Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/mm/vmstat.c
4 : *
5 : * Manages VM statistics
6 : * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 : *
8 : * zoned VM statistics
9 : * Copyright (C) 2006 Silicon Graphics, Inc.,
10 : * Christoph Lameter <christoph@lameter.com>
11 : * Copyright (C) 2008-2014 Christoph Lameter
12 : */
13 : #include <linux/fs.h>
14 : #include <linux/mm.h>
15 : #include <linux/err.h>
16 : #include <linux/module.h>
17 : #include <linux/slab.h>
18 : #include <linux/cpu.h>
19 : #include <linux/cpumask.h>
20 : #include <linux/vmstat.h>
21 : #include <linux/proc_fs.h>
22 : #include <linux/seq_file.h>
23 : #include <linux/debugfs.h>
24 : #include <linux/sched.h>
25 : #include <linux/math64.h>
26 : #include <linux/writeback.h>
27 : #include <linux/compaction.h>
28 : #include <linux/mm_inline.h>
29 : #include <linux/page_ext.h>
30 : #include <linux/page_owner.h>
31 : #include <linux/migrate.h>
32 :
33 : #include "internal.h"
34 :
35 : #ifdef CONFIG_NUMA
36 : int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37 :
38 : /* zero numa counters within a zone */
39 : static void zero_zone_numa_counters(struct zone *zone)
40 : {
41 : int item, cpu;
42 :
43 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
44 : atomic_long_set(&zone->vm_numa_event[item], 0);
45 : for_each_online_cpu(cpu) {
46 : per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
47 : = 0;
48 : }
49 : }
50 : }
51 :
52 : /* zero numa counters of all the populated zones */
53 : static void zero_zones_numa_counters(void)
54 : {
55 : struct zone *zone;
56 :
57 : for_each_populated_zone(zone)
58 : zero_zone_numa_counters(zone);
59 : }
60 :
61 : /* zero global numa counters */
62 : static void zero_global_numa_counters(void)
63 : {
64 : int item;
65 :
66 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
67 : atomic_long_set(&vm_numa_event[item], 0);
68 : }
69 :
70 : static void invalid_numa_statistics(void)
71 : {
72 : zero_zones_numa_counters();
73 : zero_global_numa_counters();
74 : }
75 :
76 : static DEFINE_MUTEX(vm_numa_stat_lock);
77 :
78 : int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 : void *buffer, size_t *length, loff_t *ppos)
80 : {
81 : int ret, oldval;
82 :
83 : mutex_lock(&vm_numa_stat_lock);
84 : if (write)
85 : oldval = sysctl_vm_numa_stat;
86 : ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 : if (ret || !write)
88 : goto out;
89 :
90 : if (oldval == sysctl_vm_numa_stat)
91 : goto out;
92 : else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 : static_branch_enable(&vm_numa_stat_key);
94 : pr_info("enable numa statistics\n");
95 : } else {
96 : static_branch_disable(&vm_numa_stat_key);
97 : invalid_numa_statistics();
98 : pr_info("disable numa statistics, and clear numa counters\n");
99 : }
100 :
101 : out:
102 : mutex_unlock(&vm_numa_stat_lock);
103 : return ret;
104 : }
105 : #endif
106 :
107 : #ifdef CONFIG_VM_EVENT_COUNTERS
108 : DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 : EXPORT_PER_CPU_SYMBOL(vm_event_states);
110 :
111 0 : static void sum_vm_events(unsigned long *ret)
112 : {
113 : int cpu;
114 : int i;
115 :
116 0 : memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117 :
118 0 : for_each_online_cpu(cpu) {
119 : struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120 :
121 0 : for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 0 : ret[i] += this->event[i];
123 : }
124 0 : }
125 :
126 : /*
127 : * Accumulate the vm event counters across all CPUs.
128 : * The result is unavoidably approximate - it can change
129 : * during and after execution of this function.
130 : */
131 0 : void all_vm_events(unsigned long *ret)
132 : {
133 : cpus_read_lock();
134 0 : sum_vm_events(ret);
135 : cpus_read_unlock();
136 0 : }
137 : EXPORT_SYMBOL_GPL(all_vm_events);
138 :
139 : /*
140 : * Fold the foreign cpu events into our own.
141 : *
142 : * This is adding to the events on one processor
143 : * but keeps the global counts constant.
144 : */
145 0 : void vm_events_fold_cpu(int cpu)
146 : {
147 0 : struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 : int i;
149 :
150 0 : for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 0 : count_vm_events(i, fold_state->event[i]);
152 0 : fold_state->event[i] = 0;
153 : }
154 0 : }
155 :
156 : #endif /* CONFIG_VM_EVENT_COUNTERS */
157 :
158 : /*
159 : * Manage combined zone based / global counters
160 : *
161 : * vm_stat contains the global counters
162 : */
163 : atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 : atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
165 : atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
166 : EXPORT_SYMBOL(vm_zone_stat);
167 : EXPORT_SYMBOL(vm_node_stat);
168 :
169 : #ifdef CONFIG_NUMA
170 : static void fold_vm_zone_numa_events(struct zone *zone)
171 : {
172 : unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
173 : int cpu;
174 : enum numa_stat_item item;
175 :
176 : for_each_online_cpu(cpu) {
177 : struct per_cpu_zonestat *pzstats;
178 :
179 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
180 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
181 : zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
182 : }
183 :
184 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
185 : zone_numa_event_add(zone_numa_events[item], zone, item);
186 : }
187 :
188 : void fold_vm_numa_events(void)
189 : {
190 : struct zone *zone;
191 :
192 : for_each_populated_zone(zone)
193 : fold_vm_zone_numa_events(zone);
194 : }
195 : #endif
196 :
197 : #ifdef CONFIG_SMP
198 :
199 : int calculate_pressure_threshold(struct zone *zone)
200 : {
201 : int threshold;
202 : int watermark_distance;
203 :
204 : /*
205 : * As vmstats are not up to date, there is drift between the estimated
206 : * and real values. For high thresholds and a high number of CPUs, it
207 : * is possible for the min watermark to be breached while the estimated
208 : * value looks fine. The pressure threshold is a reduced value such
209 : * that even the maximum amount of drift will not accidentally breach
210 : * the min watermark
211 : */
212 : watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
213 : threshold = max(1, (int)(watermark_distance / num_online_cpus()));
214 :
215 : /*
216 : * Maximum threshold is 125
217 : */
218 : threshold = min(125, threshold);
219 :
220 : return threshold;
221 : }
222 :
223 : int calculate_normal_threshold(struct zone *zone)
224 : {
225 : int threshold;
226 : int mem; /* memory in 128 MB units */
227 :
228 : /*
229 : * The threshold scales with the number of processors and the amount
230 : * of memory per zone. More memory means that we can defer updates for
231 : * longer, more processors could lead to more contention.
232 : * fls() is used to have a cheap way of logarithmic scaling.
233 : *
234 : * Some sample thresholds:
235 : *
236 : * Threshold Processors (fls) Zonesize fls(mem)+1
237 : * ------------------------------------------------------------------
238 : * 8 1 1 0.9-1 GB 4
239 : * 16 2 2 0.9-1 GB 4
240 : * 20 2 2 1-2 GB 5
241 : * 24 2 2 2-4 GB 6
242 : * 28 2 2 4-8 GB 7
243 : * 32 2 2 8-16 GB 8
244 : * 4 2 2 <128M 1
245 : * 30 4 3 2-4 GB 5
246 : * 48 4 3 8-16 GB 8
247 : * 32 8 4 1-2 GB 4
248 : * 32 8 4 0.9-1GB 4
249 : * 10 16 5 <128M 1
250 : * 40 16 5 900M 4
251 : * 70 64 7 2-4 GB 5
252 : * 84 64 7 4-8 GB 6
253 : * 108 512 9 4-8 GB 6
254 : * 125 1024 10 8-16 GB 8
255 : * 125 1024 10 16-32 GB 9
256 : */
257 :
258 : mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
259 :
260 : threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
261 :
262 : /*
263 : * Maximum threshold is 125
264 : */
265 : threshold = min(125, threshold);
266 :
267 : return threshold;
268 : }
269 :
270 : /*
271 : * Refresh the thresholds for each zone.
272 : */
273 : void refresh_zone_stat_thresholds(void)
274 : {
275 : struct pglist_data *pgdat;
276 : struct zone *zone;
277 : int cpu;
278 : int threshold;
279 :
280 : /* Zero current pgdat thresholds */
281 : for_each_online_pgdat(pgdat) {
282 : for_each_online_cpu(cpu) {
283 : per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
284 : }
285 : }
286 :
287 : for_each_populated_zone(zone) {
288 : struct pglist_data *pgdat = zone->zone_pgdat;
289 : unsigned long max_drift, tolerate_drift;
290 :
291 : threshold = calculate_normal_threshold(zone);
292 :
293 : for_each_online_cpu(cpu) {
294 : int pgdat_threshold;
295 :
296 : per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
297 : = threshold;
298 :
299 : /* Base nodestat threshold on the largest populated zone. */
300 : pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
301 : per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
302 : = max(threshold, pgdat_threshold);
303 : }
304 :
305 : /*
306 : * Only set percpu_drift_mark if there is a danger that
307 : * NR_FREE_PAGES reports the low watermark is ok when in fact
308 : * the min watermark could be breached by an allocation
309 : */
310 : tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
311 : max_drift = num_online_cpus() * threshold;
312 : if (max_drift > tolerate_drift)
313 : zone->percpu_drift_mark = high_wmark_pages(zone) +
314 : max_drift;
315 : }
316 : }
317 :
318 : void set_pgdat_percpu_threshold(pg_data_t *pgdat,
319 : int (*calculate_pressure)(struct zone *))
320 : {
321 : struct zone *zone;
322 : int cpu;
323 : int threshold;
324 : int i;
325 :
326 : for (i = 0; i < pgdat->nr_zones; i++) {
327 : zone = &pgdat->node_zones[i];
328 : if (!zone->percpu_drift_mark)
329 : continue;
330 :
331 : threshold = (*calculate_pressure)(zone);
332 : for_each_online_cpu(cpu)
333 : per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
334 : = threshold;
335 : }
336 : }
337 :
338 : /*
339 : * For use when we know that interrupts are disabled,
340 : * or when we know that preemption is disabled and that
341 : * particular counter cannot be updated from interrupt context.
342 : */
343 : void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
344 : long delta)
345 : {
346 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
347 : s8 __percpu *p = pcp->vm_stat_diff + item;
348 : long x;
349 : long t;
350 :
351 : /*
352 : * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
353 : * atomicity is provided by IRQs being disabled -- either explicitly
354 : * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
355 : * CPU migrations and preemption potentially corrupts a counter so
356 : * disable preemption.
357 : */
358 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
359 : preempt_disable();
360 :
361 : x = delta + __this_cpu_read(*p);
362 :
363 : t = __this_cpu_read(pcp->stat_threshold);
364 :
365 : if (unlikely(abs(x) > t)) {
366 : zone_page_state_add(x, zone, item);
367 : x = 0;
368 : }
369 : __this_cpu_write(*p, x);
370 :
371 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
372 : preempt_enable();
373 : }
374 : EXPORT_SYMBOL(__mod_zone_page_state);
375 :
376 : void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
377 : long delta)
378 : {
379 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
380 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
381 : long x;
382 : long t;
383 :
384 : if (vmstat_item_in_bytes(item)) {
385 : /*
386 : * Only cgroups use subpage accounting right now; at
387 : * the global level, these items still change in
388 : * multiples of whole pages. Store them as pages
389 : * internally to keep the per-cpu counters compact.
390 : */
391 : VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
392 : delta >>= PAGE_SHIFT;
393 : }
394 :
395 : /* See __mod_node_page_state */
396 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
397 : preempt_disable();
398 :
399 : x = delta + __this_cpu_read(*p);
400 :
401 : t = __this_cpu_read(pcp->stat_threshold);
402 :
403 : if (unlikely(abs(x) > t)) {
404 : node_page_state_add(x, pgdat, item);
405 : x = 0;
406 : }
407 : __this_cpu_write(*p, x);
408 :
409 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
410 : preempt_enable();
411 : }
412 : EXPORT_SYMBOL(__mod_node_page_state);
413 :
414 : /*
415 : * Optimized increment and decrement functions.
416 : *
417 : * These are only for a single page and therefore can take a struct page *
418 : * argument instead of struct zone *. This allows the inclusion of the code
419 : * generated for page_zone(page) into the optimized functions.
420 : *
421 : * No overflow check is necessary and therefore the differential can be
422 : * incremented or decremented in place which may allow the compilers to
423 : * generate better code.
424 : * The increment or decrement is known and therefore one boundary check can
425 : * be omitted.
426 : *
427 : * NOTE: These functions are very performance sensitive. Change only
428 : * with care.
429 : *
430 : * Some processors have inc/dec instructions that are atomic vs an interrupt.
431 : * However, the code must first determine the differential location in a zone
432 : * based on the processor number and then inc/dec the counter. There is no
433 : * guarantee without disabling preemption that the processor will not change
434 : * in between and therefore the atomicity vs. interrupt cannot be exploited
435 : * in a useful way here.
436 : */
437 : void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
438 : {
439 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
440 : s8 __percpu *p = pcp->vm_stat_diff + item;
441 : s8 v, t;
442 :
443 : /* See __mod_node_page_state */
444 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
445 : preempt_disable();
446 :
447 : v = __this_cpu_inc_return(*p);
448 : t = __this_cpu_read(pcp->stat_threshold);
449 : if (unlikely(v > t)) {
450 : s8 overstep = t >> 1;
451 :
452 : zone_page_state_add(v + overstep, zone, item);
453 : __this_cpu_write(*p, -overstep);
454 : }
455 :
456 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
457 : preempt_enable();
458 : }
459 :
460 : void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
461 : {
462 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
463 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
464 : s8 v, t;
465 :
466 : VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
467 :
468 : /* See __mod_node_page_state */
469 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
470 : preempt_disable();
471 :
472 : v = __this_cpu_inc_return(*p);
473 : t = __this_cpu_read(pcp->stat_threshold);
474 : if (unlikely(v > t)) {
475 : s8 overstep = t >> 1;
476 :
477 : node_page_state_add(v + overstep, pgdat, item);
478 : __this_cpu_write(*p, -overstep);
479 : }
480 :
481 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
482 : preempt_enable();
483 : }
484 :
485 : void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
486 : {
487 : __inc_zone_state(page_zone(page), item);
488 : }
489 : EXPORT_SYMBOL(__inc_zone_page_state);
490 :
491 : void __inc_node_page_state(struct page *page, enum node_stat_item item)
492 : {
493 : __inc_node_state(page_pgdat(page), item);
494 : }
495 : EXPORT_SYMBOL(__inc_node_page_state);
496 :
497 : void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
498 : {
499 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
500 : s8 __percpu *p = pcp->vm_stat_diff + item;
501 : s8 v, t;
502 :
503 : /* See __mod_node_page_state */
504 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
505 : preempt_disable();
506 :
507 : v = __this_cpu_dec_return(*p);
508 : t = __this_cpu_read(pcp->stat_threshold);
509 : if (unlikely(v < - t)) {
510 : s8 overstep = t >> 1;
511 :
512 : zone_page_state_add(v - overstep, zone, item);
513 : __this_cpu_write(*p, overstep);
514 : }
515 :
516 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
517 : preempt_enable();
518 : }
519 :
520 : void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
521 : {
522 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
523 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
524 : s8 v, t;
525 :
526 : VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
527 :
528 : /* See __mod_node_page_state */
529 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
530 : preempt_disable();
531 :
532 : v = __this_cpu_dec_return(*p);
533 : t = __this_cpu_read(pcp->stat_threshold);
534 : if (unlikely(v < - t)) {
535 : s8 overstep = t >> 1;
536 :
537 : node_page_state_add(v - overstep, pgdat, item);
538 : __this_cpu_write(*p, overstep);
539 : }
540 :
541 : if (IS_ENABLED(CONFIG_PREEMPT_RT))
542 : preempt_enable();
543 : }
544 :
545 : void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
546 : {
547 : __dec_zone_state(page_zone(page), item);
548 : }
549 : EXPORT_SYMBOL(__dec_zone_page_state);
550 :
551 : void __dec_node_page_state(struct page *page, enum node_stat_item item)
552 : {
553 : __dec_node_state(page_pgdat(page), item);
554 : }
555 : EXPORT_SYMBOL(__dec_node_page_state);
556 :
557 : #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
558 : /*
559 : * If we have cmpxchg_local support then we do not need to incur the overhead
560 : * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
561 : *
562 : * mod_state() modifies the zone counter state through atomic per cpu
563 : * operations.
564 : *
565 : * Overstep mode specifies how overstep should handled:
566 : * 0 No overstepping
567 : * 1 Overstepping half of threshold
568 : * -1 Overstepping minus half of threshold
569 : */
570 : static inline void mod_zone_state(struct zone *zone,
571 : enum zone_stat_item item, long delta, int overstep_mode)
572 : {
573 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
574 : s8 __percpu *p = pcp->vm_stat_diff + item;
575 : long o, n, t, z;
576 :
577 : do {
578 : z = 0; /* overflow to zone counters */
579 :
580 : /*
581 : * The fetching of the stat_threshold is racy. We may apply
582 : * a counter threshold to the wrong the cpu if we get
583 : * rescheduled while executing here. However, the next
584 : * counter update will apply the threshold again and
585 : * therefore bring the counter under the threshold again.
586 : *
587 : * Most of the time the thresholds are the same anyways
588 : * for all cpus in a zone.
589 : */
590 : t = this_cpu_read(pcp->stat_threshold);
591 :
592 : o = this_cpu_read(*p);
593 : n = delta + o;
594 :
595 : if (abs(n) > t) {
596 : int os = overstep_mode * (t >> 1) ;
597 :
598 : /* Overflow must be added to zone counters */
599 : z = n + os;
600 : n = -os;
601 : }
602 : } while (this_cpu_cmpxchg(*p, o, n) != o);
603 :
604 : if (z)
605 : zone_page_state_add(z, zone, item);
606 : }
607 :
608 : void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
609 : long delta)
610 : {
611 : mod_zone_state(zone, item, delta, 0);
612 : }
613 : EXPORT_SYMBOL(mod_zone_page_state);
614 :
615 : void inc_zone_page_state(struct page *page, enum zone_stat_item item)
616 : {
617 : mod_zone_state(page_zone(page), item, 1, 1);
618 : }
619 : EXPORT_SYMBOL(inc_zone_page_state);
620 :
621 : void dec_zone_page_state(struct page *page, enum zone_stat_item item)
622 : {
623 : mod_zone_state(page_zone(page), item, -1, -1);
624 : }
625 : EXPORT_SYMBOL(dec_zone_page_state);
626 :
627 : static inline void mod_node_state(struct pglist_data *pgdat,
628 : enum node_stat_item item, int delta, int overstep_mode)
629 : {
630 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
631 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
632 : long o, n, t, z;
633 :
634 : if (vmstat_item_in_bytes(item)) {
635 : /*
636 : * Only cgroups use subpage accounting right now; at
637 : * the global level, these items still change in
638 : * multiples of whole pages. Store them as pages
639 : * internally to keep the per-cpu counters compact.
640 : */
641 : VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
642 : delta >>= PAGE_SHIFT;
643 : }
644 :
645 : do {
646 : z = 0; /* overflow to node counters */
647 :
648 : /*
649 : * The fetching of the stat_threshold is racy. We may apply
650 : * a counter threshold to the wrong the cpu if we get
651 : * rescheduled while executing here. However, the next
652 : * counter update will apply the threshold again and
653 : * therefore bring the counter under the threshold again.
654 : *
655 : * Most of the time the thresholds are the same anyways
656 : * for all cpus in a node.
657 : */
658 : t = this_cpu_read(pcp->stat_threshold);
659 :
660 : o = this_cpu_read(*p);
661 : n = delta + o;
662 :
663 : if (abs(n) > t) {
664 : int os = overstep_mode * (t >> 1) ;
665 :
666 : /* Overflow must be added to node counters */
667 : z = n + os;
668 : n = -os;
669 : }
670 : } while (this_cpu_cmpxchg(*p, o, n) != o);
671 :
672 : if (z)
673 : node_page_state_add(z, pgdat, item);
674 : }
675 :
676 : void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
677 : long delta)
678 : {
679 : mod_node_state(pgdat, item, delta, 0);
680 : }
681 : EXPORT_SYMBOL(mod_node_page_state);
682 :
683 : void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
684 : {
685 : mod_node_state(pgdat, item, 1, 1);
686 : }
687 :
688 : void inc_node_page_state(struct page *page, enum node_stat_item item)
689 : {
690 : mod_node_state(page_pgdat(page), item, 1, 1);
691 : }
692 : EXPORT_SYMBOL(inc_node_page_state);
693 :
694 : void dec_node_page_state(struct page *page, enum node_stat_item item)
695 : {
696 : mod_node_state(page_pgdat(page), item, -1, -1);
697 : }
698 : EXPORT_SYMBOL(dec_node_page_state);
699 : #else
700 : /*
701 : * Use interrupt disable to serialize counter updates
702 : */
703 : void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
704 : long delta)
705 : {
706 : unsigned long flags;
707 :
708 : local_irq_save(flags);
709 : __mod_zone_page_state(zone, item, delta);
710 : local_irq_restore(flags);
711 : }
712 : EXPORT_SYMBOL(mod_zone_page_state);
713 :
714 : void inc_zone_page_state(struct page *page, enum zone_stat_item item)
715 : {
716 : unsigned long flags;
717 : struct zone *zone;
718 :
719 : zone = page_zone(page);
720 : local_irq_save(flags);
721 : __inc_zone_state(zone, item);
722 : local_irq_restore(flags);
723 : }
724 : EXPORT_SYMBOL(inc_zone_page_state);
725 :
726 : void dec_zone_page_state(struct page *page, enum zone_stat_item item)
727 : {
728 : unsigned long flags;
729 :
730 : local_irq_save(flags);
731 : __dec_zone_page_state(page, item);
732 : local_irq_restore(flags);
733 : }
734 : EXPORT_SYMBOL(dec_zone_page_state);
735 :
736 : void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
737 : {
738 : unsigned long flags;
739 :
740 : local_irq_save(flags);
741 : __inc_node_state(pgdat, item);
742 : local_irq_restore(flags);
743 : }
744 : EXPORT_SYMBOL(inc_node_state);
745 :
746 : void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
747 : long delta)
748 : {
749 : unsigned long flags;
750 :
751 : local_irq_save(flags);
752 : __mod_node_page_state(pgdat, item, delta);
753 : local_irq_restore(flags);
754 : }
755 : EXPORT_SYMBOL(mod_node_page_state);
756 :
757 : void inc_node_page_state(struct page *page, enum node_stat_item item)
758 : {
759 : unsigned long flags;
760 : struct pglist_data *pgdat;
761 :
762 : pgdat = page_pgdat(page);
763 : local_irq_save(flags);
764 : __inc_node_state(pgdat, item);
765 : local_irq_restore(flags);
766 : }
767 : EXPORT_SYMBOL(inc_node_page_state);
768 :
769 : void dec_node_page_state(struct page *page, enum node_stat_item item)
770 : {
771 : unsigned long flags;
772 :
773 : local_irq_save(flags);
774 : __dec_node_page_state(page, item);
775 : local_irq_restore(flags);
776 : }
777 : EXPORT_SYMBOL(dec_node_page_state);
778 : #endif
779 :
780 : /*
781 : * Fold a differential into the global counters.
782 : * Returns the number of counters updated.
783 : */
784 : static int fold_diff(int *zone_diff, int *node_diff)
785 : {
786 : int i;
787 : int changes = 0;
788 :
789 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
790 : if (zone_diff[i]) {
791 : atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
792 : changes++;
793 : }
794 :
795 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
796 : if (node_diff[i]) {
797 : atomic_long_add(node_diff[i], &vm_node_stat[i]);
798 : changes++;
799 : }
800 : return changes;
801 : }
802 :
803 : /*
804 : * Update the zone counters for the current cpu.
805 : *
806 : * Note that refresh_cpu_vm_stats strives to only access
807 : * node local memory. The per cpu pagesets on remote zones are placed
808 : * in the memory local to the processor using that pageset. So the
809 : * loop over all zones will access a series of cachelines local to
810 : * the processor.
811 : *
812 : * The call to zone_page_state_add updates the cachelines with the
813 : * statistics in the remote zone struct as well as the global cachelines
814 : * with the global counters. These could cause remote node cache line
815 : * bouncing and will have to be only done when necessary.
816 : *
817 : * The function returns the number of global counters updated.
818 : */
819 : static int refresh_cpu_vm_stats(bool do_pagesets)
820 : {
821 : struct pglist_data *pgdat;
822 : struct zone *zone;
823 : int i;
824 : int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
825 : int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
826 : int changes = 0;
827 :
828 : for_each_populated_zone(zone) {
829 : struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
830 : #ifdef CONFIG_NUMA
831 : struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
832 : #endif
833 :
834 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
835 : int v;
836 :
837 : v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
838 : if (v) {
839 :
840 : atomic_long_add(v, &zone->vm_stat[i]);
841 : global_zone_diff[i] += v;
842 : #ifdef CONFIG_NUMA
843 : /* 3 seconds idle till flush */
844 : __this_cpu_write(pcp->expire, 3);
845 : #endif
846 : }
847 : }
848 : #ifdef CONFIG_NUMA
849 :
850 : if (do_pagesets) {
851 : cond_resched();
852 : /*
853 : * Deal with draining the remote pageset of this
854 : * processor
855 : *
856 : * Check if there are pages remaining in this pageset
857 : * if not then there is nothing to expire.
858 : */
859 : if (!__this_cpu_read(pcp->expire) ||
860 : !__this_cpu_read(pcp->count))
861 : continue;
862 :
863 : /*
864 : * We never drain zones local to this processor.
865 : */
866 : if (zone_to_nid(zone) == numa_node_id()) {
867 : __this_cpu_write(pcp->expire, 0);
868 : continue;
869 : }
870 :
871 : if (__this_cpu_dec_return(pcp->expire))
872 : continue;
873 :
874 : if (__this_cpu_read(pcp->count)) {
875 : drain_zone_pages(zone, this_cpu_ptr(pcp));
876 : changes++;
877 : }
878 : }
879 : #endif
880 : }
881 :
882 : for_each_online_pgdat(pgdat) {
883 : struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
884 :
885 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
886 : int v;
887 :
888 : v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
889 : if (v) {
890 : atomic_long_add(v, &pgdat->vm_stat[i]);
891 : global_node_diff[i] += v;
892 : }
893 : }
894 : }
895 :
896 : changes += fold_diff(global_zone_diff, global_node_diff);
897 : return changes;
898 : }
899 :
900 : /*
901 : * Fold the data for an offline cpu into the global array.
902 : * There cannot be any access by the offline cpu and therefore
903 : * synchronization is simplified.
904 : */
905 : void cpu_vm_stats_fold(int cpu)
906 : {
907 : struct pglist_data *pgdat;
908 : struct zone *zone;
909 : int i;
910 : int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
911 : int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
912 :
913 : for_each_populated_zone(zone) {
914 : struct per_cpu_zonestat *pzstats;
915 :
916 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
917 :
918 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
919 : if (pzstats->vm_stat_diff[i]) {
920 : int v;
921 :
922 : v = pzstats->vm_stat_diff[i];
923 : pzstats->vm_stat_diff[i] = 0;
924 : atomic_long_add(v, &zone->vm_stat[i]);
925 : global_zone_diff[i] += v;
926 : }
927 : }
928 : #ifdef CONFIG_NUMA
929 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
930 : if (pzstats->vm_numa_event[i]) {
931 : unsigned long v;
932 :
933 : v = pzstats->vm_numa_event[i];
934 : pzstats->vm_numa_event[i] = 0;
935 : zone_numa_event_add(v, zone, i);
936 : }
937 : }
938 : #endif
939 : }
940 :
941 : for_each_online_pgdat(pgdat) {
942 : struct per_cpu_nodestat *p;
943 :
944 : p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
945 :
946 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
947 : if (p->vm_node_stat_diff[i]) {
948 : int v;
949 :
950 : v = p->vm_node_stat_diff[i];
951 : p->vm_node_stat_diff[i] = 0;
952 : atomic_long_add(v, &pgdat->vm_stat[i]);
953 : global_node_diff[i] += v;
954 : }
955 : }
956 :
957 : fold_diff(global_zone_diff, global_node_diff);
958 : }
959 :
960 : /*
961 : * this is only called if !populated_zone(zone), which implies no other users of
962 : * pset->vm_stat_diff[] exist.
963 : */
964 : void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
965 : {
966 : unsigned long v;
967 : int i;
968 :
969 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
970 : if (pzstats->vm_stat_diff[i]) {
971 : v = pzstats->vm_stat_diff[i];
972 : pzstats->vm_stat_diff[i] = 0;
973 : zone_page_state_add(v, zone, i);
974 : }
975 : }
976 :
977 : #ifdef CONFIG_NUMA
978 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
979 : if (pzstats->vm_numa_event[i]) {
980 : v = pzstats->vm_numa_event[i];
981 : pzstats->vm_numa_event[i] = 0;
982 : zone_numa_event_add(v, zone, i);
983 : }
984 : }
985 : #endif
986 : }
987 : #endif
988 :
989 : #ifdef CONFIG_NUMA
990 : /*
991 : * Determine the per node value of a stat item. This function
992 : * is called frequently in a NUMA machine, so try to be as
993 : * frugal as possible.
994 : */
995 : unsigned long sum_zone_node_page_state(int node,
996 : enum zone_stat_item item)
997 : {
998 : struct zone *zones = NODE_DATA(node)->node_zones;
999 : int i;
1000 : unsigned long count = 0;
1001 :
1002 : for (i = 0; i < MAX_NR_ZONES; i++)
1003 : count += zone_page_state(zones + i, item);
1004 :
1005 : return count;
1006 : }
1007 :
1008 : /* Determine the per node value of a numa stat item. */
1009 : unsigned long sum_zone_numa_event_state(int node,
1010 : enum numa_stat_item item)
1011 : {
1012 : struct zone *zones = NODE_DATA(node)->node_zones;
1013 : unsigned long count = 0;
1014 : int i;
1015 :
1016 : for (i = 0; i < MAX_NR_ZONES; i++)
1017 : count += zone_numa_event_state(zones + i, item);
1018 :
1019 : return count;
1020 : }
1021 :
1022 : /*
1023 : * Determine the per node value of a stat item.
1024 : */
1025 : unsigned long node_page_state_pages(struct pglist_data *pgdat,
1026 : enum node_stat_item item)
1027 : {
1028 : long x = atomic_long_read(&pgdat->vm_stat[item]);
1029 : #ifdef CONFIG_SMP
1030 : if (x < 0)
1031 : x = 0;
1032 : #endif
1033 : return x;
1034 : }
1035 :
1036 : unsigned long node_page_state(struct pglist_data *pgdat,
1037 : enum node_stat_item item)
1038 : {
1039 : VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1040 :
1041 : return node_page_state_pages(pgdat, item);
1042 : }
1043 : #endif
1044 :
1045 : #ifdef CONFIG_COMPACTION
1046 :
1047 : struct contig_page_info {
1048 : unsigned long free_pages;
1049 : unsigned long free_blocks_total;
1050 : unsigned long free_blocks_suitable;
1051 : };
1052 :
1053 : /*
1054 : * Calculate the number of free pages in a zone, how many contiguous
1055 : * pages are free and how many are large enough to satisfy an allocation of
1056 : * the target size. Note that this function makes no attempt to estimate
1057 : * how many suitable free blocks there *might* be if MOVABLE pages were
1058 : * migrated. Calculating that is possible, but expensive and can be
1059 : * figured out from userspace
1060 : */
1061 : static void fill_contig_page_info(struct zone *zone,
1062 : unsigned int suitable_order,
1063 : struct contig_page_info *info)
1064 : {
1065 : unsigned int order;
1066 :
1067 0 : info->free_pages = 0;
1068 0 : info->free_blocks_total = 0;
1069 0 : info->free_blocks_suitable = 0;
1070 :
1071 0 : for (order = 0; order < MAX_ORDER; order++) {
1072 : unsigned long blocks;
1073 :
1074 : /*
1075 : * Count number of free blocks.
1076 : *
1077 : * Access to nr_free is lockless as nr_free is used only for
1078 : * diagnostic purposes. Use data_race to avoid KCSAN warning.
1079 : */
1080 0 : blocks = data_race(zone->free_area[order].nr_free);
1081 0 : info->free_blocks_total += blocks;
1082 :
1083 : /* Count free base pages */
1084 0 : info->free_pages += blocks << order;
1085 :
1086 : /* Count the suitable free blocks */
1087 0 : if (order >= suitable_order)
1088 0 : info->free_blocks_suitable += blocks <<
1089 0 : (order - suitable_order);
1090 : }
1091 : }
1092 :
1093 : /*
1094 : * A fragmentation index only makes sense if an allocation of a requested
1095 : * size would fail. If that is true, the fragmentation index indicates
1096 : * whether external fragmentation or a lack of memory was the problem.
1097 : * The value can be used to determine if page reclaim or compaction
1098 : * should be used
1099 : */
1100 0 : static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1101 : {
1102 0 : unsigned long requested = 1UL << order;
1103 :
1104 0 : if (WARN_ON_ONCE(order >= MAX_ORDER))
1105 : return 0;
1106 :
1107 0 : if (!info->free_blocks_total)
1108 : return 0;
1109 :
1110 : /* Fragmentation index only makes sense when a request would fail */
1111 0 : if (info->free_blocks_suitable)
1112 : return -1000;
1113 :
1114 : /*
1115 : * Index is between 0 and 1 so return within 3 decimal places
1116 : *
1117 : * 0 => allocation would fail due to lack of memory
1118 : * 1 => allocation would fail due to fragmentation
1119 : */
1120 0 : return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1121 : }
1122 :
1123 : /*
1124 : * Calculates external fragmentation within a zone wrt the given order.
1125 : * It is defined as the percentage of pages found in blocks of size
1126 : * less than 1 << order. It returns values in range [0, 100].
1127 : */
1128 0 : unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1129 : {
1130 : struct contig_page_info info;
1131 :
1132 0 : fill_contig_page_info(zone, order, &info);
1133 0 : if (info.free_pages == 0)
1134 : return 0;
1135 :
1136 0 : return div_u64((info.free_pages -
1137 0 : (info.free_blocks_suitable << order)) * 100,
1138 : info.free_pages);
1139 : }
1140 :
1141 : /* Same as __fragmentation index but allocs contig_page_info on stack */
1142 0 : int fragmentation_index(struct zone *zone, unsigned int order)
1143 : {
1144 : struct contig_page_info info;
1145 :
1146 0 : fill_contig_page_info(zone, order, &info);
1147 0 : return __fragmentation_index(order, &info);
1148 : }
1149 : #endif
1150 :
1151 : #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1152 : defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1153 : #ifdef CONFIG_ZONE_DMA
1154 : #define TEXT_FOR_DMA(xx) xx "_dma",
1155 : #else
1156 : #define TEXT_FOR_DMA(xx)
1157 : #endif
1158 :
1159 : #ifdef CONFIG_ZONE_DMA32
1160 : #define TEXT_FOR_DMA32(xx) xx "_dma32",
1161 : #else
1162 : #define TEXT_FOR_DMA32(xx)
1163 : #endif
1164 :
1165 : #ifdef CONFIG_HIGHMEM
1166 : #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1167 : #else
1168 : #define TEXT_FOR_HIGHMEM(xx)
1169 : #endif
1170 :
1171 : #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1172 : TEXT_FOR_HIGHMEM(xx) xx "_movable",
1173 :
1174 : const char * const vmstat_text[] = {
1175 : /* enum zone_stat_item counters */
1176 : "nr_free_pages",
1177 : "nr_zone_inactive_anon",
1178 : "nr_zone_active_anon",
1179 : "nr_zone_inactive_file",
1180 : "nr_zone_active_file",
1181 : "nr_zone_unevictable",
1182 : "nr_zone_write_pending",
1183 : "nr_mlock",
1184 : "nr_bounce",
1185 : #if IS_ENABLED(CONFIG_ZSMALLOC)
1186 : "nr_zspages",
1187 : #endif
1188 : "nr_free_cma",
1189 :
1190 : /* enum numa_stat_item counters */
1191 : #ifdef CONFIG_NUMA
1192 : "numa_hit",
1193 : "numa_miss",
1194 : "numa_foreign",
1195 : "numa_interleave",
1196 : "numa_local",
1197 : "numa_other",
1198 : #endif
1199 :
1200 : /* enum node_stat_item counters */
1201 : "nr_inactive_anon",
1202 : "nr_active_anon",
1203 : "nr_inactive_file",
1204 : "nr_active_file",
1205 : "nr_unevictable",
1206 : "nr_slab_reclaimable",
1207 : "nr_slab_unreclaimable",
1208 : "nr_isolated_anon",
1209 : "nr_isolated_file",
1210 : "workingset_nodes",
1211 : "workingset_refault_anon",
1212 : "workingset_refault_file",
1213 : "workingset_activate_anon",
1214 : "workingset_activate_file",
1215 : "workingset_restore_anon",
1216 : "workingset_restore_file",
1217 : "workingset_nodereclaim",
1218 : "nr_anon_pages",
1219 : "nr_mapped",
1220 : "nr_file_pages",
1221 : "nr_dirty",
1222 : "nr_writeback",
1223 : "nr_writeback_temp",
1224 : "nr_shmem",
1225 : "nr_shmem_hugepages",
1226 : "nr_shmem_pmdmapped",
1227 : "nr_file_hugepages",
1228 : "nr_file_pmdmapped",
1229 : "nr_anon_transparent_hugepages",
1230 : "nr_vmscan_write",
1231 : "nr_vmscan_immediate_reclaim",
1232 : "nr_dirtied",
1233 : "nr_written",
1234 : "nr_throttled_written",
1235 : "nr_kernel_misc_reclaimable",
1236 : "nr_foll_pin_acquired",
1237 : "nr_foll_pin_released",
1238 : "nr_kernel_stack",
1239 : #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1240 : "nr_shadow_call_stack",
1241 : #endif
1242 : "nr_page_table_pages",
1243 : #ifdef CONFIG_SWAP
1244 : "nr_swapcached",
1245 : #endif
1246 : #ifdef CONFIG_NUMA_BALANCING
1247 : "pgpromote_success",
1248 : #endif
1249 :
1250 : /* enum writeback_stat_item counters */
1251 : "nr_dirty_threshold",
1252 : "nr_dirty_background_threshold",
1253 :
1254 : #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1255 : /* enum vm_event_item counters */
1256 : "pgpgin",
1257 : "pgpgout",
1258 : "pswpin",
1259 : "pswpout",
1260 :
1261 : TEXTS_FOR_ZONES("pgalloc")
1262 : TEXTS_FOR_ZONES("allocstall")
1263 : TEXTS_FOR_ZONES("pgskip")
1264 :
1265 : "pgfree",
1266 : "pgactivate",
1267 : "pgdeactivate",
1268 : "pglazyfree",
1269 :
1270 : "pgfault",
1271 : "pgmajfault",
1272 : "pglazyfreed",
1273 :
1274 : "pgrefill",
1275 : "pgreuse",
1276 : "pgsteal_kswapd",
1277 : "pgsteal_direct",
1278 : "pgdemote_kswapd",
1279 : "pgdemote_direct",
1280 : "pgscan_kswapd",
1281 : "pgscan_direct",
1282 : "pgscan_direct_throttle",
1283 : "pgscan_anon",
1284 : "pgscan_file",
1285 : "pgsteal_anon",
1286 : "pgsteal_file",
1287 :
1288 : #ifdef CONFIG_NUMA
1289 : "zone_reclaim_failed",
1290 : #endif
1291 : "pginodesteal",
1292 : "slabs_scanned",
1293 : "kswapd_inodesteal",
1294 : "kswapd_low_wmark_hit_quickly",
1295 : "kswapd_high_wmark_hit_quickly",
1296 : "pageoutrun",
1297 :
1298 : "pgrotated",
1299 :
1300 : "drop_pagecache",
1301 : "drop_slab",
1302 : "oom_kill",
1303 :
1304 : #ifdef CONFIG_NUMA_BALANCING
1305 : "numa_pte_updates",
1306 : "numa_huge_pte_updates",
1307 : "numa_hint_faults",
1308 : "numa_hint_faults_local",
1309 : "numa_pages_migrated",
1310 : #endif
1311 : #ifdef CONFIG_MIGRATION
1312 : "pgmigrate_success",
1313 : "pgmigrate_fail",
1314 : "thp_migration_success",
1315 : "thp_migration_fail",
1316 : "thp_migration_split",
1317 : #endif
1318 : #ifdef CONFIG_COMPACTION
1319 : "compact_migrate_scanned",
1320 : "compact_free_scanned",
1321 : "compact_isolated",
1322 : "compact_stall",
1323 : "compact_fail",
1324 : "compact_success",
1325 : "compact_daemon_wake",
1326 : "compact_daemon_migrate_scanned",
1327 : "compact_daemon_free_scanned",
1328 : #endif
1329 :
1330 : #ifdef CONFIG_HUGETLB_PAGE
1331 : "htlb_buddy_alloc_success",
1332 : "htlb_buddy_alloc_fail",
1333 : #endif
1334 : #ifdef CONFIG_CMA
1335 : "cma_alloc_success",
1336 : "cma_alloc_fail",
1337 : #endif
1338 : "unevictable_pgs_culled",
1339 : "unevictable_pgs_scanned",
1340 : "unevictable_pgs_rescued",
1341 : "unevictable_pgs_mlocked",
1342 : "unevictable_pgs_munlocked",
1343 : "unevictable_pgs_cleared",
1344 : "unevictable_pgs_stranded",
1345 :
1346 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1347 : "thp_fault_alloc",
1348 : "thp_fault_fallback",
1349 : "thp_fault_fallback_charge",
1350 : "thp_collapse_alloc",
1351 : "thp_collapse_alloc_failed",
1352 : "thp_file_alloc",
1353 : "thp_file_fallback",
1354 : "thp_file_fallback_charge",
1355 : "thp_file_mapped",
1356 : "thp_split_page",
1357 : "thp_split_page_failed",
1358 : "thp_deferred_split_page",
1359 : "thp_split_pmd",
1360 : "thp_scan_exceed_none_pte",
1361 : "thp_scan_exceed_swap_pte",
1362 : "thp_scan_exceed_share_pte",
1363 : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1364 : "thp_split_pud",
1365 : #endif
1366 : "thp_zero_page_alloc",
1367 : "thp_zero_page_alloc_failed",
1368 : "thp_swpout",
1369 : "thp_swpout_fallback",
1370 : #endif
1371 : #ifdef CONFIG_MEMORY_BALLOON
1372 : "balloon_inflate",
1373 : "balloon_deflate",
1374 : #ifdef CONFIG_BALLOON_COMPACTION
1375 : "balloon_migrate",
1376 : #endif
1377 : #endif /* CONFIG_MEMORY_BALLOON */
1378 : #ifdef CONFIG_DEBUG_TLBFLUSH
1379 : "nr_tlb_remote_flush",
1380 : "nr_tlb_remote_flush_received",
1381 : "nr_tlb_local_flush_all",
1382 : "nr_tlb_local_flush_one",
1383 : #endif /* CONFIG_DEBUG_TLBFLUSH */
1384 :
1385 : #ifdef CONFIG_DEBUG_VM_VMACACHE
1386 : "vmacache_find_calls",
1387 : "vmacache_find_hits",
1388 : #endif
1389 : #ifdef CONFIG_SWAP
1390 : "swap_ra",
1391 : "swap_ra_hit",
1392 : #ifdef CONFIG_KSM
1393 : "ksm_swpin_copy",
1394 : #endif
1395 : #endif
1396 : #ifdef CONFIG_X86
1397 : "direct_map_level2_splits",
1398 : "direct_map_level3_splits",
1399 : #endif
1400 : #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1401 : };
1402 : #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1403 :
1404 : #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1405 : defined(CONFIG_PROC_FS)
1406 0 : static void *frag_start(struct seq_file *m, loff_t *pos)
1407 : {
1408 : pg_data_t *pgdat;
1409 0 : loff_t node = *pos;
1410 :
1411 0 : for (pgdat = first_online_pgdat();
1412 0 : pgdat && node;
1413 0 : pgdat = next_online_pgdat(pgdat))
1414 0 : --node;
1415 :
1416 0 : return pgdat;
1417 : }
1418 :
1419 0 : static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1420 : {
1421 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1422 :
1423 0 : (*pos)++;
1424 0 : return next_online_pgdat(pgdat);
1425 : }
1426 :
1427 0 : static void frag_stop(struct seq_file *m, void *arg)
1428 : {
1429 0 : }
1430 :
1431 : /*
1432 : * Walk zones in a node and print using a callback.
1433 : * If @assert_populated is true, only use callback for zones that are populated.
1434 : */
1435 0 : static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1436 : bool assert_populated, bool nolock,
1437 : void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1438 : {
1439 : struct zone *zone;
1440 0 : struct zone *node_zones = pgdat->node_zones;
1441 : unsigned long flags;
1442 :
1443 0 : for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1444 0 : if (assert_populated && !populated_zone(zone))
1445 0 : continue;
1446 :
1447 0 : if (!nolock)
1448 0 : spin_lock_irqsave(&zone->lock, flags);
1449 0 : print(m, pgdat, zone);
1450 0 : if (!nolock)
1451 0 : spin_unlock_irqrestore(&zone->lock, flags);
1452 : }
1453 0 : }
1454 : #endif
1455 :
1456 : #ifdef CONFIG_PROC_FS
1457 0 : static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1458 : struct zone *zone)
1459 : {
1460 : int order;
1461 :
1462 0 : seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1463 0 : for (order = 0; order < MAX_ORDER; ++order)
1464 : /*
1465 : * Access to nr_free is lockless as nr_free is used only for
1466 : * printing purposes. Use data_race to avoid KCSAN warning.
1467 : */
1468 0 : seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1469 0 : seq_putc(m, '\n');
1470 0 : }
1471 :
1472 : /*
1473 : * This walks the free areas for each zone.
1474 : */
1475 0 : static int frag_show(struct seq_file *m, void *arg)
1476 : {
1477 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1478 0 : walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1479 0 : return 0;
1480 : }
1481 :
1482 0 : static void pagetypeinfo_showfree_print(struct seq_file *m,
1483 : pg_data_t *pgdat, struct zone *zone)
1484 : {
1485 : int order, mtype;
1486 :
1487 0 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1488 0 : seq_printf(m, "Node %4d, zone %8s, type %12s ",
1489 : pgdat->node_id,
1490 : zone->name,
1491 : migratetype_names[mtype]);
1492 0 : for (order = 0; order < MAX_ORDER; ++order) {
1493 0 : unsigned long freecount = 0;
1494 : struct free_area *area;
1495 : struct list_head *curr;
1496 0 : bool overflow = false;
1497 :
1498 0 : area = &(zone->free_area[order]);
1499 :
1500 0 : list_for_each(curr, &area->free_list[mtype]) {
1501 : /*
1502 : * Cap the free_list iteration because it might
1503 : * be really large and we are under a spinlock
1504 : * so a long time spent here could trigger a
1505 : * hard lockup detector. Anyway this is a
1506 : * debugging tool so knowing there is a handful
1507 : * of pages of this order should be more than
1508 : * sufficient.
1509 : */
1510 0 : if (++freecount >= 100000) {
1511 : overflow = true;
1512 : break;
1513 : }
1514 : }
1515 0 : seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1516 0 : spin_unlock_irq(&zone->lock);
1517 0 : cond_resched();
1518 0 : spin_lock_irq(&zone->lock);
1519 : }
1520 0 : seq_putc(m, '\n');
1521 : }
1522 0 : }
1523 :
1524 : /* Print out the free pages at each order for each migatetype */
1525 0 : static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1526 : {
1527 : int order;
1528 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1529 :
1530 : /* Print header */
1531 0 : seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1532 0 : for (order = 0; order < MAX_ORDER; ++order)
1533 0 : seq_printf(m, "%6d ", order);
1534 0 : seq_putc(m, '\n');
1535 :
1536 0 : walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1537 0 : }
1538 :
1539 0 : static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1540 : pg_data_t *pgdat, struct zone *zone)
1541 : {
1542 : int mtype;
1543 : unsigned long pfn;
1544 0 : unsigned long start_pfn = zone->zone_start_pfn;
1545 0 : unsigned long end_pfn = zone_end_pfn(zone);
1546 0 : unsigned long count[MIGRATE_TYPES] = { 0, };
1547 :
1548 0 : for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1549 : struct page *page;
1550 :
1551 0 : page = pfn_to_online_page(pfn);
1552 0 : if (!page)
1553 0 : continue;
1554 :
1555 0 : if (page_zone(page) != zone)
1556 0 : continue;
1557 :
1558 0 : mtype = get_pageblock_migratetype(page);
1559 :
1560 0 : if (mtype < MIGRATE_TYPES)
1561 0 : count[mtype]++;
1562 : }
1563 :
1564 : /* Print counts */
1565 0 : seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1566 0 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1567 0 : seq_printf(m, "%12lu ", count[mtype]);
1568 0 : seq_putc(m, '\n');
1569 0 : }
1570 :
1571 : /* Print out the number of pageblocks for each migratetype */
1572 0 : static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1573 : {
1574 : int mtype;
1575 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1576 :
1577 0 : seq_printf(m, "\n%-23s", "Number of blocks type ");
1578 0 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1579 0 : seq_printf(m, "%12s ", migratetype_names[mtype]);
1580 0 : seq_putc(m, '\n');
1581 0 : walk_zones_in_node(m, pgdat, true, false,
1582 : pagetypeinfo_showblockcount_print);
1583 0 : }
1584 :
1585 : /*
1586 : * Print out the number of pageblocks for each migratetype that contain pages
1587 : * of other types. This gives an indication of how well fallbacks are being
1588 : * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1589 : * to determine what is going on
1590 : */
1591 : static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1592 : {
1593 : #ifdef CONFIG_PAGE_OWNER
1594 : int mtype;
1595 :
1596 : if (!static_branch_unlikely(&page_owner_inited))
1597 : return;
1598 :
1599 : drain_all_pages(NULL);
1600 :
1601 : seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1602 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1603 : seq_printf(m, "%12s ", migratetype_names[mtype]);
1604 : seq_putc(m, '\n');
1605 :
1606 : walk_zones_in_node(m, pgdat, true, true,
1607 : pagetypeinfo_showmixedcount_print);
1608 : #endif /* CONFIG_PAGE_OWNER */
1609 : }
1610 :
1611 : /*
1612 : * This prints out statistics in relation to grouping pages by mobility.
1613 : * It is expensive to collect so do not constantly read the file.
1614 : */
1615 0 : static int pagetypeinfo_show(struct seq_file *m, void *arg)
1616 : {
1617 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1618 :
1619 : /* check memoryless node */
1620 0 : if (!node_state(pgdat->node_id, N_MEMORY))
1621 : return 0;
1622 :
1623 0 : seq_printf(m, "Page block order: %d\n", pageblock_order);
1624 0 : seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1625 0 : seq_putc(m, '\n');
1626 0 : pagetypeinfo_showfree(m, pgdat);
1627 0 : pagetypeinfo_showblockcount(m, pgdat);
1628 0 : pagetypeinfo_showmixedcount(m, pgdat);
1629 :
1630 0 : return 0;
1631 : }
1632 :
1633 : static const struct seq_operations fragmentation_op = {
1634 : .start = frag_start,
1635 : .next = frag_next,
1636 : .stop = frag_stop,
1637 : .show = frag_show,
1638 : };
1639 :
1640 : static const struct seq_operations pagetypeinfo_op = {
1641 : .start = frag_start,
1642 : .next = frag_next,
1643 : .stop = frag_stop,
1644 : .show = pagetypeinfo_show,
1645 : };
1646 :
1647 : static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1648 : {
1649 : int zid;
1650 :
1651 0 : for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1652 0 : struct zone *compare = &pgdat->node_zones[zid];
1653 :
1654 0 : if (populated_zone(compare))
1655 0 : return zone == compare;
1656 : }
1657 :
1658 : return false;
1659 : }
1660 :
1661 0 : static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1662 : struct zone *zone)
1663 : {
1664 : int i;
1665 0 : seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1666 0 : if (is_zone_first_populated(pgdat, zone)) {
1667 0 : seq_printf(m, "\n per-node stats");
1668 0 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1669 0 : unsigned long pages = node_page_state_pages(pgdat, i);
1670 :
1671 0 : if (vmstat_item_print_in_thp(i))
1672 : pages /= HPAGE_PMD_NR;
1673 0 : seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1674 : pages);
1675 : }
1676 : }
1677 0 : seq_printf(m,
1678 : "\n pages free %lu"
1679 : "\n boost %lu"
1680 : "\n min %lu"
1681 : "\n low %lu"
1682 : "\n high %lu"
1683 : "\n spanned %lu"
1684 : "\n present %lu"
1685 : "\n managed %lu"
1686 : "\n cma %lu",
1687 : zone_page_state(zone, NR_FREE_PAGES),
1688 : zone->watermark_boost,
1689 0 : min_wmark_pages(zone),
1690 0 : low_wmark_pages(zone),
1691 0 : high_wmark_pages(zone),
1692 : zone->spanned_pages,
1693 : zone->present_pages,
1694 : zone_managed_pages(zone),
1695 : zone_cma_pages(zone));
1696 :
1697 0 : seq_printf(m,
1698 : "\n protection: (%ld",
1699 : zone->lowmem_reserve[0]);
1700 0 : for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1701 0 : seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1702 0 : seq_putc(m, ')');
1703 :
1704 : /* If unpopulated, no other information is useful */
1705 0 : if (!populated_zone(zone)) {
1706 0 : seq_putc(m, '\n');
1707 0 : return;
1708 : }
1709 :
1710 0 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1711 0 : seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1712 : zone_page_state(zone, i));
1713 :
1714 : #ifdef CONFIG_NUMA
1715 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1716 : seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1717 : zone_numa_event_state(zone, i));
1718 : #endif
1719 :
1720 0 : seq_printf(m, "\n pagesets");
1721 0 : for_each_online_cpu(i) {
1722 : struct per_cpu_pages *pcp;
1723 : struct per_cpu_zonestat __maybe_unused *pzstats;
1724 :
1725 0 : pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1726 0 : seq_printf(m,
1727 : "\n cpu: %i"
1728 : "\n count: %i"
1729 : "\n high: %i"
1730 : "\n batch: %i",
1731 : i,
1732 : pcp->count,
1733 : pcp->high,
1734 : pcp->batch);
1735 : #ifdef CONFIG_SMP
1736 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1737 : seq_printf(m, "\n vm stats threshold: %d",
1738 : pzstats->stat_threshold);
1739 : #endif
1740 : }
1741 0 : seq_printf(m,
1742 : "\n node_unreclaimable: %u"
1743 : "\n start_pfn: %lu",
1744 0 : pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1745 : zone->zone_start_pfn);
1746 0 : seq_putc(m, '\n');
1747 : }
1748 :
1749 : /*
1750 : * Output information about zones in @pgdat. All zones are printed regardless
1751 : * of whether they are populated or not: lowmem_reserve_ratio operates on the
1752 : * set of all zones and userspace would not be aware of such zones if they are
1753 : * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1754 : */
1755 0 : static int zoneinfo_show(struct seq_file *m, void *arg)
1756 : {
1757 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1758 0 : walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1759 0 : return 0;
1760 : }
1761 :
1762 : static const struct seq_operations zoneinfo_op = {
1763 : .start = frag_start, /* iterate over all zones. The same as in
1764 : * fragmentation. */
1765 : .next = frag_next,
1766 : .stop = frag_stop,
1767 : .show = zoneinfo_show,
1768 : };
1769 :
1770 : #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1771 : NR_VM_NUMA_EVENT_ITEMS + \
1772 : NR_VM_NODE_STAT_ITEMS + \
1773 : NR_VM_WRITEBACK_STAT_ITEMS + \
1774 : (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1775 : NR_VM_EVENT_ITEMS : 0))
1776 :
1777 0 : static void *vmstat_start(struct seq_file *m, loff_t *pos)
1778 : {
1779 : unsigned long *v;
1780 : int i;
1781 :
1782 0 : if (*pos >= NR_VMSTAT_ITEMS)
1783 : return NULL;
1784 :
1785 : BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1786 : fold_vm_numa_events();
1787 0 : v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1788 0 : m->private = v;
1789 0 : if (!v)
1790 : return ERR_PTR(-ENOMEM);
1791 0 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1792 0 : v[i] = global_zone_page_state(i);
1793 : v += NR_VM_ZONE_STAT_ITEMS;
1794 :
1795 : #ifdef CONFIG_NUMA
1796 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1797 : v[i] = global_numa_event_state(i);
1798 : v += NR_VM_NUMA_EVENT_ITEMS;
1799 : #endif
1800 :
1801 0 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1802 0 : v[i] = global_node_page_state_pages(i);
1803 0 : if (vmstat_item_print_in_thp(i))
1804 : v[i] /= HPAGE_PMD_NR;
1805 : }
1806 0 : v += NR_VM_NODE_STAT_ITEMS;
1807 :
1808 0 : global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1809 : v + NR_DIRTY_THRESHOLD);
1810 0 : v += NR_VM_WRITEBACK_STAT_ITEMS;
1811 :
1812 : #ifdef CONFIG_VM_EVENT_COUNTERS
1813 0 : all_vm_events(v);
1814 0 : v[PGPGIN] /= 2; /* sectors -> kbytes */
1815 0 : v[PGPGOUT] /= 2;
1816 : #endif
1817 0 : return (unsigned long *)m->private + *pos;
1818 : }
1819 :
1820 0 : static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1821 : {
1822 0 : (*pos)++;
1823 0 : if (*pos >= NR_VMSTAT_ITEMS)
1824 : return NULL;
1825 0 : return (unsigned long *)m->private + *pos;
1826 : }
1827 :
1828 0 : static int vmstat_show(struct seq_file *m, void *arg)
1829 : {
1830 0 : unsigned long *l = arg;
1831 0 : unsigned long off = l - (unsigned long *)m->private;
1832 :
1833 0 : seq_puts(m, vmstat_text[off]);
1834 0 : seq_put_decimal_ull(m, " ", *l);
1835 0 : seq_putc(m, '\n');
1836 :
1837 0 : if (off == NR_VMSTAT_ITEMS - 1) {
1838 : /*
1839 : * We've come to the end - add any deprecated counters to avoid
1840 : * breaking userspace which might depend on them being present.
1841 : */
1842 0 : seq_puts(m, "nr_unstable 0\n");
1843 : }
1844 0 : return 0;
1845 : }
1846 :
1847 0 : static void vmstat_stop(struct seq_file *m, void *arg)
1848 : {
1849 0 : kfree(m->private);
1850 0 : m->private = NULL;
1851 0 : }
1852 :
1853 : static const struct seq_operations vmstat_op = {
1854 : .start = vmstat_start,
1855 : .next = vmstat_next,
1856 : .stop = vmstat_stop,
1857 : .show = vmstat_show,
1858 : };
1859 : #endif /* CONFIG_PROC_FS */
1860 :
1861 : #ifdef CONFIG_SMP
1862 : static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1863 : int sysctl_stat_interval __read_mostly = HZ;
1864 :
1865 : #ifdef CONFIG_PROC_FS
1866 : static void refresh_vm_stats(struct work_struct *work)
1867 : {
1868 : refresh_cpu_vm_stats(true);
1869 : }
1870 :
1871 : int vmstat_refresh(struct ctl_table *table, int write,
1872 : void *buffer, size_t *lenp, loff_t *ppos)
1873 : {
1874 : long val;
1875 : int err;
1876 : int i;
1877 :
1878 : /*
1879 : * The regular update, every sysctl_stat_interval, may come later
1880 : * than expected: leaving a significant amount in per_cpu buckets.
1881 : * This is particularly misleading when checking a quantity of HUGE
1882 : * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1883 : * which can equally be echo'ed to or cat'ted from (by root),
1884 : * can be used to update the stats just before reading them.
1885 : *
1886 : * Oh, and since global_zone_page_state() etc. are so careful to hide
1887 : * transiently negative values, report an error here if any of
1888 : * the stats is negative, so we know to go looking for imbalance.
1889 : */
1890 : err = schedule_on_each_cpu(refresh_vm_stats);
1891 : if (err)
1892 : return err;
1893 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1894 : /*
1895 : * Skip checking stats known to go negative occasionally.
1896 : */
1897 : switch (i) {
1898 : case NR_ZONE_WRITE_PENDING:
1899 : case NR_FREE_CMA_PAGES:
1900 : continue;
1901 : }
1902 : val = atomic_long_read(&vm_zone_stat[i]);
1903 : if (val < 0) {
1904 : pr_warn("%s: %s %ld\n",
1905 : __func__, zone_stat_name(i), val);
1906 : }
1907 : }
1908 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1909 : /*
1910 : * Skip checking stats known to go negative occasionally.
1911 : */
1912 : switch (i) {
1913 : case NR_WRITEBACK:
1914 : continue;
1915 : }
1916 : val = atomic_long_read(&vm_node_stat[i]);
1917 : if (val < 0) {
1918 : pr_warn("%s: %s %ld\n",
1919 : __func__, node_stat_name(i), val);
1920 : }
1921 : }
1922 : if (write)
1923 : *ppos += *lenp;
1924 : else
1925 : *lenp = 0;
1926 : return 0;
1927 : }
1928 : #endif /* CONFIG_PROC_FS */
1929 :
1930 : static void vmstat_update(struct work_struct *w)
1931 : {
1932 : if (refresh_cpu_vm_stats(true)) {
1933 : /*
1934 : * Counters were updated so we expect more updates
1935 : * to occur in the future. Keep on running the
1936 : * update worker thread.
1937 : */
1938 : queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1939 : this_cpu_ptr(&vmstat_work),
1940 : round_jiffies_relative(sysctl_stat_interval));
1941 : }
1942 : }
1943 :
1944 : /*
1945 : * Check if the diffs for a certain cpu indicate that
1946 : * an update is needed.
1947 : */
1948 : static bool need_update(int cpu)
1949 : {
1950 : pg_data_t *last_pgdat = NULL;
1951 : struct zone *zone;
1952 :
1953 : for_each_populated_zone(zone) {
1954 : struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1955 : struct per_cpu_nodestat *n;
1956 :
1957 : /*
1958 : * The fast way of checking if there are any vmstat diffs.
1959 : */
1960 : if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1961 : return true;
1962 :
1963 : if (last_pgdat == zone->zone_pgdat)
1964 : continue;
1965 : last_pgdat = zone->zone_pgdat;
1966 : n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1967 : if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1968 : return true;
1969 : }
1970 : return false;
1971 : }
1972 :
1973 : /*
1974 : * Switch off vmstat processing and then fold all the remaining differentials
1975 : * until the diffs stay at zero. The function is used by NOHZ and can only be
1976 : * invoked when tick processing is not active.
1977 : */
1978 : void quiet_vmstat(void)
1979 : {
1980 : if (system_state != SYSTEM_RUNNING)
1981 : return;
1982 :
1983 : if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1984 : return;
1985 :
1986 : if (!need_update(smp_processor_id()))
1987 : return;
1988 :
1989 : /*
1990 : * Just refresh counters and do not care about the pending delayed
1991 : * vmstat_update. It doesn't fire that often to matter and canceling
1992 : * it would be too expensive from this path.
1993 : * vmstat_shepherd will take care about that for us.
1994 : */
1995 : refresh_cpu_vm_stats(false);
1996 : }
1997 :
1998 : /*
1999 : * Shepherd worker thread that checks the
2000 : * differentials of processors that have their worker
2001 : * threads for vm statistics updates disabled because of
2002 : * inactivity.
2003 : */
2004 : static void vmstat_shepherd(struct work_struct *w);
2005 :
2006 : static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2007 :
2008 : static void vmstat_shepherd(struct work_struct *w)
2009 : {
2010 : int cpu;
2011 :
2012 : cpus_read_lock();
2013 : /* Check processors whose vmstat worker threads have been disabled */
2014 : for_each_online_cpu(cpu) {
2015 : struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2016 :
2017 : if (!delayed_work_pending(dw) && need_update(cpu))
2018 : queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2019 :
2020 : cond_resched();
2021 : }
2022 : cpus_read_unlock();
2023 :
2024 : schedule_delayed_work(&shepherd,
2025 : round_jiffies_relative(sysctl_stat_interval));
2026 : }
2027 :
2028 : static void __init start_shepherd_timer(void)
2029 : {
2030 : int cpu;
2031 :
2032 : for_each_possible_cpu(cpu)
2033 : INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2034 : vmstat_update);
2035 :
2036 : schedule_delayed_work(&shepherd,
2037 : round_jiffies_relative(sysctl_stat_interval));
2038 : }
2039 :
2040 : static void __init init_cpu_node_state(void)
2041 : {
2042 : int node;
2043 :
2044 : for_each_online_node(node) {
2045 : if (cpumask_weight(cpumask_of_node(node)) > 0)
2046 : node_set_state(node, N_CPU);
2047 : }
2048 : }
2049 :
2050 : static int vmstat_cpu_online(unsigned int cpu)
2051 : {
2052 : refresh_zone_stat_thresholds();
2053 :
2054 : if (!node_state(cpu_to_node(cpu), N_CPU)) {
2055 : node_set_state(cpu_to_node(cpu), N_CPU);
2056 : set_migration_target_nodes();
2057 : }
2058 :
2059 : return 0;
2060 : }
2061 :
2062 : static int vmstat_cpu_down_prep(unsigned int cpu)
2063 : {
2064 : cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2065 : return 0;
2066 : }
2067 :
2068 : static int vmstat_cpu_dead(unsigned int cpu)
2069 : {
2070 : const struct cpumask *node_cpus;
2071 : int node;
2072 :
2073 : node = cpu_to_node(cpu);
2074 :
2075 : refresh_zone_stat_thresholds();
2076 : node_cpus = cpumask_of_node(node);
2077 : if (cpumask_weight(node_cpus) > 0)
2078 : return 0;
2079 :
2080 : node_clear_state(node, N_CPU);
2081 : set_migration_target_nodes();
2082 :
2083 : return 0;
2084 : }
2085 :
2086 : #endif
2087 :
2088 : struct workqueue_struct *mm_percpu_wq;
2089 :
2090 1 : void __init init_mm_internals(void)
2091 : {
2092 : int ret __maybe_unused;
2093 :
2094 1 : mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2095 :
2096 : #ifdef CONFIG_SMP
2097 : ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2098 : NULL, vmstat_cpu_dead);
2099 : if (ret < 0)
2100 : pr_err("vmstat: failed to register 'dead' hotplug state\n");
2101 :
2102 : ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2103 : vmstat_cpu_online,
2104 : vmstat_cpu_down_prep);
2105 : if (ret < 0)
2106 : pr_err("vmstat: failed to register 'online' hotplug state\n");
2107 :
2108 : cpus_read_lock();
2109 : init_cpu_node_state();
2110 : cpus_read_unlock();
2111 :
2112 : start_shepherd_timer();
2113 : #endif
2114 : #if defined(CONFIG_MIGRATION) && defined(CONFIG_HOTPLUG_CPU)
2115 : migrate_on_reclaim_init();
2116 : #endif
2117 : #ifdef CONFIG_PROC_FS
2118 1 : proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2119 1 : proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2120 1 : proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2121 1 : proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2122 : #endif
2123 1 : }
2124 :
2125 : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2126 :
2127 : /*
2128 : * Return an index indicating how much of the available free memory is
2129 : * unusable for an allocation of the requested size.
2130 : */
2131 : static int unusable_free_index(unsigned int order,
2132 : struct contig_page_info *info)
2133 : {
2134 : /* No free memory is interpreted as all free memory is unusable */
2135 : if (info->free_pages == 0)
2136 : return 1000;
2137 :
2138 : /*
2139 : * Index should be a value between 0 and 1. Return a value to 3
2140 : * decimal places.
2141 : *
2142 : * 0 => no fragmentation
2143 : * 1 => high fragmentation
2144 : */
2145 : return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2146 :
2147 : }
2148 :
2149 : static void unusable_show_print(struct seq_file *m,
2150 : pg_data_t *pgdat, struct zone *zone)
2151 : {
2152 : unsigned int order;
2153 : int index;
2154 : struct contig_page_info info;
2155 :
2156 : seq_printf(m, "Node %d, zone %8s ",
2157 : pgdat->node_id,
2158 : zone->name);
2159 : for (order = 0; order < MAX_ORDER; ++order) {
2160 : fill_contig_page_info(zone, order, &info);
2161 : index = unusable_free_index(order, &info);
2162 : seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2163 : }
2164 :
2165 : seq_putc(m, '\n');
2166 : }
2167 :
2168 : /*
2169 : * Display unusable free space index
2170 : *
2171 : * The unusable free space index measures how much of the available free
2172 : * memory cannot be used to satisfy an allocation of a given size and is a
2173 : * value between 0 and 1. The higher the value, the more of free memory is
2174 : * unusable and by implication, the worse the external fragmentation is. This
2175 : * can be expressed as a percentage by multiplying by 100.
2176 : */
2177 : static int unusable_show(struct seq_file *m, void *arg)
2178 : {
2179 : pg_data_t *pgdat = (pg_data_t *)arg;
2180 :
2181 : /* check memoryless node */
2182 : if (!node_state(pgdat->node_id, N_MEMORY))
2183 : return 0;
2184 :
2185 : walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2186 :
2187 : return 0;
2188 : }
2189 :
2190 : static const struct seq_operations unusable_sops = {
2191 : .start = frag_start,
2192 : .next = frag_next,
2193 : .stop = frag_stop,
2194 : .show = unusable_show,
2195 : };
2196 :
2197 : DEFINE_SEQ_ATTRIBUTE(unusable);
2198 :
2199 : static void extfrag_show_print(struct seq_file *m,
2200 : pg_data_t *pgdat, struct zone *zone)
2201 : {
2202 : unsigned int order;
2203 : int index;
2204 :
2205 : /* Alloc on stack as interrupts are disabled for zone walk */
2206 : struct contig_page_info info;
2207 :
2208 : seq_printf(m, "Node %d, zone %8s ",
2209 : pgdat->node_id,
2210 : zone->name);
2211 : for (order = 0; order < MAX_ORDER; ++order) {
2212 : fill_contig_page_info(zone, order, &info);
2213 : index = __fragmentation_index(order, &info);
2214 : seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2215 : }
2216 :
2217 : seq_putc(m, '\n');
2218 : }
2219 :
2220 : /*
2221 : * Display fragmentation index for orders that allocations would fail for
2222 : */
2223 : static int extfrag_show(struct seq_file *m, void *arg)
2224 : {
2225 : pg_data_t *pgdat = (pg_data_t *)arg;
2226 :
2227 : walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2228 :
2229 : return 0;
2230 : }
2231 :
2232 : static const struct seq_operations extfrag_sops = {
2233 : .start = frag_start,
2234 : .next = frag_next,
2235 : .stop = frag_stop,
2236 : .show = extfrag_show,
2237 : };
2238 :
2239 : DEFINE_SEQ_ATTRIBUTE(extfrag);
2240 :
2241 : static int __init extfrag_debug_init(void)
2242 : {
2243 : struct dentry *extfrag_debug_root;
2244 :
2245 : extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2246 :
2247 : debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2248 : &unusable_fops);
2249 :
2250 : debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2251 : &extfrag_fops);
2252 :
2253 : return 0;
2254 : }
2255 :
2256 : module_init(extfrag_debug_init);
2257 : #endif
|