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Abstract: The High-Dimensional Model Representation (HDMR) technique is a family of approaches to efficiently
interpolate high-dimensional functions. RS(Random Sampling)-HDMR is a practical form of HDMR based on ran-
domly sampling the overall function, and utilizing orthonormal polynomial expansions to approximate the RS-HDMR
component functions. The determination of the expansion coefficients for the component functions employs Monte
Carlo integration, which controls the accuracy of the RS-HDMR interpolation. The control variate method is an estab-
lished approach to improve the accuracy of Monte Carlo integration. However, this method is often not practical
for an arbitrary function f (x) because there is no general way to find the analytical control variate function h(x),
which needs to be very similar to f (x). In this article, we show that truncated RS-HDMR expansions can be used as
h(x) for arbitrary f (x), and a more stable iterative ratio control variate method was developed for the determination
of the expansion coefficients for the RS-HDMR component functions. As the asymptotic error (standard deviation)
of the estimator given by the ratio control variate method is proportional to 1/N(sample size), it is more efficient
than the direct Monte Carlo integration, whose error is proportional to 1/

√
N . In an illustration of a four-dimensional

atmospheric model a few hundred random samples are sufficient to construct an RS-HDMR expansion by the ratio con-
trol variate method with an accuracy comparable to that obtained by direct Monte Carlo integration with thousands of
samples.
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Introduction

The high-dimensional model representation (HDMR) technique is
being developed for interpolation of high-dimensional input–output
systems.1–4 HDMR expresses the system output f (x) as a finite
hierarchical cooperative function expansion in terms of its input
variables:

f (x) = f0 +
n∑

i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + · · ·

+
∑

1≤i1<···<il≤n

fi1i2...il (xi1 , xi2 , . . . , xil ) + · · ·

+ f12...n(x1, x2, . . . , xn), (1)

where x = (x1, x2, . . . , xn); f0, fi(xi), fij(xi, xj) · · · are called
zeroth; first; second; . . . order component functions of HDMR,
respectively.

Distinct, but formally equivalent HDMR expansions, all of
the same structure as eq. (1), may be constructed. RS(Random
Sampling)-HDMR is based on randomly sampling the overall
function f (x). For RS-HDMR, the variables xi are first normalized
by some suitable transformations such that 0 ≤ xi ≤ 1 for all i.
The output function f (x) is then defined in the unit hypercube
Kn = {(x1, x2, . . . , xn)|0 ≤ xi ≤ 1, i = 1, 2, . . . , n}. The indepen-
dent random input variable xi(i = 1, 2, . . . , n) has the probability
density function wi(xi) satisfying the conditions

{
wi(xi) ≥ 0, (0 ≤ xi ≤ 1),∫ 1

0 wi(xi)dxi = 1, (i = 1, 2, . . . , n).
(2)
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The component functions of RS-HDMR have the following forms:5

f0 =
∫

Kn

n∏
i=1

wi(xi)f (x)dx, (3)

fi(xi) =
∫

Kn−1

n∏
k=1
k �=i

wk(xk)f (x)dxi − f0, (4)

fij(xi, xj) =
∫

Kn−2

n∏
k=1
k �=i,j

wk(xk)f (x)dxij − fi(xi) − fj(xj) − f0, (5)

. . . ,

where dxi and dxij are just the product dx1dx2 · · · dxn without dxi

and dxidxj , respectively. Finally, the last term f12...n(x1, x2, . . . , xn)

is determined from the difference between f (x) and all the other
component functions in eq. (1).

Practical approaches to determine the RS-HDMR component
functions have been developed5,6 based on approximating them with
weighted orthonormal polynomials {ϕ} as

fi(xi) ≈
k∑

r=1

αi
rϕ

i
r(xi), (6)

fij(xi, xj) ≈
l∑

p=1

l′∑
q=1

β ij
pqϕ

i
p(xi)ϕ

j
q(xj), (7)

fijk(xi, xj , xk) ≈
m∑

p=1

m′∑
q=1

m′′∑
r=1

γ ijk
pqrϕ

i
p(xi)ϕ

j
q(xj)ϕ

k
r (xk), (8)

. . . ,

where k, l, l′, m, m′, m′′ are integers; αi
r , β ij

pq and γ
ijk
pqr are constant

coefficients to be determined. The polynomials {ϕ} possess the
weighted orthonormality properties:

∫ 1

0
wi(xi)ϕ

i
r(xi)dxi = 0, for all r, i, (9)∫ 1

0
wi(xi)

[
ϕi

r(xi)
]2

dxi = 1, for all r, i, (10)∫ 1

0
wi(xi)ϕ

i
p(xi)ϕ

i
q(xi)dxi = 0, p �= q, (11)

implying that they have a zero mean, unit norm, and are mutu-
ally orthogonal with respect to the weight wi(xi). In most cases,
using only ϕi

1(xi), ϕi
2(xi) and ϕi

3(xi) (i.e., k, l, l′, m, m′, m′′ ≤ 3) often
results in satisfactory accuracy.

When the Monte Carlo integration approximation is employed,
eqs. (9)–(11) are equivalent to the approximations

∫ 1

0
wi(xi)ϕ

i
r(xi)dxi ≈ 1

N

N∑
s=1

ϕi
r

(
x(s)

i

)
= ξ i

r �= 0, (r = 1, 2, . . .) (12)∫ 1

0
wi(xi)

[
ϕi

r(xi)
]2

dxi ≈ 1

N

N∑
s=1

[
ϕi

r

(
x(s)

i

)]2

= ζ i
r �= 1, (r = 1, 2, . . .) (13)

∫ 1

0
wi(xi)ϕ

i
p(xi)ϕ

i
q(xi)dxi ≈ 1

N

N∑
s=1

ϕi
p

(
x(s)

i

)
ϕi

q

(
x(s)

i

)
= ηi

pq �= 0, (p �= q) (14)

where ξ i
r and ηi

pq are small numbers, but not exactly equal to zero,
ζ i

r are close to but not equal to unity; and, their values depend on the
sample used. This implies that the weighted orthonormality property
is not exactly fulfilled when the Monte Carlo integration approxima-
tion is employed. This may cause some additional error. To reduce
this error, we define optimal weighted orthonormal polynomials for
different samples as follows:5

ϕi
1(xi) = a1xi + a0, (15)

ϕi
2(xi) = b2x2

i + b1xi + b0, (16)

ϕi
3(xi) = c3x3

i + c2x2
i + c1xi + c0, (17)

· · · · · ·
where the coefficients a0, a1, b0, . . . , c3 are determined in such a
way that for a given set of random samples (generated by {wi(xi)})∑

r[(ξ i
r)

2 +(ζ i
r −1)2]+∑

p<q(η
i
pq)

2 is minimized. This implies that
the weighted orthonormality property is forced to be best satisfied
for a given set of data. In our previous calculations for different
systems and sample sizes, ξ i

r , 1−ζ i
r and ηi

pq were smaller than 10−9.
Optimal weighted orthonormal polynomials for variable xi

best satisfy the weighted orthonormality property, but the Monte
Carlo integration approximation of the integrals for the products
ϕi

p(xi)ϕ
j
q(xj)(i �= j) cannot guarantee the weighted orthonormal-

ity property between the basis functions with different variables.
However, the weighted orthonormality property will be improved
by increasing sample size N .

Using the optimal weighted orthonormal polynomial approxi-
mation, eq. (1) can be expressed as

f (x) ≈ f0 +
n∑

i=1

k∑
r=1

αi
rϕ

i
r(xi) +

∑
1≤i<j≤n

l∑
p=1

l′∑
q=1

β ij
pqϕ

i
p(xi)ϕ

j
q(xj)

+
∑

1≤i<j<k≤n

m∑
p=1

m′∑
q=1

m′′∑
r=1

γ ijk
pqrϕ

i
p(xi)ϕ

j
q(xj)ϕ

k
r (xk) + · · · .

(18)

The coefficients {αi
r , β ij

pq, γ ijk
pqr} can be determined by using the

weighted orthonormality properties of {ϕ}, for example,

αi
r =

∫
Kn

n∏
k=1

wk(xk)f (x)ϕi
r(xi)dx. (19)

The integral on the right-hand side of the above equation may be
approximated by direct Monte Carlo integration so that

αi
r =

∫
Kn

n∏
k=1

wk(xk)f (x)ϕi
r(xi)dx ≈ 1

N

N∑
s=1

f (x(s))ϕi
r

(
x(s)

i

)
, (20)

where x(s) = (x(s)
1 , x(s)

2 , . . . , x(s)
n )(s = 1, 2, . . . , N) is the sth ran-

dom sample point, and N is the total number of random samples.
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The standard deviation (or standard error) of this approximation is
proportional to the standard deviation of the integrand f (x)ϕi

r(xi)

divided by
√

N .7

Similarly, we have

β ij
pq =

∫
Kn

n∏
k=1

wk(xk)f (x)ϕi
p(xi)ϕ

j
q(xj)dx

≈ 1

N

N∑
s=1

f
(
x(s))ϕi

p

(
x(s)

i

)
ϕj

q

(
x(s)

j

)
, (21)

γ ijk
pqr =

∫
Kn

n∏
l=1

wl(xl)f (x)ϕi
p(xi)ϕ

j
q(xj)ϕ

k
r (xk)dx

≈ 1

N

N∑
s=1

f
(
x(s))ϕi

p

(
x(s)

i

)
ϕj

q

(
x(s)

j

)
ϕk

r

(
x(s)

k

)
, (22)

. . . .

The formulas in eqs. (20)–(22) have the same form and automat-
ically tailored to the particular probability distribution function
when the sampling is drawn under the guidance by the weight
{wi(xi)}.5

The error of the Monte Carlo integration can be reduced either
by increasing the sample size N or decreasing the variance of the
integrands in eqs. (20)–(22) upon the introduction of special tech-
niques. Monte Carlo integration error becomes troublesome when
random sampling of the integrand produces a large variance, that
is, the integrand has rapid changes in the desired domain, espe-
cially in sign. This behavior is expected to arise when considering
the integrands in eqs. (20)–(22) with large numbers of basis func-
tion products such as f (x)ϕi

p(xi)ϕ
j
q(xj) and f (x)ϕi

p(xi)ϕ
j
q(xj)ϕ

k
r (xk).

Therefore, the determination of the high-order RS-HDMR compo-
nent functions generally requires additional samples. For example,
to determine fi(xi), a few hundred samples may give good accuracy,
but for fij(xi, xj) to achieve the same accuracy may require thou-
sands of samples. For fijk(xi, xj , xk) even thousands of samples may
not be sufficient. However, for practical reasons, the sample size is
often restricted by time and cost considerations. Besides increas-
ing N , the other way to improve the accuracy of the Monte Carlo
integration is to reduce the variance of the integrand. This article
exploits the control variate method8 in RS-HDMR for this pur-
pose. The previous correlation method9 and the ratio control variate
method belong to this category; it will be shown that the control
variate method is generally superior in performance in the context
of RS-HDMR.

The article is organized as follows. Section 2 introduces the
control variate method of Monte Carlo integration in RS-HDMR,
and Section 3 presents an illustration of this method for an atmo-
spheric chemical kinetics model. Finally, Section 4 presents some
concluding remarks.

Control Variate Methods for Variance Reduction
of Monte Carlo Integration in RS-HDMR

Control variate methods are established approaches to improve the
accuracy of Monte Carlo integration.7,9 Consider an integral for the

determination of any coefficient in eqs. (20)–(22), for example

αi
r =

∫
Kn

n∏
i=1

wi(xi)f (x)ϕi
r(xi)dx

≈ 1

N

N∑
s=1

f
(
x(s))ϕi

r

(
x(s)

i

)
.

To reduce the variance of the integrand f (x)ϕi
r(xi) in Kn, we seek a

control variate h(x) satisfying two conditions: (1) f (x) and h(x)

are very similar over the entire domain of x; (2) the integral∫
Kn

∏n
i=1 wi(xi)h(x)ϕi

r(xi)dx can be obtained analytically.

Additive Control Variate—the Correlation Method

One way to use the control variate technique is to rewrite eq. (20) as

αi
r =

∫
Kn

n∏
i=1

wi(xi)[ f (x) − h(x)]ϕi
r(xi)dx

+
∫

Kn

n∏
i=1

wi(xi)h(x)ϕi
r(xi)dx. (23)

The first term in eq. (23) has a small variance when h(x) and f (x)

have a strong linear relationship (i.e., h(x) ≈ f (x) + b with b being
a constant). Because the second integral is known analytically as∫

Kn

n∏
i=1

wi(xi)h(x)ϕi
r(xi)dx = ci

r , (24)

the variance comes only from the first term in eq. (23). As f (x)−h(x)

is almost constant or zero everywhere by assumption, we expect that

var

{
n∏

i=1

wi(xi)[ f (x) − h(x)]ϕi
r(xi)

}
< var

{
n∏

i=1

wi(xi)f (x)ϕi
r(xi)

}
,

(25)

and αi
r may be obtained by approximating the first integral in eq. (23)

with Monte Carlo integration

αi
r ≈ 1

N

N∑
s=1

[
f
(
x(s)) − h

(
x(s))]ϕi

r

(
x(s)

i

) + ci
r (26)

to have better accuracy than that given by eq. (20). However, this
additive control variate method is often not practical for an arbitrary
function f (x) because there is no general way to find the analytical
control variate function h(x). The task of finding h(x) becomes even
more difficult when the analytic form of f (x) is not known, but only
some values of f (x) can be sampled.

Fortunately, a truncated RS-HDMR expansion of eq. (18) satis-
fies these requirements and can be used as h(x), for instance

h(x) = f0 +
n∑

i=1

k∑
r=1

ᾱi
rϕ

i
r(xi) +

∑
1≤i<j≤n

l∑
p=1

l′∑
q=1

β̄ ij
pqϕ

i
p(xi)ϕ

j
q(xj)

+
∑

1≤i<j<k≤n

m∑
p=1

m′∑
q=1

m′′∑
r=1

γ̄ ijk
pqrϕ

i
p(xi)ϕ

j
q(xj)ϕ

k
r (xk), (27)
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where the coefficients {ᾱi
r , β̄ ij

pq, γ̄ ijk
pqr} are determined by direct Monte

Carlo integration given in eqs. (20)–(22). The difference f (x) −
h(x) should be small if the truncated RS-HDMR expansion is a
good approximation of f (x). The integration of h(x) with respect
to x can be obtained analytically using the orthonormality property
of {ϕ}

∫
Kn

n∏
i=1

wi(xi)h(x)ϕi
r(xi)dx =

∫
Kn

n∏
i=1

wi(xi)

[
f0 +

n∑
i=1

k∑
r′=1

ᾱi
r′ϕi

r′(xi)

+
∑

1≤i<j≤n

l∑
p=1

l′∑
q=1

β̄ ij
pqϕ

i
p(xi)ϕ

j
q(xj)

+
∑

1≤i<j<k≤n

m∑
p=1

m′∑
q=1

m′′∑
r′=1

γ̄ ijk
pqrϕ

i
p(xi)ϕ

j
q(xj)ϕ

k
r′(xk)


ϕi

r(xi)dx = ᾱi
r ,

(28)

and then

αi
r ≈ 1

N

N∑
s=1

[
f
(
x(s)) − h

(
x(s))]ϕi

r

(
x(s)

i

) + ᾱi
r . (29)

Similarly, we also have

β ij
pq ≈ 1

N

N∑
s=1

[
f
(
x(s)) − h

(
x(s))]ϕi

p

(
x(s)

i

)
ϕj

q

(
x(s)

j

) + β̄ ij
pq, (30)

γ ijk
pqr ≈ 1

N

N∑
s=1

[
f
(
x(s)) − h

(
x(s))]ϕi

p

(
x(s)

i

)
ϕj

q

(
x(s)

j

)
ϕk

r

(
x(s)

k

) + γ̄ ijk
pqr .

(31)

Equations (29)–(31) show that the first terms in these equations are
corrections for the initial values ᾱi

r , β̄ ij
pq and γ̄

ijk
pqr . The resultant αi

r ,
β

ij
pq and γ

ijk
pqr may be reused as initial values for the construction of a

new h(x) with a even smaller variance for f (x) − h(x) to repeat the
calculation again. Then, eqs. (29)–(31) become an iteration proce-
dure for a given set of random samples. When h(x) is exactly equal
to f (x), the first term in eqs. (29)–(31) vanishes. In practice, h(x) is
only a good approximation of f (x), and the first term in eqs. (29)–
(31) for the given samples never vanishes in the iteration, but it can
be very small and oscillate around zero. Thus, a tolerance can be set.
The iteration is terminated when the difference of two adjacent iter-
ative values for a parameter is smaller than the given tolerance. The

satisfaction of the tolerance criterion can be achieved if the initial
h(x) is close to f (x) and the sample size N is large enough.

Notice that αi
r , β ij

pq, γ ijk
pqr are all coupled in the operations above

because they are all contained in h(x). When h(x) is the third-order
expansion in eq. (27), the iteration may diverge for a small sample
size. In this case we may choose the second-order expansion

h(x) = f0 +
n∑

i=1

k∑
r=1

ᾱi
rϕ

i
r(xi) +

∑
1≤i<j≤n

l∑
p=1

l′∑
q=1

β̄ ij
pqϕ

i
p(xi)ϕ

j
q(xj)

(32)

as the control variate. The coefficients αi
r and β

ij
pq can be determined

by iteration with eqs. (29) and (30). The resultant values of αi
r and

β
ij
pq are used to determine the coefficients γ

ijk
pqr by the following

equation without iteration

γ ijk
pqr ≈ 1

N

N∑
s=1

[
f
(
x(s)) − h

(
x(s))]ϕi

p

(
x(s)

i

)
ϕj

q

(
x(s)

j

)
ϕr

(
x(s)

k

)
(33)

because

γ̄ ijk
pqr =

∫
Kn

n∏
i=1

wi(xi)h(x)ϕi
p(xi)ϕ

j
q(xj)ϕ

k
r (xk)dx

=
∫

Kn

n∏
i=1

wi(xi)

[
f0 +

n∑
i=1

k∑
r′=1

ᾱi
r′ϕi

r′(xi)

+
∑

1≤i<j≤n

l∑
p′=1

l′∑
q′=1

β̄
ij
p′q′ϕ

i
p′(xi)ϕ

j
q′(xj)


ϕi

p(xi)ϕ
j
q(xj)ϕ

k
r (xk)dx = 0.

(34)

This is the correlation method developed previously.9

The condition for the convergence of the iteration given by
eqs. (29)–(31) is discussed below. Let

y0 = (
ᾱ1

1 , ᾱ1
2 , . . . , β̄12

11 , β̄12
12 , . . . , γ̄ 123

111 , γ̄ 123
112 , . . . , γ̄ (n−2)(n−1)n

mm′m′′
)T

(35)

be the initial values of all the constant parameters obtained by direct
Monte Carlo integration, and

yk = (
α1

1 , α1
2 , . . . , β12

11 , β12
12 , . . . , γ 123

111 , γ 123
112 , . . . , γ (n−2)(n−1)n

mm′m′′
)T

(36)

be the resultant parameters in the kth iteration;

b = 1

N

N∑
s=1

f
(
x(s))[ϕ1

1

(
x(s)

1

)
, ϕ1

2

(
x(s)

1

)
, . . . , ϕ1

1

(
x(s)

1

)
ϕ1

2

(
x(s)

1

)
, . . .

]T
, (37)

A = 1

N

N∑
s=1




[
ϕ1

1(x(s)
1 )

]2
ϕ1

1

(
x(s)

1

)
ϕ1

2

(
x(s)

1

) · · · ϕ1
1

(
x(s)

1

)
ϕn−2

m

(
x(s)

n−2

)
ϕn−1

m′
(
x(s)

n−1

)
ϕn

m′′
(
x(s)

n

)
ϕ1

2

(
x(s)

1

)
ϕ1

1

(
x(s)

1

) [
ϕ1

2(x(s)
1 )

]2 · · · ϕ1
2

(
x(s)

1

)
ϕn−2

m

(
x(s)

n−2

)
ϕn−1

m′
(
x(s)

n−1

)
ϕn

m′′
(
x(s)

n

)
...

...
. . .

...

ϕn−2
m

(
x(s)

n−2

)
ϕn−1

m′
(
x(s)

n−1

)
ϕn

m′′
(
x(s)

n

)
ϕ1

1

(
x(s)

1

) · · · · · · [
ϕn−2

m (x(s)
n−2)ϕ

n−1
m′ (x(s)

n−1)ϕ
n
m′′(x(s)

n )
]2




. (38)
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It is easy to prove that eqs. (29)–(31) can be represented in matrix
form

y1 = b + (I − A)y0, (39)

and

yk = [I + (I − A) + · · · + (I − A)k−1]b + (I − A)ky0, (40)

yn − yn−1 = (I − A)n−1(b − Ay0), (41)

where I is the n-dimensional identity matrix. The iteration is con-
vergent if and only if the norm ‖yn − yn−1‖ approaches zero when
n → ∞. Because

‖yn − yn−1‖ ≤ ‖(I − A)‖n−1‖b − Ay0‖, (42)

and ‖b − Ay0‖ is constant, the necessary and sufficient condition
for iteration convergence is

‖(I − A)‖ < 1. (43)

When optimal weighted orthonormal polynomials ϕi
r(xi) are used,5

the diagonal elements of A are very close to unity, and off-diagonal
elements are small and close to zero. Consequently, all the elements
of I − A are small, and closer to zero when N becomes larger. If the
norm ‖I − A‖∞ is used, that is,

‖I − A‖∞ = max


 l∑

j=1

|(I − A)ij|, i = 1, 2, . . . , l


 , (44)

where (I −A)ij is the (i, j)-entry of I −A, and l is the dimension of A
(i.e., the total number of the terms in eq. (27)). The value of ‖I−A‖∞
depends on l and N . When N is large enough, ‖I − A‖∞ < 1 can
be guaranteed.

Ratio Control Variate Method

Another way to use the control variate technique is to rewrite
eq. (20) as

αi
r =

∫
Kn

n∏
i=1

wi(xi)h(x)ϕi
r(xi)dx

∫
Kn

∏n
i=1wi(xi)f (x)ϕi

r(xi)dx∫
Kn

∏n
i=1wi(xi)h(x)ϕi

r(xi)dx
,

(45)

where
∫

Kn

∏n
i=1 wi(xi)h(x)ϕi

r(xi)dx �= 0. The first term in eq. (45)
can be obtained analytically, and the second term has a small
variance when h(x) is almost equal to or proportional to f (x)

(i.e., h(x) ≈ bf (x) with b being a constant). Then the second term
in eq. (45) can be approximated well by Monte Carlo integration.

Thus, we have

αi
r ≈ ᾱi

r

∑N
s=1 f

(
x(s)

)
ϕi

r

(
x(s)

i

)
∑N

s=1h
(
x(s)

)
ϕi

r

(
x(s)

i

) . (46)

Similarly, we also have

β ij
pq ≈ β̄ ij

pq

∑N
s=1 f

(
x(s)

)
ϕi

p

(
x(s)

i

)
ϕ

j
q
(
x(s)

j

)
∑N

s=1h
(
x(s)

)
ϕi

p

(
x(s)

i

)
ϕ

j
q
(
x(s)

j

) , (47)

γ ijk
pqr ≈ γ̄ ijk

pqr

∑N
s=1 f

(
x(s)

)
ϕi

p

(
x(s)

i

)
ϕ

j
q
(
x(s)

j

)
ϕk

r

(
x(s)

k

)
∑N

s=1h
(
x(s)

)
ϕi

p

(
x(s)

i

)
ϕ

j
q
(
x(s)

j

)
ϕk

r

(
x(s)

k

) , (48)

when the third-order expansion given in eq. (18) is used as the con-
trol variate. Similar to eqs. (29)–(31), eqs. (46)–(48) can be used
to determine the coefficients {αi

r , β ij
pq, γ ijk

pqr} iteratively, and the initial
values {ᾱi

r , β̄ ij
pq, γ̄ ijk

pqr} are given by direct Monte Carlo integration.
When h(x) is exactly equal to f (x), the ratio in the second term
in eqs. (46)–(48) is unity. In practice, the ratio in the second term
in eqs. (47)–(48) for the given samples in the iteration will likely
be close to unity. Similar to the correlation method, a tolerance
can be set. The iteration is terminated when the difference of two
adjacent iterative values for a parameter is smaller than the given tol-
erance. The satisfaction of the tolerance criterion can be achieved
if the initial h(x) is close to f (x) and the sample size N is large
enough.

When the second-order expansion in eq. (32) is used as the
control variate, γ

ijk
pqr cannot be determined by eq. (48) because∫

Kn

∏n
i=1 wi(xi)h(x)ϕi

p(xi)ϕ
j
q(xj)ϕ

k
r (xk)dx = 0. In this case, we

write

γ ijk
pqr =

∫
Kn

n∏
i=1

wi(xi)g(x)ϕi
p(xi)ϕ

j
q(xj)ϕ

k
r (xk)dx

×
∫

Kn

∏n
i=1wi(xi)[ f (x) − h(x)]ϕi

p(xi)ϕ
j
q(xj)ϕ

k
r (xk)dx∫

Kn

∏n
i=1wi(xi)g(x)ϕi

p(xi)ϕ
j
q(xj)ϕk

r (xk)dx
,

(49)

where

g(x) =
m∑

p=1

m′∑
q=1

m′′∑
r=1

γ̄ ijk
pqrϕ

i
p(xi)ϕ

j
q(xj)ϕ

k
r (xk). (50)

When f (x) can be accurately represented by the third-order expan-
sion given in eq. (18), f (x)−h(x) can be well approximated by g(x).
The first term in eq. (49) can be obtained analytically as γ̄

ijk
pqr , while

the second term has a small variance and can be approximated by
Monte Carlo integration, which gives

γ ijk
pqr ≈ γ̄ ijk

pqr

∑N
s=1

[
f
(
x(s)

) − h
(
x(s)

)]
ϕi

p

(
x(s)

i

)
ϕ

j
q
(
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j
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ϕk

r
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k

)
∑N
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(
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ϕi
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(
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i

)
ϕ

j
q
(
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j

)
ϕk

r

(
x(s)

k

) .

(51)
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Table 1. The Relative Errors of the Different Order RS-HDMR Expansions for the Outputs
P, D, P − D Determined by Direct Monte Carlo Integration.

Data portion (%)a

P D P − D

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Sample
size
(N)

Relative
error
(%)

300 5 48.8 23.3 15.9 33.7 24.2 14.6 47.3 26.0 18.8
10 69.3 44.2 30.7 55.0 43.4 28.1 72.5 51.8 36.1
20 81.7 71.2 53.3 70.0 68.5 49.7 87.3 83.9 62.1

500 5 45.8 57.1 26.5 37.0 34.6 19.3 48.8 58.5 29.6
10 68.6 78.3 47.1 55.7 59.6 36.8 72.2 83.4 52.3
20 81.6 91.7 70.2 69.2 80.2 61.8 86.5 96.0 76.1

1000 5 46.3 72.6 48.6 38.6 58.6 36.8 49.6 77.5 50.7
10 68.7 88.3 72.2 56.7 81.4 61.6 71.4 93.4 76.6
20 81.8 96.6 88.5 69.7 93.6 83.8 86.4 99.3 92.8

3000 5 46.0 85.9 68.3 38.4 86.4 65.5 48.6 90.7 80.3
10 68.5 95.7 88.7 55.4 95.5 84.0 70.9 97.7 94.2
20 81.7 99.1 96.9 68.8 99.2 95.3 86.2 99.7 98.8

5000 5 45.7 90.4 85.7 38.4 91.8 75.9 48.5 93.8 90.4
10 68.1 96.8 95.3 55.7 97.6 90.6 70.8 98.7 97.9
20 81.6 99.4 98.9 68.9 99.6 97.1 86.2 99.9 99.8

aThe percentage of 53,312 data with a relative error not larger than a given value.

Using eqs. (46)–(47) the coefficients αi
r , β ij

pq are determined iter-
atively first. Then using the resultant values of αi

r and β
ij
pq, the

coefficients γ
ijk
pqr may be determined by iteration with eq. (51). Sim-

ilarly, the initial values {ᾱi
r , β̄ ij

pq, γ̄ ijk
pqr} are given by direct Monte

Carlo integration. As the asymptotic error of the estimator given by
the ratio control variate method is proportional to 1/N , while the
error of the direct Monte Carlo integration is proportional to 1/

√
N ,9

a few hundred random samples can be sufficient to determine the
coefficients {αi

r , β ij
pq, γ ijk

pqr} by the ratio control variate method with
an accuracy comparable to that obtained by direct Monte Carlo
integration with thousands of samples.

Illustration: A Photochemical Box Model

The same model used previously to test the correlation method
is used again for the ratio control variate method. The model is
a photochemical box model designed to treat the ozone chem-
istry in the background troposphere for studying three-dimensional
global chemical transport.10 This box model consists of 63 reac-
tions and 28 chemical species used to calculate the rates of ozone
production P, destruction D, and the tendency P − D for incorpora-
tion into the overall three-dimensional model. The input random
variables x = {x1, x2, x3, x4} are the concentrations of the four
precursors: H2O, CO, NOx , and O3. Five thousand random sam-
ples of x with a uniform distribution, that is, all wi(xi) = 1 were
generated, and then the corresponding values for P, D, and P − D
were calculated by the model. The first to third-order orthonormal
polynomials given in eqs. (12)–(14) were used to approximate the
RS-HDMR component functions. For purposes of comparison, the
expansion coefficients {αi

r , β ij
pq, γ ijk

pqr} were determined by (1) direct
Monte Carlo integration, (2) the correlation method, and (3) the

ratio control variate method with different random sample sizes
(300, 500, 1000, 3000, and 5000). The accuracy of the resultant
different order RS-HDMR expansions were examined by compar-
ison with 53,312 exact data, which uniformly cover the whole
domain of x. Table 1 gives the accuracy of different order RS-
HDMR expansions for the three outputs whose component functions
were approximated by third-order orthonormal polynomial expan-
sions and {αi

r , β ij
pq, γ ijk

pqr} were determined by direct Monte Carlo
integration.

Table 1 shows that the sample size does not have a significant
influence on the accuracy of the first-order RS-HDMR expansion,
which means that αi

r can be accurately determined with a few hun-
dred samples. However, the sample size does have a significant
influence on the accuracy of the second-order RS-HDMR expan-
sion, and the determination of β

ij
pq may need thousands of samples.

The third-order RS-HDMR expansion is worse than the second-
order, and even the first-order RS-HDMR expansions when the
sample size is small. Therefore, if several thousand samples are
used, direct Monte Carlo integration may still be inaccurate for the
determination of γ

ijk
pqr .

The ratio control variate method with Monte Carlo integration
given by eqs. (46)–(48) was used to determine the coefficients
αi

r , β ij
pq and γ

ijk
pqr . First, the third-order RS-HDMR given by eq. (27)

with k, l, l′, m, m′, m′′ = 3 was used as h(x). Successful termina-
tion of the iteration was achieved with all sample sizes for αi

r , β ij
pq,

and γ
ijk
pqr , as in the final iterations the accuracy of the third-order

RS-HDMR approximations remained almost constant. In contrast,
the correlation method diverged when N ≤ 1000. The results
are given in Table 2, which shows that the ratio control variate
method is a practical approach, which significantly reduces the
variance, and hence improves the accuracy even for small sample
sizes.
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Table 2. The Relative Errors of the Resultant Third-Order RS-HDMR
Expansions Determined by the Ratio Control Variate (I) and
Correlation (II) Methods with Monte Carlo Integration Using the
Third-Order RS-HDMR Expansion Given by eq. (27) as h(x).

Data portion (%)a,b

P D P − DSample
size
(N)

Relative
error
(%) I II I II I II

300 5 93.5 — 84.2 — 91.1 —
10 98.0 — 95.1 — 97.9 —
20 99.6 — 98.8 — 99.8 —

500 5 87.7 — 93.5 — 99.8 —
10 96.3 — 98.0 — 100 —
20 99.4 — 99.6 — 100 —

1000 5 99.1 — 90.5 — 99.1 —
10 99.8 — 96.3 — 99.9 —
20 100 — 99.4 — 100 —

3000 5 98.8 99.9 98.3 99.7 99.1 99.7
10 99.8 100 99.9 100 99.9 100
20 100 100 100 100 100 100

5000 5 99.6 98.0 99.4 98.0 99.8 99.4
10 99.9 99.4 99.9 99.5 99.9 99.9
20 100 99.8 100 99.9 100 100

aThe percentage of 53,312 data with a relative error not larger than a given
value.
bLack of convergence for the correlation method is donated by —.

Table 3. The Relative Errors of the Resultant Third-Order RS-HDMR
Expansions Determined by Ratio Control Variate (I) and Correlation (II)
Methods with Monte Carlo Integration Using the Second-Order
RS-HDMR Expansion Given by eq. (32) as h(x).

Data portion (%)a

P D P − DSample
size
(N)

Relative
error
(%) I II I II I II

300 5 91.3 93.6 77.8 92.7 96.8 98.9
10 97.1 97.2 94.1 98.4 99.9 99.8
20 99.2 99.6 98.8 100 100 100

500 5 94.2 95.6 94.6 96.5 96.6 98.0
10 99.0 98.7 99.1 99.6 99.8 99.4
20 99.9 99.8 100 100 100 99.8

1000 5 98.0 97.3 93.6 97.9 99.2 99.1
10 99.5 99.1 98.1 99.7 99.9 99.7
20 99.9 99.8 99.9 100 100 100

3000 5 98.7 99.2 98.0 99.6 99.7 99.5
10 99.9 99.9 100 100 99.9 99.9
20 100 100 100 100 100 100

5000 5 99.6 99.6 99.6 99.9 99.1 99.7
10 100 100 100 100 99.9 100
20 100 100 100 100 100 100

aThe percentage of 53,312 data with a relative error not larger than a given
value.

Table 3 gives the results from the second order expansion in
eq. (32) as the control variate h(x) using eqs. (46) and (47) and
eq. (51) to determine the coefficients {αi

r , β ij
pq, γ ijk

pqr}. The results are
satisfactory and comparable for both the ratio control variate and
correlation methods. The ratio control variate method is a little worse
for output D. The advantage of the ratio control variate method is
that the second- and third-order RS-HDMR expansions can all be
used as the control variate h(x) to accurately determine all the coef-
ficients {αi

r , β ij
pq, γ ijk

pqr} with small sample sizes. Because only one set
of random samples is needed, it is possible to construct truncated
high-order RS-HDMR expansions from small random samples. This
behavior is very attractive for interpolating high-dimensional sys-
tems, especially for cases where large data sets cannot be obtained
easily.

Conclusions

This article showed that a truncated RS-HDMR expansion can act as
a ratio control variate to very efficiently determine the RS-HDMR
component functions. The ratio control variate method is more stable
under iteration than the correlation method. An illustration showed
that both the second- and third-order truncated RS-HDMR expan-
sions can be used as the control variate. Because the asymptotic error
of the ratio control variate method for Monte Carlo integration is pro-
portional to the reciprocal of sample size, the resultant RS-HDMR
approximation can produce satisfactory interpolative accuracy even
for a few hundred samples, which is comparable to that obtained by
direct Monte Carlo integration with thousands of samples.
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