
University of São Paulo
Institute of Mathematics and Statistics

Bachelor of Computer Science

An Efficient Algorithm for Rainbow
Hamiltonian Cycles

Nathan Luiz, Willian Mori

Final Essay

mac 499 — Capstone Project

Supervisor: Yoshiko Wakabayashi

São Paulo

2025

The content of this work is published under the CC BY 4.0 license
(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

i

Acknowledgment

We would like to express our deep gratitude to our advisor, Yoshiko Wakabayashi,

for accepting to guide us in this project. Her patience and guidance were essential for

the development of this work.

We also thank Gabriel Morete, for suggesting the theme of this monograph.

Resumo

Nathan Luiz, Willian Mori. Um Algoritmo Eficiente para Circuitos Hamiltonianos
Rainbow. Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade

de São Paulo, São Paulo, 2025.

Seja 𝑛 ≥ 3 e 𝐺 = 𝐺1 ∪ 𝐺2 ∪ … ∪ 𝐺𝑛 um grafo que é a união de 𝑛 grafos simples dois a dois aresta-

disjuntos 𝐺𝑖 de ordem 𝑛, todos definidos sobre um mesmo conjunto de vértices, cada qual com arestas

monocromaticamente coloridas mas coletivamente usando 𝑛 cores distintas. Joos and Kim (2020) provou

que se cada 𝐺𝑖 satisfaz a condição de Dirac (i.e. tem grau mínimo pelo menos 𝑛/2), então 𝐺 tem um

circuito Hamiltonian rainbow (um circuito em que todas as arestas têm cores distintas). Nesta monografia

apresentamos uma versão algoritmica dessa prova, e explicamos passo a passo um algoritmo que constrói um

circuito Hamiltoniano rainbow em𝐺. Apresentamos um pseudocódigo para cada procedimento que é descrito,

detalhando as estruturas que são usadas e analisando sua complexidade computacional. Mostramos que o

algoritmo que implementamos tem complexidade 𝑂(𝑛
3
), assintoticamente a melhor complexidade possível,

pois o grafo de entrada 𝐺 tem 𝑂(𝑛
3
) arestas. Adicionalmente, incluímos neste trabalho uma animação gráfica

que criamos para ilustrar o processo de construção de um circuito Hamiltoniano rainbow no grafo 𝐺.

Palavras-chave: Teorema de Dirac. Versão Rainbow. Circuito Hamiltoniano. Implementação.

Abstract

Nathan Luiz, Willian Mori. An Efficient Algorithm for Rainbow Hamiltonian
Cycles. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics,

University of São Paulo, São Paulo, 2025.

Let 𝑛 ≥ 3 and 𝐺 = 𝐺1∪𝐺2∪…∪𝐺𝑛 be a graph that is the union of 𝑛 pairwise edge-disjoint simple graphs

𝐺𝑖 of order 𝑛, all defined on a same vertex set, each one monochromatically edge colored but collectively

using 𝑛 distinct colors. Joos and Kim (2020) proved that if each 𝐺𝑖 satisfies Dirac’s condition (i.e. has minimum

degree at least 𝑛/2), then 𝐺 has a rainbow Hamiltonian cycle (a cycle in which all edges have disctinct

colors). In this monograph, we present an algorithmic version of this proof, and explain step by step an

algorithm that builds a rainbow Hamiltonian cycle in 𝐺. We present a pseudocode for each procedure that is

described, providing details on the structures that are used and analysing its computational complexity. We

show that the algorithm that we implemented has time complexity 𝑂(𝑛
3
), asymptotically the best possible,

as the input graph 𝐺 has 𝑂(𝑛
3
) edges. Additionally, we include in this work a graphical animation that we

created to illustrate the process of building a rainbow Hamiltonian cycle in 𝐺.

Keywords: Dirac Theorem. Rainbow version. Hamiltonian Cycle. Implementation.

vii

Contents

1 Preliminary 3
1.1 Definitions . 3

1.2 Dirac’s Theorem . 4

1.3 Rainbow version of Dirac’s Theorem . 4

2 Algorithmic Approach 5
2.1 Definitions, Notation and Conventions 5

2.1.1 Structures and functions abstractions 5

2.2 Flowchart . 6

2.2.1 Path of length 𝓁 . 7

2.2.2 Cycle of length 𝓁 . 11

2.2.3 Case 1: ⌈𝑛

2
⌉ + 1 ≤ 𝓁 < 𝑛 − 1 . 12

2.2.4 Case 2: Cycle of length 𝓁 = 𝑛 − 1 14

2.3 Time Complexity Analysis . 27

2.4 Testing Methodology . 27

2.4.1 Random testing . 27

2.4.2 Special test case . 28

3 Rainbow version of Ore’s Theorem 29

4 Conclusion 33

Bibliography 35

1

Introduction

The problem we address in this monograph is relatively recent, although its origin
traces back to classical concepts. In 1978, Caccetta and Häggkvist (Nathanson, 2006)
formulated the conjecture that every simple digraph of order 𝑛 with minimum outdegree 𝑑
has a directed cycle of length at most ⌈𝑛/𝑑⌉. This conjecture marked the beginning of
investigations of short cycles in digraphs with degree constraints.

Nearly four decades later, in 2017 Ron Aharoni, from the Department of Mathematics
at Technion, proposed a stronger version of this conjecture, known as a rainbow version
(Clinch et al., 2022). His conjecture states that, given a graph 𝐺 of order 𝑛 with edges
colored in 𝑛 colors, if each color appears in at most 𝑟 edges, then 𝐺 has a rainbow cycle
of length at most ⌈𝑛/𝑟⌉.

In 2019, Felix Joos, from the University of Heidelberg, and Jaehoon Kim, from KAIST,
proved the existence of a rainbow Hamiltonian cycle in a graph 𝐺 that results from the
union of 𝑛 edge-disjoint graphs 𝐺𝑖 (1 ≤ 𝑖 ≤ 𝑛) defined on a same set of 𝑛 vertices, each
𝐺𝑖 monochromatically edge colored but collectively using 𝑛 distinct colors, and each one
satisfying Dirac’s condition. A rainbow cycle is a cycle in which all edges are colored
differently. This result gave strong support to Aharoni’s conjecture.

The proof presented by Joos and Kim uses simple and elegant (yet non-trivial) tech-
niques that enabled the development of an 𝑂(𝑛

3
) algorithm in the number of vertices.

They also extended their result proving the existence of a perfect rainbow matching.

More recently, in 2023 Liqing Gao and Jian Wang (Gao and Wang, 2023) proved the
existence of a rainbow Hamiltonian cycle in graphs that satisfy a condition stated in a
theorem (also known as Ore’s theorem, but different from the one we mention in Chapter 3)
using the “shifting operator” tool. This technique, developed by Erdös, Ko, and Rado, is
widely used in extremal set theory and has led to significant advances in solving problems
in this area. However, we will not cover this work here.

This monograph is structured as follows. In Chapter 1, we present some basic defini-
tions, then we present the well-known Dirac’s theorem obtained in 1952 (Dirac, 1952), and
state the theorem known as the rainbow version of Dirac’s theorem, the central topic of this
monograph. In Chapter 2, we present a pseudocode and the details of the implementation
of the algorithm based on the work of Joos and Kim (Joos and Kim, 2020). In Chapter 3, we
present a statement which we call the rainbow version of Ore’s theorem, which is analogous
to the rainbow version of Dirac’s theorem, but is based on a (weaker) sufficient condition
for a graph to be Hamiltonian proved by Ore in 1960. We conjecture that this statement on

2

CONTENTS

the existence of a rainbow Hamiltonian cycle in the union graph 𝐺 is true. If so, this result
would generalize the rainbow version of Dirac’s theorem. We show a partial result that we
have obtained (so far) for this statement: that the union graph 𝐺, of order 𝑛, has a rainbow
Hamiltonian path and also a rainbow cycle of length 𝑛 − 1. Finally, in Chapter 4, we
make some final considerations about the work we have developed, including a graphical
visualizer for our implementation.

The source codes developed in this project are available in GitHub. There is a code
written in C++, using the Boost library, and also a code in Python, as it supports an
animation using the Graph-Tool framework.

https://github.com/wmrmrx/TCC

3

Chapter 1

Preliminary

In this chapter, we present the concepts and theorems that are fundamental to un-
derstand the work developed in this monograph. We start by presenting and proving
Dirac’s theorem (Dirac, 1952), and then we formally present the rainbow version of this
theorem, the main topic of this work.

We assume that the reader is familiar with some basic concepts of graph theory. We
present some of them to estabilish the terminology and notation, which follow those
used in Bondy and Murty, 2008.

1.1 Definitions

We denote by 𝐺 = (𝑉 , 𝐸) a graph 𝐺 with vertex set 𝑉 and edge set 𝐸.

A path 𝑃 of size 𝓁 in a graph 𝐺 = (𝑉 , 𝐸) is a sequence of vertices and edges
(𝑣0, 𝑒0, 𝑣1, 𝑒1,… , 𝑣𝓁−1, 𝑒𝓁−1, 𝑣𝓁) such that 𝑣𝑖 ∈ 𝑉 , 𝑒𝑖 = {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸, and 𝑣𝑖 ≠ 𝑣𝑗 for 0 ≤ 𝑖 < 𝑗 ≤ 𝓁.

A cycle 𝐶 of size 𝓁 in a graph 𝐺 = (𝑉 , 𝐸) is a sequence of vertices and edges
(𝑣0, 𝑒0, 𝑣1, 𝑒1,… , 𝑣𝓁, 𝑒𝓁, 𝑣𝓁+1) such that 𝑣0 = 𝑣𝓁+1, 𝑣𝑖 ∈ 𝑉 , 𝑒𝑖 = {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸, and 𝑣𝑖 ≠ 𝑣𝑗 for
0 ≤ 𝑖 < 𝑗 ≤ 𝓁.

If 𝐺 is a graph with colors on the edges, a path (or cycle) in 𝐺 is called rainbow if
all of its edges are colored differently.

When convenient, if 𝐺 is the name of a graph, we may refer to its vertex set and edge
set as 𝑉 (𝐺) and 𝐸(𝐺), respectively.

A Hamiltonian cycle in a graph 𝐺 of order 𝑛 is a cycle in 𝐺 of length 𝑛. The concept of
Hamiltonian path is defined analogously (it contains all vertices of the graph). A graph is
Hamiltonian if it contains a Hamiltonian cycle. Deciding whether a graph is Hamiltonian
is a well-known NP-complete problem. However, there are many sufficient conditions
that guarantee the existence of a Hamiltonian cycle in a graph. One of them, based on the
minimum degree of the graph, is given by the Dirac’s theorem.

4

1 | PRELIMINARY

1.2 Dirac’s Theorem
Theorem 1 (Dirac, 1952) If a simple graph 𝐺 = (𝑉 , 𝐸) with 𝑛 ≥ 3 vertices satisfies the
condition 𝑑𝐺(𝑣) ≥ 𝑛/2, for all 𝑣 ∈ 𝑉 , then 𝐺 is Hamiltonian.

Proof. Let 𝐺 = (𝑉 , 𝐸) with be a simple graph with 𝑛 ≥ 3 vertices that satisfies the condition
of the theorem. Suppose, by contradiction, that 𝐺 is not Hamiltonian.

Let 𝐺′
= (𝑉 , 𝐸

′
) be a graph that maximizes |𝐸

′
| such that 𝐺′ is not Hamiltonian and

𝐸 ⊆ 𝐸
′. Clearly, 𝐺′ is not a complete graph, because otherwise it would be Hamiltonian.

Consider a pair 𝑥, 𝑦 ∈ 𝑉 such that 𝑒 = {𝑥, 𝑦} ∉ 𝐸
′. The graph (𝑉 , 𝐸

′
+ 𝑒) must contain

a Hamiltonian cycle 𝐶 = (𝑣1, 𝑒1, 𝑣2, 𝑒2,… , 𝑣𝑛, 𝑒𝑛, 𝑣1), where 𝑣1 = 𝑥 , 𝑣𝑛 = 𝑦 and 𝑒𝑛 = 𝑒,
because otherwise, it would contradict the maximality of 𝐺′. Since 𝐺 is a subgraph of 𝐺′,
𝑑𝐺(𝑣) ≤ 𝑑𝐺′(𝑣) for all 𝑣 ∈ 𝑉 .

Let 𝐼1 = {𝑖 ∈ {2, 3,… , 𝑛 − 2} ∶ {𝑥, 𝑣𝑖+1} ∈ 𝐸
′
} , 𝐼2 = {𝑖 ∈ {2, 3,… , 𝑛 − 2} ∶ {𝑦, 𝑣𝑖} ∈ 𝐸

′
}. We

have that |𝐼1| ≥ 𝑑𝐺′(𝑥) − 1 and |𝐼2| ≥ 𝑑𝐺′(𝑦) − 1, which implies |𝐼1| + |𝐼2| > 𝑛 − 3. Since
|𝐼1| + |𝐼2| = |𝐼1 ∪ 𝐼2| + |𝐼1 ∩ 𝐼2| and |𝐼1 ∪ 𝐼2| ≤ 𝑛 − 3, there exists 𝑖 ∈ 𝐼1 ∩ 𝐼2.

That means that there is a cycle (𝑣1, 𝑒1, 𝑣2,… , 𝑣𝑖, {𝑣𝑖, 𝑣𝑛}, 𝑣𝑛, 𝑒𝑛−1, 𝑣𝑛−1… , 𝑣𝑖+1, {𝑣𝑖+1, 𝑣1}, 𝑣1),
which is Hamiltonian and is contained in 𝐺

′, a contradiction. Thus, 𝐺′ does not exist, and
therefore 𝐺 must be Hamiltonian.

1.3 Rainbow version of Dirac’s Theorem
We say that a graph of order 𝑛 ≥ 3 satisfies Dirac’s condition if it is simple and each

vertex of this graph has degree at least 𝑛/2.

The theorem which will be the central topic of this monograph is the following one,
known as the rainbow version of Dirac’s theorem. It was proved by Joos and Kim, 2020.

Theorem 2 (Joos and Kim, 2020) Let 𝑛 ≥ 3 and 𝐺 = 𝐺1 ∪ 𝐺2 ∪ … ∪ 𝐺𝑛 be a graph that is
the union of 𝑛 pairwise edge-disjoint graphs 𝐺𝑖 of order 𝑛, all defined on a same vertex set,
each one monochromatically edge colored but collectively using 𝑛 distinct colors. If each 𝐺𝑖

satisfies Dirac’s condition, then 𝐺 has a rainbow Hamiltonian cycle.

5

Chapter 2

Algorithmic Approach

In this chapter we present our implementation of the algorithm to find a Hamiltonian
cycle based on the proof of Joos and Kim, 2020. We provide the corresponding pseudocode
and details of the implementation.

2.1 Definitions, Notation and Conventions
Throughout this chapter, we use some definitions and conventions to make the code

simpler.

The total number of vertices is denoted by 𝑛, and the graph that is the union of 𝑛
graphs is represented by 𝐺 = 𝐺1 ∪ 𝐺2 ∪ ⋯ ∪ 𝐺𝑛, where each graph 𝐺𝑖 satisfies Dirac’s
condition. Moreover, we use the following notation:

• 𝑑(𝑐, 𝑣) stands for the degree of vertex 𝑣 in graph 𝐺𝑐;

• 𝑉 (𝑋) and 𝐴(𝑋) represents the sets of vertices and edges of object 𝑋 , respectively;

• 𝑁𝐽 (𝑋) denotes the set of neighbors of 𝑋 on graph 𝐽 .

We use the following conventions:

• Some variables used on a pseudocode may be defined on other parts of the same
function;

• The variables on the images are the same as the ones defined in the proof and the
code;

• Colors 𝑐𝑥 in the proof may be represented as 𝑐(𝑥) in the images.

The pseudocode is written using Python methods and conventions, such as array
slicing and list appending.

2.1.1 Structures and functions abstractions
We define first some abstract structures and functions.

6

2 | ALGORITHMIC APPROACH

Structure of 𝑒𝑑𝑔𝑒(𝑢, 𝑣, 𝑐)

Each edge in 𝐺 has three attributes:

• 𝑢, 𝑣: vertices connected by the edge;

• 𝑐: color of the edge, which also indicates that the edge belongs to graph 𝐺𝑐.

Structure of 𝑃𝑎𝑡ℎ

Each path contains two dynamic arrays:

• 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠: an array of 𝑣𝑒𝑟𝑡𝑒𝑥;

• 𝑒𝑑𝑔𝑒𝑠: an array of 𝑒𝑑𝑔𝑒.

If the 𝑃𝑎𝑡ℎ is not empty, it is guaranteed that size of 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 is equal to size of 𝑒𝑑𝑔𝑒𝑠
plus one. We also added the constraint that a 𝑃𝑎𝑡ℎ may not contain repeated vertices
or edge colors.

This structure has the following methods:

• pop_back(): removes the last vertex and edge from the path;

• back(): returns the last vertex of the path;

• size(): returns the size of the path.

Structure of 𝐶𝑦𝑐𝑙𝑒

Same Structure as 𝑃𝑎𝑡ℎ. The only difference is that a cycle contains at least three
vertices, and 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 length is equal to 𝑒𝑑𝑔𝑒𝑠 length.

Also, this structure has only one method, size(), which returns the size of the cycle.

Function 𝑐ℎ𝑒𝑐𝑘_𝑒𝑑𝑔𝑒(𝐺, 𝑢, 𝑣, 𝑐)

This function takes four parameters:

• 𝐺: the collection of graphs;

• 𝑢 and 𝑣: vertices of the edge;

• 𝑐: color of the edge.

If the edge {𝑢, 𝑣} belongs to 𝐺𝑐, the function returns this edge. Otherwise, it returns
𝑁𝑜𝑛𝑒. The function operates in constant time 𝑂(1) since we can implement it using a
three-dimensional matrix, which requires 𝑂(𝑛

3
) memory.

2.2 Flowchart
The algorithm begins with a single object representing an empty path. At each iteration,

the algorithm processes this object, which may be either a path or a cycle of length 𝓁,
and transforms it into a new object. The result may be a cycle of length 𝓁, a cycle of

2.2 | FLOWCHART

7

length 𝓁 + 1, or a path of length 𝓁 + 1. In Figure 2.1, an 𝐿-Path is a path of length 𝐿 and
an 𝐿-cycle is a cycle of length 𝐿.

Figure 2.1: Flowchart of the algorithm

We will assume that the algorithm is processing a graph of order 𝑛 ≥ 6. When 𝑛 < 6

the result is known to hold and can be solved by brute force. In Figure 2.2 we show the
possible cases that may occur in the algorithm.

Figure 2.2: The possible cases that may occur in the algorithm

2.2.1 Path of length 𝓁

In this case, we start with a path 𝑃 = (𝑥0, 𝑒0,… , 𝑥𝓁−1, 𝑒𝓁−1, 𝑥𝓁) of length 𝓁. To assist in
this process, we define the following variables:

• colors_in_path: an array of size 𝑛 in which colors_in_path[i] is True if color
𝑖 is used in the edges of the path.

• vertices_in_path: an array of size 𝑛 in which vertices_in_path[i] is True if
vertex 𝑖 is included in the path.

Let us divide the proof into two cases: when 𝓁 ≥ ⌈
𝑛

2
⌉ and when 𝓁 < ⌈

𝑛

2
⌉.

8

2 | ALGORITHMIC APPROACH

Case 1: 𝓁 < ⌈
𝑛

2
⌉

In this case, we select a color 𝑐 that is not present in the edges of the current path
𝑃 . Since 𝑑(𝑐, 𝑥𝓁) ≥ ⌈

𝑛

2
⌉, and there are at most 𝓁 < ⌈

𝑛

2
⌉ vertices other than 𝑥𝓁 in the path,

there exists a vertex 𝑦 outside the path 𝑃 that is adjacent to 𝑥𝓁 via an edge in 𝐴(𝐺𝑐). This
guarantees that we can extend the path 𝑃 to a longer path by adding the edge {𝑥𝓁, 𝑦}.

The code below implements this algorithm:

Algorithm 1 Path Extension for 𝓁 < ⌈
𝑛

2
⌉

1: function Extend_Path_Small(𝐺, 𝑃) ⊳ 𝑃 = (𝑥0,… , 𝑥𝓁−1)

2: 𝑐𝑜𝑙𝑜𝑟_𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑝𝑎𝑡ℎ ← next(𝑖 for 𝑖 in range(n) if not colors_in_path[i])
3: for 𝑖 ∈ [0,… , 𝑛 − 1] do
4: if not 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑖𝑛_𝑝𝑎𝑡ℎ[𝑖] then
5: 𝑒𝑑𝑔𝑒 ← check_edge(𝐺, 𝑃.𝑏𝑎𝑐𝑘(), 𝑖, 𝑐𝑜𝑙𝑜𝑟_𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑝𝑎𝑡ℎ)
6: if 𝑒𝑑𝑔𝑒 ≠ None then
7: return Path(𝐺, 𝑃.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 + [𝑖], 𝑃.𝑒𝑑𝑔𝑒𝑠 + [𝑒𝑑𝑔𝑒])
8: end if
9: end if

10: end for
11: assert False, "Should not happen"
12: end function

The time complexity of this function is 𝑂(𝑛). Since we only need to find a color that
is not on the path, and then locate a vertex outside the path that connects to the end of
the path (P.back()) using the function 𝑐ℎ𝑒𝑐𝑘_𝑒𝑑𝑔𝑒.

Case 2: 𝓁 ≥ ⌈
𝑛

2
⌉

First, remove the last vertex (and edge) of the path 𝑃 and obtain 𝑃
′. Let 𝑐𝑦 be the color

of the removed edge and 𝑐𝑥 be a color that is not on the path. We can check if the edge
{𝑥0, 𝑥𝓁−1} belongs to 𝐴(𝐺𝑐𝑥

) or to 𝐴(𝐺𝑐𝑦
). If it does, we add this edge to 𝑃

′ and obtain a
cycle of size 𝓁. This can be done with the code below:

2.2 | FLOWCHART

9

Algorithm 2 Path Extension for 𝓁 ≥ ⌈
𝑛

2
⌉

- Part 1
function Extend_Path_Big(𝐺, 𝑃)

𝑐𝑥 ← 𝑃.edges[−1].color ⊳ Color of the last edge in the path
𝑐𝑦 ← next(𝑖 for 𝑖 in range(n) if not colors_in_path[i])
𝑃.pop_back() ⊳ Remove the last vertex of the path
for 𝑐 ∈ [𝑐𝑥 , 𝑐𝑦] do

𝑒𝑑𝑔𝑒 ← check_edge(𝐺, 𝑃.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0], 𝑃 .𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[−1], 𝑐)
if 𝑒𝑑𝑔𝑒 ≠ None then

return Cycle(𝐺, 𝑃.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑃.𝑒𝑑𝑔𝑒𝑠 + [𝑒𝑑𝑔𝑒]) ⊳ Return 𝓁-cycle, if found
end if

end for
end function

The time complexity of this function is 𝑂(𝑛). This is the time needed to find a color
not used on the path and create the object Cycle. The other operations take 𝑂(1) time.

We can now check if there exists a vertex 𝑦 outside the path 𝑃 = (𝑥0,… , 𝑥𝓁−1) such that
𝑦 is adjacent to the vertices 𝑥0 and 𝑥𝓁−1 and uses colors 𝑐𝑥 and 𝑐𝑦 , as shown in Figure 2.3:

Figure 2.3: Construction of a cycle of length 𝓁 + 1

This part can also be done in 𝑂(𝑛) time with the code below:

10

2 | ALGORITHMIC APPROACH

Algorithm 3 Path Extension for 𝓁 ≥ ⌈
𝑛

2
⌉

- Part 2
function Extend_Path_Big(𝐺, 𝑃) ⊳ 𝑃 = (𝑥0,… , 𝑥𝓁−1)

for [𝑐1, 𝑐2] ∈ [[𝑐𝑥 , 𝑐𝑦], [𝑐𝑦 , 𝑐𝑥]] do ⊳ Try both color pairs
for 𝑦 ∈ [0,… , 𝑛 − 1] do

if not 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑖𝑛_𝑝𝑎𝑡ℎ[𝑦] then
𝑒𝑑𝑔𝑒_𝑥 ← check_edge(𝐺, 𝑃.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0], 𝑦, 𝑐1)
𝑒𝑑𝑔𝑒_𝑦 ← check_edge(𝐺, 𝑃.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[−1], 𝑦, 𝑐2)
if (𝑒𝑑𝑔𝑒_𝑥 ≠ None) and (𝑒𝑑𝑔𝑒_𝑦 ≠ None) then

return Cycle(𝐺, 𝑃.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 + [𝑦], 𝑃.𝑒𝑑𝑔𝑒𝑠 + [𝑒𝑑𝑔𝑒_𝑦, 𝑒𝑑𝑔𝑒_𝑥]) ⊳

Return 𝓁 + 1-cycle
end if

end if
end for

end for
assert False, "No valid extension found"

end function

At this point, 𝑃 = (𝑥0,… , 𝑥𝓁−1). Let us define:

𝐼1 =

{

𝑖 ∈ [0, 𝓁 − 3] ∶ {𝑥0, 𝑥𝑖+1} ∈ 𝐴(𝐺𝑐𝑥
)

}

and 𝐼2 =

{

𝑖 ∈ [1, 𝓁 − 2] ∶ {𝑥𝑖, 𝑥𝓁−1} ∈ 𝐴(𝐺𝑐𝑦
)

}

.

Note that, as there is no vertex 𝑦 ∈ 𝑉\𝑉 (𝑃) such that {𝑥0, 𝑦} ∈ 𝐴(𝐺𝑐𝑥
) and

{𝑦, 𝑥𝓁−1} ∈ 𝐴(𝐺𝑐𝑦
),

|𝑁𝐺𝑐𝑥

(𝑥0)\𝑉 (𝑃)| + |𝑁𝐺𝑐𝑦

(𝑥𝓁)\𝑉 (𝑃)| ≤ 𝑛 − 𝓁,

.

Otherwise, by the Pigeonhole Principle, we would have found a 𝑙 + 1 length cycle
with the previous procedures. Thus:

|𝐼1| + |𝐼2| ≥

𝑛

2

+

𝑛

2

− |𝑁𝐺𝑐𝑥
(𝑥1)\𝑉 (𝑃)| − |𝑁𝐺𝑐𝑦

(𝑥𝓁)\𝑉 (𝑃)| ≥ 𝓁.

As 𝐼1∩ 𝐼2 ⊆ [0, 𝓁−2], by the Pigeonhole Principle, 𝐼1∩ 𝐼2 ≠ ∅. Given an element 𝑖 ∈ 𝐼1∩ 𝐼2,
we can build a cycle with size 𝓁 with the following crossing procedure:

2.2 | FLOWCHART

11

Figure 2.4: Cycle of length 𝓁 + 1 found

Hence, in this case we just need to find an element in the intersection of 𝐼1 and 𝐼2 and
build the desired cycle. This can also be done in 𝑂(𝑛) with the code below:

Algorithm 4 Path Extension for 𝓁 > ⌈
𝑛

2
⌉

- Part 3
1: function Extend_Path_Big(𝐺, 𝑃) ⊳ 𝑃 = (𝑥0,… , 𝑥𝓁−1)

2: for 𝑖 ∈ [1,… , 𝑃 .𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.size() − 1] do
3: 𝑢 ← 𝑃.vertices[𝑖]
4: 𝑣 ← 𝑃.vertices[𝑖 + 1]

5: 𝑒𝑑𝑔𝑒_𝑥 ← check_edge(𝐺, 𝑃.vertices[0], 𝑣, 𝑐𝑥)
6: 𝑒𝑑𝑔𝑒_𝑦 ← check_edge(𝐺, 𝑢, 𝑃.vertices[−1], 𝑐𝑦)
7: if (𝑒𝑑𝑔𝑒_𝑥 ≠ None) and (𝑒𝑑𝑔𝑒_𝑦 ≠ None) then
8: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← 𝑃.vertices[∶ 𝑖 + 1] + [𝑦] + 𝑃.vertices[𝑖 + 1 ∶ −1][∶∶ −1]

9: 𝑒𝑑𝑔𝑒𝑠 ← 𝑃.edges[∶ 𝑖] + [𝑒𝑑𝑔𝑒_𝑦] + 𝑃.edges[𝑖 + 1 ∶][∶∶ −1] + [𝑒𝑑𝑔𝑒_𝑥]
10: return Cycle(𝐺, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑒𝑑𝑔𝑒𝑠)
11: end if
12: end for
13: return None ⊳ Return None if no cycle found
14: end function

2.2.2 Cycle of length 𝓁

In this case, we start with a cycle 𝐶 = (𝑥0, 𝑒0,… , 𝑥𝓁−1, 𝑒𝓁−1, 𝑥𝓁 = 𝑥0) of length 𝓁. To assist
the process, we define the following variables:

• colors_in_cycle: an array of size 𝑛 in which colors_in_cycle[i] is True if
color 𝑖 is used in the edges of the cycle.

• vertices_in_cycle: an array of size 𝑛 in which vertices_in_cycle[i] is True
if vertex 𝑖 is included in the cycle.

The values of these variables may be assigned in 𝑂(𝑛) time. We may assume that
the cycle has length at least ⌈𝑛

2
⌉. We divide the proof into two cases: when 𝓁 < 𝑛 − 1

and when 𝓁 = 𝑛 − 1.

12

2 | ALGORITHMIC APPROACH

2.2.3 Case 1: ⌈𝑛2⌉ + 1 ≤ 𝓁 < 𝑛 − 1

Let 𝑐1 and 𝑐2 be any two different colors that are not in the cycle. Suppose, wlog, that
there is an edge 𝑒𝑑𝑔𝑒(𝑢, 𝑣, 𝑐1) ∈ 𝐴(𝐺) not incident to the cycle. Then, because the degree
of 𝑢 is at least ⌈𝑛

2
⌉ and the length of the cycle is 𝓁 ≥ ⌈

𝑛

2
⌉ + 1, there is at least one vertex

𝑤 on the cycle such that {𝑢,𝑤} ∈ 𝐴(𝐺𝑐2
).

Thus, we can build a path of length 𝓁 + 1 by removing from the cycle an edge that
is incident to 𝑤 (see Figure 2.5):

Figure 2.5: Path of length 𝓁 + 1 found

This can be done in 𝑂(𝑛
2
) time with the following code:

2.2 | FLOWCHART

13

Algorithm 5 Cycle Extension for 𝓁 < 𝑛 − 1 - Part 1
function Extend_Cycle(𝐺,𝐶)

for [𝑐𝑖, 𝑐𝑗] ∈ [[𝑐1, 𝑐2], [𝑐2, 𝑐1]] do ⊳ Try both color pairs
for 𝑢 ∈ [0,… , 𝑛 − 1] do

for 𝑣 ∈ [𝑢 + 1,… , 𝑛 − 1] do
if not 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒[𝑢] and not 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒[𝑣] then

𝑒𝑑𝑔𝑒_𝑢 ← check_edge(𝐺, 𝑢, 𝑣, 𝑐𝑖)
if 𝑒𝑑𝑔𝑒_𝑢 ≠ None then

for 𝑘 ∈ [0,… , 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.size() − 1] do
𝑤 ← 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑘]

𝑒𝑑𝑔𝑒_𝑤 ← check_edge(𝐺,𝑤, 𝑢, 𝑐𝑗)

if 𝑒𝑑𝑔𝑒_𝑤 ≠ None then
𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← [𝑢, 𝑣] + 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑘 ∶] + 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[∶ 𝑘]

𝑒𝑑𝑔𝑒𝑠 ← [𝑒𝑑𝑔𝑒_𝑢, 𝑒𝑑𝑔𝑒_𝑤] + 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑘 ∶]

+𝐶.𝑒𝑑𝑔𝑒𝑠[∶ 𝑘]

return Path(𝐺, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑒𝑑𝑔𝑒𝑠)
end if

end for
assert False, "Should not reach here"

end if
end if

end for
end for

end for
...

end function

The complexity is in fact 𝑂(𝑛
2
) because once we find a valid edge 𝑒𝑑𝑔𝑒_𝑢, we just

make a linear search for a valid vertex 𝑤 in the cycle, that will certainly be found.

From now on, for every vertex 𝑢 outside the cycle, every edge with colors 𝑐1 or 𝑐2
incident to 𝑢 must also be incident to the cycle. Take a vertex 𝑢 outside the cycle and let

𝐼1 ∶=

{

𝑖 ∈ [0, 𝓁 − 1] ∶ {𝑢, 𝑥𝑖+1} ∈ 𝐴(𝐺𝑐1
)

}

and 𝐼2 ∶=

{

𝑖 ∈ [0, 𝓁 − 1] ∶ {𝑥𝑖, 𝑢} ∈ 𝐴(𝐺𝑐2
)

}

.

We have that |𝐼1| + |𝐼2| = |𝑁𝐺𝑐
1

(𝑢)| + |𝑁𝐺𝑐
2

(𝑢)| > 𝓁. Thus, by the Pigeonhole Principle,
𝐼1 ∩ 𝐼2 ≠ ∅. In this case, we can build a cycle of length 𝓁 + 1 as indicated in Figure 2.6:

14

2 | ALGORITHMIC APPROACH

Figure 2.6: Cycle of length 𝓁 + 1 found

The code to find this cycle is shown below:

Algorithm 6 Cycle Extension for 𝓁 < 𝑛 − 1 - Part 2
function Extend_Cycle(𝐺,𝐶)

𝑢 ← next(𝑖 for 𝑖 in range(n) if not 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒[𝑖])
for 𝑖 ∈ [0,… , 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.size() − 1] do

𝑒𝑑𝑔𝑒1 ← check_edge(𝐺, 𝑢, 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 + 1], 𝑐1)

𝑒𝑑𝑔𝑒2 ← check_edge(𝐺, 𝑢, 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖], 𝑐2)
if 𝑒𝑑𝑔𝑒1 ≠ None and 𝑒𝑑𝑔𝑒2 ≠ None then

𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 + 1 ∶] + 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[∶ 𝑖 + 1] + [𝑢]

𝑒𝑑𝑔𝑒𝑠 ← 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑖 + 1 ∶]+

𝐶.𝑒𝑑𝑔𝑒𝑠[∶ 𝑖 − 1]+

[𝑒𝑑𝑔𝑒2, 𝑒𝑑𝑔𝑒1]

return Cycle(𝐺, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑒𝑑𝑔𝑒𝑠)
end if

end for
assert False, "Should not reach here"

end function

This part works in 𝑂(𝑛) time. We just find a vertex outside the cycle, and make a
linear search to find which edge to remove.

2.2.4 Case 2: Cycle of length 𝓁 = 𝑛 − 1

This is the most complicated case. We define first some auxiliary functions to simplify
the code.

Auxiliary Functions

• find_adjacency(u, color, vertex_positions). This function gives the in-
dexes of the vertices that are adjacent to 𝑢 with color 𝑐𝑜𝑙𝑜𝑟 , based on the current
positions of the vertices. This is useful when we need to change the vertex position
in the cycle. The algorithm is shown below.

2.2 | FLOWCHART

15

Algorithm 7 Find Adjacency Index List for a Given Source and Color
1: function Find_Adjacency(𝑢, 𝑐𝑜𝑙𝑜𝑟, 𝑣𝑒𝑟𝑡𝑒𝑥_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)
2: 𝑎𝑛𝑠 ← []

3: for 𝑡𝑔𝑡 ∈ 𝐺.adjacency[𝑐𝑜𝑙𝑜𝑟][𝑢] do
4: 𝑎𝑛𝑠.append(𝑣𝑒𝑟𝑡𝑒𝑥_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠[𝑡𝑔𝑡])
5: end for
6: return 𝑎𝑛𝑠 ⊳ Return the list of positions
7: end function

The complexity of Algorithm 7 is 𝑂(𝑛), as we just need to iterate over the adjacency
list of 𝑢 with color 𝑐𝑜𝑙𝑜𝑟 .

• find_answer(G, y, cy, C, i). Let 𝐺 be the input graph collection, 𝐶 a cycle
with size 𝑛 − 1, 𝑦 be the only vertex outside the cycle, 𝑐𝑦 be the only color outside
the cycle and 𝑖 the index of the edge 𝑒𝑖 to be removed. This function builds a cycle
with size 𝑛 by removing the edge 𝑒𝑖 and adding the edges 𝑒𝑑𝑔𝑒(𝑥𝑖, 𝑦, 𝑒𝑖.𝑐𝑜𝑙𝑜𝑟) and
𝑒𝑑𝑔𝑒(𝑦, 𝑥𝑖+1, 𝑐𝑦).

The algorithm is shown below.

Algorithm 8 Find Answer for 𝓁 = 𝑛 − 1

1: function Find_Answer(𝐺, 𝑦, 𝑐𝑦, 𝐶, 𝑖)
2: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 + 1 ∶] + 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[∶ 𝑖 + 1] + [𝑦]

3: 𝑒𝑑𝑔𝑒𝑠 ← 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑖 + 1 ∶] + 𝐶.𝑒𝑑𝑔𝑒𝑠[∶ 𝑖]

4: +[𝐺.get_edge(𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[−1], 𝑦, 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑖].𝑐𝑜𝑙𝑜𝑟), 𝐺.get_edge(𝑦, 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0], 𝑐𝑦)]
5: return Cycle(𝐺, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑒𝑑𝑔𝑒𝑠)
6: end function

The complexity of Algorithm 8 is 𝑂(𝑛), as we just need to rotate some lists of size 𝑛

and the other operations are 𝑂(1).

Algorithm

This case is slightly more complicated. It is the last iteration of the algorithm and
will find the desired cycle.

Let 𝑦 and 𝑐𝑦 be the vertex and color that are not in the cycle. We will rearrange the
labels of the colors such that the remaining color has label 𝑛 − 1. Let us also define the
following variables:

• new_color_id: an array of size 𝑛 in which new_color_id[i] is the new label of
color 𝑖,

• vertex_position_on_cycle: an array of size 𝑛 in which vertex_position_on_cycle[i]
is the position of vertex 𝑖 in the cycle.

• color_in_position: an array of size 𝑛 in which color_in_position[i] is the
color of the edge that connects the vertices 𝑖 and 𝑖 + 1 in the cycle.

16

2 | ALGORITHMIC APPROACH

These variables can be calculated in 𝑂(𝑛) time. We now describe the algorithm.

Algorithm 9 Cycle Extension for 𝓁 = 𝑛 − 1 - Part 1
function Extend_Cycle(𝐺,𝐶)

𝑛𝑒𝑤_𝑐𝑜𝑙𝑜𝑟_𝑖𝑑 ← [−1] × 𝑛

𝑦 ← next(𝑖 for 𝑖 in range(n) if not 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒[𝑖])
𝑐𝑦 ← next(𝑖 for 𝑖 in range(n) if not 𝑐𝑜𝑙𝑜𝑟𝑠_𝑖𝑛_𝑐𝑦𝑐𝑙𝑒[𝑖])
𝑛𝑒𝑤_𝑐𝑜𝑙𝑜𝑟_𝑖𝑑[𝑐𝑦] ← 𝑛 − 1

for 𝑖 ∈ [0,… , 𝐶.size() − 1] do
𝑛𝑒𝑤_𝑐𝑜𝑙𝑜𝑟_𝑖𝑑[𝑐𝑜𝑙𝑜𝑟] ← 𝑖

𝑐𝑜𝑙𝑜𝑟_𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑖].𝑐𝑜𝑙𝑜𝑟

end for
𝑣𝑒𝑟𝑡𝑒𝑥_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑜𝑛_𝑐𝑦𝑐𝑙𝑒 ← [−1] × 𝑛

for 𝑖 ∈ [0,… , 𝐶.size() − 1] do
𝑣𝑒𝑟𝑡𝑒𝑥_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑜𝑛_𝑐𝑦𝑐𝑙𝑒[𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖]] ← 𝑖

end for
end function

Let us build the following digraph on the same vertex set of 𝐺. (See Figure 2.7 for
a visual representation.)

𝐴(𝐷) = ⋃

𝑖∈{0,...,𝑛−2}

{

{𝑥𝑖, 𝑧} ∶ 𝑧 ≠ 𝑥𝑖+1, {𝑥𝑖, 𝑧} ∈ 𝐴(𝐺𝐶.𝑒𝑑𝑔𝑒𝑠[𝑖].𝑐𝑜𝑙𝑜𝑟)

}

.

Figure 2.7: Digraph construction for the case 𝓁 = 𝑛 − 1.

Since 𝛿(𝐺𝑖) ≥
𝑛

2
for all 𝑖 ∈ [0, 𝑛 − 2], we have 𝑑

+

𝐷
(𝑥) ≥

𝑛

2
− 1 for every vertex 𝑥 in

the cycle. Thus, |𝐴(𝐷)| ≥ (𝑛 − 1)(
𝑛

2
− 1).

Now, let us define the following variables:

• 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒: an array of size 𝑛, in which 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒[𝑖] is the in-degree of vertex 𝑖 in
the digraph 𝐷.

• 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑: an array of size 𝑛, in which 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑[𝑖]
is the list of vertices that have an edge entering vertex 𝑖 in the digraph 𝐷.

2.2 | FLOWCHART

17

• 𝐼 ∶= {𝑖 ∈ [𝑛 − 1] ∶ {𝑥𝑖, 𝑦} ∈ 𝐴(𝐷)}.

• 𝐼 ∶=

{

𝑖 ∈ [𝑛 − 1] ∶ {𝑦, 𝑥𝑖+1} ∈ 𝐴(𝐺𝑐𝑦)

}

.

We can build these variables with the following algorithm.

Algorithm 10 Cycle Extension for 𝓁 < 𝑛 − 1. - Part 2: Building digraph variables, 𝐼 and 𝐼

1: function Extend_Cycle(𝐺,𝐶)
2: 𝐼 ← []

3: 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒 ← [0] × 𝑛

4: 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 ← [empty list] × 𝑛
5: for 𝑖 ← 0 to 𝐶.size() − 1 do
6: 𝑢 ← 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖]

7: 𝑣 ← 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[(𝑖 + 1) mod 𝐶.size()]
8: 𝑐𝑜𝑙𝑜𝑟 ← 𝑐𝑜𝑙𝑜𝑟_𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖]
9: for 𝑡𝑔𝑡 ∈ 𝐺.𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦[𝑐𝑜𝑙𝑜𝑟][𝑢] do

10: if 𝑡𝑔𝑡 = 𝑣 then
11: continue
12: end if
13: 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒[𝑡𝑔𝑡] ← 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒[𝑡𝑔𝑡] + 1

14: 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑[𝑡𝑔𝑡].𝑎𝑝𝑝𝑒𝑛𝑑(𝑢)
15: if 𝑡𝑔𝑡 = 𝑦 then
16: 𝐼 .𝑎𝑝𝑝𝑒𝑛𝑑(𝑖)

17: end if
18: end for
19: end for
20: 𝐼 ← Find_Adjacency(𝑦, 𝑐𝑦 , 𝑣𝑒𝑟𝑡𝑒𝑥_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑜𝑛_𝑐𝑦𝑐𝑙𝑒)
21: 𝐼 ← [(𝑢 − 1 + 𝐶.size()) mod 𝐶.size() ∶ 𝑢 ∈ 𝐼]

22: end function

The time complexity of this algorithm is 𝑂(𝑛
2
), as we need to iterate over the vertices

of the cycle and iterate over its adjacency list for a specific color. The space complexity is
𝑂(𝑛

2
), as we need to store the adjacency list of each vertex.

Let us describe the construction for the case 𝑑−

𝐷
(𝑦) ≥

𝑛

2
. We have that |𝐼 |+|𝐼 | ≥ 𝑑

−

𝐷
(𝑦)+

𝑛

2
.

Thus, by the Pigeonhole Principle, 𝐼 ∩ 𝐼 ≠ ∅. In this case, we can build a cycle of length 𝑛

with the following crossing, removing the edge 𝑒𝑖:

18

2 | ALGORITHMIC APPROACH

Figure 2.8: Crossing for the case 𝑑−
𝐷
(𝑦) ≥

𝑛

2
.

Algorithmically, we can find the intersection and build the answer.

Algorithm 11 Cycle Extension for 𝓁 < 𝑛 − 1. - Part 3: Case 𝑑
−

𝐷
(𝑦) ≥

𝑛

2

1: function Extend_Cycle(𝐺,𝐶)
2: for 𝑖 ∈ 𝐼 do
3: if 𝑖 ∈ 𝐼 then
4: return Find_Answer(𝐺, 𝑦, 𝑐𝑦, 𝐶, 𝑖)
5: end if
6: end for
7: end function

The complexity of Algorithm 11 is 𝑂(𝑛
2
), as we just need to iterate over 𝐼 , check if an

element in 𝐼 is in 𝐼 and, once we find an element in 𝐼 , we call the function Find_Answer
that has complexity 𝑂(𝑛).

From now on, we assume that 𝑑−

𝐷
(𝑦) <

𝑛

2
and consider two cases:

1. If there is a vertex 𝑥𝑖 such that 𝑑−

𝐷
(𝑥𝑖) >

𝑛

2
− 1.

2. Otherwise.

Let us start with the first case. We may assume, wlog, that 𝑑−

𝐷
(𝑥0) >

𝑛

2
− 1. To do

this, we can just find a vertex with in-degree greater than 𝑛

2
− 1 and rotate the cycle, as

described in the following algorithm:

2.2 | FLOWCHART

19

Algorithm 12 Part 4: Cycle Extension for 𝓁 < 𝑛 − 1. Case 𝑑
−

𝐷
(𝑦) <

𝑛

2

1: function Extend_Cycle(𝐺,𝐶)
2: for 𝑖 ∈ [0,… , 𝐶.size() − 1] do
3: 𝑢 ← 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖]

4: if 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒[𝑢] > 𝑛

2
− 1 then

5: 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 ∶] + 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[∶ 𝑖]

6: 𝐶.𝑒𝑑𝑔𝑒𝑠 ← 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑖 ∶] + 𝐶.𝑒𝑑𝑔𝑒𝑠[∶ 𝑖]

7: end if
8: for 𝑗 ∈ [0,… , 𝐶.size() − 1] do
9: 𝑐𝑜𝑙𝑜𝑟 ← 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑗].𝑐𝑜𝑙𝑜𝑟

10: 𝑛𝑒𝑤_𝑐𝑜𝑙𝑜𝑟_𝑖𝑑[𝑐𝑜𝑙𝑜𝑟] ← 𝑗

11: 𝑣𝑒𝑟𝑡𝑒𝑥_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑜𝑛_𝑐𝑦𝑐𝑙𝑒[𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗]] ← 𝑗

12: end for
13: break
14: end for
15: end function

The time complexity of Algorithm 12 is 𝑂(𝑛), as we iterate over the vertices and
as soon as we find the desired vertex, we make 𝑂(𝑛) operations to rebuild the needed
variables and then we break.

Let us define the following variables:

• 𝐼0 ∶=

{

𝑖 ∈ [𝑛 − 1] ∶ {𝑥𝑖, 𝑦} ∈ 𝐴(𝐺𝑐0
)

}

• 𝐼𝑛−1 ∶=

{

𝑖 ∈ [𝑛 − 1] ∶ {𝑦, 𝑥𝑖+1} ∈ 𝐴(𝐺𝑐𝑛−1
)

}

We have that |𝐼0| + |𝐼𝑛−1| ≥ 𝑑(0, 𝑦) + 𝑑(𝑛 − 1, 𝑦) ≥ 𝑛. Thus, by the Pigeonhole Principle,
𝐼0 ∩ 𝐼𝑛−1 ≠ ∅. Take 𝑗 ∈ 𝐼0 ∩ 𝐼𝑛−1. If 𝑗 = 0, we can just remove the edge 𝑥0 and build the cycle
of length 𝑛 adding crossing edges 𝑒𝑑𝑔𝑒(𝑥0, 𝑦, 𝑐0) and 𝑒𝑑𝑔𝑒(𝑦, 𝑥1, 𝑐1). So, assume 𝑗 ≠ 0.

Let us construct a Hamiltonian path 𝑃 indicated in Figure 2.9:

20

2 | ALGORITHMIC APPROACH

Figure 2.9: Building a Hamiltonian path 𝑃 .

We are going to create the following variables to manipulate the path 𝑃 :

• 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟 : the color of the edge outside the path 𝑃 , 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑗].𝑐𝑜𝑙𝑜𝑟 ;

• 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠: the vertices of the path 𝑃 , (𝑥1, 𝑥2,… , 𝑥𝑗 , 𝑦, 𝑥𝑗+1,… , 𝑥𝑛−2, 𝑥0);

• 𝑃_𝑒𝑑𝑔𝑒𝑠: the edges of the path 𝑃 , (𝑒1, 𝑒2,… , 𝑒𝑑𝑔𝑒(𝑥𝑗 , 𝑦, 𝑒0.𝑐𝑜𝑙𝑜𝑟), 𝑒𝑑𝑔𝑒(𝑦, 𝑥𝑗+1, 𝑐𝑦),… , 𝑒𝑛−2, 𝑒0);

• 𝑃_𝑝𝑜𝑠: an array to store the new index of each vertex on the path.

To compute these variables, we can use the following algorithm:

2.2 | FLOWCHART

21

Algorithm 13 Part 5: Cycle Extension for 𝓁 < 𝑛 − 1. Case 𝑑
−

𝐷
(𝑦) <

𝑛

2

1: function Extend_Cycle(𝐺,𝐶)
2: 𝑗 ← −1

3: 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟 ← −1

4: 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← []

5: 𝑃_𝑒𝑑𝑔𝑒𝑠 ← []

6: 𝑃_𝑝𝑜𝑠 ← [0] × 𝑛

7: for 𝑖 ∈ 𝐼0 do
8: if 𝑖 ∈ 𝐼𝑛−1 then
9: if 𝑖 = 0 then

10: return Find_Answer(𝐺, 𝑦, 𝑐𝑦, 𝐶, 𝑖)
11: end if
12: 𝑗 ← 𝑖

13: 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟 ← 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑗].𝑐𝑜𝑙𝑜𝑟

14: 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[1 ∶ 𝑗 + 1]+

15: ← [𝑦]+

16: ← 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗 + 1 ∶ 𝑛]+

17: ← [𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0]]

18: 𝑃_𝑒𝑑𝑔𝑒𝑠 ← 𝐶.𝑒𝑑𝑔𝑒𝑠[1 ∶ 𝑗]+

19: ← [𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐺,𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗], 𝑦, 𝐶.𝑒𝑑𝑔𝑒𝑠[0].𝑐𝑜𝑙𝑜𝑟)]+
20: ← [𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐺, 𝑦, 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[(𝑗 + 1) mod 𝑛], 𝑐𝑦)]+

21: ← 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑗 + 1 ∶ 𝑛]

22: for 𝑗 ∈ [0,… , 𝑛 − 1] do
23: 𝑃_𝑝𝑜𝑠[𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗]] ← 𝑗

24: end for
25: break
26: end if
27: end for
28: end function

The time complexity of Algorithm 13 is 𝑂(𝑛
2
), as we iterate over 𝐼0, check if an element

in 𝐼0 is in 𝐼𝑛−1 and, if it is, we build the path 𝑃 . To build the path it takes 𝑂(𝑛) operations.

Let us now create the following variables:

• 𝐽0 ∶= {𝑖 ∈ [𝑛 − 2] ∶ 𝑒𝑑𝑔𝑒(𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0], 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 + 1], 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟) ∈ 𝐸(𝐺)}.

• 𝐽𝑛−1 ∶= {𝑖 ∈ [𝑛 − 2] ∶ 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖] ∈ 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑[𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑛 − 1]]}.

If 𝑒𝑑𝑔𝑒(𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0], 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[−1], 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟) is in 𝐺, we can just close the
cycle adding this edge. Let us assume that this is not the case. Thus, |𝐽0| ≥ 𝛿(𝐺𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟) ≥
𝑛

2
. Also, as 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑛 − 2] ∈ {𝑥𝑛−2, 𝑦}, from the construction of 𝐷 we guarantee that

𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑛 − 2] ∉ 𝑁
−

𝐷
(𝑥0) and consequently |𝐽𝑛−1| ≥

𝑛

2
−

1

2
.

By the Pigeonhole Principle, as |𝐽0| + |𝐽𝑛−1| ≥ 𝑛, we have that |𝐽0 ∩ 𝐽𝑛−1| ≥ 2. Thus,
there is at least one element in 𝐽0 ∩ 𝐽𝑛−1, say 𝑘, such that 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑘] ≠ 𝑦. We can then
build the following Hamiltonian cycle:

22

2 | ALGORITHMIC APPROACH

Figure 2.10: Crossing for the case 𝑑−
𝐷
(𝑦) <

𝑛

2
and 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑘] ≠ 𝑦.

The algorithm to find the answer in this case is the following:

Algorithm 14 Part 6: Cycle Extension for 𝓁 < 𝑛 − 1. Case 𝑑
−

𝐷
(𝑦) <

𝑛

2

1: function Extend_Cycle(𝐺,𝐶)
2: 𝑒𝑑𝑔𝑒 ← 𝐺.𝑐ℎ𝑒𝑐𝑘_𝑒𝑑𝑔𝑒(𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0], 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[−1], 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟)
3: if 𝑒𝑑𝑔𝑒 is not 𝑁𝑜𝑛𝑒 then
4: return Cycle(𝐺, 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑃_𝑒𝑑𝑔𝑒𝑠 + [𝑒𝑑𝑔𝑒])
5: end if
6: 𝐽1 ← Find_Adjacency(P_vertices[0], removed_color, P_pos)
7: 𝐽1 ← [(𝑢 − 1 + 𝑛) mod 𝑛 ∶ 𝑢 ∈ 𝐽1]

8: 𝐽 𝑛 ← 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑[𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[−1]]
9: 𝐽 𝑛 ← [𝑃_𝑝𝑜𝑠[𝑢] ∶ 𝑢 ∈ 𝐽 𝑛]

10: for 𝑖 ∈ 𝐽1 do
11: if 𝑖 ∈ 𝐽 𝑛 then
12: if 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 + 1] = 𝑦 then
13: continue
14: end if
15: 𝑒𝑑𝑔𝑒1 ← 𝐺.𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖], 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[−1], 𝑃_𝑒𝑑𝑔𝑒𝑠[𝑖].𝑐𝑜𝑙𝑜𝑟)
16: 𝑒𝑑𝑔𝑒2 ← 𝐺.𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 + 1], 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0], 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟)
17: 𝑓 𝑖𝑛𝑎𝑙_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[∶ 𝑖 + 1] + 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 + 1 ∶][∶∶ −1]

18: 𝑓 𝑖𝑛𝑎𝑙_𝑒𝑑𝑔𝑒𝑠 ← 𝑃_𝑒𝑑𝑔𝑒𝑠[∶ 𝑖]+

19: [𝑒𝑑𝑔𝑒1]+

20: 𝑃_𝑒𝑑𝑔𝑒𝑠[𝑖 + 1 ∶][∶∶ −1]+

21: [𝑒𝑑𝑔𝑒2]

22: return Cycle(𝐺, 𝑓 𝑖𝑛𝑎𝑙_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑓 𝑖𝑛𝑎𝑙_𝑒𝑑𝑔𝑒𝑠)
23: end if
24: end for
25: end function

The time complexity of Algorithm 14 is 𝑂(𝑛
2
), as we iterate over 𝐽0 and check if an

element of 𝐽0 is in 𝐽𝑛−1. If yes, we build the cycle and return it, in 𝑂(𝑛) operations. Therefore,
when there exists 𝑥𝑖 such that 𝑑−

𝐷
(𝑥𝑖) >

𝑛

2
− 1, we have a total complexity of 𝑂(𝑛

2
).

Now, let us analyze the case in which every 𝑥𝑖 satisfies 𝑑−

𝐷
(𝑥𝑖) ≤

𝑛

2
− 1. Define

2.2 | FLOWCHART

23

 ∶=

{

𝑖 ∈ [𝑛 − 1] ∶ 𝑑
−

𝐷
(𝑥𝑖) =

⌊

𝑛

2

− 1
⌋

}

. (2.1)

From the construction of 𝐷, as 𝑑+

𝐷
(𝑦) = 0 and 𝑑

−

𝐷
(𝑦) ≤

𝑛

2
− 1, we have:

|𝐴(𝐷 − 𝑦)| ≥ (𝑛 − 1)
(

𝑛

2

− 1
)
−

𝑛

2

+ 1 > (𝑛 − 1)
(

𝑛

2

−

3

2)
. (2.2)

Therefore, from 2.2 and 2.1, if we analyze the sum of the in-degrees of the vertices:

| |
⌊

𝑛

2

− 1
⌋
+ (𝑛 − 1 − | |)

⌊

𝑛

2

− 2
⌋
≥ |𝐴(𝐷 − 𝑦)| > (𝑛 − 1)

𝑛

2

−

3

2

. (2.3)

Therefore, | | ≥
𝑛

2
>

𝑛−1

2
. Defining ′

∶=

{

𝑖 ∈ [𝑛 − 1] ∶ 𝑒𝑑𝑔𝑒(𝑥𝑖+1, 𝑦, 𝑐𝑦) ∈ 𝐴(𝐺)

}

,
we have that | ′

| + | | ≥ 𝑛. By the Pigeonhole Principle, there exists 𝑗 ∈ ′
∩ . Let

us build the following transversal path 𝑄:

Figure 2.11: Building the transversal path 𝑄.

The algorithm to build 𝑄 and get the new missing color is the following:

24

2 | ALGORITHMIC APPROACH

Algorithm 15 Part 7: Cycle Extension for 𝓁 < 𝑛 − 1. Case 𝑑
−

𝐷
(𝑦) <

𝑛

2

1: function Extend_Cycle(𝐺,𝐶)
2: 𝑄 ← 𝑃𝑎𝑡ℎ()

3: 𝑄_𝑝𝑜𝑠 ← [0] × 𝑛

4: 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟 ← −1

5: for 𝑗 ∈ [0,… , 𝑛 − 1] do
6: 𝑒𝑑𝑔𝑒 ← 𝐺.𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝑦, 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗], 𝑐𝑦)
7: if 𝑒𝑑𝑔𝑒 is 𝑁𝑜𝑛𝑒 or 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒[𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗]] ≠ ⌊

𝑛

2
− 1⌋ then

8: continue
9: end if

10: 𝑄_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← [𝑦] + 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗 + 1 ∶] + 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[∶ 𝑗 + 1]

11: 𝑄_𝑒𝑑𝑔𝑒𝑠 ← [𝑒𝑑𝑔𝑒] + 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑗 + 1 ∶] + 𝐶.𝑒𝑑𝑔𝑒𝑠[∶ 𝑗]

12: 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟 ← 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑗].𝑐𝑜𝑙𝑜𝑟

13: for 𝑖 ∈ [0,… , 𝑛 − 1] do
14: 𝑄_𝑝𝑜𝑠[𝑄_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖]] ← 𝑖

15: end for
16: 𝑄 ← Path(𝐺,𝑄_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑄_𝑒𝑑𝑔𝑒𝑠)
17: break
18: end for
19: end function

This is𝑂(𝑛) as the most expensive operations are the manipulations on𝐶. Now, define:

𝐽0 ∶= {𝑖 ∈ [0, 𝑛 − 3] ∶ {𝑦, 𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 + 1]} ∈ 𝐴(𝐺𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟)}, (2.4)

𝐽𝑛−1 ∶= {𝑖 ∈ [1, 𝑛 − 3] ∶ 𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖] ∈ 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑[𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑛 − 1]]}.

(2.5)

If {𝑦, 𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0]} ∈ 𝐴(𝐺𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟), we can just close the cycle adding this edge.
Let us assume that this edge is not in 𝐺. We have that |𝐽0| ≥ 𝛿(𝐺𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟) ≥

𝑛

2
. Observe

that 𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0] = 𝑦 ∉ 𝑁
−

𝐷
(𝑄𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑛 − 1]) and 𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑛 − 2] = 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗 −

1] ∉ 𝑁
−

𝐷
(𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑛 − 1]), by the construction of 𝐷. As 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗] ∈ , we get that

|𝐽𝑛−1| = ⌊
𝑛

2
− 1⌋. We obtain that |𝐽0| + |𝐽𝑛−1| ≥ 𝑛 − 1. Thus, from Pigeonhole Principle, there

exists 𝑘 ∈ (𝐽0\{0}) ∩ 𝐽𝑛−1. We can finally build the following transversal cycle:

2.2 | FLOWCHART

25

Figure 2.12: Final crossing for the case 𝑑−
𝐷
(𝑦) <

𝑛

2
and 𝑃_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑘] ≠ 𝑦.

The algorithm to find the answer in this case is the following:

26

2 | ALGORITHMIC APPROACH

Algorithm 16 Part 8: Cycle Extension for 𝓁 < 𝑛 − 1. Case 𝑑
−

𝐷
(𝑦) <

𝑛

2

1: function Extend_Cycle(𝐺,𝐶)
2: 𝑄 ← 𝑁𝑜𝑛𝑒

3: 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟 ← −1

4: for 𝑗 ∈ [2,… , 𝑛 − 1] do
5: 𝑒𝑑𝑔𝑒 ← 𝐺.𝑐ℎ𝑒𝑐𝑘_𝑒𝑑𝑔𝑒(𝑦, 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[(𝑗 + 1) mod 𝑛], 𝑐𝑦)

6: if 𝑒𝑑𝑔𝑒 is 𝑁𝑜𝑛𝑒 or 𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒[𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗]] ≠ ⌊
𝑛

2
− 1⌋ then

7: continue
8: end if
9: 𝑄_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← [𝑦] + 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑗 + 1 ∶] + 𝐶.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[∶ 𝑗 + 1]

10: 𝑄_𝑒𝑑𝑔𝑒𝑠 ← [𝑒𝑑𝑔𝑒] + 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑗 + 1 ∶] + 𝐶.𝑒𝑑𝑔𝑒𝑠[∶ 𝑗]

11: 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟 ← 𝐶.𝑒𝑑𝑔𝑒𝑠[𝑗].𝑐𝑜𝑙𝑜𝑟

12: 𝑄 ← Path(𝐺,𝑄_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑄_𝑒𝑑𝑔𝑒𝑠)
13: break
14: end for
15: if 𝑄 is 𝑁𝑜𝑛𝑒 then
16: raise RuntimeError("Did not find Path Q :(")
17: end if
18: 𝑒𝑑𝑔𝑒 ← 𝑐ℎ𝑒𝑐𝑘_𝑒𝑑𝑔𝑒(𝐺,𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[−1], 𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0], 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟)
19: if 𝑒𝑑𝑔𝑒 is not 𝑁𝑜𝑛𝑒 then
20: return Cycle(𝐺,𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑄.𝑒𝑑𝑔𝑒𝑠 + [𝑒𝑑𝑔𝑒])
21: end if
22: 𝐽0 ← []

23: for 𝑖 ∈ [0,… , 𝑛 − 2] do
24: 𝑒𝑑𝑔𝑒 ← 𝐺.𝑐ℎ𝑒𝑐𝑘_𝑒𝑑𝑔𝑒(𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[0], 𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖 + 1], 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑐𝑜𝑙𝑜𝑟)
25: if 𝑒𝑑𝑔𝑒 is not 𝑁𝑜𝑛𝑒 then
26: 𝐽0.𝑎𝑝𝑝𝑒𝑛𝑑((𝑖, 𝑒𝑑𝑔𝑒))

27: end if
28: end for
29: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← [0] × 𝑛

30: for 𝑖 ∈ [0,… , 𝑛 − 1] do
31: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑖]] ← 𝑖

32: end for
33: 𝑖𝑛𝐽𝑛 ← [𝐹𝑎𝑙𝑠𝑒] × 𝑛

34: for 𝑖 ∈ [0,… , 𝑛 − 1] do
35: 𝑖𝑛𝐽𝑛[𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖]] ← 𝑇 𝑟𝑢𝑒

36: end for
37: for 𝑘, 𝑒𝑑𝑔𝑒_𝑓 𝑟𝑜𝑚_𝑓 𝑖𝑟𝑠𝑡 ∈ 𝐽0 do
38: if 𝑛𝑜𝑡𝑖𝑛𝐽𝑛[𝑘] then
39: continue
40: end if
41: 𝑒𝑑𝑔𝑒_𝑓 𝑟𝑜𝑚_𝑙𝑎𝑠𝑡 ← 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐺,𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑛− 1], 𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑘], 𝑄.𝑒𝑑𝑔𝑒𝑠[𝑘].𝑐𝑜𝑙𝑜𝑟)

42: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← 𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[∶ 𝑘 + 1] + 𝑄.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑘 + 1 ∶][∶∶ −1]

43: 𝑛𝑒𝑤_𝑒𝑑𝑔𝑒𝑠 ← 𝑄.𝑒𝑑𝑔𝑒𝑠[∶ 𝑘]+

44: [𝑒𝑑𝑔𝑒_𝑓 𝑟𝑜𝑚_𝑙𝑎𝑠𝑡]+
45: 𝑄.𝑒𝑑𝑔𝑒𝑠[𝑘 + 1 ∶][∶∶ −1]+

46: [𝑒𝑑𝑔𝑒_𝑓 𝑟𝑜𝑚_𝑓 𝑖𝑟𝑠𝑡]
47: return Cycle(𝐺, 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑛𝑒𝑤_𝑒𝑑𝑔𝑒𝑠)
48: end for
49: raise Should never reach this point!
50: end function

2.3 | TIME COMPLEXITY ANALYSIS

27

2.3 Time Complexity Analysis
To evaluate the empirical performance of our implementation, we conducted extensive

runtime analysis across different input sizes. For each value of 𝑛 ranging from 6 to 100, we
executed the algorithm 3 times on each collection and recorded the average execution time.

The results are shown in Figure 2.13, where we plot both the actual running times
and the theoretical 𝑂(𝑛

3
) curve for comparison. The empirical results closely follow the

theoretical bound, confirming that our implementation achieves the expected complexity.

Figure 2.13: Empirical time complexity analysis. The blue points represent the average execution
times for different values of 𝑛, while the red curve shows the theoretical 𝑂(𝑛

3
) bound.

The dominant factors contributing to the 𝑂(𝑛
3
) complexity are:

• The initialization of the graph collection data structures;

• Running the algorithm for incrementing object 𝑂(𝑛) times.

2.4 Testing Methodology
To validate our implementation, we developed a systematic and as well as a random

approach.

2.4.1 Random testing
The core of our testing approach relied on randomly generated test cases:

• We created a generator for random graph collections satisfying Dirac’s condition;

28

2 | ALGORITHMIC APPROACH

• For each graph of order 𝑛 ranging from 𝑛 = 6 to 𝑛 = 100, we ran multiple test
iterations;

• Each test verified that the algorithm successfully found a rainbow Hamiltonian
cycle.

2.4.2 Special test case
While random testing provided good coverage, we discovered an interesting edge case

that required special attention. This case emerged when two specific conditions aligned:

• A cycle reaching length 𝑛 − 1;

• Every vertex on the digraph having an in-degree below 𝑛

2
.

To handle this case, we developed a dedicated test in increment.py called
test_handle_cycle_n_minus_1_upper_bound_degree_D. This test uses carefully
constructed input graphs to verify the algorithm’s behavior in this specific scenario.

29

Chapter 3

Rainbow version of Ore’s Theorem

In 1960, Ore (Ore, 1960) proved the following result.

Theorem 1 (Ore, 1960). If 𝐺 = (𝑉 , 𝐸) is a simple graph of order 𝑛 ≥ 3 such that 𝑑𝐺(𝑢) +
𝑑𝐺(𝑣) ≥ 𝑛 for all pair of non-adjacent vertices 𝑢, 𝑣 ∈ 𝑉 , then 𝐺 contains a Hamiltonian cycle.

In what follows, we shall refer to the above sufficient condition as Ore’s condition.
It is immediate that Ore’s theorem generalizes Dirac’s theorem. So, a natural question
that arises is whether an analogous rainbow version of Ore’s Theorem also holds. We
conjecture that the answer is yes. For the moment, we are able to prove that the following
(weaker) result holds.

Theorem 2. Let 𝑛 ≥ 3 and 𝐺 = 𝐺0 ∪ 𝐺1 ∪ … ∪ 𝐺𝑛−1 be a graph that is the union of 𝑛
pairwise edge-disjoint simple graphs 𝐺𝑖 of order 𝑛, all defined on a same vertex set, each one
monochromatically edge colored but collectively using 𝑛 distinct colors. If each 𝐺𝑖 satisfies
Ore’s condition, then 𝐺 has a rainbow path and a rainbow cycle of length 𝑛 − 1.

Proof. As in the proof of the rainbow version of Dirac’s theorem, we consider two cases.

Case (a): Given a rainbow path in 𝐺 of length 𝓁 < 𝑛 − 1, how to extend it to a
rainbow path of length 𝓁 + 1 or to a rainbow cycle of length 𝓁 ou 𝓁 + 1.

Case (b): Given a rainbow cycle in 𝐺 of length 𝓁 < 𝑛 − 1, how to obtain a rainbow
cycle of length 𝓁 + 1 or a rainbow path of length 𝓁 + 1.

We note that, it is immediate that 𝐺 has a rainbow path of length 2. Thus, starting
with such a path, and considering the two cases above, we are able to construct a rainbow
path in 𝐺 of length 𝑛 − 1 and a rainbow cycle of length 𝑛 − 1.

From now on, whenever we refer to a path or a cycle, these are always rainbow, so
we omit stating this (but it should be understood). To simplify notation, as here we do
not have many indices for the vertices, when referring to an edge with endpoints 𝑢 and

30

3 | RAINBOW VERSION OF ORE’S THEOREM

𝑣, instead of writing {𝑢, 𝑣}, we may represent it as 𝑢𝑣. Also, to state that an edge 𝑢𝑣 has
color 𝑐, we write 𝑢𝑣 ∈ 𝐺𝑐.

Case (a): Path of length 𝓁

Let 𝑃 = (𝑥0, 𝑒0,… , 𝑥𝓁−1, 𝑒𝓁−1, 𝑥𝓁) be a path in 𝐺 of length 𝓁.

Case (a1): 𝓁 < 𝑛/2

Let 𝑐 be a color that is not in the path 𝑃 , and let 𝑢 ∶= 𝑥0 and 𝑣 ∶= 𝑥𝓁. If 𝑢𝑣 ∈ 𝐺𝑐,
then by adding the edge 𝑣𝑢 to 𝑃 we obtain a cycle of length 𝓁 + 1. Else, since
𝑢𝑣 ∉ 𝐺𝑐, by Ore’s condition, we have that 𝑑𝐺𝑐

(𝑢) + 𝑑𝐺𝑐
(𝑣) ≥ 𝑛, and hence there

is a vertex 𝑤 ∉ 𝑉 (𝑃) such that 𝑢𝑤 ∈ 𝐺𝑐 or 𝑣𝑤 ∈ 𝐺𝑐. Indeed, if such a vertex
𝑤 does not exist, then 𝑑𝐺𝑐

(𝑢) ≤ 𝓁 and 𝑑𝐺𝑐
(𝑣) ≤ 𝓁. But in this case, we have that

𝑑𝐺𝑐
(𝑢) + 𝑑𝐺𝑐

(𝑣) ≤ 2𝓁 < 𝑛, a contradiction. Given such a vertex 𝑤, we can construct a
path of length 𝓁 + 1 by appending 𝑤 to the path 𝑃 and using precisely one of the
edges 𝑢𝑤 or 𝑣𝑤.

Case (a2): 𝑛/2 ≤ 𝓁 < 𝑛 − 1

Let 𝑃
′ be the path obtained from 𝑃 after removing its last vertex 𝑥𝓁, i.e., 𝑃 ′

=

(𝑥0, 𝑒0,… , 𝑥𝑙−1). There are two colors, say 𝑐0 and 𝑐1, that are not present in 𝑃
′. We

may assume, without loss of generality, that 𝐺0
∶= 𝐺𝑐0

and 𝐺1
∶= 𝐺𝑐1

.

Let 𝑢 ∶= 𝑥0 and 𝑣 ∶= 𝑥𝓁−1. For a vertex 𝑤 ∈ 𝑉 (𝐺𝑖), let 𝑑out
𝐺𝑖

(𝑤) denote the number
of neighbors of 𝑤 in 𝐺𝑖 that are not in the path 𝑃 (they are out of 𝑃). Analogously,
let 𝑑in

𝐺𝑖

(𝑤) denote the number of neighbors of 𝑤 in 𝐺𝑖 that are in the path 𝑃 . By
definition, 𝑑in

𝐺𝑖

(𝑤) + 𝑑
out
𝐺𝑖

(𝑤) = 𝑑𝐺𝑖
(𝑤).

If 𝑢𝑣 ∈ 𝐺0 or 𝑢𝑣 ∈ 𝐺1, then we can extend 𝑃
′ to a cycle of length 𝓁 by adding 𝑢𝑣 to 𝑃

′.
Else, by Ore’s condition, 𝑑𝐺0

(𝑢) + 𝑑𝐺0
(𝑣) ≥ 𝑛 and 𝑑𝐺1

(𝑢) + 𝑑𝐺1
(𝑣) ≥ 𝑛. If there exists

a vertex 𝑤 not in 𝑃
′ such that both 𝑢𝑤 ∈ 𝐺0 and 𝑣𝑤 ∈ 𝐺1, then we can extend 𝑃

′ to
a cycle of length 𝓁 + 1 by adding 𝑤 and the edges 𝑣𝑤 and 𝑤𝑣. Such an extension is
also possible if 𝑢𝑤 ∈ 𝐺1 and 𝑣𝑤 ∈ 𝐺0.

So, let us assume that such a vertex 𝑤 does not exist. In this case, we have that
𝑑

out
𝐺0

(𝑢)+𝑑
out
𝐺1

(𝑣) ≤ 𝑛−𝓁 and 𝑑
out
𝐺1

(𝑢)+𝑑
out
𝐺0

(𝑣) ≤ 𝑛−𝓁. So, we have that 𝑑in
𝐺0

(𝑢)+𝑑
in
𝐺0

(𝑣)+

𝑑
in
𝐺1

(𝑢) + 𝑑
in
𝐺1

(𝑣) ≥ 2𝑛 − 2(𝑛 − 𝓁) = 2𝓁. We must have that either 𝑑in
𝐺0

(𝑢) + 𝑑
in
𝐺1

(𝑣) ≥ 𝓁

or 𝑑in
𝐺1

(𝑢) + 𝑑
in
𝐺0

(𝑣) ≥ 𝓁. Suppose, without loss of generality, that 𝑑in
𝐺0

(𝑢) + 𝑑
in
𝐺1

(𝑣) ≥ 𝓁.
By the Pigeonhole Principle, there exists 𝑖 such that 𝑢𝑥𝑖 ∈ 𝐺0 and 𝑣𝑥𝑖−1 ∈ 𝐺1. Thus,
we can construct a a cycle of length 𝓁.

Case (b): Cycle of length 𝓁 < 𝑛 − 1

Let 𝐶 = {𝑥0, 𝑒0,… , 𝑥𝓁−1, 𝑒𝓁−1, 𝑥𝓁} be a cycle of length 𝓁 < 𝑛 − 1, and let 𝑐0 and 𝑐1 be two
colors that are not present in 𝐶. Define 𝐺0

∶= 𝐺𝑐0
and 𝐺1

∶= 𝐺𝑐1
.

3 | RAINBOW VERSION OF ORE’S THEOREM

31

Case (b1): 𝓁 < 𝑛/2

As 𝐺0 satisfies Ore’s condition, 𝐺0 is connected. Then, there exists an edge 𝑢𝑣 ∈ 𝐺0

such that 𝑢 ∈ 𝐶 and 𝑣 ∉ 𝐶. Let 𝑤 be a vertex adjacent to 𝑢 in 𝐶. If 𝑣𝑤 ∈ 𝐺1, then
we have a rainbow cycle of length 𝓁 + 1. Else, since 𝑣𝑤 ∉ 𝐺1, by Ore’s condition,
𝑑𝐺1

(𝑣) + 𝑑𝐺1
(𝑤) ≥ 𝑛, and therefore there exists a vertex 𝑧 ∉ 𝐶 such that 𝑣𝑧 ∈ 𝐺1 or

𝑤𝑧 ∈ 𝐺1. Indeed, if not, we would have 𝑑𝐺1
(𝑣) ≤ 𝓁 and 𝑑𝐺1

(𝑤) ≤ 𝓁 − 1, and we could
conclude that 𝑑𝐺1

(𝑣) + 𝑑𝐺1
(𝑤) ≤ 2𝓁 − 1 < 𝑛, a contradiction. Given such a vertex 𝑧,

we can construct a path of length 𝓁 + 1 if 𝑣𝑧 ∈ 𝐺1 or 𝑤𝑧 ∈ 𝐺1.

Case (b2): 𝑛/2 ≤ 𝓁 < 𝑛 − 1

Suppose there exists two vertices 𝑢, 𝑣 ∉ 𝐶 such that 𝑢𝑣 ∈ 𝐺0 and 𝑢𝑣 ∉ 𝐺1. By Ore’s
condition, 𝑑𝐺1

(𝑢) + 𝑑𝐺1
(𝑣) ≥ 𝑛, which implies the existence of a vertex 𝑤 ∈ 𝐶 such

that 𝑢𝑤 ∈ 𝐺1 or 𝑣𝑤 ∈ 𝐺1 — otherwise 𝑑𝐺1
(𝑢) + 𝑑𝐺1

(𝑣) ≤ 2(𝑛 − 𝓁 − 1) < 𝑛. Thus, we
can build a rainbow path of length 𝓁 + 1. Otherwise, we have that for all vertices
𝑢, 𝑣 ∉ 𝐶,

𝑢𝑣 ∈ 𝐺0 ⟺ 𝑢𝑣 ∈ 𝐺1.

Since 𝐺0 and 𝐺1 are connected graphs, if there is a pair of vertices 𝑢, 𝑣 ∉ 𝐶 such that
𝑢𝑣 ∈ 𝐺0, then we can obtain a path with endpoint in 𝑢 or 𝑣 and in a vertex in the
cycle, that has length at least 𝓁 + 1.

We now assume that there is no pair of vertices 𝑢, 𝑣 ∉ 𝐶 such that 𝑢𝑣 ∈ 𝐺0. Consider
𝑢, 𝑣 ∉ 𝐶. By Ore’s condition, 𝑑𝐺0

(𝑢) + 𝑑𝐺0
(𝑣) ≥ 𝑛 and 𝑑𝐺1

(𝑢) + 𝑑𝐺1
(𝑣) ≥ 𝑛. We also

know that every neighbor of 𝑢 and 𝑣 in 𝐺0 (resp. 𝐺1) is in the cycle 𝐶, and therefore,
𝑑𝐺0

(𝑢)+𝑑𝐺0
(𝑣)+𝑑𝐺1

(𝑢)+𝑑𝐺1
(𝑣) ≥ 2𝑛 > 2𝓁. We can assume without loss of generality

that 𝑑𝐺0
(𝑢) + 𝑑𝐺1

(𝑣) > 𝓁. This means that there exist adjacent vertices 𝑤 and 𝑧 in 𝐶

such that 𝑢𝑤 ∈ 𝐺0 and 𝑧𝑣 ∈ 𝐺1. Thus, we can remove the edge 𝑤𝑧 from 𝐶 and add
to the resulting path 𝐶 − 𝑤𝑧 the edges 𝑢𝑤 and 𝑧𝑣 and obtain a path of length 𝓁 + 1.

We hope that from the rainbow Hamiltonian path in 𝐺 guaranteed to exist by Theo-
rem 2, we may succeed proving that 𝐺 has a rainbow Hamiltonian cycle. This result would
give us a theorem that is precisely the rainbow version of Ore’s theorem. Anyway, we think
Theorem 2 is an interesting result by its own right.

33

Chapter 4

Conclusion

The main objective of this work was to understand well the proof of the rainbow
version of Dirac’s theorem obtained by Joos and Kim in 2020, and present a detailed
algorithmic proof that yields an efficient algorithm to construct a rainbow Hamiltonian
cycle guaranteed by this theorem. This objective was attained, as the algorithm that we
derived and implemented has asymptotically the best possible time complexity: 𝑂(𝑛

3
)

for input graphs with 𝑛 vertices and 𝑂(𝑛
3
) edges.

The biggest challenge we faced in the implementation described in Chapter 2 was in
the construction of a rainbow Hamiltonian cycle from a rainbow cycle of length 𝑛 − 1,
without increasing the time complexity that was achieved up to that step. We tested our
implementation on a large number of randomly generated graphs with order in the range
from 6 to 100, and observed that the practical results confirmed our theoretical results.

In Chapter 3 we present a statement that we call the rainbow version of Ore’s theorem
which is a generalization of the rainbow version of Dirac’s theorem. In this statement,
each graph 𝐺𝑖 has to satisfy Ore’s condition: 𝑑(𝑢)+𝑑(𝑣) ≥ 𝑛 for every pair of non-adjacent
vertices 𝑢 and 𝑣 in 𝑉 (𝐺𝑖). We conjecture that this statement is true. We obtained (so far)
only a partial result on this statement: that the union graph 𝐺 has a rainbow Hamiltonian
path and also a rainbow cycle of length 𝑛−1. This partial result is interesting in its own, but
we hope to extend this result and show – in the near future – that our conjecture is true.

We also developed an interactive visualization tool for our algorithm, which is avail-
able in our Github repository at https://github.com/wmrmrx/TCC/tree/master/code/src_
python.

This monograph and our codes are all public. This way, we hope these studies will
bring contribution to the field.

https://github.com/wmrmrx/TCC/tree/master/code/src_python
https://github.com/wmrmrx/TCC/tree/master/code/src_python

35

Bibliography

[Bondy and Murty 2008] J. A. Bondy and U. S. R. Murty. Graph Theory. Vol. 244.
Graduate Texts in Mathematics. London: Springer, 2008 (cit. on p. 3).

[Clinch et al. 2022] Katie Clinch, Jackson Goerner, Tony Huynh, and Freddie Illing-
worth. Notes on Aharoni’s rainbow cycle conjecture. 2022. arXiv: 2211 . 07897
[math.CO]. url: https://arxiv.org/abs/2211.07897 (cit. on p. 1).

[Dirac 1952] G. A. Dirac. “Some theorems on abstract graphs”. Proceedings of the
London Mathematical Society (1952). doi: 10.1112/plms/s3-2.1.69 (cit. on pp. 1, 3).

[Gao and Wang 2023] Liqing Gao and Jian Wang. “A rainbow version of Ore theorem”.
Operations Research and Management Science 32.10 (2023), pp. 108–113. url: http:
//www.jorms.net/EN/10.12005/orms.2023.0327 (cit. on p. 1).

[Joos and Kim 2020] Felix Joos and Jaehoon Kim. “On a rainbow version of Dirac’s
theorem”. Bulletin of the London Mathematical Society 52.3 (May 2020), pp. 498–
504. issn: 1469-2120. doi: 10.1112/blms.12343. url: http://dx.doi.org/10.1112/blms.
12343 (cit. on pp. 1, 4, 5).

[Nathanson 2006] Melvyn B. Nathanson. The Caccetta-Häggkvist conjecture and ad-
ditive number theory. 2006. arXiv: math/0603469 [math.CO]. url: https://arxiv.
org/abs/math/0603469 (cit. on p. 1).

[Ore 1960] Oystein Ore. Note on Hamilton Circuits. Jan. 1960. doi: 10.2307/2308928.
url: http://dx.doi.org/10.2307/2308928 (cit. on p. 29).

https://arxiv.org/abs/2211.07897
https://arxiv.org/abs/2211.07897
https://arxiv.org/abs/2211.07897
https://doi.org/10.1112/plms/s3-2.1.69
http://www.jorms.net/EN/10.12005/orms.2023.0327
http://www.jorms.net/EN/10.12005/orms.2023.0327
https://doi.org/10.1112/blms.12343
http://dx.doi.org/10.1112/blms.12343
http://dx.doi.org/10.1112/blms.12343
https://arxiv.org/abs/math/0603469
https://arxiv.org/abs/math/0603469
https://arxiv.org/abs/math/0603469
https://doi.org/10.2307/2308928
http://dx.doi.org/10.2307/2308928

	Preliminary
	Definitions
	Dirac's Theorem
	Rainbow version of Dirac's Theorem

	Algorithmic Approach
	Definitions, Notation and Conventions
	Structures and functions abstractions

	Flowchart
	Path of length
	Cycle of length
	Case 1: n2 + 1 < n - 1
	Case 2: Cycle of length = n - 1

	Time Complexity Analysis
	Testing Methodology
	Random testing
	Special test case

	Rainbow version of Ore's Theorem
	Conclusion
	Bibliography

