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Abstract

Bruno Hideki Akamine. Alon Boppana Bound for Non-Regular Expanders. Cap-
stone Project Report (Bachelor). Institute of Mathematics and Statistics, University of
Sao Paulo, Sao Paulo, 2024.

The goal of this project is to study generalizations of expander graphs to graphs that are not regular
and to prove two Alon-Boppana type bounds for them. The first generalization covered uses the notion of
spectral sparsifiers and we consider as expanders the spectral sparsifiers of the complete graph. The second
generalization uses the normalized Laplacian matrix of unweighted graphs which do not need to be regular.

The proofs of such bounds utilizes some interesting concepts such as non backtracking walks.
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Chapter 1

Introduction

Expander graphs are a class of graphs with useful properties, such as forming a single
cluster, behaving like random graphs in certain ways, and having the distribution of the
last vertex in a random walk converge rapidly to the uniform distribution. Furthermore,
expander graphs can be used to construct good error-correcting codes, enabling the
retrieval of the original content of a message even if the communication channel is
noisy and corrupts the message. Another application is efficiently reducing the error in
probabilistic algorithms while using fewer random bits than a naive sampling method.

In the definition of expanders, they are required to be unweighted and regular graphs.
Consequently, many studies have explored properties under this traditional definition.
One of the most significant results for expander graphs is the result of Alon and Boppana
(N1LL1, 1991), which bounds the second-largest eigenvalue of the adjacency matrix. This
property is key for defining expander graphs and establishing the notion of optimal
expanders. A natural question that arises when studying expander graphs is whether it is
possible to generalize this notion to non-regular or weighted graphs. In this monograph,
two Alon-Boppana type bounds for generalizations of expanders will be studied. The
first approach uses spectral sparsifiers to generalize the notion of expanders to weighted
graphs, while the second employs the normalized Laplacian matrix to extend the concept
to unweighted graphs.

1.1 Preliminaries on Graph Theory

In this section, we will define properties of graphs that will be used later in the text.

An useful operator that will appear in the definition of some of the properties is the
Iverson bracket, where for an expression P that can be either true or false the Iverson
bracket of P is defined as

1 if P is true,
[P] = .
0 otherwise.
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Denote the vector of all-ones by 1, where the domain is implicit by the context, i.e., if
1 € R" then 17e, = 1 for each v € V. Also, denote by 1 the incidence vector of U C V,
i.e., one has 1}e, = [v € U] for eachv € V.

A weighted graph is an ordered triple (V, E, w) where (V, E) is a graph and w is a weight
function w : E — R,,,i.e., the function w assigns weights for each edge of the graph. Note
that a graph G = (V, E) can be seen as a weighted graph where all the edges have weight 1,
i.e., can be seen as (V, E, 1). The complete graph on the vertex set V is denoted by Ky .

Let G = (V,E, w) be a weighted graph. The neighborhood of a vertex v € V is

Ng(v) :={u € V: uis adjacent to v}.

The combinatorial degree of a vertex v € V is deg;(v) := [N(v)|, where G can be
omitted if it is implicit by the context. We define the minimum and maximum combi-
natorial degree as

0(G) := mi‘? deg(v) and A(G) := max deg(v).
ve Ve

The girth of G is the length of a shortest circuit of G, if one exists, and is denoted
by girth(G). The length of a shortest path between two vertices u,v € V is denoted by
dist(u,v). Let S € V. Denote the cut induced by S as

05(S) :={e€E :weS,ueV\S, e=u}

where the index G can be omitted if it is clear in the context. When |S| = 1, we abuse
notation and use

O({v}) :=6(w) foreachveV.

Denote the volume of S as

volg(S) = Z deg;(v).

veS

Denote the weighted degree of v as w, := w' 1, for each v € V. We define the minimum
and maximum weighted degree of G as

0,(G) := minw, and A, (G) := max w,.
veV veV

Let a € Ry,. A multiple of G is defined as

aG :=(V,E,aw).

For any set S C V, we denote the complement of S as S := V \'S. The expansion



1.2 | ALGEBRAIC GRAPH-THEORETICAL PRELIMINARIES

ratio of G is defined as

h(G) := min 106S))

@+SCcV m

Finally, we can define the expander graphs.
Definition 1. Let d € Z,, such that d > 2. Let (G,),en be a family of d-regular graphs
such that lim |V(G,)| = co. The family (G,),en is called a family of expanders if there is

£ > 0 such that, for each n € IN, one has h(G,) > .

By the definition, we can observe that expander graphs are defined as a family of
graphs, so we are reffering to a family of graphs whenever we mention expander graphs.
Also, from the definition of expander graphs, we see that expander graphs become more
sparse as n increases because it has a linear number of edges in relation to the number of
vertices of the graph, as every graph in the family is d-regular with d constant.

The volume of aset S C Vis

volg(S) := Z deg,(v).

vES

The conductance of a nonempty set S C V is

WT 15(5)
min{vols(S), volg(S)}

$c(S) :=
The conductance of G is

#(C) := min, $o(S).
The notion of conductance is useful for indentifying clusters, which are sets S C V such
that the number of edges between vertices in S is considerably larger than the size of §(S).
Consider a family of d-regular expander graphs, hence vols(S) = d|S|foreach S C V. Thus

s T O )
HO) = i (S volo(S) ~ dminllSL 81~ d

Therefore, the conductance of expanders is away from zero since their expansion ratio is
away from zero. We conclude that expander graphs form a single cluster, i.e., if we take
any set of vertices in a expander graph, we observe that the number of edges between
vertices in the set is comparable to the number of edges leaving the set.

1.2 Algebraic Graph-Theoretical Preliminaries

In this section, we define some algebraic properties of graphs and prove some results
that will be used later.
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The support of a vector f € RY is

supp(f) :={ieV : fi#0}.

Let f : V — R be a function. Let X C V. Denote the restriction of f with respect to X asa
function f [x: V — R such that f [x (x) = f(x)[x € X] for each x € V.

Denote the set of all symmetric V x V matrices as $V. A matrix P € R"V is called
a orthogonal projector if P is symmetric and idempotent, i.e., if P = PT and P = P?. Let
U C V be a linear subspace of V, and let x € R. There exist y € U and z € U* such that
x = y + z. A orthogonal projector P € $V projects onto the subspace U if Px = y.

Define the function A* : §V — RI" that sends each A € $V to the vector of eigenvalues
of A in non-increasing order. Similarly, define the function A1 2 8V — RI[" that sends each
A € 8V to the vector of eigenvalues of A in non-decreasing order.

Theorem 2. Let A € §V. Set n := |V/|. Then there is an orthonormal basis {q;, ..., g,} of
RV, all of whose elements are eigenvectors of A, such that

A=Y M(Aqgg'.

i=1

From Theorem 2, any symmetric matrix can be decomposed by its eigenvalues and
eigenvetors. The next two theorems will show us how to compute the eingenvalues and
eigenvectors of a symmetric matrix.

Theorem 3. Let A € SV and set n := |V|. Let k € [n]. Let{q; : i € [k — 1]} C R" be an
orthonormal set such that Mg; = 1}(A)g; for each i € [k — 1]. Then

xT Ax

Ai:max{ :xeRY,x#0,vie[k—1] xJ_ql-}.

xTx
Theorem 4. Let A € SV and set n := |V|. Let k € [n]. Let{q; : i € [k — 1]} CR" be an
orthonormal set such that Mg; = A/(A)g; for each i € [k — 1]. Then

xTAx

Aizmin{ c:xeRY, x#0,vie[k-1] xJ_q,-}.

xTx

From Theorem 3 and Theorem 4, all the eigenvalues and eigenvectors of a symmetric
matrix can be computed recursively, starting from the largest eigenvalue and its eigenvector
(Theorem 3) or starting from the smallest eingevalue and its eigevector (Theorem 4).

The adjacency matrix of G is the matrix Ag € $" where, for each ij € V' x V, we have
Ag(i, j) = [ij € E]w;;.
The degree matrix of G is the matrix D € $” where, for each ij € V x V, we have

Dq(i, j) = [i = jlw:.
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The Laplacian matrix of G is the matrix L; € $" defined as

LG = Z wl-j(el- — ej)(el- — ej)T = DG — Ag.

ijeE

Thus,

x"Lox = Z Wijx(ei —e;)(e — ej)Tx = Z wij(x — x)(x6 — x;) = Z wij(x — xj)Z’

ijeE ijeE ijeE

for each x € RY. For any @ € R,,, we have that A,; = aAg and Dy = aDg. So

LaG = OCLG.
Lemma 5. Let G = (V, E, w) be a weighted graph. Let « € R,,. Then

M(Lag) = aAl(Lo).
Proof. Set n :=|V/|. Let i € [n]. Let x be a A](Ls)-eigenvector of L. Then

Lecx = aLgx = aAl(Lg)x.

Let A,B € $". We say that A is positive semidefinite if xT Ax > 0 for each x € R".

]

We write A »> B when A — B is positive semidefinite. Thus, A % 0 if and only if A is

positive semidefinite.
Theorem 6. Let A, B € §V such that A > B. Then A'(A) > A"(B).
Lemma 7. Let G = (V, E, w) be a weighted graph. Then L is positive semidefinite.

Proof. Let x € RV. Then

xTLgx = Z wii (6 — x;)°.
ijeE

Note that for each ij € E we have that w;; > 0 and (x; — x;)* > 0, hence x"Lx > 0.

The Normalized Laplacian matrix is the matrix L € $V defined as

L= Dg"*LeDg"".

Lemma 8. Let G = (V, E, w) be a weighted graph. Then L is positive semidefinite.

Proof. Let x € RV. Then
xTLox = xTDE;l/ZLGDZ;/Zx.

Note that D™'/2x € R". Since D; € $ and using Lemma 7,

.X'T[,Gx = xTDE;I/ZLGDg;l/Zx = (DEI/ZX)TLGDEUZX > 0.

]

]

From Theorem 2, both the Laplacian matrix and the normalized Laplacian matrix of a
graph can be decomposed into their eigenvalues and eigenvectors. The next lemma will

show the relationship between a graph being positive semidefinite and its eigenvalues.
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Lemma 9. Let A € §V. Then A is positive semidefinite if and only if AT(A) > 0.

Proof. If A is positive semidefinite, it holds that x” Ax > 0 for each x € R". Let x € R" and
let « € R such that x is an a-eigenvetor of A. Suppose a < 0, hence

xTAx = xT(Ax) = xTax = axTx = a|x|*

Since |x|? > 0, we have that xT Ax < 0, a contradiction.

Suppose A'(A) > 0. Let x € RV and set n := |V|. By Theorem 2, there is an or-
thonormal basis {qi, ..., .} of R, all of whose elements are eigenvectors of A, such that

A=Y A(A)qgq. Hence
i=1

xlAx = ) A (AWx" gq/x = Y (AT g
i=1 i=1

Since the square of any real number is nonnegative and A/(A) > 0 for every i € [n],
we conclude that x” Ax is a sum of nonnegative terms and so x” Ax > 0. [

Lemma 9, together with Lemma 7 and Lemma 8, tells us that all the eigenvalues of the
laplacian matrix and the normalized laplacian matrix of a graph are nonnegative.
Theorem 10. Let G = (V, E, w) be a weighted graph. Then

Null(Lg) = span{l¢: C C V is a component of G}.

Corollary 11. Let G = (V,E, w) be a weighted graph. Then A{(Lg) = 0 and 1 is a
0 - eigenvector of L.

Proof. Immediate from Theorem 10. [
Corollary 12. Let (G, E, w) be a weighted graph. Then G is connected if and only if
A(Lg) > 0.

Proof. Immediate from Theorem 10. O]

Corollary 12 will be important in chapter 2, since the graphs we will consider in this
chapter must be connected. Otherwise, we would have a division by 0 in the denominator.
Lemma 13. Let G = (V, E, w) be a weighted graph. Then A{(£¢) = 0 and DY/*1 is a
0-eigenvetor of L.

Proof. By the definition of L,
L:DY?1 = D™V2L D™ V?DY?1 = DTV?L 1.

Using Corollary 11,
L£sDY?1 =DV?L;1 =D %0 =0.

By Lemma 8, it follows that A1(£) = 0. O
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Corollary 14. Let G = (V, E, w) be a weighted graph. Then, G is connected if and only if
ALs) > 0.

Proof. Immediate from Corollary 12. ]

Corollary 14 will be important in chapter 3, because if G is not connected, then the
bound being proved in this chapter is trivial.

Let X € RV be a square matrix. The trace of X is

Tr(X) = ), X;.

i€V

Lemma 15. Let X € $V. Then
Tr(X) = 17TAN(X).

The next two lemma are basic facts of linear algebra but will be useful in some proofs
throughout the text.
Lemma 16. Let U be a linear subspace of V. Let By be a orthonormal basis of U. Then

Z bb" = Projy,.

bEBU

Proof. First, we prove that the sum is orthogonal,

(X bbT>T: Y (7)== Y bb"

bGBU bGBU bGBU

By assumption, we have bb, = [b; = b,] for each b;, b, € By. So,

(> bbT>T< YbbT) = 3 Y biblbubf = Y, Y bilby = balb = Y bb".

bEBU bEBU bleBU szBU bleBU szBU bEBU

Let x € V. There exist y € U and z € U* such that x = y + z. We can extend By to be a
orthonormal basis of V. Take the extended orthogonal basis By, note that By;. := By \By is

a orthonormal basis of U*. Hence, there are coeficients (@ )ep, such that y = Y, a,bb’,
bEBU
and there are coeficients (f;)es,, such that z = 3, p,bb". Since b/ b, = 0 for each
bEBUl

b, € By and for each b, € By,

( Z bbT)x: (bé: bbT>(y+z): (bé: bbT)y+< Z bbT>z

bEBU bGBU
= > ) anbiblbb) + Y, Y Bubibbyb]
b1€BU bzGBU blEBU bgGBUl
= Z Z abzbl[bl = bz]sz'f‘O
bleBU szBU
= Z aybb’ = y. O

beB
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Lemma 17. Let f € R". Then

A" = [Projgangs, /I + [Projysy. 1

Proof. Note that Proj,. f = (I — Pro jspan{]l}) f. Since a projector is symmetric and idem-
potent:

. T . . .
(Pro.]span{]l}f) Pro]{]l}if = fTPrOJsTpan{]l} (I - Pro]span{]l})f
= fT(PrOjSY;)an{l} - Projgpan{ll})f
= fT(Projspan{]l} - Projspan{]l})f =0

So,

IFI" = [Projgpanguy f + Projguy. |
= (Projspan{]l}f + Proj{]l}i-f)T(PrOjspan{]l}f + Proj{]l}l-f)
= (Projgyunuy f) T(Projspan{n}f ) + (Projggy. f) " (Projygy. f) +2(P 10 gpangayf ) " (Projgy. f)

= [Projgungur f” + [Projiuy.
]

1.3 Motivation

In section 1.1, we defined expander graphs and showed one of their properties: that
the vertices of expander graphs lie in a single cluster. In this section, we explore more
properties and explain in more details some of the things discussed at the beggining of
the chapter. A result that was very important due to Cheeger and Buser, which bounds
the expansion ratio of a graph using the spectral gap of the adjacency matrix of the
graph, is the following.

Theorem 18. (see [HOORY et al., 2006, Theorem2.4]) Let G be a d-regular graph. Then

Y
%Z(AG) < h(G) < \/zd(d — A3(Ag)).

Recall that d is the largest eingevalue of a d-regular graph. Hence, the value d — A5(Ag)
for any d-regular graph is called the espectral gap of G. From Theorem 18, one can show
that the definition of expanders can use the spectral gap instead of the expansion ratio.
Corollary 19. Let d € Z, ., such that d > 2. Let (G,),en be a family of d-regular graphs
such that lim = co. The family (G,), € N is called a family of expanders if and only if

n—oo

there is € > 0 such that, for each n € IN, one has d — Ai(AGn) > e.

Alon and Boppana bounded below the second largest eigenvalue of the adjacency
matrix of d-regular graphs, hence they bounded the spectral gap of d-regular graphs.
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Theorem 20. ([N1rL1, 1991]) Let G = (V, E) be a d-regular graph with d > 2. Then
2 Nd—1-— 1

dlam( diam(G)
5 — 1

M(Ag) > 2d

From Theorem 20 and the updated definition in Corollary 19, one can think of optimal
expanders. The optimal expanders, which are called Ramanujan graphs, use the bound
proved by Alon and Boppana.

Definition 21. Let G = (V, E) be a d-regular graph with n vertices and with d > 2. The
graph G is called Ramanujan graph if, for each i € [n], one has

M(Ag) <2Vd—1 or [M(Ag)| =

There are some deterministic constructions of familys of Ramanujan graphs. One recent
example is a construction that uses stable polynomials to create bipartite Ramanujan
graphs [MARcus et al., 2015].

An important property of expander graphs is the Expander Mixing Lemma.
Lemma 22. (Expander Mixing Lemma) Let G = (V, E) be a d-regular graph with n > 2
vertices and d > 1. Then, forall S, T C V,

dsiTl|

E(S, T)| - max{|A3(Ac), [Amin(AG)HISI T,

where E(S, T) is the set of edges with one end in S and the other in T.

From the Expander Mixing Lemma (Lemma 22), one has that the number of edges
between any two set of vertices S and T in an expander graph is approximately the number
of expected edges between any two sets of size |S| and |T| in a random graph with the same
number of vertices and with the same number of expected edges of the expander graph.
Hence, expander graphs behave as random graphs with the same number of vertices and
the same expected number of edges.

Another interesting property of expanders is about random walks in the expander
graphs.
Lemma 23. Let G = (V,E) be a d-regular graph. Let p be a vector of probabilities. Then

A\ 1
Z6) p- 21
(%)

From Lemma 23, one has that random walks in expander graphs converge rapidly to
the uniform distribution. Hoory, Linial, and Wigderson [Hoory et al, 2006] discussed
many other applications and properties of expanders, such as efficiently reducing the
error in probabilistic algorithms.

d

‘ . (max{Mé(AG)LMmm(AG)n){

Throughout this chapter, the main focus was to introduce some notations and results,
and familiarize the reader to the traditional notion of expander graphs, which are d-regular
graphs. In the next chapters, we introduce two different generalizations of expanders graphs
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and prove Alon Boppana bounds for these generalizations.

1 | INTRODUCTION



Chapter 2

Weighted Expanders

2.1 Introduction

One of the approaches to generalize the notion of expander graphs beyond regular
graphs uses spectral sparsifiers of complete graphs.
Definition 24. Let G = (V,E,w) and H = (V, F, w) be weighted graphs. Let ¢ > 0. The
weighted graph H is called a (1 + ¢)-spectral sparsifier of G if

Lo <Ly <+¢)lg.

Note that, when ¢ = 0, this can only hold if the graph G is the graph H. We also say that
Hisa (1 + &)-approximation of G.

Batson, Spielman, and Srivastava [BATSON et al., 2012] proved that, for every graph G
with average degree at most 2d, there exists a weighted subgraph of G that is a (1 + ¢)-
spectral sparsifier of G, where

. d+2Jd—1 1. 4Jd -1
Cd—2yd—1 = d-2Jd-1

by showing a deterministic algorithm for constructing such weighted graphs. In the context
of approximating complete graphs, we can observe some properties of expander graphs in
their sparsifiers, such as the following version of the Expander Mixing Lemma.
Lemma 25 ([BATsoN et al,, 2012, Lemma 4.1]). Let ¢ > 0. Let G = (V, E, w) be a weighted
connected graph. Suppose that G is a (1 + ¢)-spectral sparsifier of Ky. Then

‘11§AGJ1T - (1 + g)|5||T|) < n(%)«“SHTl for each S, TC Vst. SN T = @.

Thus, it is reasonable to think of sparsifiers of complete graphs as expanders that
are weighted and not necessarily regular. Hence, we consider this class of expanders as
weighted expanders. Another way to analyze a weighted expander G is through the ratio
AN(Lg)/AL(Le), referred to as the finite condition number of the Laplacian, which is a
fundamental object of study in Numerical Linear Algebra, and has a strong connection

11
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to sparsification as shown below.
Lemma 26. Let ¢ € R,,. Let G = (V, E, w) be a weighted graph with n vertices. If G is a
(1 + ¢)-spectral sparsifier of Ky, then

A(Le)
2a) <1l+e. (2.1)

Proof. Since G is a (1 + ¢)-sparsifier of Ky,

Lg, < Lg and (2.2a)
Le<(1+ E)LKV. (2.2b)
By Theorem 6, (2.2a) and (2.2b),
0 < Al(Lg,) < A(Ls) and (2.3a)
M (Le) < AL((1+ ©)Lg,). (2.3b)
Note that A](Lg,) = -~ = A!(Lg,) = n. So, one has that A'((1 + ¢)Lg,) = (1 + £)n. Hence,
1 T
ko) AU+ k) _ (1 om
Az(LG) )Lz(LKV) n
where (2.3a) and (2.3b) are used to reach the first inequality. O

Lemma 27. Let ¢ € R,,. Let G = (V, E, w) be a weighted graph. If

ML)
AE(LG) <1+e¢, (2.4)

then aG is a (1 + ¢)—spectral sparsifier of Ky, where a := n/A}(Lg).

Proof. Set n :=|V|. Note that

T ]lT

11 1 )
Ly, =nl—] = n(I — T) = n(I — m) = nProj . (2.5)

Using Lemma 5, we have that A"(L,¢) = - (’zc))LT(LG). Since AI(Lg) = Ml(L,g) = 0, we can

decompose the Laplacian as follows:
Lo = Z AiT(LaG)uiuiT = Z /LT(LaG)uiU,»T,
i=1 i=2

where {u, ..., u,} is an orthonormal basis of R". Let x € R". Since A}(L,s) < A1(Lyg), for
eachi € [n] \ {1},

n n

x ' Lyex = xT< Z A?(Lac)u,»u”x > xT< i A;(Lac)u,-uiT>x = A;(LQG)XT( Z u,-uf)x.
i=2 i

i=2 i=2
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Using Lemma 16,

xTLyex > Ag(LaG)xT< Z uiuiT>x = Ag(LaG)xTProj{mLx
i=2

n

~ (L)

(2.6)

)Lg(LG)xTProj{ﬂ}lx = nxTProj{]l}Lx.

Additionaly, since A'(L¢) > Al(L) for each i € [n],

n n

xTLyex = xT< Z /IZ.T(LD,G)u,-uiT>x < xT< Z Az(LaG)uiuiT)x = )LI,(LO,G)xT( Z uiuiT>.
i=2

i=2 i=2

Using Lemma 16,

xTLyex < AII(LO[G)xT< Z u,»uf)x = )L;(Laa)xTProj{]l}Lx
i=2

(2.7)
n . G .
= M (Le)xTProj . x = n—= x Proj; ;. X.
ALy oM PO = gy ¥ POl
So using (2.6) and (2.5),
x"(Log — Lk, )x > nx"Proj;y x — nx' Projgyx = 0.
Hence, Lk, < Lyg. Using (2.7), (2.4) and (2.5),
AL
xT((1+ €)Lx, — Leg)x > (1 + e)nxTProj{]l}ix -n ?( G)xTProj{ﬂ}lx
A(Le
AM(L ML )
> nMxTProijx —n ;l( G)xTProjmlx (28)
AZ(LG) AZ(LG)
=0.
So, we have that L, < (1 + ¢)Lg,. O

One of the most interesting family of expander graphs, using the traditional definiton
of expanders, are the Ramanujan Graphs. If G is a Ramanujan Graph (Definition 21) then
using the bound proved by Alon and Boppana [Ni1LL1, 1991] give us

ﬁa¢)<d+2Jd—1_d—zdd—1+4dd—1
MLg) “d—2vd—1 d—2yJd-1

4Jd -1 4d
=1+ ———<1+—F=
d—2Jd—1 d—2d
8
=1+ —=+—©x
Jd  d-2d

So a question that has been considered recently is whether the bound can be generalized to
weighted expanders and if this bound remains optimal for a broader category of expanders.

13
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2.2 Preliminaries

Lemma 28. Let G = (V, E, w) be a weighted graph with n vertices. Let k > 1. If G is a
k-spectral sparsifier of Ky. Then §,,(G) > n—1and A,,(G) < k(n — 1).

Proof. Letv € V. Note that
el Ly, e, = el (nl — J)e, = neIe,— e Je, = n—1,
and
ke Lk, e, = ke, (nI — J)e, = x(neIe, — ¢ Je,) = k(n —1).

Since G is a k-spectral sparsifier of Ky, we have that Lx, < Lg < kLg,. Hence,

n—1= eUTLKVe,, <elLge,

— v

and

el Loe, < ke, L e, = k(n — 1).

But we have that
evTLGev = eUTDeU — eUTAGeU =w,—0=w,.

So, we conlude that n — 1 < e/ Lge, = w, and w, = ¢/ Lge, < x(n — 1). O

Lemma 29. Let G = (V, E, w) be a weighted graph. Let x € R". Then
PrOj{J;l}J_LGPI'Oj{ﬂ}J_ = LG.
Proof. It is sufficient to prove that LgProjg, = Lg, because Lg is orthogonal. So,

Projl, Lo = (L5Projyy. ) = (LoProjyy.) -

Since Proj;;y = (I = 117/171) = (I — 117 /n) and by Corollary 11,

11t Lol1”
):LG— G :LG_():LG- D

LGPI'Oj{ﬂ}L = LG <I - T

Theorem 30 (see [BATSON et al., 2012, Proposition 4.2]). Let G = (V, E, w) be a connected
weighted graph with n vertices and let d be the combinatorial degree of some vertex. Let
k > 1. If G is a k-spectral sparsifier of Ky. Then

2 8d

k21l+—=——.

Jd n

Proof. There exist v € V of combinatorial degree d. Define the function f : V — R as

1 ifu=v,
f(w)=1{1/Jd if u € N(v), foreachu e V.

0 otherwise,
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Also, define g : V> R as

1 ifu=v,
g(w)=1-1/Jd if u e N(), foreachu e V.
0 otherwise,

Consider the induced subrgraph G’ := G [N (v)u {v}]. Set

w, = Z wy, foreach u € N(v).
xeN(u)\(N(v)u{v})

Note that the functions f and g are constant over N(v). Hence,

fLef= Y (wuu(f(v)—f(u))2+ ¥ Wux(f(u)—f(X))2>

ueN(v) xeN(u)\(N()u{v})
= % (wa-1NB e T waad-oy)

ueN(v) xeN(u)\(N(v)u{v})
= Z <wuv - 2wuv/\/5+ Wy /d +Wu/d>

ueN(v)

(2.9)

= Z <Wuv + (Wuv + Wu)/d - 2Wuv/\/3)

ueN(v)

- 1

= Z Wy + Z (Wuv+wu)/d_ﬁ2 Z Wuy

ueN(v) ueN(v) ueN(v)

2 ) wy

—1— i ueN(v)

Jd X wwt+ X (wy+W,)/d

ueN(v) ueN(v)

15
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and

N CXUCE D) wux(f(u)—f(X))2>

xeN(@NN @)U}

Z <Wuv(1 + 1/\/_)2 Z Wux(_l/\/a_ 0)2)

ueN () xeN(u)\(N)u{v})

m
<

Wy + 2wuv/\/3+ wu,,/d+Wu/d>

(2.10)

Wy + (W +W,)/d + 2wu,,/\/3)

ueN ()

Z Wy + Z (Wuv+wu)/d+_2 Z Wuy

ueN () ueN(v) ueN ()

2 ) wy
— 14 i ueN ()
Jd Y, ww+ Y (wy+wW,)/d

ueN(v) ueN(v)

Note that

2 ), wu

ueN(v) 2

Y wwt Y (Wewt+w)/d Z (e
ueN(v) ueN(v) 140

Z Wuv
ueN(v)

By Lemma 28, §,,(G) > n—1and A,,(G) < k(n — 1).So, we have that ), w,, =
ueN(v)

w, > n— 1. Also,

3 Z(Wuv+wu)<_ Z Wu_d Z K(n_l)zédK(n—l):K(n—l).

uEN(v) uEN(v) ueN(v)
Hence,
>, (wy+w,)/d
ueN () K(n - 1)
< =
> W n—1
ueN(v)
And so,
2 S 2
Z (Wuu"'Wu)/d - 1 + K.
1 + ueN(v)
Z Wuu
ueN(v)
From (2.9) and (2.10)
2
T
,fLef £1—— 2.11
flef $1- = @.11)
and
2
elog>1+— (2.12)

\/_1+K
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Since Proj,,,q; = 117/171 and by Lemma 17, we have that

||Proj{ll}¢fwz = ”f”Z - “Projspan{ll}f”2 =2- (Projspan{]l}f)TPrOjspan{]l}f
=2- fTProjsi;)an{]l}Projspan{]l}f =2- fTPrOjspan{]l}f

T TI]_ 2 14+ d 2
=2 _ fT f—z_sz_ﬂ,
171 n n
and
. 2 . 2 . T .
HPrOJ{]l}ig“ = ||g||2 - ”Pro.]span{]l}gu =2- (Pro.]span{]l}g) Pro]span{]l}g
=2- gTPrOjsl;)an{]l}PrOjspan{]l}g =2- gTProjspan{]l}g
171 n n
So,

[Projuy /[T _ 2= 5% 2n—(1+ VAP _2n-1-2Vd—d
[Projupgl 202 2n—(1-VdP 2n-1+2Jd-d
4d

Con—1+2Jd—d’

Since d is the degree of v, we have that d < n — 1, which implies that d + 1 < n. So,
2n—1+2Vd—d=2n+2Jd—(d+1)>2n+2Vd—n=n+2vJd > n.

Hence, ,
[Projiu fI” L 4d o, 4Vd
”Proj{]l}Lg”2 2n—1+2Jd—d n
Combining (2.11), (2.12) and (2.13) and using Lemma 26 and Lemma 29,

(2.13)

o Ae) | (Projisy.8) ' LoProjiyy. g [Projyy. f]f
- AT(LG) (Projyyy. f) TLGPYOJ'{n}Lf HProj{]l}lgHz

_ g'LogProjp fIT 1+ Jais <1 ~ ﬂ)

2

fTLcf HProj{]l}LgHz 1= ﬁm n

Rearranging the terms,

K<l_%1ik>2< \/1—1+K)<
1 2 4

=1+ — -
+\/ﬁl+1<

=)
Vd \/— 2
n on Jdl+

17



18

2 | WEIGHTED EXPANDERS

Since k > 1 and d > 1, we have that 0 < ﬁﬁ < 1. So,

4d 1 2 4+/d
— S s
n Jdl+k n
whence
1 2 1 2 4d 4d 1 2
z<(1———)21+— - S
Jd1+xk Jd1+xk n n Jdl+xk
1 2  4Jd 4d
S14 o 2NE
Jd1+xk n n
1 2 8d
=14+ — _ e
Jd1+«k n
Set y :=1 + k. Hence,
12 8d

( —1)(1—LE>>1+ —
Y Jay) = T Jdy  n
Multiplying all the terms by y,

(y—l)(y—%)2y+%— %.

Rearranging the inequality,

2 2 8d
o-0(r=g)zrez7-rs
VIR A N +2_8\/d
SR AN A A

2 8d
zyz—y—ﬁ—2y+y—n >0

2 8vd
=r(r-pg-2e ) 20

Since y =1+ k > 0,

2 8/d 2 8Jd
) ST N | RV N, ST
Y= a n ~ v= Jd n
So,
2 8d 2 8+/d
l4k=y>2+ — 2% L pe>14+ 227
= Jd n - Jd n

]

Lemma 31. Let G = (V, E, w) be a connected weighted graph with n vertices and let d be
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the combinatorial degree of some vertex. Then

N
An(Lo) > 1+ 2 8\/3.
M(Le) Jd n

.

Proof. Take ¢ := % —1 > 0. By Lemma 27, there is « € R,; such that oG is a
2

(1 + &)-spectral sparsifier of Ky. Note that each vertex has the same combinatorial degree

in G and in aG. Hence, by Theorem 30,

MLs)
MLe)

A
A(Lo) 1:1+521+i—@. O

M(Le) Ji n

Corollary 32 ([SrivasTava and TREVISAN, 2018, Claim 2.1]). Let G = (V,E, w) be a
connected weighted graph and suppose that §(G) < d/4 where d := 2|E|/|V|. Then

1+

A
A(Lo) > 1+ A M.
M(Lg) Jd n

Proof. By the hypothesis, there is a vertex in G with combinatorial degree d’ < d/4. Hence,
using Lemma 31,

A
An(Lc) > 1+

2 8Jd 2 8y/d/4 4 4d
" >1+—=-——2>1+ =14+ — .
Wie) = V@ n ija_ n N

]

Lemma 33 ([Srivastava and Trevisan, 2018, Claim 2.2]). Let ¢ > 0. Set
C. = J16+¢/(J16+¢e —4) > 0. Let G = (V,E,w) be a connected weighted
graph on n vertices. Set « := (A,,(G))™'. Suppose the average combinatorial degree d of G
satisfies d > 16 + ¢ and suppose that there exists u € V such that aw, < 1 —4/+/d. Then

N
A(Lo) >1+ 4 Cgl.
M(Le) Jd n

Proof. Let u,v € V such that aw, < 1 —4/+d and w, = 1/a. Define the function
f:V—>Ras

1 if i = u,
f@a=9 B u. for eachi e V.
— otherwise,
Note that
'f=>f=1+ Y fO=1+ ), St Y
-1 n—1

i€V ieV\{u} ieV\{u}
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hence f 1 1, and so A}(Lg) < f “]f”‘;’ Also we have that

=R B 5 () e !

i€V ieV\{u} ieV\{u} n—1

Since f is constant over V \ {u},

fLacf = a Y, wi (F@) — fG)’ = Y, awi () — f(w)°

ijeE iEN(u)

- ) e (- A (11
s i) = () ()

where the last inequality uses the hypothesis aw, <1 — Jia. So,

fTLaGf_fTLaGf 4 1 2 1 _ 4 1
Aale) < g _1+ﬁg<l_ﬁ)<l+n—l> 1+n_;—(1‘ﬁ)<”n_1>-

Define the function g : V — R as g : = e,. Note that |g|* = 1 and

g Lecg =€ Loe, = Z aw;([i =v] - Z aw, = 1.

ijeE ieEN(v)

So,

T
M(Lac) > £ Lang =
&l

Finally, we can bound the ratio

N(Le) _ M(Lac) 1 B 1
1 - = =
MLe)  MLae) ~— (1-%) (1+ ) (fd_;x) ()
_Van-vi_ Nin  Vd
Bl \/En—4n B Jdn —4n Jdn —4n
4n Jd 4 Jd
\/an—4n \/En—4n \/3—4 \/En—4n
4
s1p LY
\/E \/En—4n
Jd
Note that C, > Tia So,
Cgl > i’
n Jdn — 4n
Whence,
'
An(Lg) S 4 Jd o1a t —Cgl -

/lg(LG)_1+ﬁ_\/an—4n_ Jd n

Lemma 34 (see [SrivasTavA and TREVISAN, 2018, Claim 2.3]). Let ¢ > 0. Let d > 16 + «.
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Set C, := J16+¢/(J16+¢ —4) and set C; := 1+ 4//d. Let G = (V,E, w) be a
connected weighted graph on n vertices such that d is the average combinatorial degree
of G. Set @ := (A,,(G))™". Suppose that there exists e € E such that aw, > 8/+/d. Set
C, := V16 + ¢/(J16 + e —4) and set C; := 1+ 4/+d. Then

M(Lg) 4 1
=6 S 14— max{C., C;}~.
ALy =T ya e Gy

Proof. The maximum weighted degree of aG is 1, so Tr(L,s) < n. By Lemma 15 the sum
of the eigenvalues is less than or equal to n. Since A1(L,¢) = 0, one has

n
s

M(Lao) < (2.14)

n—1

otherwise
n

-1

Tr(LaG) = ILTAT(LaG) = AiT(LaG) > =n,
a contradiction.
Let u,v € V be such that uv € E and aw,, > 8/ Jd. Set f :=e, — e, By Lemma 33 we can

assume that aw; > 1 —4/+/d for eachi € V. So

fTLacf = awa(f(w) = fOY + Y, awe(fO) — fOP+ Y, awu(fG)— f(w)?

ieN(w)\{u} ieN(u)\{v}

=4aw, +aw, —aw,, + aw, — awy,, = 2awy, + aw, + aw,

8 4 8
22—+2<1——) =2+ —.
Jd Jd Jd
Hence,
TLacf _ 2+8/d 4
(L, 2f «ol > =1+ —. 2.15
Now we can bound the ratio using (2.14) and (2.15):
MLe) _ ML) 1+ _ (n=1)(Vd +9)
MLe) M)~ 35 nd
nd+4n— Jd -4 4 1 4
= =1+—-—(1+—)
nd Jd n Jd
=1+ 2 C ! [
= N7 i

The ball of radius ¢ € Z, centered at r € V is defined as
B(r) :={v eV : dist(v,r) < £}.

Also, we denote the set of vertices at the boundary of the ball of radius ¢ € Z, centered
at r € V as

bd(B/r)) :={v e V : dist(v, r) = £}.
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Lemma 35. Let G = (V, E, w) be a weighted graph. Set ¢ : = (girth(G) — 1)/2. Let r € V.
Let £ € Z,, such that £ < ¢.Set T,_; := G[Bf_l(r)] . Then T,_, is a tree.

Proof. The proof is by induction. For ¢ = 1, the subgraph Tj is a tree because it has only a
vertex and no edges. Let £ < £ and assume that T,_, is a tree. Suppose that there is a cycle
C in T, ;. Note that T,, is a subgraph of T, ;. Hence, by induction hypothesis, the cycle
C must have at least one vertex v € V(T,;) \ V(T,_;). There exist two distinct vertices
u, w € V(C) such that u, w € N(v), and there exist a path P,, from r to u and a path P,,,
from w to r, where both paths have length less than or equal to £ — 1. By concatenating
P,,, uv,vw, P,,, we form a closed trail. Since u # w, the closed trail formed contain a cycle
with length less than or equal to the length of the closed trail, i.e., with length less than or
equal to
£—1+¢—1+2=2¢=girth(G) — 1 < girth(G),

a contradiction. So T,_; is a tree. U]

Lemma 36. Let G = (V, E, w) be a weighted graph. Set ¢ : = (girth(G) — 1)/2. Let r € V.
Letf€ Z,. suchthat < €. Set T, :=G [B[_l(r)] . Let u,v € bd(B,(r)) be distinct. Then
u and v have no commom neighbor in V' \ V(T,_,).

Proof. By Lemma 35, T, is a tree. Take T, ; to be rooted at r. Hence bd(B,_,(r)) is the
set of leaves of T,_;. Suppose that there are leaves u,v of T, ; that are adjacent to some
x € V\ B,1(r). Then there exist a path P,, with length less than or equal to £ — 1, and a
path P,, with length less than or equal to £ — 1. So we can build a cycle by concatenating
P,,, ux, xv and P,,, with length at most

f—1+¢—1+42=2¢=2(girth(G) — 1)/2 = girth(G) — 1 < girth(G),

a contradiction. O]

Lemma 37 (see [SRivasTava and TREVISAN, 2018, Claim 2.4]). Let G = (V,E, w) be a
weighted graph of average combinatorial degree d > 12. Suppose that §(G) > d/4. Set
¢ := (girth(G) — 1)/2. Let r € V. Then for every positive integer ¢ < ¢, we have that

2
B(r) < ——

(4-1)
Proof. Let t € Z,, such that £ < ¢. Set T, ; := G[B[_l(r)]. By Lemma 35, T, is a tree.
Take T, ; to be rooted at r. Since 6(G) > d/4 > 3, each internal node has at least 2
children, so the number of internal nodes is less than or equal to the number of leaves,
which will be the vertices at distance £ — 1 from r. Let  be the number of leaves of T,_;.
So |B,_1(r)| < 2p. Since §(G) > 3, each leaf of T, ; has at least 2 neighbors in the set
V \ B;_i(r), and by Lemma 36, there is no commom neighbor outside T, ; between two
distinct leaves. Consider the set bd(B,(r)) that has the vertices outside of T, ; that are
adjacent to some leaf of T,_,. Hence, one has [bd(B,(r))| > 2 > |B,_1(r)|. So,

Be(r)| = [Be-1(r)] + bd(Be(r)) < 2[bd(B(r))|.
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Hence, it is sufficient to prove that

(B < —"—

(_ _ 1)[-['

4

Set T, , :=G [Bg,l(r)]. By Lemma 35, the graph T;_, is a tree. Take T;_; to be rooted at
r. Note that each internal node has at least 6(G) — 1 > d/4 — 1 children. Also, each leaf
of T;_, has at least 5(G) — 1 > d/4 — 1 neighbors outside of T;_;, and by Lemma 36, there
is no commom neighbor outside of T;_; between two distinct leaves. Denote the number
of vertices at distance i < ¢ from r as t;. So for each positive integer i < ¢, we have that
t; 1(d/4 — 1) < t;. More generally, for each positive integer i < £ and for each nonnegative
integer f < i, we have that t,_3(d/4 — 1)? < t;. Clearly t; < n. Hence,

So,

2.3 Main Result

Throughout this section we consider the following hypotheses. Let G = (V, E, w) be a
connected weighted graph of average combinatorial degree d := 2|E|/|V| such that

AL(G) =1, (2.16a)
5(G) > d/4, (2.16b)
5.,(G)>1—-4/d, (2.16¢)
w, < 8/+d for each e € E. (2.16d)

Let k € Z,, be such that k < (girth(G) — 1)/2 and define the function f, : V — R
for each r € V as

0 if dist(r,v) > k,
1 ifr=v,
fr) =
I w. otherwise, where P,, is the unique path between u and v in G.
e€E(Pyy)

(2.17)

Lemma 38 (see [SRivasTava and TREVISAN, 2018, Equation (3)]). Let G = (V,E, w) be a
connected weighted graph of average combinatorial degree d := 2|E|/|V| > 144 such that
(2.16) holds. Let k € Z, . such that k < (girth(G) — 1)/2. Let r € V and define f, : V > R
as in (2.17). Then

12 \*
(1—ﬁ> (k+1D)<|fl*<k+1 foreachveV.

23
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Proof. Let T be the subgraph induced by Bi(r). By Lemma 35, the graph T is a tree. Take
T to be rooted at r. Denote the parent of each vertex v € V(T) \ {r} as p(v). Note that

fi(v)* = H We = Wyp() H We = Wy fr(p())*  for eachv € V(T)\{r}.

e€E(Pyy) eeE(Prp(u))

Hence, for each 0 < £ < k — 1, one has

”fr rbd(BgH(r))H2 = Z fr(v)z = Z va(u)fr(P(U))2 = Z fr(v)z(wu - va(v))-

vebd(Br1(r)) vebd(Br1(r)) vebd(Be(r))

By (2.16a) and since w, > 0 for each e € E, we have that w, — w,p,) <1 -0 =1 for
eachv € V. So,

|f fbd(Bm(r))H2 = Z Fr )2 (Wy = Wip() < Z L@ =|f de(Bf(r))Hz- (2.18)

vebd(B(r)) vebd(B(r))
By (2.16¢) and (2.16d),

4 8 12

Vi va TV

Wy — Wyp((v) >1-
So

1 Tasean] = Y, FO (W, = Wop)

vebd(B((r))

1_T >, [y (2.19)

vebd(B(r))

12
= (- Phace] -
Note that ”fr rbd(Bo(r))Hz = 1. By (2.19),

15 sl < Toawn| =1 foreach 1 <i < k.
So,
k , &
1517 = Z”fr fbd(B,-(r))H < Z 1=
i=0 0

By (2.18),

(1= 2 < 1f tunan (1= 2 < 1 s

Since | f; fbd(Bk(r))Nz <|f fbd(Bi(r))||2 for each 0 < i < k, we have that

) k , k ) k 12 \ k
I :;uﬁ Pbacs )| z;\}fr lbacs )| >§0(1——) :(k“)(l_ﬁ) - U
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Lemma 39 (see [SrivasTava and TREVISAN, 2018, Equation (4)]). Let G = (V,E, w) be
a connected weighted graph of average combinatorial degree d := 2|E|/|V| > 144 such
that (2.16) holds. Set k := |d'/®|. Suppose that girth(G) > 2d'/® + 5. Let r € V and define
f, + V> Rasin (2.17). Then

. 50
IProjiy. £ > £ (1- ).

Proof. Since Proj,,,,; = 117/171, we have that

. . T . T .T .
”Pro-lspan{]l}ﬁuz = (Pro.]span{]l}fr) Pro.]span{]l}fr = f Pro.]span{]l}Pro.]span{]l}fr

]]_]]_T T:[]_ 2
= frTPrOjspan{]l}fr = fr (f )

]lTILf n

Furthermore, one has that f,(i) = | f. [l < |f;| for eachi € V. So,

E = (B50) =1 3 50) = (i)

iesupp(f;)

By Cauchy-Schwarz inequality,

17 o TENLE ol = I llsupp(£)1V2,

which implies that
(1o fr)” < L Psupp(f)-

Hence, .
1y 1 i
T ( supp(f,)fr) ;||fr||2|5uPP(fr)|

Since girth(G) > 2d'/® +5 > 2d'/® + 1 and k < d'/%, we have that girth(G) > 2k + 1, which

implies that k < (girth(G) — 1)/2. Note that, for each v € V, one has that f,(v) # 0 if and

only if v € Bi(r). Hence Bi(r) = supp(f,). By Lemma 37,

2n
|Supp(fr)| < gitth(G)—1
2

d
41

K

By hypotheses, we have that girth(G) > 2k + 5. Hence,

girth(G) > 2k +5=2(k+2) + 1
=girth(G) — 1 > 2(k + 2)
=>gnrth(f) -1 S

So,
2n 2n

girth(G)—1 _ - < 2"
d 2 4_1q
(z - 1) (4 )

lsupp(f,)| <
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For d > 20, we have that d/4 — 1 > d/5. So,

2n 50n
<

CON

lsupp(f)I <

Hence,

(fT ’

‘ 50n 50
[Projypungay frl* = —||fr|| |supp(f,)] < —||fr||2 7 IIﬁIIZE-

By Lemma 17, we have that ||PrOJ{l}Lf 1> =1£1*- ||Projspan{1}fr||2. So,

50
||Pr0_]{1}1._fr“2 ”]Cr”2 ”PI'OJspan{]l}frHZ ||fr||2 ||fr||2 dz ”fr”z( dz ) D

Consider a random walk (X, ..., Xi) of k-steps on the graph G, we denote the event of
moving from a vertex u to a vertex v as X, X,;; = uv. Note that this random walk considered
induces a tree, so the walk backtracks at step i € [k — 1] if X;_; X; = X;Xj;;. Denote the
event of the walk backtracking at step i € [k — 1] as backtrack(i). Define x : V — R as

foreachre V.

w
a(r) = E

The above function is the stationary distribution, so if the distribution of X, is 7 and
Pr(X,Xyy1 = uv) = wy,/w,, for each wv € E,

Pr(X; =r)=n(r) foreachi€{0,...,k}and foreachv e V.

For the following propositions we also will consider the following hypothesis. Let
(X, ..., Xi) be a random walk such that

Pr(X, Xes1 = uv) = W for each uv € E, (2.20a)
Wy
the distribution of X is 7. (2.20b)

Proposition 40 (see [SRrvasTAvA and TREVISAN, 2018, Proposition 3.2]). Let G = (V, E, w)
be a connected weighted graph of average combinatorial degree d := 2|E|/|V| > 16 such
that (2.16) holds. Let k € Z,, such that k < (girth(G) — 1)/2. Let (X, ..., Xx) be a random
walk such that (2.20) holds. Then

ko 2k
(Z\/w(x, L X )2 =

Jd

Proof. By (2.20),

Pr(X; = u) = Pr(X, = u) = n(u) for each u € V and for each i € {0, ..., k}.
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So,
E( D \/w<xl-_1,x,->> = ) ) VWuPr(X i X = w)
i€[k] ie[k] uveE
- Z Z N Wup PI'(X, 1=, X =v)+Pr( X, =0, X = u))
i€[k] uwveE
= Z Z \/w_u,, T(W)Pr( X, Xes1 = wv) + 1(0)Pr( X Xyyq = vu))
i€[k] weE
w, W w, w
— k uv( u uv v uv)
1;2 W\ 31T w, 217w w,
T w2
zwuv uveE w
— K /—uv(_> = fone
I;Eﬂ, W 217w 17w

Note that x*?2 is a convex function. So Y, w>/? is minimized, while maintaining the sum
uv€E

Y, wy, constant, when all the edges has the same weight, i.e., when
uveE

We 1= ;i;vz for each e € E.
So, ) .
/ 1Tw\3/2 dn 32 %
éwzvz - ,;eg <dn/2) <dn/2> " (dn/2)/% (2.21)
By (2.16¢), ) 4
n
gw,,_ ZX ﬁ)zi(l‘ﬁ)- (2.22)
From (2.22), )
21w 4
n = (1_ﬁ>' (2.23)

Hence by (2.21) and (2.23),

3/2
2 Wi, RN S S A LA N AL
17w _]lTw(dn/Z)l/z_(dn/Z) _< dn ) _< _ﬁ) Ja
Since 0 < (1 — 4/+d) < 1, we have that (1 — 4/Vd)/> > 1 —4/+/d. So,

Z W3/2

ek 2(1_i)l/ziz<1_i)izi_f_
17w Jd/  d Jd/Jd Jd d
Finally,
(Z Mo ) %:EW%Z SYEREI T .
ielk] Jd d Jd d

Proposition 41 (see [SRrvasTAvVA and TREVISAN, 2018, Proposition 3.3]). Let G = (V, E, w)

27
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be a connected weighted graph of average combinatorial degree d := 2|E|/|V| > 25 such
that (2.16) holds. Let k € Z,, such that k < (girth(G) — 1)/2. Let (X, ..., X) be a random
walk such that (2.20) holds. Then

- 80 v/2k>
]E([the walk backtracks] Z W(Xi_1, Xl-)> < —pa
i=1

Proof. By (2.16d),

8 \12 242k
Z\/W(Xi—l,Xi)SZ(ﬁ)/ :W-

i=1 i=1

Hence,
) 22k
E<[the walk backtracks] Z \/m> ([the walk backtracks] g1/t >
i=1
242k
- c;{;*_E([the walk backtracks]).

For all i € [k — 1], the probability of the event X; ;X; = X; X, is the probability of going
from the vertex X; to the vertex X;_;. So,

Pr(backtrack(i)) = Pr(X, X1 = X;Xi_1) = W:iXi—l.
Xi
By (2.16d) and (2.16c),
X; 8/Vd
Pr(backtrack(i)) = Wj;j:l < . _/ 4\;—\/3

The event of the walk backtracking is equal to the event | ) backtrack(i). Hence,
i€[k—1]

k-1
Pr(the walk backtracks) = Pr( U backtrack(i)) < Z Pr(backtrack(i))

i€[k—1] i=1
8/\d 8/Nd 8
21—4/\/_ _1)1—4/M_(k_1)ﬁ—

8k _ 40k 160k —32kVd
Jd—4 Jd  Jd(Jd-4)

Since d > 25 and k > 0, we have that 160k — 32kvJd < 160k — 160k = 0 and
Vd(Jd — 4) > 5(5—4) = 5 > 0.So,

<

40k 160k — 32k \d

Pr(the walk backtracks) < — \/_ W < ﬁ
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Since [the walk backtracks] € {0, 1},
]E([the walk backtracks]) = Pr([the walk backtracks]).

So,

k

22k

E ([the walk backtracks] Z JWw(Xi_1, X,-)) < (1\{—/4 ]E([the walk backtracks])
i=1

22
= c;{—/‘lk Pr([the walk backtracks])

- 242k 40k _ 80+2k?
S g T e

]

Lemma 42 (see [SrRivasTAvA and TREVISAN, 2018, Lemma 3.1]). Let d > 144. Set k := d/e,
There is y € R, satisfying the following. If G = (V,E, w) is a connected weighted
graph of average combinatorial degree d = 2|E|/|V| such that (2.16) holds. Suppose that
girth(G) > 2d"/® + 5. Define f, : V — R as in (2.17) for each r € V. Then there is a vertex

r € V such that L 2
2
T
el =g =V

Proof. Set y := y;(12 + 160+/2), where

3 i
e 1 2
no-= 25251'/8 + 9 _ 93/8"

i=0

Let r € V. Set T := G[Bi(r)]. Since k < d'/® and girth(G) > 2d'/® + 5, we have that
k < (girth(G) —1)/2. By Lemma 35, the graph T is a tree. Take T to be rooted at r. Denote
the parent of each vertex v € V(T)\{r}in T as p(v). Since T is a tree rooted at r we have

that E(T) = |J p(v)v. By (2.17), we have that f,(v) = /Wy fr(p(v)), also f.(v) = 0

veV(T)\{r}
for each v € V \ V(T). So,

flAcf =2 ), wuf W =2 Y, wunfGONL® =2 >, Wyonfi®)

weE(T) veV(T)\{r} veV(T)\{r}

Let (X, ..., Xi) be a random walk such that (2.20) holds. By (2.16¢) and (2.20a),

4
Wy = W,Pr(X, X, 11 = uv) > (1 - —)Pr(XxXxH = w). (2.24)
Jd
Let v € V be a vertex such that ¢ : = dist(r,v) < k. Note that v € V(T). So there is a unique
path between r and v in G, in particular in T, denote this pathas P := (r = v, ..., v, = v).

Using (2.24),

4 4 \?¢
£ =TT W > (1 - —)Pr(xxxxﬂ = o) = (1 - —) Pr(X, = v),
[Iwe= 1105 7
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where in the last equality we are using the fact that P is the unique path between r
and v. Hence, to reach v in ¢ steps one has to choose exactly the edges of P. Note that
the event X, = v is either 1, when the event happen, or 0, when it does not happen, so
Pr(X,=v) = ]E([X[ = v]). Hence,

At =2 ), Jwpanf)

veV(T)\{r}
4 dist(r,v)

Z N Wy <1 - ﬁ) Pr(Xdist(r,v) = l))
veV(T)\{r}

Z V P(U)U ( ) Pr(Xdlst(r v) — )
veV(T)\{r} \/E

=2 (1 - T) Z v Wp(v)vEr ([Xdist(r,v) = l)])
veV(T)\{r}
=2 (1 - _> ( Z  Wow [Xdist(r,v) = U]) .
veV(T)\{r}

Let i € [k] and let u € V(T) such that dist(r, u) = i. Note that X; = u if and only if
dist(r, X;) = i. So, we have that [ X; = u] = [dist(r, X;) = i]. Also, for every j € [k] there is
only one vertex z € V(T) such that X; = z. Hence,

frAGf > 2(1 - —) ( Z Wyl Xaisi(ro) = U])

veV(T)\{r}
4 k
- 2(1 - —) Er< Y xldist(r, X) = i])
\/a i€[k]

Note that if the event dist(r, X;) = i happens, then the walk does not backtrack up to step
i. Also, the probability of the walk not backtracking is smaller than the probability of the
walk not backtracking up to the step i for i € [k]. So,

frAGf > 2<1 - %)k]Er< EZ[/;] JWxx L dist(r, X;) = i])
k

I
Do

]Er Z JWx._,x;[the walk does not backtracks up to step l])

( \/_ < i€[k]
4 \k
> 2<1 —) IE,( JWx_ x [the walk does not backtracks up to step k])
\/E i€[k]
4 \K
> 2(1 ﬁ> E, <[the walk does not backtracks] Z JWx. 1X>

i€[k]

Using the complementary event of the walk does not backtracks,

E, ([the walk does not backtracks]) =1-E, ([the walk backtracks]).
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Hence,

k
frAGf > 2(1 - > E, ([the walk does not backtracks] Z «/WX,-_le)

i€[k]

>k<Er ( Z m) —-E, ([the walk backtracks] Z m) >

i€[k] i€[k]

Using (2.20b), we can average over all possible roots. By Proposition 40 and Proposi-
tion 41,

reVv

Define the sets
Even :={i €{0,...,k} : iiseven} and Odd :={i€{0,...,k} : iis odd}.

Expanding the expression,

Jd/ \Jd d d3/*
.41' 2k < [k 4 8042k &
52 (a5 S (e S (v

i=0 i=0

LB (B4 ik (B 410 5 (k) 4
d zeOdd dl/2 d icEven i di/2 d3/4 i di/2

2( 4 )k( k 2k 80\/§k2>

; ' i€Even (2,25)
R I - EED) ('5)4,_’__1@&“ > (})
\/E \/Edl/z i€Even\{k} L d/? d icEven \ ! d/? ¥/ icEven \! di/?
Ay () s (e s (Y
\/E d i€Even\{k} L d/? d icEven \ ! d'/? >/ icEven \ ! di?

Note that

k-1 2i k 2i ko ipi o2 ki 2i ki o2
k—1\ 2 k\ 2 ek 2 e .2 e 2
3 <Y ()2 <y EE gl gl
i d1/2 . i dl/Z £ i d;/z Z i d1/2 . il d31/8
i=0 i=0 i=0 i=0 i=0

Since d > 144, we have that d > 128 = 27,

k K\ 2% k el 9 k Y. ~ k d o1
Z i) diz < 2 FER < Z i o21i/s Z i 95i/8°
=

i=0 i=0 i=0

Note that for i > 4, one has that ¢'/i’ < 1. Hence,

£ 2% Ee 1 el 1 Lo
Z( >dl/2 ZFZSUS < L ji 95i/s + L 95i/s"

1
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We have that

1 _ 2
Z 95i/8 ~ 9 _ 93/8"

i=0
Hence,

k-1 i k i 3 k

k—1) 2% k\ 2% e 1 1
Z( j )WSZ<,->WSZ;@+ZWS%-
i i i=0

i=4

Thus,
k . .
k 221 k 221
—y < — Z <= i
ns ;(i) ij2 = ie%z;d<i>di/2’
and )
k—1)\ 2% k—1)\ 2%
—nS—Z( . )i—é— > ( - >—
i=0 L d & i€Even\{k} ! d &

Going back to the expanded expression (2.25),

2<1 4 )k( k 2k 80\/§k2)

S Nd)\Nd d @

2k 8k k—1\ 4 4k K\ 4  160+/2k? k\ 4
i a2 U Jar g 2 G)ar e 2\ )an

i€eEven\{k} i€Even i€Even

> \/E_g}/l_jﬁ_ 3/t 1= \/E 41

Note that k*/d** = 1/d*® > 1/d"/® = k/d. Hence,

d

2k 8k 4k 160 +/2Kk? 2k (12k 160\/§k2>

2(1- ) (5 - 2 - 25
Jd Jd d d/4
S 2k 12k 160+/2k? 2k 12k* 160 +/2k?
‘ﬁ_”< ML )—ﬁ_”<d3/4+ i)
2k k? 2k k?
:ﬁ_wyl(12+160\/§):ﬁ_my. ]

Finally, we can prove the main result of this chapter.
Theorem 43. (see [SrivasTavAa and TREVISAN, 2018, Theorem 1.1]) Let ¢ > 0. Let
d > 144 > 16 + ¢.Set C, := J16+¢/(J16+¢ —4) and set C; := 1+ 4//d.
There is y € R,, satisfying the following. If G = (V, E, w) is a connected weighted graph
with n vertices and dn/2 edges such that girth(G) > 2d'/® + 1. Then

M(Le) 4

1 1
>1+ —_— = C,, Cy,4}—.
7 N B e S IV

Proof. Set y := (102y; + 254), where y; is the constant of Lemma 42. If (2.16a) does

not hold, one can use the multiple (AW( G))_IG of G since the ratio between the largest
eigenvalue of the laplacian matrix and the second smallest eigenvalue of the laplacian
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matrix is the same for G and its multiple, hence we can assume (2.16a).
If (2.16b) does not hold, then by Corollary 32,

A
o) | LA 4\/—

M(Ls) ~ Jd n

Since d is the average combinatorial degree, one has that d < n — 1 < n since each vertex
has at most n — 1 neighbors. Hence,

AL 4  44d 4 4 4 4
"(G)>1+——£>1+———‘/ﬁ:1+———

Mle) ™ Nd o on T Jdn Jd  n

4 1
> 1+ ﬁ — max{CE, Cd’4}ﬁ — YW

Therefore, we can assume (2.16b).

If (2.16¢) does not hold, then by Lemma 33,

AT(LG)>1 S R S . {CC4} !
> ——C—21 Ce — —max{C,, Cy, —_—.
M(Lg) Jd n \/E Jn Jd d Jn yds/s
Hence, we can assume (2.16c).
If (2.16d) does not hold, then by Lemma 34,
T( 0) > 1+ — —max{C,, Cd} >1+ 1 max{C,, Cd}
A (La) \/Z V4 Jn
>1 : Ce, Cy,4 !
- + ﬁ - max{ e “ds }ﬁ - YW'

Hence, we can assume (2.16d). Therefore, we may assume the hypoteses in (2.16).

Set k := d"/* and note that k < (girth(G) — 1)/2. For each r € V define f, : V — Ras

in (2.17). Let r € V be a vertex that satisfies Lemma 42. Define f/ : V — R as
, £ (v) if dist(r,v) is even,

fr@) = { (2.26)

' —£(v) otherwise.

Note that for each uv € V such that dist(r, u) < k and dist(r,v) < k, we have that either
fr(u) > 0and f,(v) <0, or f,(u) <0and f,(v) > 0, because, by Lemma 35, the subgraph
induced by Bi(r) is a tree. Hence, one has that f/TAs f/ = —fT A f,. Recall that y; satisfies:

2k k?

T
f At 2 ﬁ - Y1W,
and ok 2
fr/TAGfr/ — _frTAGfr < —<ﬁ - )/1w>.
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Note that f/"Dsf/ = Y. Ds(v,0) f,(v)? = fIDsf,. So,
veV

k k?
fTLaf, = £(06 - A0)f, < Dok - (2 - nipr),

and

f/TL f/_f/T(D _A)/> /TD /+&_ k_z_ TD +&_Mk_2
r LGl = Jr G c)fy 2 1, Daf; Jd Yld3/4_fr cfr Jd L3/

By (2.16a), we have that Dg(v,v) < 1 for each v € V. Hence, using Lemma 38,

£TDof. = Y. Do) f0)* < Y. £ = fF <k+1.

veV veV

Now we can bound the ratio
1T / T 2k _ ., K fTD f (2 _ K + 2
fr LGfr > f DGfr + 7d Y17 r YGJr Jd Y157 \f ~Yipna d3/4
T 2 -
WLl frpof, - (% - nifn ) £1Dof, ~ (% - i)

2 2

=1+ >1+

'Defr - ( 1d1§j4> # D

. (2.27)

2(%-ndn)  2kH(1-ngs)

>1+ =1+
k+1 k+1

B +4k(1_)’12dL1/4)_1+ 4 k (1 k )
- Jdk+1) dk+1 noae

>1+iu<1— L)—l+i<l—l><l— L)
=T d k Moarn) = T G\ Tk oais)

By Lemma 29,
fr’TProj{l}iLGProj{l}Lfr/ - , . )
M) o~ Mo P _ f/TLaf; IProjuy fil
/lg(LG) = fIProjyy LoProjgy fr frTLGfr ||Pr0j{1}Lf,’HZ
”Proj{]l}lfruz

Note that [Projg,. /> < If/I> = | £I?. So, using Lemma 39,

Proj flE_ FE(1=3) 5o
IProjisy fIF o2 (2.28)

[Projuy fA2 = 1A d?
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Combining (2.27), (2.28) and k = d'/%,
M(Le) 4 1 k 50
s 1+ —(1--)(1-y—r -2,
M(Lg) —( " ﬁ( k)( y12d1/4>>(1 d2>

(=) ) (- )

One can show by expanding the expression that,

> (7)) ) (- 3) 21 -

1

Y psrs

35






Chapter 3

Irregular Expanders

3.1 Introduction

Another generalization of expander graphs uses the normalized Laplacian matrix. The
result proved in this section uses the notion of Weak Ramanujan graphs, which satisty
some expander properties.

Definition 44. Let G = (V, E) be a graph. Set

;} deg;(v)/deg,(v) — 1

Y, deg;(v)?

veV

oG =2

We call G a weak Ramanujan graph if

ML) >1-06>

DN |

Note that for weak Ramanujan graphs that are d-regular graphs, one has

> dJd-1

vevV _ d—1
E =1-2 7

veV

ALg)>1-0g=1-2

Hence,

M(Ag) = d—dA(L) < 2d—1,

which is one of the conditions on the definition of Ramanujan graphs (Definition 21).

In this chapter the graphs considered, unlike in chapter 2, are unweighted but can
be irregular, as in chapter 2.

37
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3.2 Preliminaries

Lemma 45. Let G = (V, E) be a connected graph. Then

T
L
min —f Gf

M(Le) = .
»(Ls) i Do

Proof. By Lemma 13 and Theorem 4,

e
A(Ls) = min g Tcg.
gDl g7 8

Let iy € RV such that y L DY*1. Set ¢ := D;"?. Note that D/* = DgDg"%. So,
0=1"DY*y = 1"DsDg"*y = 1"Dg f = 9" Dg1.

Hence, one has that ¢ L Dg1. So,

T
L

A(Ls) = min £ TGg
gDl g7 8

-1/2 ~1/2
= min gTDGl/ LGDGl/ 5
gDl g'g
T
. Lg
= Tf1/2 ]:/2
fbel f1DG"Dg" f
T
L
= min M 0
fibe1 fTDgf

Lemma 46. If G = (V,E) is a graph such that G # Ky, then

ML) <1

Proof. Let G = (V,E) be a graph such that G # Ky. Then there exist u,v € V such that
u ¢ N(v). Hence, define the vector f := deg,(v)e, — deg,(u)e,. Note that

degf, f = degg(u) deg,(v) — deg(v) degy(u) = 0.
By Lemma 45,

< f'Lof _ degg(v) deg;(u)? + deg;(u) deg;(v)° —1

,
186 < FTDf = degov) dego () + dego(v) dego(u)

Lemma 47. Let G = (V,E) be a graph. Let S C V. Then

HTDG]ls = VOI(S)
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Proof. We have that
1'Dg = Z el deg;(v).
veV

So,

1'Dgls = Z eldeg (v)ls = Z el deg(v) = vol(S). H

veV vES

Lemma 48. ([CHUNG GRAHAM, 2016, Lemma 1]) Let G = (V, E) be a graph such that
G = Ky.Let S C V. Then

166(5)| vol(S)
vol(S) = AT(EG)( ol(V))’

Proof. Set S := V\ S and

Is I3 cRY
vol(S)  vol(S)

f =
By Lemma 47,

1TDgf = 1TDg1y B 1TDgls _ vol(S) B vol(S) 1=
¢ vol(S) vol(S)  vol(S)  vol(S)

So, we conclude that f 1 Ds1. By Lemma 45,

0 f LGf
M(Lo) < L

Note that if v € S then f, = 1/vol(S), otherwise f, = 1/vol(S). Hence,

T _ v 1 1 B 1 1 2
filaf = Z(fu b= Z (Vol(S) * Vol(§)>2 B |5(S)|<V01(S) - Vol(§)> ’

uek e€d(5)
and
D % d, Egd” 1 1
of = Zé d,f} = Z; df, + Z; DI = oISy T oIS~ vol(S) T vol(S)’
So,

1

fTLgf 5(5)(v01(5) vol(§)> 3 1 1 3 vol(S) + vol(S)
fTDof #(s.) + #@ B 5(S)<V01(5) - VOI(S)) = 3(5) vol(S)vol(S)

Note that vol(S) + vol(S) = vol(V). So,

) fTLgf vol(S) + vol(S) B vol(V)
AalLq) < fIDgf = 3(5) vol(S)vol(S) S(S)VOI(S)VOI(E)'

39
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Rearranging the terms,

4(S) vol(S)
vol(S) > Ag(ﬁG)vol(V)’
but vol(S) = vol(V) — vol(S). So,
5(S) vol(S) vol(V) —vol(S) vol(S)
vol(s) = Jal£ ol(V) AalLe) vol(V) JalE G)(l ~ vol(V) )

Lemma 49. Let G = (V, E) be a graph such that G # Ky. Let S C V. Then (S U N(S5))
and §(S) are disjoint, and S(N(S)) = 5(S U N(S)) U 6(S).

Proof. Suppose that there is e € E such that e € (S U N(S)) and e € §(S). Since uv € 5(S),
one of its end is in S and the other one is in §(S). Hence both ends of e are in S U N(S), a
contradiction since e € §(S U N(S)).

Let uv € 5(N(S)). We may assume that u € N(S), because either u € N(S) or v € N(S)
and if v € N(S) we can relabel the vertices. So eitherv € V N\ (SuU N(S)) orv € S. If
v € VN (SUNC(S)), then uv € (S U N(S), otherwise v € S. So, one has that uv € 5(5).
Hence, we conclude that §(N(S)) C 6(S u N(S)) u 5(S).

Let uv € §(S U N(S)). We may assume that u € (S U N(S)). Note that u € N(S),
otherwise v € N(S) because we would have u € S, which would lead to uv ¢ §(S U N(S)).
Hence u € N(S) and uv € 5§(N(S)).

Let uv € 6(S). We may assume that u € §(S). Hence, one has that v € N(S), where it
follows that uv € N(S). So we conclude that 6(S U N(S)) U 8(S) C §(N(S)). O

Lemma 50. ([CHUNG GRAHAM, 2016, Lemma 4]) Let G = (V, E) be a connected graph such
that G = Ky.Let ¢ € Ry, such that e < 1/2.Let S C V such that volg(SUN(S)) < evolg(V).
Then

volg(N(S)) S 22}(L6)

bl 3.1
VOIG(S) T 1- Ag(ﬁc) + 2¢ ( )
and, if 1/2 < A(L£5) < 1 — 2¢, then

volg(N(S)) S 1 (3.2)

volg(S) = (1 Al(Le) + 2002

Proof. We first prove (3.1). Note that volg(N(S)) > [6(N(S))|, because each edge in N(S)
has one of its end in S. So, each edge is counted once in volg(N(S)). By Lemma 49, we
have that §(N(S)) = 5(S U N(S)) U 6(S), and that 5(S u N(S)) and §(S) are disjoint. So
|6(S UN(S))u 6(S)| = 16(SuN(S))| +|6(S)|. Hence,

volg(N(8)) = [6(N(9) = |6(S U N(S)I + [6(S)I- (3.3)
Applying Lemma 48 with the set S U N(S),

[6(SUN(S))
volg(S U N(S))

B volg(S U N(S)))

= A‘l‘(ﬁG)(l volg(V)
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By hypothesis, we have that £ > vols(S U N(S))/ vols(V). So,

6(S UN(S))
volg(S U N(S))

volg(S U N(S))
VOIG(V)

> 2(L6)(1- ) = (L)1 - o).

Hence, we have that [§(S U N(S))| > AL(L5)(1 — £) volg(S U N(S)). Since S and N(S) are
disjoint, we have that vol(S U N(S)) = vols(S) + volg(N(S)). So,

16(S UN(S))] = A(L6)(1 ~ e)(volg(S) + vol(N(S)). (3.4)

Applying Lemma 48 with the set S,

15(S)| > /1;([:(;)<1 _

volg(S)
volg(S) — )

volg(V)

Since S C S U N(S), we have that volg(S) < volg(S U N(S)). Hence, we have that ¢ >
volg(S)/ volg(V). So,
16(S)| > AJ(Le)(1 =€) volg(S). (3.5)

Combining (3.3), (3.4) and (3.5),

volg(N(S)) = [6(S U N(S)| +[6(5)|
> A(L6)(A — €)(volg(S) + volg(N(S)) + AL )1 — ) volg(S)
= 220(L6)(A — ) volg(S) + AU(L)(A — ) volg(N(S)).

Rearranging the terms,
VOIG(N(S))(I — (L)1 —€)) = 2A5(L )1 — £) vols(S).

Since AJ(L¢) < 1and € > 0, we have that 1 — A}(£)(1 — ¢) > 0. So,

2A(£6)(1 — £) volo(S)

vl = = a0

Hence,
vols(N(S)) 2A}(L6)(1—¢) S 2A}(L)

volg(S) T 1-ANLe)(A—e) T 1-AN(Lg) + 26
where the last inequality holds if ¢ € (0,1/2]. Thus, (3.1) is proved.

Sety :=1-A}(Ls) > 0,set f := 15+ ylyes) € RY, set ¢ := deg. f/volg(V) > 0 and
set g := f — cl € RY. We have that

veV _
volg(G)? volg(V)? B volg(V)?

) (deggf)2 ( ) f(v)degc(u)>2 (lg,/ f(v)\/degG(v)\/degG(v))2
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Using Cauchy-Schwartz inequality,

(3 1) oo dego)
‘= volg(V)?

< —— vol (V)2 Zf(v) Jdeg,(v) Z \/degG(v

veV

_ Y f©)degsv) Y degg(v).

VOI (V)Z veV veV
Since f(v) = 0ifv € S U N(S),
) ) 16(S U N(S)) )
< (V)Z ;f(v) deg(v) ; deg(v) = \GrolG(V)z 1; f(v)*deg(v).
By hypothesis, one has that ¢ > volg(S U N(S))/ volg(V). So,
1
s if,f ORODS ey )
veV
VolG(V) Zf(v) deg,(v) (3.6)
__ ¢ T
N volG(V)f Dof.

Note that (ILTAG) 2 Ag(u,v) = Y, [uv € E] = deg(v) for each v € V. Whence

ueV

1TAg = deg/.. Also, since ¢ = deg, f/ vols(V), we have that deg/. f = ¢ volg(V). So,

gTAcg = (f = )T Ag(f — c1) = FTAgf — 2c17 Agf + 217 Agl
= fTAGf — 2cdeglf + c*degll = fTAqf — 2¢* volg(V) + ¢* volg(V)
= fTAg — c*volg(V).

Hence, we have that fTAgf = gTAgg + c¢? volg(V). Note that
g'Dsl = fldeg,—cl'deg, = f'deg,—vols(V)deg/f/volg(V) = f'deg,—f'deg, = 0.
By Lemma 45,
A(L6) < g'Log/g' Dog = (g'Dog — 8" Acg)/ &' Dog.
Rearranging the terms, we have that gTAgg < (1 — A(L))g"Dsg = yg'Dgg. Hence,

frAGf = g" Agg + ¢*volg(V) < yg'Dgg + ¢ volg(V).
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Note that
¢'Dsg = (f — c1)"Dg(f — c1) = fT D6 f — 2¢f D1 + 217 Dg 1
= f'Dof — 2cfdeg; + ¢* volg(V) = fTDg f — 2¢* volg(V) + ¢® volg(V)
= fIDsf — c*volg(V).

So,
fTAcf < yg'Dog + ¢ volg(V)
= y(fTDGf —c? VOIG(V)) + c2volg(V)
= yf Dof + (1 —y)c® volg(V).
Using (3.6),

fTAGf <yfTDof + (1 —y)c*volg(V) < yf Do f + (1 — y)ef Dsf.

Since y > 0, we have that 1 — y < 1. So,

FrAGF <yvf'Dof +(A = Yef'Dof < yf'Dof +ef'Dof = (y + &) f ' Dsf.

Note that

fTDf =Y. dego(@)f)* = Y. degc)f(0)* + . degs(v)f®)?

veV veS veN(S)

= Z deg,(v) + Z deg;(v)y* = volg(S) + y* volg(N(S)).

veS veN(S)
Hence,
frAGf <(y+e)f'Dof =(y+ e)( volg(S) + y? VOIG(N(S))). (3.7)
Let H := G[S]. So,
fracf =2y, fwfe) =2( Y f@fe)+ Y fWfw)

uweE weE[H] uwedg(S)

:2< Y+ ¥ y>:2(|E[H]|+}’|5G(5)|)-

weE[H]  uveds(S)

Since AJ(L¢) > 1/2, we have that 1 — 2y = 1 — 2 + 2A1(Ls) = 241(Ls) — 1 > 0. Note that
volg(S) = |55| + 2|E[H]|. So,

frAcf = 2([E[H] + y166(S)I) = 2(IE[H]| + y vols(S) — y2|E[H]|)

(3.8)
= 2(|E[HII(1 - 2y) + y vola(S)) = 2y vola(S).

Combining (3.7) and (3.8),

2y volg(S) < (y + s)( volg(S) + y* VOIG(N(S))).
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Rearranging the terms,

2y <1+ , Volg(N(S))

y+e~ 4 volg(S)
Ly 1< J(zvolG(N(S))
y+e volg(S)

=>2y —y—¢ < YZVOIG(N(S))
y+e volg(S)
__r-e volg(N(S))
Yy +¢€) = volg(S)

Since AJ(Lg) < 1 — 26, we have that y = 1 — AJ(Lg) > 1 — 1 + 2¢ = 2¢. We claim that
(y — &)/ y*(y + &) > 1/(y + 2¢)*. So,
— € 1
yz}(/y ve)© (y + 2¢)?
=(y —e)y +26)" 2 y*(y +¢)
=y —e)y* +4ye +4e>) >y’ + ye
=y +dy’e+4ye® — ey’ —dyet -4 > 7 + yle

=4y’e —ey® — 4 > ye
=2y% > 4¢°
=>y2 > 267,

Which is true because y > 2¢ = y? > 46 > 22 So,

volg(N(S)) R Gl 1 B 1
volg(S) T yHy+e) T (y+26)*  (1-AY(Lg) +2e)

and (3.2) is proved. O

3.2.1 Weak Ramanujan Graphs

Theorem 51. ([CHUNG GRAHAM, 2016, Theorem 6]) Let ¢ > 0. Set ¢ := 1/1In(1.5). Let
G = (V,E) be a weak Ramanujan connected graph. Suppose that volg(V) > con®® /.

Then
diam(G) < |(1 +6)%w
G
Proof. Set
. In(volg(V))
ti= [(1 + 8)—ln(cral)

Suppose that for every vertex v € V, one has that volg(B,;(v)) > volg(V)/2 . Let u,v € V.
Note that volg(B;(v)) + volg(B,;(u) > vols(V). Hence, there is a vertex x € volg(B;(v)) and
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x € volg(B;(u)). Using the vertex x, we have a path from u to v with length at most

In(volg(V))
In(ogh)

2[(1+¢)

So, it suffices to prove that for every vertex v € V, one has that volg(B;(v)) > vols(V)/2.

Suppose for the sake of contradiction that there exists v € V such that
volg(B:(v)) < volg(V)/2. Set

L VOIG(Bj(v))

sj 1= volo(V) for each j € IN.

In particular, we have that s, < 1/2, by assumption. Let j < t — 1 be a nonnegative integer.
Since B;(v) C B,(v),

o vola(Bia() _ vol(B,(v)
T Nolg(V) T volg(V)

1
:Stgg.

Recall that G is a weak Ramanujan graph. Hence, we have that A](£s) > 1/2. Since
Bj11(v) = Bj(v) U N(B;(v)), we can apply (3.1) of Lemma 50 with ¢ = 1/2 and S = B;(v).
So,
Vol (NBW) | 2o 2
volg(B(v)) ~ 1-ANLg+2e)  1-3+21

Hence, one has that volg(N(B;(v))) > 1/2vols(B;(v)). Whence

volg(Bj+1(v)) _ volg(B;(v) U N(B;(v))) _ volg(B;(v)) + volg(N(B,(v)))
Sjy1 = = =
! volg(V) volg(V) volg(V)
volg(B;(v)) + 1/2volg(B;(v)) B vols(B;(v)) B .
> volg(V) =32 oy

2
=->1/2
;21

Set ¢; :=4(In(3/2)) . If j < t — ¢;In(o;'), then 1 > 5, > (3/2) ln("EI)sj. Note that

In(og")

In(3/2)

Hence, one has that 1> s, > (3/2)7 e, = (3/2)1°g3/2("54)sj = 05's;, whence

€1 ln(O'(_;l) = 4(In(3/2))”" ln(O'(_;l) =4 = 410g3/2(0'51) = 10g3/2(0'54)_

oG > s; (3.9)

[CHUNG GRAHAM, 2016, page 9] claims that (3.2) of Lemma 50 can be applied for
j < t—cIn(og!) (although it is not obvious if the conditions for applying this lemma
were met). So, take ¢ = s;;; and S = B;(v),

Sjt1 _ volg(Bj1(v)) _ volg(N(B;(v))) 1
Sj B VOIG(Bj(v)) - VOIG(BJ(U)) B (1_/1£(£G)+23j+1)2'

Since G is weak Ramanujan, we have that 1—A}(£s) < 0¢. By (3.9), we have that s;,; < o



46

3 | IRREGULAR EXPANDERS

for each j <t — ¢; In(og') — 1. Hence,

ﬂ 1 1
T (1= AJ(Le) + 25501)% (GG +og)?

Let £ <t — ¢;In(og') — 1. We have that

1
B H (UG"‘UG)Z (UG+U )2

0<j<t

[CHUNG GRAHAM, 2016, page 9] claims that, since sy = By(u)/ volg(V) = 1/ vols(V)
and s, < s; < 1/2 one can prove that

volg(V) > ———,
(V)2 o¥(1+20¢)

which implies that
log(volg(V))
~ In(og') + 208

[CuHUNG GRAHAM, 2016, page 9] claims that, using the inequality

log(vols(V)) log(vols(V))

<t<qgl o)t
log(eg) ~— 7 i loglog) + log(og!) + 20*

(1+¢)
and with volg(V) > o ZCI log(oa) /€, ones has a contradiction. Hence s; > 1/2. O

Theorem 52. ([CHUNG GRAHAM, 2016, Theorem 7]) Let € € [0,1/2]. Set ¢ := 4/In(1.5).
Let G = (V, E) be a connected weak Ramanujan graph. Let | < diam(G)/4. If diam(G) >
cIn(e™!). Then, for every v € V,

B;(v) < evolg(V).

Proof. Set k := diam(G). Suppose for the sake of contradiction that for j, := [k/4], there
is a vertex v € V such that volg(B,(jy)) > € volg(V). Denote

_ volg(By(r))

§j 1= vola(V) for each j € Z.

Hence, we have that s; > ¢. Let r denote the least integer such that s, > 1/2. [CHUNG
GRAHAM, 2016, page 9] claims that, by assumption, one has r > k/4.

Suppose that r > k/2. Note that s,_; < 1/2. So, for each j < r —1 one has that s; < 1/2.
So, we can apply (3.1) of Lemma 50 for each j < k/2—2 < r—2 with e = 1/2 and S = B,(j).

Hence,

volg(N(B,(/))) 22(L¢) 2
volg(B,())) > 1-ANLg) + 2¢ = 3 2 1/2
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So sj41 > 1.5s; foreach j < k/2 —2.1f j < k/2 — ¢;In(e™") with ¢; :=1/1In(1.5), then
1> 55/, > (1.5) 1 g, = (1,5)0E /Mg — (4 5yleisE g = o1

Whence s; < ¢. Since k/4 < k/2 — ¢;In(¢7"), we have a contradiction because s;, > ¢ and
Sjy S Sk/2-c; In(e )

Suppose r < k/2. Define

__ volg(V \ B;(v))
AL volg(V)

foreach je Z,,.

Since r < k/2, for each j > k/2, we have that s; > 1/2. So, one has 5;,; < 1/2, for each
j = k/2, because volg(V \ B;(v)) = volg(V) — volg(B;(v)).

Suppose that s; > ¢ for each j < k/2. Using (3.1) of Lemma 50, for each j € Z,, such
that r < j < k/2, withe = 1/2and S = V \ B;(v),

volg(N(V \ B;(v))) S 2A}(L)
volg(VN\B;(®)) — 1-A(Lg) + 2¢

>2/3>1/2.

Note that N(V \ B;(v)) = V\ B,_;(v). Hence, one has 5; > 1.55;4,. Let jy > k/2—¢; In(e™").
Hence,
St > Sea(15)0 D = 5 (15)0msl D =5 e,
By assumption, we have that s;/, > €. So, one has 5;,,; > ee™' = 1 > 1/2. Hence, one has
s; < 1/2for j; > k/2—c;In(e™"). We can apply (3.1) of Lemma 50, for j > j;, with ¢ = 1/2
and S = B;(v),
volo(N(B;,(»))) 2A5(L6)
volg(Bi(v)) — 1-ANLe) + 2¢

So, we conclude that s;;; > 1.5s;. Let j, < j — ¢; In(e7"). Hence,

>2/3>1/2.

1> 5, > 5;(1.5)0 1) = 5671,

Whence s; < ¢. Note that j, — ¢;In(¢7") > k/2 — 2¢; In(e7") > k/4, so we have a contradic-
tion because s;, > € and s, < 5, ¢, ().

Now, suppose that 5; < ¢ for j > k/2. [CHUNG GRAHAM, 2016, page 10] claims that
one can apply (3.2) of Lemma 50 for j > k/2. So, take S = V' \ B;(v)

volg(N(V \ B;(v))) S 1 S 1
volg(VN\B;(0)) = (1-ANLe) +26)2 ~ (o +2¢)*

Hence,

5 1

> .
§j+1 - (U + 26‘)2

Let j; = [k/2]. So,
5 1 1

> .
(O'G + 28)2 - (UG + 2€)k

ko kja<i<k
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Note that 5, > 1/ volg(V). So,

1
S > .
B = ola(V)(og + 20)F

[CHUNG GRAHAM, 2016, page 10] claims that, using the inequality

1
N ’
Sh = volg(V)(og + 2¢)k

and the fact that 5, < ¢, one can prove that

log(n) + log(e™)

k>
log(ogh)

Also, [CHUNG GRAHAM, 2016, page 10] claims that, using Lemma 50, for j = k/2 — j' > r

one has that )

S 2> =,
7 volg(V)(og + 2¢€)k+2i

which implies that, for some j < k/2 — log(¢™")/log(cg'), one has 5; > 1/2, and so
r>k/2—1log(e")/log(a™).

Finally, [CHUNG GRAHAM, 2016, page 10] claims that, for some j < r — ¢; log(e™) <
k/2—log(¢™")/log(c™")—c; log(e™"), one has s; < . Since log(e™")/log(c™")+¢; log(e™!) <
k/4, we have a contradiction. O]

3.2.2 Non-Backtracking Walks

Let G = (V,E) be a graph. Recall that a non-backtracking walk is a sequence of vertices
p ={v}_, C V for some t € Z, such thatv;_; € N(v;), for each i € [t — 1], and v;_; # vi44,
for each i € [t — 2]. So if we consider a walk, at each step we want to go from a vertex
to its neighbor without repeating the vertex at the previous step. Denote by P,Sfj}) the
set of non-backtracking walks from u to v with length k. Define the modified transition
probability matrix Py, for each k € {0,...,t — 1}, as

i I ifk=0
P(u,v) := Y w(p) ifk>1, for each u,v € V, (3.10)
perl -
where we define the weight function w(p) of a non-backtracking walk p :={v;}}_, C V
with t > 1 as
~ 1
w(p) := — : (3.11)
deg;(vo) H(degG(vi) - 1)

If the non-backtracking walk p is a sequence with a single vertex, i.e., its length is
equal to 0, we define w(p) := 1. Define E as the set of directed edges obtained from
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the original edge set E, where for each undirected edge uv € E, we create two directed
arcs: (u,v) and (v, u). Formally, E := |J {(u, v), (v, u)} Also, we define the transition

u€E
probability matrix P for a random walk in E as

1

P((u,v), (W ,v"))=[v=u][u= v’]m.
G

The matrix P is indexed by the edges because we want to retain the information of the
vertex of the previous step to avoid backtracking walks.

Note that, from the definition of P, one has that PT1 =1 € RE Additionally, we define
the matrices Tp, Hp € {0,1}"*E

o T o T
Hp = Z e,e,, and Tp := Z €y€,,-

uveE, uvek,

The matrix Tp is the tails matrix, so for each xy € E and for each u € V we have that
(Tp)uxy = [u = x]. Similarly, we have thar Hp, is the head matrix, so for each xy € E and
for each u € V we have that (Hp),r, = [u = y]. Note that

TI1=1€eRE, (3.12)
and )
H'1l=1¢eR": (3.13)
D
Also, note that
Tpl = deg,, (3.14)
and
Hpl = deg,, . (3.15)
One has that for [ > 1,
P, = D' Tp,P'H], (3.16)
which implies that
Pl = D} TpP'HL1 = D' TpP'1 = DG Tpl = D' D¢l = 1. (3.17)
Combining (3.15) and (3.16),
1"DgP, = 1"H! = 17D = deg’. (3.18)

Lemma 53. ([CHUNG GRAHAM, 2016, Lemma 8]) Let G = (V, E) be a connected graph.

Then

(i) for each integer j > 0 i
Pldeg, = deg;

49
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(ii) For each vertex x and any integer j > 0

D> degg(u) Y Ww(p) = degq(x);

uev p EP,S{,)(

(iii) For each vertex u and for any [ > 0

I
ZZ Z W(P)ZeZ(I+151+-~~+f’l)]l:l+1_

j=0 xeV Pepz(/,a)r

Proof. We have that for any vertices u, x € V and for any integer j > 0

(ﬁjT)xu = e,fpjex = Z ‘;’(P)

peP
Let x € V and let j > 0 be an integer. Using (3.13), (3.16), (3.18), and (3.15), one has that
1"DgPje, = 1"D(Dg' TpP'HL Ye, = 1" P/Hl e, = 1"Hl e, = 1" Dge, = deg(x),

whence f’deegG = deg and item (i) is proved. Hence

Z deg,(u) Z w(p) = Z degG(u)eZ.f’jex = deggﬁjex = ILTDGﬁjex = deg,(x),

ueV PEP% uev
and item (ii) is proved. Using (3.17), we have that
ef(I+P ++P)l=G+1)ell=j+1.
Also, we have that
J J . J . . .
O W)=, > elPe=) el Pl =ef(I+P +-+P)L=j+1,
i=0 ueV pep(), i=0 uev i=0

and item (iii) is proved. ]

3.3 Main Result

Let G = (V,E) be a graph. Throughout this section , for each u € V, we consider
the function g, : V — R, defined as

/2

gu(x) = (ef(] + P+ + ﬁ[)(x)) = ( W(p))l/z, (3.19)

pePy)

-

Il
o

J

for each x € V, where ¢ := |diam(G)/4], and where P and w are defined in (3.10) and
(3.11), respectively.
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Lemma 54. ([CHUNG GrRAHAM, 2016, Claim A]) Let G = (V,E) be a connected weak
Ramanujan graph. Set ¢ := [diam(G)/4]. Define the function g, : V — R,, for each
u € V,asin (3.19). Then

Y dego(w) Y g(x)deg (x) = (£+ Dldeggl.

uev xeV

Proof. Note that

D deg(w) Y gh(x)degs(x) = Y. Y. Y D" degg(w)w(p)degy(x),

u€v xeV ueV j=0 xeV PEP’S{))(

by the definition of the function g,. Since (f’j)u,x = Y. w(p) for each u,x € V and for
pePl

each integer j > 0,

YYD dego(ww(p)degs(x) = . Y. degg(u)degs(x) Y, Y, wip)

ueV j=0 xeV pepl(l{))( ueV xeV j=0 pEPI(J{‘J)(
{
=Y ) dego(wdegs(x) Y (P)ux
ueV xeVv j=0
¢
= Z deg’P.de
= gsljdegs.
j=0

Using item (i) of Lemma 53,
4 . 4
Z degédeegG = Z deg/deg, = (£+ 1)|deg|*. O
Jj=0 j=0

Lemma 55. ([CHUNG GRAHAM, 2016, Claim B]) Let G = (V, E) be a connected weak
Ramanujan graph. Set ¢ := |diam(G)/4|. Define the function g, : V — R,, for each
u € V,asin (3.19). Then

D dego(w) D (gu(x) — gu(»))* < (€+1— tog)|degg|*.

ueV xy€E

Proof. By the definition of the family of function g,,

> (gu(x) - () = Z( D wip - ) D, Vv(p)).

xy€E xy€E j=0 pEP({?( Jj=0 Pepl%)/

[CHUNG GRAHAM, 2016, page 14] claims that, by using the inequality

(J5n- [54) <30 -
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one can prove that

> (gu(x) = gu(y)* = Z( IR COENIIDY Vv(p))

xy€E xy€E Jj=0 P€Pz(4{3r Jj=0 PEP%
= = 2 ~
<Y Y (- W)+ Y Y w(p)degsx) — 1.
t<f—1 reV P€P1(4f))‘ xeV pep](f})(
p'=puseP{Y

Note that p’ is equal to p concatenated with s, hence w(p”) = w(p)/deg;(r) — 1, where r
is the last vertex of p. So

55 5 (- $ 8 (020 ) dew-o
t<e-1reV. peplt) t<t-1 x€V pepl) G

p'=pusePsV

Expanding the quadratic term,

Y2 Y (W@ -wp) < Y Y Y wp)(dego(x) — 24dego(x) 1),

1<-11€V pep() 1<t-1x€V pep(t)

p'=pusePyV

Note that

D) wp)dego(x) - 1)< Y Y w(p)degy(x).

xeV Pepi(;?r xeV PGPEZ))(

Hence, using item (ii) of Lemma 53,

Z deg(u) Z Z w(p)deg;(x) = Z deg(x)>. (3.20)

ueV xeV pEP,(B( xeV

Also, using item (ii) of Lemma 53,

> dege(u) D >, D w(p)(dego(x) — 2/degs(x) 1)

ueV 1<t—1 xeV pepl(lf})(
= ), D, deg(x)(degg(x) — 2\/deg(x) — 1)

t<t—1 xeV (321)
= Z Z deg (x)*(1 — 0¢)

1<f—1 xeV

= 01— 05) Y, deg(x)

xeV
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Hence, by (3.21) and (3.20),

Y, degg(w) Y (8u(x) — 8u(y))* < U1 = 06) ), degg(x) + ), degq(x)’

ueVv xy€E x€V xe€V

= (6+1+ tog) ), degg(x)". m

xeV

Lemma 56. ([CHUNG GrAHAM, 2016, Claim C]) Let G = (V, E) be a connected weak
Ramanujan graph. Set ¢ := |diam(G)/4|. Define the function g, : V — R,, for each
u € V,as in (3.19). Then there exist a vertex @ € V such that

<l-og(1-—

8iLoga ( 1 )
giDcgi ~ I+1

Proof. By Lemma 55,

> dego(wglLoga = Y. dego(w) Y (gu(x) — gu(»))* < (£+1— tog)|degg |

ueVv ueV xy€E

Using Lemma 54,

(6+1- tog)|deggl? = (£+1— foc)(l ~ ﬁ) D degg(w) Y gulx) deg(x).

ueV x€V
Note that ) i1 s ,
(l’+1—t’aG)<1— ):( _ "G>:<1_ “G),
t+1 t+1 £+1 t+1
and that
Z deg,(u) Z gu(x)*deg (x) = Z deg,(u)g! D g
ueV xeV ueV
Hence, ,
o
Y, dego(wgiLogu < (1= 2= ) ¥ dego(wg Dogi
t+1
ueV ueV
Which implies that

to
ZdegG(u)<<1— el )guTDGgu—guTLGgu> > 0.
— {+1

So, there must exist a vertex @ such that

tog T T
1-— -Degi;— g:Logy; >0,
( £+1>gu G8 8ilc8

otherwise the sum over all the vertices would be negative. Let & € V such that

fO’G T T
1-—=)giDcgi— giLcgi > 0.
( [+1)gu 68i — 8ilG8
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Hence,
"Doga— glLoga >0
(1 229 )etbess - e
fO'G
( g:Dcgi > g1 L ga
o1 {’GG > guLGgu
f+1 gDGgu
Note that
<1 1 ) <€+1 1 ) 4
o - o - o .
¢ £+1 Ne+1 +1 “r+1
Hence, .
1 2 Logs
1—00(1— >2g§ 68 O
£+ 1 gaDGgg

Theorem 57. ([CHUNG GRAHAM, 2016, Theorem 9]) Let G = (V, E) be a connected graph
such that 5(G) > 2 and G # Ky. Suppose that o¢ < 1/2 and diam(G)(1.5)4™© > 51,
Then

5
AlLe) <1~ UG(l - diam(G)>'

Proof. We may assume that G is weak Ramanujan, otherwise we would have
A(Ls) < 1 — o4 and the result is trivial. Set £ := |diam(G)/4| and define the
function g, : V — Ry, for each u € V, as in (3.19). By Lemma 56, there exists a vertex u

which satifies
Iy 1
8i26bu 1—0'G<1——>.
& chu f+1

Set g := g;. Define
2, §(x) degg(x)

; L _ xeV :gTdegG’
xgv deg,(x) 17 deg,;
and define the function h : V — R" as
h :=g—pl1.
Note that
g’ degg

deg( h = degf;, g — deg,, deg( 1 = degg g — g deg; = 0,

17

whence h L deg. Also, note that

h'Lch = (g— B1) Lo(g — B1) = g'Log — 281 Log + 17 Lg1 = g'Lsg,
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and

h'Deh = (g = p1)"De(g — p1) = g' Dog — 2p1"Dog + f*1" D1l

(g7 deg,)? (g7 deg)? vols(V)
volg(V) volg(V) volg(V)

= g'Dgg — 22 volg(V) + B volg(V) = g'Dgg — p* volg(V).

=g'Dgg -2 + BAvolg(V) = g'Dgg — 2 + B2 volg(V)

Using Lemma 45,

h'Lgh L
MLg) < =2 = £ ~c8 22
AZ(L:G) - hTDGh gTDGg - ﬁz VOIG(V). (3 )

Since supp(g) C Bi(%),

(g7 deg,)* = (Z g(x) degG(x)> = ( > g degG(x)) .

xeV x€B;(?)

Hence, by Cauchy-Schwarz inequality,

< Z g(x)degG(x)> < Z deg,(x) Z g%(x) deg,(x)

x€B;(f) x€B; () x€B;()
=volg(Ba(0) ), g'(x)degs(x)
x€B; ()

= volg(Bi(£)g" Dsg.

So,
2 (gT degc)2 < vols(Bi(0)) Tp
= < Gl
volg(V)? volg(V)?

(3.23)

By combining (3.22) and (3.23),

TL TL
HilLo) < 'D : ﬁiiol (V) : T ; Ggl B0\
- Volg\ Dy
g§'Dcg G g ch(l——volc(v) )
By assumption,
TL 1
g Gg£1_0_6<1__>.
g'Dcg £+1
So,
T 1— 1— L)
ML) < 8 Leg < GG( o
N e R )
g Dag( 1= o volg(V)

By Theorem 52 with ¢ = o5/diam(G),

volo(Be0) _
volg(V) ~—
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Note that diam(G) > (£ + 1)/¢, otherwise G would be the complete graph. Hence,

volg(Ba(¥)) t
—0 2 < og .
VOIG(V) t+1

So,
1 volg(Bi(¢))

+
t+1 volg(V)

One can check that
1 volg(B;(f))

r+1 volg(V) ~— 7

implies that

1- ffc<1 - ﬁ) 1 . volg(By(0)
R <1-o05(1- )+ )
1 — vola(By(0) t+1 volg(V)
volg(V)
Hence,
1-oa(1- %) L vol(Bs
, i) volo(Ba())
A(Lg) € —— rolo(B(0) S1-o6(l— 7 volg(V)
volg(V

1 1 oG
<l—-0ogl———)+e=1—-0s(1-— + — .
o= o= 7) diam(G)

Note that £ > diam(G)/4 — 1. Hence, one has £+ 1 > diam(G)/4. So,

1 o
1 <1-— 1- G
A(Le) < GG( 2+ 1) * diam(G)
4 o6
<1- 1-
= UG( diam(G)> ' diam(G)
5
=1- =) -
UG( diam(G)>



Chapter 4

Conclusion

In this monograph, generalizations of expander graphs and Alon-Boppana-type bounds
for each generalization were studied. The first generalization uses the notion of spectral
sparsifiers of complete graphs, which are strongly related to the ratio of the largest eigen-
value of the Laplacian matrix to the second smallest eigenvalue of the Laplacian matrix.
During the proof of the Alon Boppana bound in chapter 2, random non-backtracking
walks were used to prove the existence of a vertex r that could produce a function f,,
which was then used in a Rayleigh quotient to bound the ratio of the largest eigenvalue of
the Laplacian matrix and the second smallest eigenvalue of the Laplacian matrix.

The second generalization uses the normalized Laplacian matrix. During the proof
of the Alon Boppana bound in chapter 3, the notion of weak Ramanujan graphs was
used along with non backtracking walks. However, in this case, a matrix P, indexed by
the edges of the graph, was employed to store the previous step of the walk, thereby
avoiding backtracks.

The proofs of both Alon-Boppana bounds involve several interesting methods and
concepts that may be useful in other contexts. Furthermore, expander graphs have already
proven to be useful in their own right.
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