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1. INTRODUCTION 

The user of a code for solving the initial value problem for ordinary differential 
equations is normally interested in his global error, i.e. the difference between the 
solution of the problem posed and the numerical result returned by the code. Codes 
do not a t tempt  to control this global error directly and very few even t ry  to esti- 
mate it. We have found that  it is possible to estimate (but not to control) the 
global error reliably while still solving the problem with acceptable efficiency; this 
paper describes one way to do this. 

Our objective is to write a code which will estimate global error and be as effec- 
tive and efficient as possible. In Section 2 we consider some limitations inherent 
in the task. There are several general principles by  which one might estimate global 
errors and there are special techniques [2, 14] as well which appear promising. 
Because efficient formulas for the latter have not yet appeared, we have given our 
attention to the general principles only. In Section 3 we describe some of the factors 
involved in forming an efficient, reliable method by each principle. The best scheme 
we have been able to construct uses the Runge-Kut ta  formulas of Fehlberg and 
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the principle of global extrapolation. In Section 4 we describe a code, GERK,  im- 
plementing this scheme. In Section 5 we present results about efficiency and reli- 
ability of the code and examples of its use. 

2. INHERENT LIMITATIONS 

Granted that  one is going to estimate the global error, can one go so far as to con- 
trol it? A little reflection shows the answer is g~nerally no. The situation is governed 
by the behavior of the integral curves of the equation. Let us first examine a rela- 
tion between the local error and the global error. Suppose y~ denotes the computed 
solution at xn and u (x) represents a local solution of the differential equation hav- 
ing initial value yn at xn. Then 

global error (at x~+l)  = y~+l - -  y ( x , + l )  

= { y . + l -  u(x~+l)} + {u(x.+l) --y(x, ,+l)} .  

The first term in braces is the local error while the second depends on the stability 
of the differential equation. More to the point, the second term is approximately 
(for small step sizes) 

{1 -~ hjn}*{global error (at x~) } 

where h, = X~+l - xn and J~ is the Jacobian of the differential equation at (x , , , y , , ) .  
The eigenvalues of J~ determine the stability of the differential equation. Thus the 
second term measures the sensitivity of the problem itself and not the method 
being used. 

Suppose we have been keeping the global error below some specified tolerance 
through the point xn. If the problem becomes unstable and the integral curves fan 
out at x. so that  the global error becomes unacceptable in the next step, one may 
not be able to obtain an acceptable error by merely changing the step size. In- 
stead, the whole integration may have to be started anew with a smaller tolerance. 
The opposite situation occurs when the integral curves pinch together at  b, the 
place where one wants a specified accuracy. In order to be efficient it is then neces- 
sary to allow the global error to be larger during the integration than is desired 
at  b. Because of these two extreme possibilities we conclude that  control of global 
error, in general, cannot be based satisfactorily on the local device of step-size 
adjustment. For these reasons we report the estimated global error and select the 
step sizes to control the local error in familiar fashion rather than t ry  to control 
the global error. 

Having to use a local error control is actually beneficial in several respects. From 
the preceding expressions it is clear that  the effect on the global error of keeping 
the local error small depends on the differential equation itself. But if the equation 
is not mathematically unstable, controlling the local error will approximately con- 
trol the global error. We believe the reliability of the global error estimates is 
greatly enhanced by step-size adjustment based on local error control, especially 
when working with the larger step sizes resulting from crude error tolerances. Local 
error control detects the onset of numerical instability and adjusts the step size so 
as to keep the computation stable. This has an important practical consequence. 
We consider, for example, two simultaneous integrations with the same step sizes 
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but with different methods. Because control of the local error maintains the step 
size at about the boundary of the absolute stability region when this is a problem, 
we must determine the step size by the integration with the less stable method. 
The contrary simply cannot be used if stability is limiting the step size. 

3. SELECTING A METHOD 

All the general principles for global error estimation that we consider involve two 
parallel, independent integrations. One possibility is to use the same step sizes but 
different methods. Another is to use the same methods but different step sizes. 
A possibility closely related to the latter is to integrate the problem twice with 
the same code and different tolerances. For codes implementing a single method 
this can be regarded as a variant of the second scheme, but in codes like the variable 
order Adams codes, both different methods and different step sizes are used in the 
two integrations. 

The first way of estimating the global error we examine in detail is the method 
of repeated integration or reintegration. One solves the problem twice with the 
same code but with the error tolerance reduced, for example, by a factor of 1/10. 
What are some of the advantages of this technique? First of all, it is a familiar 
technique which can be applied with any code for the initial value problem; so no 
additional software is necessary for the computing library. Second, one can always 
return to a computation at a later date and check its accuracy if it seems necessary. 
And, third, reintegration may work quite well in the presence of discontinuities--an 
advantage not shared by other methods we consider. What are some of the dis- 
advantages associated with repeated integrations? No estimate of the error is 
available until the problem has been integrated twice. One can only reliably estimate 
the accuracy of the less accurate result--this is probably the most serious drawback 
of the technique. Reintegration may not be feasible--for example, if the integration 
process is imbedded in some larger and quite complicated program. This procedure 
for estimating global accuracy is relatively expensive. Let us suppose the tolerance 
is reduced by a factor of 1/10 and let us compare the total cost of solving the prob- 
lem twice as opposed to just once at the larger tolerance. For a good variable order 
code the cost only slightly more than doubles because the additional accuracy is 
achieved by variation of the order rather than reduction of the step size. For fixed 
order codes the cost rises more rapidly, e.g. for order four the cost increases by a 
factor of about 2.6. The theoretical support of this technique is not as good as for 
other techniques we study, and the estimates are not as good. Unless a code has 
been written with the technique in mind, global error estimation by reintegration 
can be very risky. The algorithm may be unduly conservative or so poorly imple- 
mented that reductions in the tolerance fail to produce proportional changes in the 
error or, worse yet, fail to cause any change at all. We have seen many codes which 
are not reliable in this way. A case in point is the rational extrapolation code 
DESUB. In the tests of C13] it was not uncommon for this code to produce identical 
results with tolerance reductions of up to three orders of magnitude. 

The next procedure of estimating global error that we discuss is that of inte- 
grating using two different order methods but using the same step size for both. 
Although this process can be put on a sound theoretical foundation, a cursory ex- 
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amination shows that unless there is some special relation between the methods 
used, its performance will be unsatisfactory on a nonasymptotic basis. Also, this 
technique shares a disadvantage of reintegration in that the accuracy of the less 
accurate result only can be estimated. Furthermore, because of stability considera- 
tions it is important to choose the right one of the two parallel solution formulas 
to govern the selection of the step size; the formula used for this purpose must 
have the smaller stability region. We have experimented with this procedure using 
parallel solutions having accuracy O (hp), O (h p+l) where the more accurate solution 
is obtained by performing local extrapolation 1"9]. We give an example of this 
method later. 

The last way of estimating global errors we study involves parallel integration, 
one being carried out with half the step size of the other, using the same basic 
method. It  currently appears that only the method of repeated integration is feas- 
ible for the powerful variable order Adams codes Ell].  Accordingly, we shall con- 
centrate on a fixed order, one-step code. By using global extrapolation on the 
parallel solutions we can estimate the global error of the more accurate result as is 
justified in the classic text of Henrici [-4"]. Let Y(x,h)  denote an approximate 
solution obtained at the point x using a variable step size with h = 0 (x)H where 
H is constant and 0 < 8(x) _< 1, let Y(x ,h /2)  be the approximate solution gener- 
ated at x using the step size 8 (x)H/2,  and let y (x) be the true solution. Then the 
global error for a numerical method of order p is given by 

E(x )  = Y(x ,h /2)  - y(x)  = (H/2)pe(x)  + O(H~*I), 

where e (x) satisfies a certain differential equation. Implicit in this representation 
is the assumption that the solution has continuous derivatives of order at least 
p-i-2 in the region of interest. In this case, global extrapolation becomes valid and 
we get 

E(x )  - (Y(x ,h)  - Y ( x , h / 2 ) ) / ( 2 ~ -  1). 

There has been other discussion of global extrapolation ['7] but no one seems to 
have studied those factors relevant to writing a robust, efficient code. 

We have tried to construct the most efficient procedures we could using these 
principles. Many possibilities can be discarded on general grounds, but in the case 
of close competitors we have written codes to compare them experimentally. Our 
colleague M. K. Gordon made available to us other experimental work which 
assisted us in our choice. It appears that global extrapolation using one of the 
Runge-Kutta-Fehlberg (4, 5) possibilities ['3] is the most satisfactory in terms of 
accuracy, reliability, and efficiency. In [-12] we have compared a number of Runge- 
Kutta processes with respect to their local error estimators and subsequently have 
tested others in the same way. We have done very extensive tests of the better 
Runge-Kutta processes as to their relative efficiency. The Fehlberg scheme we have 
chosen has been as good or better than all others we have considered. In what 
follows we compare its use according to the various principles for global error esti- 
mation. Naturally we have also considered methods peculiarly suited to a given 
principle, and in a few cases we shall comment about this, but in general no other 
scheme compares to this one and we need not report on the discards. 
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Before discussing how the Fehlberg scheme is used for global error estimation 
we shall briefly describe it. At a cost of 6 function evaluations each basic step, dis- 
tinct fourth and fifth order accurate solution values Y4 and Y5 are computed. Let- 
ting e4, e5 represent the corresponding local truncation errors, we have Y4 = Y + e4 
and Ys = Y + es, where Y is a local solution of the differential equation and e4 = 
O (hS), e5 = O (h6). Fehlberg has chosen the parameters in the Runge-Kutta form- 
ulas so that the nine coefficients making up the 0 (h a) term in e4 are chosen to be 
about as small as possible consistent with avoiding contradictions in the equations 
of condition. An estimate e of the local error in Y4 is then computed as 

= Y 4 -  Y5 = e 4 - e 5  = O ( h a ) .  

From our studies of this Fehlberg method the following important results emerged. 
In comparing the local error estimator with those of [12], we have found it to be 
as accurate, asymptotically, as the Ceschino-Kuntzmann estimator discussed there 
(the most accurate of those considered). On a nonasymptotic basis, we saw the 
tendency of the estimator ~ to underestimate e4, the local error in Y4, about 65 per- 
cent of the time. However, even in the nonasymptotic step-size regime, the Y5 solu- 
tion consistently proved to be the more accurate (except for grossly large step 
sizes) and the estimate ~ typically overestimated es, the local error in Y6. Finally, 
the stability region for the Y5 formula is about 19 percent larger (uniformly) than 
the stability region for the Y4 formula. For these reasons, we actually use the fifth 
order formulas, termed local extrapolation [-9]. In view of our primary intent of 
assessing the global accuracy of the locally extrapolated solution which is reported 
to the user, one cannot make the usual objection about the extrapolated result 
being of unknown accuracy (though asymptotically more accurate than required). 

The global extrapolation algorithm adopted for the GERK code advances one 
solution over a basic step using local error control and, once this is acceptable, the 
other (parallel) solution is advanced over two half-steps using the same formula. 
Since each application of the Fehlberg formula costs 6 functions evaluations, the 
cost per basic step of this global extrapolation process is 18 derivative function 
evaluations. 

In [12] a scheme due to England showed up very well. Because it appears par- 
ticularly suited to global extrapolation we shall indicate why it was not selected. 
This procedure uses a fourth order Runge-Kutta method requiring 4 function 
evaluations to advance the solution two basic steps while estimating the local error 
accumulated over the pair of steps. The resulting cost is then 9 function evalua- 
tions. On the surface the global extrapolation technique for estimating global error 
seems tailored for application to the England process, or to any method which 
uses the doubling procedure for estimating local error. This is because it would be 
easy to apply the same basic Runge-Kutta process in computing a parallel solution 
over the step length which is double that used for the other solution. The cor- 
responding global extrapolation scheme using the England formulas would cost 13 
derivative function evaluations. However, this scheme can result in precisely the 
stability difficulty mentioned earlier. In fact, when numerical stability is a problem 
the global error estimate computed with this scheme is of the order of magnitude 
of the solution obtained with the larger step size--ridiculously large because the 
numerical instability causes the solution to explode. On the other hand, the true 
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global error of the solution to be reported is perfectly acceptable, usually being 
smaller than that requested. Furthermore, on problems where numerical stability 
is not a factor we have observed that this England process is from 30 to 50 percent 
less efficient than the Fehlberg scheme described above. This is partly because the 
coefficients of the error term in Fehlberg's scheme are quite small and partly be- 
cause we cannot extrapolate the England scheme when it is used in this way (hence 
it is of lower order). 

Next let us consider a procedure for estimating the global error which uses the 
same step size but different order methods. Suppose we compute parallel integra- 
tions using the fourth and fifth order Fehlberg formulas in an independent fashion 
for obtaining global solutions $4 and $5, say. I t  is necessary to select the $4 solution 
process for the local error testing and adjustment of the step-size because, in addi- 
tion to not having local error estimates of the fifth order approximation available, 
the stability region for the fourth order formula is also the smaller. This global 
error estimation procedure costs 12 function evaluations per basic step. As pointed 
out earlier, one gets an estimate of the error in only the less accurate solution $4 
and so this must be the reported solution. When stability is limiting the step-size 
choice, this procedure is more efficient than the adopted global extrapolation scheme 
due to using 6 fewer function evaluations per step and the fact that additional 
accuracy can be achieved for such problems with little extra cost. When stability 
does not limit the step-size choice, we have observed that this procedure is from 40 
to 70 percent less efficient than global extrapolation. This sharp reversal in the 
relative efficiency of the two procedures which use the same integration formulas 
is surprising; so let us explain this behavior. If step size and error control were 
performed on the "$4 solution" for both procedures, we would see identical stew 
size sequences for the two codes applied to the same problem with the same local 
tolerance parameters. In this circumstance, the $5 solution would be the same as 
the Y(h) solution in the global extrapolation process but less accurate than the 
reported solution Y (h/2). However, if the step-size sequence for the scheme of this 
paragraph is altered to use h/2, then $5 would be identical to Y (h/2). The com- 
parative cost in achieving this result is 24 versus 18 function evaluations, which 
accounts for a 33-percent cost increase over global extrapolation. The other factor 
present is that step size and error control are applied to the Y (h) solution in the 
global extrapolation process; that is, local error estimates are based on advancing 
the global $5 solution over a single step. Since this is a more accurate solution than 
$4, at least asymptotically, it typically leads to a more appropriate step-size se- 
quence. This could explain the additional factor which makes the adopted global 
extrapolation scheme even more efficient than at first apparent when compared to 
the scheme using the different order methods just described. It turns out that both 
schemes are about equally reliable in estimating the global error. 

Last, let us compare the use of repeated integration for estimating the global 
error. Suppose we construct a code which computes the locally extrapolated solu- 
tion S~ from the Fehlberg formulas and returns this solution to the user. This is 
identical to the solution Y (h) being carried along in the global extrapolation pro- 
cess. However, the global extrapolation process returns the more accurate solution 
Y (h/2) along with an estimate of its global error. As in the previous example, the 
case when stability limits the choice of step size is rather special. It  is an important 
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point that in these circumstances all tolerances can be achieved with only slight 
changes in the step size. Thus the second integration (for the reintegration process) 
is achieved with virtually the same cost as the first which can, again with little 
extra cost, produce a solution comparable in accuracy to Y(h/2). Hence, when 
stability is a factor, reintegration becomes more efficient than global extrapolation 
and the cost ratio of the respective function counts can approach 12/18. When 
stability is not a factor, and comparable accuracies are achieved in the reported 
solutions along with corresponding global error estimates, reintegration is more 
expensive than global extrapolation by a factor of roughly 1.5 to 2, about 1.7 from 
an asymptotic analysis. To justify these claims, let us suppose that the tolerance is 
reduced by a factor of 1/10 for the reintegration procedure and let us examine what 
corresponding step-size change occurs. While the propagated solution, $5, has a 
local error which is proportional to h a, the step-size adjustment is bzsed on the 
local error estimate of the unextrapolated solution value which is proportional to 
h 5. In reducing the error by 1/10, the step sizes would be expected to decrease by 
a factor of approximately 10 ~/~ - 1.6. Also, since reintegration provides an estimate 
of the error in only the less accurate solution, we must perform the basic integra- 
tion on the step-size sequence corresponding to h/2 for the global extrapolation 
process. These comments show that the cost comparison becomes 18 versus 
12.(1+1.6) in favor of the global extrapolation process. 

4. A CODE 

We now discuss the general design of our code which follows the principles described 
in r l0]  but with some important improvements. We use the error per step criterion 
and local extrapolation which is very efficient. In addition, the code estimates an 
initial step size by hypothesizing that the error in a fourth order start will be h 4 
times the error in a zero order start. Thus, we basically choose h from the relation 

J h51 J fy'in,ti.~/tolJf~ = 1 

where tol is a requested tolerance vector and the division is taken component-wise 
whenever it is properly defined. Otherwise, we choose the interval length when 
y' = 0 and 26 units of roundoff in the larger of xiniti,1 and the interval length when 
tol = 0. 

After both successful and unsuccessful steps a new step size is chosen by a locally 
optimal step-size strategy, 

hne~ = 0.9 (I] e/tol I I=)-mho'd, 

where,  is an estimate of the local error. The constant 9/10 was obtained by con- 
siderable experimentation and represents a conservative factor for preventing un- 
necessary step failures. This corresponds to aiming at an error of about 0.59 times 
tol while accepting a step with a local error estimate of the size of tol. Practical 
limits on the change in the step size are enforced to smooth the step-size selection 
process and to avoid excessive "chattering" on problems having discontinuities. 
We do not permit the step size to decrease by more than a factor of 1/10 or to in- 
crease by more than a factor of 5. Furthermore, after a step failure, the step size 
is not allowed to increase on the next attempted step. While this makes the code 
more efficient on problems with discontinuities, it also makes the code more effec- 
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tive in general since local extrapolation is always being used and the error estimate 
may be unreliable or unacceptable when a step fails. The code presented here also 
looks ahead two steps to output points to avoid drastic changes in the step size 
and thus lessens the impact of output points on the code. 

The asymptotic analysis in the global extrapolation formula ignores the effects 
of roundoff. Clearly, as one approaches a limiting precision determined by the 
machine and code being used, the global error estimate becomes unreliable. Be- 
cause of this it is very important to detect limiting precision with its potential 
unreliability. The matter has seen some attention in the literature ['8] and we in- 
clud~ similar tests which serve as a partial remedy. To begin with, the step size is 
not permitted to become smaller than 26 units of roundoff in x, so that the various 
arguments in the Fehlberg formulas can be distinguished for the integration using 
the smaller step size. Actually, the limiting precision difficulties arising from im- 
possible accuracy requests are treated a little more simply here than in ['8]. The 
code always requires (and adjusts if necessary) the relative error tolerance to be 
at least as large as the machine dependent level 32u -t- 3"10 -11. Here u is the com- 
puter unit roundoff which is defined as the smallest positive value such that 1-t-u 
is greater than 1. 

A low order method, such as the one used here, is generally incapable of achiev- 
ing accuracies near the unit roundoff level on computers with long word lengths 
such as the CDC 6600. Furthermore, it becomes very inefficient. In our experience 
(cf. the tests of [-13J) we have found it reasonable to cut off requested accuracies 
at a relative error tolerance of 3 X 10 -11 for most problems when working with word 
lengths of 14 decimal digits or more. If the word length is quite short, it will limit 
the accuracy possible; so we need another cutoff level. Our experiments lead us to 
believe that 32 units of roundoff constitutes an ample cushion for most problems 
when using a short computer word length. While we can expect some contamination 
due to limiting precision difficulties in these circumstances, the effects should not 
invalidate the global error estimate except in occasional instances. Combined, 
these two cutoff levels lead to the choice of 32u + 3.10 -H for limiting the relative 
error tolerance for the code. We wish to emphasize that there may be other limita- 
tions imposed by the precision and that the above controls are simple necessary 
conditions. For other devices for controlling the effects of limited precision and 
propagated roundoff the reader is referred to ['1, 15]. 

The code, GERK, we present is heavily commented with regard to its use, so we 
shall not reproduce the discussion here. However, a couple of remarks are in order. 
Although the code will typically be used to integrate from a to b, it can be used as 
a one-step integrator to advance the solution a single step in the direction of b. 
Upon each return an estimate of the global error in the solution at the current 
value of x is provided. If the stability properties of the differential equation are 
such that local errors do not significantly accumulate, the user can usually expect 
the global errors to be somewhat smaller than the input local error tolerances. This 
is because of reporting the more accurate solution being computed with one-half 
the basic step size. We had originally considered increasing the tolerances input by 
a factor of 32 but this proved to be somewhat dangerous on occasion and so we 
decided against it. Also, the user should recognize that the global error is zero 
upon initialization and so after the integration reaches an output point he should 
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not restart the code (IFLAG -- ± 1) unless he truly wants to reinitialize the 
global error to zero at that point. Finally, it is worth emphasizing that the global 
error appraisal is an absolute comparison which estimates the difference Y¢o~p~t,d -- 
ytrue .  

A couple of situations deserve further comment. On mildly stiff problems (when 
stability limits the step-size choice), the global error estimate will often be smaller 
than the requested local error while the true global error will be even smaller than 
the estimate. We attribute this behavior to the fact that the solution on the half- 
step is not being troubled by the stability difficulty as much as on the full step. 
As a result the solution for two half-steps achieves more accuracy than is normally 
expected. When this occurs, the global error estimate is likely to provide an over- 
estimate of the true global error. Recall also that on mildly stiff problems the 
global extrapolation scheme of estimating global errors was considerably less effi- 
cient than several alternatives. 

If the code is tried on a problem in which discontinuities are present in the de- 
rivative function, the user should not expect to get good global error estimates 
once the discontinuity is encountered because the theory is simply no longer valid. 
Moreover, because the step size and error control are based on the approximation 
over the larger step, the reported solution could straddle a slightly shifted point of 
discontinuity resulting in a less accurate value than expected. This phenomenon 
cannot occur if the point of discontinuity is determined solely by the independent 
variable, but the possibility does exist if the dependent variables define the dis- 
continuity. This situation represents a departure from the expected behavior of the 
associated Runge-Kutta code not estimating global errors. 

5. PERFORMANCE OF THE CODE 

Thorough testing of the GERK code presented has shown it to be reliable and 
surprisingly efficient. Of course, a very efficient and effective basic Runge-Kutta 
algorithm is the foundation of this code. In fact, GERK was constructed from a 
code called RKF45 which in the comparisons of E13J was found to be the most 
effective code when the differential equations are very cheap to evaluate and if low 
to medium accuracy is desired. Both codes, RKF45 and GERK, are members of 
a systematized collection of codes, DEPAC, currently being developed at Sandia 
Laboratories for solving ordinary differential equations. 

It is interesting to examine the efficiency of GERK relative to RKF45. To begin 
with, GERK requires about three times the number of derivative evaluations that 
RKF45 does when using the same integration tolerances--roughly 18 versus 6. 
However, the solution returned by GERK is the more accurate one. If the step-size 
sequence used by RKF45 were altered by the factor of 1/2 as done in GERK, the 
solution obtained would be identical to the one reported from GERK, resulting 
in an efficiency factor of 18/12 when the codes achieve the same accuracy. Because 
this implies a possibly unnecessary restriction on RKF45, we would expect a some- 
what higher efficiency factor in practical usage. To pursue this matter further, and 
to perform additional tests on GERK, we have subjected the code to the same tests 
as in E13], efficiency of function evaluations being primarily measured from solving 
the set of 25 test problems in Hull et al. E5~ over the range of tolerances 10 -~, 
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1 0 - 3 , . . . ,  10 -1~. For each problem and each code the 11 data points (log~0 global 
error achieved versus number of derivative evaluations) were fitted with various 
degree polynomials in a least squares sense. In each case the data fit was inter- 
polated to obtain the number of derivative evaluations to achieve errors of 10 -3 , 
10 -3, . . . ,  10 -1~. Now for each error we computed the function count ratios of the 
two codes and, finally, these values were averaged over the ensemble of problems. 

From these statistical analyses we obtained a remarkably uniform pat te rn- -  
about 60 percent more derivative evaluations are required of G E R K  than of 
RKF45 to achieve the same accuracy over the entire accuracy spectrum of 10 -2, 
10 -3, . . . ,  10 -1~. But this is not the complete story, as overhead cost may be quite 
important. In the study ['13J we computed overhead cost per derivative evaluation 
as a linear fit in the number of differential equations. The comparison between 
G E R K  and RKF45 showed a decline in overhead cost (per derivative evaluation) 
for G E R K  of roughly 30 percent. Hence, putting these two factors together, ex- 
amination of the total cost ratios of the two codes reveals that  the increase in cost 
due to using G E R K  ranges from only 20 percent to 60 percent more than that  of 
RKF45. 

To gain some feeling about the role of overhead cost and when it is important,  
we have shown in Table I total cost ratios of G E R K  versus RKF45 to achieve 
the same accuracy for several numbers of differential equations and costs per equa- 
tion. We have taken the unit of cost to be 25 gsec, which is roughly the expense of 
computing a trigonometric function, exponential, square root, or about 10 floating 
point additions sequentially on the CDC 6600. While these results are admittedly 
machine dependent, we believe them to generally reflect the relative effieiencies of 
the two codes. 

We have collected many statistics on the reliability of the global error estimating 
capability of G E R K  when applied to the test problems of ['53 and to other test 
problems. There are some troublesome matters which must be sorted out in order 
for the summaries we shall present to be meaningful. The effects of these special 
difficulties arise from limiting precision (step sizes too small), asymptotic estimates 
not being valid (step sizes too large), mildly stiff differential equations, global 
errors approaching zero, and some components being insignificant compared to the 
largest. We have already discussed the first three items; the latter two merely 
cause nuisances in compiling useful summaries of the results observed. 

Table I. Total Cost Ratios of GERK Versus RKF45 

Number of equations 

1 5 10 

o ~  0.1 

~ 0.5 

~ 1.o 

-,~ .~ 2 .0  
O 
~ lO o 

1.2 1.3 1.3 1.3 

1.2 1.3 1.4 1.4 

1.3 1.4 1.4 1.5 

1 .4  1.5 1.5 1.5 

1.5 1.6 1.6 1.6 
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We compared the global error estimates to the true global errors at each of the 
designated output points used in the study [13J. For each component let us define 

r = global error estimate/global error, 

when the numerator and denominator are nonzero. Because of the items mentioned 
above we occasionally encounter unimportant very large (and small) values of r as 
well as negative values, for which we have accumulated separate statistics. We have 
observed that about 25 percent of the total comparison (including all components 
being checked) yielded negative values of r. About 80 percent of these were con- 
centrated at the ends of the tolerance range--the first three and the last three 
tolerances. Also, about 70 percent of the negative values of r were obtained on the 
problem set Class C of [5]. Zero values of the global error estimate and global 
error showed up on about 2 percent of the total number of comparisons with virtu- 
ally all cases occurring on the Class C problems. This set happens to include prob- 
lems exhibiting several of the difficulties already pointed out, namely mild stiffness, 
a change in sign of the global error, and insignificantly small components. For 
these reasons we have excluded the statistics from this set of problems in the results 
of Table II. 

In order to obtain more meaningful averages it was necessary to compute the 
exponents I log r I (] log I r I I when r < 0). Now at each of the designated output 
points we computed the largest deviations (examining all components) of the ex- 
ponents from zero. For each tolerance these largest discrepancies were then aver- 
aged over the entire set of output points and finally over the ensemble of problems 
being considered. The averaged values of the exponents are used to compute the 
factors of I r I shown in Table II. We have separated the results of positive and 
negative r. 

To gain some additional confidence in the performance of the code over all the 
problems (including the Class C set), we monitored the ratios of maximum global 

Table II .  Comparison Factors 
from Global Error  Eshmates  Table I I I .  Rat ios of Maximum Global Error  

Versus Global Errors Est imates  Versus Maximum Global Errors  

- l o g  Poslhve Negative - l o g  
(tolerance) rahos  ratios (tolerance) Average Maximum Minimum 

2 3 .7  83. 2 .3 10. (1) .03 (2) 
3 3 .6  13. 3 .5 3 .2  .03 (1) 
4 2 .8  5 .7  4 .6 3 .2  .08 (1) 
5 2 .1  6 .4  5 1.0 2 .5  .5 
6 1 .8  8 .3  6 1.1 3 .3  .7 
7 1.7 4.1 7 1.1 20. (1) .8 
8 1.5 5 .9  8 1.1 2 .9  .8 
9 1.3 3 .5  9 1 .0  1.4 .6 

10 1 .8  6 .2  10 1.2 4 .5  .5 
11 3 .7  4 .6  11 .4 100. (2) .1 
12 4.1 5.1 12 .2 50. (1) .04 (6) 
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error  e s t ima te s  to  m a x i m u m  globa l  errors.  F o r  each to l e rance  the  m a x i m u m  and  
m i n i m u m  ra t ios  and  a v e r a g e d  va lues  were  c o m p u t e d  over  t he  ensemble  of p rob lems .  
These  resul ts  a re  g iven  in Tab le  I I I .  T h e  number s  in pa ren theses  ind ica te  the  num-  
be r  of t imes  a ra t io  di f fered f rom i b y  a t  leas t  a f ac to r  of 10. 

W e  shal l  inc lude  two examples  of t he  code ' s  behav io r .  T h e  first  example  is a 
m a t h e m a t i c a l l y  uns t ab l e  p rob lem,  

y ' ( x )  = 10 (y - -x2 ) ,  y (0 )  = 0.02, 

which  has  t he  genera l  so lu t ion  

y (x) = 0.02 % 0.2x % x 2 -}- ce 1°~. 

W e  solve this  p r o b l e m  on the  i n t e rva l  [-0, 2 ]  us ing  pure  r e l a t ive  error  cont ro l  and  
m o n i t o r  the  g lobal  er ror  a t  t he  end of each s tep  us ing the  code ' s  one-s tep  i n t e g r a t o r  
mode.  T h e  fol lowing n o t a t i o n  is used  in T a b l e  I V :  

d = fac to r  which  shows the  la rges t  d i s c repancy  be tw e e n  the  t rue  a n d  est i -  
m a t e d  g lobal  errors,  g lobal  er ror  e s t ima te  = d* t rue  g lobal  error,  

N D  = n u m b e r  of de r i va t i ve  eva lua t ions .  

Tables IV and V 

- l og  (tolerance) True global error d ND 

Table IV. Mathemahcally Unstable Problem 

1 - 7 . 2  (~-4) .11 91 
2 - 7 . 4  (-t-3) .38 150 
3 - 4 . 2  (-t-2) .68 314 
4 - 3 . 1  (+1) .83 517 
5 - 2 . 9  .90 771 
6 - 2  9 ( - 1 )  .94 1021 
7 - 3 . 0  ( - 2 )  .96 1348 
8 - 3  1 ( - 3 )  .97 2050 
9 - 3 . 1  ( - 4 )  .98 3228 

10 - 3 . 3  ( - 5 )  .86 5136 
11 - 1 . 2  ( - 5 )  1.74 6522 
12 - 1 . 2  ( - 5 )  1.74 6522 

Table V. Restricted 3-Body Problem 

1 - - 2 . 6  ( d - l )  - . 0 3  193 
2 - 4 . 6  - .03 810 
3 8.7 ( - 2 )  - . 0 3  1055 
4 1.3 (--4) .30 1506 
5 1.3 (--5) .64 2191 
6 1.0 ( - 6 )  83 3269 
7 5 9 (--8) .89 4873 
8 --1.1 (--8) 1.01 7041 
9 --8.8 (--10) .77 11060 

10 - 2 . 5  ( -10)  --.26 16373 
11 --2.5 (--10) --.52 20274 
12 - 2  6 ( -10)  -- 53 21665 
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In Table IV the number in the parentheses indicates the exponent of 10 which is 
associated with the corresponding value in the table. The global error shown is the 
maximum and occurs at 2. 

Note how well the estimates monitor the unstable growth, as indicated by d being 
near 1. Furthermore, the global error decreases rather uniformly by a factor of 
about 1/10, indicating that repeated integration for estimating the global error 
would be rather successful with the underlying Runge-Kutta scheme. In fact, when 
the global error estimates for GERK are in doubt, one could apply GERK in the 
reintegration process for a highly reliable estimation of the global errors. Last, we 
see that limiting precision difficulties have been encountered with the smallest 
tolerances but that the code is performing satisfactorily. 

Our next problem is the restricted 3-body problem I-6], 

y~'  = 2y~ -F y i  - -  ~ * ( y l + ~ ) / r l  3 - -  ~ ( y l - - ~ * ) / r ~  3, 

y~'  = - -  2y~ -t- Y2 - -  t~*y2/r~ 8 - -  t~y2/r2 8, 

rl  = [ (yl'~-1~)2"~-y22"1112, r2 - ~  [ (y1--la*)2~-y22"] 1/2, la = 1/82.45, ~* = 1 -- ~, 

yl(0) = 1.2, y~(0) = 0, y2(0) = 0, y~(0) = --1.04935750983032. 

We solve this problem over the first period, P = 6.19216933131964, and use the 
interval oriented mode to estimate the global error only at x = P since we do not 
have the true solution interior to this interval. This is a severe test of a code's step- 
size control (up to three orders of magnitude in the variation between the mini- 
mum and maximum step size were noted in the course of this integration). Also, 
for crude error tolerances it is rather easy to get off onto other integral paths. This 
problem shows rather markedly the three ranges of global error estimate reliability 
which may be encountered on any given problem. First, if the tolerances are too 
crude and the working step sizes are too large, one easily loses the correct solution 
curves. Under these circumstances the asymptotic analysis for global extrapolation 
is simply not valid and our error estimates are" poor. In the second range the theory 
may be successfully applied and yields excellent agreement between the true and 
estimated global errors. In the third range the tolerances are at or near the machine 
and code limiting precision capabilities. In this case roundoff contaminates the 
solution to the level where the global error estimates are again incorrect. In Table 
V we follow the notation of Table IV except that absolute error control is used for 
this problem and we show the maximum global error of all the components and the 
factor d of the corresponding global error estimate. 

Recall from the definition of d that the minus sign indicates that the estimate 
had the wrong sign of the true global error. Starting with the tolerance of 10 -5 
and continuing through 10 -9 we obtain quite good results. Thus we see rather clearly 
the three ranges of reliability of the global error estimator. However, it should be 
appreciated that this is quite a difficult problem. Also the reader should keep in 
mind that the errors are measured only at the end of the period; so the errors re- 
ported could be smaller than the worst errors committed during the integration. 
Last, we have defined the three ranges of reliability possible with the global error 
estimates in rather loose terms, using the words "tolerances too crude," etc. The 
results are problem dependent but their reliability is generally quite satisfactory. 
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Table VI. Ratios d of the EsUmated to the True Global Error for Problem 1, the Mathematically 
Unstable Problem of Table IV, and Problem 2, the 3-Body Problem of Table V, Obtained Using 

PDP-10 and IBM 370 Computers in Single Precision 

Problem 1 Problem 2 

--log (tolerance) PDP-10 IBM 370 PDP-10 IBM 370 

1 .11 .11 --.03 
2 .38 .38 --.03 
3 .69 .65 --.03 
4 .83 .39 .30 
5 .88 .54 
6 3.6 .43 
7 --3.2 .13 

- . 0 3  

- . 0 4  

- . 0 1  

.20 

The word length of the machine used may  limit the useful range of tolerances. 
In  Table VI  we report  the results for the two example problems when computed 
on a PDP-10 which has about  8 decimal digits and an I B M  370 which has about  7. 
The difference in performance is greater  than the word lengths suggest because the 
former is a binary machine with rounding and the la t ter  a hexadecimal machine 
with chopping. I t  is clear tha t  on the difficult 3-body problem one should use double 
precision on the I B M  System 360 and 370 machines and others with similar arith- 
metic characteristics. On the other hand, we have already noted the code should 
not be used in double precision on the CDC machines and others with similar 
characteristics. Because single precision codes are the more t ransportable  we have 
chosen to provide a single precision version of G E R K .  
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