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ABSTRACT 
Sampling error detracts from the usefulness of estimates 

of mean hourly marginal cost produced by Monte Carlo chro- 
nological production cost models. Variance reduction tech- 
niques commonly used in other Monte Carlo simulation appli- 
cations can significantly improve the precision of estimates. 
Two such techniques, antithetic sampling and stratified sam- 
pling, are tested for a fictitious system. The number of iter- 
ations needed to reach a precision target falls sgnificantly. 
The estimated savings in total computing time could exceed 
50 percent for a full one-year forecast. Both techniques are 
easily implemented and should be used in Monte Carlo pro- 
duction costing efforts to estimate hourly marginal cost. 
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I INTRODUCTION 
A. Modeling Problem 

At any point in time, each resource on an electric utility 
system has a capacity level that is available for dispatch as 
necessary. The total available capacity and the roster of 
generating resources available, then, represent just one of 
many possible states, or combinations of resources, of the 
generation system. The operator has to cope only with the 
short-run changes in this state that arise as individual re- 
sources become available or go on outage. The objective in 
production cost modeling is to simulate the cost-minimizing 
operation of the system through time, and to estimate sys- 
tem values of interest to the modeler, without attempting to 
forecast the actual state of the system that will obtain at 
every point in time. That is, the modeler cannot reasonably 
attempt to forecast the available capacities of every res- 
ource on the system through the study period, while, on the 
other hand, he or she needs to take proper account of the 
randomness of generator failures so that the simulation pro- 
duces valid estimates of the system parameters of interest. 
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B. Monte Carlo lmprecisbn 

system state as a vector of resource availabilities. 
Monte Carlo chronological (MCC) models represent the 

[at, a2, . . . , a11 

where, 3 is the available capacity of unit i 
If unit i has a forced outage rate, that is, if it is not perfectly 
reliable, ai is a random variable. A simulation for some time 
period for one sample system state is called an iteration. 
The system state vector is established for each iteration by 
randomly drawing an availability from the outage distribution 
of each unreliable resource. This outage distribution typical- 
ly has just two spikes, the probability of the unit being avail- 
able at the unit’s capacity, and the probability of it being on 
outage at zero capacity. After establishing a sample system 
state, MCC models attempt to accurately simulate the oper- 
ation of the system through time as if this state obtained, ap- 
plying whatever rules of unit commitment and dispatch the 
modeler chooses to impose. The use of sampling introduces 
imprecision, or sampling variance, into all the key outputs 
from a MCC model. Variance reduction techniques improve 
the precision of all such outputs, although the improvement 
will vary depending on the influence of rare events in the es- 
timation. Because outputs are derived by averaging the out- 
comes of several simulations, those parameters that are 
heavily influenced by rare events, such as reliability indices, 
will be the most imprecise and will benefit the most from var- 
iance reduction. Using a control variable variance reduction 
technique, Oliveira, Pereira, and Cunha demonstrate a dram- 
atic improvement in the precision of estimates of loss of load 
probability and expected power not served.[l3] System hour- 
ly marginal cost, the variable of interest here, is influenced 
by rare events, although less so than reliability indices. 
Therefore, variance reduction will be less effective in margin- 
al cost estimation than in reliability index estimation. 

C. Antithetic and Stratified Sampling 
Antithetic sampling and stratified sampling are two 

common methods that improve the precision of Monte Carlo 
estimates. This paper reports the results of a test of the ef- 
fectiveness of these two techniques for variance reduction 
in the estimation of system hourly marginal cost using MCC 
production costing of a fictitious system.[lO] 

II MARGINAL COST 
A. Role of Marginal Cost Estimation 

The marginal cost mncept has considerable economic 
importance. The literature on marginal cost pricing of elec- 
tricity is well summarized by Crew and Kleindorfer.[2,4] 
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Considerable interest in improving marginal cost estimation 
has resulted from its increasing role in regulatofy hear- 
ings.[8,9,14,15,20,21] This paper furthers the goal of pro- 
viding better computing tools for utilities and other partic- 
ipants in rate proceedings. 

B. Marginal Cost Distributions 
Forecasting models traditionally treat hours as discrete 

steps, and input and output values are considered fixed for 
the hour. True system marginal cost in any hour depends on 
the true system state and must be a random variable, here 
called M. The true system marginal cost in any hour has a 
discrete distribution with a spike of probability at the variable 
operating cost of each resource that could be marginal in the 
hour. These distributions tend to be severely skewed. The 
MCC production costing literature is moving towards greater 
efforts to estimate these entire distributions, rather than just 
their means.[6,11,16,19] 

C. LDC Models 
Mazumdar and Yin, and Feng, Sutanto. and Manhire show 

that an estimate of the true distribution of hourly marginal 
cost falls directly from the load duration curve (LDC) 
approach.(7,11] Estimates from LDC models, however, are 
compromised by the existence in the real system of any oper- 
ating constraints that are not respected by the model, and by 
the aggregation of loads.[l,5] 

D. Monte Carlo Chronological Models 
In current MCC models, unplanned outages are assumed 

to be random in a probabilistic sense. Since the availability 
of a unit is a random variable, so is total system available 
capacity. If complex real-time operating constraints of a 
system are respected, marginal cost does not depend on the 
system state through any functional relationship that could 
be tractable analytically. Hourly marginal cost estimates, 
then, can be derived only by detailed simulations in which 
operating constraints, such as ramp rates, are embodied in 
heuristic unit commitment rules. Since the MCC production 
costing framework can better incorporate real-time operating 
constraints, it promises more accurate estimates of the true 
system hourly marginal cost distribution. This work addres- 
ses the statistical precision of estimates and does not di- 
rectly address the accuracy of MCC models; nonetheless, 
by improving precision, the potential benefits of MCC models 
can be captured at lower computing cost. 

MCC simulation of a random sampling of system states 
leads to an estimate of the true distribution of hourly marginal 
cost, in the form of a sample distribution. But the sample 
distribution is, in reality, an estimate of a population distri- 
bution formed by the marginal costs corresponding to all 
system states possible in the model’s representation of the 
system. The empirical distribution obtained from multiple 
iterations eventually converges to the population marginal 
cost distribution that would emerge from the systematic 
simulation of all system states. 

To summarize, the three levels of hourly marginal cost 
distribution means and variances in the MCC framework are: 
1. the true system parameters, here )r and u2, which 

modeling is attempting, ultimately, to estimate; 
2. the population parameters, p and 02, which are actually 

calculable, but not at reasonable computing cost; and 
3. the sample parameters, m and s2, which are actually 

taken from the simulations of a random sample of modal 
system states. 

MCC models output the mean of their sample hourly 
marginal cost distribution, m, and this is taken by the mod- 
eler as a point estimate of the true system mean marginal 
cost for the hour, p. What the models are actually reporting 

consists of a sample estimate, m, of the population mean, p. 
How good p is as an estimate of p is the accuracy problem, 

and how good m is as an estimate of p is the precision 
problem. 

Because sampling is used, results have a sampling var- 
iance; that is, m is also a random variable and has a distri- 
bution. The variance of m, here called VAR[m] to clearly dis- 
tinguish it from the variance of the marginal cost distribution, 
measures the imprecision of m. If the system states are ran- 
domly picked, statistical theory holds that m forms an un- 
biased estimatorof p, and VAR[m] is simply the ratio of the 
population variance, 02, and the sample size, n.[17] 

E[mI = CL eq.1 

VAR[m] = 0% eq.2 

The imprecision of the estimator m, measured by VAR[m], 
compromises the usefulness of m as an estimator of p, and, 

ultimately, as an estimator of p. Applying variance reduction 
techniques can improve the statistical precision of hourly 
mean marginal cost estimates. The improvement results 
from replacing the simple mean estimator, m, with alternative 
estimators that have sample variances lower than VAR[m] 
for the same number of iterations, n. 

111 CONVERGENCE CRITERION 
A minimum acceptable level of precision can be speci- 

fied before the simulation begins, the model being instructed 
to continue iterating until the desired target is reached. The 
unbiased sample mean marginal cost, m, must be converging 
towards the population mean, p, so such specifications are 
usually called convergence criteria. The Central Limit Theor- 
em holds that m must be normally distributed, asymptot- 
ically, i.e. as n +.[ 1 7  Therefore, convergence criteria can 
be expressed as confidence intervals based on the normal 
distribution. A convergence criterion might, for example, be 
that the width of the 95 percent confidence interval for p 
must be less than a constant. 

eq.3 1 . 9 6 . x  
I m < 2  

where, s is the sample standard deviation 
n is the number of iterations completed 
w is a constant specified by the modeler. 

Alternative convergence criteria that reflect the modeler’s 
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mat,2. Because mat is algebraically identical to the sum of n/2 
independent pairs of observations, the Central Limit Theorem 
still applies and mat is asymptotically normally distributed. 
The expectation and variance follow. 

Umad = CL eq.6 

specific precision goals can easily be devised. While confi- 
dence intervals are convenient, they should be interpreted 
with care because the marginal costs of the various hours of 
a simulation period are not strictly statistically independent. 

Since no established standard for setting w exists, any 
criterion adopted for this study must be arbitrary. The rule 
applied is that 90 percent of the hours in a weekly simulation 
period must have standard errors less than 0.1 cents/kWh, 
which is equivalent to a rule, as above, with w = 0.392. To 
implement this criterion, the hours of the week are sorted in 
ascending order of standard error. The target is met when, 
for the 1 5 2 d  ordered hour, s l f i  0.1. If the large sample 
properties of the Central Limit Theorem hold, there is a 95 per- 
cent chance m is within k0.2 centskWh of p. 

IV ANTITHETIC SAMPLING 
The technique of antithetic sampling exploits the basic 

probabilistic result that the variance of the sum of two ran- 
dom variables, X and Y, depends upon their covariance. 

VAR[X + Y] = VAR[X] + VAR[YI + 2COV[X,v] eq.4 

If the two random variables are negatively correlated, then 
the last term on the right hand side is negative. Thus, the 
variance of the sum will be less than the sum of the var- 
iances, that is, less than the variance under independence. 
This result suggests finding two negatively correlated 
estimators, mat,, and mat,2, thus ensuring a negative covar- 
iance term. The average of the two can provide a new es- 
t im ato r. 

eq.5 

In production cost modeling, antithetic sampling can be 
implemented as follows. The system state vector for the first 
iteration is established using a vector of random numbers 
from a random number generator. This system state vector 
forms an input to the MCC simulation which yields an hourly 
marginal cost estimate m , , as output. Then the antithesis of 
the random number vector is used to generate the second 
system state. Since random numbers are, by convention, 
between zero and one, the antithesis of a random number U, 

is l-ui. This antithetic system state is used in the second 
iteration, which yields marginal cost estimate m2, as output. 
This process is repeated until a total of n system states have 
been simulated, where n is an even number. The n/2 hourly 
marginal cost estimates, mll,m12, . . . ,m,,"/2, are used to 
calculate the mean marginal cost estimate mat,l, while the 
antithetically sampled states, m2,,m22, . . . .m2,n/2, yield the 
antithetic marginal cost estimate mat.p. 

The marginal cost random variable M1 and its estimator 
ma,,, correspond to the randomly sampled states, while the 
marginal cost random variable M2 and its estimator mat,2 
correspond to the antithetically sampled states. The random 
variables M, and M2 are identically distributed but not 
independent. The antithetic estimator mat is unbiased, being 
a linear combination of the unbiased estimators mat,, and 

The expression for VAR[maJ in eq. 7 differs from that for 
VAR[m] in eq.2 only by the appearance of the covariance 
term. 

For antithetic sampling to work, the negative correlation 
between the antithetic number 1 -ui and the random number U, 

must be reflected in the output marginal costs. That is, the 
outputs must be weakly monotone with respect to the 
inputs.[l8] The system state inputs are clearly weakly 
monotone functions of the random numbers. However, the 
marginal costs must also be weakly monotone functions of 
the system states to guarantee that the random variables M 
and M2 are negatively correlated. Intuitively, the monoto- 
nicrty between system states and marginal costs should hold 
because less capacity available should lead to higher costs. 
Indeed, under unconstrained conditions in which resources 
are dispatched in strict economic order, which immediately 
ensures global cost minimization, the monotonicity holds. In 
this circumstance, marginal cost is weakly monotone with 
respect to every element in the system state vector, which is 
a sufficient condition for no variance increase to result from 
negatively correlated inputs. In actual MCC simulations, 
however, real-time unit commitment constraints often pre- 
clude strict economic dispatch. Although intuitively unlikely, 
therefore, it is not inconceivable that a forced outage could 
lead to lower marginal cost than would exist if this resource 
were available. Consider the example of two almost identical 
iterations. They differ only in that, in the second iteration, 
the unavailability of a resource necessitates the continuous 
operation of a more expensive, but less rampable, unit. If 
minimum load conditions arise because of the diminished 
load-following ability of the system, although a unit has been 
lost in the second iteration, most models would report a zero 
marginal cost, breaking the monotonicity assumption. In 
other words, in marginal cost estimation, antithetic sampling 
cannot ensure a reduction in variance under all conditions. 

Antithetic sampling has three highly desirable properties. 
First, it is easily implemented. Second, it may be used in con- 
junction with other variance reduction techniques because it 
changes only the random drawing procedure, not the actual 
estimators mat,, and mat,2. These can further be replaced by 
other estimators. In this study, for example, stratified sam- 
pling estimators replace them. Third, and most importantly, 
antithetic sampling requires no additional prior knowledge of 
the output random variables beyond monotonicity. For these 
reasons, antithetic sampling shows great promise as a var- 
iance reduction technique for MCC modeling, and, indeed, it 
has already been both proposed and tested.[3] 
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V STRATIFIED SAMPLING 
Stratified sampling is a familiar technique in many sta- 

tistical applications. Each observation is classified accord- 
ing to a disjoint subset of the sample space, called a 
stratum, from which the sample was drawn. The probability 
of each stratum occurring, Pk, must form a discrete random 
variable taking on a limited number of values, so the sample 
space must be readily and clearly divisible into a manageable 
number of strata. A subset of observations is taken from 
each stratum. 

where, 

nt+ n2+. . + n ~  = n 

Q are the sample sizes from K strata 
n is the total sample size. 

eq.8 

A conditional population distribution resides in each stratum, 
and its mean, pk, and variance, (J2k, can be computed.[l8] 
The stratified estimator, m,,, is the weighted average of the 
sample means, mss,k, of all the strata. 

eq.9 

Being the weighted sum of independent asymptotically 
normally distributed random variables, m,, is asymptotically 
normal, and being a linear combination of unbiased 
estimators, mss is unbiased. Its variance appears below. 

E[m,,l = 1 eq.10 

eq.11 

The stratified estimator tends to have smaller variance 
than the raw estimator because the observations within a 
stratum are more similar to each other than to observations 
in other strata. In other words, the within strata variance is 
smaller than the between strata variance.[l E] 

In practice, the choice of nk can be tricky and signi- 
ficantly affects the improvement in precision. Assuming the 
overall sample size, n, is fixed, two values, the stratum 
weight, pk, and the stratum variance, 02k, determine the most 
effective choice of nk. In MCC applications, the obvious 
strata are the outage states of large unreliable resources 
because they substantially influence marginal costs. A full 
set of Pk is readily available, therefore, in the form of the 
forced outage rates. As in most applications, however, little 
or nothing is known ex ante about (J2k. In this study, three 
methods of choosing nk are considered. 

A. Optimal Stratified Sampling 
This first case, ssl.  forms an unattainable upper bound 

on the variance reduction because it is assumed that the 
stratum variance, 0 2 k ,  is known. In this case, the value of nk 
that yields the greatest reduction in variance is as 
follows.[l8] 

j = 1 ,2 , .  . K eq.12 

B. Proportional Stratified Sampling 

nk are selected as follows. 
The second case, ss2, uses proportional sampling. The 

nk = n .p  eq.13 

Applying this common approach in production costing is 
particularly straightforward because values of all likely Pk are 
known. 

C. Equal Stratifid Sampling 
In the equal sampling approach, ss3, no information 

about either the pk or the (J2k is required. The sample is 
simply divided equally among the strata as follows. 

n k = ”  K ’  V k  eq.14  

VI TEST PROCEDURE 
A. CalECo 

A fictitious California utility, the California Electric Com- 
pany, or CalECo, has been developed.[lO] About a third of 
CalECo’s energy comes from its own hydro capacity. This is 
an energy limited resource primarily available in the spring. 
In addition, it runs a two-unit 2.0 GW nuclear station, which is 
the resource used for stratification. Below the nuclear unit in 
the merit order are a 1.0 GW out-of-state mal  station, and an 
array of gas, oil, and combustion turbine units. CalECo also 
purchases 1 .O GW of power under fixed-price contracts from 
qualifying facilities under the terms of the Public Utilities 
Regulatory Policies Act. This is a must run resource as far 
as the CalECo dispatch is concerned. CalECo also pur- 
chases power under two economy purchase agreements. In 
all, CalECo has 20 resources, of which 5 have no forced 
outage rate. That is, CalECo has a population of system 
states with 215 members, each of which has an associated 
marginal cost for each hour. The only operating constraints 
imposed are ramp rates, and the spinning reserve require- 
ment is a fixed 5 percent of load. Hypothetical CalECo loads 
for the 1990 test year are based on actual historic loads for a 
California utility scaled to an arbitrary peak of 12.5 GW. 
Because the number of iterations required is so large as to 
preclude the possibility of simulating an entire year, 4 
example weeks, one from each quarter, are selected. 

B. Test Steps 

1. Only two kinds of minor code changes are needed in the 
MCC model. First, the random draws that determine the 
availability of each unit are all saved, so that the state of any 
unit on any iteration is known with certainty. Second, key 
outputs are recorded at an iteration-by-iteration level. The 
MCC model serves only as a source of data sets. The model 
used is POWRSYM PLUS (P+), developed by Energy and 
Control Consultants (ECC) of San Jose, CA. Running Cal- 
ECo simulations with P+ on an engineering workstation rated 
at 10 MIPS and 1 Mflop requires approximately 10 CPU sec- 
onds per iteration-week. 
2. FORTRAN programs read the large data base files and 
generate summary statistics. 
3. The summary statistics are analyzed in a standard sta- 

The analysis has three distinct steps. 
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tion cases should be compared to the base case that 
appears in section A of the table. The bold number, 26 per- 
cent in the antithetic only case, shows the percent reduction 
achieved in the total number of iterations. This number pro- 
vides the best guide here of what computational savings 
might be achieved in actual practice. 

tistical package, which leads to estimates of the variance 
reduction potential of each technique. Unlike the above 
steps, this involves only modest computing power and is 
done on a Macintosh 11. 

C. Antithetic Sampling (at) 
On the first iteration, a vector of random numbers is 

used, whereas on the second, the vector of antitheses is 
used. The output consists of pairs of iterations; the first one 
is identical to the base case while the second one corres- 
ponds to the antithetic vector. 

D. Stratified Sampling (ss 1-3) 
Approximating the results of a fully implemented strati- 

fication poses a more difficult challenge than does antithetic 
sampling. The strata used consist of the outage states of 
the two nuclear units. Separate data sets containing sim- 
ulations with both units available, with one available and one 
not, and with both on outage, are needed. Analyzing these 
separate output files replicates the effect of implementing 
stratification because it is identical to subdividing the sample 
space within a simulation. 

E. Joint (as 1-3) 
Estimating the precision improvement possible using 

both techniques simultaneously requires repeating the stra- 
tified sampling procedure, but with a separate data set com- 
piled using antithetic sampling. 

F. 

1. 

2. 
3. 

4. 

5. 
6. 

7. 
8. 

9. 

Data Base 
These are the actual P+ runs conducted: 
a year-long 100-iteration pilot run that serves as the 
basis for the selection of example weeks 
a 1000-iteration base case for the four example weeks 
a 1000-iteration antithetic base case that differs from 2. 
only in that antithetic sampling is used 
a 1000-iteration stratified sampling run with both nuclear 
units available, using a random number stream inde- 
pendent of all other cases except 5. 
a run identical to 4. but using antithetic sampling 
a 1000-iteration stratified sampling case with one nuclear 
unit available using a random number stream independent 
of all other cases except 7. 
a run identical to 6. but using antithetic sampling 
a 1000-iteration stratified sampling case with neither nu- 
clear unit available, using a random number stream inde- 
pendent of all other cases except 9. 
a run identical to 8. but using antithetic samplinq 

The data sets created by these nine runs consist of large 
random samples of estimated hourly marginal costs, weekly 
production costs, random number streams, and the outage 
states of all CalECo resources. 

VI1 RESULTS 
The figure shows the marginal cost results from the base 

simulation run. Week 22 has the lowest marginal costs, but 
they are erratic, while week 8 has fairly flat costs. Weeks 36 
and 47, during which resources are more typical of thermal 
based systems, exhibited the clear daily cycle that one 
might expect. The rows of the table below show the results 
for each of the four example weeks. All the variance reduc- 

CalECo Hourly Marginal Cost 

3 s 
5 
2 

1 

0 I 
0 2 4  

source: P+ ouput 

week 
8 

22 
36 
47 

wt 

ss 1 
dss1 its Yo 
0.19 4 21 
0.37 14 48 
0.80 65 23 
0.38 15 33 
wt 104 49 

as 1 
dasl its % 
0.18 4 25 
0.36 14 49 
0.67 46 36 
0.34 12 40 
wt 82 60 

4 8  7 2  9 6  1 2 0  1 4 4  168  
hour 

A. Antithetic Only 
base at 

d its d, its Yo 

0.24 6 0.22 6 8 
0.71 51 0.63 40 11 

0.84 72 19 1.04 109 
0.57 33 0.52 28 9 

150 2 6  203 

B. Stratified Only 
ss2 ss3 

dssz its '30 dss3 its O/o 

0.22 5 8 0.19 4 21 
0.42 18 41 0.54 30 24 
0.81 67 22 0.93 88 11 
0.47 22 17 0.44 20 23 

117 42 148 27 

C. Joint  
as2 as3 

das2 its Yo daa its Yo 
0.21 6 12 0.18 4 25 
0.42 18 41 0.54 30 24 
0.67 46 36 0.77 60 26 
0.40 18 30 0.39 16 32 

92 55 116 43 

The d values are measurements, akin to the standard 
deviation, which permit useful comparisons of the variance 
reduction achieved in the various test cases. The d values 
provide estimates of the imprecision of the estimators at any 
sample size according to the following formula. 

e q .  1 5  



674 

The hat signifies that this is an estimate. The similarity of 
eq.15 to eq.2 should be obvious and, in the base case, d = s. 
Derivation of the formulas for the d value for the other cases 
can be found elsewhere.[lO] The % column contains the per- 
centage reduction in the d value that the variance reduction 
technique achieves. The estimated number of iterations 
required to reach the convergence target is also shown. The 
wt row sums the number of iterations for the 4 weeks except 
that numbers of iterations of less than 10 are counted as 10. 
The motivation for this sum is that in practice a minimum 
number of iterations should always be conducted to avoid 
small sample problems. Since the four weeks are carefully 
chosen representatives of each quarter, 13 times the sum is 
a rough estimate of the total number of iteration-weeks need- 
ed for a full-year simulation. 

A. Anrithetic Only 
The results clearly show the surprising effectiveness of 

antithetic sampling. In this test, the results alleviate 
concerns that monotonicity might not hold. Two aspects of 
the results particularly impress. First, a substantial compu- 
tational savings results from an easily implemented pro- 
cedure. Second, the benefits of antithetic sampling are fo- 
cused in the weeks of highest variance, exactly what is 
needed to deliver high overall computational savings. 

B. Stratificatbn Only 
The results rank as expected, with ssl delivering the 

largest results. However, proportional sampling, ss2, follows 
closely. Given the convenience of this technique in the pro- 
duction costing context, this result should encourage the 
modeler. Equal sampling, ss3, proves less effective than 
the other two approaches, and by a significant margin. Over- 
all, it is actually barely more effective than antithetic sam- 
pling, and requires more prior knowledge of the system. An 
interesting result, however, is that ss3 delivers more var- 
iance reduction in the lower variance weeks, particularly 
week 8. Clearly, too much of the power to reduce variance is 
spent in times when the net effect is minimal, or zero, as far 
as the weighted sum is concerned. 

C. Joint 
The joint results are better than either technique used 

independently but a diminishing returns effect exists. The 
as1 result, a 60 percent reduction in total iterations, serves 
as the best achievable result for the test case. Remarkably, 
however, the feasible technique as2 delivers a reduction of 
55 percent. 

VI11 CONCLUSION 
The major caveat to the results concerns their speci- 

ficity. CalECo is not intended to be a typical utility. It re- 
presents a contrived test case that mirrors California 
conditions, while being of a manageable size. Other utilities 
have quite different marginal cost distributions, and the res- 
ults of variance reduction in the simulation of their systems 
would be quite different. Similarly, the choice of production 
'cost model affects the variance of marginal cost because of 
inaccuracy. A different unit commitment logic may deliver a 
different marginal cost distribution, that is, a different p and 
o. The effectiveness of variance reduction, then, will differ 

for each system and each model. Notice, in particular, that 
P+ follows in the tradition of models that simulate weeks 
individually, as independent periods. Within this context, the 
measure of computing requirements as iteration-weeks 
makes sense. But the total computational savings possible 
depends heavily on the length of the simulation period. If, for 
example, a model simulated the whole year in an indivisible 
manner, then the number of iterations must ensure that the 
desired level of precision is achieved for all hours. Finally, 
note again the arbitrariness of the convergence criterion, 
which determines all the resutts regarding estimated num- 
bers of iterations. 

While many approaches to variance reduction in chrono- 
logical production cost models are possible, antithetic 
sampling and, to a lesser extent, stratified sampling are two 
relatively easy techniques to implement. Furthermore, they 
can be used simultaneously, and they effectively improve 
the precision of hourly marginal cost estimates for the 
CalECo test utility. While their effectiveness cannot be 
guaranteed under all circumstances, considerable compu- 
tational savings can be captured with little effort. Further, the 
danger that the use of these techniques in simulation will 
actually be disadvantageous is small. 

The joint procedure that incorporates antithetic sampling 
and proportional stratification emerges as the method of 
choice. For the CalECo test case, this approach not only 
cuts estimated total iterations in half, it performs almost as 
well as the optimal joint estimator. 
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