
Implementing unit testing in the Linux kernel:
A participant observation in the AMD display driver

Introduction
One of the goals of automated tests is to help ensure

software quality and robustness, especially when many

developers around the globe are involved and contribut-

ing, such as in a project as the Linux kernel. This work

presents a perspective on one specific type of testing

within the Linux kernel: unit testing. We explored KUnit

and focused on the AMD display driver - the Linux ker-

nel’s largest driver in lines of code and a subsystemwhere

unit tests had not been implemented yet.

Unit Testing and KUnit
Unit testing is a form of software testing where small

units of code are tested.

KUnit is a unit testing framework in the Linux kernel with

a unified structure that allows different subsystems to

use it. Only a Linux kernel repository with version 5.5

and up and its dependencies are needed to run it.

AMD Display Driver
This driver can be divided into two pieces: Display Core

(DC) and Display Manager (DM). We wrote unit tests for

the DC component, in particular, the Display Mode Li-

brary (DML), which deals with floating-point arithmetic.

Using KUnit toWrite Tests
We relied on equivalence partitioning and boundary-

value analysis techniques for devising test cases and also

analyzed past regressions in the code to cover them.

Figure 1 shows the tests for abs_i64() based on these

methodologies and using KUnit API.

/**
* abs_i64_test - KUnit test for abs_i64
* @test: represents a running instance of a test.
*/
static void abs_i64_test(struct kunit *test)
{

KUNIT_EXPECT_EQ(test , 0ULL, abs_i64(0LL));
KUNIT_EXPECT_EQ(test , 1ULL, abs_i64(-1LL));

/* Argument type limits */
KUNIT_EXPECT_EQ(test , (uint64_t)MAX_I64 , abs_i64(MAX_I64));
KUNIT_EXPECT_EQ(test , (uint64_t)MAX_I64 + 1, abs_i64(MIN_I64));

}

Figure 1. Test cases written for abs_i64() using KUnit

static uint64_t abs_i64(int64_t arg)
{

if (arg >= 0)
return (uint64_t)(arg);

else
return (uint64_t)(-arg);

}

Figure 2. abs_i64() definition

Test Coverage

By combining KUnit and Gcov, we generate test cover-

age reports. Figures 3, 4, 5, and 6 show part of the test

coverage we achieved.

Figure 3. Report generated with Gcov showing the test coverage from DMUB

Figure 4. Report generated with Gcov showing the test coverage from DML

Figure 5. Report generated with Gcov showing the test coverage from fixed_3132

Figure 6. Report generated with Gcov showing the test coverage from bw_fixed

Lessons Learned
In low-level systems, unit testing presents challenges as

we deal with code closer to the metal and potentially

hardware-dependent.

Testing static functions, although not encouraged by

some software engineering practitioners, does have its

advantages, especially when testing the public functions

that use them is infeasible.

Running unit tests without the specific hardware is eas-

ier than we first thought it would be because the code

we tested was mostly self-contained.

Device mocking was not necessary, a concern we had

as we wanted the tests to be run without the specific

hardware.

Magali Lemes do Sacramento <magalilemes@usp.br>
Institute of Mathematics and Statistics, University of São Paulo
Advisors: Paulo Meirelles (IME-USP) and Rodrigo Siqueira (AMD)

