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Abstract 

Cellular automata offered a promising modeling 
approach to simulate many complex systems. But 
researchers dificultly design suitable rules for models 
about real phenomena. And there is rich applied 
howledge of differential equations in different fields. 
Researchers may model complex systems according to 
this knowledge fiom diferential equations. This paper 
Jirstly survey correlative concepts about cellular 
automata and differential equations, and introduces 
general approach to design cellular automaton. 
According to tumor growth of Gompertz continuum 
differential equation, this article briefly discusses 
relations between cellular automata and diferential 
equations, and builds a simple cellular automaton 
according to diferential equations. At last this paper 
analyzes the results from mathematical viewpoint. 

1 Introduction 

In recent years, there are many researchers have interest 
on complex system science. Cellular automata (CA) are 
one of effective methods. CA consist of lots of discrete 
particles. From the theoretical viewpoint, Neumann and 
Ulam introduced CA in the late 1940’s. John Horton 
Conway’s “game of life” strongly attracted people’s 
attention in the late 1960’s. Wolfram did lots of work on 
non-linear dynamical theory of CA up to 1980’s, and 
made a good base for physics models. A more 
systematic way in investigating the space of CA rules 
than Wolfram’s phenomenological approach was 
opened by the parametric approach, at first gone by 
Langton[l]. CA are the discrete dynamical system in 
nature. It is composed by lots of simple components 
with local interaction each other. Its discrete character 
show that time, space and properties of the model just 
have only a fmite number of states. CA can produce 
complex emergent behaviour by a lot of simple 
elements with local interactions according to simple 
rules. CA have been successfully used to model tumor 
growth, fluid flow, galaxy formation, biological pattern 
formation, civil development, avalanches, traffic jams, 
parallel computers, image processing, earthquakes and 
many more. In general, researchers regard CA as an 
alternative to differential equations (DE) in modelling 
physics. Due to many historical advantages and upon 
itself, until today, DE still has important status in 
modelling field. As we know, although Neumann had 
introduced the cellular automata theory many years ago, 
but it became important as a method for modelling and 

simulation of complex systems in recent years. The key 
reason is to the implementation of cellular automata on 
massively parallel computers. CA don’t try to describe a 
complex system from a global point of view as it is 
described using DE, but modelling it starting from 
interaction of many individuals[2]. It brings an 
embarrassed problem for DE application. On the one 
hand, we construct continuity DE equations from the 
whole viewpoint; on the other hand, we have to spend 
much effort disable these ‘advanced features’ so that we 
can get our job done in spite of them[3]. Researchers 
require new modelling tools to make up this conflict, 
and CA may be suitable for modem computer further. 
How to take advantage of knowledge of DE and simple 
rules of CA is an important problem people take care in 
next step. Toffoli have discussed the relations between 
CA and DE[4]. And Omohundro studied opposite 
problem, i.e., how to model CA with DE [ 5 ] .  
In this paper, the first is to introduce necessary concepts 
about CA and DE. Then the second is to show the 
transition process from DE to CA. The third is to regard 
Gompertz DE describing tumor growth as an example 
to show the relations between two modelling tools, and 
design the CA model according to first-order DE. At 
last, we discuss statistic feature of CA from 
mathematical viewpoint. 

2 General Approach 

2. 1 Cellular Automata 

CA is ideal mathematical model with discrete time and 
space. It may be described by five variables. 
Definition 1: A standard CA is a quintuple set in 
Eq. 1. 

Cellular Automaton= { Cells, Cell Space; Cell 
State, Neighborhoods, Rules) 

where 
(1) Cells: element of CA, shortening C; 
(2) Cell Space: the set of all cells, i.e., state space of CA, 

and shortening: S = Z d  ; 
(3) Cell Space: state a of cell at arbitrary time, and 

shortening local configuration: d €2, then 
shortening global configuration: c €2 ; 

(4) Neighbors: neighbors of center cell, i.e., definition 
field, shortening: N={nl, n2, ... nk} ; 

(5) Rules: evolving rules of system, i.e., transition 
functions of cell states, shortening: $ #+a. 

The CA is a conceptual simple and effective solver for 

(1) 
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dynamic complex system. From common ’ computer 
simulation viewpoint, a CA model provides an 
execution mechanism that evaluates the temporal 
dynamic behaviour of a dynamic complex system. 
Form a modeler’s viewpoint, a cellular automaton 
model allows the formulation of a dynamic complex 
system application in simple rules. Based on standard 
CA, there are of course many corrective and extended 
computational models for different applied objectives. 
According to simple local transition functions, CA are 
intuitively regarded as a set of interacting elements are 
updated during a discrete time interval. In 1991, 
Weisbusch once defined a. general CA into three 
discrete sets, such as Fig. 1. 

state 

Figure 1 : a general cellular automata 

In, total, there are three sets in a CA model, the set of 
inputs I ,  the set of intemal states S and the set of outputs 
0. Meanwhile there are two mappings the state 
transition function S(i,s) and the output function O(i,s). 
In general, there are many inputs i €I, intemal states 
s ES and outputs o EO, So mapping S(i,s) and O(i,s) 
are functions of the vectors i, s and 0. CA are of course 
reduced further into two discrete sets, by considering 
the intemal state and the output the same. Then the set 
of inputs I ,  outputs 0 and transition function S(i,s) are 
composed into whole model I ’(‘J) ,O . A CA is the 
important tool for studying dynamical complex system. 
The most stunning feature of CA is the simplicity of the 
rules, which produce complicated, or self-organizing, 
behavior. To compare with those ordinary modeling 
approaches of DE, CA have many advantages in 
modeling field, such as discrete time, finite states, 
simple local rules and the inherent parallelism etc. Of 
course it is very difficult to produce quantitative results 
with CA without losing the simplicity and vividness of 
rules. Although the CA theory was introduced many 
years ago, due to the implementation of CA on parallel 
computers, in recent years it becomes significant as an 
approach for modeling and simulating of complex 
systems. 

2.2 The Transition Process 

Most physics models, engineer models and biological 
models base on continuum variables of DE. If people 
want to take advantage of new CA approach, they must 
know the relations between CA and DE. There have 
been about 300 years since DE was applied in 
modelling. Users accumulate rich experiences in 
development process. Whereas, CA are the new-style 
approach suitable for modem computer tool. A DE may 

be approximated by a finite difference equation (FDE). 
This FDE in turn can be regarded as a cellular 
automaton. Then a cellular automaton is regarded as a 
system of extreme discrete DE. The process of 
continuous time into discrete interval corresponds to the 
transition process of DE into a finite difference equation. 
Here is a typical DE, such as Eq.2. 

The first phase is to transform DE into FDE, such as 
Eq.3. 

The next phase is to replace all of the real variables x 
and y by discrete state variables of CA, then limit these 
variables into finite scope. So state variables are 
showed by finite small sets. At last, the operator l+f of 
the FDE becomes the state transition function of CA 
with two inputs x and y. We may design evolving rules 
of CA according to the FDE and other knowledge. CA 
system evolves during a discrete time interval, and 
update the state variable x according to the state 
function of system, by means of the states of local 
neighbors and itself at present time. ’This transition 
process is depicted in Fig.2. 

4 t  + 1) = 4 0  + f ( x ( t ) , y ( t ) )  (3) 

Figure 2: The transition process 

In brief, the viewpoint of modelling physics system of 
CA is different fiom DE’S; the property of variables the 
model depend on is different each other; Computational 
features of system is also different. In other words, a 
CA doesn’t describe a complex system with complex 
equations, but model them with interaction of simple 
components according to simple rules. We may realize a 
complex system can be modelled by high-performance 
CA, and get good computing efficiency. They, CA and 
DE, are two kinds of modelling approaches in different 
space. In fact a CA is the DE in extreme discrete space. 
Wolfram had confirmed there are complex dynamical 
properties in discrete mathematical CA model, and 
absolutely implement relevant algorithms. Based on 
Wolfram’s work, CA have been successfully used to 
model many variety complex systems, such as biology, 
chemistry, mathematics, physics field. 

3 Using a Cellular Automaton to Simulate 
Tumor Growth According to Differential 
Gompertz Equation 
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3. 1 CA of Differential Gompertz Equation 

Now we make a special example in tumor growth for 
showing the transition process in last sect. As we know, 
The Gompertz equation was developed by Gompertz 
for studies on human mortality at 1825. In 1934, Albert 
Casey was the first to use the Gompertz curve to fit 
tumor growth[7]. The Gompertz model is the 
best-known mathematical equation for modeling tumor 
growth most researchers prefer choose it. The 
differential Gompertz equation is given by Eq.4. 

dV A - = V(-)(1 - (1 - B) exp(-Bt)) 
dt B (4) 

[V(t = 0) = v, 
where t is time; V is the tumor volume at time t; VO is 
the initial tumor volume; A and B are arbitrary constants 
parameters of model. The Gompertz model clarifies an 
evident fact that the volume V of the tumor is a function 
of time t. Whose solution is Eq.5. 

whose derivation calculus is Eq.6. 

A 
dt B 

-- dV(t) - A Vo exp(-Bt) ex(- (1 - exp(-Bt))) (6) 

The difference form.of the Gompertz model can be 
derived from Eq.6 by dispersing the differential 
Gompertz model. Assuming To is small enough, then the 
derivative of V(t) with respect to t can be represented 
approximately as Eq. 7. 

(7) dV(t)  V(t  + To) - V(t) -- - 
dt TO 

where t is discrete time, i.e., t = kTo (k = 152,. . .), and TO 
is the discrete timc interval. Accordingly, d:hose FDE is 
Eq. 8. 
V ( ( k  + l)To) = 

V ( k T o ) +  AVOTO exp(-BkT,)exp 

The discrete Gompertz model represented with Eq.8 
underlies the Gompertz CA, to be exactly, the stdchastic 
evolutionary rules of the Gompertz CA. We may 
thereby get where AVc,& is the ideal increment in the 
volume of the tumor simulated by the Gompertz CA at 
discrete time t in Eq.9. 
AVcA(t) = AV(t) = V(t + T,)  - V( t )  

= AVOTO exp(-BkT,)exp (9) 

For one-dimensional CA growth model, AV,,(t) is the 
probable maximum increment in the volume of the 
tumor simulated by the Gompertz CA at discrete time t 
at each discrete interval. It is evident that there are just 
two Gompertz CA cells at every discrete time that 
probably evolve into tumorous Gompertz CA cells from 
normal Gompertz CA cells. Because of r, (the probable 
maximum increment in the average radius of the tumor 
simulated by the Gompertz CA at discrete time t )  is a 

constant, and then AV,,(() is also a constant at any 
discrete time t in Eq. I O .  

8n 
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The evolution of the Gompertz CA cells has some 
uncertainty or randomness, which is characterized and 
quantified by the evolutionary probability. Given any 
i E {-1_,...,-2,-1,0,1,2,...,1,,,} , the evolutionary 
probability p")(t) of CeZl(i) at discrete time t is defined 
in Eq. l l .  

P' (4 = 

where s,(t) is the state of cell. The state of any CA cell is 

not reversible, i.e., it is not able to evolve into zero from 
one but into one from zero. Based on the discrete 
Gompertz model represented with Eq. (8), the 
evolutionary rules of the Gompertz CA is defined in 
Eq.12. 

(10) AVm,(t)=2xY =-Y,' = C O ~ S ~  

s,-~ ( t )  = 0 and s,,, ( t )  = 0 
( t )  = 1 and s,+~ ( t )  = 1 (1 1) 

otherwise F A G l  ( t > l A L ( t )  

s;(t) p y t )  I pT 
s,(t) + 1 otherwise 

s,(t + T,) = 

where PT the probable threshold belonging to [0,1] 
and generated with a uniform probability density 
function. In finite space, we just need simply code the 
initial conditions and evolving rules of CA. When the 
suitable time interval and the radius of cells in the CA 
model are chose, the dynamical properties of CA is in 
agreement with those features in DE. 

3. 2 Analysis Statistics Feature of CA 

In this sect, we will simply analyse the mathematical 
property of CA. In one-dimensional model case, there 
are just two Gompertz CA cells at every discrete time 
that probably evolve into tumorous Gompertz CA cells 
from normal Gompertz CA cells, and their state 
variables are described as si# is random variable. The 
state of CA model is changing with evolutional rules. 
As we know, the relation is linear between the volume 
V and radius Y of solid tumor. So the evolutionary 
probability p"'(t) of Cell(i) at discrete time t can be 
defined in Eq. 13 again. 
where dRcA is the radius increment of CA model; and 
AR,, is the probable'fmaximum radius increment. The 
volume V and radius Y of solid tumor simulated by CA 
model is manifestly fimction of the volume increment 
si#. Thus, they are also random variables, and 
described as F ( f )  and Af(f) . According to the 
mechanism of tumor growth simulated by CA model, 

random process of volume 
V (t) I t = kTo , (k = 0,1,2,. .) ] is a Markov process 

without aftereffect, i.e. the state of random variable 
f ( t )  at next time is to just relate with the sate at present 
time, and be foreign to other states at past time. This 

i" 
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process is described as Eq. 14 
P(V"(t+T,) I v"(t ) ,v"( t -~, ) , . . . ,v"(r , ) ,v"(0))  

= P( F(t  + To)  I F ( t ) )  
(14) 

where t is discrete time, i.e., t = kTo ( k = 1, 2,. . .); TO is 
the discrete time interval; and p(y"(0) =vo)= 1. Based 
on two random processes of the volume and the volume 
increment of CA model, we build FDE as Eq. 15. 

T(t + q) = T(t) + AF( t )  (15) 
The mathematical expectation of random process of 
volume { ~ ( t )  I t = k ~ , , ( k  = 0,1,2,...) } is important 
statistics property of CA model. vcA(t) is the ideal 
volume of tumor growth simulated by CA model at 
discrete time t. We suppose r(t) = v,(t), and then there 

are three probable results of random variable A f ( t ) ,  

i.e., 0, Avm,(t) /2  , AV,, . According to parallel 

evolving rules of CA model, s,_l(t) and s,+,(t) are 
independently random variables each other. Thus, we 
know as Eq.16, Eq.17 and Eq.18, in view of Markov 
process Eq. 14. 

I J ( A T ( ~ )  = 0) = ~[(s,-, ( t )  = 0) n (s,+, ( t )  = o)] 
= P(s,-, (0 = 0). P(s,+l 0)  = 0) 
- - (1 - p S ' - l  ( 1 )  (1) ) .  (1 - P S " I ( I ) ( t ) )  (16) 

Suppose the mathematical expectation E ( @ ( ~ ) ) =  vcr(t) , 
well, now we prove it with the mathematical induction. 
When k = 1, we may know as Eq. 19, according to 

E(?(T,))= E(?(O))+ E(AV"(0)) 
Eq. I6-Eq. 18. 

= VC,4(T,) 
When k = l  , the supposition comes into existence. 
When k I K ,  we suppose the supposition comes into 
existence at arbitrary discrete time = kT, . Then when 

k = K +1, we know as Eq.20. 
E(V"(t + TJ)= E(V"(t))+ E(AV"(f)) 

= VCA(t) + h ! x  P 2 

(20) 
2 

AV,, ( t )  x P (A f ( t  ) = AV,, ( t )  ) 
=V,(t)+AV,(t) 

The supposition comes into existence yet. So 
~ ( ( f ( t ) ) =  vcr(t) comes into existence at arbitrary 

= V C A ( t + T o >  

discrete time t = kT, . At last, CA model is agreement 
with the discrete tumor growth equation in the 
mathematical expectation $(t)) sense. It means the 
difference form of differential Gompertz equation 
describing tumor growth process regiirds CA model as 
its mathematical expectation. In other words, CA model 
based on the finite difference Gompertz equation is 
agreement with the differential Gompertz equation. 

4 Conclusion 

The cellular automaton is the new-style, 
high-performance simulation tool, but designing rules 
always is difficult enough for real physics system. Even 
if in simple modelling case, there will be a great 
number of states in the cellular automata model. For 
example there is in total 22921idso~tate~ in Conway's 
"game of life". It is a very hard work to search suitable 
rules in this universal space. To build cellular automata 
model, researchers should take advantage of existent 
modelling approaches and relevant knowledge to look 
for good rules. Understanding the relation between CA 
and DE is helpful for application in different fields, and 
build a bridge between microscopic rules and 
macroscopic observation. As was shown in this article, 
a DE may be approximated by a FDE. This FDE in turn 
can be regarded as a cellular automaton, because of the 
introduction of finite difference and discrete variables. 
In some cases CA show high performance in modelling, 
in other cases people prefer the high precision of 
quantitative estimation resulting from DE. So we don't 
discuss which one, CA and DE, is better; just study the 
transition process from DE to CA, and show the process 
of designing the CA model for differential Gompertz 
equation simulating tumor growth. We hope researchers 
can bring into play well the modelling power of the CA 
approach in future in variety complex systems. 
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