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Samples from Poisson distributions of mean # _> 10 are generated by truncating suitable normal 
deviates and applying a correction with low probabdity. For p < 10, inversion is substituted. The  
method is accurate and it can cope with changing parameters p. Using efficient subprograms for 
generating uniform, exponential, alid normal deviates, the new algorithm is much faster than all 
competing methods. 

Categories and Subject Descriptors: G.3 [Ma thema t i c s  of  Comput ing] :  Probability and Statist ics--  
random number generatmn; statistical software 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases: Poisson distribution, acceptance-rejection method 

1. INTRODUCTION 

In 1969 D. E. Knuth proposed the following research problem [8, Sect. 3.4.1, Ex. 
22]: "Can the exact Poisson distribution for large # be obtained by generating an 
appropriate normal deviate, converting it to an integer in some convenient way, 
and applying a {possibly complicated) correction a small percent of the time?" 

We are going to solve this exercise for all Poisson distributions with mean # _ 
10--in the case of smaller # < 10, a simple inversion method is substituted in our 
proposed new Algorithm PD. 

Since the right-hand tail of a Poisson distribution does not fit under any normal 
density, an acceptance-rejection method would have to use a normal "hat"  
covering the bulk of the Poisson distribution, and a separate majorizing function 
for large arguments. A diploma thesis at Kiel University did not overcome the 
technical difficulties of this approach; the good fit of the normal envelope was 
upset by tedious initializations and case distinctions. 
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F i g u r e  1 

In [5] we dodged the problem by using double exponential  hats  covering all 
binomial and Poisson distributions. T h e  Algori thm BP  in [5] leads to constant  
computa t ion  t imes for large parameters .  For  Poisson distributions with poten- 
tially variable means  #, this seems to be the most  efficient me thod  to date. 

However,  quite recent ly  we developed a very  successful sampling procedure  for 
gamma distributions [6] in which we modified J. von Neumann ' s  acceptance-  
reject ion method.  This  new approach is now applied to Poisson distributions. 

In Figure 1 the case # = 10 is displayed. The  probabil i ty function pk of the 
Poisson distr ibution is compared  with a suitable probabil i ty density fk of a 
"discrete normal  distr ibution" (dotted lines). The  fk are defined as integrals over 
equal  intervals of the s tandard normal  probabil i ty density function. Since ~pk  
- ~, fk ffi 1, we must  expect  tha t  pk < fk for some k bu t  pk >- fk for others. This  
s i tuat ion will not  be mended: no scaling factor  a > 1 is applied such tha t  pk < 
ark becomes t rue for more k. T h e  fk are not  even the best  overall discrete normal  
approximations to the pk. Instead they  are contr ived such tha t  pk < fk for all 
k < m andpk  _ fk for all k __ m, where m __ L = [# - 1.1484J i f #  _> 10. 

The  new me thod  starts  with a s tandard normal  deviate T which is t ransformed 
quickly into a sample K ~-- [# + J-#pTJ from a discrete normal  distribution. If  
K __ L, we know tha t  pK -- fK and accept  K immediately as a Poisson (#) variate 
(Case I). Otherwise we perform the usual acceptance-re jec t ion test: a uniform 
deviate is compared  withpK/fK. The  calculations Ofpg (Section 2) and fg (Section 
3) are involved, bu t  in most  cases they  are avoided through a simple squeeze 
function (Section 4) zg <--pg/fK (Case S). T h e  asterisks (*) in Figure 1 depict  the 
products  Zgfg, and illustrate the tightness of the squeeze. If  the comparison with 
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zK does not lead to acceptance, the quo t i en t  P ~ / f g  has to be worked out; the 
probability of still accepting K will be rather small (Case Q). 

Whenever K is finally rejected, it must be replaced with a new sample, and this 
has to be from the difference distribution whose probability function is propor- 
tional to pK - f g ( K  -- m). Thus the rejected excess on the left (horizontal shades 
in Figure 1) is transformed to the defect on the right (vertical shades) which has 
the same area. Sampling from the difference distribution will be carried out by 
means of double exponential h a t s  on pK - fg  (Case H); for # = 10 the hat is 
displayed in Figure 2. Fortunately, the resulting more laborious acceptance- 
rejection test (Section 5) occurs only rarely: see Table II for the probabilities 
P(I), P(S), P(Q), and P(H) of the four cases. 

Finally, we state the Algorithm PD in the style of Knuth [8] (Section 6), report 
computational experience (Section 7), and include a sample computer program 
(Section 8). With assembler subprograms for uniform, exponential, and normal 
deviates this FORTRAN code returns Poisson variates in about twice the time 
required for a single precision logarithm (ALOG, 50 ~s)--three ALOG times if 
the mean # is continually changing between calls. But the new algorithm is really 
designed as part of a machine code sampling package, and our assembler version 
of Algorithm PD cuts the time down to 50-70 ~s, so Poisson sampling becomes 
almost as fast as taking one logarithm. 

2. POISSON DISTRIBUTIONS 

The Poisson (#) probability function is given by 

e-~#k k = O, 1, 2 . . . . .  (1) 
p k -  k! 
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Table I 

l e l < 2 × l O  -a 1~1<2×10 -9 IE1<2.5× 10 -'° 

ao -0.49999999 -0.500000000 -0.5000000002 

a,  0.33333328 0.333333278 0.3333333343 

a2 -0.25000678 -0.249999856 -0.2499998565 
a3 0.20001178 0.200011780 0.1999997049 

a4 -0.16612694 -0.166684875 -0.1666848753 
a5 0.14218783 0.142187833 0.1428833286 
aG -0.13847944 -0.124196313 -0.1241963125 
a7 0.12500596 0.125005956 0.1101687109 

as -0.114265030 -0.1142650302 

a9 0.1055093006 

Note: e -- t runca t ion  error. 

T h e  pk are  calculated direct ly f rom (1) only if k is small. For  large k the  Stirling 
approx imat ion  

ln k ! = ( k + 2 ) ln k - k + ln d 2-~ + - -  
1 1 1 

- -  + - -  + o ( k - 5 )  (2 )  
12k 360k 3 1260k ~ 

is used. T h e  result ing expression 

1 
ph -- , / ~  exp(k  In(1 + v) - (# - k)  - 6), (3) 

where  

# - k  1 1 1 
k and  6 = 12---k 360k 3 t 1260k 5, (4) 

is not  p rone  to f loat ing-point  overflow. However ,  if  v is small, the  rounding errors  
of  (3) become  severe. Therefore ,  whenever  I v I - 0.25 we expand 

k ln(l  + v) - (# - k) = kv2(  l v v2 v8 ) 
- ~ + 5 - 7 + ~ . . . . .  kv2~'(v)' 

and approx ima te  q,(v) by  an  economized polynomial  

(5) 

1 V - -  V 2 V 3  
~(v)  f f i ~ + . 5  ---~ + -~ . . .  ~ ~ ajv J, 

J--0 
(6) 

which conforms to the  s tandard  precision accuracy  of the  computer .  Coefficients 
a~ for 7-10 decimal  digits accuracy are listed in Tab le  I. 

On our  Siemens  7760 computer ,  wi th  its 24-bit mantissa,  the  first set  of  
coefficients aj(n -- 7) is sufficient, and  (1) is used if k < 10 aided by  a table  of  k! 
for 0 ~ k _< 9. I f  k >_ 10, the  last  t e rm  1/(1260k 5) of  3 is smaller  t han  8 × 10-9; so 
it  can be ignored in (4). For  more  accura te  f loat ing-point  a r i thmet ics  the  third set  
of  coefficients aj (n  = 9) in Tab l e  I and the  inclusion of the  t e r m  1/(1260k 5) in (4) 
resul ts  in t runca t ion  errors  below 6 × 10 - ' °  if k __ 10. 

ACM TransacUons on Mathematmal Software, Vol 8, No 2, June 1982 



Computer Generation of Poisson Deviates • 167 

3. DISCRETE NORMAL DISTRIBUTIONS 

Since  Po i sson  (#) d is t r ibut ions  t end  to  n o r m a l  d is t r ibut ions  wi th  m e a n  # and  
s t a n d a r d  dev ia t ion  s = ~/'~, one  can  app rox im a te  the  Po i s son  probabi l i t ies  ph in  
(1) by  the  in tegrals  

1 t' t '  k - # + l  

~ f t  ( - ~ )  = s and  s=ur~. (7) fk = exp -- dx, where  k - # 

t - 
s 

T h e s e  fk ( -  ~ < k < oo) cons t i tu te  the  probabi l i ty  func t ion  o f  a discrete normal 
distribution. T h e  T a y l o r  expans ions  a r o u n d  the  midpo in t s  

t +.t' k - t L + ½  
x -  = ( 8 )  

2 s 

m a y  be expressed  in t e rms  of  H e r m i t e  po lynomia l s  Hen (x). Us ing  

( - 1 )  nZ(n)(X) 
Hen(X) = 

Z(x) 

[1, 26.2.3], where  Z(x) is t he  s t a n d a r d  n o r m a l  p robab i l i ty  dens i ty  funct ion,  we 
ob ta in  

1(  x+l/2s ( ~.~) 1 n~0 H e 2 n ( x )  
-- exp - d~ - (9) 

fk ~ ~x-~/2, s~]~  = 22n( 2n + 1) !s~n" 

T h e  fac tors  He2n(X) m a y  be worked  ou t  recurs ive ly  f r o m  [1, 22.7.14]: 

Heo(x) = 1, H e d x )  = x, He~+dx)  = xHem(x)  - m H e = - l ( x ) .  (10) 

Explici t ly,  (9) r eads  

( x4ox +  
1 - -2" + ~ + 1920s 4 fk = ~ - - ~  exp 1 

x 6 - 15x 4 + 45x 2 - 15 
4 

322560s 6 

x s - 28x 6 + 210x 4 - 420x 2 + 105 
+ 

92897280s s 

x w - 45x s + 630x 6 - 3150x 4 + 3725x 2 - 945 \ 

+ 40874803200s lO + . . . .  ) (11) 

W e  use as  m a n y  t e rms  as requi red  for  the  given precis ion of  the  compute r .  I n  the  
final m e t h o d  the re  are  on ly  two appl ica t ions  o f  (11). W e  shal l  need  t he  quo t i en t s  
pk/fk in cases  # ----- 10 and  K <  L# - 1.1484J. Second,  w h e n  g¢ _ 10 a n d p k  - fk > 0, 
we  cons ider  express ions  (ph - fD/h( t ) ,  where  h(t) is def ined as a h a t  func t ion  
major iz ing  the  differences pk - fk. T h e s e  two quant i t i es  are  c o m p a r e d  wi th  (0, 1)- 
un i fo rm deviates ,  and  we have  to  m a k e  sure  t h a t  the i r  abso lu te  e r rors  are  smal l  
enough.  

We  es tab l i shed  numer ica l ly  (by m e a n s  o f  extens ive  c o m p u t e r - g e n e r a t e d  e r ro r  
tables)  t h a t  t he  larges t  e r rors  occur  a t  t he  smal les t  m e a n  ~t -- 10. L e t  f(2n) be  t h e  
a p p r o x i m a t i o n  to  f~ wh ich  is ob t a ined  by  t e rming t ing  (11) af ter  the  1/s2n-term. 
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Then  

and 
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f(k2.) 0<_k_<~ 

I } e"(2n) = max h ( t )  ~ ( ( ~  al l  k for whichpk - h > 0 

are bounded by their values at # -- 10 (for # > 10 they decline steadily): 

e'(6) < 1.5 x 10 -l°, e'(8) < 3.2 x 10 -13, e'(10) < 4.5 x 10 -16, 

e"(6) < 1.0 x 10 -8, g'(8) < 2.0 X 10 -11, e"(10) < 3.3 x 10 -14. 

Hence for up to 8 digits precision the first two lines of (11) are sufficient, and 
we work out f(k 6) in the following way. Whenever the mean # changes, define 

1 0.3989422804 .2 

bl b2 ~0 b~, 
~=s42~r~ s # 
1 

c3 = -~ bib2, c2 = b2 - 15c3, cl - bl - 6b2 + 45c3, (12) 

Co = 1 - bl + 3b2 - 15c3. 

With these coefficients the approximation to fk (x) becomes 

f(k6)(x) --- e x p ( - ~ ) ~ ( ( ( c ~ x 2 + c 2 ) x ~ +  o ) x 2  + Co). (13) 

4. COMPARISONS 

The  Poisson and discrete normal probability functions pk and fk are now com- 
pared, and a squeeze function zk < - p k / f k  is established. For the study of 

dqk  
qk = In pkfk = In pk - In fk and q'k - d k  

k is treated as a continuous variable in accordance with (8): 

k - # + ½  k+½ 
X---- - -  'S + - - ,  ~ - - - -  S. 

S S 

From (1) and (11) we have 

s,( 
q k = - s  2 + k l n s  2 - 1 n k ! + l n ( s  2q~)+--ff  1 -  s2 

( 1 ( (  k + ½ f  1 )  
- in  l + g  i 1 ~ - ~  

1 ( ( k + ½ )  4 6 ( k__+~ 2 3 )  ) 
+ 1 - ~  1- s2 - ~  1 s2 ] + ~  + . . . .  
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It  is easy to verify numerically that  qo and q, are negative within our range 
# _ 10; even s 2 = ~ > 2 suffices. For k >_ 2 the Stirling approximation (2) to In k! 
yields 

s 2( k+½~ 
q k f  - s 2  +-~  1 -  s2 ] + k 

( 1) s 2 1  1 1 
+ k + In k 12----k + 360k ------~ 1260k ~ -F . . .  

ln(1+1((  
1 ( (  k+½~ 4 6 ( k + ½ )  2 3 )  ) 

+19-20 1 -  s2 ] - ~  1 -  s2 +~-~ + . . . .  

Using t -- (k - # ) / s  -- k / s  - s, tha t  is, k = s 2 + st ffi s2(1 + t /s) ,  we obtain 

1( 1)2( 
q k f s t + ~  t + ~ s  - s 2 

1 
+ s t +  In 1 +  - 1 2 ( s  e + s t )  + . . .  

- l n ( l + 2 T s 2 ( ( t + ~ s ) 2 - 1 )  + ' ' * )  (14) 

1 dqk t 1 1 
q'k-- s d--~- - 1 + -  + - 1 -  s ~ s  2 2(s 2 + st) 

( ! )  1 
- In 1 + + 12(s 2 + st)2 

12sa(t+1)(l+4~--~((t+l)2--3) + " " )  

(1  + 2-~s2((t  + 1 ) 2 -  1)  + " ' - )  

q'k= t - - I n  1 +  + 
s 

1 
t + - -  

t 2s 1 
2s2(s + t) 12s -------5- + ~ + o(s-4) 

( t , s s t ) + i  
q~ -- - In 1 + + 12s3(s + t) 2-~s 4 + °(s-4) " (15) 

The  expression in curly braces is never  negative. The  second te rm in (15) is 
negative for t < 0 since t > - s ,  and it is positive for 0 < t < 5s. The  case t >_ 5s 
is irrelevant since the second te rm can dominate the  curly bracket  only near  
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t = 0. B e c a u s e  o f  

q ~ = - - -  

q l  c h a n g e s  s ign  n e a r  

t 2 t 3 5t 
282 38---- 5 + ~ + 0 (S -a) 

: - - -~( ( t -3 - - : : )2 - ( (3- - : : )2+5))+o(s -3) ,  

3s 3s I 2O 5 
~ / 1  + a n d  n e a r  t2 -- 0. 

tl  =- -4- - -4 - ~ s  2 =  -6 - - s  

H e n c e  qk i n c r e a s e s  for  t < tl, i t  d e c r e a s e s  if  t l  < t < 0 a n d  i t  i n c r e a s e s  a g a i n  for  
t > 0. E x p a n d i n g  t h e  l o g a r i t h m  i n  (14) y i e l d s  

t 2 t 1 

qk = st + -~ + ~s + 8s --~ 

( i)(t 
- s +st+  

t 3 t 4 \ 1 t 2 - 1 

3s  3 4 ~ )  12s 2 24s  - - - ~  + o (s  -2) (16) 

t 3 1 
qk -- ~ss + ~ (2 + 5 t  2 - 2 t  4) + o (s-2) ,  

a n d  t h i s  a p p r o x i m a t i o n  of  qk is zero  i f  

1 5 (_~) 1/3 5 
to -- - (2s)1/a - 12---s + ° ( s - l ) ;  ko = tt + sto -- tt - - + o(1) .  (17) 

F u r t h e r m o r e ,  s u b s t i t u t i n g  t -- 0 i n t o  (16), we  o b t a i n  

(.  1 1 ) > 0  at t = O (corresponding to k = #). (18) 
qk = 12-s e - -  12# 

T h e  o v e r a l l  b e h a v i o r  of  qk is n o w  c lear :  we  h a v e  qk -< 0 if  t __ to < 0 a n d  qk -> 0 
for  a l l  t >__ to, e s p e c i a l l y  i f  t > 0. C o n s e q u e n t l y ,  t h e r e  is a n  i n t e g e r  m ( t t )  s u c h  t h a t  
pk  < fk i f  k < m b u t  pk  - fk if  k __ m.  F o r  n u m e r i c a l  b o u n d s  we  n e e d  a few of  t h e  

a c t u a l  d i f f e r e n c e s  pk  - fh. 

g = 10.0000 k = 7 t = - 0 . 9 4 8 6 8 3 3 0  
k = 8 t = - 0 . 6 3 2 4 5 5 5 3  

p7 - ~ = - 0 . 0 0 2 0 7 4 5 5  
Ps  - ~ = +0 .00022884  

tt = 10.1484 k = 7 t - -  - 0 . 9 8 8 3 0 5 2 8  
k - 8 t =- - 0 . 6 7 4 3 9 8 1 3  

pv - f7 -- - 0 . 0 0 2 4 3 6 4 1  
p s  - fs = +0 .00000001 

g -- 10.1485 k = 7 t = - 0 . 9 8 8 3 3 1 8 0  p7 - f7 = - 0 . 0 0 2 4 3 6 6 6  
k = 8 t -- - 0 . 6 7 4 4 2 6 1 9  p s  - fs -- - 0 . 0 0 0 0 0 0 1 5  

T h e s e  d a t a  a r e  r e a s o n a b l y  c lose  to  t h e  a b o v e  a p p r o x i m a t i o n s :  a t  tt = 10.1484, eq.  
(17), y i e l d s  to ~ - 0 . 6 7 0 2  a n d  ko ~ 8.0133. N o w  c o n s i d e r  # = n + 0.1484, w h e r e  
n = 10, 11, 1 2 , . . . .  T h e n  to d e c r e a s e s  a n d  # - ko i n c r e a s e s  i n  (17), a n d  t h e r e f o r e  
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we can be cer tain tha t  

pk > fk if ~t >_ 10 and k _> L > m, where L -- L# - 1.1484J (19) 

k - #  
p k < f k  if /~-->10 and t =  _<-0.6744. (20) 

S 

Finally a squeeze function zk <_ pk/fk is constructed.  F rom qk ffi (ta/6s) + o (s-~), 
eq. (16), we conjecture  t ha t  Zk ~ exp qk ~ exp(ta/6S) ~ 1 + (ta/6S) will serve the  
purpose.  Hence  we set  Zk ffi 1+ t3/Cs, and f rom (15) we calculate 

d In - In zk ffi - q 
dk dk Zk elk szk d t  

t ,os_ t ,  
t In 1 + + 12sa(s + t) s 

Here  the  first pa r t  

t 

s 

3t ~ 
s(Cs + t 8) 

o (s -3) 

t (5s - -  t) { t2 3t2 } 
4 12Sa(S+t )  b ~S 2 s ( C s + t  ~) +°(s-8)" (21) 

) 2s ~ ~ 1 +  =yTs ~ 1 - ~ s + ~  . . . .  

and the  middle  t e r m  are negat ive if t < 0 and posit ive if t > 0. T h e  last  pa r t  
becomes  

t 2 3t  z t2((C - 6)s + t 3) 

2s 2 s(Cs + t 3) 2s2(Cs + t 3) ' 

and for C = 6 this is also an odd function of t. 
Consequent ly  we replace C with 6 as the  best  possible cons tant  which guaran-  

tees t ha t  ln(pk/fk) -- In Zk, eq. (21), decreases when  t < 0. Hence  zk/(p~/fD 
increases for negat ive t, bu t  a t  t = 0 we have  Zk = 1, pk/fk ffi exp qk > 1, eq. (18), 
and Zk/(pk/fk) is still smaller  than  1. Using t = (k - p)/s,  eq. (7), the  final squeeze 
inequal i ty  reads  

t 3 (k - #)a < pk 0 (corresponding to k < #). (22) Z k f l + ~ s = I +  6/~ 2 -- fk ' if t - -  

5. THE HAT FUNCTION 

In  order  to achieve a good fit to the  Poisson distr ibution we developed the  
discrete versions of  normal  distr ibutions in Sect ion 3. An al ternat ive would have  
been to compare  ord inary  normal  probabi l i ty  densities with "cont inuous  Poisson 
distr ibutions,"  tha t  is with densities 

fo ~ e-tt  x-x OF(x, tt______~) where F(x,/~) = - -  dt. 
~ ( x ) -  0~ ' r ( t )  

ACM Transachons on Mathematical Software, Vol. 8, No. 2, June 1982. 
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Table II 

# P(I) P(S) P(Q) P(H) b o c# a 

10 0.736455 0.211282 0.008939 0.043324 1.7958 0.9376 0.1103 1.5097 1.5606 
15 0 697212 0.260763 0.006848 0.035177 1.7931 0.8535 0.1188 1.4886 1.5693 
20 0.672640 0.291613 0.005416 0.030332 1.8023 0.7826 0.1279 1.4759 1.5761 
30 0.642500 0.329034 0.003835 0.024631 1.7892 0.8216 0.1199 1.4598 1 5847 
50 0.611351 0.367261 0.002379 0 019009 1.7906 0 7778 0.1243 1 4382 1 5906 

100 0 579260 0 406141 0.001213 0 013387 1.7875 0 7500 0.1263 1 4152 1.5971 
200 0.556231 0.433718 0.000607 0.009443 1.7848 0.7425 0.1258 1.3987 1 6010 
500 0.535635 0.458162 0.000242 0.005961 1.7837 0.7234 0.1273 1.3817 1.6040 

1000 0.525215 0.470453 0.000121 0.004211 1.7812 0.7273 0 1257 1.3735 1.6054 

We decided against this possibility since ~b(x) presented too many  numerical  
problems. Faced with the task of designing an acceptance-re jec t ion  me thod  for 
the differences pk - fk > 0 (Case H), we should have been consistent by  selecting 
a discrete ha t  as well, for instance, a two-tailed geometric distribution. Bu t  this 
would have burdened  the final a lgori thm with uncomfortable  additional calcula- 
tions. So we decided on a cont inuous double exponential  (Laplace) ha t  h(t) which 
has to majorize the ent ire  histogram of pk - fk > 0, as i l lustrated in Figure 2 
(Section 1) in the  case/Z --- 10. 

cex (., t = - -  ---- pk -- /k, i f  t E  . ( 2 3 )  
T ' S 

The  op t imum parameters  b, a, and c in (23) are the ones tha t  lead to the 
smallest  areas 2co under  the hat.  T h e y  were de termined for many  /Z by a 
complicated search program. T h e  r ight-hand par t  of Table  II contains some 
opt imal  values of b, o, and c/z, resulting in the  best  possible efficiencies a = 2co/ 
(s P(H));  a is the expected number  of trials before accepting a t runcated  Laplace 
deviate as a sample from the difference distribution proport ional  to pk - f,. (The 
probabili t ies P(I),  P(S),  P(Q), and P(H)  in the left-hand par t  of Table  II were 
obta ined after  tabulat ions and summat ions  of the pk, fk, and zk.) 

For  the final algori thm we need simple choices of the parameters  in (23), and 
after  some experimentat ion and timing we sett led for b = 1.8 and o = 1 (o = 1 
saves one multiplication). Therefore  c had to be de termined such tha t  

h(t)=cexp(-]t-l.8[)>__p~-f~, if t~[  k-/zs 'k-/z+s 1.) (24) 

for all/Z -- 10. Large tables of lower bounds 

( /Z(Pk-- fD } < e/z 
a/z = maxk e x p ( -  I t -- 1.8 ]) -- 

displayed the same wobbly behavior  tha t  is visible in Table  II in respect  to the 
op t imum parameters  b, o, and c/z. Because, with changing mean/Z the critical 
outer  corners of the staircase in Figure 2 move and change their  identities. So the 
t ightest  bound a/z = 0.1068446 does not  occur at/Z -- 10, but  it is the first local 
maximum near/Z = 10.464. Hence c = 0.1069/# satisfies (24) safely for all k and 
for all/Z _> 10. 
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The  final choices b = 1.8, a = 1, and c = 0.1069/g lead to efficiencies ~ (Table 
II), which are not  so good as the opt imum values a, part icularly when / t  is large. 
But  then  the probabilities P(H) of the hat  case are small and declining. The  
expected number  & P(H)  of ha t  calculations per sample is always below 6.8 
percent.  

6. THE ALGORITHM 

With the expositions in Sections 1-5 the formal s ta tement  of the new Algorithm 
PD (below) should be comprehensible.  In the main case (A) of medium or large 
Ix -> 10 step N creates the discrete normal  deviate K = l# + s T J  (7), which is 
accepted immediately in step I if K _> L {19). The  squeeze function is employed 
in step S: using the (0, 1)-uniform deviate 1 - U (instead of U), 1 - U < ZK = 
1 + (K - #)3/6#2, eq. (22) translates into U >_ (# - K)3 /d ,  where d = 6# ~. If 
this fails, K may  still be accepted after  comparing 1 - U with the quot ient  P g / f g  
---- py exp px/fy  exp fx in step Q. The  Poisson parts  px and py are worked out  in the 
procedure  F using (1), (3), (4), where ~ ,-- 1/(12K), ~ (-- ~ - 4.883 yields ~ = 
1/(12K) - 1/(360K3), (5) and (6). The  discrete normal  par ts  fx and f~ in F com- 
ply with (13) using the coefficients (12) as precalculated in step P. 

If K is finally rejected in step Q, the hat  case is entered.  The  double exponential  
deviate T in step E will rarely be below -0.6744, in which case pK -- fg  < 0, eq. 
(20), allows us to reject  immediately and t ry  again. When  T > -0.6744 holds, the 
new sample K = [# + sTJ requires another  application of the procedure  F for the 
test  in step H where rejection is indicated whenever  the C0, D-uniform deviate 
[ U[ is larger than  ( p K  - -  h ) / h ( T ) ,  eq. (23), or c[ U[ > (p~ exppx  - f~ exp fx)exp 
[ T - 1.8 I, eq. (24), but  I T - 1.8 ] is the original exponential  sample E f rom step 
E and c = 0.1069//z is precalculated in step P. 

In the case (B) of small means  # < 10, table-aided inversion is substituted: the 
(0, 1)-uniform deviate U in step U is compared with cumulat ive Poisson proba- 
bilities PK = po + p l  + " "  + pK. These  PK are stored (step C) so tha t  they  may  
be used again {step T) provided tha t  tt has not  changed in the meantime.  T h e  Pg-  
table is useless if the mean  g shifts after  every sample, bu t  in most  simulations 
with variable # the changes will occur only from t ime to time. If  U > 0.458 
> 0.4579297 = P9 Cat # = 10), we know tha t  K _ [#J will result. Hence,  if U > 
0.458, the search starts at  [ttJ = M (at 1 i fg  < 1) or at L (current  length of the Pg-  
table), whichever is smaller. 

Algorithm PD 

Case A. Input: mean/z >_ 10. Output: Poisson deviate K. 

Case A requires Table I (coefficients a,) and a table of k! (k = 0, 1 . . . . .  9). 
If the mean/z is not the same as before, the following three quantities are recalculated: 
s ~-- 4~, d ~-- 6g ~, and L *- [g - 1.1484J (/.J = floor function). 

N (Normal sample). Generate T (standard normal deviate) and set G ~ # + sT. 
If G _> 0 set K ~-- [GJ. In the rare case G < 0 immediate rejection is indicated: if G < 
0 go to P. 

I (Immediate acceptance). If K __ L return K. 

S (Squeeze acceptance). Generate U ((0, D-uniform deviate). 
If d U  >_ (It - K) 3 return K. 
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P (Preparations for Q and H).  If  the mean 9 has changed since this step P was carried 
out  the last time, the following eight quanti t ies are recalculated: w ~-- 1/~2~r/s, bl 
(1/24)//~, b2 ~ (3/10)b~, c3 *-- (1/7)blb2, c2 ~-- b2 - 15c3, c~ *-- bi - 6b2 + 45c3, Co ~ 1 
- b] + 3b2 - 15c3, and c *-- 0.1069/~. 
If  G - 0 apply  the  procedure F (below) to evaluate px, py and fx, fy. 
If  G < 0 go to E (skip Q). 

Q (Quotient acceptance). Iffy(1 - U) _< py exp(px - fx) re turn K. 

E (Double exponential  sample). Generate  E (standard exponential  deviate) and U 
((0, D-uniform deviate). Set  U ,~- U + U - 1 and T (-- 1.8 + E sgn U. 
If  T ~ -0.6744 this step E has to be restarted.  Otherwise set K <-- [~ + sTJ and apply 
procedure F to evaluate px, py and fx, f v. 

H (Hat acceptance). If  c[ U[ > p ~  exp(p~ + E)  - fy exp(fx + E)  go back to E (reject). 
Otherwise re turn K. 

F Procedure F. 

1. Poisson probabil i t ies pk expressed by px and py (pK ffi Py exp px). 
Case K < 10: Se tpx  ~-- - # andpy  <--I~K/K! using the table of K!. 
Case K _ 10: Prepare  6 (-- 1/(12K), 8 *-- 6 - 4.863 and V <-- (~ - K ) / K .  Thenp~  <-- K 
In(1 + V) - (~ - K) - 6. However, if[  V[ ~ 0.25 subs t i tu tepx <-- K V  2 F, a~V J - ~ for 
improved accuracy using coefficients aj from Table  I. Finally, se tpy  <-- 1 / ~ / J - K .  

2. Discrete normal  probabil i t ies fK expressed by f~ and fy (fK = fy exp f~). 
Set  X <-- (K - # + 0.5)/s, f~ <-- 0.5X 2 and fy = o~(((caX 2 + c2)X 2 + cl)X + co). 

Case B. Input:  mean  ~ < 10. Output:  Poisson deviate K. 

Case B is t reated by table-aided inversion, and space must  be provided for the  
cumulative probabil i t ies Pk(k -- 1, 2 . . . . .  35 for up to 9 digits accuracy). 
I f  the  mean # is not  the  same as before, initialize the  following five quantities: M (-- 
max(I ,  [pJ), L (---0,p (---exp(-#) ,  q (--p,  andp0  (---p. 

U (Uniform sample). Generate  U ((0, D-uniform deviate). Set  K (-- 0. 
If  U ~- po re turn  K. 

T (Comparison o f  U with existing table). If  L = 0 (empty table of PD go to C. Otherwise 
set J (-- 1, but  if U > 0.458 set J (--- rain(L, M)  (because, ff U > 0.458 > Po (at # = 10) 
then K will never be below lpJ). 
For  K (-- J ,  J + 1 . . . . .  L do: as soon as U -< PK re turn  K. 
If  this search is unsuccessful and L = 35 go back to U. (This is a safety measure: 1 - 
P35 < 0.2 x 10 -9 for all p < 10, but  rounding errors could still cause an infinite loop.) 

C (Creation o f  new Pk and comparison with U). For  K (--- L + 1, L + 2 . . . . .  35 do: set 
p ( - -p# /K,  q (-- q + p, PK (--- q, and as soon as U <_ q set L (-- K and return K. 
If  this research is unsuccessful then L (-- 35 and go back to U (safety). 

7. COMPUTATIONAL EXPERIENCE 

Al l  i n e q u a l i t i e s  a n d  t h e  a c c u r a c y  o f  t h e  c a l c u l a t i o n s  we re  c h e c k e d  o u t  on  a 
S i e m e n s  7760 c o m p u t e r .  S e v e r a l  b a t c h e s  o f  10,000 P o i s s o n  d e v i a t e s  e a c h  p a s s e d  
v a r i o u s  s t a t i s t i c a l  t es t s .  T h e  F O R T R A N  a n d  a s s e m b l e r  v e r s i o n s  o f  A l g o r i t h m  
P D  r e t u r n e d  i d e n t i c a l  s e t s  o f  s a m p l e s  for  e a c h  cho ice  of /L,  s ince  t h e  s a m e  
a s s e m b l e r  s u b p r o g r a m s  w e r e  used :  

T = SNORM(IR)  (standard normal  deviates), 24 ~ts, Algori thm FL5 [3]. 

E = SEXPO(IR)  (standard exponential  deviates), 20 ~s,  Algori thm SA [2]. 

U = SUNIF(IR)  ((0, D-uniform deviates), 10 tLs. 
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Table III 

• 175 

e 1 2 5 10 - e 10 15 20 30 50 100 103 104 I0 ~ 106 

FOR FIX 62 77 81 90 108 114 111 111 109 105 101 97 96 95 95 
FOR VAR 131 165 190 256 369 174 168 164 160 156 155 149 148 147 148 

ASS FIX 36 49 50 56 66 70 67 67 65 61 57 54 52 52 51 
ASS VAR 67 109 123 158 215 111 109 106 103 98 97 90 90 89 88 

(The parameter IR transmits the current state of our basic generator: IR ffi IR 
x 663608941 (mod 232), U = IR/232. IR is initialized to some integer 4m + 1.) 
FORTRAN (FOR) and assembler (ASS) times [l~s] in Table III were based on 
10,000 samples each for fixed (FIX) and variable (VAR) #; in the latter case, the 
means were subject to small random oscillations around the table entries #. In 
order to predict the performance of PD on other computers, Table III should be 
compared with Siemens 7760 times for 

Y = SQRT(X): 31-32 i~s; Y = EXP(X): 48-51 ixs; Y ffi ALOG(X): 47-51 i~s. 

The claims at the end of the introduction are based on these comparisons. The 
new method is also much faster than the Algorithm BP in [5]: there the Poisson 
sampling times stabilized at 390 I~S (FOR) and 330 I~s (ASS) for large parameters 
#. We have no reason to compare PD with the older methods in [7] whose 
computation times grow with increasing #. 

Naturally, the new algorithm is harder to code, and we think that  the inclusion 
of the FORTRAN FUNCTION KPOISS(IR, A) in Section 8 may be helpful. 
Moreover, K. D. Kohrt  has designed a package of commented assembler routines 
for SUNIF, SEXPO, SNORM, KPOISS, and SGAMMA (Algorithm GD in [6] 
for gamma deviates, which is about as fast as PD). These programs will run on all 
large IBM and IBM-like machines. Listings are available on request from the 
first author at Kiel University. 

8. A FORTRAN PROGRAM 

FUNCTION KPOISS(IR,MU) 
C 
C INPUT: 
C 
C OUTPUT: 
C 

IR=CURRENT STATE OF BASIC RANDOMNIYMBER GENERATOR 
MU=MEAN MU OF THE POISSON DISTRIBUTION 
KPOISS=SAMPLE FROM THE POISSON-(MU)-DISTRIBUTION 

REAL MU, MUPREV, MUOLD 

MUPREV=PREVIOUS MU, MUOLD=MU AT LAST EXECUTION OF STEP P OR B. 
TABLES: COEFFICIENTS A@-A7 FOR STEP F. FACTORIALS FACT 

DIMENSION FACT(l@), PP(35) 
DATA MUPREV,MUOLD /@.,@./ 
DATA A@,AI,A2,A3,A4,AS,A6,A7 /-.5,.3333333,-.250@@68, 
,.2@@@i18,-.1661269,.1421878,-.1384794,.125~@6@/ 
DATA FACT /i.,i.,2.,6.,2.,12@.,72@.,5~4@.,4~32~.,36288~./ 
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C 
C 
C 

C 
C 
C 

SEPARATION OF CASES A AND B 

I F  (MU .EQ. MUPREV) GO TO 1 
IF (MU .LT. I@.¢) GO TO 12 

C A S E A. (RECALCULATION OF S,D,L IF MU HAS CHANGED) 

MUPREV=MU 
S=SQRT(MU) 
D-6.@*MU*MU 
L-IFIX(MU-I.1484) 

STEP N. NORMAL SAMPLE - SNORM(IR) FOR STANDARD NORMAL DEVIATE 

G=MU+S*SNORM(IR) 
IF (G .LT. @.~) GO TO 2 
KPOISS-IFIX(G) 

STEP I. IMMEDIATE ACCEPTANCE IF KPOISS IS LARGE ENOUGH 

IF (KPOISS .GE. L) RETURN 

STEP S. SQUEEZE ACCEPTANCE - SUNIF(IR) FOR (@,1)-SAMPLE U 

FK=FLOAT (KPOISS) 
DIFMUK=MU-FK 
U,,SUNIF (IR) 
IF (D*U .GE. DIFMUK*DIFMUK*DIFMUK) RETURN 

STEP P. PREPARATIONS FOR STEPS Q AND H. (RECALCULATIONS OF 
PARAMETERS IF NECESSARY) .3989423=(2"PI)**(-.5) 

2 IF (MU .EQ. MUOLD) GO TO 3 
MUOLD=MU 
OMEGA-.3989423/S 
BI-.4166667E-I/MU 
B2=.3*BI*BI 
C3=.I428571*BI*B2 
C2=B2-15.*C3 
CI=BI-6.*B2+45.*C3 
C@-I.'-BI+3.*B2-15.*C3 
C-.I@69/MU 

3 IF (G .LT. @.@) GO TO 5 

"SUBROUTINE" F IS CALLED (KFLAG=@ FOR CORRECT RETURN) 

KFLAG=@ 
GO TO 7 

STEP Q. QUOTIENT ACCEPTANCE (RARE CASE) 

4 IF (FY-U*FY .LE. PY*EXP(PX-FX)) RETURN 
C 
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C STEP E. EXPONENTIAL SAMPLE - SEXPO(IR) FOR STANDARD EXPONENTIAL 
C DEVIATE E AND SAMPLING FROM THE LAPLACE ~AT 
C 

5 E,,SEXPO (IR) 
U=SUNIF (IR) 
U=U+U-i. @ 

T=I. 8+SIGN (E, U) 
IF (T .LE. -.6744) GO TO 5 
KPOISS=IFIX(MU+S*T) 
FK=FLOAT (KPOISS) 
DIFMUK=MU-FK 

C 
C "SUBROUTINE" F IS CALLED (KFLAG,,I FOR CORRECT RETURN) 
C 

KFLAG- 1 
GO TO 7 

STEP H. HAT ACCEPTANCE (E IS REPEATED ON REJECTION) 

6 IF (C*ABS(U) .GT. PY*EXP(PX+E)-FY*EXP(FX+E)) GO TO 5 
RETURN 

C 
C STEP F. "SUBROUTINE" F. CALCULATION OF PX,PY,FX, FY. 
C CASE KPOISS .LT. i@ USES FACTORIALS FROM TABLE FACT 
C 

7 IF (KPOISS .GE. i@) GO TO 8 
PX=-MU 
PY=MU**KPOISS/PACT (KPOISS+I) 
GO TO ii 

C 
C CASE KPOISS .GE. i@ USES POLYNOMIAL APPROXIMATION 
C A@-A7 FOR ACCURACY WHEN ADVISABLE 
C 

8 DEL=.8333333E-I/FK 
DEL=DEL-4.8*DEL *DEL *DEL 
V=DIFMUK/FK 
IF (ABS(V) .LE. @.25) GO TO 9 
PX,,FK*ALOG (i. @+V) -DIFMUK-DEL 
GO TO 1¢ 

9 PX=FK*V*V* ( ( ( ( ( ( ( A7 *V+A6 ) *V+A5 ) *V+A4 ) *V+A3 ) *V+A2 ) *V+AI ) *V÷A@ ) -DEL 
i@ PY,,. 3989423/SORT(FK) 
ii Xz(@. 5-DIFMUK)/S 

XX=X*X 
FX=-. 5*XX 
FY=0MEGA* ( ((C3*XX+C2) *XX+CI) *XX+C@) 
IF (KFLAG) 4,4,6 

C 
C C A S E B. (START NEW TABLE AND CALCULATE P@ IF NECESSARY) 
C 

z2 MUPREV=@. @ 
IF (MU .EQ. MUOLD) GO TO 13 
MUOLD=MU 
M--MAX¢ (1, IFLX (MU)) 
L=¢ 

ACM Transact ions  on Ma themahca l  Software, Vol 8, No. 2, June  1982. 



178 • J . H .  Ahrens and U. Daeter 

P-EXP(-MU) 
Q-P 
p@,,P 

STEP U. UNIFORM SAMPLE FOR INVERSION METHOD 

13 U-SUNIF(IR) 
KPOISS-@ 
IF (U .LE. P@) RETURN 

STEP T. TABLE COMPARISON UNTIL THE END PP(L) OF THE 
ppITABLE OF CUMULATIVE POISSON PROBABILITIES 

IF (L .EQ. @) GO TO 15 
J"l 
IF (U .GT. @.458) J=MIN@(L,M) 
DO 14 KPOISS=J,L 

14 IF (U .LE. PP(KPOISS)) RETURN 
IF (L .EQ. 35) GO TO 13 

STEP C. CREATION OF NEW POISSON PROBABILITIES P 
AND THEIR CUMULATIVES Q=PP(K) 

15 L=L+I 
DO 16 KPOISS=L,35 
P-P*MU/FLOAT(KPOISS) 
Q=Q+P 
PP(KPOISS)=Q 

16 IF (U .LE. Q) GO TO 17 
L'35 
GO TO 13 

17 L=KPOISS 
RETURN 
END 

Remarks. The FUNCTION KPOISS(IR, MU) is presented with a conversion 
to machine code in mind; therefore low-level FORTRAN was chosen. For the 
sampling subfunctions SNORM(IR),  SEXPO(IR), and SUNIF(IR), compare 
Section 7. 

The constant 35 in the last part (Case B) corresponds to the dimension PP(35) 
of the table P~ (steps T, C); it is sufficient for up to 9-digit accuracy. If the 
standard precision of the computer is more than 7-8 decimals, the DATA A0, A1, 
. . .  may be modified according to the second block in Table I, and some other 
constants should be adjusted: 1/J2-~ = 0.398942280, 1/24 = 0.416666667E-1, 1/7 
= 0 . 1 4 2 8 5 7 1 4 3 ,  a n d  1 / 1 2  = 0 . 8 3 3 3 3 3 3 3 3 E - 1 .  
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