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Abstract

Gabriel Fernandes Mota. Case Studies in Microservices towards Extensibility. Cap-

stone Project Report (Bachelor). Institute of Mathematics and Statistics, University of

São Paulo, São Paulo, 2024.

Microservices is an architecture pattern that has increased in popularity since the 2010s for its benefits

in scalability and context boundaries for big systems. Nowadays, tech companies use continuous delivery to

create ever-growing systems that keep evolving. Microservices are usually used in these systems, for the

ability to add new services to extend systems functionalities. However, there is a lack of formal knowledge

about it towards non-functional requirements besides scalability. This work explores the concept of extensi-

bility, a non-functional requirement for systems that need to have their function extended in a new feature,

keeping the same responsibility. To do so, we study two microservices’ case studies, a Data Provider and a

Data Ingestion system—each one with different architecture approaches implemented. The implementation

provided runtime metrics and developer experience to compare them, mainly regarding extensibility. In the

end, the results of the case studies pointed to the benefits of three highlights: (i) the asynchronous approach

for internal communication, (ii) the usage of metadata for the integration of heterogeneous systems, and

(iii) the data replication to reduce external chattiness.

Keywords: Microservices. Extensibility. Non-functional requirements. Software Architecture.





Resumo

Gabriel Fernandes Mota. . Monografia (Bacharelado). Instituto de Matemática e Estatística,

Universidade de São Paulo, São Paulo, 2024.

Microserviços é um padrão arquitetural que tem aumentado em popularidade no últimos anos devido a

seus benefícios em relação à escalabilidade e limite de contexto para grandes sistemas. Atualmente, empresas

de tecnologia usam entrega contínua para criar sistemas que continuam crescendo e evoluindo. Microserviços

são comumente usados junto, pela capacidade de adicionar novos serviços e estender as funcionalidades do

sistema. Porém, há uma falta de conhecimento formal sobre o assunto em relação a requisitos não-funcionais

além de escalabilidade. Esse trabalho explora o conceito de extensiblidade, um requisito não-funcional para

sistemas que precisam estender suas funcionalidades, mantendo as mesmas responsabilidades. Para fazer

isso, estudamos dois casos de microserviços, um Provedor de Dados e um sistema de Ingestão de Dados—cada

um com diferentes arquiteturas implementadas. Cada implementação forneceu métricas durante a execução

do sistema e de expêriencia de desenvolvimento para comparar as arquiteturas, principalmente em quesito a

extensibilidade. No final, os resultados dos caso de estudos apontaram para benefícios em três conceitos: (i)

uso de comunicação assíncrona interna entre os serviços, (ii) uso de metadados para integração de sistemas

heterogêneos, e (iii) a replicação de dados para reduzir comunição desnecessária entre os serviços.

Palavras-chave: Microserviços. Extensibilidade. Requisitos não-funcionais. Arquitetura de Software.
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Chapter 1

Introduction

The concept of building applications with loosely coupled services emerged in 1997 on
IBM’s Enterprise Java Bean (EJB). However, it was only with the REST APIs growth in the
early 2010s that microservices were popularized as an established architecture for large
systems requiring fast growth, continuous integration, and scalability.

As a recent software architecture style, it lacks formal knowledge and experimentation
in some areas, such as its patterns and API interfaces, inter-service communication, and
data management.

Extensibility is the capability of a component to extend its functionality to similar uses.
An extensible system can help developers reduce work to implement new features, and
architects reuse components to create simpler solutions.

Microservices can help with extensibility because of modularization and single-
responsibility attached to each microservice. Allowing systems to apply extensibility
only on key services for, and impact the whole architecture.

This work studies multiple microservices use cases, from a developer and architect
perspective, exploring the concept of extensibility and other non-functional requirements,
regarding services’ contracts, communication, and management.
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Chapter 2

Background

This chapter serves as an overview of the terms and foundational concepts used
throughout this work. It acts as a baseline, ensuring a common understanding of the key
ideas and terminology essential for the development and discussion of the project.

2.1 Metrics
Metrics are a representation of an object’s characteristic as a numeric value( Lanza

and Marinescu, 2007). In association with units of measurement and thresholds, metrics
are used to describe the object and also to assess it.

In software development, metrics are used to describe many aspects of a system, from
objective characteristics – like response time and CPU usage, that have standards and
well-defined ways of measurement –, to subjective ones – like code quality and software
maintainability, which can be measured by several methods, each one of them with its
efficiency and accuracy.

The assessment made with metrics can go in different directions, such as to track if a
certain goal has been achieved, or to follow if a specific requirement is being respected.
In general, different metrics can be used to assess a single characteristic, but the choice
depends on the goal of the analysis. For example, to represent the degree of coupling
between modules A and B, we can use the static number of function calls, or we can use
the dynamic number of calls per minute during execution.

2.2 Software Architecture
Software Architecture is an area of study in computer science that focuses on software

structures, their benefits and drawbacks, and how to integrate them to solve problems( Cer-
vantes and Kazman, 2016).

The architecture of the software is what describes which set of structures are used
to build a system, encompassing its components, principles, responsibilities, and design
decisions. It doesn’t necessarily establish implementation details, like technologies, design
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patterns, and intra-component architecture, it depends on the level of detail and how big is
the whole structure. However, all decisions taken in the architecture should be necessary
to reason about the software and its implementation.

Non-functional Requirements
When defining a software’s architecture, there are a set of requirements that should be

fulfilled, so the software solves the problem it was intended to. These requirements can be
split into two groups: functional and non-functional. Functional requirements describe
what the software should do, and the behavior. Non-functional requirements define how
this should be done, and the qualities.

Non-functional requirements should be as well-defined as the functional ones. For
example, a live chat API should allow two users to interact with each other at the same time,
with a maximum 500ms delay to message delivery. This not only defines what is the API
functionality, but also that it should be performant, and this requirement is as important as
the functionality since an API with slow response time does not fully solve the problem.

Extensibility
Extensibility is the quality of what can be extended( Ford, Parsons, and Kua, 2017).

In the context of software, a system or architecture can be said extensible if it is able to
receive new features without requiring major changes.

Features are capacities added to a component that doesn’t change its functionality.
Extensibility should be achieved without violating the single-responsibility principle.

For example, a component designed to translate text from Portuguese to English
can be said extensible if it doesn’t require major changes to implement translation from
Portuguese to Spanish. The system does a new thing, however it still with the single
functionality of translating.

2.3 Microservices
In the past, the development of a software system could be explained as a line, with

planning, beginning, and ending delivery. With technological advances, continuous deliv-
ery emerged, turning this process into a cycle that can be repeated without ever reaching a
final delivery. In this scenario, companies started to have problems scaling large monolithic
applications, because they require knowledge about the system for changes, this knowl-
edge usually ended up concentrated in a few developers that took part in the building
of the application. This leads to business changes being held by engineering limitations.
Microservice comes up as a solution that allows fast-paced development in large systems
and fits better the necessities of a fast delivery market.

Microservice is a software architecture style, in which, the responsibilities and business
functionalities are split into independently deployable components, each component
has its codebase and is called a "microservice"( Ford, Parsons, and Kua, 2017). These
services communicate through APIs, Application Programming Interfaces, that work as
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contracts, containing rules, protocols, and tools, that other services may follow to be able
to communicate( Newman, 2015).

Microservices components follow the rule of single responsibility, where each com-
ponent is responsible for doing only one thing. This allows organizations to split the
concerns into multiple cores, each with its own sets of services where the ramp-up and
specialization are easier since each core can be focused on a specific area. For example, a
common split of teams on big techs is in functional areas: mobile client, web client, data
management, back-end development, etc.

The Microservice architecture approach also allows splitting the decision in multiple
layers. While a software architect may be responsible for defining which services take part
in a certain flow, and what are their responsibilities, the technical and design decisions of
implementation can be made by the maintainer development team, since each component
is technology independent.

Another advantage of microservice is scalability and extensibility. As components
are independent, it is possible to scale only required components at a time and cut costs.
It also means that adding a new feature can be as easy as creating a new independent
service and attaching it to the architecture.

However, this architecture relies on inter-component contracts, which means that
any break in a contract can lead to a cascade of unwanted behaviors that require lots of
tracking and measurements to debug. It also demands an increase in design complexity
and operational cost due to the necessity of handling multiple services, their deployment,
and integration.
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Chapter 3

Methodology

The goal of this work is to explore the concept of extensibility on MSA, and Microservice
Architecture, and understand which components and concepts are key to developing an
extensible software system. To reach it, we study two software use cases with different
MSA solutions, comparing each solution regarding design, development, and execution.

To do so, the study was done in an iterative process with solution design, archi-
tecture implementation, metrics collection, and evaluation, inspired by Design Science
Research( Runeson et al., 2020).

Figure 3.1: Methodology cycle.

During the solution design, we set the use case that is going to be studied and which
architecture solutions, or scenarios, we want to explore. Then, the architecture’s mi-
croservices are implemented and integrated locally. Once the application is ready, it is
executed on different tests according to the study case and metrics are collected in regards
to development experience and runtime measurements. At the end of the iteration, the
scenarios are compared and the metrics collected are evaluated.

It was done in two iterations, each iteration was a case study where the use of mi-
croservices is required and extensibility is a non-functional requirement.
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Figure 3.2: Iterations.

The first iteration was based on a common feature from multiple systems: a service
dedicated to handling access and serving data from common data storage to different
clients. We named this case as “Data Provider”.

An initial solution is to protect the data source by exposing it as a service. The clients
then access it via a REST API using a polling strategy. This study case compares it with two
asynchronous approaches: a registration system that implements internally the broadcast-
ing of the data exposed as REST API, and an event-based communication that delegates
the broadcasting to a message broker.

The iteration started with the implementation of each scenario on a SpringBoot ap-
plication according to the following GitHub pull requests:

• Polling gateway implementation: https://github.com/gfmota/charging-plug-
gateway/pull/4

• Broadcaster gateway implementation: https://github.com/gfmota/charging-plug-
gateway/pull/6

• Message-broker based implementation: https://github.com/gfmota/charging-plug-
gateway/pull/1

Then, we wanted to compare the technical effort necessary to extend the features in
each scenario. So, we extended each scenario with a new microservice.

• Polling provider new feature implementation: https://github.com/gfmota/charging-
plug-gateway/pull/5

• Broadcaster provider new feature implementation: https://github.com/gfmota/charging-
plug-gateway/pull/7

• Message-broker provider new feature implementation: https://github.com/gfmota/charging-
plug-gateway/pull/8

During development, we collected developer experience metrics from a junior software
engineer developing each provider. Such as, the number of lines changed and knowledge
necessary for each scenario. Due to the small sample, this may contain bias, and we
encourage the experiment with a larger sample and a bigger context.

After the implementation, each scenario was run locally in three clients’ usage battery,
with 10, 100, and 1000 clients simultaneously for each one of the three data types provided.
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During runtime, we collected the application’s health metrics from the data provider, such
as CPU and memory usage, success, and database access rate.

Then, we used the developer experience and runtime metrics to compare each scenario
in regard to extensibility, scalability, data source usage, client autonomy, and infrastructure
cost.

On the second iteration, the work studied OpenDataHub’s Data Ingestion use case.
The Data Ingestion system is composed of several applications dedicated to collecting
and receiving data from multiple external sources, transforming them into a standardized
structure, and saving on common data storage.

We talked with OpenDataHub’s team to understand the current architecture, the
requirements it met, and the desired requirements that are currently unfulfilled.

Then, we designed a new architecture to accommodate both the old and
the new requirements and implemented it as follows on GitHub’s repository
https://github.com/gfmota/data-ingestion-monorepo.

The implementation contains the integration of an Austrian Geosphere dataset, pro-
vided by the OpenDataHub’s team, as an example.

The implementation is used to simulate dataset integration, active and passive integra-
tion, and to collect some analytical data about the new architecture. Then, we compared
the current and the proposed architecture theoretically in regard to extensibility, the work
necessary to integrate a new dataset, and the system’s functional requirements.
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Chapter 4

Data Provider Study Case

4.1 Introduction
This study case explores a Data Provider requirement. A Data Provider is a service

dedicated to handling access and serving data from data storage to multiple clients. Each
client may have different needs on which set of data or data update frequency, the Data
Provider must be able to handle it and to provide the data requested.

This exploration is made by an experiment in which three different architectures, and
scenarios, that solve the Data Provider requirement – contain a service that fetches data
and serves it to multiple independent clients. In the end, there is a comparison between
each one in regard to how well they fit new features in the format of clients consuming new
data types. Exploring points such as performance, developer experience, client autonomy,
and infrastructure.

In this experiment, each scenario has the same requirements of implementing the same
three components, but they differ in the communication between components. The three
components that compose the experiment:

Data Consumers

Also mentioned as client or data analyzer

This is a group of services that need the data. They are independent of each other and
may have different needs for data. What they do with the data does not matter for the
experiment, for this reason, they are only going to log the values received and are simple
services implemented in Java with SpringBoot. https://github.com/gfmota/charging-plug-
data-analyzer

Data Provider
Also mentioned as gateway

It is responsible for querying the data on the data source, formatting, handling any
business logic associated with it, and serving it to the client. They are implemented in Java



12

4 | DATA PROVIDER STUDY CASE

as a SpringBoot application, but they could be used by any technology with the capacity
to make and receive HTTP requests and connect to a message queue-based asynchronous
communication tool. https://github.com/gfmota/charging-plug-gateway

Data lake
Also mentioned as data source

The chosen was a third-party API, Open Data Hub Mobility API https://docs.opendatahub.com/en/latest/index.html,
that makes available data about charging plug station for automobiles from Europe.1

However, the data source type doesn’t matter, it could be a search engine or conven-
tional database that wouldn’t affect what this experiment aims to measure. It was chosen
for reasons of ease of plug-in and use, and the amount of data available.

4.2 Scenarios
Each scenario corresponds to an architectural design that solves the problem of a

data source gateway. For each scenario, there are two development cycles, the gateway
development with two base features, and the next one adds a new feature as a third data
type, used for final comparisons.

Polling-based gateway
In this scenario, the gateway works as a synchronous read-only API in which the clients

can query the data with HTTP requests. The gateway acts as an Adapter for the data source,
where each type of data has its own endpoint. The clients are responsible for requesting the
data they want; the gateway translates the received request into a query to the data source
and formats its response before sending it back to the client. The base implementation is
detailed in the pull request: https://github.com/gfmota/charging-plug-gateway/pull/4

Figure 4.1: Pooling Gateway Architecture.

Broadcaster gateway
In this scenario, the gateway provides a subscription service with asynchronous mes-

sage sender API. Each consumer can subscribe to the gateway by registering their desired

1 Endpoint used to request data for the Data Lake: https://swagger.opendatahub.com/?url=https://mobility.api.opendatahub.com/v2/apispec/Mobility
using different queries according to client needs.
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data and address, and the gateway notifies of triggers. These messages and subscriptions
are made with HTTP requests. Note that the data provider needs some type of storage to
keep track of the subscribed services. For this implementation, it uses a CSV file, but it
could be any other usual database. The base implementation is detailed in the pull request:
https://github.com/gfmota/charging-plug-gateway/pull/6

Figure 4.2: Broadcaster Gateway Architecture.

Message queue-based gateway

In this scenario, the data provider offers an asynchronous event-notifier API to provide
data to the consumers. The data provider retrieves the data upon triggers and posts it
to a topic as a message with a tag that specifies the type of data it contains. Each data
consumer is responsible for creating its own queue and attaching it to the topic with the
correct message tag according to the data it wants. This implementation uses RabbitMQ,
but it could be any other broker with topic implementation. The base implementation is
detailed in the pull request: https://github.com/gfmota/charging-plug-gateway/pull/2

Figure 4.3: Message queue-based Gateway Architecture.

4.3 Execution
To run the experiment, it was created a repository with gateway and analyzer reposito-

ries, and scripts to run each scenario. https://github.com/gfmota/charging-plug-experiment

Program 4.1 Command to run polling scenario.

1 ./run_polling_experiment.sh
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Program 4.2 Command to run broadcaster scenario.

1 ./run_broadcaster_experiment.sh

Program 4.3 Command to run message based scenario.

1 ./run_message_experiment.sh

All of them can receive an integer parameter to define the number of clients the
gateway will handle simultaneously, this doesn’t mean that it will run n clients application,
but a single application that will mimic n clients.

These scripts run the gateway and client application on ports 8080 and 8081 respectively,
and also make available metrics graphs on Grafana that you can access at port 3000 at
/dashboard (login is admin/admin). These metrics are going to be used to evaluate how
the gateway’s performance behavior with multiple clients and different features.

There is also applications’ log on /log to debug any unexpected behavior.

In the polling experiment, instead of using the analyzer, it was replaced by JMeter, a
load-testing tool, highly configurable, that can simulate multiple HTTP clients requesting
data at the same time.

4.4 Results

The results contain the number of changes necessary during the second development
cycle and Grafana’s dashboards after multiple executions with different amounts of clients
to serve 10, 100, and 1000.

Every board contains graphs of CPU and memory percentage usage by the application,
and a graph with the amount of data access according to the Open Data Hub time of
information: last status is used by current status feature, and time range is used by daily
and hourly reports.

Polling gateway
The code necessary to implement the new feature at the Polling gateway is at this PR

https://github.com/gfmota/charging-plug-gateway/pull/5 (Figure 4.4)

Figure 4.4: Polling gateway extension code diff.

The execution of the experiment consists of a JMeter load test with 10, 100, and 1000
clients to simulate different clients at the same time.
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Figure 4.5: Polling gateway experiment with 10 clients per feature runtime metrics.

In regards to figure 4.5: The first line contains charts of CPU and memory usage by
the application during the experiment, notice that the CPU peaks at the moments the
requests are received (12:51:00). On the second line, there are charts with the HTTP status
of the response for each endpoint. In this case, the application was able to respond to all
requests successfully, represented by the 200 OK status code. The third line contains a
chart with the amount of data access made to the Open Data Hub, the data source, by the
type of query. The current status feature uses the last status query, while the last hour
and last day report uses the time range query. For this reason, there is a double of time
range queries made than the last status.

In regards to figure 4.6: In this case, the data provider fails to respond to around 70

In regards to figure 4.7: During this execution, the provider failed to respond to almost 80

Notice that, in all executions, the CPU peaks during the request handling. Memory
usage tends to increase as the amount of requests increases and, consequently, the amount
of objects to handle in memory. Also note that the amount of data lake access increases
with the number of requests, since for each incoming request, the data gateway makes
a new query on the data source.

Broadcaster gateway
The code necessary to implement the new feature at the Broadcaster gateway is at

https://github.com/gfmota/charging-plug-gateway/pull/7 (Figure 4.8)

The experiment consists of a client sending 10, 100, and 1000 requests per feature to
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Figure 4.6: Polling gateway experiment with 100 clients per feature runtime metrics.

Figure 4.7: Polling gateway experiment with 1000 clients per feature runtime metrics.
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Figure 4.8: Broadcaster gateway extension code diff.

the /subscribe endpoint at the gateway, subscribing itself to the gateway. Furthermore, on
a CronJob trigger, it sends requests to every subscribed client with the requested data.

Figure 4.9: Broadcaster gateway experiment with 10 clients per feature runtime metrics.

In regards to figure 4.9: The first line is the same as in the previous scenario. The
second line is a chart with the HTTP status of the response for the subscription endpoint.
It shows there were 30 subscriptions, and on the next trigger, the notifications are sent for
the services subscribed, as shown in the third line that contains charts for the data access
made on Open DataHub and the number of notifications sent for each type of data.

As the trigger was at the same moment for the three types of notifications, the lines
on the notification sent chart overlapped, this means that the notifications were sent at
the same moment and in the same amount.

In the last line, the charts show that no matter how many notifications are sent, it
is required to retrieve data only once per type of notification, once in the last status to
notify the current status, and two-time range data access for hourly and daily notifications,
as stated on the last scenario.

In regards to figure 4.11: On this execution, it is possible to observe how the amount of
notifications sent affects the application. The CPU and memory usage peaks as it receives



18

4 | DATA PROVIDER STUDY CASE

Figure 4.10: Broadcaster gateway experiment with 100 clients per feature runtime metrics.

Figure 4.11: Broadcaster gateway experiment with 1000 clients per feature runtime metrics.
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a large amount of subscription requests, as happens in the first scenario with an HTTP
handler. However, in this execution, the memory also peaks during notification, this
happens because each notification requires an HTTP connection, and each connection
requires memory, this can be detrimental as the amount of notifications sent increases.

Message queue-based gateway
The code necessary to implement the new feature at the Message queue-based gateway

is at https://github.com/gfmota/charging-plug-gateway/pull/8 (Figure 4.12)

Figure 4.12: Message queue-based gateway extension code diff.

The experiment consists of a client creating 10, 100, and 1000 queues per feature
and attaching it to the topic created by the gateway. For each queue, the client creates a
consumer to simulate multiple independent clients. On a CronJob trigger, the gateway
sends a message per feature to the topic.

Figure 4.13: Message queue-based gateway experiment with 10 clients per feature runtime metrics.

In regards to figure 4.13: The first line contains are the same as described in the previous
scenarios. In the second line, there is a chart of the amount of data access to source per
type of data queried, remembering that daily and hourly features require access to time
range data and current status requires access to last status data. There is also a chart
with the amount of messages published per type of message or feature. As happened in
the previous scenario, the messages are sent at the same time, for this reason, the lines
in the chart may overlap.

Notice that, as in the Broadcaster, there is only one data source access per feature
per trigger, however, for each trigger, only one message is sent per feature, no matter
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Figure 4.14: Message queue-based gateway experiment with 100 clients per feature runtime metrics.

Figure 4.15: Message queue-based gateway experiment with 1000 clients per feature runtime metrics.

how many data consumers are served. This also means that the CPU and memory usage
is close to equal for all executions.

4.5 Takeaways
After the experiments, it’s possible to draw some conclusions about each scenario

according to extensibility.

Extensibility and Development experience
When looking for the number of code changes at the git diff for each scenario, the

Polling Gateway had the least line changes for the base implementation and for feature
addition.
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However, all have similar work necessary to add new features, and the base implemen-
tation depends on how comfortable the developer is with the infrastructure used. From
the perspective of a junior developer, synchronous communication with HTTP can be
easier, since it is more common and thus used as a base concept for multiple subjects,
such as web development. While message broker and asynchronous communication are
advanced concepts and require more complex tools and knowledge, what can end up
intimidating these developers.

Data source usage
The chart of data source accesses shows that the Broadcaster and Message queue-based

gateway uses a constant number of data access independent of the number of clients.
Meanwhile, the Polling gateway has to access the data source every time it receives a
request, even though the result hasn’t changed.

This characteristic of the polling gateway can be detrimental to the application environ-
ment since each request depends on I/O, adding response time, and leading to unnecessary
computation by the data source service.

To minimize these, it is possible to use a cache on data source calls. In the experiment
use case, it was necessary to implement an in-memory cache, due to the data source
being a third-party open API.

However, the in-memory cache is not recommended in all cases, for example in big
applications, where it is likely to have multiple Pods running the same application, each
Pod has its memory and can’t share it with others. Therefore, the in-memory cache
wouldn’t be 100

Using a cache would also imply an infrastructure cost increase. The cost can vary
depending on the tool, it can be as cheap as an in-memory cache, or higher using a
fast-access database.

Scalability
Scalability is used in regard to how well each scenario deals with the increase of clients.

At first, the Polling gateway seemed the least scalable, but with the client number increase,
it started to fail to deal with the requests and throw errors to clients. It means that clients of
the Polling gateway need to have some fallback mechanisms, like retry implementation.

It is possible to minimize it by adding horizontal scaling and load balancing, doing so
would be able to distribute requests and thus processing required. However, this would
require an increase in cost and infrastructure complexity.

Due to the nature of the Broadcaster gateway to only send requests from time to time,
with a cron job or observing updates on the data source, it has low CPU usage most of the
time. However, when it starts the process to notify the subscribed clients, the CPU usages
increase according to the number of clients, since each one needs a request.

There are also considerations about the subscription method. The subscribe endpoint
can end up having problems with availability if it receives a big volume of requests at the
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same time, as in the Polling gateway. Even though this endpoint is not planned to have
high usage, there should be worry about how to deal with lost requests.

It is also important to have safe unsubscribe methods. It can help avoid sending
unnecessary requests and thus save CPU usage.

While the Message queue-based gateway has the same behavior as the Broadcaster
according to when it sends data to clients, it doesn’t peak CPU usage during processing
data and publishing messages, thus can be said the best solution to scale. This is because
the gateway has constant processing no matter how many clients it is serving since it
can serve multiple clients with a single message.

Client autonomy
Another point to take into consideration when comparing each scenario is how much

each client is attached to the gateway solution. The Broadcaster experiment has an example
of an attached client.

The Broadcaster’s client needs to have an HTTP endpoint available all the time for
gateway updates. For this reason, it is important for the Broadcaster gateway to add
a failure mechanism, such as retry implementation, in case the client is unavailable or
with high traffic.

Figure 4.16: Broadcaster gateway dependency diagram.

The Polling gateway shows what a bad autonomy is. The client is autonomous to
request the data it wants whenever it needs. It can save CPU usage sometimes, since,
if there is no request, there is no need for the gateway to retrieve data and process it.
However, as it is the client’s responsibility to request the data, there is no way for the client
to know if there is a data update. This can cause the client to request multiple times for the
same data, wasting both gateway and client processing capability with repeated data.

Figure 4.17: Polling gateway dependency diagram.

While the Message queue-based gateway has the best example of autonomy. The
client service does not need to be available for the gateway, since the queue can store the
messages until they are consumed. The client can also consume the data from the queue
whenever it wants, but only if there is an update available, otherwise there will be no
message on the queue, avoiding consuming repeated data as in the Polling scenario.



4.5 | TAKEAWAYS

23

Figure 4.18: Message queue-based gateway dependency diagram.

Infrastructure cost
Each scenario has its own environment and needs. As in a software system, it is

important to consider the cost in regard to all services used by an application, each service
requires maintenance and has a cost attached to it.

In this regard, the Polling gateway may seen ahead because, in the first implementation,
there is no need for extra services to support it. However, as discussed previously, this
is not true when scalability is necessary, requiring cache tools and horizontal scaling to
perform well in high-usage scenarios.

The Broadcaster gateway requires only a database to store the clients subscribed to the
service. For this reason, it is important to create routines to keep the data clean of unused
information and a good indexing to minimize IO time. It is important to note, as mentioned
previously, that for each notification sent it is necessary to create a new HTTP connection,
connections use network bandwidth, and this can become a problem as the number of
clients increases and causes increasing cloud costs as the bandwidth used gets larger.

The Message queue-based requires a message broker for the implementation, but also
is the only one that requires a message broker on the client side. This can be trick when
dealing with multisource clients, depending on the use case.
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Data Ingestion Study Case

5.1 Introduction
OpenDataHub (ODH) is a digital platform that makes data from different sources

available in a standardized pattern, removing the complexity of integrating multiple data
sources for the users.1 The full picture of their system can be split into three functionalities:

• Data ingestion: applications responsible for retrieving or receiving data from external
data sources, identifying, transforming, and storing it.

• Data storage: the data is stored in a stations-values format – stations are complex
objects that have a type and can contain other stations or properties, a list of numeric
values followed by data that describe it, such as value name and measurement unit.2

For example, a charging plug station is a station that contains plugs, each plug is a
station that contains a value ”available” or “not available”. Stations can contain more
than one value, for example, a latitude-longitude point is a station that contains
values for wind speed, wind direction, air pressure, and others. These values are
stored in the same unit for every station, no matter the original data source unit and
format.

• Data exposure: a common API to make data from stations available for end users.

This case study focuses on the data ingestion architecture, and how to increase its
extensibility.

5.2 Current architecture
The ODH’s data collectors architecture’s initial requirement is to connect to different

data sources, using different protocols (e.g. HTTP APIs, MQTT, FTP) to download the data,
aggregate and transform it to the stations-value pattern, and save it on ODH’s storage.

1 Reference from OpenDataHub’s webpage https://opendatahub.com/
2 Reference OpenDataHub’s documentation https://opendatahub.readthedocs.io/en/latest/howto/mobility/getstarted.htmlgetting-

started
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Figure 5.1: Data Ingestion context diagram.

The current architecture uses independent applications dedicated to each data source.
Each application is responsible for connecting to the data source, retrieving the data,
aggregating and/or transforming it, and sending it to ODH’s system for persisting data.

Figure 5.2: Data Ingestion current architecture containers diagram.

This solution contains a problem of redundant work for each data collector service:
they all have code to connect with the ODH’s persistence system and might benefit
from reusing processing and transformation tooling. This creates N dependencies with
the storage, consequently, if there is a change in how the connection with the ODH’s
persistence system is made, it would require changing every data collector.

Besides, to integrate a new data source into the data collection, it is necessary to create
a new service for collecting, parsing, transforming, and persisting code.

5.3 New requirements
As a growing platform, ODH wants to be able to integrate new data sources with ease,

decreasing technical requirements and development time. As part of this, it is essential to
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provide a way for data sources’ teams to integrate with ODH’s data collection, without
requiring (or at least reducing) ODH’s technical team involvement.

Furthermore, it is essential to have a way to track and debug the ingestion flow. For this
reason, another requirement is to integrate a new database to store the “raw” data, which
means, the data as it is collected before it is transformed into the ODH stations pattern.

For this, the current architecture would require each data collector application to
connect to the raw data storage and store it. Creating another dependency coupling
problem, since every data collector would require a dependency with the Raw data storage.

5.4 Proposed architecture
The new architecture proposed in this thesis aims to increase the system’s extensibility

by reducing development time to create new data collectors. With it, it creates an option
for data sources that want to integrate in, reducing ODH’s technical team involvement
and removing data collectors coupling with storage systems.

The new architecture uses microservices and asynchronous communication to mod-
ularize and split concerns along the system. (Figure 5.3)

Figure 5.3: Data Ingestion proposed architecture containers diagram.

The biggest challenge in this architecture is: How to treat external data and their
singularities. Each data source has its data format and structure, how to extract the
information needed by ODH and transform it into the expected pattern?

It can be solved with structural metadata, metadata is a kind of data used to describe
data, in this case, it will contain information about the data structure: in which field is an
important value, what are the data types, and how to access each wanted value.
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This metadata can be sent with the data or configured, in case the same metadata can
be used multiple times and is needed for the transformation process.

5.4.1 Ingestion
The data ingestion is done by the Ingestion Service. It is responsible for receiving the

raw data from data collectors or active data sources (data sources sending the data directly
to it), persisting this data into a raw data storage, and sending data to be transformed.

Data can only be sent to be processed once there is a metadata configuration to it. This
metadata can be sent with the data, or be fetched from the Metadata Service (application
responsible for handling metadata operations).

However, the raw data persistence does not depend on the metadata configuration.
This means that data received without metadata or any metadata configuration will be
persisted on Raw Data Storage and sent for transformation once the metadata is configured.
For this reason, there is a dedicated worker to listen for metadata update messages and
trigger this process. (Figure 5.4)

Figure 5.4: Ingestion service components diagram.

5.4.2 Metadata
The solution uses structural metadata about the data ingested to transform data from its

raw structure into the ODH’s station pattern. This metadata can be sent or collected with
the data or can be configured to be applied to data collected during a time range( Daniel
et al., 2024).

There is a metadata storage to store active configurations and to help debugging. The
application dedicated to handling access and operations on the storage is the Metadata
Service.

There is also a Metadata Configuration Interface to help developers and data sources
configure new metadata and manage their data configuration. (Figure 5.5)
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Figure 5.5: Metadata service components diagram.

The metadata is built with a common structure and stored as a JSON. Follows an
example of metadata in Program 5.1.

The content describes how the data structure and in which keys are key values for
the data transformation, for example: the timestamp of the event, the event location, and
the value registered.

5.4.3 Transformation

The data transformation is done by the Orchestrator, once it receives data with its meta-
data configuration. The Orchestrator uses the metadata to understand the particularities
of the raw data and transform it into the ODH’s station structure.

The Orchestrator is not only responsible for transforming the data structure to match
the expected structure but also for transforming the collected value into the expected
unit of measurement. Since the data is stored in the same unit to ease end users. It can
do so, by using the Transformers.

Transformers are small pieces of code that do only one transformation into the value.
For example, there may be a Transformer to transform a temperature value measured in
Celsius to Kelvin. The Orchestrator is responsible for selecting the correct Transformers
and running them into the correct order to transform from the collected unit to the one
used by ODH’s system. (Figure 5.6)
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Program 5.1 Structural metadata for Austrian Geosphere dataset.

1 {
2 "sourceId": "austrian-geosphere",
3 "startDate": "2015-08-04T10:11:30",
4 "expirationDate": "2029-08-04T10:11:30",
5 "metadata": {
6 "dataId": "austrian-geosphere-data",
7 "origin": "austrian-geosphere-data-collector",
8 "period": 600,
9 "timestampProperty": "timestamps.0",

10 "results": {
11 "type": "array",
12 "property": "features",
13 "idProperty": "properties.station"
14 },
15 "stations": {
16 "type": "array",
17 "property": "features",
18 "identification": {
19 "property": "properties.station"
20 },
21 "location": {
22 "property": "geometry.coordinates",
23 "type": "array",
24 "longitude": "0",
25 "latitude": "1"
26 }
27 },
28 "datatypes": [
29 {
30 "datatypeName": "air_pressure",
31 "method": "extract",
32 "unitProperty": "properties.parameters.P.unit",
33 "valueProperty": "properties.parameters.P.data",
34 "targetUnit": "hPa",
35 "rtype": "mean"
36 },
37 {
38 "datatypeName": "wind_speed",
39 "method": "extract",
40 "unitProperty": "properties.parameters.FF.unit",
41 "valueProperty": "properties.parameters.FF.data",
42 "targetUnit": "m/s",
43 "rtype": "mean"
44 },
45 {
46 "datatypeName": "wind_direction",
47 "method": "extract",
48 "unitProperty": "properties.parameters.DD.unit",
49 "valueProperty": "properties.parameters.DD.data",
50 "targetUnit": "",
51 "rtype": "mean"
52 },
53 {
54 "datatypeName": "wind_temperature",
55 "method": "extract",
56 "unitProperty": "properties.parameters.TL.unit",
57 "valueProperty": "properties.parameters.TL.data",
58 "targetUnit": "F",
59 "rtype": "mean"
60 }
61 ]
62 }
63 }
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Figure 5.6: Orchestrator components diagram.

5.5 Experiment

There is an experiment to test the proposed architecture. It simulates the integration
of an Austrian geosphere data source, it ingests data on current air pressure, temperature,
wind speed, and direction in different points from Austria. The data is collected every
10 minutes, the time the data source takes to update its values. This experiment aims to
only simulate the data ingestion process and not send data to be persisted in the ODH
system, but it allows observing the products of data ingestion and how each microservice
relates and communicates with each other.

The experiment is in a GitHub repository as a Gradle monorepo, each service is a
submodule of the repository, but each one can be deployed individually as a microservice,
they are in Java 17. They use SpringBoot to create HTTP APIs and asynchronous workers.
For infrastructure, it uses MongoDB for data storage and RabbitMQ for asynchronous
communication via message queues.

To run the experiment, it is necessary to first prepare the environment, then run the
infrastructure; after that, run the microservices, and finally include test metadata. It is also
possible to simulate an active data source and send data directly to it to be ingested. This
process is described step-by-step on the repository’s README.

To access the HTTP endpoints, it is possible to use the Postman collection available in
the repository, to act as an interface for debugging, active data ingestion, and/or metadata
configuration.

During the experiment run, the applications logs are directed to files in the log folder
to ease debugging and tracking. It is also possible to access the MongoDB, to track the
data stored, and the RabbitMQ, to track messages and queues, servers by using the values
in the docker-compose file.
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5.6 Takeaways
It is possible to evaluate the extensibility of a data ingestion system by how easy it

is to integrate different data sources and give maintenance to it.

On the current architecture, integrating a different data source would require creating
a new application that would collect the data, transform and send it to ODH. Every time
the data changes, it would require a change in the code base, this requires effort from the
ODH’s technical team and alignment between ODH and the data source owners.

The proposed architecture uses microservices and the concept of modularity to split
the responsibility between the systems in different microservices. Also uses structural
metadata to abstract transformation logic from the data collector.

For these reasons, integrating a new data source on the proposed architecture requires
less technical work, once it is possible to be integrated by the own data source, via the
ingestion API, or requires a data collector service that only contains code related to
data collecting.

Also, maintaining the data sources is much easier, since data changes can be instantly
met in the transformation process by changing the metadata configuration, which can
be done by the data source team, via the metadata service API, reducing ODH technical
team involvement.

Another advantage brought by the proposed architecture is the use of asynchronous
communication. This reduces coupling problems, once the message publisher doesn’t have
any dependency with the consumer application. It also increases scalability, by reducing
the harm of overload scenarios, since the messages are stored and only processed by the
consumer once it is available.

A further improvement of the proposed architecture is the split of ingestion and
transformation flows. Ingestion is the process of collecting the data and persisting it in
the Raw Data Storage, and transformation is the process of using metadata to transform
raw data into ODH’s standardized data. Separating them means that data can be ingested
even though they are not ready to be transformed (doesn’t have a metadata configuration).
This increases the data collecting capability, since it is not attached to the transformation
logic, and reduces risks of data loss, once the data is stored and is going to be processed
once the metadata is configured.

This also prevents unexpected behaviors on transformation from causing data loss,
because the raw data is stored, and once the cause is found and fixed, the transformation
can be triggered again.

Although there are many advantages to the proposed architecture, the use of asyn-
chronous communication, microservices, and the addition of two data storage cause an
increase in infrastructure cost and maintainability. For this reason, it is important to be
sure there is an experienced team with microservices and the use of observability and
tracking tools, such as Grafana, Prometheus, and Sentry, to make sure that the applications
are healthy and working as intended and any unwanted behavior is caught and fixed
as soon as possible.
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Conclusion

This work studied two MSA case studies and explored different scenarios to find
architectural characteristics that grant extensibility to the system. The first case study
focused on a Data Provider that provides access to a data source for multiple clients,
it was implemented in three different scenarios, that differ in communication methods,
infrastructure components, and client responsibilities. In the second scenario, we focused
on a Data Ingestion system, based on OpenDataHub’s use case, that provides a port
of entrance for data from multiple sources, with different structures and units, to be
integrated into a single data storage system. It was made one architecture proposal, with
implementation, and compared with their current approach.

The first case study provided a comparison of different approaches to client-server
communication, synchronous and asynchronous communication methods, HTTP requests,
and message broker queues. This made it possible to conclude that asynchronous communi-
cation via message broker allows for a higher level of extensibility and scalability because
it doesn’t create a direct dependency between the client and the provider. However, the use
of asynchronous communication restricts the client’s autonomy to fetch the data as needed,
and this can be a downside for scenarios where clients have low data source usage.

The second case study provided an example of concern split, modularization, and
generalization to increase extensibility. Splitting the system into small applications with a
single responsibility allows for code reusability to increase and reduce work to add new
features. Generalizing the transformation logic, by using structural metadata configuration,
increases code reusability and reduces code changes needed to update features behavior.

Overall, both case studies exemplify how the use of asynchronous communication
between services can help architectures increase extensibility and service autonomy.
Because it makes it possible for services to communicate without worrying about which
and when an application is going to handle the communication message.

Another concept utilized in both case studies is the use of data storage to perform
tracking and reduce communication overhead by storing reutilizable data. Reducing the
communication needed to perform an action for a new feature is key to increasing ex-
tensibility, once it reduces dependencies between services and code needed to add new
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features or update them.

In conclusion, this work exemplifies how the use of asynchronous communication
between service and data storage for reusable data can increase the extensibility of a
Microservice system’s architecture. It also provides implementation examples, developer
experience reports, and conclusions based on metrics collected in runtime.
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