LCOV - code coverage report
Current view: top level - mm - workingset.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 11 110 10.0 %
Date: 2022-12-09 01:23:36 Functions: 1 10 10.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Workingset detection
       4             :  *
       5             :  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
       6             :  */
       7             : 
       8             : #include <linux/memcontrol.h>
       9             : #include <linux/mm_inline.h>
      10             : #include <linux/writeback.h>
      11             : #include <linux/shmem_fs.h>
      12             : #include <linux/pagemap.h>
      13             : #include <linux/atomic.h>
      14             : #include <linux/module.h>
      15             : #include <linux/swap.h>
      16             : #include <linux/dax.h>
      17             : #include <linux/fs.h>
      18             : #include <linux/mm.h>
      19             : 
      20             : /*
      21             :  *              Double CLOCK lists
      22             :  *
      23             :  * Per node, two clock lists are maintained for file pages: the
      24             :  * inactive and the active list.  Freshly faulted pages start out at
      25             :  * the head of the inactive list and page reclaim scans pages from the
      26             :  * tail.  Pages that are accessed multiple times on the inactive list
      27             :  * are promoted to the active list, to protect them from reclaim,
      28             :  * whereas active pages are demoted to the inactive list when the
      29             :  * active list grows too big.
      30             :  *
      31             :  *   fault ------------------------+
      32             :  *                                 |
      33             :  *              +--------------+   |            +-------------+
      34             :  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
      35             :  *              +--------------+                +-------------+    |
      36             :  *                     |                                           |
      37             :  *                     +-------------- promotion ------------------+
      38             :  *
      39             :  *
      40             :  *              Access frequency and refault distance
      41             :  *
      42             :  * A workload is thrashing when its pages are frequently used but they
      43             :  * are evicted from the inactive list every time before another access
      44             :  * would have promoted them to the active list.
      45             :  *
      46             :  * In cases where the average access distance between thrashing pages
      47             :  * is bigger than the size of memory there is nothing that can be
      48             :  * done - the thrashing set could never fit into memory under any
      49             :  * circumstance.
      50             :  *
      51             :  * However, the average access distance could be bigger than the
      52             :  * inactive list, yet smaller than the size of memory.  In this case,
      53             :  * the set could fit into memory if it weren't for the currently
      54             :  * active pages - which may be used more, hopefully less frequently:
      55             :  *
      56             :  *      +-memory available to cache-+
      57             :  *      |                           |
      58             :  *      +-inactive------+-active----+
      59             :  *  a b | c d e f g h i | J K L M N |
      60             :  *      +---------------+-----------+
      61             :  *
      62             :  * It is prohibitively expensive to accurately track access frequency
      63             :  * of pages.  But a reasonable approximation can be made to measure
      64             :  * thrashing on the inactive list, after which refaulting pages can be
      65             :  * activated optimistically to compete with the existing active pages.
      66             :  *
      67             :  * Approximating inactive page access frequency - Observations:
      68             :  *
      69             :  * 1. When a page is accessed for the first time, it is added to the
      70             :  *    head of the inactive list, slides every existing inactive page
      71             :  *    towards the tail by one slot, and pushes the current tail page
      72             :  *    out of memory.
      73             :  *
      74             :  * 2. When a page is accessed for the second time, it is promoted to
      75             :  *    the active list, shrinking the inactive list by one slot.  This
      76             :  *    also slides all inactive pages that were faulted into the cache
      77             :  *    more recently than the activated page towards the tail of the
      78             :  *    inactive list.
      79             :  *
      80             :  * Thus:
      81             :  *
      82             :  * 1. The sum of evictions and activations between any two points in
      83             :  *    time indicate the minimum number of inactive pages accessed in
      84             :  *    between.
      85             :  *
      86             :  * 2. Moving one inactive page N page slots towards the tail of the
      87             :  *    list requires at least N inactive page accesses.
      88             :  *
      89             :  * Combining these:
      90             :  *
      91             :  * 1. When a page is finally evicted from memory, the number of
      92             :  *    inactive pages accessed while the page was in cache is at least
      93             :  *    the number of page slots on the inactive list.
      94             :  *
      95             :  * 2. In addition, measuring the sum of evictions and activations (E)
      96             :  *    at the time of a page's eviction, and comparing it to another
      97             :  *    reading (R) at the time the page faults back into memory tells
      98             :  *    the minimum number of accesses while the page was not cached.
      99             :  *    This is called the refault distance.
     100             :  *
     101             :  * Because the first access of the page was the fault and the second
     102             :  * access the refault, we combine the in-cache distance with the
     103             :  * out-of-cache distance to get the complete minimum access distance
     104             :  * of this page:
     105             :  *
     106             :  *      NR_inactive + (R - E)
     107             :  *
     108             :  * And knowing the minimum access distance of a page, we can easily
     109             :  * tell if the page would be able to stay in cache assuming all page
     110             :  * slots in the cache were available:
     111             :  *
     112             :  *   NR_inactive + (R - E) <= NR_inactive + NR_active
     113             :  *
     114             :  * which can be further simplified to
     115             :  *
     116             :  *   (R - E) <= NR_active
     117             :  *
     118             :  * Put into words, the refault distance (out-of-cache) can be seen as
     119             :  * a deficit in inactive list space (in-cache).  If the inactive list
     120             :  * had (R - E) more page slots, the page would not have been evicted
     121             :  * in between accesses, but activated instead.  And on a full system,
     122             :  * the only thing eating into inactive list space is active pages.
     123             :  *
     124             :  *
     125             :  *              Refaulting inactive pages
     126             :  *
     127             :  * All that is known about the active list is that the pages have been
     128             :  * accessed more than once in the past.  This means that at any given
     129             :  * time there is actually a good chance that pages on the active list
     130             :  * are no longer in active use.
     131             :  *
     132             :  * So when a refault distance of (R - E) is observed and there are at
     133             :  * least (R - E) active pages, the refaulting page is activated
     134             :  * optimistically in the hope that (R - E) active pages are actually
     135             :  * used less frequently than the refaulting page - or even not used at
     136             :  * all anymore.
     137             :  *
     138             :  * That means if inactive cache is refaulting with a suitable refault
     139             :  * distance, we assume the cache workingset is transitioning and put
     140             :  * pressure on the current active list.
     141             :  *
     142             :  * If this is wrong and demotion kicks in, the pages which are truly
     143             :  * used more frequently will be reactivated while the less frequently
     144             :  * used once will be evicted from memory.
     145             :  *
     146             :  * But if this is right, the stale pages will be pushed out of memory
     147             :  * and the used pages get to stay in cache.
     148             :  *
     149             :  *              Refaulting active pages
     150             :  *
     151             :  * If on the other hand the refaulting pages have recently been
     152             :  * deactivated, it means that the active list is no longer protecting
     153             :  * actively used cache from reclaim. The cache is NOT transitioning to
     154             :  * a different workingset; the existing workingset is thrashing in the
     155             :  * space allocated to the page cache.
     156             :  *
     157             :  *
     158             :  *              Implementation
     159             :  *
     160             :  * For each node's LRU lists, a counter for inactive evictions and
     161             :  * activations is maintained (node->nonresident_age).
     162             :  *
     163             :  * On eviction, a snapshot of this counter (along with some bits to
     164             :  * identify the node) is stored in the now empty page cache
     165             :  * slot of the evicted page.  This is called a shadow entry.
     166             :  *
     167             :  * On cache misses for which there are shadow entries, an eligible
     168             :  * refault distance will immediately activate the refaulting page.
     169             :  */
     170             : 
     171             : #define WORKINGSET_SHIFT 1
     172             : #define EVICTION_SHIFT  ((BITS_PER_LONG - BITS_PER_XA_VALUE) +  \
     173             :                          WORKINGSET_SHIFT + NODES_SHIFT + \
     174             :                          MEM_CGROUP_ID_SHIFT)
     175             : #define EVICTION_MASK   (~0UL >> EVICTION_SHIFT)
     176             : 
     177             : /*
     178             :  * Eviction timestamps need to be able to cover the full range of
     179             :  * actionable refaults. However, bits are tight in the xarray
     180             :  * entry, and after storing the identifier for the lruvec there might
     181             :  * not be enough left to represent every single actionable refault. In
     182             :  * that case, we have to sacrifice granularity for distance, and group
     183             :  * evictions into coarser buckets by shaving off lower timestamp bits.
     184             :  */
     185             : static unsigned int bucket_order __read_mostly;
     186             : 
     187           0 : static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
     188             :                          bool workingset)
     189             : {
     190           0 :         eviction >>= bucket_order;
     191           0 :         eviction &= EVICTION_MASK;
     192           0 :         eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
     193           0 :         eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
     194           0 :         eviction = (eviction << WORKINGSET_SHIFT) | workingset;
     195             : 
     196           0 :         return xa_mk_value(eviction);
     197             : }
     198             : 
     199             : static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
     200             :                           unsigned long *evictionp, bool *workingsetp)
     201             : {
     202           0 :         unsigned long entry = xa_to_value(shadow);
     203             :         int memcgid, nid;
     204             :         bool workingset;
     205             : 
     206           0 :         workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
     207           0 :         entry >>= WORKINGSET_SHIFT;
     208           0 :         nid = entry & ((1UL << NODES_SHIFT) - 1);
     209           0 :         entry >>= NODES_SHIFT;
     210           0 :         memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
     211           0 :         entry >>= MEM_CGROUP_ID_SHIFT;
     212             : 
     213           0 :         *memcgidp = memcgid;
     214           0 :         *pgdat = NODE_DATA(nid);
     215           0 :         *evictionp = entry << bucket_order;
     216           0 :         *workingsetp = workingset;
     217             : }
     218             : 
     219             : /**
     220             :  * workingset_age_nonresident - age non-resident entries as LRU ages
     221             :  * @lruvec: the lruvec that was aged
     222             :  * @nr_pages: the number of pages to count
     223             :  *
     224             :  * As in-memory pages are aged, non-resident pages need to be aged as
     225             :  * well, in order for the refault distances later on to be comparable
     226             :  * to the in-memory dimensions. This function allows reclaim and LRU
     227             :  * operations to drive the non-resident aging along in parallel.
     228             :  */
     229           0 : void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
     230             : {
     231             :         /*
     232             :          * Reclaiming a cgroup means reclaiming all its children in a
     233             :          * round-robin fashion. That means that each cgroup has an LRU
     234             :          * order that is composed of the LRU orders of its child
     235             :          * cgroups; and every page has an LRU position not just in the
     236             :          * cgroup that owns it, but in all of that group's ancestors.
     237             :          *
     238             :          * So when the physical inactive list of a leaf cgroup ages,
     239             :          * the virtual inactive lists of all its parents, including
     240             :          * the root cgroup's, age as well.
     241             :          */
     242             :         do {
     243           0 :                 atomic_long_add(nr_pages, &lruvec->nonresident_age);
     244           0 :         } while ((lruvec = parent_lruvec(lruvec)));
     245           0 : }
     246             : 
     247             : /**
     248             :  * workingset_eviction - note the eviction of a folio from memory
     249             :  * @target_memcg: the cgroup that is causing the reclaim
     250             :  * @folio: the folio being evicted
     251             :  *
     252             :  * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
     253             :  * of the evicted @folio so that a later refault can be detected.
     254             :  */
     255           0 : void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
     256             : {
     257           0 :         struct pglist_data *pgdat = folio_pgdat(folio);
     258             :         unsigned long eviction;
     259             :         struct lruvec *lruvec;
     260             :         int memcgid;
     261             : 
     262             :         /* Folio is fully exclusive and pins folio's memory cgroup pointer */
     263             :         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
     264             :         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
     265             :         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
     266             : 
     267           0 :         lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
     268             :         /* XXX: target_memcg can be NULL, go through lruvec */
     269           0 :         memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
     270           0 :         eviction = atomic_long_read(&lruvec->nonresident_age);
     271           0 :         workingset_age_nonresident(lruvec, folio_nr_pages(folio));
     272           0 :         return pack_shadow(memcgid, pgdat, eviction,
     273           0 :                                 folio_test_workingset(folio));
     274             : }
     275             : 
     276             : /**
     277             :  * workingset_refault - Evaluate the refault of a previously evicted folio.
     278             :  * @folio: The freshly allocated replacement folio.
     279             :  * @shadow: Shadow entry of the evicted folio.
     280             :  *
     281             :  * Calculates and evaluates the refault distance of the previously
     282             :  * evicted folio in the context of the node and the memcg whose memory
     283             :  * pressure caused the eviction.
     284             :  */
     285           0 : void workingset_refault(struct folio *folio, void *shadow)
     286             : {
     287           0 :         bool file = folio_is_file_lru(folio);
     288             :         struct mem_cgroup *eviction_memcg;
     289             :         struct lruvec *eviction_lruvec;
     290             :         unsigned long refault_distance;
     291             :         unsigned long workingset_size;
     292             :         struct pglist_data *pgdat;
     293             :         struct mem_cgroup *memcg;
     294             :         unsigned long eviction;
     295             :         struct lruvec *lruvec;
     296             :         unsigned long refault;
     297             :         bool workingset;
     298             :         int memcgid;
     299             :         long nr;
     300             : 
     301           0 :         unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
     302             : 
     303             :         rcu_read_lock();
     304             :         /*
     305             :          * Look up the memcg associated with the stored ID. It might
     306             :          * have been deleted since the folio's eviction.
     307             :          *
     308             :          * Note that in rare events the ID could have been recycled
     309             :          * for a new cgroup that refaults a shared folio. This is
     310             :          * impossible to tell from the available data. However, this
     311             :          * should be a rare and limited disturbance, and activations
     312             :          * are always speculative anyway. Ultimately, it's the aging
     313             :          * algorithm's job to shake out the minimum access frequency
     314             :          * for the active cache.
     315             :          *
     316             :          * XXX: On !CONFIG_MEMCG, this will always return NULL; it
     317             :          * would be better if the root_mem_cgroup existed in all
     318             :          * configurations instead.
     319             :          */
     320           0 :         eviction_memcg = mem_cgroup_from_id(memcgid);
     321             :         if (!mem_cgroup_disabled() && !eviction_memcg)
     322             :                 goto out;
     323           0 :         eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
     324           0 :         refault = atomic_long_read(&eviction_lruvec->nonresident_age);
     325             : 
     326             :         /*
     327             :          * Calculate the refault distance
     328             :          *
     329             :          * The unsigned subtraction here gives an accurate distance
     330             :          * across nonresident_age overflows in most cases. There is a
     331             :          * special case: usually, shadow entries have a short lifetime
     332             :          * and are either refaulted or reclaimed along with the inode
     333             :          * before they get too old.  But it is not impossible for the
     334             :          * nonresident_age to lap a shadow entry in the field, which
     335             :          * can then result in a false small refault distance, leading
     336             :          * to a false activation should this old entry actually
     337             :          * refault again.  However, earlier kernels used to deactivate
     338             :          * unconditionally with *every* reclaim invocation for the
     339             :          * longest time, so the occasional inappropriate activation
     340             :          * leading to pressure on the active list is not a problem.
     341             :          */
     342           0 :         refault_distance = (refault - eviction) & EVICTION_MASK;
     343             : 
     344             :         /*
     345             :          * The activation decision for this folio is made at the level
     346             :          * where the eviction occurred, as that is where the LRU order
     347             :          * during folio reclaim is being determined.
     348             :          *
     349             :          * However, the cgroup that will own the folio is the one that
     350             :          * is actually experiencing the refault event.
     351             :          */
     352           0 :         nr = folio_nr_pages(folio);
     353           0 :         memcg = folio_memcg(folio);
     354           0 :         lruvec = mem_cgroup_lruvec(memcg, pgdat);
     355             : 
     356           0 :         mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
     357             : 
     358             :         mem_cgroup_flush_stats_delayed();
     359             :         /*
     360             :          * Compare the distance to the existing workingset size. We
     361             :          * don't activate pages that couldn't stay resident even if
     362             :          * all the memory was available to the workingset. Whether
     363             :          * workingset competition needs to consider anon or not depends
     364             :          * on having swap.
     365             :          */
     366           0 :         workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
     367           0 :         if (!file) {
     368           0 :                 workingset_size += lruvec_page_state(eviction_lruvec,
     369             :                                                      NR_INACTIVE_FILE);
     370             :         }
     371           0 :         if (mem_cgroup_get_nr_swap_pages(memcg) > 0) {
     372           0 :                 workingset_size += lruvec_page_state(eviction_lruvec,
     373             :                                                      NR_ACTIVE_ANON);
     374           0 :                 if (file) {
     375           0 :                         workingset_size += lruvec_page_state(eviction_lruvec,
     376             :                                                      NR_INACTIVE_ANON);
     377             :                 }
     378             :         }
     379           0 :         if (refault_distance > workingset_size)
     380             :                 goto out;
     381             : 
     382           0 :         folio_set_active(folio);
     383           0 :         workingset_age_nonresident(lruvec, nr);
     384           0 :         mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
     385             : 
     386             :         /* Folio was active prior to eviction */
     387           0 :         if (workingset) {
     388           0 :                 folio_set_workingset(folio);
     389             :                 /* XXX: Move to lru_cache_add() when it supports new vs putback */
     390           0 :                 lru_note_cost_folio(folio);
     391           0 :                 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
     392             :         }
     393             : out:
     394             :         rcu_read_unlock();
     395           0 : }
     396             : 
     397             : /**
     398             :  * workingset_activation - note a page activation
     399             :  * @folio: Folio that is being activated.
     400             :  */
     401           0 : void workingset_activation(struct folio *folio)
     402             : {
     403             :         struct mem_cgroup *memcg;
     404             : 
     405             :         rcu_read_lock();
     406             :         /*
     407             :          * Filter non-memcg pages here, e.g. unmap can call
     408             :          * mark_page_accessed() on VDSO pages.
     409             :          *
     410             :          * XXX: See workingset_refault() - this should return
     411             :          * root_mem_cgroup even for !CONFIG_MEMCG.
     412             :          */
     413           0 :         memcg = folio_memcg_rcu(folio);
     414             :         if (!mem_cgroup_disabled() && !memcg)
     415             :                 goto out;
     416           0 :         workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
     417             : out:
     418             :         rcu_read_unlock();
     419           0 : }
     420             : 
     421             : /*
     422             :  * Shadow entries reflect the share of the working set that does not
     423             :  * fit into memory, so their number depends on the access pattern of
     424             :  * the workload.  In most cases, they will refault or get reclaimed
     425             :  * along with the inode, but a (malicious) workload that streams
     426             :  * through files with a total size several times that of available
     427             :  * memory, while preventing the inodes from being reclaimed, can
     428             :  * create excessive amounts of shadow nodes.  To keep a lid on this,
     429             :  * track shadow nodes and reclaim them when they grow way past the
     430             :  * point where they would still be useful.
     431             :  */
     432             : 
     433             : struct list_lru shadow_nodes;
     434             : 
     435           0 : void workingset_update_node(struct xa_node *node)
     436             : {
     437             :         struct address_space *mapping;
     438             : 
     439             :         /*
     440             :          * Track non-empty nodes that contain only shadow entries;
     441             :          * unlink those that contain pages or are being freed.
     442             :          *
     443             :          * Avoid acquiring the list_lru lock when the nodes are
     444             :          * already where they should be. The list_empty() test is safe
     445             :          * as node->private_list is protected by the i_pages lock.
     446             :          */
     447           0 :         mapping = container_of(node->array, struct address_space, i_pages);
     448             :         lockdep_assert_held(&mapping->i_pages.xa_lock);
     449             : 
     450           0 :         if (node->count && node->count == node->nr_values) {
     451           0 :                 if (list_empty(&node->private_list)) {
     452           0 :                         list_lru_add(&shadow_nodes, &node->private_list);
     453             :                         __inc_lruvec_kmem_state(node, WORKINGSET_NODES);
     454             :                 }
     455             :         } else {
     456           0 :                 if (!list_empty(&node->private_list)) {
     457           0 :                         list_lru_del(&shadow_nodes, &node->private_list);
     458             :                         __dec_lruvec_kmem_state(node, WORKINGSET_NODES);
     459             :                 }
     460             :         }
     461           0 : }
     462             : 
     463           0 : static unsigned long count_shadow_nodes(struct shrinker *shrinker,
     464             :                                         struct shrink_control *sc)
     465             : {
     466             :         unsigned long max_nodes;
     467             :         unsigned long nodes;
     468             :         unsigned long pages;
     469             : 
     470           0 :         nodes = list_lru_shrink_count(&shadow_nodes, sc);
     471           0 :         if (!nodes)
     472             :                 return SHRINK_EMPTY;
     473             : 
     474             :         /*
     475             :          * Approximate a reasonable limit for the nodes
     476             :          * containing shadow entries. We don't need to keep more
     477             :          * shadow entries than possible pages on the active list,
     478             :          * since refault distances bigger than that are dismissed.
     479             :          *
     480             :          * The size of the active list converges toward 100% of
     481             :          * overall page cache as memory grows, with only a tiny
     482             :          * inactive list. Assume the total cache size for that.
     483             :          *
     484             :          * Nodes might be sparsely populated, with only one shadow
     485             :          * entry in the extreme case. Obviously, we cannot keep one
     486             :          * node for every eligible shadow entry, so compromise on a
     487             :          * worst-case density of 1/8th. Below that, not all eligible
     488             :          * refaults can be detected anymore.
     489             :          *
     490             :          * On 64-bit with 7 xa_nodes per page and 64 slots
     491             :          * each, this will reclaim shadow entries when they consume
     492             :          * ~1.8% of available memory:
     493             :          *
     494             :          * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
     495             :          */
     496             : #ifdef CONFIG_MEMCG
     497             :         if (sc->memcg) {
     498             :                 struct lruvec *lruvec;
     499             :                 int i;
     500             : 
     501             :                 lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
     502             :                 for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
     503             :                         pages += lruvec_page_state_local(lruvec,
     504             :                                                          NR_LRU_BASE + i);
     505             :                 pages += lruvec_page_state_local(
     506             :                         lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
     507             :                 pages += lruvec_page_state_local(
     508             :                         lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
     509             :         } else
     510             : #endif
     511           0 :                 pages = node_present_pages(sc->nid);
     512             : 
     513           0 :         max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
     514             : 
     515           0 :         if (nodes <= max_nodes)
     516             :                 return 0;
     517           0 :         return nodes - max_nodes;
     518             : }
     519             : 
     520           0 : static enum lru_status shadow_lru_isolate(struct list_head *item,
     521             :                                           struct list_lru_one *lru,
     522             :                                           spinlock_t *lru_lock,
     523             :                                           void *arg) __must_hold(lru_lock)
     524             : {
     525           0 :         struct xa_node *node = container_of(item, struct xa_node, private_list);
     526             :         struct address_space *mapping;
     527             :         int ret;
     528             : 
     529             :         /*
     530             :          * Page cache insertions and deletions synchronously maintain
     531             :          * the shadow node LRU under the i_pages lock and the
     532             :          * lru_lock.  Because the page cache tree is emptied before
     533             :          * the inode can be destroyed, holding the lru_lock pins any
     534             :          * address_space that has nodes on the LRU.
     535             :          *
     536             :          * We can then safely transition to the i_pages lock to
     537             :          * pin only the address_space of the particular node we want
     538             :          * to reclaim, take the node off-LRU, and drop the lru_lock.
     539             :          */
     540             : 
     541           0 :         mapping = container_of(node->array, struct address_space, i_pages);
     542             : 
     543             :         /* Coming from the list, invert the lock order */
     544           0 :         if (!xa_trylock(&mapping->i_pages)) {
     545             :                 spin_unlock_irq(lru_lock);
     546             :                 ret = LRU_RETRY;
     547             :                 goto out;
     548             :         }
     549             : 
     550           0 :         if (!spin_trylock(&mapping->host->i_lock)) {
     551             :                 xa_unlock(&mapping->i_pages);
     552             :                 spin_unlock_irq(lru_lock);
     553             :                 ret = LRU_RETRY;
     554             :                 goto out;
     555             :         }
     556             : 
     557           0 :         list_lru_isolate(lru, item);
     558           0 :         __dec_lruvec_kmem_state(node, WORKINGSET_NODES);
     559             : 
     560           0 :         spin_unlock(lru_lock);
     561             : 
     562             :         /*
     563             :          * The nodes should only contain one or more shadow entries,
     564             :          * no pages, so we expect to be able to remove them all and
     565             :          * delete and free the empty node afterwards.
     566             :          */
     567           0 :         if (WARN_ON_ONCE(!node->nr_values))
     568             :                 goto out_invalid;
     569           0 :         if (WARN_ON_ONCE(node->count != node->nr_values))
     570             :                 goto out_invalid;
     571           0 :         xa_delete_node(node, workingset_update_node);
     572             :         __inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
     573             : 
     574             : out_invalid:
     575           0 :         xa_unlock_irq(&mapping->i_pages);
     576           0 :         if (mapping_shrinkable(mapping))
     577           0 :                 inode_add_lru(mapping->host);
     578           0 :         spin_unlock(&mapping->host->i_lock);
     579           0 :         ret = LRU_REMOVED_RETRY;
     580             : out:
     581           0 :         cond_resched();
     582           0 :         spin_lock_irq(lru_lock);
     583           0 :         return ret;
     584             : }
     585             : 
     586           0 : static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
     587             :                                        struct shrink_control *sc)
     588             : {
     589             :         /* list_lru lock nests inside the IRQ-safe i_pages lock */
     590           0 :         return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
     591             :                                         NULL);
     592             : }
     593             : 
     594             : static struct shrinker workingset_shadow_shrinker = {
     595             :         .count_objects = count_shadow_nodes,
     596             :         .scan_objects = scan_shadow_nodes,
     597             :         .seeks = 0, /* ->count reports only fully expendable nodes */
     598             :         .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
     599             : };
     600             : 
     601             : /*
     602             :  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
     603             :  * i_pages lock.
     604             :  */
     605             : static struct lock_class_key shadow_nodes_key;
     606             : 
     607           1 : static int __init workingset_init(void)
     608             : {
     609             :         unsigned int timestamp_bits;
     610             :         unsigned int max_order;
     611             :         int ret;
     612             : 
     613             :         BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
     614             :         /*
     615             :          * Calculate the eviction bucket size to cover the longest
     616             :          * actionable refault distance, which is currently half of
     617             :          * memory (totalram_pages/2). However, memory hotplug may add
     618             :          * some more pages at runtime, so keep working with up to
     619             :          * double the initial memory by using totalram_pages as-is.
     620             :          */
     621           1 :         timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
     622           2 :         max_order = fls_long(totalram_pages() - 1);
     623           1 :         if (max_order > timestamp_bits)
     624           0 :                 bucket_order = max_order - timestamp_bits;
     625           1 :         pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
     626             :                timestamp_bits, max_order, bucket_order);
     627             : 
     628           1 :         ret = prealloc_shrinker(&workingset_shadow_shrinker);
     629           1 :         if (ret)
     630             :                 goto err;
     631           1 :         ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
     632             :                               &workingset_shadow_shrinker);
     633           1 :         if (ret)
     634             :                 goto err_list_lru;
     635           1 :         register_shrinker_prepared(&workingset_shadow_shrinker);
     636           1 :         return 0;
     637             : err_list_lru:
     638           0 :         free_prealloced_shrinker(&workingset_shadow_shrinker);
     639             : err:
     640             :         return ret;
     641             : }
     642             : module_init(workingset_init);

Generated by: LCOV version 1.14