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Abstract. Experiments were carried out to investigate the possibility
of training cellular automata to to perform processing. Currently, only
binary images are considered, but the space of rule sets is still very large.
Various objective functions were considered, and sequential floating for-
ward search used to select good rule sets for a range of tasks, namely:
noise filtering, thinning, and convex hulls. Several modifications to the
standard CA formulation were made (the B-rule and 2-cycle CAs) which
were found to improve performance.

1 Introduction

Cellular automata (CA) consist of a regular grid of cells, each of which can be in
only one of a finite number of possible states. The state of a cell is determined
by the previous states of a surrounding neighbourhood of cells and is updated
synchronously in discrete time steps. The identical rule contained in each cell
is essentially a finite state machine, usually specified in the form of a rule table
with an entry for every possible neighbourhood configuration of states

Cellular automata are discrete dynamical systems, and they have been found
useful for simulating and studying phenomena such as ordering, turbulence,
chaos, symmetry-breaking, etc, and have had wide application in modelling sys-
tems in areas such as physics, biology, and sociology.

Over the last fifty years a variety of researchers (including well known names
such as John von Neumann [15], Stephen Wolfram [16], and John Conway [7]
have investigated the properties of cellular automata. Particularly in the 1960’s
and 1970’s considerable effort was expended in developing special purpose hard-
ware (e.g. CLIP) alongside developing rules for the application of the CAs to
image analysis tasks [11]. More recently there has been a resurgence in inter-
est in the properties of CAs without focusing on massively parallel hardware
implementations. By the 1990’s CAs could be applied to perform a range of
computer vision tasks, such as: calculating properties of binary regions such as
area, perimeter, convexity [5], gap filling and template matching [4], and noise
filtering and sharpening [8],

One of the advantages of CAs is that, although each cell generally only con-
tains a few simple rules, the combination of a matrix of cells with their local
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interaction leads to more sophisticated emergent global behaviour. That is, al-
though each cell has an extremely limited view of the system (just its immediate
neighbours), localised information is propagated at each time step, enabling more
global characteristics of the overall CA system.

A disadvantage with the CA systems described above is that the rules had
to be carefully and laboriously generated by hand [14]. Not only is this tedious,
but it does not scale well to larger problems. More recently there has been a
start to automating rule generation using evolutionary algorithms. For instance,
Sipper [13] shows results of evolving rules to perform thinning, and gap filling in
isothetic rectangles. Although the tasks were fairly simple, and the results were
only mediocre, his work demonstrates that the approach is feasible.

2 Design and Training of the CA

In the current experiments all input images are binary, and cells have two states
(i.e. they represent white or black). Each cell’s eight-way connected immediate
neighbours are considered (i.e. the Moore neighbourhood). Fixed value boundary
conditions are applied in which transition rules are only applied to non-boundary
cells. The input image is provided as the initial cell values.

2.1 The Rule Set

Working with binary images means that all combinations of neighbour values
gives 28 possible patterns or rules. Taking into account 90◦ rotational symmetry
and bilateral reflection provides about a five-fold decrease in the number of rules,
yielding 51 in total.

The 51 neighbourhood patterns are defined for a central black pixel, and
the same patterns are inverted (i.e. black and white colours are swapped) for
the equivalent rule corresponding to a central white pixel. According to the
application there are several possibilities:

– both of these two central black and white rule sets can be learnt and applied
separately,

– the two rule sets are considered equivalent, and each corresponding rule pair
is either retained or rejected for use together, leading to a smaller search
space of possible rule sets,

– just one of the black and white rule sets is appropriate, the other is ignored
in training and application.

Examples of the latter two approaches will shown in the following sections.

2.2 Training Strategy

Most of the literature on cellular automata studies the effect of applying man-
ually specified transition rules. The inverse problem of determining appropriate
rules to produce a desired effect is hard [6]. In our case there are 2102 or 251
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combinations of rules to be considered! Evolutionary methods appear to be pre-
ferred; for instance to solve the density classification task researchers have used
genetic algorithms [10] and genetic programming [1]. Instead, we currently use a
deterministic approach, which is essentially modified hill-climbing: the sequential
floating forward search (SFFS) [12].

2.3 Objective Functions

An objective function is required to direct the SFFS, and various error measures
have been considered in this paper. The first is root mean square (RMS) error
between the input and target image.

In some applications there will be many more black pixels than white (or
vice versa) and it may be preferable to quantify the errors of the black pix-
els separately from the white. This is done by computing the proportion B of
black target pixels incorrectly coloured in the output image, and likewise W is
computed for white target pixels. The combined error is taken as B + W .

The above measures do not consider the positions of pixels. In an attempt to
incorporate spatial information, the distance at each incorrectly coloured pixel
in the output image to the closest correctly coloured pixel in the target image
is calculated. The final error is the summed distances. The distances can be
determined efficiently using the distance transform of the target image.

A modification of the above is the Hausdorff distance. Rather than summing
the distances only the maximum distance (error) is returned.

2.4 Extensions

There are many possible extensions to the basic CA mechanism described above.
In this paper two modifications were implemented and tested. The first is based
on Yu et al.’s [17] B-rule class of one dimensional CA. Each rule tests the value
of the central pixel of the previous iteration in addition to the usual pixel and
its neighbour’s values at the current iteration. The second variation is to split
up the application of the rules into two interleaved cycles. In the even numbered
iterations one rule set is applied, and in the odd numbered iterations the other
rule set is applied. The two rule sets are learnt using SFFS as before, and are
not restricted to be disjoint.

3 Noise Filtering

The first experiment is on filtering to overcome salt and pepper noise. Figure 1
shows a portion of the large training and test images. Varying amounts of noise
were added, and for each level the CA rules were learnt using the various strate-
gies and evaluation criteria described above. In all instances the rules were run
for 100 iterations. It was found that using the SFFS method with the RMS error
criterion provided the best results, and unless otherwise stated all the results
shown used this setup.
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Table 1. RMS errors of filtered versions of single pixel salt and pepper noise

S & P orig. median CA CA CA
prob. 1 iteration 100 iterations optimal iterations B-rule 2 cycle

0.01 320 1807 2925 1807 (1) 199 147 199

0.1 3247 2027 3065 2027 (1) 1048 1009 1044

0.3 9795 3113 3521 2836 (2) 2268 2272 2263

(a) (b)

Fig. 1. 585 × 475 sections of the 1536 × 1024 original images before noise was added;
(a), (b) training/test images

(a) (b) (c) (d)

Fig. 2. Salt and pepper noise affecting single pixels occurring with a probability of
0.01; (a) unfiltered, (b) 1 iteration of median, (c) CA, (d) B-rule CA

For comparison, results of filtering with a 3 × 3 median filter are provided.
While there are more sophisticated filters in the literature [3] this still provides a
useful benchmark. Moreover, the optimal number of iterations of the median was
determined for the test image, giving a favourable bias to the median results.

At low noise levels (p = 0.01) the CA learns to use a single rule1 ( ) to
remove isolated pixels. As the RMS values show (table 1) this is considerably
better than median filtering which in these conditions has its noise reduction
overshadowed by the loss of detail, see figure 2. The B-rule CA produces even
better results than the basic CA. 50 rules were learnt, although this is probably

1 The rules are shown with a black central pixel – which is flipped after application of
the rule. The neighbourhood pattern of eight white and/or black (displayed as gray)
pixels which must be matched is shown. The rule set is shown (left to right) in the
order that the rules were added to the set by the SFFS process.
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far from a minimal set since most of then have little effect on the evaluation
function during training. As before, the first rule is , applied when the central
pixel is a different colour in the previous iteration. In contrast, most of the
remaining rules are applied when the central pixel is the same colour in the
previous iteration. The difference in the outputs of the basic and B-rule CAs is
most apparent on the finely patterned background to Lincoln (figure 3), which

(a) (b) (c) (d)

Fig. 3. An enlarged portion from the original and processed images with 0.01 proba-
bility salt and pepper noise. (a) original, (b) original with added noise, (c) filtered with
CA, (d) filtered with CA B-rule

(a) (b) (c) (d)

Fig. 4. Salt and pepper noise affecting single pixels occurring with a probability of 0.1;
(a) unfiltered, (b) 1 iteration of median, (c) CA, (d) B-rule CA

(a) (b) (c) (d)

Fig. 5. Salt and pepper noise affecting single pixels occurring with a probability of 0.3;
(a) unfiltered, (b) 2 iterations of median, (c) CA, (d) B-rule CA
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Table 2. RMS errors of filtered versions of 3 × 3 pixel salt and pepper noise

S & P orig. 3 × 3 median 5 × 5 median CA CA CA
prob. 1 iter. 100 iter. opt. iter. 1 iter. 100 iter. opt. iter. B-rule 2 cycle

0.01 2819 3704 3465 3145 (3) 3923 6287 3923 (1) 2011 1425 1988

0.1 19886 18250 13583 13583 (39) 15621 9041 8930 (25) 8530 8090 8622

(a) (b) (c) (d) (e)

Fig. 6. Salt and pepper noise affecting 3 × 3 blocks occurring with a probability of
0.01; (a) unfiltered, (b) 3 iterations of median, (c) 1 iteration of 5× 5 median, (d) CA,
(e) B-rule CA

has been preserved while the noise on the face has still been removed. The 2-cycle
CA produces identical results to the basic CA.

At greater noise levels the CA continues to perform consistently better than
the median filter (figures 4 & 5). At p = 0.1 the learnt CA rule set is
and required 31 iterations for convergence. At p = 0.3 the learnt CA rule set is

and required 21 iterations for convergence. Again the 2-cycle
CA produced little improvement over the basic CA, while the B-rule CA does at
p = 0.1 but not p = 0.3. The B-rule rule sets are reasonably compact, and the
one for p = 0.1 is shown: the rule set applied when the central pixel is a different
colour in the previous iteration is while for the same coloured central
pixel at the previous iteration the rule set is .

Increasing levels of noise obviously requires more filtering to restore the im-
age. It is interesting to note that not only have more rules been selected as the

(a) (b) (c) (d) (e)

Fig. 7. An enlarged portion from the original and processed images with 0.01 proba-
bility salt and pepper noise. (a) original, (b) original with added noise, (c) filtered with
3 iterations of median filter, (d) filtered with CA, (e) filtered with CA B-rule
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(a) (e) (g) (i) (i)

Fig. 8. Salt and pepper noise affecting 3×3 blocks occurring with a probability of 0.1;
(a) unfiltered, (b) 39 iterations of median, (c) 25 iterations of 5 × 5 median, (d) CA,
(e) B-rule CA

noise level increases, but also that, for the basic CA, they are strictly supersets
of each other.

The second experiment makes the noise filtering more challenging by setting
3×3 blocks, rather than individual pixels, to black or white. However, the CA still
operates on a 3×3 neighbourhood. Given the larger structure of the noise larger
(5×5) median filters were used. However, at low noise levels (p = 0.01) the 3×3
median gave a lower RMS than the 5 × 5 although the later was better at high
noise levels (p = 0.1). Nevertheless, the basic CA outperformed both (table 2).
At p = 0.01 (figure 6) the learnt rule set was and required 42
iterations for convergence. The B-rule CA further improved the result, and this
can most clearly be seen in the fragment of text shown in figure 7. At p = 0.1
(figure 8) the learnt rule set was
and even after 100 iterations the CA had not converged. The 2-cycle CA did not
show any consistent improvement over the basic CA.

4 Thinning

Training data was generated in two ways. First, some one pixel wide curves were
taken as the target output, and were dilated by varying amounts to provide
the pre-thinned input. In addition, some binary images were thinned by the
thinning algorithm by Zhang and Suen [18]. Both sets of data were combined to
form a composite training input and output image pair. Contrary to the image
processing tasks in the previous sections the RMS criterion did not produce the
best results, and instead the summed proportions of black pixel errors and white
pixel errors was used. Surprisingly the summed distance and Hausdorff distance
error measures gave very poor results. It had seemed likely that they would be
more appropriate for this task given the sparse nature of skeletons which would
lead to high error estimates for even small mislocations if spatial information
were not incorporated. However, it was noted that they did not lead the SFFS
procedure to a good solution. Both of them produced rule sets with higher errors
than the rule set learnt using RMS, even according to their own measures.

The test image and target obtained by Zhang and Suen’s thinning algorithm
are shown in figures 9a&b. The basic CA does a reasonable job (figure 9c), and
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(c) (d) (e) (f)

Fig. 9. Image thinning; (a) test input, (b) test image thinned using Zhang and Suen’s
algorithm, (c) test image thinned with CA, (d) test image thinned with 2 cycle CA

the rule set is . The last rule has little effect, only chang-
ing three pixels in the image. Some differences with respect to Zhang and Suen’s
output can be seen. In the wide black regions horizontal rather than diagonal
skeletons are extracted, although it is not obvious which is more correct. Also,
a more significant problem is that some lines were fragmented. This is not sur-
prising since there are limitations when using parallel algorithms for thinning,
as summarised by Lam et al. [9]. They state that to ensure connectedness either
the neighbourhood needs to be larger than 3× 3. Alternatively, 3× 3 neighbour-
hoods can be used, but each iteration of application of the rules is divided into
a series of subcycles in which different rules are applied.

This suggests that the two cycle CA should perform better. The rule set learnt
for the first cycle is and the second cycle rule set is a
subset of the first: . Again the last and least important rule from the
first cycle has little effect (only changing 6 pixels) and so the basic CA and the
first cycle of the B-rule have effectively the same rule set. As figure 9d shows, the
output is a closer match to Zhang and Suen’s, as the previously vertical skeleton
segments are now diagonal, but connectivity is not improved.

5 Convex Hulls

The next experiment tackles finding the convex hulls of all regions in the image.
If the regions are white then rules need only be applied at black pixels since white
pixels should not be inverted. As for the thinning task, the summed proportions
of black pixel errors and white pixel errors was used. After training the learnt
rule set was applied to a separate test image (figure 10a). Starting with a simple
approximation as the output target, a four-sided hull, i.e. the axis aligned min-
imum bounding rectangle (MBR), the CA is able to produce the correct result
as shown in figure 10b. The rule set learnt is .

Setting as target the digitised true convex hull (see figure 10c) the CA learns
to generate an eight-sided approximation to the convex hull (figure 10d) using
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(a) (b) (c) (d) (e)

Fig. 10. Results of learning rules for the convex hull. (a) test input; (b) CA result with
MBR as target overlaid on input; (c) target convex hull output; (d) CA result with (c)
as target overlaid on input; (e) 2 cycle CA result with (c) as target overlaid on input

the rule set . Interestingly, in comparison to the eight-sided
output the only difference to the rules for the four-sided output is the removal of
the single rule . The limitations of the output convex hull are to be expected
given the limitations of the current CA. Borgefors and Sanniti di Baja [2] describe
parallel algorithms for approximating the convex hull of a pattern. Their 3 ×
3 neighbourhood algorithm produces similar results to figure 10d. To produce
better results they had to use larger neighbourhoods, and more complicated
rules.

Therefore, extending the basic CAs capability by applying the 2-cycle version
should enable the quality of the convex hull to be improved. As figure 10e shows
the result is no longer convex although is is a closer match to the target in terms
of its RMS error. This highlights the importance of the evaluation function. In
this instance simply counting pixels is not sufficient, and a penalty function that
avoids non-convex solutions would be preferable, although computationally more
demanding.

6 Conclusions

The initial experiments with CAs are encouraging. It was shown that it is possi-
ble to learn good rule sets to perform common image processing tasks. Moreover,
the modifications to the standard CA formulation (the B-rule and 2-cycle CAs)
were found to improve performance. In particular, for filtering salt and pepper
noise, the CA performed better than standard median filtering.

To further improve performance there are several areas to investigate. The
first is alternative neighbourhood definitions (e.g. larger neighbourhoods, circu-
lar and other shaped neighbourhoods, different connectivity). Second, although
several objective functions were evaluated, there may be better ones available
– particularly if they are tuned to the specific image processing task. Third,
can additional constraints be included to prune the search space, improving effi-
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ciency and possibly effectiveness? Fourth, alternative training strategies to SFFS
should be considered, such as evolutionary programming.

Most CAs use identical rules for each cell. An extension would be to use
non-uniform CA, in which different rules could be applied at different locations,
and possibly also at different time steps depending on local conditions.
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