
Linux Device Driver Development:

a report from the trenches

Marcelo Schmitt

Capstone project

mac 0499

Program: Computer Science

Advisor: Prof. Dr. Paulo Meirelles

Coadvisor: Prof. Dr. Fabio Kon

During this work, the author was supported by the

São Paulo Research Foundation - Brazil (FAPESP)

São Paulo

December 05th, 2019

i

Acknowledgments

For supporting me throughout this work I acknowledge my mother Marlene and

my brother Victor, who were patient in putting up with my complaints over a year of

development. A great thank to Rodrigo Siqueira Jordão for teaching me the basics of

kernel development and encouraging me to go further; my college mentor Paulo R. M.

Meirelles for being understanding and supportive; and to everyone who participated at

FLUSP (FLOSS at USP), for their partnership in learning how to contribute to free software

projects. Last but not least, a special thanks to Stefan Popa, Alexandru Ardelean, Dragos

Bogdan, Jonathan Cameron, and Rob Herring, for providing me guidance to develop a

high-quality device driver for the Linux kernel. Thank you all.

Resumo

Marcelo Schmitt. Linux Device Driver Development. Monogra�a (Bacharelado). Instituto

de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2019.

O propósito deste trabalho é desenvolver um driver no kernel Linux para controlar a oper-

ação de dispositivos AD7292. O AD7292 é uma especi�cação de circuito integrado que de-

screve um chip contendo ADC, DACs, sensor de temperatura, e GPIOs, sendo recomendado

como um sistema de monitoramento de sinais analógicos e controle de outros dispositivos.

Para atingir o objeitvo proposto, foram desempenhadas uma série de atividades coerentes

com as práticas de desenvolvimento de software livre. A metodologia adotada contou com

a leitura do datasheet do circuito integrado, consulta à documentação do projeto, análise de

outros drivers com funcionalidade similar, submissão de versões preliminares do código fonte

para a revisão por membros da comunidade, revisão bibliográ�ca, consulta a sites e blogs.

Devido ao êxito nesse processo, o driver desenvolvido foi aceito pela comunidade Linux e

estará disponível a partir da versão 5.5 do kernel Linux. Esta primeira versão permite tomar

leituras analógicas ao comando do usuário ou de uma aplicação. O término deste trabalho

abre caminho para uma série de novos trabalhos na direção de produzir um driver capaz de

tirar proveito de outras funcionalidades de dispositivos AD7292.

Palavras-chave: Linux. device driver. free software.

Abstract

Marcelo Schmitt. Linux Device Driver Development:: a report from the trenches. Under-

graduate Thesis (Bachelor). Institute of Mathematics and Statistics, University of São Paulo,

São Paulo, 2019.

The purpose of this work is to develop a Linux kernel device driver to control the operation

of AD7292 devices. The AD7292 is an integrated circuit speci�cation that describes a chip

containing ADC, DACs, temperature sensor, and GPIOs, which is recommended as an analog

signal monitoring and control system for other devices. To achieve the proposed goal, a se-

ries of activities were performed consistent with the practices of free software development.

The methodology adopted included reading the integrated circuit datasheet, consulting the

project documentation, analyzing other drivers with similar functionality, submitting prelim-

inary versions of the source code for review by community members, bibliographic review,

consulting both websites and blogs. Due to the success of this process, the driver developed

has been accepted by the Linux community and will be available from version 5.5 of the Linux

kernel. This �rst version allows one to obtain analog readings through userspace applications.

The completion of this work paves the way for a host of new work toward producing a driver

that can take advantage of other AD7292 features.

Keywords: Linux. device driver. free software.

vii

Contents

1 Introduction 1
1.1 Objective . 2

1.1.1 Practices . 2

1.2 Conventions used in this work . 4

1.3 Manuscript Structure . 4

2 Linux kernel development 5
2.1 Linux development model . 5

2.1.1 Kernel Subsystems . 6

2.1.2 Communities and mailing lists 6

2.2 The Linux Device Model . 7

2.2.1 The Device Model and the IIO subsystem 8

2.3 How to contribute to the IIO subsystem 8

3 System Build 11
3.1 The Kernel Build System (kbuild) . 11

3.1.1 Con�guration Options . 11

3.1.2 Con�guration Symbols . 12

3.1.3 Defcon�g . 13

3.1.4 Kbuild Make�les . 13

3.2 Kernel Compilation . 14

3.2.1 Kernel Cross Compilation . 14

3.3 Devicetree . 15

4 Device Driver Implementation 19
4.1 AD7292 device driver . 19

4.1.1 SPDX License Identi�ers . 19

4.1.2 Register de�nitions . 20

4.1.3 Bit manipulation macros . 21

viii

4.1.4 IIO channels . 22

4.1.5 Device private data . 24

4.1.6 SPI messaging . 25

4.1.7 read_raw operations . 26

4.1.8 Driver static information . 28

4.1.9 Device probing . 28

4.1.10 Managed device resources . 29

4.1.11 Properties from devicetree nodes 30

4.1.12 Driver compatibility . 31

4.2 Linux maintainers . 31

5 Final remarks 33

6 Personal Appreciation 35

Appendices

Annexes

References 37

1

Chapter 1

Introduction

Linux1 is one of the most signi�cant software projects in history and has been present
in the development of various areas of computing. Since November 2017, all top 500
supercomputers use Linux [34]. As of 2017, GNU2/Linux operating systems run 90 percent
of the public cloud workload [17]. As of April 2018, Linux was used on about 70 percent of
devices employed in IoT applications [16].

Around Linux, vibrant free source communities grow. These groups nest many devel-
opers who contribute to making people’s lives better; by the challenge of dealing with
low-level software in a cutting-edge system; or just by the fun and learning provided by
the development process. By opening the source code and ensuring it is always free, Linux
kernel developers make it possible for the system to be completely auditable, reducing
security issues and mitigating user surveillance. Also, free software encourages knowledge
sharing and collaborative development, empowering both developers and users.

Linux is an operating system kernel responsible for controlling the operation of com-
puter hardware and granting useful abstractions for resource management. The Linux
source code is organized into subsystems, each responsible for smaller portions of the
functionality provided by the kernel. Within many of these subsystems, there are software
components responsible for managing distinct hardware devices. These components are
called device drivers.

Drivers are fundamental to the functioning of Linux. Each hardware component must
have an appropriate driver to work correctly. As new devices come to the market, new
drivers must be developed to allow Linux to operate with this equipment. Thus, developing
drivers for Linux increases the number of tools that can be used with free software, makes
the technology more accessible, promotes knowledge production, foster the development
of the free software community.

1https://www.linuxfoundation.org/projects/linux/
2https://www.gnu.org/

2

1 | INTRODUCTION

1.1 Objective

The purpose of this work is to develop a kernel device driver for AD72923 devices.
AD7292 chips were designed by Analog Devices Inc. to work as a general-purpose mon-
itoring and control system with an ADC, four DACs, a temperature sensor, and up to
twelve GPIOs.

1.1.1 Practices
The development principles that guided this work arise from the combination of

several open-source development practices. These practices and their importance are
brie�y described next:

Driver source code reading

Some device drivers may use similar data structures, mainly when they handle devices
with related functionality. Because of that, reading source code from existing drivers may
help to develop software for unsupported devices. More generally, studying how other
drivers work conduces to a wider understanding of the surrounding subsystem. Since
code in the Linux kernel is reviewed by experienced developers, the insights learned from
in-tree code may avoid starting a discussion about established solutions. Thus, taking
advantage of expertise from other drivers may improve community conversations and
shorten development time. Speci�cally in this work, reading drivers from the Industrial
Input Output (IIO) subsystem was very helpful. Some analog-digital converter drivers
from which inspiration was drawn are ad7768-1, ad7124, ad7793, ad7923, ad7766, and
ad7949.

Datasheet reading

The document that describes the characteristics of an integrated circuit is referred to
as the part datasheet. A datasheet often speci�es technical details about a product, such
as main components, power supply, operation modes, connectivity with other devices,
etc. Reading the datasheet is of extreme importance during device driver development
since it is necessary to understand hardware details to correctly handle device operation.
For instance, the AD7292 datasheet summarizes chip features, explains the overall device
operation, list speci�cations for ADC and DAC components, documents register structure,
depicts the communication protocol supported, details other relevant chip features.

Code review

Code reviews o�ered by the Linux community provide valuable tips on how to improve
the software being developed. They also guide development by pointing out the tasks
that may be prioritized, which APIs might help, what other drivers may be used as
inspiration to improve existing code or to add functionality. Because code quality is a
key factor to determine whether code may be included in the Linux kernel, reviewers
may worry about many issues. One might check for race conditions, memory leakage,

3https://www.analog.com/en/products/ad7292.html

1.1 | OBJECTIVE

3

code style conformity, or any other question regarding code quality. Due to this, it is not
uncommon for a subsystem maintainer to decline a code contribution. Nevertheless, getting
suggestions for improvement is a valuable learning mechanism for newcomers. Throughout
the development of the AD7292 driver, the source code was reviewed mainly by Stefan
Popa, Alexandru Ardelean, Dragos Bogdan, Jonathan Cameron, and Rob Herring.

Literature review

Books on Linux kernel development are a great source of information but should be
read with the assistance of the latest Linux source code. Since Linux is continually changing,
literature tends to become outdated as the kernel is updated. Nevertheless, books contain
concepts that may not be detailed in the documentation or would otherwise be di�cult
to grasp from the code. Some remarkable publications are “Linux Device Drivers”, from
Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman; “Linux Device Drivers
Development”, from John Madieu; and “Understanding the Linux Kernel”, from Daniel P.
Bovet, Marco Cesati.

Linux Kernel Documentation Reading

The kernel has extensive documentation available along with the source code, inside the
Documentation directory, which is also available on the o�cial Linux kernel documentation
site at https://www.kernel.org/doc/html/latest/. Documentation is handy as a quick way
to search through the internal API since tools like �nd and grep allow one to quickly �nd
pages of interest.

Search through websites and blogs

Websites and blogs provide an additional source of information. Within blog posts, it
is easier to �nd content that addresses a speci�c problem. It is also common to spot pages
that explain how a particular kernel part works or how to implement a feature. Some sites
and blogs that were helpful through the development of the AD7292 driver are the OS
Journey4, ST wiki5, Raspberry Pi documentation6, Linux Journal7, embedded Linux wiki8,
analog devices wiki9, FLUSP site10.

Participate in local developer groups

Sharing experiences may indicate that a problem might be solved by some known
implementation. Describing what one wants allows others to help with solving the issue.
Expressing yourself is easier when face-to-face with other developers, that is why par-
ticipating in local developer groups o�er a great way of getting assistance. During the

4https://oslongjourney.github.io/linux-kernel
5https://wiki.st.com/stm32mpu/wiki/Category:IIO
6https://www.raspberrypi.org/documentation/
7https://www.linuxjournal.com/
8https://elinux.org/Main_Page
9https://wiki.analog.com/software/linux/docs/iio/iio

10https://�usp.ime.usp.br/

https://www.kernel.org/doc/html/latest/

4

1 | INTRODUCTION

development of the AD7292 driver, sharing experiences with the FLUSP (FLOSS at USP)
developer group was of signi�cant help in solving development dilemmas.

Analysis of test results

It is good practice to (whenever possible) test every piece of code before submitting it
to the kernel community. In the particular case of device drivers, performing hardware test
reveals whether the software is working as expected and, otherwise, lets one investigate
what is not working as it should be. Throughout the development of the AD7292 driver,
numerous tests have done on the AD7292 evaluation board.

1.2 Conventions used in this work
In this work, the following typographic convention will be used:

• italic will be used to indicate �les, directories, environment variables, computer
programs, and options inside computer programs.

• monospaced will be used to indicate computer programming instructions or com-
mands that are meant to be executed in a shell.

• bold will be used to emphasize important concepts or to highlight possible pitfalls.

1.3 Manuscript Structure
This work has �ve other chapters. Chapter 2 presents the software development process

in the Linux kernel and introduces the Linux Device Model framework for the development
of device drivers. Then, Chapter 3 introduces the properties of system build con�guration
needed to understand the details of a device driver implementation. After that, Chapter 4
provides an overview of device driver elements with examples based on the AD7292 driver
implementation. Next, Chapter 5 presents the results obtained from the driver development
and some �nal considerations. Lastly, Chapter 6 shares a personal appreciation of the
work.

5

Chapter 2

Linux kernel development

Developing software for Linux requires not only technical skills but also working
together with the community. This chapter introduces fundamental concepts about the
software development process employed by the Linux kernel community. Next, the core
concepts of the device model framework are covered, and �nally, some strategies on how
new developers can start contributing to the Linux kernel are discussed.

2.1 Linux development model
The Linux development model works through a chain of trust scheme. No one directly

changes the widely distributed kernel code, except for leading maintainers Linus Torvalds
and Greg Kroah-Hartman. The Linux kernel development process is organized in develop-
ment cycles composed by a “merge window” and a “stabilization phase”. At the beginning
of each cycle, Linus receives contributions from other kernel maintainers in the form of
patches1 or pull requests2 which contain code deemed to be su�ciently stable. During
this period of approximately two weeks, Linus merges the contributions into his mainline
kernel repository at a rate approaching 1,000 changes per day. At the end of this time, he
closes the merge window and announces the �rst release candidate for the next kernel
version [12].

The next part of the release life cycle is the “stabilization phase” in which Linus accepts
bug �x patches. Throughout the next six to ten weeks kernel developers shall try to
hunt down bugs and regressions3 while testing system stability. During this stage, Linus
publishes a new release candidate (“-rc”) kernel roughly once a week. The bug �xes sent
on the �rst week of stabilization get incorporated in the second release candidate (the �rst
candidate is produced when the merge window is closed), for example, mainline-5.5-rc2.

1A patch is a change in the source code of the Linux kernel. Patches may change several code lines but
ideally, only one single logical change should be made per patch.

2A pull request is an invitation to accept code changes (patches) from a particular codebase. When a
pull request is accepted, changes from the codebase kept by the requesting developer are incorporated into
the repository managed by some responsible maintainer.

3Regression is a change that causes something to break for existing users, i.e., code that produces soft-
ware unable to support previous existing features.

6

2 | LINUX KERNEL DEVELOPMENT

Subsequent candidates (-rc3, -rc4, ...) are generated with �xes sent on the following weeks
until the kernel is considered to be su�ciently tested and free of regressions. At this point,
Linus declares the last candidate to be the intended kernel version and the development
cycle for the mainline kernel starts over again.

When a new mainline kernel is released, it is taken to be the latest stable kernel which
is often shipped within GNU/Linux operating systems such as Debian, Ubuntu, Arch,
and Manjaro. Each stable kernel receives bug�xes backported from the mainline on an
as-needed basis until the next mainline release is available. At this point, support for
the current stable kernel is discontinued and the newest kernel release starts to receive
updates. The exception for this rule is the longterm maintenance releases, which continue
to receive bug�xes for an extended amount of time. Stable kernels are maintained by the
stable team lead by Greg Kroah-Hartman [18, 12].

Since the Linux kernel is a huge project receiving thousands of patches every week,
it is impossible for one person to review all the contributions sent. To deal with such a
problem, the Linux community has organized the kernel into several repositories (trees),
each intended to group contributions for a given set of functionality. These kernel trees are
publicly available from the Linux kernel page4 and many of them are intended to receive
contributions for a single kernel subsystem.

2.1.1 Kernel Subsystems
“A subsystem is a representation for a high-level portion of the kernel as a whole [20].”

It can also be grasped as an abstraction to refer to some part of the kernel responsible for
some speci�c functionality. When Linux kernel version 2.6 was released, it contained a
struct subsystem composed by a kset and an access semaphore. The usual registration of
a kset result in the creation of a sysfs directory. Then, at that time, a directory at the top
of the sysfs hierarchy would also be considered a subsystem. Buses are also considered to
be kernel subsystems as well.

There is one kernel tree for each subsystem. Developers designated as responsible for
a subsystem kernel tree are then called subsystem maintainers. A subsystem is also often
associated with a mailing list and a developer community.

2.1.2 Communities and mailing lists
The Linux community correspond mainly through the kernel mailing lists at vger.

kernel.org. The vger.kernel.org domain was created to provide email list services to Linux
kernel developers, allowing them to discuss updates, ask for help, submit patches, request
comments, get and o�er code reviews [36].

Most of kernel mailing lists are listed in the vger-listspage5. The subscription process
in each of those lists is managed by a mailing list manager called Majordomo, which only
takes (correct) actions when triggered by emails in a speci�c format [2, 28]. Emails sent
to Majordomo must be in TEXT/PLAIN (i.e., must not contain any HTML tags), should

4The Linux Kernel main page: https://www.kernel.org/
5http://vger.kernel.org/vger-lists.html

vger.kernel.org
vger.kernel.org
https://www.kernel.org/

2.2 | THE LINUX DEVICE MODEL

7

have no multipart sections, nor anything “fancy” [37]. These rules apply to any email
sent to Majordomo@vger.kernel.org and are also followed as good practice on most of the
kernel mailing lists.

It is important to be aware of the development process and how to interact with
the developer community by email. However, for driver developers, it is also relevant to
understand the fundamental concepts of the device model present in the Linux kernel.
Since a basic comprehension of the device model is required to understand most of this
work, the next section brie�y explains the core concepts associated with it.

2.2 The Linux Device Model

In Linux versions before 2.6, there was no much information about how the parts of the
kernel interacted with each other, nor a standard structure that developers could use for
driver programming. The absence of such foundation was partly because older hardware
exposed very di�erent interfaces, partially because the kernel was working well [21, 6,
29].

However, the appearance of more sophisticated devices, as well as the standardization of
some hardware interfaces, have lead developers to build a common infrastructure to handle
hardware components. This infrastructure is known as the Linux Device Model (LDM).
The LDM provides common abstractions for device driver development and standardizes
the implementation of desirable features such as:

Power management: control procedures to shut down, suspend, or resume device oper-
ation.

Event handling: Handle device insertion and removal. Do transparent resource alloca-
tion when setting up new devices.

Object lifecycle management: Reference counting and resource management Auto-
matic release of resources when objects are no longer referenced. Widely used in
managed resources (devres).

Userspace interface: Communication with userspace through a virtual �le system called
sysfs. LDM object control implementation is heavily used by sysfs.

Device classes: Device grouping by type or functionality. Applications are often inter-
ested in what kind of devices are available rather than how they are connected.

To create a framework capable of supporting all these features while encouraging code
reuse, the LDM relies on three major abstractions: buses, devices, and drivers.

“A bus is a channel between the processor and one or more devices [22].” Within the
LDM, the struct bus_type represents a bus. Devices and drivers should be registered on
the appropriate bus, which maintains a list for each of these object types. Whenever some
registration event occurs (a device or a driver register), the bus traverses the complementary
list calling the match function to check whether the registered asset can handle some
device (if its a driver) or can be managed by a driver (if its a device) [7, 23]. Buses are also

8

2 | LINUX KERNEL DEVELOPMENT

responsible for giving support to other features such as power management functions,
direct memory access (DMA) con�guration routines, event handling.

Devices are represented by struct device, which is the lowest abstraction level for
devices in the Linux kernel. A device holds data that is used by the LDM to model the
system. A device instance usually has a name, a reference counter, a pointer to the bus its
sitting on, a pointer to the driver managing its operation, a reference to its father device in
device hierarchy, a reference to its associated node within the devicetree, a list of managed
resources, the class it belongs to, among other attributes.Because they are relatively simple,
subsystems typically "extend" the base device by embedding it within some bus-speci�c
device structure.

“A driver is a piece of software whose aim is to control and manage a particular
hardware device, hence the name device driver [30].” The struct device_driver represents
device drivers in the LDM. Each driver instance is registered on a bus and can manage
multiple device instances. The device model keeps track of drivers to allow new devices to
link against them [24]. Drivers have functions for probe initialization, power management
(shutdown, suspend, resume), device removal, and debugging. Like devices, drivers also
often have more speci�c representations in subsystems by struct embedding.

Bus, driver, and device attributes have their values exposed to the user space through
sysfs. sysfs is a memory-based virtual �le system intended to provide a means of exporting
kernel structures to the user space. By default, all buses, drivers, and devices are represented
in sysfs by a directory with their name. Attributes of these objects are exposed as �les
within the directory associated with the object that owns them. For example, the IIO
subsystem bus has its name attribute exposed by the /sys/bus/iio/name �le.

2.2.1 The Device Model and the IIO subsystem
From the LDM perspective, the IIO subsystem takes on the role of a bus (see details in

drivers/iio/industrial-core.c). Industrial I/O core extends managed resources functionality
to allow self-management of bu�ers, triggers, and data channels. To provide additional
functionality, IIO also de�nes a more device-speci�c representation, iio_dev. Devices
iio_dev can de�ne data channels that group information about a particular type of reading
that hardware can take. The IIO framework automatically sets device attributes to expose
channel data in sysfs. In analogy to the concept of OO encapsulation, IIO also has a
mechanism for supporting device private attributes.

2.3 How to contribute to the IIO subsystem
The �rst step to start contributing to the IIO subsystem is to subscribe to the sub-

system mailing list. The kernel mailing lists page (http://vger.kernel.org/vger-lists.html)
has some useful links for that. Once registered, the developer can participate in the
discussions by learning about standard features of temperature sensors, pressure sensors,
digital-analog converters, among other devices that have their drivers implemented on
the subsystem.

A recommended initial approach is to choose a driver under the drivers/staging/iio

http://vger.kernel.org/vger-lists.html

2.3 | HOW TO CONTRIBUTE TO THE IIO SUBSYSTEM

9

directory and then write an email to the list asking for guidance on which features should
be implemented to have the driver moved to the main IIO folder under drivers/iio. Often,
the suggestions provided by the community helps to learn how the driver works, which is
essential to improve it. Depending on the driver picked up, the process of enhancing it
might lead to a substantial understanding of the IIO subsystem. This strategy suggests
working towards moving the driver from staging to the main directory as a natural goal.
Unfortunately, this approach hasn’t been much applicable in recent times since the number
of drivers in staging has dramatically decreased, and the remaining drivers require more
complex modi�cations.

An alternative strategy is to participate in some incentive programs for new open
source developers, such as Outreachy and Google Summer of Code. These are outstanding
programs that o�er mentorship to guide early contributions as well as a cash grant.
Many free software organizations submit project proposals planed to aid introducing
developers to their communities. With the help of one or more tutors, students have the
opportunity to work on these projects developing software meaningful for the growth of
the supporting organization. Throughout this experience, newcomers get tightly involved
with the community while learning how to produce their �rst contributions. The Linux
Foundation is the organization that submits the projects related to the Linux kernel.

A third route to start contributing is by joining local developer groups. Experienced
participants in these communities readily o�er help to newcomers, acting as mentors
during their �rst patches. An additional bene�t of engaging those groups is the possibility
to have a smoother introduction to the development process by participating in events
such as hackathons, lectures, workshops, meetings, etc. Examples of the mentioned groups
are the FLUSP6 and LKCAMP7 student groups.

The most usual way of contributing to the IIO subsystem is to develop new device
drivers or to send incremental patches �xing bugs or enhancing functionality on existing
drivers. Other tasks are also welcome, though. The IIO core is not an immutable system
and often receives contributions to extend its API and make it more e�cient. Proper
documentation is also a key asset in projects such as the Linux kernel. Improving the
documentation has the potential to smooth the initiation of newcomers, presenting good
practices, explaining the development model and �ow of contributions, providing examples
on how to use existent API. Also, reviewing patches from others is a great doing to the
community. The more people looking at code, the higher are the chances someone �nds
out a way of improving it. Code testing is another good practice that can unravel bugs that
may be promptly tackled by the community in sequence. All of these leads to improved
software quality, pushing Linux to the status of one of the most stable kernels in the
world.

The following chapters deal with strictly technical aspects related to the kernel building
process and the operation of an IIO driver. Readers who are not interested in these technical
details are advised to go directly to Chapter 5.

6https://�usp.ime.usp.br/
7https://lkcamp.gitlab.io/

11

Chapter 3

System Build

This chapter presents an introduction to both the Linux kernel build system and
devicetree infrastructure. The former is responsible for generating the appropriate kernel
modules and images according to stored con�guration and compilation �ags. The latter
provides a way of telling the kernel what the hardware layout is. The basic knowledge of
these is necessary to understand further changes a driver implementation does besides its
core �le.

3.1 The Kernel Build System (kbuild)
The Kernel Build System (kbuild) is a framework based on make, �ex, and other GNU

tools that allows a highly modular and customizable compilation process for the Linux
kernel. Kcon�g and Kbuild Make�les implement most of the kbuild features. The framework
grants �exibility by conditional compilation based on con�guration options.

3.1.1 Con�guration Options
By default, kbuild Make�les use the con�guration options stored in the .con�g �le

under the kernel root directory. These options hold values for the con�guration symbols
associated with kernel resources (drivers, tools, features, etc.). Changes in the con�guration
options re�ect on what kbuild generates. Moreover, the con�guration options are orderly
sensitive. A disabled option may limit the visibility of dependent entries. Thus, directly
editing the .con�g �le requires caution. Nevertheless, to easy testing with con�guration
�les, an alternative .con�g may be set. Export the path to the KCONFIG_CONFIG variable
to use a custom con�guration source. For instance:

1 export KCONFIG_CONFIG=.my_config

Alternatively, we may set the .con�g �le just when invoking make.

1 make KCONFIG_CONFIG=.my_config

This option is not much used, though. Many of the thousand values hold by con-
�guration �les are common to multiple applications. A cleaner way of storing custom

12

3 | SYSTEM BUILD

values for con�guration symbols is to use defconfig. (We will look at defcon�g in Section
3.1.3).

3.1.2 Con�guration Symbols
The Kcon�g �les de�ne the con�guration symbols associated with the kernel resources.

As a general rule, a Kcon�g �le should only declare symbols for resources under the
same directory. Nearly all directories inside the kernel source tree have a Kcon�g �le.
Top Kcon�g �les include (source) Kcon�g �les from subdirectories thus, creating a tree
of con�guration symbols. To de�ne a con�guration symbol for the AD7292 driver, the
following entry was added to the Kcon�g �le at drivers/iio/adc/.

config AD7292
tristate "Analog Devices AD7292 ADC driver"
depends on SPI
help

Say yes here to build support for Analog Devices AD7292
8 Channel ADC with temperature sensor.

To compile this driver as a module, choose M here: the
module will be called ad7292.

The con�g keyword de�nes a new con�guration symbol, which in turn is presented as
a con�guration entry in the .con�g �le, within tools like menucon�g, ncon�g, or during
the compilation process. In particular, the AD7292 con�guration symbol has the following
attributes:

tristate: the type for the con�guration option. It declares that this symbol stands for
something that may be compiled as a module (m), built-in compiled (y) (i.e., included
in the kernel image), or not compiled at all (n). The type de�nition also accepts an
optional input prompt to set the option name that kernel con�guration tools display.

depends on: list of dependency symbols. If its dependencies are not satis�ed, this symbol
may become non-visible during con�guration or compilation time. As an experiment,
try to disable SPI1 support at Device Drivers. The AD7292 will no longer be listed at
Device Drivers → Industrial I/O support → Analog to digital converters.

help: de�nes a help text to be displayed as auxiliary info.

Additionally, if a con�guration option has no value, the default value is used. If no
default is available, the user will be prompted to assign it a value. Keep in mind that a con-
�guration option stores the value assigned to a con�guration symbol. Con�guration
options have the form CONFIG_<symbol>. For instance, CONFIG_AD7292 stores the value
for the AD7292 con�guration symbol.

The kernel source code comes with no .con�g �le, so one has to be created. Though the
compilation process can automatically generate con�guration �les, it will ask for many

1The Serial Peripheral Interface (SPI) is a communication protocol commonly used to exchange data
between computers and small peripherals.

3.1 | THE KERNEL BUILD SYSTEM (KBUILD)

13

con�guration values. If some incompatible values are assigned, the resulting image might
not work on the desired machine. Programs such as menucon�g and ncon�g present the
options available in a menu like interface. The user may use them to �nd out information
about each option as well as to assign values to them. The program then generates a
con�guration �le with the desired values. Non assigned symbols get default values or are
prompted for in the compilation process. Alternatively, one can use common values for
the platform of interest. These platform-speci�c values are stored in defcon�g �les.

3.1.3 Defcon�g
The purpose of defcon�g �les is to store only speci�c non-default values for compi-

lation symbols. For instance, one can �nd defcon�g �les for the ARM architecture under
arch/arm/con�gs/. The �les bcm2709_defcon�g, bcm2835_defcon�g, and bcmrpi_defcon�g
store the con�guration values commonly used for Raspberry Pi boards. To add a custom
con�guration value for the AD7292 symbol, add the following line to a defcon�g �le.

CONFIG_AD7292=y

The con�guration stored at a defcon�g �le may be applied to .con�g using its name as
a make target. For instance, to load con�guration options from bcm2709_defcon�g, one
may invoke:

1 make bcm2709_defconfig

Use the savedefconfig target to create a defcon�g �le from .con�g.

1 make savedefconfig

So far, we have seen how to de�ne a con�guration symbol and assign it a value.
However, we still need to understand how to make kbuild compile a driver source �le
according to a con�guration option. Some knowledge of kbuild make�les will help us to
do that.

3.1.4 Kbuild Make�les
The main goal of the kbuild Make�les is to produce the vmlinux (kernel image) and

modules. It builds them by recursively descending into subdirectories of the kernel source
tree [9]. Akin to Kcon�g �les, kbuild Make�les are also present in most kernel directories,
often working with the values assigned for the symbols de�ned by the former. According
to Javier Canillas:

The whole build is done recursively — a top Make�le descends into its sub-
directories and executes each subdirectory’s Make�le to generate the binary
objects for the �les in that directory. Then, these objects are used to generate
the modules and the Linux kernel image [1, 14].

Make�les in subdirectories should only modify �les in their own directory. Thus, we
include driver object �les in the list of kbuild compilation goals inside the nearby make�le.
For instance, the AD7292 driver has its entry inside drivers/iio/adc/Make�le:

1 obj-$(CONFIG_AD7292) += ad7292.o

14

3 | SYSTEM BUILD

To summarize the procedure of adding a feature to the Linux kernel, Canillas points
out three main steps:

- Put the source �le(s) in a place that makes sense, such as drivers/net/wireless
for Wi-Fi devices or fs for a new �lesystem.

- Update the Kcon�g for the subdirectory (or subdirectories) where you put
the �les with con�g symbols that allow you to choose to include the feature.

- Update the Make�le for the subdirectory where you put the �les, so the build
system can compile your code conditionally [1, 14].

Symbols, options, and make�les set up, we may now compile the kernel to test our
changes.

3.2 Kernel Compilation
To compile the Linux kernel, call GNU make at the root of the source dircetory.

1 make

The default target (_all) will build the bare kernel image (vmlinux), all of the modules,
and other architecture-speci�c artifacts. By default, the top Make�le sets $(ARCH) to be the
same as the host system architecture [15]. However, this may not re�ect the architecture
of the machine one want to run the kernel. Since di�erent computer architectures have
distinct instruction sets, code compiled in one computer may not work on another of
incompatible design. Nevertheless, it is often desired to use a host machine to generate
binaries compatible with a target machine of di�erent architecture. Doing so is called
cross-compilation.

3.2.1 Kernel Cross Compilation
Cross-compilation is assisted by kbuild mainly through the ARCH and CROSS_COMPILE

variables. ARCH set the target architecture, which is often the same name as the architecture
directory under the arch directory [13]. CROSS_COMPILE specify part of the cross compiler
�lename or the path to it. Both variables can be set in the shell environment or during the
invocation of make. To compile the Linux kernel for ARM do:

1 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make zImage modules dtbs -j 4

The compilation process might take some time (around half an hour on an x86 quad-
core machine). The number of CPU cores used for the compilation is set by the -j �ag. The
dtbs target makes kbuild compile the devicetree �les at arch/arm/boot/dts into devicetree
blobs that the boot process will pass to kernel. With the modules target, kbuild will build
code marked as module (m). The zImage refers to ARM speci�c image format. Di�erent
from the default vmlinux image, the zImage is a compressed kernel image. If everything
goes well, the last output lines should look like:

LD arch/arm/boot/compressed/vmlinux
OBJCOPY arch/arm/boot/zImage

3.3 | DEVICETREE

15

Kernel: arch/arm/boot/zImage is ready

The compilation process will create (or overwrite) the following �les:

• arch/arm/boot/zImage

• modules.order

• modules.builtin

• modules.builtin.modinfo

• arch/arm/boot/dts/*.dtb

• arch/arm/boot/dts/overlays/*.dtbo

Many devices integrate systems that run on ARM architecture computers. Though,
hardware discovery on the ARM architecture is not as straight forward as in the x86
architecture. In most x86 machines, the system kernel can discover what equipment is
available by looking at device tables provided by ACPI or UEFI compliant �rmware [8].
Most ARM-based devices are not like that, though.There is no implementation of the ACPI
standard nor any means of discovering which hardware is attached to the system [4, 31].
Moreover, ACPI raises many problems regarding performance and security [5]. Due to
this, the Linux kernel development has been adopting an alternative way to recognize
hardware layout, the Devicetree.

3.3 Devicetree
The Device Tree (DT) is a speci�cation on how to describe the hardware on a given

system. It is concise, yet very expressive. A devicetree source (DTS) �le is a data structure
made out of nodes that hold information about each hardware component in a single
board computer (SBC) or system on a chip (SoC). Nodes may have property de�nitions
and child node de�nitions. Properties can hold 32-bit integer cells, strings, hexadecimal
bytestrings, references to other nodes, or can be left empty. To simplify node referencing
and make the structure more readable, developers may use labels to create aliases to nodes.
DTS may also include de�nitions from devicetree include �les (DTSI), which in turn may
incorporate de�nitions from other DTSI as well [27].

The Device Tree Compiler (DTC) turns DTS into Device Tree Binary (DTB) �les. A
DTB is a �attened binary blob that encodes devicetree data within a compact pointerless
structure. A DTB �le is passed to the system kernel by the bootloader or wrapped up with
the kernel image to support booting on legacy non-DT aware �rmware [27, 26, 35]. Early
in the boot, the kernel parses the DTB to identify the machine and execute any speci�c
platform setup. At some later point in the kernel initialization, the list of device nodes is
obtained from the DTB and used to populate the Linux Device Model with data about the
platform [26].

A device node is some devicetree node that describes a sensor device. Device nodes
have a compatible property that holds one or more strings specifying the device model
compatibility, from most speci�c to most general. The order is important to allow devices to

16

3 | SYSTEM BUILD

indicate their compatibility with families of device drivers. The recommend format is “man-
ufacturer,model”, where manufacturer stands for the manufacturer name (or codename),
and model stands for the device model name or number. For instance:

compatible = "samsung,exynos3250-adc", "samsung,exynos-adc-v2";

For a device node with such a compatible list, the �rst match attempt will be against a
device driver compatible with samsung,exynos3250-adc. If no such a driver is found, then
there will be a match try against a driver compatible with samsung,exynos-adc-v2.

Device node documentation followed a format derived from the Open Firmware (OF)
standard that was used mostly in PowerPC and SPARC platforms.These plain text docs
were not very restrictive about the structure of device nodes so, it was easy to make
mistakes when writing them. Developers are trying to avoid further misconceptions by
working in a set of validation tools known as dt-schema.

Devicetree schema �les (also known as DT bindings) describe how should be the
format of data in a DTS. Devicetree schema is written in YAML format and validated by
dt-schema to restrict the schema structure to a subset of the DT speci�cation proper for
describing device nodes. The purpose of writing devicetree schemas is to provide a way to
check whether a device node inside a DTS �le is correct and to provide documentation
about device binding. A DTS may contain nodes with di�erent properties; therefore,
many schema �les may be used to validate a single DTS [19]. The most common �elds of
devicetree schema are:

$id: an UID (unique identi�er) for the dt-binding.

$schema: the meta-schema that will be used to validate this binding.

title: documentation for the documentation.

maintainers: enum of maintainers.

description: mandatory property specifying what device binding is being documented
and where to �nd the device datasheet.

properties: list of custom properties for the device node. May include several subproper-
ties describing what a device node may contain and what values each subproperty
is expected to have.

required: enum of properties that must be present in a device node that describes such a
device.

examples: enum of examples showing how such a device node would appear in a DTS
�le. It is good practice to provide examples showing the usage of all the documented
properties.

A simpli�ed devicetree schema for AD7292 would look like Figure 3.1.

The AD7292 schema uses additional properties to describe an AD7292 device. Let’s see
what some of them mean.

compatible: string to match with supporting device drivers.

3.3 | DEVICETREE

17

1 $id: http://devicetree.org/schemas/iio/adc/adi,ad7292.yaml#
2 $schema: http://devicetree.org/meta-schemas/core.yaml#
3
4 title: Analog Devices AD7292 10-Bit Monitor and Control System
5
6 maintainers:
7 - Marcelo Schmitt <marcelo.schmitt1@gmail.com>
8
9 description: |
10 Analog Devices AD7292 10-Bit Monitor and Control System with ADC, DACs,
11 Temperature Sensor, and GPIOs
12
13 Specifications about the part can be found at:
14 https://www.analog.com/media/en/technical-documentation/data-sheets/ad7292.pdf
15
16 properties:
17 compatible:
18 enum:
19 - adi,ad7292
20
21 reg:
22 maxItems: 1
23
24 vref-supply:
25 description: |
26 The regulator supply for ADC and DAC reference voltage.
27
28 spi-cpha: true
29
30 required:
31 - compatible
32 - reg
33 - spi-cpha
34
35 examples:
36 - |
37 spi {
38 #address-cells = <1>;
39 #size-cells = <0>;
40
41 ad7292: adc@0 {
42 compatible = "adi,ad7292";
43 reg = <0>;
44 spi-max-frequency = <25000000>;
45 vref-supply = <&adc_vref>;
46 spi-cpha;
47 };
48 };

Figure 3.1: A simpli�ed devicetree schema for AD7292.

reg: the location of the device resources within the parent node address space. The
speci�cation for reg properties was designed to allow the description of (address,
length) pair values that point out the addresses, and how many bytes from each
address, are part of the speci�ed device resources. For SPI buses, it is only needed to
specify the chip select (CP) lane on which the device is connected. This can be done
with a single 32-bit unsigned integer thus, #address-cells is set to 1. Moreover, the
SPI protocol does not specify any means of a slave device exposing more than its
address to the master device. No memory range can be exposed directly on the bus.
Thus, #size-cells for SPI buses should always be zero.

spi-max-frequency: maximum SPI operating frequency.

18

3 | SYSTEM BUILD

vref-supply: AD7292 may be supplied with an external voltage reference. When present,
this property value points to the external reference. Otherwise, an internal voltage
reference is used.

spi-cpha: whether the chip requires shifted clock phase.

#address-cells: how many 32-bit cells are needed to express the children node addresses.
In the above example, the #address-cells property at the spi node speci�es that the
reg �eld of its children (such as the ad7292 node) will have only one 32-bit value for
addressing.

#size-cells: how many 32-bit cells are needed to express the children node address sizes.
In the above example, the #size-cells property at the spi node speci�es that the reg
�eld of its children nodes will not indicate any address range.

To insert an Analog Devices AD7292 control system into a devicetree, add it as a child
node of an SPI bus. A hypothetical simpli�ed DTS that includes an AD7292 device would
look like Figure 3.2.

1 / {
2 compatible = "hlusp,tommy", "poli,caninos";
3
4 cpus: cpus {
5 <cpu nodes>
6 }
7
8 memory@0 {
9 <memory properties>

10 };
11
12 spi: spi@7e204000 {
13 compatible = "poli,caninos-spi";
14 reg = <0x7e204000 0x200>;
15 #address-cells = <1>;
16 #size-cells = <0>;
17
18 ad7292: adc@0 {
19 compatible = "adi,ad7292";
20 reg = <0>;
21 spi-max-frequency = <25000000>;
22 vref-supply = <&adc_vref>;
23 spi-cpha;
24 };
25 };
26 };

Figure 3.2: An example of how an AD7292 device node would be set into a DTS �le.

Now that we understand the basics of how to provide drivers and devices to the system,
we may focus on understanding how a device driver implementation works on Linux.

19

Chapter 4

Device Driver Implementation

The purpose of this chapter is to provide an overview of how a device driver works
by studying the key elements from the AD7292 driver. Every subsection starts by �rst
exploring generic driver aspects and then providing examples based on the AD7292 driver
implementation. Each driver element will be addressed in the order in which it appears
in the source code and not in the order in which the system would access it. This way,
it is expected to be easier for readers to understand the role of each component in the
operation of a Linux device driver.

4.1 AD7292 device driver
The �rst version of the device driver for the AD7292 monitor and control system

provides support for single ADC readings. Through synchronous SPI messages, the Linux
kernel can communicate with AD7292 devices to issue analog measurements, retrieve,
and fathom collected data. Because the source code of a typical device driver in the IIO
subsystem can be broken down into snippets of distinct responsibility, the remaining
subsections of this chapter re�ect the burden of each one in the order they occur in
the AD7292 driver. Thus, the subjects addressed by this chapter are the SPDX license
identi�er, register de�nitions, bit manipulation macros, IIO channels, device private data,
SPI messaging, read_raw operations, driver static information, device probing, managed
device resources, properties from devicetree nodes, driver compatibility.

4.1.1 SPDX License Identi�ers
The Linux kernel is distributed under the GNU GPL-2.0 license, with a single exception

on the syscall interface that lies between the kernel and user-space programs. Device
driver source code should be compatible with the permission used by Linux, i.e., it should
comply with the GPL-2.0 or a combination of GPL-2.0 and other permissive licenses such
as MIT or BSD [3]

The common way to specify the license of a software is to add the license text in the
top of each source code �le. This, however, makes license tracking over kernel �les di�cult
since developers may add slightly di�erent excerpts for the same license, within distinct

20

4 | DEVICE DRIVER IMPLEMENTATION

comment style and formatting. To simplify the speci�cation of kernel source �les, the
Software Package Data Exchange (SPDX) license identi�ers are being used. SPDX provides
an alternative for license tagging that is easier to be machine parsed and thus, helpful for
the license tracking of the many Linux kernel source �les [3].

The ad7292 driver starts with the GPL-2.0 license identi�er to indicate it is distributed
as free software.

1 // SPDX-License-Identifier: GPL-2.0

4.1.2 Register de�nitions
SPI and I2C devices have registers responsible for storing internal state, alert signals,

measurement results, operating mode con�guration, etc. Though it is possible to address
registers with decimal integers, hexadecimal is preferred since most datasheets list register
addresses with hexadecimal numbers. Also, to improve code readability, register addresses
are often aliased by names related to their functionality. It is not di�erent in the AD7292
driver (see Figure 4.1).

1 /* AD7292 registers definition */
2 #define AD7292_REG_VENDOR_ID 0x00
3 #define AD7292_REG_CONF_BANK 0x05
4 #define AD7292_REG_CONV_COMM 0x0E
5 #define AD7292_REG_ADC_CH(x) (0x10 + (x))
6
7 /* AD7292 configuration bank subregisters definition */
8 #define AD7292_BANK_REG_VIN_RNG0 0x10
9 #define AD7292_BANK_REG_VIN_RNG1 0x11

10 #define AD7292_BANK_REG_SAMP_MODE 0x12

Figure 4.1: De�nitions for some AD7292 internal registers.

The usual formatting for register aliasing is:

<device model>_REG_<functionality>

Starting aliases with <device model> shall ensure they do not con�ict with any other
alias within the kernel. REG makes clear that the alias is about a device register. Lastly, a
<functionality> mnemonic helps to rapidly �gure out what the register is about.

The �rst alias stands for the register address that holds the vendor ID number. The
second alias point to the con�guration register bank address. The con�guration register
bank is the base address for many subregisters that hold operating con�guration, such
as the VIN range and sampling mode subregisters. The VIN range and sampling mode
subregisters will be described in later sections. Next, there is an alias for the conversion
command register address. To start ADC conversions, a conversion command must be
written to that address. Finally, an alias de�nition for the ADC conversion result registers.
These hold the result of ADC conversions on each of the AD7292 eight channels.

The AD7292 has other registers than the ones listed above. However, for the function-
ality implemented so far, these registers are enough.

4.1 | AD7292 DEVICE DRIVER

21

4.1.3 Bit manipulation macros
Bits contained in the same register may have di�erent meanings. For example, in a

16-bit register containing bits D0 through D15, the bits D0 and D1 may indicate alerts, the
bits D2, D3, D4 and D5 may indicate the ID of a read channel, while the bits D6 to D15 may
contain the result of an analog read. This is exactly the case of AD7292 ADC conversion
result registers.

To help dealing with such bit ranges, the kernel de�nes some useful macros:

BIT(nr): generates an unsigned long with only one bit set at index nr.

GENMASK(h, l): generates a contiguous bitmask setting the bits l through h (inclusive).

FIELD_GET(mask, reg): extracts the �eld speci�ed by mask from the bit�eld passed in
as reg by masking and shifting it down.

A bitmask is a bitstring that describes which bits are of interest within another
numeric value. Bitmasks are often set as a �xed value which has the bits at the desired
indexes set to 1. For instance, to get only the 6 rightmost bits of a value, one would de�ne
the following bitmask:

1 #define SOME_BITMASK 0x3F

The above bitmask would then be applied to some variable using the bitwise and
operator, like:

1 read_bits = x & SOME_BITMASK;

Bitmasks can be applied one over another allowing very speci�c data formatting. If
a developer would like to also have bit 7 set, then he/she would use the BIT macro as
bitmask as well. The following diagram shows the bits set into each of x, 0x3F, BIT(7) and
the result of applying the bitmasks.

Bit index 7 6 5 4 3 2 1 0
x x7 x6 x5 x4 x3 x2 x1 x0

& 0x3F 0 0 1 1 1 1 1 1
| BIT(7) 1 0 0 0 0 0 0 0

BIT(7) | (x & 0x3F) 1 0 x5 x4 x3 x2 x1 x0

Thus, the previous macro formats a data to contain the bit at index 7 set, the bit at
index 6 unset, and the bits at indexes 0 to 5 equal to the bits of some input x address.

Back to the ADC conversion result registers example, the GENMASK and FIELD_GET macros
may be used to extract the ADC conversion result bits from those registers. The bits of
interest are D6 through D15 so, a GENMASK(6, 15) would express those bits. However, just
applying the bitmask would leave the value with trailing zeros which doesn’t came out
from ADC output. To shift the returned value so that the ADC result bits becomes the
right most ones, the FIELD_GET macro might be used. Actually, FIELD_GET does both things.
It applies the bitmask de�ned by its mask argument, and does the bit shifting. Hence, to
obtain the bits from the result of an ADC reading, one should apply FIELD_GET(GENMASK(6,

22

4 | DEVICE DRIVER IMPLEMENTATION

15), x), where x stands for the value obtained from the conversion result register of a
channel.

Figure 4.2 shows macros de�ned to deal with AD7292 chip-speci�c registers and their
layout.

1 #define AD7292_RD_FLAG_MSK(x) (BIT(7) | ((x) & 0x3F))
2
3 /* AD7292_REG_ADC_CONVERSION */
4 #define AD7292_ADC_DATA_MASK GENMASK(15, 6)
5 #define AD7292_ADC_DATA(x) FIELD_GET(AD7292_ADC_DATA_MASK, x)
6
7 /* AD7292_CHANNEL_SAMPLING_MODE */
8 #define AD7292_CH_SAMP_MODE(reg, ch) (((reg) >> 8) & BIT(ch))
9

10 /* AD7292_CHANNEL_VIN_RANGE */
11 #define AD7292_CH_VIN_RANGE(reg, ch) ((reg) & BIT(ch))

Figure 4.2: AD7292 bit manipulation macros.

AD7292_RD_FLAG_MSK and AD7292_ADC_DATA work exactly as described above. The former
is applied to format register addresses into bitstrings for reading their values, the latter is
applied to get only the ADC conversion result bits from an ADC conversion result register.
AD7292_CH_SAMP_MODE and AD7292_CH_VIN_RANGE, respectively, help to obtain the sampling
mode and the voltage range of input channels from subregisters under the con�guration
register bank.

4.1.4 IIO channels
An IIO channel groups information about some sort of data a device can provide or can

be provided to. Not only the raw bits of data, but also important metadata that is meaningful
to application is grouped by IIO channels. It may include scale factor, o�set, data direction
(input/output), type of physical quantity being measured, etc. The speci�cation of an IIO
channel is de�ned by an iio_chan_spec struct. Among the many properties a channel can
have, the most important ones for the AD7292 operation are:

type: physical quantity being measured (voltage, current, temperature, accelerance, etc.)

indexed: some devices may have multiple channels of the same type in which case they
need to be indexed to avoid mistakes. This property indicates whether a channel is
indexed.

channel: if the channel is indexed, this de�nes what index it has.

info_mask_separate: indicates which information should be unique to the channel. For
each type of information a device attribute will be exported for exclusive use by the
de�ning channel.

info_mask_shared_by_type: indicates which information the channel will share with
other channels of the same type. One single attribute will be exported to serve all of
the channels of the same type that share the indicated information.

4.1 | AD7292 DEVICE DRIVER

23

info_mask_shared_by_dir: indicates which information the channel will share with
other channels of the same direction. One single attribute will be exported to serve
all the channels of the same direction that share the indicated information.

info_mask_shared_by_all: indicates which information the channel will share with
any other channel. One single attribute will be exported to serve all the channels
that share the indicated information.

di�erential: whether the channel is for di�erential analog read.

channel2: if di�erential is set then this is the second channel to operate as di�erential
pair. If a modi�er is applied to the channel then this value de�nes which modi�er.

output: the direction of the channel. 0 for input, 1 for output.

The analog input channels of AD7292 devices map to the IIO channels de�ned in the
device driver as can be seen in Figure 4.3.

1 #define AD7292_VOLTAGE_CHAN(_chan) \
2 { \
3 .type = IIO_VOLTAGE, \
4 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
5 BIT(IIO_CHAN_INFO_SCALE), \
6 .indexed = 1, \
7 .channel = _chan, \
8 }
9
10 static const struct iio_chan_spec ad7292_channels[] = {
11 AD7292_VOLTAGE_CHAN(0),
12 AD7292_VOLTAGE_CHAN(1),
13 AD7292_VOLTAGE_CHAN(2),
14 AD7292_VOLTAGE_CHAN(3),
15 AD7292_VOLTAGE_CHAN(4),
16 AD7292_VOLTAGE_CHAN(5),
17 AD7292_VOLTAGE_CHAN(6),
18 AD7292_VOLTAGE_CHAN(7)
19 };
20
21 static const struct iio_chan_spec ad7292_channels_diff[] = {
22 {
23 .type = IIO_VOLTAGE,
24 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
25 .indexed = 1,
26 .differential = 1,
27 .channel = 0,
28 .channel2 = 1,
29 },
30 AD7292_VOLTAGE_CHAN(2),
31 AD7292_VOLTAGE_CHAN(3),
32 AD7292_VOLTAGE_CHAN(4),
33 AD7292_VOLTAGE_CHAN(5),
34 AD7292_VOLTAGE_CHAN(6),
35 AD7292_VOLTAGE_CHAN(7)
36 };

Figure 4.3: AD7292 analog input channels.

AD7292 devices have 8 analog input channels (VIN0 to VIN7) multiplexed to a single
digital-analog converter. Each channel can provide di�erent measurements, and therefore,
the raw bits of the digital-analog conversion result should be made available separately for

24

4 | DEVICE DRIVER IMPLEMENTATION

each channel. Also, each analog channel can be con�gured with di�erent input ranges. The
input range directly in�uences the scaling factor that must be applied to convert the bits
from the ADC into real values (voltage measurement). Therefore, scale factor information
must also be made available separately for each AD7292 channel. Channel de�nitions are
stored in the vector ad7292_channels.

Optionally, the �rst two analog input channels (VIN0 and VIN1) can operate in dif-
ferential mode, allowing one to attenuate noise in ADC readings. This way, the �rst two
entries characterize a single IIO channel. An exclusive vector (ad7292_channels_diff)
stores channel de�nitions when VIN0 and VIN1 are con�gured to operate in di�erential
mode.

Devices created by the Linux Device Model expose a userspace interface through �les
and directories in the sysfs �le system. On older interfaces, it was common for records to
contain various information stored in di�erent formats. Userspace programs were then
required to parse those �les to get device information. However, this was discouraging for
interface maintenance because when kernel changes were needed, there was a high risk of
breaking applications in the user space if the parsing algorithms had to be changed.

To develop smoother integration between kernel and userspace, new drivers tend to
store only a few data in sysfs �les (a number, a pair of integers, a string, a boolean, etc.).
Thus, if the kernel changes internally and no longer provides some data, the �le that would
contain such value will no longer be created, and userspace programs may realize so by
checking the existence of such a record. Consequently, a change in the interface is less
likely to break applications.

An IIO device of index X, exposes its attributes in several �les under /sys/bus/i-
io/iio:deviceX. For channel-related data, �le names are constructed following a pattern
de�ned in the subsystem API at drivers/iio/drivers/iio/industrial-core.c.

Files with data provided by the AD7292 analog channels are named after the for-
mat <output>_<type><channel>_<mask> where <output> is the channel direction, <type>
is the type, <channel> is the index, and <mask> is the type of information the �le
holds. Di�erential read channels are exposed by �les whose name follows the format
<output>_<type<channel>-<type><channel2>_<mask>. A typical AD7292 device contains
the following �les and directories under its sysfs directory:

dev in_voltage3_scale in_voltage6_raw of_node
in_voltage0-voltage1_raw in_voltage4_raw in_voltage6_scale power
in_voltage2_raw in_voltage4_scale in_voltage7_raw subsystem
in_voltage2_scale in_voltage5_raw in_voltage7_scale uevent
in_voltage3_raw in_voltage5_scale name

In general, IIO channel names re�ect the characteristics that de�ne them. More exam-
ples of channels can be found in the IIO subsystem elements documentation [10].

4.1.5 Device private data
It is common for a device driver to de�ne custom data structures for the operation of

supported devices. Often, a “state” struct group (encapsulate) the device private data. With

4.1 | AD7292 DEVICE DRIVER

25

macros and functions exported by the LDM together with the IIO API, one can retrieve
the generic devices associated with a state struct instance to gain access to more generic
functionality. Thus, looking from an object-oriented programming (OOP) point of view,
the relationship between the iio_dev (superclass) and the state (subclass) structs is much
like an inheritance. Thanks to it, some of the bene�ts from OOP may be enjoyed by Linux
kernel developers.

The struct ad7292_state in Figure 4.4, de�nes the attributes that are private for each
AD7292 device.

1 struct ad7292_state {
2 struct spi_device *spi;
3 struct regulator *reg;
4 unsigned short vref_mv;
5
6 __be16 d16 ____cacheline_aligned;
7 u8 d8[2];
8 };

Figure 4.4: State struct that holds AD7292 device private data.

spi : parent SPI device.

reg : voltage regulator device. Used in case the AD7292 device has been con�gured to use
an external voltage reference.

vref_mv : voltage reference im milivolts.

d16 : bu�er used for reading device registers.

d8 : bu�er used to write in device registers.

4.1.6 SPI messaging
The kernel SPI subsystem provides two useful structs for organizing data transmission,

spi_message and spi_transfer. A spi_transfer represents a simple transfer of data from
the computer to the device or vice versa. This struct speci�es a data read and write bu�ers,
the number of bytes to be read and written, the delay between transfers, among other
transmission options. A spi_message represents a transaction formed by a sequence of
spi_transfer. It groups multiple SPI transfers, ensuring that each transfer occurs in the
order speci�ed by its transfer vector.

To perform an analog read on AD7292 devices, you must �rst write to the conversion
command register, signaled to the device that initiates a digital-analog conversion process.
The result of the conversion is stored in one of the ADC conversion result registers. Hence,
two SPI transfers must be done sequentially. The �rst writes the bits to order the start of
an ADC conversion, which results will be fetched by a second one that reads from one of
the result registers. An SPI message encapsulates both transfers in the correct order so the
SPI subsystem can do the transmission as desired.

Figure 4.5 shows how an spi_transfer is �lled in the AD7292 driver. The
spi_sync_transfer function assigns the t vector to an spi_message and then dispatches it

26

4 | DEVICE DRIVER IMPLEMENTATION

to the device.

1 static int ad7292_single_conversion(struct ad7292_state *st,
2 unsigned int chan_addr)
3 {
4 int ret;
5
6 struct spi_transfer t[] = {
7 {
8 .tx_buf = &st->d8,
9 .len = 4,

10 .delay_usecs = 6,
11 }, {
12 .rx_buf = &st->d16,
13 .len = 2,
14 },
15 };
16
17 st->d8[0] = chan_addr;
18 st->d8[1] = AD7292_RD_FLAG_MSK(AD7292_REG_CONV_COMM);
19
20 ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
21
22 if (ret < 0)
23 return ret;
24
25 return be16_to_cpu(st->d16);
26 }

Figure 4.5: Function developed to take analog readings form AD7292 devices.

4.1.7 read_raw operations
The IIO system allows the de�nition of call back functions for reading and writing on

the device. The read_raw is responsible for requesting values from the device while the
write_raw is accounted for pushing data to it. Both operate based on the channel de�nitions
assigned to the device channel list. They take as argument a reference to the device, a
reference to the speci�cation of the channel, the type of information to access, and then
call underlying routines to provide requested data or perform desired operations.

So far, the current implementation of the AD7292 read_raw function deals only with
two types of information: the simple analog conversion reading (IIO_CHAN_INFO_RAW), and
the scale associated with a channel (IIO_CHAN_INFO_SCALE).

When an analog read is requested, the �rst thing to do is to call the AD7292_REG_ADC_CH
macro to return the conversion result register address that is going to be read. Next, the
ad7292_single_conversion function takes care of issuing an ADC conversion command
and returning the bits stored in the result register. The SPI communication may fail, so the
return code is checked. After that, AD7292_ADC_DATA extracts only the bits that represent the
result of the analog conversion, which are then assigned to *val. Lastly, ad7292_read_raw
returns IIO_VAL_INT to indicate to the IIO subsystem to print the result value (*val) in the
sysfs �le whose reading resulted in a call to this function (see Figure 4.6).

When a scale value is requested, ad7292_vin_range_multiplier reads from both ADC
sampling mode and VIN range subregisters to calculate the correct range multiplier. Each

4.1 | AD7292 DEVICE DRIVER

27

AD7292 ADC channel may have its input range adjusted according to the settings at the
ADC sampling mode and VIN range subregisters. For any channel, the input range is
equal to the voltage reference multiplied by a factor of 1, 2 or 4, according to the following
rule:

• If the channel is being sampled with respect to AGND:

– factor = 4 if VIN range0 and VIN range1 equal 0

– factor = 2 if only one of VIN ranges equal 1

– factor = 1 if both VIN range0 and VIN range1 equal 1

• If channel is being sampled with respect to AVDD:

– factor = 4 if VIN range0 and VIN range1 equal 0

– Behavior is unde�ned if any of VIN range doesn’t equal 0

To convert a raw value to standard units, the IIO de�nes this formula: Scaled value
= (raw + o�set) * scale. For the scale to be a correct multiplier for (raw + o�set), it must
be calculated as the input range divided by the number of possible distinct input values.
Given the ADC data is 10 bit long, it may assume 210 distinct values. Hence, scale = range
/ 210. The IIO_VAL_FRACTIONAL_LOG2 return type indicates to the IIO subsystem to divide
*val by 2 to the power of *val2 when returning from read_raw.

1 static int ad7292_read_raw(struct iio_dev *indio_dev,
2 const struct iio_chan_spec *chan,
3 int *val, int *val2, long info)
4 {
5 struct ad7292_state *st = iio_priv(indio_dev);
6 unsigned int ch_addr;
7 int ret;
8
9 switch (info) {
10 case IIO_CHAN_INFO_RAW: /* Read raw ADC data */
11 ch_addr = AD7292_REG_ADC_CH(chan->channel);
12 ret = ad7292_single_conversion(st, ch_addr);
13 if (ret < 0)
14 return ret;
15
16 *val = AD7292_ADC_DATA(ret);
17
18 return IIO_VAL_INT;
19 case IIO_CHAN_INFO_SCALE: /* Calculate ADC scale factor */
20 ret = ad7292_vin_range_multiplier(st, chan->channel);
21 if (ret < 0)
22 return ret;
23
24 *val = st->vref_mv * ret;
25 *val2 = 10;
26 return IIO_VAL_FRACTIONAL_LOG2;
27 default:
28 break;
29 }
30 return -EINVAL;
31 }

Figure 4.6: Function that handles read_raw operation for AD7292 devices.

28

4 | DEVICE DRIVER IMPLEMENTATION

4.1.8 Driver static information
The struct iio_info de�nes which static device information should be considered by

the IIO subsystem when registering the device and answering requests from the sysfs
interface. General-purpose attributes, pointers to IIO attribute-linked functions, bu�ers,
and triggers are among the objects stored by iio_info.

The current version of the AD7292 driver speci�es only its read_raw function as a
callback function for reading �les tied to its channels (see Figure 4.7).

1 static const struct iio_info ad7292_info = {
2 .read_raw = ad7292_read_raw,
3 };

Figure 4.7: Struct that holds static information about the AD7292 device driver.

4.1.9 Device probing
When the system kernel discovers a device (e.g., a plug and play device gets attached),

bus speci�c subroutines traverse the list of known drivers seeking for some that can
handle the new device. If a driver states it can operate the device, the bus routine calls
the probe function registered for the selected driver. The probe function then does all the
initialization needed to handle the device properly [25]. It allocates memory for private
driver structures, initializes essential device attributes, gets ancillary devices, sets up device
con�guration, does anything else that is needed before the device is made available to
userspace, and registers the device with the appropriate subsystem.

For instance, the probe function registered by the AD7292 driver performs the following
tasks:

• requests to the IIO subsystem a new iio_dev device.

• get a pointer to the memory address that holds private device data.

• stores a pointer to its SPI parent device.

• puts a pointer to the initializing IIO device into the parent device.

• gets a voltage reference either from an external or internal voltage regulator.

• initializes name, operation mode, iio_info, on its parent IIO device.

• sets up the input channels based on device node properties.

• registers the initialized device with the IIO subsystem.

Figure 4.8 presents a reduced version of the AD7292 probe function.

The following sections bring more details on how to get voltage regulators as well as
to obtain properties de�ned on device nodes.

4.1 | AD7292 DEVICE DRIVER

29

1 static int ad7292_probe(struct spi_device *spi)
2 {
3 struct ad7292_state *st;
4 struct iio_dev *indio_dev;
5 struct device_node *child;
6 bool diff_channels = 0;
7 int ret;
8
9 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
10 if (!indio_dev)
11 return -ENOMEM;
12
13 st = iio_priv(indio_dev);
14 st->spi = spi;
15
16 spi_set_drvdata(spi, indio_dev);
17
18 /* Get managed regulator device or use internal voltage reference */
19
20 indio_dev->dev.parent = &spi->dev;
21 indio_dev->name = spi_get_device_id(spi)->name;
22 indio_dev->modes = INDIO_DIRECT_MODE;
23 indio_dev->info = &ad7292_info;
24
25 /* Set channels according to devicetree node description */
26
27 return devm_iio_device_register(&spi->dev, indio_dev);
28 }

Figure 4.8: A reduced version of the probe function registered by the AD7292 driver.

4.1.10 Managed device resources

The device core has functions that allow self-managed use of resources. Devices
booted and registered with these functions have their resources automatically freed when
removed from the system. By letting developers associate release functions to give o�
each asset reserved for a device, the subsystem mitigates resource leakage and errors when
detaching drivers [11]. IIO extends the resource management interface by also allowing
self-management of channels, bu�ers, and triggers.

During the initialization of AD7292 devices, the driver requests the LDM a voltage
regulator to get a voltage reference. If served, it registers ad7292_regulator_disable as
release function (see Figure 4.9). Since the LDM manages the voltage regulator instance,
all the AD7292 driver has to do in its release function is to say that it will no longer use the
regulator. Otherwise, the driver uses the device internal voltage regulator to operate.

The devm_regulator_get_optional function is used to obtain a voltage regulator device.
It takes the regulator name and a device node to look within. The voltage regulator
framework molds a property name by appending “-supply” to the regulator’s name. Then a
recursive search from the consumer device to its children looks for the regulator property
name inside each device node. If found, a reference to the speci�ed voltage regulator
(regulator_dev) is returned and used as a supply for the requesting device.

For AD7292, the property name that speci�es the voltage regulator is vref-supply (see
Figure 3.1).

30

4 | DEVICE DRIVER IMPLEMENTATION

1 st->reg = devm_regulator_get_optional(&spi->dev, "vref");
2 if (!IS_ERR(st->reg)) {
3 ret = regulator_enable(st->reg);
4 if (ret) {
5 dev_err(&spi->dev,
6 "Failed to enable external vref supply\n");
7 return ret;
8 }
9

10 ret = devm_add_action_or_reset(&spi->dev,
11 ad7292_regulator_disable, st);
12 if (ret) {
13 regulator_disable(st->reg);
14 return ret;
15 }
16
17 ret = regulator_get_voltage(st->reg);
18 if (ret < 0)
19 return ret;
20
21 st->vref_mv = ret / 1000;
22 } else {
23 /* Use the internal voltage reference. */
24 st->vref_mv = 1250;
25 }

Figure 4.9: Code snippet responsible for acquiring external voltage regulators for AD7292 devices.

4.1.11 Properties from devicetree nodes
It is sometimes desirable to obtain information about the device hardware con�guration.

When supplied with a devicetree, the kernel allows rescuing nodes from it. There are
consolidated procedures for searching, browsing, reading, updating, and removing device
nodes implemented as part of the open �rmware (OF) framework.

For the ad7292 driver, it is meaningful to �nd out the con�guration of the �rst two
analog input channels. The OF framework helps to retrieve this information from the DTS.
The for_each_available_child_of_node macro expands in a loop that traverses the child
nodes of ad7292 to check whether any of them contain a property called di�-channels. If so,
the driver sets VIN0 and VIN1 as di�erential; otherwise, it sets all channels as single-ended
(see Figure 4.10).

1 for_each_available_child_of_node(spi->dev.of_node, child) {
2 diff_channels = of_property_read_bool(child, "diff-channels");
3 if (diff_channels)
4 break;
5 }
6
7 if (diff_channels) {
8 indio_dev->num_channels = ARRAY_SIZE(ad7292_channels_diff);
9 indio_dev->channels = ad7292_channels_diff;

10 } else {
11 indio_dev->num_channels = ARRAY_SIZE(ad7292_channels);
12 indio_dev->channels = ad7292_channels;
13 }

Figure 4.10: AD7292 channel set selection.

4.2 | LINUX MAINTAINERS

31

4.1.12 Driver compatibility
The MODULE_DEVICE_TABLE macro creates aliases that are further processed and included

in tables referenced by the driver core to match devices against drivers. Since the driver
core has multiple methods of discovering devices (bus address space, devicetree, ACPI
tables), some drivers export more than one compatibility table. To express compatibility
with devices initialized by the SPI subsystem, drivers must provide a spi_device_id array
containing the names of the supported devices. Similarly, to indicate compatibility with
devices described in devicetree, a vector of type of_device_id must be initialized.

SPI drivers must also initialize a spi_driver struct to specify what are the available
attributes and functions. The module_spi_driver macro generates both an _init, and an
_exit function for registering and unregistering the driver within the SPI subsystem. The
SPI subsystem, in turn, registers the device with the driver core to enable it to carry on un-
derlying initialization such as reference counting, event handling, sysfs integration.

The AD7292 driver is an SPI driver, so it de�nes a struct spi_driver assigning the
driver name, devicetree compatibility table, SPI subsystem compatibility table, and probe
function (see Figure 4.11).

1 static const struct spi_device_id ad7292_id_table[] = {
2 { "ad7292", 0 },
3 {}
4 };
5 MODULE_DEVICE_TABLE(spi, ad7292_id_table);
6
7 static const struct of_device_id ad7292_of_match[] = {
8 { .compatible = "adi,ad7292" },
9 { },
10 };
11 MODULE_DEVICE_TABLE(of, ad7292_of_match);
12
13 static struct spi_driver ad7292_driver = {
14 .driver = {
15 .name = "ad7292",
16 .of_match_table = ad7292_of_match,
17 },
18 .probe = ad7292_probe,
19 .id_table = ad7292_id_table,
20 };
21 module_spi_driver(ad7292_driver);

Figure 4.11: AD7292 driver compatibility table de�nition.

4.2 Linux maintainers
Many of Linux artifacts have its maintainers listed in the MAINTAINERS �le. At

the root of the kernel source tree, this �le contains the list of developers accounted for
developing or giving support for some resource. To include information about the AD7292
driver, the following entry was added:

ANALOG DEVICES INC AD7292 DRIVER
M: Marcelo Schmitt <marcelo.schmitt1@gmail.com>

32

4 | DEVICE DRIVER IMPLEMENTATION

L: linux-iio@vger.kernel.org
W: http://ez.analog.com/community/linux-device-drivers
S: Supported
F: drivers/iio/adc/ad7292.c
F: Documentation/devicetree/bindings/iio/adc/adi,ad7292.yaml

This speci�es that:

• the Linux now have a driver for the AD7292 monitoring system.

• the maintainer of the AD7292 driver is Marcelo Schmitt.

• the mailing list in which patches to this part should be discussed is linux-
iio@vger.kernel.org.

• the web-page with status information about this part is http://ez.analog.com/
community/linux-device-drivers.

• the status of the driver is supported, which means that someone is actually paid to
look after it.

• the resource consists of two �les:

– drivers/iio/adc/ad7292.c

– Documentation/devicetree/bindings/iio/adc/adi,ad7292.yaml

A list with all accepted tags and their meanings can be found in the MAINTAINERS
�le.

http://ez.analog.com/community/linux-device-drivers
http://ez.analog.com/community/linux-device-drivers

33

Chapter 5

Final remarks

The driver for AD7292 devices is the main result of this work. It was developed following
the best practices of open source development in the Linux kernel which included:

• Community review steps and implementation of proposed improvements.

• Hardware testing under various con�gurations.

• Development of respective documentation.

• Validation of proposed source code format and documentation.

As a result of the success of this process, the driver has been accepted by the community
and will be available worldwide from Linux kernel version 5.5 [32, 33]. This �rst release
allows you to use AD7292 devices to take analog read measurements at the command of
the user or an application.

Among the lessons learned throughout the development of this work, it seems fair to
stress the importance of interacting constructively with the community. Many developers
participating in the Linux kernel community are volunteers, even those who do are paid
to work on it may not be available at any time. Therefore, patience during the review
process is very appreciated. Also, kernel developers occasionally get bothered when one
asks questions previously discussed. Thus, the tip to avoid blunt answers is to look for
information in the kernel documentation before asking in the mailing list. This attitude can
help saving time of more experienced developers so they can spend more hours contributing
with code review, bug �xing, or software development. By the way, always answer the
reviewers thanking for their help and addressing any question raised. Developers who
ignore reviewers increase their chance of getting ignored in turn. On the other hand,
showing gratitude may captivate people to continue supporting the work being done.
Notwithstanding, kernel developers are human beings like everyone else. As it is in real life,
people make mistakes and when things go wrong, we apologize and try to work toward
a solution. An additional hint for non-native English speakers is to carefully read the
messages in the mailing lists. A few minutes of a second reading may avoid wasting more
time clarifying misunderstandings. Finally, as general advice, always try to be friendly.
Most of the time, good faith can be assumed by the developers working in the Linux kernel.

34

5 | FINAL REMARKS

Over a year and a half of kernel development, my experience is that people always try to
help.

As a last piece of advice, we suggest reading the o�cial documentation1. It contains
valuable tips on how to interact with the community, what to do and what not to do, and
answers to frequently asked questions.

As a suggestion for future work, one may tackle some of the AD7292 features that are
yet to be supported by a Linux device driver:

• check the BUSY pin state after ADC conversion commands to ensure conversion
correctness before reading data from the result register.

• add support for internal temperature readings.

• add support for operating the DACs.

• add support for customizing con�gurations at the register bank.

• add support for alarm and custom GPIO features.

• implement continuous readings within a bu�er triggered mode.

Finally, the conclusion of this work paves the way for a series of work toward producing
a driver that can exploit all of the features of AD7292 devices.

1https://www.kernel.org/doc/html/latest/

35

Chapter 6

Personal Appreciation

I really enjoyed developing software for the Linux kernel. It was a challenging and
rewarding experience at the same time. It was very di�erent from the majority of college
work. I interacted with developers from di�erent parts of the world (England, Romania,
the United States of America, and China).

I had the opportunity to work in an area of intersection between hardware and software
that kept me motivated all the time to learn more about both sides. At the same time,
I participated in many community activities on Hardware Livre USP1 and FLUSP2 that
prompted me to continue encouraging others in the community to also engage in open
source hardware and/or software projects. Overall I think this year was very tiring, but
also very rewarding.

1http://hardwarelivreusp.org/
2https://�usp.ime.usp.br/

37

References

[1] Javier Martinez Canillas. Kbuild: the Linux Kernel Build System. Dec. 2012. url:
https://www.linuxjournal.com/content/kbuild-linux-kernel-build-system (visited
on 10/02/2019) (cit. on pp. 13, 14).

[2] Piers Cawley. Majordomo. 1995. url: https://www.linuxjournal.com/article/1067
(visited on 12/01/2019) (cit. on p. 6).

[3] The kernel development community. Linux kernel licensing rules. url: https : / /
www.kernel.org/doc/html/latest/process/license-rules.html (visited on 10/25/2019)
(cit. on pp. 19, 20).

[4] Jonathan Corbet. An alternative device-tree source language. Aug. 2017. url: https:
//lwn.net/Articles/730217/ (visited on 10/16/2019) (cit. on p. 15).

[5] Jonathan Corbet. Kernel development. 2001. url: https://lwn.net/2001/0704/kernel.
php3 (visited on 10/16/2019) (cit. on p. 15).

[6] Marco Cesati Daniel P. Bovet. Understanding the Linux Kernel, 3rd Edition. O’Reilly,
Nov. 2005, p. 16 (cit. on p. 7).

[7] Marco Cesati Daniel P. Bovet. Understanding the Linux Kernel, 3rd Edition. O’Reilly,
Nov. 2005, p. 657 (cit. on p. 7).

[8] Marco Cesati Daniel P. Bovet. Understanding the Linux Kernel, 3rd Edition. O’Reilly,
Nov. 2005, p. 16 (cit. on p. 15).

[9] The Linux Kernel documentation. Building External Modules. 2019. url: https :
//www.kernel.org/doc/html/latest/kbuild/makefiles.html (visited on 10/08/2019)
(cit. on p. 13).

[10] The Linux Kernel documentation. Core elements. 2019. url: https://www.kernel.
org/doc/html/ latest/driver- api/ iio/core.html#iio- device- channels (visited on
11/12/2019) (cit. on p. 24).

[11] The Linux Kernel documentation. Devres - Managed Device Resource. 2019. url:
https://www.kernel.org/doc/html/latest/driver-api/driver-model/devres.html
(visited on 11/15/2019) (cit. on p. 29).

https://www.linuxjournal.com/content/kbuild-linux-kernel-build-system
https://www.linuxjournal.com/article/1067
https://www.kernel.org/doc/html/latest/process/license-rules.html
https://www.kernel.org/doc/html/latest/process/license-rules.html
https://lwn.net/Articles/730217/
https://lwn.net/Articles/730217/
https://lwn.net/2001/0704/kernel.php3
https://lwn.net/2001/0704/kernel.php3
https://www.kernel.org/doc/html/latest/kbuild/makefiles.html
https://www.kernel.org/doc/html/latest/kbuild/makefiles.html
https://www.kernel.org/doc/html/latest/driver-api/iio/core.html#iio-device-channels
https://www.kernel.org/doc/html/latest/driver-api/iio/core.html#iio-device-channels
https://www.kernel.org/doc/html/latest/driver-api/driver-model/devres.html

38

REFERENCES

[12] The Linux Kernel documentation. HOWTO do Linux kernel development. 2020.
url: https : / /www.kernel .org/doc/html/ latest/process/howto.html (visited on
01/12/2020) (cit. on pp. 5, 6).

[13] The Linux Kernel documentation. Kbuild. 2019. url: https://www.kernel.org/doc/
html/latest/kbuild/kbuild.html#arch (visited on 10/09/2019) (cit. on p. 14).

[14] The Linux Kernel documentation. Kbuild: the Linux Kernel Build System. 2019.
url: http : / / delivery. acm . org / 10 . 1145 / 2400000 / 2392897 / 11333 . html ? ip=143 .
107.45.1&id=2392897&acc=ACTIVE%20SERVICE&key=344E943C9DC262BB%
2E0DBCED839AA5AFE8 % 2E4D4702B0C3E38B35 % 2E4D4702B0C3E38B35 & _ _
acm__=1574540392_5702b62683a92e05b622a0c25521dcd4 (visited on 11/23/2019)
(cit. on pp. 13, 14).

[15] The Linux Kernel documentation. Linux Kernel Make�les. 2019. url: https://www.
kernel.org/doc/html/latest/kbuild/makefiles.html#kbuild-variables (visited on
10/08/2019) (cit. on p. 14).

[16] Inc Eclipse Foundation. IoT Developer Survey Results. Apr. 2018. url: https://iot.
eclipse.org/resources/iot-developer-survey/iot-developer-survey-2018.pdf (visited
on 11/28/2019) (cit. on p. 1).

[17] The Linux Foundation. 2017 Linux Kernel Development Report. 2019. url: https:
/ / go . pardot . com / l / 6342 / 2017 - 10 - 24 / 3xr3f2 / 6342 / 188781 / Publication _
LinuxKernelReport_2017.pdf (visited on 11/29/2019) (cit. on p. 1).

[18] The Linux Foundation. Active kernel releases. 2020. url: https://www.kernel.org/
category/releases.html (visited on 01/12/2020) (cit. on p. 6).

[19] Rob Herring. Device-tree schemas. url: https://github.com/robherring/dt-schema
(visited on 10/24/2019) (cit. on p. 16).

[20] Alessandro Rubini Jonathan Corbet and Greg Kroah-Hartman. Linux Device
Drivers, Third Edition. O’Reilly, Feb. 2005, p. 370 (cit. on p. 6).

[21] Alessandro Rubini Jonathan Corbet and Greg Kroah-Hartman. Linux Device
Drivers, Third Edition. O’Reilly, Feb. 2005, p. 362 (cit. on p. 7).

[22] Alessandro Rubini Jonathan Corbet and Greg Kroah-Hartman. Linux Device
Drivers, Third Edition. O’Reilly, Feb. 2005, p. 377 (cit. on p. 7).

[23] Alessandro Rubini Jonathan Corbet and Greg Kroah-Hartman. Linux Device
Drivers, Third Edition. O’Reilly, Feb. 2005, p. 379 (cit. on p. 7).

[24] Alessandro Rubini Jonathan Corbet and Greg Kroah-Hartman. Linux Device
Drivers, Third Edition. O’Reilly, Feb. 2005, p. 385 (cit. on p. 8).

[25] Alessandro Rubini Jonathan Corbet and Greg Kroah-Hartman. Linux Device
Drivers, Third Edition. O’Reilly, Feb. 2005, p. 394 (cit. on p. 28).

https://www.kernel.org/doc/html/latest/process/howto.html
https://www.kernel.org/doc/html/latest/kbuild/kbuild.html#arch
https://www.kernel.org/doc/html/latest/kbuild/kbuild.html#arch
http://delivery.acm.org/10.1145/2400000/2392897/11333.html?ip=143.107.45.1&id=2392897&acc=ACTIVE%20SERVICE&key=344E943C9DC262BB%2E0DBCED839AA5AFE8%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1574540392_5702b62683a92e05b622a0c25521dcd4
http://delivery.acm.org/10.1145/2400000/2392897/11333.html?ip=143.107.45.1&id=2392897&acc=ACTIVE%20SERVICE&key=344E943C9DC262BB%2E0DBCED839AA5AFE8%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1574540392_5702b62683a92e05b622a0c25521dcd4
http://delivery.acm.org/10.1145/2400000/2392897/11333.html?ip=143.107.45.1&id=2392897&acc=ACTIVE%20SERVICE&key=344E943C9DC262BB%2E0DBCED839AA5AFE8%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1574540392_5702b62683a92e05b622a0c25521dcd4
http://delivery.acm.org/10.1145/2400000/2392897/11333.html?ip=143.107.45.1&id=2392897&acc=ACTIVE%20SERVICE&key=344E943C9DC262BB%2E0DBCED839AA5AFE8%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1574540392_5702b62683a92e05b622a0c25521dcd4
https://www.kernel.org/doc/html/latest/kbuild/makefiles.html#kbuild-variables
https://www.kernel.org/doc/html/latest/kbuild/makefiles.html#kbuild-variables
https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2018.pdf
https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2018.pdf
https://go.pardot.com/l/6342/2017-10-24/3xr3f2/6342/188781/Publication_LinuxKernelReport_2017.pdf
https://go.pardot.com/l/6342/2017-10-24/3xr3f2/6342/188781/Publication_LinuxKernelReport_2017.pdf
https://go.pardot.com/l/6342/2017-10-24/3xr3f2/6342/188781/Publication_LinuxKernelReport_2017.pdf
https://www.kernel.org/category/releases.html
https://www.kernel.org/category/releases.html
https://github.com/robherring/dt-schema

REFERENCES

39

[26] Grant Likely. Linux and the Device Tree. url: https://github.com/torvalds/linux/
blob/master/Documentation/devicetree/usage-model.txt (visited on 11/25/2019)
(cit. on p. 15).

[27] Linaro Ltd Linaro Ltd. Devicetree Speci�cation. Dec. 2017. url: https : / /github.
com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-
specification-v0.2.pdf (visited on 10/16/2019) (cit. on p. 15).

[28] LinuxLinks. Majordomo - mailing list manager. 2019. url: https://www.linuxlinks.
com/majordomo/ (visited on 12/01/2019) (cit. on p. 6).

[29] John Madieu. Linux Device Drivers Development. Packt Publishing, 2017, p. 332
(cit. on p. 7).

[30] John Madieu. Linux Device Drivers Development. Packt Publishing, 2017, p. 16 (cit.
on p. 8).

[31] Marta Rybczyńska. Device-tree schemas. Nov. 2018. url: https://lwn.net/Articles/
771621/ (visited on 10/16/2019) (cit. on p. 15).

[32] Marcelo Schmitt. Industrial Input / Output Subsytem tree. 2019. url: https://git .
kernel . org / pub / scm/ linux / kernel / git / jic23 / iio . git / commit / ?h= testing& id=
d898f9ac542f9c60c5760cfe4b9cb10c635feb38 (visited on 12/05/2019) (cit. on p. 33).

[33] Marcelo Schmitt. Industrial Input / Output Subsytem tree. 2019. url: https://git .
kernel . org / pub / scm/ linux / kernel / git / jic23 / iio . git / commit / ?h= testing& id=
506d2e317a0a02631a74bbc4c508334c29e26eae (visited on 12/05/2019) (cit. on p. 33).

[34] TOP500 team. Operating system Family / Linux. 2019. url: https://www.top500.
org/statistics/details/osfam/1 (visited on 11/28/2019) (cit. on p. 1).

[35] Unknown. Device Tree Compiler Manual. url: https://git.kernel.org/pub/scm/utils/
dtc/dtc.git/plain/Documentation/manual.txt?id=HEAD (visited on 11/25/2019)
(cit. on p. 15).

[36] vger.kernel.org. VGER.KERNEL.ORG. 2019. url: http://vger.kernel.org/ (visited
on 12/01/2019) (cit. on p. 6).

[37] vger.kernel.org. VGER.KERNEL.ORG Majordomo Info. 2019. url: http : / / vger .
kernel.org/majordomo-info.html (visited on 12/01/2019) (cit. on p. 7).

https://github.com/torvalds/linux/blob/master/Documentation/devicetree/usage-model.txt
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/usage-model.txt
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://www.linuxlinks.com/majordomo/
https://www.linuxlinks.com/majordomo/
https://lwn.net/Articles/771621/
https://lwn.net/Articles/771621/
https://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio.git/commit/?h=testing&id=d898f9ac542f9c60c5760cfe4b9cb10c635feb38
https://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio.git/commit/?h=testing&id=d898f9ac542f9c60c5760cfe4b9cb10c635feb38
https://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio.git/commit/?h=testing&id=d898f9ac542f9c60c5760cfe4b9cb10c635feb38
https://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio.git/commit/?h=testing&id=506d2e317a0a02631a74bbc4c508334c29e26eae
https://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio.git/commit/?h=testing&id=506d2e317a0a02631a74bbc4c508334c29e26eae
https://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio.git/commit/?h=testing&id=506d2e317a0a02631a74bbc4c508334c29e26eae
https://www.top500.org/statistics/details/osfam/1
https://www.top500.org/statistics/details/osfam/1
https://git.kernel.org/pub/scm/utils/dtc/dtc.git/plain/Documentation/manual.txt?id=HEAD
https://git.kernel.org/pub/scm/utils/dtc/dtc.git/plain/Documentation/manual.txt?id=HEAD
http://vger.kernel.org/
http://vger.kernel.org/majordomo-info.html
http://vger.kernel.org/majordomo-info.html

	Introduction
	Objective
	Practices

	Conventions used in this work
	Manuscript Structure

	Linux kernel development
	Linux development model
	Kernel Subsystems
	Communities and mailing lists

	The Linux Device Model
	The Device Model and the IIO subsystem

	How to contribute to the IIO subsystem

	System Build
	The Kernel Build System (kbuild)
	Configuration Options
	Configuration Symbols
	Defconfig
	Kbuild Makefiles

	Kernel Compilation
	Kernel Cross Compilation

	Devicetree

	Device Driver Implementation
	AD7292 device driver
	SPDX License Identifiers
	Register definitions
	Bit manipulation macros
	IIO channels
	Device private data
	SPI messaging
	read_raw operations
	Driver static information
	Device probing
	Managed device resources
	Properties from devicetree nodes
	Driver compatibility

	Linux maintainers

	Final remarks
	Personal Appreciation
	References

