 :         tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
    4458             : 
    4459           0 :         return 0;
    4460             : }
    4461             : 
    4462             : /*
    4463             :  * A zone is low on free memory or too fragmented for high-order memory.  If
    4464             :  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
    4465             :  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
    4466             :  * has failed or is not needed, still wake up kcompactd if only compaction is
    4467             :  * needed.
    4468             :  */
    4469           0 : void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
    4470             :                    enum zone_type highest_zoneidx)
    4471             : {
    4472             :         pg_data_t *pgdat;
    4473             :         enum zone_type curr_idx;
    4474             : 
    4475           0 :         if (!managed_zone(zone))
    4476             :                 return;
    4477             : 
    4478           0 :         if (!cpuset_zone_allowed(zone, gfp_flags))
    4479             :                 return;
    4480             : 
    4481           0 :         pgdat = zone->zone_pgdat;
    4482           0 :         curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
    4483             : 
    4484           0 :         if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
    4485           0 :                 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
    4486             : 
    4487           0 :         if (READ_ONCE(pgdat->kswapd_order) < order)
    4488           0 :                 WRITE_ONCE(pgdat->kswapd_order, order);
    4489             : 
    4490           0 :         if (!waitqueue_active(&pgdat->kswapd_wait))
    4491             :                 return;
    4492             : 
    4493             :         /* Hopeless node, leave it to direct reclaim if possible */
    4494           0 :         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
    4495           0 :             (pgdat_balanced(pgdat, order, highest_zoneidx) &&
    4496           0 :              !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
    4497             :                 /*
    4498             :                  * There may be plenty of free memory available, but it's too
    4499             :                  * fragmented for high-order allocations.  Wake up kcompactd
    4500             :                  * and rely on compaction_suitable() to determine if it's
    4501             :                  * needed.  If it fails, it will defer subsequent attempts to
    4502             :                  * ratelimit its work.
    4503             :                  */
    4504           0 :                 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
    4505           0 :                         wakeup_kcompactd(pgdat, order, highest_zoneidx);
    4506             :                 return;
    4507             :         }
    4508             : 
    4509           0 :         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
    4510             :                                       gfp_flags);
    4511           0 :         wake_up_interruptible(&pgdat->kswapd_wait);
    4512             : }
    4513             : 
    4514             : #ifdef CONFIG_HIBERNATION
    4515             : /*
    4516             :  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
    4517             :  * freed pages.
    4518             :  *
    4519             :  * Rather than trying to age LRUs the aim is to preserve the overall
    4520             :  * LRU order by reclaiming preferentially
    4521             :  * inactive > active > active referenced > active mapped
    4522             :  */
    4523             : unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
    4524             : {
    4525             :         struct scan_control sc = {
    4526             :                 .nr_to_reclaim = nr_to_reclaim,
    4527             :                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
    4528             :                 .reclaim_idx = MAX_NR_ZONES - 1,
    4529             :                 .priority = DEF_PRIORITY,
    4530             :                 .may_writepage = 1,
    4531             :                 .may_unmap = 1,
    4532             :                 .may_swap = 1,
    4533             :                 .hibernation_mode = 1,
    4534             :         };
    4535             :         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
    4536             :         unsigned long nr_reclaimed;
    4537             :         unsigned int noreclaim_flag;
    4538             : 
    4539             :         fs_reclaim_acquire(sc.gfp_mask);
    4540             :         noreclaim_flag = memalloc_noreclaim_save();
    4541             :         set_task_reclaim_state(current, &sc.reclaim_state);
    4542             : 
    4543             :         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    4544             : 
    4545             :         set_task_reclaim_state(current, NULL);
    4546             :         memalloc_noreclaim_restore(noreclaim_flag);
    4547             :         fs_reclaim_release(sc.gfp_mask);
    4548             : 
    4549             :         return nr_reclaimed;
    4550             : }
    4551             : #endif /* CONFIG_HIBERNATION */
    4552             : 
    4553             : /*
    4554             :  * This kswapd start function will be called by init and node-hot-add.
    4555             :  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
    4556             :  */
    4557           1 : void kswapd_run(int nid)
    4558             : {
    4559           1 :         pg_data_t *pgdat = NODE_DATA(nid);
    4560             : 
    4561           1 :         if (pgdat->kswapd)
    4562             :                 return;
    4563             : 
    4564           2 :         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
    4565           1 :         if (IS_ERR(pgdat->kswapd)) {
    4566             :                 /* failure at boot is fatal */
    4567           0 :                 BUG_ON(system_state < SYSTEM_RUNNING);
    4568           0 :                 pr_err("Failed to start kswapd on node %d\n", nid);
    4569           0 :                 pgdat->kswapd = NULL;
    4570             :         }
    4571             : }
    4572             : 
    4573             : /*
    4574             :  * Called by memory hotplug when all memory in a node is offlined.  Caller must
    4575             :  * hold mem_hotplug_begin/end().
    4576             :  */
    4577           0 : void kswapd_stop(int nid)
    4578             : {
    4579           0 :         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
    4580             : 
    4581           0 :         if (kswapd) {
    4582           0 :                 kthread_stop(kswapd);
    4583           0 :                 NODE_DATA(nid)->kswapd = NULL;
    4584             :         }
    4585           0 : }
    4586             : 
    4587           1 : static int __init kswapd_init(void)
    4588             : {
    4589             :         int nid;
    4590             : 
    4591           1 :         swap_setup();
    4592           2 :         for_each_node_state(nid, N_MEMORY)
    4593           1 :                 kswapd_run(nid);
    4594           1 :         return 0;
    4595             : }
    4596             : 
    4597             : module_init(kswapd_init)
    4598             : 
    4599             : #ifdef CONFIG_NUMA
    4600             : /*
    4601             :  * Node reclaim mode
    4602             :  *
    4603             :  * If non-zero call node_reclaim when the number of free pages falls below
    4604             :  * the watermarks.
    4605             :  */
    4606             : int node_reclaim_mode __read_mostly;
    4607             : 
    4608             : /*
    4609             :  * Priority for NODE_RECLAIM. This determines the fraction of pages
    4610             :  * of a node considered for each zone_reclaim. 4 scans 1/16th of
    4611             :  * a zone.
    4612             :  */
    4613             : #define NODE_RECLAIM_PRIORITY 4
    4614             : 
    4615             : /*
    4616             :  * Percentage of pages in a zone that must be unmapped for node_reclaim to
    4617             :  * occur.
    4618             :  */
    4619             : int sysctl_min_unmapped_ratio = 1;
    4620             : 
    4621             : /*
    4622             :  * If the number of slab pages in a zone grows beyond this percentage then
    4623             :  * slab reclaim needs to occur.
    4624             :  */
    4625             : int sysctl_min_slab_ratio = 5;
    4626             : 
    4627             : static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
    4628             : {
    4629             :         unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
    4630             :         unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
    4631             :                 node_page_state(pgdat, NR_ACTIVE_FILE);
    4632             : 
    4633             :         /*
    4634             :          * It's possible for there to be more file mapped pages than
    4635             :          * accounted for by the pages on the file LRU lists because
    4636             :          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
    4637             :          */
    4638             :         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
    4639             : }
    4640             : 
    4641             : /* Work out how many page cache pages we can reclaim in this reclaim_mode */
    4642             : static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
    4643             : {
    4644             :         unsigned long nr_pagecache_reclaimable;
    4645             :         unsigned long delta = 0;
    4646             : 
    4647             :         /*
    4648             :          * If RECLAIM_UNMAP is set, then all file pages are considered
    4649             :          * potentially reclaimable. Otherwise, we have to worry about
    4650             :          * pages like swapcache and node_unmapped_file_pages() provides
    4651             :          * a better estimate
    4652             :          */
    4653             :         if (node_reclaim_mode & RECLAIM_UNMAP)
    4654             :                 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
    4655             :         else
    4656             :                 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
    4657             : 
    4658             :         /* If we can't clean pages, remove dirty pages from consideration */
    4659             :         if (!(node_reclaim_mode & RECLAIM_WRITE))
    4660             :                 delta += node_page_state(pgdat, NR_FILE_DIRTY);
    4661             : 
    4662             :         /* Watch for any possible underflows due to delta */
    4663             :         if (unlikely(delta > nr_pagecache_reclaimable))
    4664             :                 delta = nr_pagecache_reclaimable;
    4665             : 
    4666             :         return nr_pagecache_reclaimable - delta;
    4667             : }
    4668             : 
    4669             : /*
    4670             :  * Try to free up some pages from this node through reclaim.
    4671             :  */
    4672             : static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
    4673             : {
    4674             :         /* Minimum pages needed in order to stay on node */
    4675             :         const unsigned long nr_pages = 1 << order;
    4676             :         struct task_struct *p = current;
    4677             :         unsigned int noreclaim_flag;
    4678             :         struct scan_control sc = {
    4679             :                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
    4680             :                 .gfp_mask = current_gfp_context(gfp_mask),
    4681             :                 .order = order,
    4682             :                 .priority = NODE_RECLAIM_PRIORITY,
    4683             :                 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
    4684             :                 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
    4685             :                 .may_swap = 1,
    4686             :                 .reclaim_idx = gfp_zone(gfp_mask),
    4687             :         };
    4688             :         unsigned long pflags;
    4689             : 
    4690             :         trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
    4691             :                                            sc.gfp_mask);
    4692             : 
    4693             :         cond_resched();
    4694             :         psi_memstall_enter(&pflags);
    4695             :         fs_reclaim_acquire(sc.gfp_mask);
    4696             :         /*
    4697             :          * We need to be able to allocate from the reserves for RECLAIM_UNMAP
    4698             :          */
    4699             :         noreclaim_flag = memalloc_noreclaim_save();
    4700             :         set_task_reclaim_state(p, &sc.reclaim_state);
    4701             : 
    4702             :         if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
    4703             :                 /*
    4704             :                  * Free memory by calling shrink node with increasing
    4705             :                  * priorities until we have enough memory freed.
    4706             :                  */
    4707             :                 do {
    4708             :                         shrink_node(pgdat, &sc);
    4709             :                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
    4710             :         }
    4711             : 
    4712             :         set_task_reclaim_state(p, NULL);
    4713             :         memalloc_noreclaim_restore(noreclaim_flag);
    4714             :         fs_reclaim_release(sc.gfp_mask);
    4715             :         psi_memstall_leave(&pflags);
    4716             : 
    4717             :         trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
    4718             : 
    4719             :         return sc.nr_reclaimed >= nr_pages;
    4720             : }
    4721             : 
    4722             : int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
    4723             : {
    4724             :         int ret;
    4725             : 
    4726             :         /*
    4727             :          * Node reclaim reclaims unmapped file backed pages and
    4728             :          * slab pages if we are over the defined limits.
    4729             :          *
    4730             :          * A small portion of unmapped file backed pages is needed for
    4731             :          * file I/O otherwise pages read by file I/O will be immediately
    4732             :          * thrown out if the node is overallocated. So we do not reclaim
    4733             :          * if less than a specified percentage of the node is used by
    4734             :          * unmapped file backed pages.
    4735             :          */
    4736             :         if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
    4737             :             node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
    4738             :             pgdat->min_slab_pages)
    4739             :                 return NODE_RECLAIM_FULL;
    4740             : 
    4741             :         /*
    4742             :          * Do not scan if the allocation should not be delayed.
    4743             :          */
    4744             :         if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
    4745             :                 return NODE_RECLAIM_NOSCAN;
    4746             : 
    4747             :         /*
    4748             :          * Only run node reclaim on the local node or on nodes that do not
    4749             :          * have associated processors. This will favor the local processor
    4750             :          * over remote processors and spread off node memory allocations
    4751             :          * as wide as possible.
    4752             :          */
    4753             :         if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
    4754             :                 return NODE_RECLAIM_NOSCAN;
    4755             : 
    4756             :         if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
    4757             :                 return NODE_RECLAIM_NOSCAN;
    4758             : 
    4759             :         ret = __node_reclaim(pgdat, gfp_mask, order);
    4760             :         clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
    4761             : 
    4762             :         if (!ret)
    4763             :                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
    4764             : 
    4765             :         return ret;
    4766             : }
    4767             : #endif
    4768             : 
    4769             : /**
    4770             :  * check_move_unevictable_pages - check pages for evictability and move to
    4771             :  * appropriate zone lru list
    4772             :  * @pvec: pagevec with lru pages to check
    4773             :  *
    4774             :  * Checks pages for evictability, if an evictable page is in the unevictable
    4775             :  * lru list, moves it to the appropriate evictable lru list. This function
    4776             :  * should be only used for lru pages.
    4777             :  */
    4778           0 : void check_move_unevictable_pages(struct pagevec *pvec)
    4779             : {
    4780           0 :         struct lruvec *lruvec = NULL;
    4781           0 :         int pgscanned = 0;
    4782           0 :         int pgrescued = 0;
    4783             :         int i;
    4784             : 
    4785           0 :         for (i = 0; i < pvec->nr; i++) {
    4786           0 :                 struct page *page = pvec->pages[i];
    4787           0 :                 struct folio *folio = page_folio(page);
    4788             :                 int nr_pages;
    4789             : 
    4790           0 :                 if (PageTransTail(page))
    4791             :                         continue;
    4792             : 
    4793           0 :                 nr_pages = thp_nr_pages(page);
    4794           0 :                 pgscanned += nr_pages;
    4795             : 
    4796             :                 /* block memcg migration during page moving between lru */
    4797           0 :                 if (!TestClearPageLRU(page))
    4798           0 :                         continue;
    4799             : 
    4800           0 :                 lruvec = folio_lruvec_relock_irq(folio, lruvec);
    4801           0 :                 if (page_evictable(page) && PageUnevictable(page)) {
    4802           0 :                         del_page_from_lru_list(page, lruvec);
    4803           0 :                         ClearPageUnevictable(page);
    4804           0 :                         add_page_to_lru_list(page, lruvec);
    4805           0 :                         pgrescued += nr_pages;
    4806             :                 }
    4807             :                 SetPageLRU(page);
    4808             :         }
    4809             : 
    4810           0 :         if (lruvec) {
    4811           0 :                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
    4812           0 :                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
    4813           0 :                 unlock_page_lruvec_irq(lruvec);
    4814           0 :         } else if (pgscanned) {
    4815           0 :                 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
    4816             :         }
    4817           0 : }
    4818             : EXPORT_SYMBOL_GPL(check_move_unevictable_pages);

Generated by: LCOV version 1.14