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Optimal Numerical Integration on a Sphere 


1. Introduction and Summary. This paper discusses the approximation of in- 
tegrals over the surface of a sphere by formulas of the following form. 

Little has been published on this subject or on its extension to the solid sphere. 
The literature is surveyed briefly in Section 7. Most of our space is devoted to 
formulas invariant with respect to a finite group of rotations of the sphere. We 
study such formulas by means of the group characters, as does Sobolev [12, 131. 

The criterion by which integration formulas are usually judged is that of 
ef i iency .  It is defined like this. Consider a system of functions over the domain of 
integration such as polynomials in Euclidean space or surface harmonics on the 
sphere. They have properties of completeness and they are ordered in a natural way. 
Suppose that the integration formula is exact for the first L independent functions 
and therefore for all linear combinations of them. The efficiency E is the ratio of L 
to the number of arbitrary constants in the formula. The latter is a fixed multiple 
(one more than the dimensionality of the domain of integration) of the number N 
of points a t  which the integrand is evaluated. 

A linear combination of surface harmonics (of degree not more than p) will be 
called a spherical polynomial (of degree p). If we choose to embed the surface of 
the sphere in Euclidean space of three dimensions, we find that the trace left on 
the surface by an ordinary polynomial in x,y and x is a spherical polynomial of the 
same degree. For the surface of the sphere a pth degree integration formula (exact 
for spherical polynomials of degree p) has 

and 

Efficiency is a useful yardstick and the main part of this paper is written with 
reference to it. It is not beyond criticism as we shall see later. One suspects that 
efficiency is used for higher-dimensional regions, largely because it is the natural 
way of expressing the classical results of mechanical quadrature for the line segment. 
It is these results that we first attempt to generalize to the surface of the sphere. 
Generalization from the line segment to the circumference of the unit circle is 
achieved by replacing the classical arguments [14, Theorem 3.4.11by their analogues 
for a complex variable and using the theory of polynomials orthogonal on the unit 
circle [14, chapter XI]. The classical arguments do not extend to the sphere but we 
may continue as follows. 
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111 the case of unit eight functioii the points of the integration forrnula for the 
ciicumference are evenly spaced. I n  other wortls, the set of points is invariant under 
a finite group of rotations of the unit circle. I11 the case of the sphere we are con- 
sidering only unit weight function so that it is natural to  study sets of points in- 
\-arialit under one of the finite groups of rotations associated with the regular solids. 
Sections 2-6 are concerned with this. 

Let g be the order of the group. Then we shall see that, apart from any intrinsic 
merit, the use of an invariant formula reduces by a factor of approximately g the 
~tumber of independent surface harmonics for ~~11ich the formula rnust be made 
exact. This enables 11s to find some efficient formulas. They are listed in Table 2. 
The most spectacular is accurate to the 14th degree, that is exact for 233 iilde-
perldcnt functions, and uses only 73 points so that E > 1. 

I n  the case of the circle it is possible to determine an infinite seclueilce of formulas 
of increasing accuracy and ~vitli E near unity. As far as the writer is aware, no one 
has shown that this can be done for the sphere or any other two-diniensioiial region; 
although E = $ has been obtained for the sphere by cartesian product methods (see 
Section 7) .  There is no evidence yet that E = 1 is a fruitful target in more than 
onc dimension unless we are content ~ ~ i t h  limited accuracy. Nor is E = 1 a strict 
upper bound to what may be achieved, as s h o ~ ~ n  by the 14th degree formula cited 
above. I t  may be better to  seek to generalize the classical results of mechanical 
quadrature ~vithout reference to the efficiency E. 

I11 a sequel to this paper it will be sho~vii how restatenient in probabilistic 
terms leads to a concrete problem of rnininiizatioil with respect to disposition of tlie 
sample points (cf. Sectioil 7.1 ). This method applies also to  the circle and yields 
the classical result. 

If approximate integration is to be programmed the nurnber of sarnple poiiits 
may be unimportant. To meet this case a sequential procedure based solely on 
symnietry is outlined in Sectioii 7.2. 

The subject of this paper is essentially the n-ide dispersal of points on tlie surface 
of a sphere. I t  is rele~aiit  to iiiterpolation and to certain problenls of mathematical 
statistics, as well as to ilunlerical integration. 

2. Existence of Formulas. Properties of group represeiitatioiis assumed here 
are given by Heiiie [4, Appendix C.]. 

The three finite groups as ,S 4 ,  ajof rotatioils of the sphere are associated re- 
spectively with the regular tetrahedron, octahedron-cube and icosalledron-dodeca- 
liedroii. Let C: be a realization of one of these groups, of order g, and let w(R) be 
the set of n positions on the sphere that an arbitrary point R takes up under the 
different rotations of G. I n  general n = g, but if R coincides with a vertex of the 
regular solid, the centroid of a face (vertex of the dual solid) or the mid-point of 
an  edge, then n < g. 

Now there is induced on the set w(R) an n-dimensional periiiutation represen- 
tation (Dlof G. This may be split into its cornpollent irreducible unitary represen- 
tations IDx]; that is, the carrier space i2 of dimension n, is a direct Tum 

of subspaces ilk ,each invariant under G. The dinleilsioii of i4 is that of j Dkjmulti-
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plied by the number of tinles the latter appears in {Dl ,  which inay be zero. The 
Rx are mz~tually o~.thogonal, because perinutations are unitary transformations. Sow 
e, the vector ~ ~ i t h  ecjllal components, is invariant under all permutatioi~s and SO 

belongs to Q1 , the subspace subject to the identical representation (Dl ) .  
TTe turn next, for reasons given in the Introduction, to the surface harmonics 

of fixed degree 7%. These form a (2m + 1)-dimensional function-space V invariant 
under all rotatioils of the sphere, and therefore under those of G. So a (2172 + 1)-
dimensional representation (A},, of G is obtained, and V is a direct sun1 

where the subspaces T'x conlprise functioils which transform under G according t o  
the illequivaleilt representations {Dh). Consider now the natural projectioii of V 
illto Q 

whereby every fuiiction of V is identified with the n-vector of its values at the 
points of w(R). Because G operates both on V and on f.) the11 further 

and the functions of N vanish a t  every point of w(R); while the functioiis of JI 
are orthogonal, over w(R), to Ql and thus orthogoilal to e, that is their average over 
f . ) (R )is zero. The functions of V1 are constant over w(R). 

The point of this deconiposition is that the true value of the integral of any 
surface harinonic of degree m is zero, except when m = 0. YOTV Vl does not depend 
on the particular invariant set w(R) under consideration so that an  integration 
formula ~ ~ h i c h  assigns equal weights to  points in the same invariant set is accurate 
for the whole of V if it is accurate for V1 . This statenlent is trivial when m = 0 
for then V = V1 .From now on we shall distinguish different values of m by writing 
v""' for V and V1'"' for lil . 

The dimension of ~7~'""  is the numbel- of tiines the identical represeiitatioi~ ap-
pears in (A}, . Let this be dl'"", for m = 0, 1, 2, . . . . Then an iiltegration formula 
accurate to the pth degree may be found using just 

invariant sets. I11 fact allnost any C, sets will do, by the following 
THEOREM.The set of points R1 ,Rz , . . . ,Ri, on the sphere is said to be a p-adequate 

h-tuple ij there exists a pth degree integration formula, invariant under G, which uses 
only w(R,); j = 1, . . . , h. Then the set of Cp-tuples which are not p-adequate has 
measure zero (with respect to the natural Cp-fold product measure). 
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Proof. Let a basis of linearly independent functions of 

bc f,(O, +) ; i = I, . . . , C, . Then the C,-tuple (R,) ;j = 1, . . . , C, is certainly 
p-adequate if the C, X C, matrix whose (i,j)th element is the sum of the values of 
f,(O, +) a t  the points of w(R,) is non-singular. Now T ' ~ ' ~ )contains only functions 
that are consta~lt over any w(R), so that the determinant that must not vanish is 
simply 

The proof is by iilductio11: we assume that R1, . . . ,Ri, have been chosen, where 
1 5 h < C, , so that the first h columns of A are linearly independent and show 
that almost any choice of RI,+~will do. Let B, (i = 1, . . . ,C,) be constants, not all 
zero, such that 

If R is any point on the sphere such that the column f . (R) is linearly dependent 
on the first h columns f .  (Rj),j = 1, .. . ,h, then 

Now this finite sum of surface harmonics is not identically zero because the f i ( .  ) 
are the linearly independent functions of U p .Hence the set on which it vanishes 
has measure zero. Thus for almost any Rh+l the first ( h  + 1) columns of A are 
linearly independent. I t  follows by induction that det. A is non-zero p.p.  

3. Calculation of C,. Before this theorem can be put to work the numbers 
C,  must be calculated. 

The deco~nposition of (A), ,  is a straightforward matter involving the characters 
of the (Dh]and of {A), itself: see for example Heine [4, page 1191. Consider a ro- 
tation of the sphere through an angle $ about any axis: with this as axis of co-
ordinates the tesseral harmonics 

are eigenfunctions of the rotation, xv-it11 eigenvalues eis". So the charact,er of (A) ,  is 

2 e.si -- sin ( m + $)$ 
S-nl sin $$ 

Hence 

dl(qn) = !2 sin ( ~ n+ $ 
g k=1 sin $$k 

where the kth group elenlent is a rotation through an angle $k. The results are 
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quite sinlple because 
6"") dl("" - 1 ( 2 m  + :~j

B 

is periodic in m,  with period 3g. 

A11 ingenious alternative for ( I )  is obtained by Sobolev [12]:let y l  , qz , qs be 
the orders of the subgroups of G which give rise respectively to the vertices, faces 
and edges of the regular solid. Then he finds, for 0 5 m 5 3y - 1, 

dl'"' = 0 ,  2m + 1 5 g l / q ;  

= 1, 27n + 1 > g c l / q j  
i 

where suminatioil extends only to those qi which are not factors of m. Extension to 
larger values of 7n follows of course from the periodicity of 6'"". 

TABLE1 

Data on Groups 


(34 S 4  a 6i 
No. of 1 3 4  4 1 6 8 3 6 1 1 5  20 12 12 

elements 
h 0 r / 2 ~ / 3 j  -2r /3  01 r / 2  &2r /3  r r 0 r 21113 2r /5  4r/S

I I I I 

Tetrahedral Group Q.4 

m: 0 1 2 3 4 5  
dl'"': 1 0 0 1 1 0 

Octahedral Group S 4  

m :  0 1 2 3 4 5 6 7 8 9 1 0 1 1  
& ' " ' : 1 0 0 0 1 0 1 0 1 1  1 0 

12) = dl'"' + 1 

Icosahedral Group a5 
m = 0 ,  1, . . . , 14: dl'"' = 1 for m = 0,  6 ,  10, 

= 0 otherwise 

= 1 otherwise 
d1'"+30' = dl(") + 1 



The , q ,  and dl'"" for all three groups appear in Table 1. The Cp may be 
found simply by counting the dl'"'. However even this exertion inay be avoided by 
the following observation. 
Let 

The11 ~ ( p )  = 0 when (p  + 1) is a multiple of $g and 5 < ~ ( p )< $ otherwise. 
This statement, once proved, determines the integer Cp exactly. Direct calculation, 

using Table I, shows that the statement is true when 0 5 p 5 +g - 1. We show 
that it is valid without restriction on p by proving that ~ ( p )  is periodic, wit11 period 
+g. 

I t  is convenient to define C-1 = 0, so that E(-  1) = 0 and 

Sow this is independent of p, because 6'"' has period $9, so 

by inspection of Table 1. I-Ience ~ ( p )  is periodic, with period $y. 

4. Choice of Invariant Sets. In  Figure 1 the spherical triangle XX'X" matches 
a face of the tetrahedron, octahedron or icosahedron. Y is the centroid and Z is 
the mid-point of XX'. The invariant sets w(R) are in one-one correspondence with 
the points of the closure of triangle XYZ together with the interior of triangle 
S'YZ. Each has g points, if me exclude the three special sets w (X) ,  o(Y) and w(Z) 
which together have only (g + 2) points. So by (2) an arbitrary C,-tuple provides 
an invariant integration formula with ( p  + 1)l + p ( p )  points. I t  is p-adequate 
(almost certainly), i.e. it is accurate for 

linearly independent functions. 
Sow compare what happens if the integration formula is based on ( p  + 1)" 

ar.bitrary points, quite unrelated to any rotation group. Take GO to be the (un- 
interesting) group with just one element. Section 1 still applies and we have in this 
trivial case dl'"' = (2m + 1) and C, = ( p  + I ) ~ .So the ( p  + 1)' arbitrary points 
form a C,-tuple of "invariant sets" for GO and the Theorem s h o ~ ~ s  that it is allnost 
certainly p-adequate. Hence the use of formulas invariant under (non-trivial) ro- 
tation groups G does not, by itself, achieve anything. 
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For the octahedroil and icosahedron, invariant sets corresponding to points on 
the boundary of triangle XYZ are self-antipodal and therefore eliminate odd har- 
monics automatically, but full use of this property involves restriction to a set of 
measure zero. Sobolev [13]augments G by reflection in the origin to obtain a group 
G* of order 29, and considers oilly sets w*(R) invariant mith respect to G*. These 
are in one-one correspondence mith the points of the closure of triangle XYZ. 
Unless R is X, Y or Z, w * ( ~ )  has g or 29 points accordiilg as R is or is not on the 
boundary of triangle X Y Z .  Sobolev considers two series of formulas, of increasing 
adequacy, and calculates their efficiency. This depends on the proportion (which 
tends to zero) of points lying on the boundary of triangle XYZ. So even these are 1-10 
illore efficient, asymptotically, than if the points were chosen a t  random. 

Our theory seems to be useful only mhere it simplifies the proper choice of in- 
variant sets to obtain efficient formulas. We saw a t  the beginning of this section 
that the efficiency of an integration formula based 011 C, arbitrary invariant sets 
could not be expected to exceed 

Consider the choice of a formula based on h general invariant sets w(R,) and 
h' special ones, mhere h and h' are fixed integers and 0 5 h' 5 3. The R, vary within 
a two-dimensional region and so each general set inay be said to have two positional 
degrees of freedom. The weights to be assigned to each set are also (as before) a t  
our disposal so that the formula has altogether 

2h + ( h  + h') = 3h + h' 
degrees of freedom. TVe hope that each degree of freedoin can be used to bring one 
more independent function within the formula's domain of accuracy. We adopt the 
Working Hypothesis: A11 invariant integration formula accurate for spherical poly- 
nomials of degree not inore than p may be found using just h general iilvariailt sets 
and h' special sets, if 

(3) 3h + h' = C,. 



To try and construct the formula seems to be the simplest way of finding out 
whether, for a particular value of p, the hypothesis is true. Assuming its validity 
for the moment we shall consider the efficiency 

of coilceivable formulas satisfying ( 3 ) ,where N is the total number of points used. 
E --t 1 a s p  + m ,  for 

and so 

3N = 3gh + O ( 1 )  = g(Cp- h') + O ( 1 )  

We saw just now that without the positional degrees of freedom 3N = 3gCp = 

3 ( p  + 1)2+ O ( 1 ) SO that E -+ 5. 
In fact E > 1 for some finite values of p, as we see below. 
1 )  h' = 0 :3h  = C,and N = gh = SgC,, so 3N = ( p + 1 )2+ ge(p) 1 ( p + 1 )2  

with equality (i.e. E = 1 ) if and only if ~ ( p )= 0, that is when ( p + 1) is a multiple 
of $9. 

2 )  h' = 1 : 3h + 1 = C, and N = gh + g/ql because the smallest special set 
will be used, of course. So 

3 )  h' = 2: Similar argument gives 

because qz = 3 for all three groups. 
4 )  h' = 3 : 3h + 3 = C, . The three special sets have together ( g  + 2 )  points 

and would be better replaced by another general set. So E is strictly less than in 
case l ) , that is E < 1. 

When ~ ( p )= 0,  Cp  = : ( p  + I ) ~ .Since g is divisible by 3 and Cpis an integer 
( p  + 1)"s divisible by 3. So ( p  + 1 ) 2is divisible by 32.But g is not divisible by 
32.Hence C, is a multiple of 3. 

So from case 1 )  every value of p such that ( p  + 1 )  is a multiple of +g gives a 
formula with E = 1. In cases 2 )  and 3 )  E 2 1 if 

for a4 , S;i and respectively. Now for S4 ~ ( p )5 5 only when ~ ( p )= 0.  So cases 
2 )  and 3 )  cannot give E 2 1, for a4or S 4 ,  because c (p )  = 0 implies that C, is a 
multiple of 3. For a 5 ,~ ( p )= 5 when p + 1 = f6 (mod 30) and 0 < ~ ( p )< 5 
when p + 1 r f 1 0 ,  15 (mod 30) .  These give formulas with E 2 1 only when 
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C, is not a multiple of 3. By the periodicity of ~ ( p )  

Cp+30 - C p  = &(p + 1 + 3 0 ) ~- &(p + 1)2 

r p + 1 (mod 3).  

A short calculation shows that cases 2) and 3) give E 2 1for when 

p + 1 = &6, 15 (mod 30) 

or 

p + 1 = f10, A20 (niod 90). 

Combining these results with those of case 1) we list finally those values of p 
for which the Working Hypothesis (if true) predicts an invariant integration 
formula of degree p with E 2 1. 

p + 1 = 0 (mod 6) E = l  


p + 1 = 1.5 (mod 30) E > 1  


p + 1 -- f10 (niod 90) 


p + 1 = f20 (mod 90). 


In the next section necessary and sufficient conditions are given for a formula 
to be accurate up to degree p. In  sect,ioii 6 these are used to construct some lo~v- 
degree formulas. I t  will then be seen that the Working Hypothesis is frequently 
valid and that E > 1 does occur. 

5. Conditions for a pth-Degree Formula. Let A 1  , . . . , d be arbitrary points 
on the unit sphere and let y,,be the arc-length ArL4,. Let al , . . . ,at be real weights. 
Then xe=la,f(d,) vanishes for all surface harmonics f (  .) of degree ?n if and only if 

This follo~vs from the addition theorem for spherical harnioiiics 

where the Tqnn(.) are normalized tesseral harnionics. 
Now let R 1 ,  - . . ,R, be any k-tuple; and define for i, j = 1, . . . , k :  

n i  nj 

7rby) = x P,(COSA,B,) ; A, E w(Ri)
1.-1 s=l 

B, E a(Rj).  

ni = g except when a(&)  is one of the special sets. The 12 X k matrix 

n(m)= [ T $ y ) ]  
is synin~etric and non-negative definite (by the addition theorem) and the I; in-



variant sets, with vector of weights a ,  provide a pth degree formula if and only if 

a'n'm)a0 ;  m = 1, 2,  . . . , p= 

that is 

I n  fact a,n, + 0 is also necessary, but it is impossible to overlook the failure of 
this condition in practice, so we shall not mention it again. 

L ~ a ~ n t a .The rank of II""'i s  at most dl'"'. 
Pro0.f. X non-zero vector of weights may be found for ally h-tuple of invariant 

sets, where h > dl""', to eliminate the surface harmonics of degree m. This follows 
from Section 1, since dl'"' homogeneous equations in (dl'"' + 1) unkno~vns have 
always a non-zero solution. Hence, by the argument of the present Section, all 
principal minors of n'"' larger than dl'"' X dl'"" vanish. But n""' is symmetric, so 
that its rank is a t  most dl'"". 

In  particular when dl'"' = 1 

'771.' ' m )  ' m )
a;j = eiy.\/(nii ajj ) ;  e i  = & I .  

So if dl'"' 5 1 ( m  = 1, . . . ,p)  the conditions a l ~ ' " " a= 0 for a pth degree formula 
become 

since values of m for which dl'"" = 0 impose no constraint. Returning to the defi- 
nition we find that a::' is a complicated function of the position of R, . The special 
set w(X) will now play the rdle of a pivot, to simplify the form of the constraints. 
Define Ro = X, which may or may not be a member of the lc-tuple. JTTe have of 
course 

and so 

This is sufficient provided ah;;"'vanishes oilly hen dl''"' does. I t  can be shown 
that, for the tetrahedron ah:' = 0 implies dl'"' = 0. We omit a proof because one 
may be obtained by the methods which are applied below to the other tmo groups. 

For the octahedron and icosahedron, ah:' ~railishes for all odd m because w(X) 
is self-antipodal. So if there are odd harmonics to be eliminated they must be treated 
separately. If m is even and dl'"' 2 1 then ah;;"'could vanish only by accident: 
we shall show that this never happens. 

Group Sq : The distance between two vertices of the octahedron is either 0, 
a 1 2  or a,  and 
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The inequality: 

(sin 0)"~.1 ~ , ( c o s  0 )  1 < (;)ll2 n-1,2 

given in Szego [14, page 1631, shows that 1 P,(O) / < when n 2 3. So nii" f. 0, 
when r 2 2. But dl@' = 0. 

Group a6: The distance between two vertices of the icosahedron is either 
0, a ,  n - a or nand  

(2r) = 
r o o  12 X 2(1 + 5Pz,(cos a ) ) ;  ,. = 0 , 1 , 2 ,  . . .  . 

Since dl'" = 0, n$' = 0; so cos2 a = 5. The inequality gives 1 P , ( l / 4 5 )  / < & 
when n 2 18. Thus a::' # O when r 2 9. Since dl'" = dd4' = dl'" = d1'l4' = 0, 
only the cases 2r = 6, 10, 12, 16 remain. 

Now the coefficients of a Legendre polynon~ial, when multiplied by a suitable 
power of 2, are integers. So, for r 2 2, 5P2,(1/45) can be an integer only if the 
coefficient of the leading tern1 of Pz,( . ) coiltains a power of 5. If it contaiils a single 
factor of 5, then the next coefficient must not contain a power of 5. The leading 
terms of P,(p) are: 

and the first coefficient has no power of 5 for n = 6, 10, 12. For n = 16 there is a 
single factor 5, but this is present also in the second coefficient. So 5Pz , ( l /45)  
is not an integer for 2r = 6, 10, 12, 16. 

Hence nh?' # 0 for 21. = 6, 10, 12, 16. 

6. Construction of Formulas. We can now find some formulas whose efficiency 
is near unity. The tetrahedral group is not considered because every tetrahedral 
invariant set can be supplemented by another to form an invariant set of an 
octahedral realization (since two mutually antipodal tetrahedra make a cube). 
Nor do we look for formulas with more than one general invariant set (h > I) ,  
because the calculations become more complex. The results obtained are listed in 
Table 2. 

6.1 Special Sets Only ( h  = 0).Obvious a t  once are formulas based on a single 
special set (h/ = 1).  The existence of the others must be proved by calculation 
and a first step is to find the distances from a point of w(R0) = o ( X )  to the points 
of o ( Y )and w(Z). 

Group S4 :The distance between a vertex of the octahedron and one of the cube 
is 4 or T - 4 where, since dl'" = 0, ng? = 0 (with obvious notation). 
Thus Pz(cos 4)  = 0, so: 

cos2 4 = +. 

The distance between a vertex of the octahedron and the mid-point of an edge is 
+, n/2 or n - + where ~ $ 2= 0, that is: 



-- 

--- 
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cos" = +. 
Group : The distance betweell a vertex of the icosahedroiz and one of the 

=dodecahedron is a,  P,  a - (? or n - a: where, since = 0, a$ = a g  = 0. 

Tetrahedral Group 

The four vertices of the tetrahedron, that is the special set w(X), provide a 
second-degree formula. The group is not exploited any further for the reason given 
at the beginning of Section 6. 

Octahedral Group 
p-

l 1 
I 	 Pri-p L ~ , S  I ! a,  	 R 
I 1 I 	 I ority 

I 


3 1 6 0 . 8 9  11 I I< S 
I 8i1 12 1 


I 

I 


I
I I< S
I 

I 201 	 1 K S  ~ I 1 I 	 I 

7 	 3 14 0.89 1 1 (0.866, 0.423, 0.267) I 


1 I 16, 40 27 I 1 I Ii 

i


8 4 : 3 0 ' 0 9 0  	 21 (0.819, 0.517, 0.231) I 


I 161
11 lj 50 0.96 9216 ,15309 16384 14641 (0.906, 0302,  0 3 0 2 )  1 
Icosahedral Group 

5 	 i 1 12  1 . 0 0  1 I F	 S 
1 201 I F 

I I 30 1 


I F	 S 
I 42' 	 32 1 


I 3 0  I 27 -32 1 	 I s25 	 I 
I 


1 1 ~ 	 I 

11 3 (521 623 243 512 1 

14 4 721 1.04 123 11 ; 1 143 see Section 6.42 1 


p:  degree of spherical polynomial for which formula is exact. 

C', : number of degrees of freedom of formula. 

IT: number of points. 

E: eficieilcy (listed oilly once for each value of p). 

ax ,a r  ,a~ ,a : weights assigned to poiilts of w(X), w(Y), w(Z), w(R) respectively. 

R :  Cartesian co-ordinates of generator of w(R). 
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The distance between a vertex of the icosahedron and the mid-point of an edge 
is y, 6, a/2, a - 6 or n - y where ir?J= aYA = 0, that is: 

P,(co, y)  + P ~ ( C O S  = 6) + P4(0)= 0,6) + P2(O) P4(cos y)  + P ~ ( C O S  

'I'he three designs for each group that use just two special sets may 110~1-be 
foulid. So may the designs using three special sets. The calculation is given oiily for 
thc 1l th degree icosahedral design. 

IT-e dellland : 

I t  is true ill any case for m = 2, 4, 8. Consider the expansion, iv11e11 nz is even, of 

(cos 6)"' in Legendre polynomials P,(cos 6) : the constant term is -----
1 . It follom-s 

m + l  
that we require for m even and 5 10: 

where the angles involved have just been found. 
Puttiizg m = 6, 10 we obtain 

a,/;' - ay/3" aZ/2" 0 

y2aX/s4- - az/z4 = 0 

6.2 Octahedral Group: h = 1. The simplest formula is one with a single, general 
invariant set but no special sets. The conditions are 

For any In > 0, a$' vanishes somewhere on the sphere because, regarded as a 
functioll of R, , it is a surface harmonic of degree m > 0 so that its integral over 
the sphere vanishes. Two may or may not vanish together, but there is certainly 
no reason to expect a simultaneous zero of more than two. So with g = 24 points 
we can hope for a 7th degree formula. 

Let f p l  , fp? , f p 3  be the cosiiles of the distances from a point of the required 
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invariant set to the octahedral points. Let v j  = pj2 ( j  = 1, 2, 3).  Then 
( m )

~ i o= 0; m = 2, 4, 6 
implies 

by the expansion of p2" in Legendre polynomials. Hence the v j  are the roots of 

105v3- 105v2+ 21v - 1 = 0 

which are, nearly, 0.750, 0.179, 0.071. Since these squares of the direction cosines 
are real, lie between 0 and 1, and sum to unity, the set exists. In fact there are two 
mutually antipodal sets. Either gives a 7th degree design. 

Two more formulas based on the octahedral group are found. The first is 8th 
degree with 30 points (h = 1; h' = 1).  

With notation as before and S, = C;=lv?, then Sq,S3and Szcan be expressed as 
linear functions of the ratio of weights a/ao .Since S1 = 1, the cubic whose roots are 
the v j  has just two unknown coefficients and S4 ,Sa ,S2 have an alternative expres- 
sion in terms of these. When the unwanted solution Ri = X is rejected the equations 
can be solved and the cubic is 

with roots 0.670,0.267,0.063 approximately, and ao:a = 16:21. Again there are two 
equivalent, mutually antipodal formulas. 

The case (h = 1;  h' = 2) could give a 9th degree formula with (at  least) 38 
points. We do not investigate this because a 9th degree formula with fewer points 
has already been found, based on the icosahedral group. 

The case (h = 1; h' = 3) is more valuable so we solve it,. The only novelty is 
that an odd harmonic must be eliminated. This is done by confining Ri to the bound- 
ary of triangle XYZ (see Figure 1, Section 3) .  The "even" conditions 

aor6;IL) + alah;"' + a2rh?) + arty) = 0; m = 4, 6, 8, 10 

give, after elimination of the weights, a linear equation in S g  ,Sq ,S3 , SZ. There are 
now two possibilities: if Ri is on XZ it is distance a/2 from X" and one root of the 
cubic is zero. This leads only to Ri = X or Ri = 2,both of which are unacceptable. 
So Rimust be tried on XY or YZ, implying that the roots have the form v, v, 1-2v. 
The linear equation in the S, is now a quintic in v but after reject,ion of the solutions 
corresponding to Ri = X, Ri = Z and Ri = Y (twice) only 

v = 1/11 

remains. The weights ao: al :az: a are as 2''. 32: 3'. 7:214: 1 14. 

6.3. Icosahedral Group: h = 1. An 11th degree formula with one general set 
alone (h' = 0)  is expected. The conditions are 

(m)aio = 0;  1 5 m 5 11. 
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Let fpi ( j  = 1, . . . , 6) now be the cosines of the distances from a point of the 
required invariant set to the vertices of the icosahedron. Let v j  = p: ( j  = 1, . . . , 6). 
Then 

implies 

by the expansion of p2" in Legendre polynomials. can be found from the remain- 
ing condition R$*) = 0 which is satisfied vacuously, since d1'14' = 0. 

The sixth degree polynomial whose roots are the v, is now determined, but when 
it is solved only two of the roots are found to be real. Hence there is no 11th degree 
formula based on a single invariant set of the icosahedral group. 

This instance of failure of the Working Hypothesis of Section 4 is interesting 
because of its success in all the other cases investigated (those listed in Table 2) .  

Finally, we solve the case (h = 1; h' = 1) to obtain a 14th degree formula with 
72 points. As predicted in Section 3, it is super-efficient (E > 1).  The solution is 
determined by 

and the calculation, although lengthy, is similar to those already described. After 
rejecting R, = X we find 

and 

This was solved on EDSAC 11, with this result: 

We have still to show that these six numbers are the squares of the cosines of the 
distances from some point R on the sphere to the vertices of the icosahedron. If 
so then we have a 14th degree formula based on w(X) and w(R). Now ~ o s - ' ( v ~ ~ ' ~ )  
is just greater than 24" while cos-I (u;'') is just greater than 41". Thus 

The distance between two neighboring vertices of the icosahedron is cos-I (5-'I2) 
which is just less then 64" (Section 5) .  So there is a point R such that v l  and vz 
are the squares of the cosines of the distances from it to two vertices of the 
icosahedron. Sow the sixth degree polynomial satisfied by the v, ( j  = 1, . . . , 6) 
was constructed so that the sums 8, -- x,6=1vjn satisfied four vacuous conditions, 
that is conditions satisfied whatever position R, takes on the sphere. I t  is shown in 
the next Section that these conditions ensure that the remaining v, (j= 3, . . . , 6 )  
are the squares of the cosines of the distances of the point R (determined by v l  

and v?) to the remaining vertices of the icosahedron. 
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So we have found a super-efficient formula accurate for spherical polynomials of 
degree not more than fourteen. In Section 6.42 we show how to find the co-ordinates 
of the required points with respect to rectangular axes with origin a t  the center 
of the sphere. This will provide also a useful numerical check on the calculation. 
The co-ordinates are listed in Table 2. 

The cases ( h  = 1;h' = 2) and ( h  = 1; h' = 3) for the icosahedral group have 
not been investigated. 

6.4. Icosahedral Co-ordinates. The icosahedral co-ordinates of a point on the 
sphere are defined to be the squares of the cosines of the distances from that 
point to the twelve vertices of the icosahedron. Since these vertices are antipodal 
in pairs a point has just six icosahedral co-ordinates. They are of course the vj of 
the previous Section. 

6.41. Existence of a point with given icosahedral co-ordinates. 
Remark: Consider a sextic equation with roots v,' ( j = 1, . . . ,6) which are real 

and lie in [0, 11. Suppose the equation has been constructed as if its roots were the 
icosahedral co-ordinates of a point on the sphere, that is 

Suppose further that there is a point on the sphere with icosahedral co-ordinates 
v ( j = 1, ,6) two of which coincide with two of the roots. Say v," = v,' and 
vgt' = v2 ; then the other icosahedral co-ordinates vj" ( j = 3, . ,6) coincide with 
the other roots vj' ( j = 3, - - . ,6). 

Outline of Proof: The values m = 2, 4, 8, 14 are of course those even ones for 
which dl'"' = 0. The four conditions a:;;"' = 0 are linear in the sums 

of the powers of the roots of the sextic equation. The conditions are satisfied also 
by the same functions 

of the vj", because the vjN are icosahedral co-ordinates. For the same reason 
0 5 vj" 5 1; and 0 5 vj' 6 1 by hypothesis. 

We have therefore to show that the solution of the equations 

in unknowns vj ( j = 1, . . ,6) is unique when vl and vz are given and 0 6 vj 6 1 
( j = 1, .. . , 6 ) .The quartic whose roots are the vj ( j = 3, .. - , 6 )  is constructed a s  
follows : 

a::' = a::' = 0 determines 	 x vj and v: 
j=3 j=3 

and thus two of the coefficients. By use of the relations between the elementary 
symmetric functions and the sums of the powers of the roots the remaining con- 



ditions nlfio' = T$" = 0 yield one liiiear and one quadratic ecjuatioll in the remaining 
coefhcicnts a and 13 of the cyuartic. \Ire find at last that a satisfies a quadratic the 
suin of ~vhose roots is 

where 0 5 j' = vl  + v2 < 2 and 0 5 y = VIVZ < I. By illspection n > 30 so that a t  
least one root of the quadratic for a exceeds 1.5.But 0 5 v, 5 1so 

IIeilce a is determined by the quadratic. When a is k n o ~ i ~ n  P can be found from the 
linear equation. So all the coefficients of the quartic ~vhose roots are the 
V ,  c j  = 3,  . . . , 6)  are determined. In other words, the hypotheses of the Reinark 
ensure that the Y,' jj = I ,  . . . , 6) are the a," ( j  = 1, . . . ,6)  in some order. 

This result shows that a formal solution obtained by the methods of Section 
ti.:: will corirspond to a real set of points on the sphere if and only if the roots of 
the sextic are real and lie in [O, I] and two of the roots are icosahedral co-ordinates 
of some point. 'This is what actually happened in the case ( h  = h' = 1) which n-e 
investigated. 

6.42. Transformation to Cartesian co-ordinates. The trailsformatiotl from 
icosahedral co-ordinates to  Cartesian co-ordinates with the center of the sphere 
as origin is achieved as follo~i-s. The 15 diameters of the sphere through mid-points 
of opposite edges of the icosahedron form 5 sets of 3 mutually perpendicular axes. 
Choose one set ( 0 9 ,  OB, OC) as axes of co-ordinates (Figure 2). 
Since A ,  B, C are ( I ,  0, O ) ,  (0, I ,  0 )  and (0, 0, I )  respectively then the icosahedral 



vertices XI  , Xz , . . . , X6 are respectively 

where 

were computed in Section 6.1. 
Sow consider an arbitrary point R = (a ,  P, 7 )  in triangle XlYC. I t  is clear on 

inspection of Figure 2 that the vertices X I ,  Xz , . . . , X6 are ranked in order of 
increasing distance from R. So if v l  , vz , . . . , v6 are the icosahedral co-ordinates of 
R in decreasing order of magnitude and p, = v, 

112 ( j  = I ,  . . . , 6) then 

So the Cartesian co-ordinates ( a ,  p, 7 )  of R can be found in terms of the icosahedraI 
co-ordinates. 

We have almost immediately the following necessary and sufficient condition 
for arbitrary positive numbers v,' ( j  = I ,  . . . , 6) in decreasing order of magnitude 
to be the icosahedral co-ordinates of some point on the sphere. 

where as usual p,' -- (v , ' ) "~  for j = 1, . . . , 6. 
This is an alternative criterion to  the Remark of Section 6.41. I t  differs from 

the Remark in that in practice it cannot be applied exactly, for the roots of a sextic 
equation can normally be found only approximately. So a very slight deviation of 
any of the three quotients from i ( 1  + 4 5 )  mould pass undetected. 

The criterion is useful mainly as a ilumerical check on the calculations. \Then 
it is applied to the roots v,' of the sextic equation of Section 5.3, C v,' = 2 by con- 
structioil and the three quotieilts are 

where the last digit in each case is doubtful. I11 fact i ( 1  + 4 5 )  = 1.618035 . . . . 
We saw above how to find the Cartesian co-ordinates of a point R with given 

icosahedral co-ordinates. All the points of w(R), and of the antipodal set, have the 
same icosahedral co-ordinates. If in Figure 2 me had taken R to be in triangle 
XIYZ instead of in triangle XIYC we would have obtained the antipodal set which 
would be equivalent. 

We sholr finally how to shorten the calculation of the Cartesian co-ordinates 
of all the points of w(R). The four inlages of R obtained by rotation about the 
axis through S1are found by permuting suitably the p, ( j  = 2, . . . , 6)  of (4) .  90 
more calculation is needed, by the following classical property of the regular solids 
mhich is described by Ledermalln [GI. 
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Five cubes are inscribed in the configuration of the icosahedrou-dodecahedron. 
'The rotations of the icosahedral group a5induce just tile even permutatioi~s of 
these cubes. The number of rotations of asthat keep a particular cube fixed is thus 
the number of even permutations of four objects, namely 12. So 12 of the 24 sym- 
metry rotatio~ls of this cube are also symmetry rotatio~is of the icosahedron. In 
fact they are the 12 symmetry rotations of thc t~trahedron formed by ally four 
nonadjacent vertices of the cube. 

Sow consider a general invariant set w(R) of the icosahedral rotations. The 60 
points of w(R) must comprise just fire general invariant sets of the tetrahedral 
~otations.So frorll any five points of w(R) that are mutually irlaccessible by these 
tetrahedral rotations it is possible to generate all the points of w ( l t ) ,  simply by 
applying the tetrahedral substitutions. 

The choice of (OA, OR, OC) as axes of co-ordinates (Figure 2) amoutlts to 
choosing one of the five cubes. The three directions are perpendicular to its faces. 
Sone of the rotations of the icosahedroll about the axis through XI leave this cube 
invariant; so IZ and its four images whose Cartesian co-ordinates have been found 
by solving equations like (4)  are mutually inaccessible by the tetrahedral rotations 
of this cube. The tetrahedral substitutions appropriate to rectangular axes ( O A ,  
OB, OC) are genclrated by 

arid 

When R and its four images have beer1 identified it is thus simple to write down 
the Cartesian co-ordinates of all 60 points of w ( R ). 

The octahedral substitutions that generate w(R) from R when the formula is 
based on the octahedral group are the 3 X 3 pseudo-permutation matrices with 
deterrl~iilarit+1. 

The tetrahedral substitutions that generate w(R) from five suitable representa- 
tives when the formula is based on the icosahedral group are those 3 X 3 pseudo-
permutation matrices with deternlinant + I  in which the number of negative 
elements is either two or none. 

Five suitable representatives of w(R) for the 13th degree formula are 

7. Review. Some of the forrnulas have been obtained before by three other 
writers working independently. They are identified by initial in the last columii of 
Table 2. Findell ['2] considers, besides the regular solids, axially symmetric formulas 
of Cartesian-product type and stereographic images of Simpson's Rule in the plane. 



Sobolev [13] eniploys group characters to investigate some invariant networks of 
points which reduce in special cases to certain of our formulas. D. G. Iiendall [5] 
has shox$~ii how to deduce others from formulas for the solid sphere of the type given 
by Ditkiii [I] and by Hammer and Stroud [3]. ICendall's arguments work in both 
directions so that formulas for the surface may be combined to obtain formulas 
for the solid sphere-nor$- the inore natural sequence of reasoning. 

The formulas listed in Table 2 of the present paper have been constructed to 
obtain maximum efficiency subject to invariance under the appropriate group of 
rotations. This invariance seems to be at  worst a harmless requirement so that for 
practical purposes the problem of spherical iiitegratiorl is solved provided the num- 
ber AT of sample points is within the range of Table 2.  The existence of larger for- 
mulas, of arbitrarily high degree p, that are efficient (E near unity) has not been 
proved although D. G. Kendall [5] has obtained E = $ for any odd value of p. 
This is achieved by Irleaiis of axially symmetric Cartesian-product formulas which 
are derived from work of Peirce [9]on the spherical shell. The same idea was applied 
earlier by Ditkiii [ l ]  to the complete solid sphere. 

In  conclusio~i two alternative methods of obtai~iisig indefinitely large fornlulas 
are suggested. 

7.1. The Extremal Property. With the notation of Section 5, let Ca,= dAS= 

4 ~ .The coiiditions that an integration formula, not necessarily invariant, must 
satisfy for pth degree accuracy are 

Because these expressioiis are non-negative definite t'liis is equivalent t,o 

where the Am( 171 = 1, . . . ,p)  are any positive constants. If 

then to find a pth degree formula we have simply to arrange that 

attains its minimum 16azho with respect both to points A, and to weights a,.The 
number of points must be large enough for the required integration formula to 
exist. + (p  + 1)' points nlay be sufficierlt while (almost any) ( p  + 1)' points are 
certaiiily sufficieat. 

Tlir polylioiliial LP(p) is highly arbitrary and it may be coiivenielit to use the 
fact that the coefficieilts in the expailsion of pp iii Legendre polyrlonlials P,,<(p) 
are altcrnately positive and zero. This follows from the recurrence relation 
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If the points A, are accepted only ill antipodal pairs, to eliminate the odd har- 
monics, then the coildition for a pth degree integration formula (where p is even) 
is 

with a,= 4n. 
Instead x e  may modify the criterion of efficiency, which emphasizes the lower 

harmonics to the extent of ignoring altogether those whose degree exceeds p. This 
call be done by choosing a convenient function L , ( p )  with a convergent expailsion 
in Legendre polynomials that has positive coefficients, and minimizing 

I11 a sequel to this paper the problem of spherical integration is restated in prob- 
abilistic terms and shown to lead to an extrenlal problem of just this form. 

7.2. The Reproducing Icosahedron. I11 the mail1 part of the paper (Sections 
2-6) only integration formulas based on the regular solids were coilsidered and 
they were judged by the efficiency E. 111 the preceding Sectioil the notion of efficiency 
mas modified to provide a less artificial criterion and the regular solids played no 
part at  all. I n  this final Sectioil the idea of efficiency is discarded altogether and 
appeal is made only to symmetry. 

The theory of Sectioil 2, on which we have relied so heavily has two serious 
limitations. One is its inability to treat more than one regular solid (with its dual) 
a t  a time, for it is fuildameiltal that one &zed realization of the group G is considered. 
Finden [2] considers three dodecahedra ill a certain mutual orieiltatioil but this 
formula seems to be beyond the scope of Section 2. The second limitatioil is the 
lack of further finite subgroups of the rotation group which might provide other 
regular solids. This apparent shortcoming is a valuable safeguard when icosahedra 
are reproduced over the sphere in the follo~ving manner. 

We saw in Sectioil 6.42 that just five cubes could be inscribed ill the icosahedral 
configuratioil and that they were permuted evenly by its syinmetry rotations. The 
vertices of the cubes coincide in pairs at the centroids of the faces of the icosahedron. 
The converse property associates with any cube just two icosahedra. They are 
permuted by the rotatioils of the cube. 

'\JTe say two icosahedra are jirst neighbors if there is a cube inscribed in thein both 
in the way just described. Clearly every icosahedron has exactly five first neighbors. 
We say (inductively) that two icosahedra are jth neighbors ( j  = 2,  3, . . . )  if there 
is ail icosahedroil that is a first neighbor of one and a (j - 1)th neighbor of the 
other. TIT-o icosahedra are simply neighbors if for some j = 0, 1, 2, . . . they are 
jth neighbors. Thus "ileighborhood" is an equivalence relation. 

Let T o denote the twelve vertices of a certain icosahedron. Let I ,  ( j= 1, 2, . . . ) 
denote the set of vertices of all the jth neighbors of I0 . These sets I ,  may not be 
disjoint. We propose equally-weighted integration fornlulas based on sets of point3 



of the follo~~~ing form 

Consider the set of points on the sphere 
Ti 

K ,  - U I , .  
j=O 

I t  consists of the vertices of all icosahedra that are neighbors of 1 0  . Let 1; be any 
such icosahedron. Because neighborhood is an equivalence relation I<, is equally 
well described as consisting of the vertices of all neighbors of 1; . So the group G, 
of rotations of the sphere under which the set IT, is invariant includes those rota- 
tions that transform I0 into any one of its neighbors. The ordinary symmetry rota- 
tions of 10are properly included so G, is too large to be one of the three finite groups 
associated with regular solids. G, is obriously not cyclic nor dihedral. Hence G, 
is not finite, by \treyl [15].Hence I<, is not a finite set. I t  is, of course, countable. 

By suitable choice of ;1f the integration formula based on the set K ,  has an 
arbitrarily large number of points. The justification for using the ascending se-
quence of sets I<,{is simply the striking symmetry of their union K, , as expressed 
by invariance under the group C X ,  . h high degree of symmetry in the integration 
formula is a reasonable aim because the integral itself is an invariant of the whole 
rotation group. The question of whether the points of K ,  are asymptotically dis- 
tributed uniformly over the sphere, and associated matters of convergence are 
postponed to another occasion. 

These formulas have two practical advantages. The sets I<,,{ are nested so that 
no work is wasted when a crude approximation to the integral is later refined. 
This applies if the sample points are found explicitly. In  fact the second property 
removes the need for that if a conlputer is available. A11 that is necessary is a routine 
to locate the vertices of the five first neighbors of a given icosahedron. Sequential 
generation of the sample points should then be possible, followed at  once by evalua- 
tion there of the iategrand. 
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