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Abstract - This paper presents a combined Monte Carlo 
and stratified-sampling method to better estimate CO2 
emissions for generation systems. This design seeks to enhance 
the precision of CO2 emission pollutants in generation system 
estimation, while reducing computation time. The techniques 
included are optimum stratified sampling and proportional 
estimate. The optimum stratification rule aims to remove any 
judgmental input and to render the stratification process 
entirely mechanistic. The estimator, provided by proportional 
statistics of the sample, can avoid identification of the 
re ression model and thus save computation time. Hence, the 
efkctiveness on precision improvement is demonstrated in this 
paper. 
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1. INTRODUCTION 

Simulating the CO2 emission pollutants of generation 
system is a very important part of power system generation 
planning [1-4] and greenhouse effect study [5]. Currently, there 
are two approaches to probabilistic CO2 emission pollutants of 
generation system simulation: analytical and Monte Carlo 
simulations. The basic element of analytical approach [6-14] is 
a convolution process which entails the probability distribution 
of load and the generating outage capacity of random 
variables. The load probability is represented by a load 
duration curve which is attained by simply sorting and 
ordering the hourly load magnitude. This approach is efficient 
in computing, and well adopted by utilities. However, the load 
sorting process destroys its chronological information, and 
therefore incurs difficulties in simulating the chronological 
constraints often imposed in generation scheduling, thus 
resulting in an underestimation of CO2 emission pollutants of 
generation system. 

In the Monte Carlo simulation 15-19], a large population 
of trial system states are specified 6 y random draws designed 
to capture the outage characteristics of the system generating 
units. Each trial system state represents one possible 
realization of hourly up/down status in the syiitem generating 
units throughout the simulation period. The CO2 emission 
pollutants of generation system is estimated by applying the 
unit commitnient, including economic dispatch, to the sample 
of state population. In this approach, the chronology of load 
and power generation is preserved. 
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However, sampling introduces imprecision in the estimation 
of CO2 emission pollutants of generation system. To enhance 
the precision or to reduce the estimation variance, a Monte 
Carlo CO2 emission pollutants of generation system simulation 
algorithm which combines variance reduction technique is 
proposed. 

In section 2, a simulation process for the Monte Carlo CO2 
emission pollutants! of generation system is described. Our 
proposed stratified sampling, and the proportional estimator 
are presented in sections 3 thrGugh 4. Computer 
implementation and numerical tests of our algorithm on the 
evaluation of CO2 emission pollutants of generation system is 
discussed in sections 5 through 6. 

2. J'ROBLEM DESCRIPTION 

2.1 Generatim Units' Outage Combinations 

Assume the siimulation period is comprised of total M 
weeks. In the uptime/downtime approach, any specified state 
is formulated into the following matrix form (with dimension 
of JxT and sjt as the matrix elements) : 

= [sjtl (1) 
where J total number of generating units 

total number of hours (T = Mx168) 
generating units (j=l, 2, ..., J) 
chronological hours ( t=l ,  2, ..., T) 
up (sjt=l) or down (sjt=O) status of unit j at 
hour t . 

T 
j 
t 
Sjt 

Let S denote a population of N system states specified above 
by random draws: 

2.2 Monte Carlo Simulation for CO? Emission Pollutants 
Estimation 

For each specified state, one can apply the energy output of 
unit commitment to calculate the CO2 emission pollutants 
value. Let z1, 22, ..., zN, denote the CO2 pollutants emission 
values to evaluate on sl, s2, ..., sN, respectively, then let . 

z = {zl, z2, ..., ZN}. (3) 

For an extremely large population size N, it is reasonable to 

assume that the population mean (z) is close to the true CO2 
emission pollutants value. As stated in section 1, for 
computational efficiency, only n (with n << N) sample states 
within S are evaluated by unit commitment in the Monte 

Carlo simulation to estimate z. To help sampling and 
estimation, the deterministic load duration curve type of 
simulator is applied. This simulator is a simple a d  common 
CO2 emission pollutants of generation system technique and 
will be hereafter called the LDC technique [17]. Let yl, y2, 
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. ,y, be the CO, values to 

Y = {Yl, YZ, -7 YJ. (4) 

On basis of Y ,  the desired n states are sampled from S, and 
evaluated by unit commitment for their z values. With these 

z's and Y known, z is then estimated. 

CO2 emission 

105XMT 

variance of Tss , den 

Frequency cum@ 
f 

variance of estimate yss is found to be 

Our proposed stratifi 

(1) determination of str 
steps: 

3. OPTIMUM STRATIFICATION 

3.1 Basic ConceDt 

Following the stratified sampling theory [20], population S 
is divided into L nonoverlapping subpopulations, called strata. 
Then L simple random samples are drawn independently from 
the individual strata. To explain, let N,, N,, ...) N, denote the 
L stratum sizes, and n,, n2, ..., n ) their corresponding sample 
sizes Thus N and n defined in section 2 can be expressed as 

L 

N = N, + N, + ... + N , and L 
n = n , + n , +  ...+ n .  L (5) 

Now, let ysk denote the sample mean for a simple random 

sample drawn out of stra k=l ,  2, ..., L, and let 7% 

denote the corresponding estimate of population mean (y)  by 
stratified sampling. Then, calculate yss: 

T, - 
- NkYsk L 

N 
yss = k=1= c WkY,, 

k = l  

Assume S is a heterogeneous population. Through stratification 
of S into strata, each being homogeneous internally, the 

Remarks : (a> Uni t  of measurement : Metric ton(MT) 
(b) coZ released due to  fuel consumption : 

0.3825 MT/Gcal fo r  coal and 

(2) construction of the L strata. 
Both will be presented below. 

(11 anstruetion 
To construct 

arrange variable 
the best stratum 
V(Y,,) [20-24]. Amon 

cum3$ rule is to fo 

Following the cum 

stratum boundaries 

stratum. That is, 

Reference [ZO] sugges 

the lowest VDR, defin 

In our Sgorithm, V 

42 .7.6 5 1 0 x 106) / 202 (see 

Table 2 Stratum 
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1 
2 
3 
4 

. 3.3 Stratification After Selection of the SamDle 

3.3.1 Sample Size (n) 

yields V(yst) [20]: 
Given a total sample size n, the proportional allocation 

5.8396-5.9004 3/20 5.8625157 7.58088 1 
5.9004-5.9917 6/20 5.9603780 6.31492 2 
5.991743.0525 7/20 6.0320344 8.69884 2 
6.0525-6.1438 4/20 6.1140358 7.65989 1 

(9) 

2 

where Wk=Nk/N as defined in Eq. (6). In our algorithm, Eq. 
(9) is applied to the selection of sample size n at a 
pre-desi nated estimation precision (i.e. V(yst) denoted by V 
in Eq. (?Ij), shown as follows: 

13.48301 5.366 

L 
n,k=l WkfJg. (10) 
v 

3.3.2 Optimum Sampling Allocation (I&) 
In stratification sampling, the values of the sample sizes 

(nk) in the respective strata are chosen by the sampler. 
Proportional allocation, as used by Monte Carlo production 
simulation is adopted by our algorithm to decide the 
population sample size (n) at a pre-specified estimation 

the proportional allocation [19] is 

4 

5 

With nk known for k=l, 2, e ,  L, a random sample is drawn 
from each individual stratum to complete the sampling 
process. Take the example problem in Table 1 for 
demonstration. With the V yst) pre-specified at 1 .268~10~ 

and Uk of Table 3 into Eq. (10). Then sample sizes (nk) are 
calculated from Eq. ( l l ) ,  which yield nl=l, n2=2, n3=2, and 
n4=l(see Table 4). 

MT2, a sample size n=6 is ca r culated by substituting both N k  

3.646050 1 .235  

1.093280 3.335 

4. PROPOSED ESTIMATION BY PROPORTIONAL 

In the proportional estimate method, an auxiliary variate Y 
correlated with Z is obtained for each unit in the sample. 
Following the proportional estimate, the estimate of the mean 
of population Z, denoted by gst [20], is expressed by 

ESTIMATE 

6 

Table 3 Select number of strata by stratified 
population variances of the example problem 

1.056000 I 1.035 

3 ] 4.504320 I 2.993 
I I 

nki where wk=nk/n is the weight of stratum k, zsk=(l/nk). C Z k i  

problem as the proceeding sections, the estimated stratum 
means and population mean are tabulated in Table 5. 

is the estimate of stratum mean of stratum k. For the i= same 1 

5. STEP-BY-STEP DESCRIPTION OF PROPOSED 
ALGORITHM 

To save computer storage, the simulation is implemented 
on a weekly basis. Computational procedures for the M weekly 
simulations are generally the same, and each consists of five 
stages of computation: (1) Monte Carlo simulation for 
simulating generating units' outage combinations; 
approximate generation scheduling; (3) stratified Sam ling; 
unit commitment including economic dispatch; 6) mean 
estimation. 

5.1-Monte Carlo Siimulation 

Because the simulation period under evaluation usually 
leads the present time by months or even by years, the random 
number generator (RNG) used to decide units' up/down status 
at hour t= l  will be different from those at t=2, 3, ..., T. The 
former is evaluated by the forced outage rate (FOR), the latter 
is by the mlean-time-to-failure (MTTF) and the 
mean-time-to-repair (MTTR). The following descriptions 
indicate the Markov process mentioned in subsection 2.2 for 
the state formulation of the first week ( denoted by m=l ). 

Step 1: Let j = l  ( namely, the first unit ) 
Step 2 Let t= l  ( namely, the first hour ) 
Step 3: Generate a random number R1€ [0,1] by the uniformly 

distributed random number generator. If R1<FOR, 
set si+=O (i.e., under repair); otherwise, si+=l (i.e., 

J "  JY 

being available). 

otherwise, set pi=MTTRi. 
Step 4 If s. =1, set parameter p. = MTTF. for unit j; 

Jt J J 

Step 5: Generate a ranbom nudber At by the exponentially 

At = (-l/p.).ln(R2) 
distributed RNG with its mean at pj 

where R$[O,l] is a uniformly distributed random 
number. 

J 

Table 4 Sample s ize  allocation of the example problem 

Table 5 Population mean estimation of the example 
mob 1 ern 

105x11~) 
5.95674 5.95674 1/6 
6.03839 6.03952 2/6 
6.04064 I 6.0994 
i.156991 6.16934 I 2/6 
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Step 6: Round off At into an integer number. Let t=t+At and 
change the status of S.  

Jt 
Step 7: If t<168, go to step 4; otherwise, record t and s. as 

J t  
t(record) and s(record), 

Jt 
Step 8: Let j=j+l  (referring to the next unit). If j<J, go to step 

State formulation for the remaining weeks (m=2, 3, ... , M) 
follows the same procedure as above except steps 2, 3, and 7 
revised as below: 
Step 2: Let t=t(record). 
Step 3: Let s -  =s. 
Step 7 If t < 168xm, go to step 4; otherwise, record t and s. 

Jt 

One iteration of the above procedure can generate one trial 
state, and N iterations provide the needed N trial states. 
Because only t ' s  and s.  ' S  in steps 2, 3, and 6 are recorded, 
computer memory required for storage of the N units' up/down 
tables is limited very much. 

5.2 

2; otherwise, stop. 

(record) 
Jt Jt ' 

as t(record) and s(record), 
Jt 

Jt 

For each of the N states, the LDC scheduler, schedules the 
generation of systenl generating units. This scheduler loads the 
system generating units in accordance with the priority list of 
the units' average incremental. costs. For each hour t ,  subtract 
the maximum generation of units j's with s. =1 by the 
merit-order until the total system load is met. This 
subtraction process is repeated for all the N state combinations 
to attain N generation schedules. 

With the generation known, the CO2 emission pollutants 
emission for each of N state combinations can be found. After 
application of this approximation procedure to CO2 emission 
pollutants of generation system are calculated, a population 
consisting of N trial cases is obtained. 

5.3 Stratified Random SamDling 

The following stratified random sampling is applied to the 
CO2 emission pollutants of generation system population 
evaluated by the approximate LDC scheduler 

Step 1: Arrange y's into ascending order 
Step 2: Let the number of strata L=2. 

Jt 

Step 3: Construct strata by the cum3Jf  rule presented in 
section 3.2 

Table 6 Mean and variance of production CO, emissions 
evaluated by load duration curve and unit  
commitment on s t a t e  formulation by MTTF/MTTR 
process 

State  formulation by 
evaluation iteams CO2 

I I  I I 

(1) * population s i ze  3 N=100 
(2) Actual CO, emissions for the week of Ju ly  

1987:6.124x105MT (251 

Step 
Step 

step 

step 
step 

4 Find variance de 

8: Draw a simple random sample in e 

5.4 

For each of the n 
obtained in section 5.3, ea 
generation system by the CO 

inchding economic dispatch and yield 
pollutants values (z's). 

5.5 

Find the estimate of popu 

6.1 
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4 . 0 0 7 3 ~ 1 0 5  MWh2. Referring to Table 11, the computing time 
required by Monte Carlo is mainly spent on the unit 
commitment process applied to n sample states rather than on 
the formulation of populations S and Y (ref. Table 7 . 
[25] (see Table 6) was used as the reference to compare the 
accuracy of our proposed Monte Carlo simulation algorithm. 
Figure 2 depicts the errors of CO2 emissions evaluated by our 
proposed Monte Carlo simulation algorithm. The simulation 
error of LDC approach is resulted mainly from its 
representation of load and generation scheduling model. The 
degree of error b system dependent. In contrast, the unit 
commitment and the availability state population with an 
extremely large size can simulate the actual system operation. 
But in the practical implementation, sampling introduces 
simulation error and the degree of error is sample dependent. 
Referring to section 3, our proposed Monte Carlo simulation 
algorithm allows the re-specification of simulation precision 
by setting V of Eq.( l O f  

Table 9 Select number of s t r a t a  by stratifid 
nomlaition variances 

In the study, the actual values for the week o 2 July 1987 

lStrutum Sample 
code 9 k size ' 

(nki> 

1 1 
2 1 
3 1 
4 2 

5 2 

6 3 

6.2 CO? Emission Pollutants Evaluation 

The algorithm in section 5 was applied to estimate the COz 
emission pollutants of the evaluation period. The computation 
results are summarized below: 

Stage 1: Monte Carlo simulation of units' outage combinations 
(with population size N=100). 

Stage 2: Approximate generation scheduling - The selected 
100 CO2 emission pollutants values are summarized 
in Table 6. 

Stage 3: Stratified sampling - The step-by-step results are 
given in Tables 7 - 10. As shown, the selected 
number of strata (L) is 6 ,  and sample size (n) is 10. 

Stage 4 Conventional unit commitment including economic 
dispatch. 

Stage 5: Population mean estimation - Refer to Table 10, 
the estimated mean (Est) is 6.115807~105 MT. Take 
the population mean (6.122217~105 MT) in Table 11 
as reference, the estimation error is 0.105%. 

With stratified sampling, the estimation variance decreases 
from the original population variance ( 6 . 9 7 4 1 ~ 1 0 7  MT2 ) to 

Stratum 
code ' k 

Table 7 The  cum^ rule applied to the CO, emissions 

Interval 9 Variance( 213) Frequence 
105xMT ' ( I O ~ ~ M T ~ )  ' Nk 

popu 1 a t  ion 

I CO, emission cumG I 

(b) released due to  fuel consumption: 
0.3825 MT/Gcal for  coal and 
0.3149 MT/Gcal for o i l  

( c )  CPU time:O.Olsec ( on SUN 4/60 Workstation) 

[Number of 1 Variance 1 Variance decreasing ra te  I 

I 2 16.50180 1 4.590896 
I .I 

4.103506 I 3 I 4.02139 
I 

2.077300 I 7 1 
Table 10 Sample s ize  allocation i n  CO2 emissions 

estimation 

0.37500 

Table 11 Mean estimation for CO2 emissions pc 

1 0 5 ~ ~ ~ 1 ~ )  

6.12581 
6.16714 6.16832 2/6 
6.16949 
6.19291 6.21706 3/6 
6.22247 
6.23580 

Workstat ion 

ulation 

Seconds* 
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7. CONCLUSIONS 

This paper presents an algorithm to estimate the CO2 
emission pollutants of generation system during a pre-specified 
future period. Numerical test results of the algorithm in 
Taipower system were examined. Specific conclusions arising 
from this work can be summarized as follows: 

(1) By Monte Carlo simulation, all the possible outage 
combinations of system generating units are well 
simulated. By the conventional unit commitment, 
including economic dispatch, the system's operating 
mechanism is well accounted. 

(2) With the stratified sampling and population mem 
estimation techniques embedded, the estimation variance 
is reduced at a reasonably acceptable computation cost. 
Most importantly, the proposed stratification rule 
removes the judgmental input and renders the 
stratification process entirely mechanistic. 

(3) The LDC approach over-estimates the production of 
baseload units, and under-estimates the peak-load 

6.12 

6.10 
2; 6.08 

.r( 0 6.06 

.? 6.04 

6.02 

U 6.00 

0 i 

s 
(3 

m 

f 

0" 

1 3 4 
2weeks 

@ CO2 emissions 

% Error in comparison with reference values 

Fig.2 Results and error of CO, emissions evaluated 
by our proposed approach i n  July, 1997(using 
actual values1253 as reference). 

Monte Carlo is pr 
Application of our 

being conducted by the a 

8. 

Repart presented 
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