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Introduction

An alphabet Σ is a finite set. A symbol is an
element s ∈ Σ. A string is a finite sequence of
symbols, i.e, elements of an alphabet. The set of
all strings over Σ is denoted by Σ∗. We say a string
p ∈ Σ∗ is a pattern over a fixed alphabet Σ if p
consists of symbols from Σ. Let s be a string and
denote s := s1 · · · sn. We say that a subsequence
si · · · sj of s if a substring of s. An ocurrence
of u in s is a pair (i, j) such that u := si · · · sj is a
substring of s.
Let P be a set of patterns over a fixed alphabet Σ
and let T be a fixed string called text input. The
Multiple Pattern String Matching (MPSM) is the
problem of finding all occurrences of all patterns
of P in T . The Single Pattern String Matching
(SPSM) is a special case of (MPSM) by adding the
constraint |P | = 1.
The String pattern matching problem is one the
most relevant string problems. There are practical
solutions to real-world problems that can be de-
veloped using these algorithms, including, but not
limited to, intrusion detection systems, evolution-
ary biology, computational linguistics, and data re-
trieval.

Boyer-Moore
The Boyer-Moore Algorithm is one of the most famous
algorithms to solve the String Pattern Matching Prob-
lem. It uses the idea of the brute-force algorithm im-
proving it by using some heuristics: Bad character rule
and Good Suffix Rule. We align the pattern p with the
text T and start checking the match character by char-
acter, in reverse order of p. If a mismatch occurs we
have to shift the pattern and try again.
When a mismatch occurs, we have to shift the pattern
until we no longer have a mismatch, i.e, until we found
a match, or until the pattern move past the mismatched
character. The Bad Character Rule tells us to shift
the pattern until we align it with the rightmost occur-
rence of the mismatched character.

0 1 2 3 4 5 6 7 8 9
T a b b a d a b a c b
P a b c a b c

shift a b c a b c
Table 1: In this example, a mismatch occurs when comparing a-c.
Then, we shift the pattern so that the letter a it is aligned with the
rightmost occurence of a in P .

The second rule we are going to apply is the Good
Suffix Rule and it is applied regarding the borders
of the pattern. A border is a substring of p that is
both a proper suffix and a proper prefix of p. Let t be
the substring of T which is matched to the pattern at
some iteration i and we have found a mismatch. We
can safely shift the pattern until t is aligned with the
rightmost ocurrence of t ∈ P . See this example:

0 1 2 3 4 5 6 7 8 9 10 11
T a b c a b c a d a a b c
P b a d a a a a d a

shift b a d a a a a
Table 2: A mismatch occurs comparing c-a. In this case, t = ada.
We can shift the pattern until it is aligned with the rightmost
occurence of ada, which occurs at index 1.

The best case occurs when at each attempt the text
character compared does not occur in the pattern and
the pattern is shifted. In such case the algorithm runs
in O(|T |/|P|). However, in general O(|P ||T |) compar-
isons are needed.

Shift-Or Algorithm
Let p := p0 · · · pn be a pattern of size n. The Shift-
Or Algorithm constructs a hash table mask that maps
each character c of p to a bitmask d = dn · · · d1, where
di = {0, 1}. mask[c] has I-th bit set to 0 if, and only if,
pi = c. For instance, for the pattern abra, we have the
following table:

character d1 d2 d3 d4 bitmask (d4 · · · d1)
a 0 1 1 0 0110
b 1 0 1 1 1101
r 1 1 0 1 1011

Table 3: In this case, a mismatch occurs comparing c-b. So we shift
the pattern to align it with the next rightmost occurrence of c in P

With the table mask created, we can find the occur-
rences of the pattern p in the text T with the following
algorithm:
1. We start with a bitmask ϕ with all bits set to 1.
2. For each character c of T , we perform the OR bitwise
operator with ϕ and mask[c] and shift phi to the left.
Thus, we apply the assignment:

(ϕ|mask[c]) << 1
3. If at any step, the dm bit is set to 1, then a match
was found at index i − n + 1.

The complexity of the Shift-Or Algorithm is O(|T | +
|p|). Since it mostly uses bitwise operations to perform
the tasks.

Trie of Suffixes
A trie is a useful data structure to represent set of
strings. Suppose we have a set of strings S . For each
each string s ∈ S we add its character, node by node,
in a Tree structure.

Figure 1: Trie Data Structure

We can use this data structure to solve the Single pat-
tern string matching problem by constructing a trie with
all suffixes of T .
Then, we can process each character of p, starting from
the root, and following the edges of the trie for each
character. If, at any moment, there is no such edge,
then p doesn’t occur in T . If we reach a leaf node, then
we have found a match.

Figure 2: Trie Data Structure

The preprocessing phase is O(|T |2) of complexity and
the search phase is O(|T | + |σ|) where σ is the set of
occurences of P in T . However, there are advanced
algorithms to improve the preprocessing phase of this
algorithm.

Aho-Corasick
The Aho-Corasick algorithm is one of the algorithms
to solve the Multiple Pattern String Matching Problem.
We are going to describe how to construct a finite de-
terministic automaton from the Trie Data Struc-
ture. Suppose we have a set of pattern P and a Trie
T for the set of strings P . We construct an automaton
in which every vertice v of T is a state, and for every
edge e of the trie, we have a transition according to the
corresponding letter. Notice that this doesn’t define an
automaton yet, since we have to define a transition from
every letter from the alphabet. If there is no correspond-
ing edge in the trie, then we have go into some state.
Which will be defined by using the suffixes links.

A suffix link is an edge that leads to the proper suffix
of the string s[v]. We build such links recursively. The
base case is the root of the trie, in which the suffix link
will point to itself. The general case we have some vertex
v, and there is no transition from v, with a letter c.
Then, we can go to the ancestor p of v, follow its suffix
link, which is already defined by induction, leading to
some vertex u, and try to perform the transition with
the letter c from u. If there is no such edge, we repeat
until we reach the root, our base case. Therefore, we
can build such links in linear time proportional to the
size of the Trie. We also create exit links, which points
to the nearest leaf vertex that is reachable using suffix
links, this will be used to find all matches from a leaf
node. We can construct such links lazily in linear time.

Figure 3: Aho Corasick Data Structure, now with exit links added,
for T = abcd and P = [ab, abc, abcde, d].

After building the automaton, we process each character
c in T , starting from the root, and following the edges.
If there is no edge for the current character, we follow
the suffix link and try again. If we reach a leaf node, we
have found a match and we can find all other matches
by following the exit links.

The complexity of the Aho-Corasick Algorithm is
O(|T | + |σ|) where σ is the set of occurences of P in T
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