Computer Generation of Poisson Deviates
from Modified Normal Distributions

J. H. AHRENS

University of Kiel, West Germany
and

U. DIETER

Technical University, Austria

Samples from Poisson distributions of mean g = 10 are generated by truncating suitable normal
deviates and applymg a correction with low probability. For p < 10, mversion is substituted. The
method is accurate and it can cope with changing parameters p. Using efficient subprograms for
generating uniform, exponential, and normal deviates, the new algorithm is much faster than all
competing methods.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statistics—
random number generation; statistical software

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Poisson distribution, acceptance-rejection method

1. INTRODUCTION

In 1969 D. E. Knuth proposed the following research problem [8, Sect. 3.4.1, Ex.
22]: “Can the exact Poisson distribution for large p be obtained by generating an
appropriate normal deviate, converting it to an integer in some convenient way,
and applying a (possibly complicated) correction a small percent of the time?”

We are going to solve this exercise for all Poisson distributions with mean p =
10—in the case of smaller u < 10, a simple inversion method is substituted in our
proposed new Algorithm PD.

Since the right-hand tail of a Poisson distribution does not fit under any normal
density, an acceptance-rejection method would have to use a normal “hat”
covering the bulk of the Poisson distribution, and a separate majorizing function
for large arguments. A diploma thesis at Kiel University did not overcome the
technical difficulties of this approach; the good fit of the normal envelope was
upset by tedious initializations and case distinctions.

This research was supported by the Austrian Research Council (Fonds zur Forderung der wissen-
schafthichen Forschung).

Authors’ addresses: J. H. Ahrens, Department of Mathematics, Unmiversity of Kiel, D 2300 Kiel,
Olshausenstrasse 40-60, West Germany; U. Dieter, Institute of Statistics, Technical University, A 8010
Graz, Hamerlinggasse 6, Austria.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice 1s given that copying 1s by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1982 ACM 0098-3500/82/0600-0163 $00.75

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982, Pages 163-179.

164 . J. H. Ahrens and U. Dieter

TRTT y -

ol0 -
------]
k=10 5
- . o
R o m
= <—P‘

------ i i
= I
""" (=8 il
3 4 5 6 7 8 9 0 I 42 I3 44 5 16 I7 -LLLLLl.mm&k
Figure 1

In [5] we dodged the problem by using double exponential hats covering all
binomial and Poisson distributions. The Algorithm BP in [5] leads to constant
computation times for large parameters. For Poisson distributions with poten-
tially variable means pu, this seems to be the most efficient method to date.

However, quite recently we developed a very successful sampling procedure for
gamma distributions [6] in which we modified J. von Neumann’s acceptance-
rejection method. This new approach is now applied to Poisson distributions.

In Figure 1 the case p = 10 is displayed. The probability function p. of the
Poisson distribution is compared with a suitable probability density f» of a
“discrete normal distribution” (dotted lines). The f; are defined as integrals over
equal intervals of the standard normal probability density function. Since Y px
= Y fi = 1, we must expect that p; < f, for some % but p. = f for others. This
situation will not be mended: no scaling factor « > 1 is applied such that p. <
afi becomes true for more k. The f; are not even the best overall discrete normal
approximations to the p,. Instead they are contrived such that p, < f; for all
k<mandp.=f.forallk=m, where m < L =|pu — 1.1484] if p = 10.

The new method starts with a standard normal deviate 7" which is transformed
quickly into a sample K « [p + \/[: T|] from a discrete normal distribution. If
K = L, we know that px = fx and accept K immediately as a Poisson (p) variate
(Case I). Otherwise we perform the usual acceptance-rejection test: a uniform
deviate is compared with px /fx. The caleulations of px (Section 2) and fx (Section
3) are involved, but in most cases they are avoided through a simple squeeze
function (Section 4) zx = px/fx (Case S). The asterisks (+) in Figure 1 depict the
products zx fx, and illustrate the tightness of the squeeze. If the comparison with

ACM Transactions on Mathematical Software, Vol 8, No 2, June 1982.

Computer Generation of Poisson Deviates . 165

oot -

At hit)

0005- P, ~f, -

» =10
.—-—,Q_IOJTIZ 13 14 15 16 17 18 19 20 2l &
T T >

T y T J t |
1=-06744 1=0 t=1 1=18 =2 123 =4

Figure 2

zx does not lead to acceptance, the quotient px/fx has to be worked out; the
probability of still accepting K will be rather small (Case Q).

Whenever K is finally rejected, it must be replaced with a new sample, and this
has to be from the difference distribution whose probability function is propor-
tional to px — fx (K = m). Thus the rejected excess on the left (horizontal shades
in Figure 1) is transformed to the defect on the right (vertical shades) which has
the same area. Sampling from the difference distribution will be carried out by
means of double exponential hats on px — fx (Case H); for p = 10 the hat is
displayed in Figure 2. Fortunately, the resulting more laborious acceptance-
rejection test (Section 5) occurs only rarely: see Table II for the probabilities
P(), P(S), P(Q), and P(H) of the four cases.

Finally, we state the Algorithm PD in the style of Knuth [8] (Section 6), report
computational experience (Section 7), and include a sample computer program
(Section 8). With assembler subprograms for uniform, exponential, and normal
deviates this FORTRAN code returns Poisson variates in about twice the time
required for a single precision logarithm (ALOG, 50 ps)—three ALOG times if
the mean u is continually changing between calls. But the new algorithm is really
designed as part of a machine code sampling package, and our assembler version
of Algorithm PD cuts the time down to 50-70 us, so Poisson sampling becomes
almost as fast as taking one logarithm.

2. POISSON DISTRIBUTIONS

The Poisson (p) probability function is given by
_t L
pk—T k—0,1,2,.... (1)

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982,

166

J. H. Ahrens and U. Dieter

Table I
le]<2x107® le]<2x107° |e]<25x 107"
ap —0.49999999 —0.500000000 —0.5000000002
a 0.33333328 0.333333278 0.3333333343
a —0.25000678 —0.249999856 ~0.2499998565
as 0.20001178 0.200011780 0.1999997049
a, —0.16612694 --0.166684875 —0.1666848753
as 0.14218783 0.142187833 0.1428833286
as —0.13847944 —0.124196313 -0.1241963125
a; 0.12500596 0.125005956 0.1101687109
as —0.114265030 —0.1142650302
as 0.1055093006

Note: ¢ = truncation error.

The p;, are calculated directly from (1) only if % is small. For large & the Stirling
approximation

1 1
| = =5
In k! <k+)mk k+1nJ‘_+12k 3008 T ot Ok @
is used. The resulting expression
1
Pr= exp(k In(1 +v) — (p — k) —9), (3)
" v2rnk
where
p—k 11 1
YT and 0= 15% " 360%° T 1260%° @

is not prone to floating-point overflow. However, if v is small, the rounding errors
of (3) become severe. Therefore, whenever | v]| < 0.25 we expand

EIn(l + v) — (p — k) = kV?

1 v v v .
<—§+§—Z+€—...)_kv¢(v), (5)

and approximate ¢(v) by an economized polynomial

1 v v? ® n
B e T~ J
() 2737173 Eo B ©)

which conforms to the standard precision accuracy of the computer. Coefficients
a, for 7-10 decimal digits accuracy are listed in Table 1.

On our Siemens 7760 computer, with its 24-bit mantissa, the first set of
coefficients a,(n = 7) is sufficient, and (1) is used if 2 < 10 aided by a table of %!
for 0 < % < 9. If £ = 10, the last term 1/(1260£°) of § is smaller than 8 X 1079 so
it can be ignored in (4). For more accurate floating-point arithmetics the third set
of coefficients a,(n = 9) in Table I and the inclusion of the term 1/(1260%°) in (4)
results in truncation errors below 6 x 107 if 2 = 10.

ACM Transactions on Mathematical Software, Vol 8, No 2, June 1982

Computer Generation of Poisson Deviates .« 167

3. DISCRETE NORMAL DISTRIBUTIONS

Since Poisson (g) distributions tend to normal distributions with mean y and
standard deviation s = vj, one can approximate the Poisson probabilities py, in
(1) by the integrals

E—p+1

1 £ 2 t, P
fr= —J2= J exp(— %) dx, where 5 s and s= ~/;_L N
T Je 1

t =8
s

These fi (— © < k < ®) constitute the probability function of a discrete normal
distribution. The Taylor expansions around the midpoints

_t+t kR—p+i

(8)
2 s
may be expressed in terms of Hermite polynomials He, (x). Using
(_1) nz(n)(x)
Hen(x) = ‘—Z(x';———'

[1, 26.2.3], where Z(x) is the standard normal probability density function, we
obtain

x+1/2s 2 o
_ 1 HeZn(x)
fu= 7= f e"p() de=—7= % Fon + D™ ©)

—1/2s
The factors Hez,(x) may be worked out recursively from [1, 22.7.14]:
Heo(x) = 1, Hei(x) = x, Hen+1(x) = xHem(x) ~ mHen_1(x). (10)
Explicitly, (9) reads

fim 1 ex x2 1_|_3£2—1_Lx4—6x2+3
k P 245> ' 1920s°

x8—15x*+45x%— 15
322560s°

+ x5 —28x% 4+ 210x* — 420x% + 105
92897280s°®

—45x% + 630x°® — 3150x* + 3725x 2 —945 1)
40874803200s *° ’

We use as many terms as required for the given precision of the computer. In the
final method there are only two applications of (11). We shall need the quotients
DPr/frin cases p = 10 and K < [p ~ 1.1484]. Second, when p = 10 and pr — f» > 0,
we consider expressions (pr — fz)/h(t), where A(t) is defined as a hat function
majorizing the differences p: — fi. These two quantities are compared with (0, 1)-
uniform deviates, and we have to make sure that their absolute errors are small
enough.

We established numerically (by means of extensive computer-generated error
tables) that the largest errors occur at the smallest mean p = 10. Let & be the
approximation to f, which is obtained by terminating (11) after the 1/s%"-term.

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982.

168 . J. H. Ahrens and U. Dieter

Then

D Dk

s’(2n) = max{ -f: - f—gn—)

Osksu}

and

Pk _fk _pk —f;ezn)
h(t) h(t)

are bounded by their values at p = 10 (for u > 10 they decline steadily):
£(6) < 1.5 X 1071 £'(8) <32 x 1075 £(10) < 4.5 x 1076,
£”(6) < 1.0 X 1078, £”(8) <2.0x 1071 €”(10) < 3.3 x 1074,

Hence for up to 8 digits precision the first two lines of (11) are sufficient, and
we work out £\ in the following way. Whenever the mean p changes, define

e’(2n) = max{

all % for which p. — f. > 0}

1 0.3989422804 & 3
= = ’ b == b = — b2,
RO = s T T
1
C3 = 7 b1 b, ¢z = by — 15¢3, c1 = by — 6bs + 45¢3, (12)

Co = 1- b1 + 3b2 - 1503.
With these coefficients the approximation to f;(x) becomes

2
O (x) = exp(— %—) w(((csx® + c2)x% +) x? + co). (13)

4. COMPARISONS

The Poisson and discrete normal probability functions p, and f. are now com-
pared, and a squeeze function z; < p;/f is established. For the study of

= & = - L = il.q_.li
qr = lnfk Inp,—Inf and qh a5’
k is treated as a continuous variable in accordance with (8):
- +
x=_k__.”l—-'-%=—s+u’ \/._p,=s_
s s

From (1) and (11) we have

qk=—sz+klnsz—1nk!+ln(3\/§;)+—s2—2-(1—k:;%>2
(o042 -3
24 s? s?
1 E+3\' 6 E+31\° 3
+m(<1“?‘) _?(1_ s) +_)+)

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982

Computer Generation of Poisson Deviates . 169

It is easy to verify numerically that ¢o and ¢; are negative within our range

p = 10; even s® = u > 2 suffices. For k = 2 the Stirling approximation (2) to In £!
yields

2 +1\?
qk=—82+s—<1_k—s’2—i) + k

2
(pemE_ Ly L 1
2/ "k 12k 360k 1260k°

1 E+3\ 1
(1 g((1-5) - 3)
+ 1—E+—%4—-6 1—k+%2+3 +
1920 s? §2 s? $)7)
Using t = (k — p)/s = k/s — s, that is, k = s* + st = s*(1 + ¢/s), we obtain

—st+1 t+1 2— s2+st+1 In 1+t - 1 +
el 2 2s 2 S 12(s2 + st)

-1 1+:l t+12—1+ 14
n{ 1+t g (14)

dgx t + 1 1 1
t s 2s? 2(s® + st)

~1In 1+E + 1 -
s 12(s>+st)?
1 1 1\
(e 2o (e) =))
1253 2s 40s 2s
-]
1 1
— =) —1l+...

1
+ —
p=t_ml1+8) + t t 25 L (s™)
e — -— — 0
=3 s) T35 (s + 1) 1250 125
t ¢ t(5s — t) 1
r=4-—Inl1+-)¢+ + +o(s™.
a* {s (s)} 12s%(s + t) 24s* o(s™) (15)

The expression in curly braces is never negative. The second term in (15) is
negative for ¢ < 0 since ¢ > —s, and it is positive for 0 < ¢t < 5s. The case ¢ = 5s
is irrelevant since the second term can dominate the curly bracket only near

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982

170 . J. H. Ahrens and U. Dieter

t = 0. Because of

[A1/ _
G=gg sat e tolT)

{5 ()9

¢ changes sign near

t_3s_3s +2O~—5 and near t=0
T4 g 952" 6s e

Hence g; increases for £ < ¢, it decreases if #; < ¢ < 0 and it increases again for
t > 0. Expanding the logarithm in (14) yields
= st + e LA
B ST T s T 8

I\t ¢ ¢ ¢ 1 £-1
~|s+st+z)l-—-—5+—=-—)|——=—-——+0((1
(s s 2>(s 957 " 357 434) 29 "z TOl) 18

t3
=—+
=557 24s°

2+ 5¢2 = 2tY + 0(s7Y,

and this approximation of gy is zero if

5 AR
T o ——— — -1. = = —_— —_ —
to = @) 128+o(s); ko=p+sto=p (2) 12+0(1). a7

Furthermore, substituting ¢ = 0 into (16), we obtain

1 1 .

r—==—]> = = .

qr (T2~ 1 2M> 0 at t = 0 (corresponding to & =) (18)
The overall behavior of g, is now clear: we have ¢, = 0ift =t <0and ¢. =0

for all ¢ = &, especially if £ > 0. Consequently, there is an integer m(p) such that

Pr < frif k <mbut p; = f; if k = m. For numerical bounds we need a few of the

actual differences pr — fz.

t =—0.94868330 p; — fr = —0.00207455

p = 10.0000 k=17
k=8 t = —0.63245553 Ds — fz = +0.00022884

p=101484 k=7 t=—098830528 p; — f; = —0.00243641
k=8 t=-067439813 ps— fs = +0.00000001
p=101485 k=7 t=-098833180 p,— fy = —0.00243666
k=8 t=—067442619 ps— fs = —0.00000015

These data are reasonably close to the above approximations: at p = 10.1484, eq.
(17), yields # =~ —0.6702 and ko = 8.0133. Now consider g = n + 0.1484, where
n =10, 11, 12, Then & decreases and pu — ko increases in (17), and therefore

ACM Transactions on Mathematical Software, Vol 8, No 2, June 1982

Computer Generation of Poisson Devidtes . 171

we can be certain that
pr>fi if p=10 and k=L=m, where L=|p—11484] (19)

k-
pr<fo if p=10 and t= —-s—ﬁs ~0.6744. (20)

Finally a squeeze function z; < p:/f: is constructed. From ¢; = (¢3/6s) + o(s™),
eq. (16), we conjecture that z; = exp ¢: ~ exp(t®/6s) = 1 + (¢*/6s) will serve the
purpose. Hence we set 2; = 1+ °/Cs, and from (15) we calculate

d P | =de_Lldz_ .1 dz
fr dk 2z dk 9% sz, dt

t ¢ t(5s — t) 3¢ -3
s ln(l * ;) TG sy o™

- {i-ge-n(i+))

t(5s— 1) { t? 3¢?

e e -3
12s3%(s+t) |25 s(Cs+ t3)} +o(s7). @D

Here the first part

t AL 3t 3¢
e —Infl4+<)= (122425~
s 2s° (s) 333< 4s 5s°)

and the middle term are negative if £ < 0 and positive if ¢ > 0. The last part
becomes

_t_2_ 32 £((C—6)s+)
25 s(Cs + t‘°’) 25*(Cs + ¢%)

and for C = 6 this is also an odd function of ¢.

Consequently we replace C with 6 as the best possible constant which guaran-
tees that In(pr/fr) — In 2z, eq. (21), decreases when ¢ < 0. Hence z./(p:r/f:)
increases for negative ¢, but at ¢ = 0 we have z; = 1, p»/fr = exp g1 > 1, eq. (18),
and z:/(pr/f.) is still smaller than 1. Using ¢ = (k — pn)/s, eq. (7), the final squeeze
inequality reads

t3 (k ")3

zk=1+——-=1+-—-———2————<— if t=<0 (correspondingtok=p). (22)
6s 6u fe’

5. THE HAT FUNCTION

In order to achieve a good fit to the Poisson distribution we developed the
discrete versions of normal distributions in Section 3. An alternative would have
been to compare ordinary normal probability densities with “continuous Poisson
distributions,” that is with densities

® -ttx-l

'@

ol'(x, p)

dt.
op

Ylx) =

s where T'(x, p) = f
(1]

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982,

172 . J. H. Ahrens and U. Dieter

Table I
i P P(S) P(Q) P(H) b ¢ cp a a

10 0.736455 0.211282 0.008939 0.043324 1.7958 0.9376 0.1103 1.5097 1.5606
15 0697212 0.260763 0.006848 0.035177 1.7931 0.8535 0.1188 1.4886 1.5693
20 0.672640 0291613 0.005416 0.030332 1.8023 0.7826 0.1279 14759 1.5761
30 0.642500 0.329034 0.003835 0.024631 1.7892 0.8216 0.1199 1.4598 15847
50 0.611351 0.367261 0.002379 0019009 1.7906 07778 0.1243 14382 15906
100 0579260 0406141 0.001213 0013387 1.7875 07500 0.1263 14152 1.5971
200 0.556231 0.433718 0.000607 0.009443 1.7848 0.7425 0.1258 1.3987 16010
500 0.535635 0.458162 0.000242 0.005961 1.7837 0.7234 0.1273 1.3817 1.6040
1000 0.525215 0.470453 0.000121 0.004211 1.7812 0.7273 01257 1.3735 1.6054

We decided against this possibility since Y (x) presented too many numerical
problems. Faced with the task of designing an acceptance-rejection method for
the differences p; — f» > 0 (Case H), we should have been consistent by selecting
a discrete hat as well, for instance, a two-tailed geometric distribution. But this
would have burdened the final algorithm with uncomfortable additional calcula-
tions. So we decided on a continuous double exponential (Laplace) hat A (¢) which
has to majorize the entire histogram of p, — f, > 0, as illustrated in Figure 2
(Section 1) in the case p = 10.

h(t)=c exp<lta:——b—|) =pir— fa if te [

k—u,k p,+1)- 23)
s

The optimum parameters b, o, and ¢ in (23) are the ones that lead to the
smallest areas 2co under the hat. They were determined for many pu by a
complicated search program. The right-hand part of Table II contains some
optimal values of b, g, and cp, resulting in the best possible efficiencies a = 2¢cao/
(s P(H)); a is the expected number of trials before accepting a truncated Laplace
deviate as a sample from the difference distribution proportional to pz — fi. (The
probabilities P(I), P(S), P(Q), and P(H) in the left-hand part of Table II were
obtained after tabulations and summations of the ps, fx, and 2;.)

For the final algorithm we need simple choices of the parameters in (23), and
after some experimentation and timing we settled for b =18 ando=1 (o =1
saves one multiplication). Therefore ¢ had to be determined such that

h(t) =cexp(—|t—18|) = pr ~ fa, if te[k‘:“,k—‘:'-kl) (24)

for all p = 10. Large tables of lower bounds

- por—f) | _
o= maxk{exp(— |t—1.8 |)} =

displayed the same wobbly behavior that is visible in Table II in respect to the
optimum parameters b, ¢, and cp. Because, with changing mean p the critical
outer corners of the staircase in Figure 2 move and change their identities. So the
tightest bound ap = 0.1068446 does not occur at u = 10, but it is the first local
maximum near u = 10.464. Hence ¢ = 0.1069/p satisfies (24) safely for all 2 and
for all ¢ = 10.

ACM Transactions on Mathematical Software, Vol 8, No. 2, June 1982

Computer Generation of Poisson Deviates - 173

The final choices b = 1.8, 6 = 1, and ¢ = 0.1069/p lead to efficiencies & (Table
IT), which are not so good as the optimum values a, particularly when p is large.
But then the probabilities P(H) of the hat case are small and declining. The
expected number & P(H) of hat calculations per sample is always below 6.8
percent.

6. THE ALGORITHM

With the expositions in Sections 1-5 the formal statement of the new Algorithm
PD (below) should be comprehensible. In the main case (A) of medium or large
w = 10 step N creates the discrete normal deviate K = [u + sT] (7), which is
accepted immediately in step I if K = L (19). The squeeze function is employed
in step S: using the (0, 1)-uniform deviate 1 — U (instead of U), 1 — U < zx =
1 + (K — p)*/6p% eq. (22) translates into U = (u — K)*/d, where d = 6p>. If
this fails, K may still be accepted after comparing 1 — U with the quotient px/fx
= p, exXp p./f, exp [, in step Q. The Poisson parts p. and p, are worked out in the
procedure F using (1), (3), (4), where § «— 1/(12K), § « & — 4.88° yields § =
1/(12K) — 1/(360K?), (5) and (6). The discrete normal parts f. and £, in F com-
ply with (13) using the coefficients (12) as precalculated in step P.

If K is finally rejected in step Q, the hat case is entered. The double exponential
deviate T in step E will rarely be below —0.6744, in which case px — fx < 0, eq.
(20), allows us to reject immediately and try again. When T > —0.6744 holds, the
new sample K = |y + sT] requires another application of the procedure F for the
test in step H where rejection is indicated whenever the (0, 1)-uniform deviate
| U] is larger than (px = f2)/h(T), eq. (23), or | U| > (p, exp px — [, exp f:)exp
| T — 1.8], eq. (24), but | T — 1.8] is the original exponential sample E from step
E and ¢ = 0.1069/p is precalculated in step P.

In the case (B) of small means g < 10, table-aided inversion is substituted: the
(0, 1)-uniform deviate U in step U is compared with cumulative Poisson proba-
bilities Px = po + p1 + - -+ + px. These Pk are stored (step C) so that they may
be used again (step T) provided that p has not changed in the meantime. The Pg-
table is useless if the mean p shifts after every sample, but in most simulations
with variable p the changes will occur only from time to time. If U > 0.458
> 0.4579297 = P, (at p = 10), we know that K = [u] will result. Hence, if U >
0.458, the search starts at |p] = M (at 1if p < 1) or at L (current length of the Pk-
table), whichever is smaller.

Algorithm PD
Case A. Input: mean g = 10. Output: Poisson deviate K.

Case A requires Table I (coefficients a,) and a table of 2! (£ =0,1,...,9).
If the mean p is not the same as before, the following three quantities are recalculated:
s «— VI, d < 6u® and L « | — 1.1484] (| - | = floor function).

N (Normal sample). Generate T (standard normal deviate) and set G « p + sT.
If G = 0 set K « |G}. In the rare case G < 0 immediate rejection is indicated: if G <
0 go to P.

I (Immediate acceptance). If K = L return K.

S (Squeeze acceptance). Generate U ((0, 1)-umiform deviate).
If dU = (n — K)® return K.

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982

174 . J. H. Ahrens and U. Dieter

O

(Preparations for @ and H). If the mean u has changed since this step P was carried
out the last time, the following eight quantities are recalculated: w « 1427 /s, by «
(1/24)/p, b2 < (3/10)83, €3 « (1/7)by by, ¢z < by — 15¢3, €1 < by — 6b2 + 45¢3, 9 — 1
— b, + 3b; — 15¢3, and ¢ « 0.1069/p.

If G = 0 apply the procedure F (below) to evaluate p., p, and £, f,.

If G < 0 go to E (skip Q).

(Quotient acceptance). If f,(1 — U) = p, exp(p. — f.) return K.

(Double exponential sample). Generate E (standard exponential deviate) and U
((0, 1)-uniform deviate). Set U« U+ U—1and T < 1.8 + E sgn U.

If T' = —0.6744 this step E has to be restarted. Otherwise set K « |p + sT} and apply
procedure F to evaluate p., p, and f, f,.

(Hat acceptance). If ¢| U] > p, exp(p: + E) ~ f, exp(f. + E) go back to E (reject).
Otherwise return K.

Procedure F.

1. Poisson probabilities px expressed by p. and p, (px = p, exp p:).

Case K < 10: Set p, «— — p and p, « p*/K! using the table of K.

Case K = 10: Prepare § < 1/(12K), 8 «— 8 — 4.86° and V — (u — K)/K. Then p. « K
In(1 + V) — (& — K) — 8. However, if | V| =< 0.25 substitute p. — KV*> = q,V’ — § for
improved accuracy using coefficients a, from Table 1. Finally, set p, <« 1427 /K .

2. Discrete normal probabilities fx expressed by f: and f, (fx = [, exp f).
Set X « (K — p + 0.5)/s, f. « 0.5X%and f, = w(((c3X® +) X* + 1) X*® + ¢).

Case B. Input: mean p < 10, Output: Poisson deviate K.

7.

Case B is treated by table-aided inversion, and space must be provided for the
cumulative probabilities Pr(k =1, 2, .. ., 35 for up to 9 digits accuracy).

If the mean p is not the same as before, initialize the following five quantities: M «
max(l, [p]), L « 0, p « exp(—p), ¢ «~ p, and py < p.

(Uniform sample). Generate U ((0, 1)-uniform deviate). Set K « 0.
If U =< po return K.

(Comparison of U with existing table). If L = 0 (empty table of P:) go to C. Otherwise
set J « 1, but if U > 0.458 set J « min(L, M) (because, if U > 0.458 > P, (at p = 10)
then K will never be below {u]).

For K« J,J+1,...,L do: as soon as U = Pg return K.

If this search is unsuccessful and L = 35 go back to U. (This is a safety measure: 1 —
Py; < 0.2 X 107 for all u < 10, but rounding errors could still cause an infinite loop.)

(Creation of new P and comparison with U). For K <L + 1, L + 2, ..., 35 do: set
p < pu/K, ¢ «— q+ p, Px — q, and as soon as U = ¢ set L « K and return K.
If this research is unsuccessful then L < 35 and go back to U (safety).

COMPUTATIONAL EXPERIENCE

All inequalities and the accuracy of the calculations were checked out on a
Siemens 7760 computer. Several batches of 10,000 Poisson deviates each passed
various statistical tests. The FORTRAN and assembler versions of Algorithm
PD returned identical sets of samples for each choice of y, since the same
assembler subprograms were used:

T = SNORM(IR) (standard normal deviates), 24 ws, Algorithm FL; [3].
E = SEXPO(IR) (standard exponential deviates), 20 ps, Algorithm SA[2].
U = SUNIF(IR) ({0, 1)-uniform deviates), 10 p.s.

ACM Transactions on Mathematical Software, Vol 8, No 2, June 1982.

Computer Generation of Poisson Deviates +« 175

Table I11
® e 1 2 5 10—¢ 10 15 20 30 50 100 10° 10* 10° 10°
FOR FIX 62 77 81 9 108 114 111 111 109 105 101 97 96 95 95
FOR VAR 131 165 190 256 369 174 168 164 160 156 155 149 148 147 148
ASS FIX 36 49 50 56 66 70 67 67 65 61 57 54 52 52 51
ASS VAR 67 109 123 158 215 111 109 106 103 98 97 90 90 89 88

(The parameter IR transmits the current state of our basic generator: IR = IR
X 663608941 (mod 2°%), U = IR/2%. IR is initialized to some integer 4m + 1.)
FORTRAN (FOR) and assembler (ASS) times [jns] in Table III were based on
10,000 samples each for fixed (FIX) and variable (VAR) p; in the latter case, the
means were subject to small random oscillations around the table entries p. In
order to predict the performance of PD on other computers, Table I1I should be
compared with Siemens 7760 times for

Y = SQRT(X): 31-32 ps; Y = EXP(X): 48-51 ps; Y = ALOG(X): 47-51 ps.

The claims at the end of the introduction are based on these comparisons. The
new method is also much faster than the Algorithm BP in [5]; there the Poisson
sampling times stabilized at 390 us (FOR) and 330 ps (ASS) for large parameters
1. We have no reason to compare PD with the older methods in [7] whose
computation times grow with increasing p.

Naturally, the new algorithm is harder to code, and we think that the inclusion
of the FORTRAN FUNCTION KPOISS(IR, A) in Section 8 may be helpful.
Moreover, K. D. Kohrt has designed a package of commented assembler routines
for SUNIF, SEXPO, SNORM, KPOISS, and SGAMMA (Algorithm GD in [6]
for gamma deviates, which is about as fast as PD). These programs will run on all
large IBM and IBM-like machines. Listings are available on request from the
first author at Kiel University.

8. A FORTRAN PROGRAM
FUNCTION KPOISS(IR,MU)
INPUT: IR=CURRENT STATE OF BASIC RANDOM NUMBER GENERATOR

MU=MEAN MU OF THE POISSON DISTRIBUTION
OUTPUT: KPOISS=SAMPLE FROM THE POISSON-(MU)-DISTRIBUTION

aOOOO0

REAL MU, MUPREV, MUOLD

MUPREV=PREVIOUS MU, MUOLD=MU AT LAST EXECUTION OF STEP P OR B.
TABLES: COEFFICIENTS A¢-A7 FOR STEP F. FACTORIALS FACT

[eEe NNl

DIMENSION FACT(1¢), PP(35)

DATA MUPREV,MUOLD /@.,0./

DATA AQ,Al,A2,A3,A4,A5,A6,A7 /-.5,.3333333,~.2500068,
,.2000118,-.1661269, .1421878,-.1384794, .1250069/

DATA FACT /1.,1.,2.,6.,2.,120.,720.,5040.,40320.,362880./

ACM Transactions on Mathematical Software, Vol 8, No. 2, June 1982

176

aQaanon

aoa

e XoNe]

aoaan

[NeNe]

[+ NeXKe]

C

J. H. Ahrens and U. Dieter

SEPARATION OF CASES A AND B

IF (MU .EQ. MUPREV) GO TO 1
IF (MU .LT. 10.9) GO TO 12

CASE A. (RECALCULATION OF S,D,L IF MU HAS CHANGED)

MUPREV=MU

S=SQRT (MU)

D=6 . H*MU*MU
L=IFIX(MU-1.1484)

STEP N. NORMAL SAMPLE ~ SNORM(IR) FOR STANDARD NORMAL DEVIATE

G=MU+S*SNORM(TR)
IF (¢ .LT. ¢.¢) GO TO 2
KPOISS=IFIX(G)

STEP I. IMMEDIATE ACCEPTANCE IF KPOISS IS LARGE ENOUGH
IF (KPOISS .GE. L) RETURN
STEP S. SQUEEZE ACCEPTANCE - SUNIF(IR) FOR (§,1)-SAMPLE U

FK=FLOAT(KPOISS)

DIFMUK=MU-FK

U=SUNIF(IR)

IF (D*U .GE. DIFMUK*DIFMUK*DIFMUK) RETURN

STEP P. PREPARATIONS FOR STEPS Q AND H. (RECALCULATIONS OF
PARAMETERS IF NECESSARY) .3989423=(2*PI)**(-.5)

IF (MU .EQ. MUOLD) GO TO 3
MUOLD=MU
OMEGA=,3989423/S
Bl=.4166667E~1/MU
B2=.3%B1*Bl
C3=.1428571*B1*B2
C2=B2-15.*C3
Cl=Bl-6.%B2+45.*C3
CP=1.-B1+3.*B2-15,*C3
C=.1069/MU

IF (G .LT. 90.0) GO TO 5

"SUBROUTINE" F IS CALLED (KFLAG=¢ FOR CORRECT RETURN)

KFLAG=0
GO TO 7

STEP Q. QUOTIENT ACCEPTANCE (RARE CASE)

4 IF (FY-U*FY .LE. PY*EXP(PX-FX)) RETURN

ACM Transactions on Mathematical Software, Vol 8, No 2, June 1982

e NeNe]

aan e NeNe]

e NrREeNe]

OO0

[eNeNe]

1¢
1

12

Computer Generation of Poisson Deviates . 177

STEP E. EXPONENTIAL SAMPLE - SEXPO(IR) FOR STANDARD EXPONENTIAL
DEVIATE E AND SAMPLING FROM THE LAPLACE HAT

E=SEXPO(IR)

U=SUNIF(IR)

U=U+U-1.0

T=1.8+SIGN(E,U)

IF (T .LE. -.6744) GO TO 5
KPOISS=IFIX(MU+S*T)
FK=FLOAT (KPOISS)
DIFMUK=MU~FK

"SUBROUTINE" F IS CALLED (KFLAG’I FOR CORRECT RETURN)

KFLAG=1
GO TO 7

STEP H. HAT ACCEPTANCE (E IS REPEATED ON REJECTION)

IF (C*ABS(U) .GT. PY*EXP(PX+E)-FY*EXP(FX+E)) GO TO 5
RETURN

STEP F. "SUBROUTINE" F. CALCULATION OF PX,PY,FX,FY.
CASE KPOISS .LT. 1¢ USES FACTORIALS FROM TABLE FACT

IF (KPOISS .GE. 1¢) GO TO 8
PX=-MU

PY=MU**KPOISS/FACT (KPOISS+1)
GO TO 11

CASE KPOISS .GE. 1¢ USES POLYNOMIAL APPROXIMATION
AQ-A7 FOR ACCURACY WHEN ADVISABLE

DEL=.8333333E-1/FK

DEL=DEL-4 .8*DEL*DEL*DEL
V=DIFMUK/FK

IF (ABS(V) .LE. $.25) GO TO 9
PX=FK*ALOG(1.@+V)~-DIFMUK-DEL

GO TO 1¢

PX=FR*V*V* (((((((A7*V4+A6) *V+A5) *¥V4+-AL) #V4+A3) *V+A2) *V4A1) #V+AQ) -DEL
PY=.3989423/SORT(FK)
X=(¢.5-DIFMUK)/S

XX=X*X

FX=-.5%XX
FY=OMEGA* (((C3*XX+C2) *XX+C1) *XX+C0)
IF (KFLAG) 4,4,6

CASE B. (START NEW TABLE AND CALCULATE P$ IF NECESSARY)

MUPREV=0.

IF (MU .EQ. MUOLD) GO TO 13
MUOLD=MU

M=MAX@(1,IFIX(MU))

L=¢

ACM Transactions on Mathematical Software, Vol 8, No. 2, June 1982.

178 . J. H. Ahrens and U. Dieter

P=EXP (-MU)
Q=P
P@=P

STEP U. UNIFORM SAMPLE FOR INVERSION METHOD

[+ XeKe!

13 U=SUNIF(IR)
KPOISS=0
IF (U .LE. P@) RETURN

STEP T. TABLE COMPARISON UNTIL THE END PP(L) OF THE
PP-TABLE OF CUMULATIVE POISSON PROBABILITIES

[eNeNeNe]

IF (L .EQ. @) GO TO 15
J=1
IF (U .GT. 0.458) J=MING(L,M)
DO 14 KPOISS=J,L

14 IF (U .LE. PP(KPOISS)) RETURN
IF (L .EQ. 35) GO TO 12

STEP C. CREATION OF NEW POISSON PROBABILITIES P
AND THEIR CUMULATIVES Q=PP(K)

s NeNe Nl

15 L=L+1
DO 16 KPOISS=L,35
P=P*MU/FLOAT(KPOISS)
Q=Q+P
PP(KPOISS)=Q

16 IF (U .LE. Q) GO TO 17
L=35
GO TO 13

17 L=KPOISS
RETURN
END

Remarks. The FUNCTION KPOISS(IR, MU) is presented with a conversion
to machine code in mind; therefore low-level FORTRAN was chosen. For the
sampling subfunctions SNORM(IR), SEXPO(IR), and SUNIF(IR), compare
Section 7.

The constant 35 in the last part (Case B) corresponds to the dimension PP(35)
of the table P, (steps T, C); it is sufficient for up to 9-digit accuracy. If the
standard precision of the computer is more than 7-8 decimals, the DATA A0, Al,
... may be modified according to the second block in Table I, and some other
constants should be adjusted: 1/v27 = 0.398942280, 1/24 = 0.416666667E—1, 1/7
= (0.142857143, and 1/12 = 0.833333333E-1.

ACKNOWLEDGMENT

The authors wish to express their appreciation and thanks to the reviewers of
this article for their constructive and valuable comments. Furthermore, they
acknowledge stimulating conversations with E. Mayr and K. D. Kohrt.

ACM Transactions on Mathematical Software, Vol 8, No 2, June 1982

Computer Generation of Poisson Deviates . 179

REFERENCES
(Note. Reference [4] 1s not cited in the text.)

1

2.

3

ABRAMOWITZ, M., AND STEGUN, LA, Handbook of Mathematical Functions. Dover, New York,
1972.

AHRENS, J.H., aAND DieTER, U. Computer methods for sampling from the exponential and
normal distributions. Commun. ACM 15, 10(Oct. 1972), 873-882.

AHRENS, J.H., AND DieTER, U. Extension of Forsythe’s method for random sampling from the
normal distribution Math Comput. 27 (1973), 927-937.

. AHRENS, J.H., AND DIETER, U. Computer methods for sampling from gamma, beta, Poisson and

binomial distributions Computing 12 (1974), 223-246.

. AHRENS, J.H., aND DIETER, U. Sampling from binomial and Poisson distributions: A method

with bounded computation times. Computing 25 (1980), 193-208.

. AHRENS, J.H., AND DiETER, U. Generating gamma variates by a modified rejection technique.

Commun. ACM 25,1 (Jan. 1982), 47-54.

. FisuMaN, G.S. Principles of Discrete Event Simulation. Wiley, New York, 1978.
. KNUTH, D.E. The Art of Computer Programmang, Vol. Il: Seminumerical Algorithms. Addison-

Wesley, Reading, Mass., 1969 and 1981

Received March 1981; revised January 1982; accepted February 1982

ACM Transactions on Mathematical Sofiware, Vol. 8, No. 2, June 1982

