LCOV - code coverage report
Current view: top level - security - commoncap.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 4 406 1.0 %
Date: 2022-12-09 01:23:36 Functions: 1 30 3.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-or-later
       2             : /* Common capabilities, needed by capability.o.
       3             :  */
       4             : 
       5             : #include <linux/capability.h>
       6             : #include <linux/audit.h>
       7             : #include <linux/init.h>
       8             : #include <linux/kernel.h>
       9             : #include <linux/lsm_hooks.h>
      10             : #include <linux/file.h>
      11             : #include <linux/mm.h>
      12             : #include <linux/mman.h>
      13             : #include <linux/pagemap.h>
      14             : #include <linux/swap.h>
      15             : #include <linux/skbuff.h>
      16             : #include <linux/netlink.h>
      17             : #include <linux/ptrace.h>
      18             : #include <linux/xattr.h>
      19             : #include <linux/hugetlb.h>
      20             : #include <linux/mount.h>
      21             : #include <linux/sched.h>
      22             : #include <linux/prctl.h>
      23             : #include <linux/securebits.h>
      24             : #include <linux/user_namespace.h>
      25             : #include <linux/binfmts.h>
      26             : #include <linux/personality.h>
      27             : #include <linux/mnt_idmapping.h>
      28             : 
      29             : /*
      30             :  * If a non-root user executes a setuid-root binary in
      31             :  * !secure(SECURE_NOROOT) mode, then we raise capabilities.
      32             :  * However if fE is also set, then the intent is for only
      33             :  * the file capabilities to be applied, and the setuid-root
      34             :  * bit is left on either to change the uid (plausible) or
      35             :  * to get full privilege on a kernel without file capabilities
      36             :  * support.  So in that case we do not raise capabilities.
      37             :  *
      38             :  * Warn if that happens, once per boot.
      39             :  */
      40             : static void warn_setuid_and_fcaps_mixed(const char *fname)
      41             : {
      42             :         static int warned;
      43           0 :         if (!warned) {
      44           0 :                 printk(KERN_INFO "warning: `%s' has both setuid-root and"
      45             :                         " effective capabilities. Therefore not raising all"
      46             :                         " capabilities.\n", fname);
      47           0 :                 warned = 1;
      48             :         }
      49             : }
      50             : 
      51             : /**
      52             :  * cap_capable - Determine whether a task has a particular effective capability
      53             :  * @cred: The credentials to use
      54             :  * @targ_ns:  The user namespace in which we need the capability
      55             :  * @cap: The capability to check for
      56             :  * @opts: Bitmask of options defined in include/linux/security.h
      57             :  *
      58             :  * Determine whether the nominated task has the specified capability amongst
      59             :  * its effective set, returning 0 if it does, -ve if it does not.
      60             :  *
      61             :  * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
      62             :  * and has_capability() functions.  That is, it has the reverse semantics:
      63             :  * cap_has_capability() returns 0 when a task has a capability, but the
      64             :  * kernel's capable() and has_capability() returns 1 for this case.
      65             :  */
      66           1 : int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
      67             :                 int cap, unsigned int opts)
      68             : {
      69           1 :         struct user_namespace *ns = targ_ns;
      70             : 
      71             :         /* See if cred has the capability in the target user namespace
      72             :          * by examining the target user namespace and all of the target
      73             :          * user namespace's parents.
      74             :          */
      75             :         for (;;) {
      76             :                 /* Do we have the necessary capabilities? */
      77           1 :                 if (ns == cred->user_ns)
      78           1 :                         return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
      79             : 
      80             :                 /*
      81             :                  * If we're already at a lower level than we're looking for,
      82             :                  * we're done searching.
      83             :                  */
      84           0 :                 if (ns->level <= cred->user_ns->level)
      85             :                         return -EPERM;
      86             : 
      87             :                 /* 
      88             :                  * The owner of the user namespace in the parent of the
      89             :                  * user namespace has all caps.
      90             :                  */
      91           0 :                 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
      92             :                         return 0;
      93             : 
      94             :                 /*
      95             :                  * If you have a capability in a parent user ns, then you have
      96             :                  * it over all children user namespaces as well.
      97             :                  */
      98             :                 ns = ns->parent;
      99             :         }
     100             : 
     101             :         /* We never get here */
     102             : }
     103             : 
     104             : /**
     105             :  * cap_settime - Determine whether the current process may set the system clock
     106             :  * @ts: The time to set
     107             :  * @tz: The timezone to set
     108             :  *
     109             :  * Determine whether the current process may set the system clock and timezone
     110             :  * information, returning 0 if permission granted, -ve if denied.
     111             :  */
     112           0 : int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
     113             : {
     114           0 :         if (!capable(CAP_SYS_TIME))
     115             :                 return -EPERM;
     116           0 :         return 0;
     117             : }
     118             : 
     119             : /**
     120             :  * cap_ptrace_access_check - Determine whether the current process may access
     121             :  *                         another
     122             :  * @child: The process to be accessed
     123             :  * @mode: The mode of attachment.
     124             :  *
     125             :  * If we are in the same or an ancestor user_ns and have all the target
     126             :  * task's capabilities, then ptrace access is allowed.
     127             :  * If we have the ptrace capability to the target user_ns, then ptrace
     128             :  * access is allowed.
     129             :  * Else denied.
     130             :  *
     131             :  * Determine whether a process may access another, returning 0 if permission
     132             :  * granted, -ve if denied.
     133             :  */
     134           0 : int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
     135             : {
     136           0 :         int ret = 0;
     137             :         const struct cred *cred, *child_cred;
     138             :         const kernel_cap_t *caller_caps;
     139             : 
     140             :         rcu_read_lock();
     141           0 :         cred = current_cred();
     142           0 :         child_cred = __task_cred(child);
     143           0 :         if (mode & PTRACE_MODE_FSCREDS)
     144           0 :                 caller_caps = &cred->cap_effective;
     145             :         else
     146           0 :                 caller_caps = &cred->cap_permitted;
     147           0 :         if (cred->user_ns == child_cred->user_ns &&
     148           0 :             cap_issubset(child_cred->cap_permitted, *caller_caps))
     149             :                 goto out;
     150           0 :         if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
     151             :                 goto out;
     152           0 :         ret = -EPERM;
     153             : out:
     154             :         rcu_read_unlock();
     155           0 :         return ret;
     156             : }
     157             : 
     158             : /**
     159             :  * cap_ptrace_traceme - Determine whether another process may trace the current
     160             :  * @parent: The task proposed to be the tracer
     161             :  *
     162             :  * If parent is in the same or an ancestor user_ns and has all current's
     163             :  * capabilities, then ptrace access is allowed.
     164             :  * If parent has the ptrace capability to current's user_ns, then ptrace
     165             :  * access is allowed.
     166             :  * Else denied.
     167             :  *
     168             :  * Determine whether the nominated task is permitted to trace the current
     169             :  * process, returning 0 if permission is granted, -ve if denied.
     170             :  */
     171           0 : int cap_ptrace_traceme(struct task_struct *parent)
     172             : {
     173           0 :         int ret = 0;
     174             :         const struct cred *cred, *child_cred;
     175             : 
     176             :         rcu_read_lock();
     177           0 :         cred = __task_cred(parent);
     178           0 :         child_cred = current_cred();
     179           0 :         if (cred->user_ns == child_cred->user_ns &&
     180           0 :             cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
     181             :                 goto out;
     182           0 :         if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
     183             :                 goto out;
     184           0 :         ret = -EPERM;
     185             : out:
     186             :         rcu_read_unlock();
     187           0 :         return ret;
     188             : }
     189             : 
     190             : /**
     191             :  * cap_capget - Retrieve a task's capability sets
     192             :  * @target: The task from which to retrieve the capability sets
     193             :  * @effective: The place to record the effective set
     194             :  * @inheritable: The place to record the inheritable set
     195             :  * @permitted: The place to record the permitted set
     196             :  *
     197             :  * This function retrieves the capabilities of the nominated task and returns
     198             :  * them to the caller.
     199             :  */
     200           0 : int cap_capget(struct task_struct *target, kernel_cap_t *effective,
     201             :                kernel_cap_t *inheritable, kernel_cap_t *permitted)
     202             : {
     203             :         const struct cred *cred;
     204             : 
     205             :         /* Derived from kernel/capability.c:sys_capget. */
     206             :         rcu_read_lock();
     207           0 :         cred = __task_cred(target);
     208           0 :         *effective   = cred->cap_effective;
     209           0 :         *inheritable = cred->cap_inheritable;
     210           0 :         *permitted   = cred->cap_permitted;
     211             :         rcu_read_unlock();
     212           0 :         return 0;
     213             : }
     214             : 
     215             : /*
     216             :  * Determine whether the inheritable capabilities are limited to the old
     217             :  * permitted set.  Returns 1 if they are limited, 0 if they are not.
     218             :  */
     219           0 : static inline int cap_inh_is_capped(void)
     220             : {
     221             :         /* they are so limited unless the current task has the CAP_SETPCAP
     222             :          * capability
     223             :          */
     224           0 :         if (cap_capable(current_cred(), current_cred()->user_ns,
     225             :                         CAP_SETPCAP, CAP_OPT_NONE) == 0)
     226             :                 return 0;
     227           0 :         return 1;
     228             : }
     229             : 
     230             : /**
     231             :  * cap_capset - Validate and apply proposed changes to current's capabilities
     232             :  * @new: The proposed new credentials; alterations should be made here
     233             :  * @old: The current task's current credentials
     234             :  * @effective: A pointer to the proposed new effective capabilities set
     235             :  * @inheritable: A pointer to the proposed new inheritable capabilities set
     236             :  * @permitted: A pointer to the proposed new permitted capabilities set
     237             :  *
     238             :  * This function validates and applies a proposed mass change to the current
     239             :  * process's capability sets.  The changes are made to the proposed new
     240             :  * credentials, and assuming no error, will be committed by the caller of LSM.
     241             :  */
     242           0 : int cap_capset(struct cred *new,
     243             :                const struct cred *old,
     244             :                const kernel_cap_t *effective,
     245             :                const kernel_cap_t *inheritable,
     246             :                const kernel_cap_t *permitted)
     247             : {
     248           0 :         if (cap_inh_is_capped() &&
     249           0 :             !cap_issubset(*inheritable,
     250             :                           cap_combine(old->cap_inheritable,
     251             :                                       old->cap_permitted)))
     252             :                 /* incapable of using this inheritable set */
     253             :                 return -EPERM;
     254             : 
     255           0 :         if (!cap_issubset(*inheritable,
     256             :                           cap_combine(old->cap_inheritable,
     257             :                                       old->cap_bset)))
     258             :                 /* no new pI capabilities outside bounding set */
     259             :                 return -EPERM;
     260             : 
     261             :         /* verify restrictions on target's new Permitted set */
     262           0 :         if (!cap_issubset(*permitted, old->cap_permitted))
     263             :                 return -EPERM;
     264             : 
     265             :         /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
     266           0 :         if (!cap_issubset(*effective, *permitted))
     267             :                 return -EPERM;
     268             : 
     269           0 :         new->cap_effective   = *effective;
     270           0 :         new->cap_inheritable = *inheritable;
     271           0 :         new->cap_permitted   = *permitted;
     272             : 
     273             :         /*
     274             :          * Mask off ambient bits that are no longer both permitted and
     275             :          * inheritable.
     276             :          */
     277           0 :         new->cap_ambient = cap_intersect(new->cap_ambient,
     278             :                                          cap_intersect(*permitted,
     279             :                                                        *inheritable));
     280           0 :         if (WARN_ON(!cap_ambient_invariant_ok(new)))
     281             :                 return -EINVAL;
     282           0 :         return 0;
     283             : }
     284             : 
     285             : /**
     286             :  * cap_inode_need_killpriv - Determine if inode change affects privileges
     287             :  * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
     288             :  *
     289             :  * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
     290             :  * affects the security markings on that inode, and if it is, should
     291             :  * inode_killpriv() be invoked or the change rejected.
     292             :  *
     293             :  * Return: 1 if security.capability has a value, meaning inode_killpriv()
     294             :  * is required, 0 otherwise, meaning inode_killpriv() is not required.
     295             :  */
     296           0 : int cap_inode_need_killpriv(struct dentry *dentry)
     297             : {
     298           0 :         struct inode *inode = d_backing_inode(dentry);
     299             :         int error;
     300             : 
     301           0 :         error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
     302           0 :         return error > 0;
     303             : }
     304             : 
     305             : /**
     306             :  * cap_inode_killpriv - Erase the security markings on an inode
     307             :  *
     308             :  * @mnt_userns: user namespace of the mount the inode was found from
     309             :  * @dentry:     The inode/dentry to alter
     310             :  *
     311             :  * Erase the privilege-enhancing security markings on an inode.
     312             :  *
     313             :  * If the inode has been found through an idmapped mount the user namespace of
     314             :  * the vfsmount must be passed through @mnt_userns. This function will then
     315             :  * take care to map the inode according to @mnt_userns before checking
     316             :  * permissions. On non-idmapped mounts or if permission checking is to be
     317             :  * performed on the raw inode simply passs init_user_ns.
     318             :  *
     319             :  * Return: 0 if successful, -ve on error.
     320             :  */
     321           0 : int cap_inode_killpriv(struct user_namespace *mnt_userns, struct dentry *dentry)
     322             : {
     323             :         int error;
     324             : 
     325           0 :         error = __vfs_removexattr(mnt_userns, dentry, XATTR_NAME_CAPS);
     326           0 :         if (error == -EOPNOTSUPP)
     327           0 :                 error = 0;
     328           0 :         return error;
     329             : }
     330             : 
     331             : static bool rootid_owns_currentns(kuid_t kroot)
     332             : {
     333             :         struct user_namespace *ns;
     334             : 
     335           0 :         if (!uid_valid(kroot))
     336             :                 return false;
     337             : 
     338           0 :         for (ns = current_user_ns(); ; ns = ns->parent) {
     339           0 :                 if (from_kuid(ns, kroot) == 0)
     340             :                         return true;
     341             :                 if (ns == &init_user_ns)
     342             :                         break;
     343             :         }
     344             : 
     345             :         return false;
     346             : }
     347             : 
     348             : static __u32 sansflags(__u32 m)
     349             : {
     350           0 :         return m & ~VFS_CAP_FLAGS_EFFECTIVE;
     351             : }
     352             : 
     353             : static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
     354             : {
     355           0 :         if (size != XATTR_CAPS_SZ_2)
     356             :                 return false;
     357           0 :         return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
     358             : }
     359             : 
     360             : static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
     361             : {
     362           0 :         if (size != XATTR_CAPS_SZ_3)
     363             :                 return false;
     364           0 :         return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
     365             : }
     366             : 
     367             : /*
     368             :  * getsecurity: We are called for security.* before any attempt to read the
     369             :  * xattr from the inode itself.
     370             :  *
     371             :  * This gives us a chance to read the on-disk value and convert it.  If we
     372             :  * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
     373             :  *
     374             :  * Note we are not called by vfs_getxattr_alloc(), but that is only called
     375             :  * by the integrity subsystem, which really wants the unconverted values -
     376             :  * so that's good.
     377             :  */
     378           0 : int cap_inode_getsecurity(struct user_namespace *mnt_userns,
     379             :                           struct inode *inode, const char *name, void **buffer,
     380             :                           bool alloc)
     381             : {
     382             :         int size, ret;
     383             :         kuid_t kroot;
     384             :         u32 nsmagic, magic;
     385             :         uid_t root, mappedroot;
     386           0 :         char *tmpbuf = NULL;
     387             :         struct vfs_cap_data *cap;
     388           0 :         struct vfs_ns_cap_data *nscap = NULL;
     389             :         struct dentry *dentry;
     390             :         struct user_namespace *fs_ns;
     391             : 
     392           0 :         if (strcmp(name, "capability") != 0)
     393             :                 return -EOPNOTSUPP;
     394             : 
     395           0 :         dentry = d_find_any_alias(inode);
     396           0 :         if (!dentry)
     397             :                 return -EINVAL;
     398             : 
     399           0 :         size = sizeof(struct vfs_ns_cap_data);
     400           0 :         ret = (int)vfs_getxattr_alloc(mnt_userns, dentry, XATTR_NAME_CAPS,
     401             :                                       &tmpbuf, size, GFP_NOFS);
     402           0 :         dput(dentry);
     403             : 
     404           0 :         if (ret < 0 || !tmpbuf)
     405             :                 return ret;
     406             : 
     407           0 :         fs_ns = inode->i_sb->s_user_ns;
     408           0 :         cap = (struct vfs_cap_data *) tmpbuf;
     409           0 :         if (is_v2header((size_t) ret, cap)) {
     410             :                 root = 0;
     411           0 :         } else if (is_v3header((size_t) ret, cap)) {
     412           0 :                 nscap = (struct vfs_ns_cap_data *) tmpbuf;
     413           0 :                 root = le32_to_cpu(nscap->rootid);
     414             :         } else {
     415             :                 size = -EINVAL;
     416             :                 goto out_free;
     417             :         }
     418             : 
     419           0 :         kroot = make_kuid(fs_ns, root);
     420             : 
     421             :         /* If this is an idmapped mount shift the kuid. */
     422           0 :         kroot = mapped_kuid_fs(mnt_userns, fs_ns, kroot);
     423             : 
     424             :         /* If the root kuid maps to a valid uid in current ns, then return
     425             :          * this as a nscap. */
     426           0 :         mappedroot = from_kuid(current_user_ns(), kroot);
     427           0 :         if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
     428           0 :                 size = sizeof(struct vfs_ns_cap_data);
     429           0 :                 if (alloc) {
     430           0 :                         if (!nscap) {
     431             :                                 /* v2 -> v3 conversion */
     432           0 :                                 nscap = kzalloc(size, GFP_ATOMIC);
     433           0 :                                 if (!nscap) {
     434             :                                         size = -ENOMEM;
     435             :                                         goto out_free;
     436             :                                 }
     437           0 :                                 nsmagic = VFS_CAP_REVISION_3;
     438           0 :                                 magic = le32_to_cpu(cap->magic_etc);
     439           0 :                                 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
     440           0 :                                         nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
     441           0 :                                 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
     442           0 :                                 nscap->magic_etc = cpu_to_le32(nsmagic);
     443             :                         } else {
     444             :                                 /* use allocated v3 buffer */
     445           0 :                                 tmpbuf = NULL;
     446             :                         }
     447           0 :                         nscap->rootid = cpu_to_le32(mappedroot);
     448           0 :                         *buffer = nscap;
     449             :                 }
     450             :                 goto out_free;
     451             :         }
     452             : 
     453           0 :         if (!rootid_owns_currentns(kroot)) {
     454             :                 size = -EOVERFLOW;
     455             :                 goto out_free;
     456             :         }
     457             : 
     458             :         /* This comes from a parent namespace.  Return as a v2 capability */
     459           0 :         size = sizeof(struct vfs_cap_data);
     460           0 :         if (alloc) {
     461           0 :                 if (nscap) {
     462             :                         /* v3 -> v2 conversion */
     463           0 :                         cap = kzalloc(size, GFP_ATOMIC);
     464           0 :                         if (!cap) {
     465             :                                 size = -ENOMEM;
     466             :                                 goto out_free;
     467             :                         }
     468           0 :                         magic = VFS_CAP_REVISION_2;
     469           0 :                         nsmagic = le32_to_cpu(nscap->magic_etc);
     470           0 :                         if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
     471           0 :                                 magic |= VFS_CAP_FLAGS_EFFECTIVE;
     472           0 :                         memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
     473           0 :                         cap->magic_etc = cpu_to_le32(magic);
     474             :                 } else {
     475             :                         /* use unconverted v2 */
     476           0 :                         tmpbuf = NULL;
     477             :                 }
     478           0 :                 *buffer = cap;
     479             :         }
     480             : out_free:
     481           0 :         kfree(tmpbuf);
     482           0 :         return size;
     483             : }
     484             : 
     485             : /**
     486             :  * rootid_from_xattr - translate root uid of vfs caps
     487             :  *
     488             :  * @value:      vfs caps value which may be modified by this function
     489             :  * @size:       size of @ivalue
     490             :  * @task_ns:    user namespace of the caller
     491             :  * @mnt_userns: user namespace of the mount the inode was found from
     492             :  * @fs_userns:  user namespace of the filesystem
     493             :  *
     494             :  * If the inode has been found through an idmapped mount the user namespace of
     495             :  * the vfsmount must be passed through @mnt_userns. This function will then
     496             :  * take care to map the inode according to @mnt_userns before checking
     497             :  * permissions. On non-idmapped mounts or if permission checking is to be
     498             :  * performed on the raw inode simply passs init_user_ns.
     499             :  */
     500             : static kuid_t rootid_from_xattr(const void *value, size_t size,
     501             :                                 struct user_namespace *task_ns,
     502             :                                 struct user_namespace *mnt_userns,
     503             :                                 struct user_namespace *fs_userns)
     504             : {
     505           0 :         const struct vfs_ns_cap_data *nscap = value;
     506             :         kuid_t rootkid;
     507           0 :         uid_t rootid = 0;
     508             : 
     509           0 :         if (size == XATTR_CAPS_SZ_3)
     510           0 :                 rootid = le32_to_cpu(nscap->rootid);
     511             : 
     512           0 :         rootkid = make_kuid(task_ns, rootid);
     513           0 :         return mapped_kuid_user(mnt_userns, fs_userns, rootkid);
     514             : }
     515             : 
     516             : static bool validheader(size_t size, const struct vfs_cap_data *cap)
     517             : {
     518           0 :         return is_v2header(size, cap) || is_v3header(size, cap);
     519             : }
     520             : 
     521             : /**
     522             :  * cap_convert_nscap - check vfs caps
     523             :  *
     524             :  * @mnt_userns: user namespace of the mount the inode was found from
     525             :  * @dentry:     used to retrieve inode to check permissions on
     526             :  * @ivalue:     vfs caps value which may be modified by this function
     527             :  * @size:       size of @ivalue
     528             :  *
     529             :  * User requested a write of security.capability.  If needed, update the
     530             :  * xattr to change from v2 to v3, or to fixup the v3 rootid.
     531             :  *
     532             :  * If the inode has been found through an idmapped mount the user namespace of
     533             :  * the vfsmount must be passed through @mnt_userns. This function will then
     534             :  * take care to map the inode according to @mnt_userns before checking
     535             :  * permissions. On non-idmapped mounts or if permission checking is to be
     536             :  * performed on the raw inode simply passs init_user_ns.
     537             :  *
     538             :  * Return: On success, return the new size; on error, return < 0.
     539             :  */
     540           0 : int cap_convert_nscap(struct user_namespace *mnt_userns, struct dentry *dentry,
     541             :                       const void **ivalue, size_t size)
     542             : {
     543             :         struct vfs_ns_cap_data *nscap;
     544             :         uid_t nsrootid;
     545           0 :         const struct vfs_cap_data *cap = *ivalue;
     546             :         __u32 magic, nsmagic;
     547           0 :         struct inode *inode = d_backing_inode(dentry);
     548           0 :         struct user_namespace *task_ns = current_user_ns(),
     549           0 :                 *fs_ns = inode->i_sb->s_user_ns;
     550             :         kuid_t rootid;
     551             :         size_t newsize;
     552             : 
     553           0 :         if (!*ivalue)
     554             :                 return -EINVAL;
     555           0 :         if (!validheader(size, cap))
     556             :                 return -EINVAL;
     557           0 :         if (!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_SETFCAP))
     558             :                 return -EPERM;
     559           0 :         if (size == XATTR_CAPS_SZ_2 && (mnt_userns == fs_ns))
     560           0 :                 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
     561             :                         /* user is privileged, just write the v2 */
     562           0 :                         return size;
     563             : 
     564           0 :         rootid = rootid_from_xattr(*ivalue, size, task_ns, mnt_userns, fs_ns);
     565           0 :         if (!uid_valid(rootid))
     566             :                 return -EINVAL;
     567             : 
     568           0 :         nsrootid = from_kuid(fs_ns, rootid);
     569             :         if (nsrootid == -1)
     570             :                 return -EINVAL;
     571             : 
     572           0 :         newsize = sizeof(struct vfs_ns_cap_data);
     573           0 :         nscap = kmalloc(newsize, GFP_ATOMIC);
     574           0 :         if (!nscap)
     575             :                 return -ENOMEM;
     576           0 :         nscap->rootid = cpu_to_le32(nsrootid);
     577           0 :         nsmagic = VFS_CAP_REVISION_3;
     578           0 :         magic = le32_to_cpu(cap->magic_etc);
     579           0 :         if (magic & VFS_CAP_FLAGS_EFFECTIVE)
     580           0 :                 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
     581           0 :         nscap->magic_etc = cpu_to_le32(nsmagic);
     582           0 :         memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
     583             : 
     584           0 :         *ivalue = nscap;
     585           0 :         return newsize;
     586             : }
     587             : 
     588             : /*
     589             :  * Calculate the new process capability sets from the capability sets attached
     590             :  * to a file.
     591             :  */
     592           0 : static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
     593             :                                           struct linux_binprm *bprm,
     594             :                                           bool *effective,
     595             :                                           bool *has_fcap)
     596             : {
     597           0 :         struct cred *new = bprm->cred;
     598             :         unsigned i;
     599           0 :         int ret = 0;
     600             : 
     601           0 :         if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
     602           0 :                 *effective = true;
     603             : 
     604           0 :         if (caps->magic_etc & VFS_CAP_REVISION_MASK)
     605           0 :                 *has_fcap = true;
     606             : 
     607           0 :         CAP_FOR_EACH_U32(i) {
     608           0 :                 __u32 permitted = caps->permitted.cap[i];
     609           0 :                 __u32 inheritable = caps->inheritable.cap[i];
     610             : 
     611             :                 /*
     612             :                  * pP' = (X & fP) | (pI & fI)
     613             :                  * The addition of pA' is handled later.
     614             :                  */
     615           0 :                 new->cap_permitted.cap[i] =
     616           0 :                         (new->cap_bset.cap[i] & permitted) |
     617           0 :                         (new->cap_inheritable.cap[i] & inheritable);
     618             : 
     619           0 :                 if (permitted & ~new->cap_permitted.cap[i])
     620             :                         /* insufficient to execute correctly */
     621           0 :                         ret = -EPERM;
     622             :         }
     623             : 
     624             :         /*
     625             :          * For legacy apps, with no internal support for recognizing they
     626             :          * do not have enough capabilities, we return an error if they are
     627             :          * missing some "forced" (aka file-permitted) capabilities.
     628             :          */
     629           0 :         return *effective ? ret : 0;
     630             : }
     631             : 
     632             : /**
     633             :  * get_vfs_caps_from_disk - retrieve vfs caps from disk
     634             :  *
     635             :  * @mnt_userns: user namespace of the mount the inode was found from
     636             :  * @dentry:     dentry from which @inode is retrieved
     637             :  * @cpu_caps:   vfs capabilities
     638             :  *
     639             :  * Extract the on-exec-apply capability sets for an executable file.
     640             :  *
     641             :  * If the inode has been found through an idmapped mount the user namespace of
     642             :  * the vfsmount must be passed through @mnt_userns. This function will then
     643             :  * take care to map the inode according to @mnt_userns before checking
     644             :  * permissions. On non-idmapped mounts or if permission checking is to be
     645             :  * performed on the raw inode simply passs init_user_ns.
     646             :  */
     647           0 : int get_vfs_caps_from_disk(struct user_namespace *mnt_userns,
     648             :                            const struct dentry *dentry,
     649             :                            struct cpu_vfs_cap_data *cpu_caps)
     650             : {
     651           0 :         struct inode *inode = d_backing_inode(dentry);
     652             :         __u32 magic_etc;
     653             :         unsigned tocopy, i;
     654             :         int size;
     655           0 :         struct vfs_ns_cap_data data, *nscaps = &data;
     656           0 :         struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
     657             :         kuid_t rootkuid;
     658             :         struct user_namespace *fs_ns;
     659             : 
     660           0 :         memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
     661             : 
     662           0 :         if (!inode)
     663             :                 return -ENODATA;
     664             : 
     665           0 :         fs_ns = inode->i_sb->s_user_ns;
     666           0 :         size = __vfs_getxattr((struct dentry *)dentry, inode,
     667             :                               XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
     668           0 :         if (size == -ENODATA || size == -EOPNOTSUPP)
     669             :                 /* no data, that's ok */
     670             :                 return -ENODATA;
     671             : 
     672           0 :         if (size < 0)
     673             :                 return size;
     674             : 
     675           0 :         if (size < sizeof(magic_etc))
     676             :                 return -EINVAL;
     677             : 
     678           0 :         cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
     679             : 
     680           0 :         rootkuid = make_kuid(fs_ns, 0);
     681           0 :         switch (magic_etc & VFS_CAP_REVISION_MASK) {
     682             :         case VFS_CAP_REVISION_1:
     683           0 :                 if (size != XATTR_CAPS_SZ_1)
     684             :                         return -EINVAL;
     685             :                 tocopy = VFS_CAP_U32_1;
     686             :                 break;
     687             :         case VFS_CAP_REVISION_2:
     688           0 :                 if (size != XATTR_CAPS_SZ_2)
     689             :                         return -EINVAL;
     690             :                 tocopy = VFS_CAP_U32_2;
     691             :                 break;
     692             :         case VFS_CAP_REVISION_3:
     693           0 :                 if (size != XATTR_CAPS_SZ_3)
     694             :                         return -EINVAL;
     695           0 :                 tocopy = VFS_CAP_U32_3;
     696           0 :                 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
     697             :                 break;
     698             : 
     699             :         default:
     700             :                 return -EINVAL;
     701             :         }
     702             :         /* Limit the caps to the mounter of the filesystem
     703             :          * or the more limited uid specified in the xattr.
     704             :          */
     705           0 :         rootkuid = mapped_kuid_fs(mnt_userns, fs_ns, rootkuid);
     706           0 :         if (!rootid_owns_currentns(rootkuid))
     707             :                 return -ENODATA;
     708             : 
     709           0 :         CAP_FOR_EACH_U32(i) {
     710           0 :                 if (i >= tocopy)
     711             :                         break;
     712           0 :                 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
     713           0 :                 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
     714             :         }
     715             : 
     716           0 :         cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
     717           0 :         cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
     718             : 
     719           0 :         cpu_caps->rootid = rootkuid;
     720             : 
     721           0 :         return 0;
     722             : }
     723             : 
     724             : /*
     725             :  * Attempt to get the on-exec apply capability sets for an executable file from
     726             :  * its xattrs and, if present, apply them to the proposed credentials being
     727             :  * constructed by execve().
     728             :  */
     729           0 : static int get_file_caps(struct linux_binprm *bprm, struct file *file,
     730             :                          bool *effective, bool *has_fcap)
     731             : {
     732           0 :         int rc = 0;
     733             :         struct cpu_vfs_cap_data vcaps;
     734             : 
     735           0 :         cap_clear(bprm->cred->cap_permitted);
     736             : 
     737           0 :         if (!file_caps_enabled)
     738             :                 return 0;
     739             : 
     740           0 :         if (!mnt_may_suid(file->f_path.mnt))
     741             :                 return 0;
     742             : 
     743             :         /*
     744             :          * This check is redundant with mnt_may_suid() but is kept to make
     745             :          * explicit that capability bits are limited to s_user_ns and its
     746             :          * descendants.
     747             :          */
     748           0 :         if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
     749             :                 return 0;
     750             : 
     751           0 :         rc = get_vfs_caps_from_disk(file_mnt_user_ns(file),
     752           0 :                                     file->f_path.dentry, &vcaps);
     753           0 :         if (rc < 0) {
     754           0 :                 if (rc == -EINVAL)
     755           0 :                         printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
     756             :                                         bprm->filename);
     757           0 :                 else if (rc == -ENODATA)
     758           0 :                         rc = 0;
     759             :                 goto out;
     760             :         }
     761             : 
     762           0 :         rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
     763             : 
     764             : out:
     765           0 :         if (rc)
     766           0 :                 cap_clear(bprm->cred->cap_permitted);
     767             : 
     768             :         return rc;
     769             : }
     770             : 
     771           0 : static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
     772             : 
     773             : static inline bool __is_real(kuid_t uid, struct cred *cred)
     774           0 : { return uid_eq(cred->uid, uid); }
     775             : 
     776             : static inline bool __is_eff(kuid_t uid, struct cred *cred)
     777           0 : { return uid_eq(cred->euid, uid); }
     778             : 
     779             : static inline bool __is_suid(kuid_t uid, struct cred *cred)
     780           0 : { return !__is_real(uid, cred) && __is_eff(uid, cred); }
     781             : 
     782             : /*
     783             :  * handle_privileged_root - Handle case of privileged root
     784             :  * @bprm: The execution parameters, including the proposed creds
     785             :  * @has_fcap: Are any file capabilities set?
     786             :  * @effective: Do we have effective root privilege?
     787             :  * @root_uid: This namespace' root UID WRT initial USER namespace
     788             :  *
     789             :  * Handle the case where root is privileged and hasn't been neutered by
     790             :  * SECURE_NOROOT.  If file capabilities are set, they won't be combined with
     791             :  * set UID root and nothing is changed.  If we are root, cap_permitted is
     792             :  * updated.  If we have become set UID root, the effective bit is set.
     793             :  */
     794           0 : static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
     795             :                                    bool *effective, kuid_t root_uid)
     796             : {
     797           0 :         const struct cred *old = current_cred();
     798           0 :         struct cred *new = bprm->cred;
     799             : 
     800           0 :         if (!root_privileged())
     801             :                 return;
     802             :         /*
     803             :          * If the legacy file capability is set, then don't set privs
     804             :          * for a setuid root binary run by a non-root user.  Do set it
     805             :          * for a root user just to cause least surprise to an admin.
     806             :          */
     807           0 :         if (has_fcap && __is_suid(root_uid, new)) {
     808           0 :                 warn_setuid_and_fcaps_mixed(bprm->filename);
     809             :                 return;
     810             :         }
     811             :         /*
     812             :          * To support inheritance of root-permissions and suid-root
     813             :          * executables under compatibility mode, we override the
     814             :          * capability sets for the file.
     815             :          */
     816           0 :         if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
     817             :                 /* pP' = (cap_bset & ~0) | (pI & ~0) */
     818           0 :                 new->cap_permitted = cap_combine(old->cap_bset,
     819             :                                                  old->cap_inheritable);
     820             :         }
     821             :         /*
     822             :          * If only the real uid is 0, we do not set the effective bit.
     823             :          */
     824           0 :         if (__is_eff(root_uid, new))
     825           0 :                 *effective = true;
     826             : }
     827             : 
     828             : #define __cap_gained(field, target, source) \
     829             :         !cap_issubset(target->cap_##field, source->cap_##field)
     830             : #define __cap_grew(target, source, cred) \
     831             :         !cap_issubset(cred->cap_##target, cred->cap_##source)
     832             : #define __cap_full(field, cred) \
     833             :         cap_issubset(CAP_FULL_SET, cred->cap_##field)
     834             : 
     835             : static inline bool __is_setuid(struct cred *new, const struct cred *old)
     836           0 : { return !uid_eq(new->euid, old->uid); }
     837             : 
     838             : static inline bool __is_setgid(struct cred *new, const struct cred *old)
     839           0 : { return !gid_eq(new->egid, old->gid); }
     840             : 
     841             : /*
     842             :  * 1) Audit candidate if current->cap_effective is set
     843             :  *
     844             :  * We do not bother to audit if 3 things are true:
     845             :  *   1) cap_effective has all caps
     846             :  *   2) we became root *OR* are were already root
     847             :  *   3) root is supposed to have all caps (SECURE_NOROOT)
     848             :  * Since this is just a normal root execing a process.
     849             :  *
     850             :  * Number 1 above might fail if you don't have a full bset, but I think
     851             :  * that is interesting information to audit.
     852             :  *
     853             :  * A number of other conditions require logging:
     854             :  * 2) something prevented setuid root getting all caps
     855             :  * 3) non-setuid root gets fcaps
     856             :  * 4) non-setuid root gets ambient
     857             :  */
     858           0 : static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
     859             :                                      kuid_t root, bool has_fcap)
     860             : {
     861           0 :         bool ret = false;
     862             : 
     863           0 :         if ((__cap_grew(effective, ambient, new) &&
     864           0 :              !(__cap_full(effective, new) &&
     865           0 :                (__is_eff(root, new) || __is_real(root, new)) &&
     866           0 :                root_privileged())) ||
     867           0 :             (root_privileged() &&
     868           0 :              __is_suid(root, new) &&
     869           0 :              !__cap_full(effective, new)) ||
     870           0 :             (!__is_setuid(new, old) &&
     871           0 :              ((has_fcap &&
     872           0 :                __cap_gained(permitted, new, old)) ||
     873           0 :               __cap_gained(ambient, new, old))))
     874             : 
     875             :                 ret = true;
     876             : 
     877           0 :         return ret;
     878             : }
     879             : 
     880             : /**
     881             :  * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
     882             :  * @bprm: The execution parameters, including the proposed creds
     883             :  * @file: The file to pull the credentials from
     884             :  *
     885             :  * Set up the proposed credentials for a new execution context being
     886             :  * constructed by execve().  The proposed creds in @bprm->cred is altered,
     887             :  * which won't take effect immediately.
     888             :  *
     889             :  * Return: 0 if successful, -ve on error.
     890             :  */
     891           0 : int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
     892             : {
     893             :         /* Process setpcap binaries and capabilities for uid 0 */
     894           0 :         const struct cred *old = current_cred();
     895           0 :         struct cred *new = bprm->cred;
     896           0 :         bool effective = false, has_fcap = false, is_setid;
     897             :         int ret;
     898             :         kuid_t root_uid;
     899             : 
     900           0 :         if (WARN_ON(!cap_ambient_invariant_ok(old)))
     901             :                 return -EPERM;
     902             : 
     903           0 :         ret = get_file_caps(bprm, file, &effective, &has_fcap);
     904           0 :         if (ret < 0)
     905             :                 return ret;
     906             : 
     907           0 :         root_uid = make_kuid(new->user_ns, 0);
     908             : 
     909           0 :         handle_privileged_root(bprm, has_fcap, &effective, root_uid);
     910             : 
     911             :         /* if we have fs caps, clear dangerous personality flags */
     912           0 :         if (__cap_gained(permitted, new, old))
     913           0 :                 bprm->per_clear |= PER_CLEAR_ON_SETID;
     914             : 
     915             :         /* Don't let someone trace a set[ug]id/setpcap binary with the revised
     916             :          * credentials unless they have the appropriate permit.
     917             :          *
     918             :          * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
     919             :          */
     920           0 :         is_setid = __is_setuid(new, old) || __is_setgid(new, old);
     921             : 
     922           0 :         if ((is_setid || __cap_gained(permitted, new, old)) &&
     923           0 :             ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
     924           0 :              !ptracer_capable(current, new->user_ns))) {
     925             :                 /* downgrade; they get no more than they had, and maybe less */
     926           0 :                 if (!ns_capable(new->user_ns, CAP_SETUID) ||
     927           0 :                     (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
     928           0 :                         new->euid = new->uid;
     929           0 :                         new->egid = new->gid;
     930             :                 }
     931           0 :                 new->cap_permitted = cap_intersect(new->cap_permitted,
     932             :                                                    old->cap_permitted);
     933             :         }
     934             : 
     935           0 :         new->suid = new->fsuid = new->euid;
     936           0 :         new->sgid = new->fsgid = new->egid;
     937             : 
     938             :         /* File caps or setid cancels ambient. */
     939           0 :         if (has_fcap || is_setid)
     940           0 :                 cap_clear(new->cap_ambient);
     941             : 
     942             :         /*
     943             :          * Now that we've computed pA', update pP' to give:
     944             :          *   pP' = (X & fP) | (pI & fI) | pA'
     945             :          */
     946           0 :         new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
     947             : 
     948             :         /*
     949             :          * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
     950             :          * this is the same as pE' = (fE ? pP' : 0) | pA'.
     951             :          */
     952           0 :         if (effective)
     953           0 :                 new->cap_effective = new->cap_permitted;
     954             :         else
     955           0 :                 new->cap_effective = new->cap_ambient;
     956             : 
     957           0 :         if (WARN_ON(!cap_ambient_invariant_ok(new)))
     958             :                 return -EPERM;
     959             : 
     960           0 :         if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
     961             :                 ret = audit_log_bprm_fcaps(bprm, new, old);
     962             :                 if (ret < 0)
     963             :                         return ret;
     964             :         }
     965             : 
     966           0 :         new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
     967             : 
     968           0 :         if (WARN_ON(!cap_ambient_invariant_ok(new)))
     969             :                 return -EPERM;
     970             : 
     971             :         /* Check for privilege-elevated exec. */
     972           0 :         if (is_setid ||
     973           0 :             (!__is_real(root_uid, new) &&
     974           0 :              (effective ||
     975           0 :               __cap_grew(permitted, ambient, new))))
     976           0 :                 bprm->secureexec = 1;
     977             : 
     978             :         return 0;
     979             : }
     980             : 
     981             : /**
     982             :  * cap_inode_setxattr - Determine whether an xattr may be altered
     983             :  * @dentry: The inode/dentry being altered
     984             :  * @name: The name of the xattr to be changed
     985             :  * @value: The value that the xattr will be changed to
     986             :  * @size: The size of value
     987             :  * @flags: The replacement flag
     988             :  *
     989             :  * Determine whether an xattr may be altered or set on an inode, returning 0 if
     990             :  * permission is granted, -ve if denied.
     991             :  *
     992             :  * This is used to make sure security xattrs don't get updated or set by those
     993             :  * who aren't privileged to do so.
     994             :  */
     995           0 : int cap_inode_setxattr(struct dentry *dentry, const char *name,
     996             :                        const void *value, size_t size, int flags)
     997             : {
     998           0 :         struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
     999             : 
    1000             :         /* Ignore non-security xattrs */
    1001           0 :         if (strncmp(name, XATTR_SECURITY_PREFIX,
    1002             :                         XATTR_SECURITY_PREFIX_LEN) != 0)
    1003             :                 return 0;
    1004             : 
    1005             :         /*
    1006             :          * For XATTR_NAME_CAPS the check will be done in
    1007             :          * cap_convert_nscap(), called by setxattr()
    1008             :          */
    1009           0 :         if (strcmp(name, XATTR_NAME_CAPS) == 0)
    1010             :                 return 0;
    1011             : 
    1012           0 :         if (!ns_capable(user_ns, CAP_SYS_ADMIN))
    1013             :                 return -EPERM;
    1014           0 :         return 0;
    1015             : }
    1016             : 
    1017             : /**
    1018             :  * cap_inode_removexattr - Determine whether an xattr may be removed
    1019             :  *
    1020             :  * @mnt_userns: User namespace of the mount the inode was found from
    1021             :  * @dentry:     The inode/dentry being altered
    1022             :  * @name:       The name of the xattr to be changed
    1023             :  *
    1024             :  * Determine whether an xattr may be removed from an inode, returning 0 if
    1025             :  * permission is granted, -ve if denied.
    1026             :  *
    1027             :  * If the inode has been found through an idmapped mount the user namespace of
    1028             :  * the vfsmount must be passed through @mnt_userns. This function will then
    1029             :  * take care to map the inode according to @mnt_userns before checking
    1030             :  * permissions. On non-idmapped mounts or if permission checking is to be
    1031             :  * performed on the raw inode simply passs init_user_ns.
    1032             :  *
    1033             :  * This is used to make sure security xattrs don't get removed by those who
    1034             :  * aren't privileged to remove them.
    1035             :  */
    1036           0 : int cap_inode_removexattr(struct user_namespace *mnt_userns,
    1037             :                           struct dentry *dentry, const char *name)
    1038             : {
    1039           0 :         struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
    1040             : 
    1041             :         /* Ignore non-security xattrs */
    1042           0 :         if (strncmp(name, XATTR_SECURITY_PREFIX,
    1043             :                         XATTR_SECURITY_PREFIX_LEN) != 0)
    1044             :                 return 0;
    1045             : 
    1046           0 :         if (strcmp(name, XATTR_NAME_CAPS) == 0) {
    1047             :                 /* security.capability gets namespaced */
    1048           0 :                 struct inode *inode = d_backing_inode(dentry);
    1049           0 :                 if (!inode)
    1050             :                         return -EINVAL;
    1051           0 :                 if (!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_SETFCAP))
    1052             :                         return -EPERM;
    1053           0 :                 return 0;
    1054             :         }
    1055             : 
    1056           0 :         if (!ns_capable(user_ns, CAP_SYS_ADMIN))
    1057             :                 return -EPERM;
    1058           0 :         return 0;
    1059             : }
    1060             : 
    1061             : /*
    1062             :  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
    1063             :  * a process after a call to setuid, setreuid, or setresuid.
    1064             :  *
    1065             :  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
    1066             :  *  {r,e,s}uid != 0, the permitted and effective capabilities are
    1067             :  *  cleared.
    1068             :  *
    1069             :  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
    1070             :  *  capabilities of the process are cleared.
    1071             :  *
    1072             :  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
    1073             :  *  capabilities are set to the permitted capabilities.
    1074             :  *
    1075             :  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
    1076             :  *  never happen.
    1077             :  *
    1078             :  *  -astor
    1079             :  *
    1080             :  * cevans - New behaviour, Oct '99
    1081             :  * A process may, via prctl(), elect to keep its capabilities when it
    1082             :  * calls setuid() and switches away from uid==0. Both permitted and
    1083             :  * effective sets will be retained.
    1084             :  * Without this change, it was impossible for a daemon to drop only some
    1085             :  * of its privilege. The call to setuid(!=0) would drop all privileges!
    1086             :  * Keeping uid 0 is not an option because uid 0 owns too many vital
    1087             :  * files..
    1088             :  * Thanks to Olaf Kirch and Peter Benie for spotting this.
    1089             :  */
    1090           0 : static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
    1091             : {
    1092           0 :         kuid_t root_uid = make_kuid(old->user_ns, 0);
    1093             : 
    1094           0 :         if ((uid_eq(old->uid, root_uid) ||
    1095           0 :              uid_eq(old->euid, root_uid) ||
    1096           0 :              uid_eq(old->suid, root_uid)) &&
    1097           0 :             (!uid_eq(new->uid, root_uid) &&
    1098           0 :              !uid_eq(new->euid, root_uid) &&
    1099           0 :              !uid_eq(new->suid, root_uid))) {
    1100           0 :                 if (!issecure(SECURE_KEEP_CAPS)) {
    1101           0 :                         cap_clear(new->cap_permitted);
    1102           0 :                         cap_clear(new->cap_effective);
    1103             :                 }
    1104             : 
    1105             :                 /*
    1106             :                  * Pre-ambient programs expect setresuid to nonroot followed
    1107             :                  * by exec to drop capabilities.  We should make sure that
    1108             :                  * this remains the case.
    1109             :                  */
    1110           0 :                 cap_clear(new->cap_ambient);
    1111             :         }
    1112           0 :         if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
    1113           0 :                 cap_clear(new->cap_effective);
    1114           0 :         if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
    1115           0 :                 new->cap_effective = new->cap_permitted;
    1116           0 : }
    1117             : 
    1118             : /**
    1119             :  * cap_task_fix_setuid - Fix up the results of setuid() call
    1120             :  * @new: The proposed credentials
    1121             :  * @old: The current task's current credentials
    1122             :  * @flags: Indications of what has changed
    1123             :  *
    1124             :  * Fix up the results of setuid() call before the credential changes are
    1125             :  * actually applied.
    1126             :  *
    1127             :  * Return: 0 to grant the changes, -ve to deny them.
    1128             :  */
    1129           0 : int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
    1130             : {
    1131           0 :         switch (flags) {
    1132             :         case LSM_SETID_RE:
    1133             :         case LSM_SETID_ID:
    1134             :         case LSM_SETID_RES:
    1135             :                 /* juggle the capabilities to follow [RES]UID changes unless
    1136             :                  * otherwise suppressed */
    1137           0 :                 if (!issecure(SECURE_NO_SETUID_FIXUP))
    1138           0 :                         cap_emulate_setxuid(new, old);
    1139             :                 break;
    1140             : 
    1141             :         case LSM_SETID_FS:
    1142             :                 /* juggle the capabilties to follow FSUID changes, unless
    1143             :                  * otherwise suppressed
    1144             :                  *
    1145             :                  * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
    1146             :                  *          if not, we might be a bit too harsh here.
    1147             :                  */
    1148           0 :                 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
    1149           0 :                         kuid_t root_uid = make_kuid(old->user_ns, 0);
    1150           0 :                         if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
    1151           0 :                                 new->cap_effective =
    1152             :                                         cap_drop_fs_set(new->cap_effective);
    1153             : 
    1154           0 :                         if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
    1155           0 :                                 new->cap_effective =
    1156             :                                         cap_raise_fs_set(new->cap_effective,
    1157             :                                                          new->cap_permitted);
    1158             :                 }
    1159             :                 break;
    1160             : 
    1161             :         default:
    1162             :                 return -EINVAL;
    1163             :         }
    1164             : 
    1165             :         return 0;
    1166             : }
    1167             : 
    1168             : /*
    1169             :  * Rationale: code calling task_setscheduler, task_setioprio, and
    1170             :  * task_setnice, assumes that
    1171             :  *   . if capable(cap_sys_nice), then those actions should be allowed
    1172             :  *   . if not capable(cap_sys_nice), but acting on your own processes,
    1173             :  *      then those actions should be allowed
    1174             :  * This is insufficient now since you can call code without suid, but
    1175             :  * yet with increased caps.
    1176             :  * So we check for increased caps on the target process.
    1177             :  */
    1178           0 : static int cap_safe_nice(struct task_struct *p)
    1179             : {
    1180           0 :         int is_subset, ret = 0;
    1181             : 
    1182             :         rcu_read_lock();
    1183           0 :         is_subset = cap_issubset(__task_cred(p)->cap_permitted,
    1184           0 :                                  current_cred()->cap_permitted);
    1185           0 :         if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
    1186           0 :                 ret = -EPERM;
    1187             :         rcu_read_unlock();
    1188             : 
    1189           0 :         return ret;
    1190             : }
    1191             : 
    1192             : /**
    1193             :  * cap_task_setscheduler - Detemine if scheduler policy change is permitted
    1194             :  * @p: The task to affect
    1195             :  *
    1196             :  * Detemine if the requested scheduler policy change is permitted for the
    1197             :  * specified task.
    1198             :  *
    1199             :  * Return: 0 if permission is granted, -ve if denied.
    1200             :  */
    1201           0 : int cap_task_setscheduler(struct task_struct *p)
    1202             : {
    1203           0 :         return cap_safe_nice(p);
    1204             : }
    1205             : 
    1206             : /**
    1207             :  * cap_task_setioprio - Detemine if I/O priority change is permitted
    1208             :  * @p: The task to affect
    1209             :  * @ioprio: The I/O priority to set
    1210             :  *
    1211             :  * Detemine if the requested I/O priority change is permitted for the specified
    1212             :  * task.
    1213             :  *
    1214             :  * Return: 0 if permission is granted, -ve if denied.
    1215             :  */
    1216           0 : int cap_task_setioprio(struct task_struct *p, int ioprio)
    1217             : {
    1218           0 :         return cap_safe_nice(p);
    1219             : }
    1220             : 
    1221             : /**
    1222             :  * cap_task_setnice - Detemine if task priority change is permitted
    1223             :  * @p: The task to affect
    1224             :  * @nice: The nice value to set
    1225             :  *
    1226             :  * Detemine if the requested task priority change is permitted for the
    1227             :  * specified task.
    1228             :  *
    1229             :  * Return: 0 if permission is granted, -ve if denied.
    1230             :  */
    1231           0 : int cap_task_setnice(struct task_struct *p, int nice)
    1232             : {
    1233           0 :         return cap_safe_nice(p);
    1234             : }
    1235             : 
    1236             : /*
    1237             :  * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
    1238             :  * the current task's bounding set.  Returns 0 on success, -ve on error.
    1239             :  */
    1240           0 : static int cap_prctl_drop(unsigned long cap)
    1241             : {
    1242             :         struct cred *new;
    1243             : 
    1244           0 :         if (!ns_capable(current_user_ns(), CAP_SETPCAP))
    1245             :                 return -EPERM;
    1246           0 :         if (!cap_valid(cap))
    1247             :                 return -EINVAL;
    1248             : 
    1249           0 :         new = prepare_creds();
    1250           0 :         if (!new)
    1251             :                 return -ENOMEM;
    1252           0 :         cap_lower(new->cap_bset, cap);
    1253           0 :         return commit_creds(new);
    1254             : }
    1255             : 
    1256             : /**
    1257             :  * cap_task_prctl - Implement process control functions for this security module
    1258             :  * @option: The process control function requested
    1259             :  * @arg2: The argument data for this function
    1260             :  * @arg3: The argument data for this function
    1261             :  * @arg4: The argument data for this function
    1262             :  * @arg5: The argument data for this function
    1263             :  *
    1264             :  * Allow process control functions (sys_prctl()) to alter capabilities; may
    1265             :  * also deny access to other functions not otherwise implemented here.
    1266             :  *
    1267             :  * Return: 0 or +ve on success, -ENOSYS if this function is not implemented
    1268             :  * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
    1269             :  * modules will consider performing the function.
    1270             :  */
    1271           0 : int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
    1272             :                    unsigned long arg4, unsigned long arg5)
    1273             : {
    1274           0 :         const struct cred *old = current_cred();
    1275             :         struct cred *new;
    1276             : 
    1277           0 :         switch (option) {
    1278             :         case PR_CAPBSET_READ:
    1279           0 :                 if (!cap_valid(arg2))
    1280             :                         return -EINVAL;
    1281           0 :                 return !!cap_raised(old->cap_bset, arg2);
    1282             : 
    1283             :         case PR_CAPBSET_DROP:
    1284           0 :                 return cap_prctl_drop(arg2);
    1285             : 
    1286             :         /*
    1287             :          * The next four prctl's remain to assist with transitioning a
    1288             :          * system from legacy UID=0 based privilege (when filesystem
    1289             :          * capabilities are not in use) to a system using filesystem
    1290             :          * capabilities only - as the POSIX.1e draft intended.
    1291             :          *
    1292             :          * Note:
    1293             :          *
    1294             :          *  PR_SET_SECUREBITS =
    1295             :          *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
    1296             :          *    | issecure_mask(SECURE_NOROOT)
    1297             :          *    | issecure_mask(SECURE_NOROOT_LOCKED)
    1298             :          *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
    1299             :          *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
    1300             :          *
    1301             :          * will ensure that the current process and all of its
    1302             :          * children will be locked into a pure
    1303             :          * capability-based-privilege environment.
    1304             :          */
    1305             :         case PR_SET_SECUREBITS:
    1306           0 :                 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
    1307           0 :                      & (old->securebits ^ arg2))                 /*[1]*/
    1308           0 :                     || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))        /*[2]*/
    1309           0 :                     || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))       /*[3]*/
    1310           0 :                     || (cap_capable(current_cred(),
    1311           0 :                                     current_cred()->user_ns,
    1312             :                                     CAP_SETPCAP,
    1313             :                                     CAP_OPT_NONE) != 0)                 /*[4]*/
    1314             :                         /*
    1315             :                          * [1] no changing of bits that are locked
    1316             :                          * [2] no unlocking of locks
    1317             :                          * [3] no setting of unsupported bits
    1318             :                          * [4] doing anything requires privilege (go read about
    1319             :                          *     the "sendmail capabilities bug")
    1320             :                          */
    1321             :                     )
    1322             :                         /* cannot change a locked bit */
    1323             :                         return -EPERM;
    1324             : 
    1325           0 :                 new = prepare_creds();
    1326           0 :                 if (!new)
    1327             :                         return -ENOMEM;
    1328           0 :                 new->securebits = arg2;
    1329           0 :                 return commit_creds(new);
    1330             : 
    1331             :         case PR_GET_SECUREBITS:
    1332           0 :                 return old->securebits;
    1333             : 
    1334             :         case PR_GET_KEEPCAPS:
    1335           0 :                 return !!issecure(SECURE_KEEP_CAPS);
    1336             : 
    1337             :         case PR_SET_KEEPCAPS:
    1338           0 :                 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
    1339             :                         return -EINVAL;
    1340           0 :                 if (issecure(SECURE_KEEP_CAPS_LOCKED))
    1341             :                         return -EPERM;
    1342             : 
    1343           0 :                 new = prepare_creds();
    1344           0 :                 if (!new)
    1345             :                         return -ENOMEM;
    1346           0 :                 if (arg2)
    1347           0 :                         new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
    1348             :                 else
    1349           0 :                         new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
    1350           0 :                 return commit_creds(new);
    1351             : 
    1352             :         case PR_CAP_AMBIENT:
    1353           0 :                 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
    1354           0 :                         if (arg3 | arg4 | arg5)
    1355             :                                 return -EINVAL;
    1356             : 
    1357           0 :                         new = prepare_creds();
    1358           0 :                         if (!new)
    1359             :                                 return -ENOMEM;
    1360           0 :                         cap_clear(new->cap_ambient);
    1361           0 :                         return commit_creds(new);
    1362             :                 }
    1363             : 
    1364           0 :                 if (((!cap_valid(arg3)) | arg4 | arg5))
    1365             :                         return -EINVAL;
    1366             : 
    1367           0 :                 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
    1368           0 :                         return !!cap_raised(current_cred()->cap_ambient, arg3);
    1369           0 :                 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
    1370             :                            arg2 != PR_CAP_AMBIENT_LOWER) {
    1371             :                         return -EINVAL;
    1372             :                 } else {
    1373           0 :                         if (arg2 == PR_CAP_AMBIENT_RAISE &&
    1374           0 :                             (!cap_raised(current_cred()->cap_permitted, arg3) ||
    1375           0 :                              !cap_raised(current_cred()->cap_inheritable,
    1376           0 :                                          arg3) ||
    1377           0 :                              issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
    1378             :                                 return -EPERM;
    1379             : 
    1380           0 :                         new = prepare_creds();
    1381           0 :                         if (!new)
    1382             :                                 return -ENOMEM;
    1383           0 :                         if (arg2 == PR_CAP_AMBIENT_RAISE)
    1384           0 :                                 cap_raise(new->cap_ambient, arg3);
    1385             :                         else
    1386           0 :                                 cap_lower(new->cap_ambient, arg3);
    1387           0 :                         return commit_creds(new);
    1388             :                 }
    1389             : 
    1390             :         default:
    1391             :                 /* No functionality available - continue with default */
    1392             :                 return -ENOSYS;
    1393             :         }
    1394             : }
    1395             : 
    1396             : /**
    1397             :  * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
    1398             :  * @mm: The VM space in which the new mapping is to be made
    1399             :  * @pages: The size of the mapping
    1400             :  *
    1401             :  * Determine whether the allocation of a new virtual mapping by the current
    1402             :  * task is permitted.
    1403             :  *
    1404             :  * Return: 1 if permission is granted, 0 if not.
    1405             :  */
    1406           0 : int cap_vm_enough_memory(struct mm_struct *mm, long pages)
    1407             : {
    1408           0 :         int cap_sys_admin = 0;
    1409             : 
    1410           0 :         if (cap_capable(current_cred(), &init_user_ns,
    1411             :                                 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
    1412           0 :                 cap_sys_admin = 1;
    1413             : 
    1414           0 :         return cap_sys_admin;
    1415             : }
    1416             : 
    1417             : /**
    1418             :  * cap_mmap_addr - check if able to map given addr
    1419             :  * @addr: address attempting to be mapped
    1420             :  *
    1421             :  * If the process is attempting to map memory below dac_mmap_min_addr they need
    1422             :  * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
    1423             :  * capability security module.
    1424             :  *
    1425             :  * Return: 0 if this mapping should be allowed or -EPERM if not.
    1426             :  */
    1427           0 : int cap_mmap_addr(unsigned long addr)
    1428             : {
    1429           0 :         int ret = 0;
    1430             : 
    1431           0 :         if (addr < dac_mmap_min_addr) {
    1432           0 :                 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
    1433             :                                   CAP_OPT_NONE);
    1434             :                 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
    1435           0 :                 if (ret == 0)
    1436           0 :                         current->flags |= PF_SUPERPRIV;
    1437             :         }
    1438           0 :         return ret;
    1439             : }
    1440             : 
    1441           0 : int cap_mmap_file(struct file *file, unsigned long reqprot,
    1442             :                   unsigned long prot, unsigned long flags)
    1443             : {
    1444           0 :         return 0;
    1445             : }
    1446             : 
    1447             : #ifdef CONFIG_SECURITY
    1448             : 
    1449             : static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
    1450             :         LSM_HOOK_INIT(capable, cap_capable),
    1451             :         LSM_HOOK_INIT(settime, cap_settime),
    1452             :         LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
    1453             :         LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
    1454             :         LSM_HOOK_INIT(capget, cap_capget),
    1455             :         LSM_HOOK_INIT(capset, cap_capset),
    1456             :         LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
    1457             :         LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
    1458             :         LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
    1459             :         LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
    1460             :         LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
    1461             :         LSM_HOOK_INIT(mmap_file, cap_mmap_file),
    1462             :         LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
    1463             :         LSM_HOOK_INIT(task_prctl, cap_task_prctl),
    1464             :         LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
    1465             :         LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
    1466             :         LSM_HOOK_INIT(task_setnice, cap_task_setnice),
    1467             :         LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
    1468             : };
    1469             : 
    1470             : static int __init capability_init(void)
    1471             : {
    1472             :         security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
    1473             :                                 "capability");
    1474             :         return 0;
    1475             : }
    1476             : 
    1477             : DEFINE_LSM(capability) = {
    1478             :         .name = "capability",
    1479             :         .order = LSM_ORDER_FIRST,
    1480             :         .init = capability_init,
    1481             : };
    1482             : 
    1483             : #endif /* CONFIG_SECURITY */

Generated by: LCOV version 1.14