
Global Error Estimation for Ordinary
Differential Equations

L. F. SHAMPINE and H. A. WATTS

Sandia Laboratories

The user of a code for solving the initial value problem for ordinary differential equations is
normally interested in the global error, i.e. the difference between the solution of the problem
posed and the numerical result returned by the code. This paper describes a way of estimating the
global error reliably while still solving the problem with acceptable efficiency. Global extrapolation
procedures are applied to parallel solutions obtained by a Runge-Kutta-Fehlberg method. These
ideas are implemented in a Fortran program called GERK, which is ACM Algomthm 504.

The Algorithm: Algorithm 504, GERK: Global Error Estimation for Ordinary Differential Equa-
tions. ACM Trans. Math. Software ~, 2 (June 1976), 200-203.

Key Words and Phrases: ordinary differential equations, initial value problems, global error
estimation, Runge-Kutta-Fehlberg method, Fortran code GERK
CR Categories: 3.20, 5.17

1. INTRODUCTION

The user of a code for solving the initial value problem for ordinary differential
equations is normally interested in his global error, i.e. the difference between the
solution of the problem posed and the numerical result returned by the code. Codes
do not a t tempt to control this global error directly and very few even t ry to esti-
mate it. We have found that it is possible to estimate (but not to control) the
global error reliably while still solving the problem with acceptable efficiency; this
paper describes one way to do this.

Our objective is to write a code which will estimate global error and be as effec-
tive and efficient as possible. In Section 2 we consider some limitations inherent
in the task. There are several general principles by which one might estimate global
errors and there are special techniques [2, 14] as well which appear promising.
Because efficient formulas for the latter have not yet appeared, we have given our
attention to the general principles only. In Section 3 we describe some of the factors
involved in forming an efficient, reliable method by each principle. The best scheme
we have been able to construct uses the Runge-Kut ta formulas of Fehlberg and

Copyright O 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
A version of this paper was presented at Mathematical Software II, a conference held at Purdue
University, West Lafayette, Indiana, May 29-31, 1974.
This work was supported by the U.S. Energy Research and Development Administration.
Authors' address: Division 2642, Sandia Laboratories, Albuquerque, NM 87115.

ACM Transactions on Mathematical Software, Vol. 2, No 2, June 1976, Pages 172-186.

Global Error Estimation for Ordinary Differential Equations • 173

the principle of global extrapolation. In Section 4 we describe a code, GERK, im-
plementing this scheme. In Section 5 we present results about efficiency and reli-
ability of the code and examples of its use.

2. INHERENT LIMITATIONS

Granted that one is going to estimate the global error, can one go so far as to con-
trol it? A little reflection shows the answer is g~nerally no. The situation is governed
by the behavior of the integral curves of the equation. Let us first examine a rela-
tion between the local error and the global error. Suppose y~ denotes the computed
solution at xn and u (x) represents a local solution of the differential equation hav-
ing initial value yn at xn. Then

global error (at x~+l) = y~+l - - y (x , + l)

= { y . + l - u(x~+l)} + {u(x.+l) --y(x, ,+l)} .

The first term in braces is the local error while the second depends on the stability
of the differential equation. More to the point, the second term is approximately
(for small step sizes)

{1 -~ hjn}*{global error (at x~) }

where h, = X~+l - xn and J~ is the Jacobian of the differential equation at (x , , , y , ,) .
The eigenvalues of J~ determine the stability of the differential equation. Thus the
second term measures the sensitivity of the problem itself and not the method
being used.

Suppose we have been keeping the global error below some specified tolerance
through the point xn. If the problem becomes unstable and the integral curves fan
out at x. so that the global error becomes unacceptable in the next step, one may
not be able to obtain an acceptable error by merely changing the step size. In-
stead, the whole integration may have to be started anew with a smaller tolerance.
The opposite situation occurs when the integral curves pinch together at b, the
place where one wants a specified accuracy. In order to be efficient it is then neces-
sary to allow the global error to be larger during the integration than is desired
at b. Because of these two extreme possibilities we conclude that control of global
error, in general, cannot be based satisfactorily on the local device of step-size
adjustment. For these reasons we report the estimated global error and select the
step sizes to control the local error in familiar fashion rather than t ry to control
the global error.

Having to use a local error control is actually beneficial in several respects. From
the preceding expressions it is clear that the effect on the global error of keeping
the local error small depends on the differential equation itself. But if the equation
is not mathematically unstable, controlling the local error will approximately con-
trol the global error. We believe the reliability of the global error estimates is
greatly enhanced by step-size adjustment based on local error control, especially
when working with the larger step sizes resulting from crude error tolerances. Local
error control detects the onset of numerical instability and adjusts the step size so
as to keep the computation stable. This has an important practical consequence.
We consider, for example, two simultaneous integrations with the same step sizes

ACM Transactions on Mathematical Software, Vol 2, No 2, June 1976.

174 • L.F. Shampine and H. A. Wafts

but with different methods. Because control of the local error maintains the step
size at about the boundary of the absolute stability region when this is a problem,
we must determine the step size by the integration with the less stable method.
The contrary simply cannot be used if stability is limiting the step size.

3. SELECTING A METHOD

All the general principles for global error estimation that we consider involve two
parallel, independent integrations. One possibility is to use the same step sizes but
different methods. Another is to use the same methods but different step sizes.
A possibility closely related to the latter is to integrate the problem twice with
the same code and different tolerances. For codes implementing a single method
this can be regarded as a variant of the second scheme, but in codes like the variable
order Adams codes, both different methods and different step sizes are used in the
two integrations.

The first way of estimating the global error we examine in detail is the method
of repeated integration or reintegration. One solves the problem twice with the
same code but with the error tolerance reduced, for example, by a factor of 1/10.
What are some of the advantages of this technique? First of all, it is a familiar
technique which can be applied with any code for the initial value problem; so no
additional software is necessary for the computing library. Second, one can always
return to a computation at a later date and check its accuracy if it seems necessary.
And, third, reintegration may work quite well in the presence of discontinuities--an
advantage not shared by other methods we consider. What are some of the dis-
advantages associated with repeated integrations? No estimate of the error is
available until the problem has been integrated twice. One can only reliably estimate
the accuracy of the less accurate result--this is probably the most serious drawback
of the technique. Reintegration may not be feasible--for example, if the integration
process is imbedded in some larger and quite complicated program. This procedure
for estimating global accuracy is relatively expensive. Let us suppose the tolerance
is reduced by a factor of 1/10 and let us compare the total cost of solving the prob-
lem twice as opposed to just once at the larger tolerance. For a good variable order
code the cost only slightly more than doubles because the additional accuracy is
achieved by variation of the order rather than reduction of the step size. For fixed
order codes the cost rises more rapidly, e.g. for order four the cost increases by a
factor of about 2.6. The theoretical support of this technique is not as good as for
other techniques we study, and the estimates are not as good. Unless a code has
been written with the technique in mind, global error estimation by reintegration
can be very risky. The algorithm may be unduly conservative or so poorly imple-
mented that reductions in the tolerance fail to produce proportional changes in the
error or, worse yet, fail to cause any change at all. We have seen many codes which
are not reliable in this way. A case in point is the rational extrapolation code
DESUB. In the tests of C13] it was not uncommon for this code to produce identical
results with tolerance reductions of up to three orders of magnitude.

The next procedure of estimating global error that we discuss is that of inte-
grating using two different order methods but using the same step size for both.
Although this process can be put on a sound theoretical foundation, a cursory ex-

ACM Transac t ions on Mathematical Software, Vol. 2, No. 2, June 1976

Global Error Estimation for Ordinary Differential Equations • 175

amination shows that unless there is some special relation between the methods
used, its performance will be unsatisfactory on a nonasymptotic basis. Also, this
technique shares a disadvantage of reintegration in that the accuracy of the less
accurate result only can be estimated. Furthermore, because of stability considera-
tions it is important to choose the right one of the two parallel solution formulas
to govern the selection of the step size; the formula used for this purpose must
have the smaller stability region. We have experimented with this procedure using
parallel solutions having accuracy O (hp), O (h p+l) where the more accurate solution
is obtained by performing local extrapolation 1"9]. We give an example of this
method later.

The last way of estimating global errors we study involves parallel integration,
one being carried out with half the step size of the other, using the same basic
method. It currently appears that only the method of repeated integration is feas-
ible for the powerful variable order Adams codes Ell]. Accordingly, we shall con-
centrate on a fixed order, one-step code. By using global extrapolation on the
parallel solutions we can estimate the global error of the more accurate result as is
justified in the classic text of Henrici [-4"]. Let Y(x,h) denote an approximate
solution obtained at the point x using a variable step size with h = 0 (x)H where
H is constant and 0 < 8(x) _< 1, let Y(x ,h /2) be the approximate solution gener-
ated at x using the step size 8 (x)H/2, and let y (x) be the true solution. Then the
global error for a numerical method of order p is given by

E(x) = Y(x ,h /2) - y(x) = (H/2)pe(x) + O(H~*I),

where e (x) satisfies a certain differential equation. Implicit in this representation
is the assumption that the solution has continuous derivatives of order at least
p-i-2 in the region of interest. In this case, global extrapolation becomes valid and
we get

E(x) - (Y(x ,h) - Y (x , h / 2)) / (2 ~ - 1).

There has been other discussion of global extrapolation ['7] but no one seems to
have studied those factors relevant to writing a robust, efficient code.

We have tried to construct the most efficient procedures we could using these
principles. Many possibilities can be discarded on general grounds, but in the case
of close competitors we have written codes to compare them experimentally. Our
colleague M. K. Gordon made available to us other experimental work which
assisted us in our choice. It appears that global extrapolation using one of the
Runge-Kutta-Fehlberg (4, 5) possibilities ['3] is the most satisfactory in terms of
accuracy, reliability, and efficiency. In [-12] we have compared a number of Runge-
Kutta processes with respect to their local error estimators and subsequently have
tested others in the same way. We have done very extensive tests of the better
Runge-Kutta processes as to their relative efficiency. The Fehlberg scheme we have
chosen has been as good or better than all others we have considered. In what
follows we compare its use according to the various principles for global error esti-
mation. Naturally we have also considered methods peculiarly suited to a given
principle, and in a few cases we shall comment about this, but in general no other
scheme compares to this one and we need not report on the discards.

ACM Transactions on Mathematical Software, Vol. 2, No. 2, June 1976.

176 L.F. Shampine and H. A. Watts

Before discussing how the Fehlberg scheme is used for global error estimation
we shall briefly describe it. At a cost of 6 function evaluations each basic step, dis-
tinct fourth and fifth order accurate solution values Y4 and Y5 are computed. Let-
ting e4, e5 represent the corresponding local truncation errors, we have Y4 = Y + e4
and Ys = Y + es, where Y is a local solution of the differential equation and e4 =
O (hS), e5 = O (h6). Fehlberg has chosen the parameters in the Runge-Kutta form-
ulas so that the nine coefficients making up the 0 (h a) term in e4 are chosen to be
about as small as possible consistent with avoiding contradictions in the equations
of condition. An estimate e of the local error in Y4 is then computed as

= Y 4 - Y5 = e 4 - e 5 = O (h a) .

From our studies of this Fehlberg method the following important results emerged.
In comparing the local error estimator with those of [12], we have found it to be
as accurate, asymptotically, as the Ceschino-Kuntzmann estimator discussed there
(the most accurate of those considered). On a nonasymptotic basis, we saw the
tendency of the estimator ~ to underestimate e4, the local error in Y4, about 65 per-
cent of the time. However, even in the nonasymptotic step-size regime, the Y5 solu-
tion consistently proved to be the more accurate (except for grossly large step
sizes) and the estimate ~ typically overestimated es, the local error in Y6. Finally,
the stability region for the Y5 formula is about 19 percent larger (uniformly) than
the stability region for the Y4 formula. For these reasons, we actually use the fifth
order formulas, termed local extrapolation [-9]. In view of our primary intent of
assessing the global accuracy of the locally extrapolated solution which is reported
to the user, one cannot make the usual objection about the extrapolated result
being of unknown accuracy (though asymptotically more accurate than required).

The global extrapolation algorithm adopted for the GERK code advances one
solution over a basic step using local error control and, once this is acceptable, the
other (parallel) solution is advanced over two half-steps using the same formula.
Since each application of the Fehlberg formula costs 6 functions evaluations, the
cost per basic step of this global extrapolation process is 18 derivative function
evaluations.

In [12] a scheme due to England showed up very well. Because it appears par-
ticularly suited to global extrapolation we shall indicate why it was not selected.
This procedure uses a fourth order Runge-Kutta method requiring 4 function
evaluations to advance the solution two basic steps while estimating the local error
accumulated over the pair of steps. The resulting cost is then 9 function evalua-
tions. On the surface the global extrapolation technique for estimating global error
seems tailored for application to the England process, or to any method which
uses the doubling procedure for estimating local error. This is because it would be
easy to apply the same basic Runge-Kutta process in computing a parallel solution
over the step length which is double that used for the other solution. The cor-
responding global extrapolation scheme using the England formulas would cost 13
derivative function evaluations. However, this scheme can result in precisely the
stability difficulty mentioned earlier. In fact, when numerical stability is a problem
the global error estimate computed with this scheme is of the order of magnitude
of the solution obtained with the larger step size--ridiculously large because the
numerical instability causes the solution to explode. On the other hand, the true
ACM Transactions on Mathematical Software, Vo! 2, No 2, June 1976

Global Error Estimation for Ordinary Differential Equations 177

global error of the solution to be reported is perfectly acceptable, usually being
smaller than that requested. Furthermore, on problems where numerical stability
is not a factor we have observed that this England process is from 30 to 50 percent
less efficient than the Fehlberg scheme described above. This is partly because the
coefficients of the error term in Fehlberg's scheme are quite small and partly be-
cause we cannot extrapolate the England scheme when it is used in this way (hence
it is of lower order).

Next let us consider a procedure for estimating the global error which uses the
same step size but different order methods. Suppose we compute parallel integra-
tions using the fourth and fifth order Fehlberg formulas in an independent fashion
for obtaining global solutions $4 and $5, say. I t is necessary to select the $4 solution
process for the local error testing and adjustment of the step-size because, in addi-
tion to not having local error estimates of the fifth order approximation available,
the stability region for the fourth order formula is also the smaller. This global
error estimation procedure costs 12 function evaluations per basic step. As pointed
out earlier, one gets an estimate of the error in only the less accurate solution $4
and so this must be the reported solution. When stability is limiting the step-size
choice, this procedure is more efficient than the adopted global extrapolation scheme
due to using 6 fewer function evaluations per step and the fact that additional
accuracy can be achieved for such problems with little extra cost. When stability
does not limit the step-size choice, we have observed that this procedure is from 40
to 70 percent less efficient than global extrapolation. This sharp reversal in the
relative efficiency of the two procedures which use the same integration formulas
is surprising; so let us explain this behavior. If step size and error control were
performed on the "$4 solution" for both procedures, we would see identical stew
size sequences for the two codes applied to the same problem with the same local
tolerance parameters. In this circumstance, the $5 solution would be the same as
the Y(h) solution in the global extrapolation process but less accurate than the
reported solution Y (h/2). However, if the step-size sequence for the scheme of this
paragraph is altered to use h/2, then $5 would be identical to Y (h/2). The com-
parative cost in achieving this result is 24 versus 18 function evaluations, which
accounts for a 33-percent cost increase over global extrapolation. The other factor
present is that step size and error control are applied to the Y (h) solution in the
global extrapolation process; that is, local error estimates are based on advancing
the global $5 solution over a single step. Since this is a more accurate solution than
$4, at least asymptotically, it typically leads to a more appropriate step-size se-
quence. This could explain the additional factor which makes the adopted global
extrapolation scheme even more efficient than at first apparent when compared to
the scheme using the different order methods just described. It turns out that both
schemes are about equally reliable in estimating the global error.

Last, let us compare the use of repeated integration for estimating the global
error. Suppose we construct a code which computes the locally extrapolated solu-
tion S~ from the Fehlberg formulas and returns this solution to the user. This is
identical to the solution Y (h) being carried along in the global extrapolation pro-
cess. However, the global extrapolation process returns the more accurate solution
Y (h/2) along with an estimate of its global error. As in the previous example, the
case when stability limits the choice of step size is rather special. It is an important

ACM Transactions on Mathematical Software, Vol. 2, No. 2, June 1976.

178 • L.F. Sharnpine and H. A. Watts

point that in these circumstances all tolerances can be achieved with only slight
changes in the step size. Thus the second integration (for the reintegration process)
is achieved with virtually the same cost as the first which can, again with little
extra cost, produce a solution comparable in accuracy to Y(h/2). Hence, when
stability is a factor, reintegration becomes more efficient than global extrapolation
and the cost ratio of the respective function counts can approach 12/18. When
stability is not a factor, and comparable accuracies are achieved in the reported
solutions along with corresponding global error estimates, reintegration is more
expensive than global extrapolation by a factor of roughly 1.5 to 2, about 1.7 from
an asymptotic analysis. To justify these claims, let us suppose that the tolerance is
reduced by a factor of 1/10 for the reintegration procedure and let us examine what
corresponding step-size change occurs. While the propagated solution, $5, has a
local error which is proportional to h a, the step-size adjustment is bzsed on the
local error estimate of the unextrapolated solution value which is proportional to
h 5. In reducing the error by 1/10, the step sizes would be expected to decrease by
a factor of approximately 10 ~/~ - 1.6. Also, since reintegration provides an estimate
of the error in only the less accurate solution, we must perform the basic integra-
tion on the step-size sequence corresponding to h/2 for the global extrapolation
process. These comments show that the cost comparison becomes 18 versus
12.(1+1.6) in favor of the global extrapolation process.

4. A CODE

We now discuss the general design of our code which follows the principles described
in r l0] but with some important improvements. We use the error per step criterion
and local extrapolation which is very efficient. In addition, the code estimates an
initial step size by hypothesizing that the error in a fourth order start will be h 4
times the error in a zero order start. Thus, we basically choose h from the relation

J h51 J fy'in,ti.~/tolJf~ = 1

where tol is a requested tolerance vector and the division is taken component-wise
whenever it is properly defined. Otherwise, we choose the interval length when
y' = 0 and 26 units of roundoff in the larger of xiniti,1 and the interval length when
tol = 0.

After both successful and unsuccessful steps a new step size is chosen by a locally
optimal step-size strategy,

hne~ = 0.9 (I] e/tol I I=)-mho'd,

where, is an estimate of the local error. The constant 9/10 was obtained by con-
siderable experimentation and represents a conservative factor for preventing un-
necessary step failures. This corresponds to aiming at an error of about 0.59 times
tol while accepting a step with a local error estimate of the size of tol. Practical
limits on the change in the step size are enforced to smooth the step-size selection
process and to avoid excessive "chattering" on problems having discontinuities.
We do not permit the step size to decrease by more than a factor of 1/10 or to in-
crease by more than a factor of 5. Furthermore, after a step failure, the step size
is not allowed to increase on the next attempted step. While this makes the code
more efficient on problems with discontinuities, it also makes the code more effec-
ACM Transact ions on Mathematical Software, Vol 2, No 2, June 1976.

Global Error Estimation for Ordinary DifFerential Equations 179

tive in general since local extrapolation is always being used and the error estimate
may be unreliable or unacceptable when a step fails. The code presented here also
looks ahead two steps to output points to avoid drastic changes in the step size
and thus lessens the impact of output points on the code.

The asymptotic analysis in the global extrapolation formula ignores the effects
of roundoff. Clearly, as one approaches a limiting precision determined by the
machine and code being used, the global error estimate becomes unreliable. Be-
cause of this it is very important to detect limiting precision with its potential
unreliability. The matter has seen some attention in the literature ['8] and we in-
clud~ similar tests which serve as a partial remedy. To begin with, the step size is
not permitted to become smaller than 26 units of roundoff in x, so that the various
arguments in the Fehlberg formulas can be distinguished for the integration using
the smaller step size. Actually, the limiting precision difficulties arising from im-
possible accuracy requests are treated a little more simply here than in ['8]. The
code always requires (and adjusts if necessary) the relative error tolerance to be
at least as large as the machine dependent level 32u -t- 3"10 -11. Here u is the com-
puter unit roundoff which is defined as the smallest positive value such that 1-t-u
is greater than 1.

A low order method, such as the one used here, is generally incapable of achiev-
ing accuracies near the unit roundoff level on computers with long word lengths
such as the CDC 6600. Furthermore, it becomes very inefficient. In our experience
(cf. the tests of [-13J) we have found it reasonable to cut off requested accuracies
at a relative error tolerance of 3 X 10 -11 for most problems when working with word
lengths of 14 decimal digits or more. If the word length is quite short, it will limit
the accuracy possible; so we need another cutoff level. Our experiments lead us to
believe that 32 units of roundoff constitutes an ample cushion for most problems
when using a short computer word length. While we can expect some contamination
due to limiting precision difficulties in these circumstances, the effects should not
invalidate the global error estimate except in occasional instances. Combined,
these two cutoff levels lead to the choice of 32u + 3.10 -H for limiting the relative
error tolerance for the code. We wish to emphasize that there may be other limita-
tions imposed by the precision and that the above controls are simple necessary
conditions. For other devices for controlling the effects of limited precision and
propagated roundoff the reader is referred to ['1, 15].

The code, GERK, we present is heavily commented with regard to its use, so we
shall not reproduce the discussion here. However, a couple of remarks are in order.
Although the code will typically be used to integrate from a to b, it can be used as
a one-step integrator to advance the solution a single step in the direction of b.
Upon each return an estimate of the global error in the solution at the current
value of x is provided. If the stability properties of the differential equation are
such that local errors do not significantly accumulate, the user can usually expect
the global errors to be somewhat smaller than the input local error tolerances. This
is because of reporting the more accurate solution being computed with one-half
the basic step size. We had originally considered increasing the tolerances input by
a factor of 32 but this proved to be somewhat dangerous on occasion and so we
decided against it. Also, the user should recognize that the global error is zero
upon initialization and so after the integration reaches an output point he should

A C M Transact ions on M a t h e m a t i c a l Software, Vol 2, No 2, June 1976.

180 • L.F. Shampine and H. A. Wafts

not restart the code (IFLAG -- ± 1) unless he truly wants to reinitialize the
global error to zero at that point. Finally, it is worth emphasizing that the global
error appraisal is an absolute comparison which estimates the difference Y¢o~p~t,d --
ytrue .

A couple of situations deserve further comment. On mildly stiff problems (when
stability limits the step-size choice), the global error estimate will often be smaller
than the requested local error while the true global error will be even smaller than
the estimate. We attribute this behavior to the fact that the solution on the half-
step is not being troubled by the stability difficulty as much as on the full step.
As a result the solution for two half-steps achieves more accuracy than is normally
expected. When this occurs, the global error estimate is likely to provide an over-
estimate of the true global error. Recall also that on mildly stiff problems the
global extrapolation scheme of estimating global errors was considerably less effi-
cient than several alternatives.

If the code is tried on a problem in which discontinuities are present in the de-
rivative function, the user should not expect to get good global error estimates
once the discontinuity is encountered because the theory is simply no longer valid.
Moreover, because the step size and error control are based on the approximation
over the larger step, the reported solution could straddle a slightly shifted point of
discontinuity resulting in a less accurate value than expected. This phenomenon
cannot occur if the point of discontinuity is determined solely by the independent
variable, but the possibility does exist if the dependent variables define the dis-
continuity. This situation represents a departure from the expected behavior of the
associated Runge-Kutta code not estimating global errors.

5. PERFORMANCE OF THE CODE

Thorough testing of the GERK code presented has shown it to be reliable and
surprisingly efficient. Of course, a very efficient and effective basic Runge-Kutta
algorithm is the foundation of this code. In fact, GERK was constructed from a
code called RKF45 which in the comparisons of E13J was found to be the most
effective code when the differential equations are very cheap to evaluate and if low
to medium accuracy is desired. Both codes, RKF45 and GERK, are members of
a systematized collection of codes, DEPAC, currently being developed at Sandia
Laboratories for solving ordinary differential equations.

It is interesting to examine the efficiency of GERK relative to RKF45. To begin
with, GERK requires about three times the number of derivative evaluations that
RKF45 does when using the same integration tolerances--roughly 18 versus 6.
However, the solution returned by GERK is the more accurate one. If the step-size
sequence used by RKF45 were altered by the factor of 1/2 as done in GERK, the
solution obtained would be identical to the one reported from GERK, resulting
in an efficiency factor of 18/12 when the codes achieve the same accuracy. Because
this implies a possibly unnecessary restriction on RKF45, we would expect a some-
what higher efficiency factor in practical usage. To pursue this matter further, and
to perform additional tests on GERK, we have subjected the code to the same tests
as in E13], efficiency of function evaluations being primarily measured from solving
the set of 25 test problems in Hull et al. E5~ over the range of tolerances 10 -~,
ACM Transactions on Mathemat~ca! Software, Vol 2, No. 2, June 1976

Global Error Estimation for Ordinary Differential Equations • 181

1 0 - 3 , . . . , 10 -1~. For each problem and each code the 11 data points (log~0 global
error achieved versus number of derivative evaluations) were fitted with various
degree polynomials in a least squares sense. In each case the data fit was inter-
polated to obtain the number of derivative evaluations to achieve errors of 10 -3 ,
10 -3, . . . , 10 -1~. Now for each error we computed the function count ratios of the
two codes and, finally, these values were averaged over the ensemble of problems.

From these statistical analyses we obtained a remarkably uniform pat te rn- -
about 60 percent more derivative evaluations are required of G E R K than of
RKF45 to achieve the same accuracy over the entire accuracy spectrum of 10 -2,
10 -3, . . . , 10 -1~. But this is not the complete story, as overhead cost may be quite
important. In the study ['13J we computed overhead cost per derivative evaluation
as a linear fit in the number of differential equations. The comparison between
G E R K and RKF45 showed a decline in overhead cost (per derivative evaluation)
for G E R K of roughly 30 percent. Hence, putting these two factors together, ex-
amination of the total cost ratios of the two codes reveals that the increase in cost
due to using G E R K ranges from only 20 percent to 60 percent more than that of
RKF45.

To gain some feeling about the role of overhead cost and when it is important,
we have shown in Table I total cost ratios of G E R K versus RKF45 to achieve
the same accuracy for several numbers of differential equations and costs per equa-
tion. We have taken the unit of cost to be 25 gsec, which is roughly the expense of
computing a trigonometric function, exponential, square root, or about 10 floating
point additions sequentially on the CDC 6600. While these results are admittedly
machine dependent, we believe them to generally reflect the relative effieiencies of
the two codes.

We have collected many statistics on the reliability of the global error estimating
capability of G E R K when applied to the test problems of ['53 and to other test
problems. There are some troublesome matters which must be sorted out in order
for the summaries we shall present to be meaningful. The effects of these special
difficulties arise from limiting precision (step sizes too small), asymptotic estimates
not being valid (step sizes too large), mildly stiff differential equations, global
errors approaching zero, and some components being insignificant compared to the
largest. We have already discussed the first three items; the latter two merely
cause nuisances in compiling useful summaries of the results observed.

Table I. Total Cost Ratios of GERK Versus RKF45

Number of equations

1 5 10

o ~ 0.1

~ 0.5

~ 1.o

-,~ .~ 2 .0
O
~ lO o

1.2 1.3 1.3 1.3

1.2 1.3 1.4 1.4

1.3 1.4 1.4 1.5

1 .4 1.5 1.5 1.5

1.5 1.6 1.6 1.6

ACM Transact ions on M a t h e m a t m a l Software, Vol. 2, No. 2, June 1976.

182 • L.F. Shampine and H. A. Watts

We compared the global error estimates to the true global errors at each of the
designated output points used in the study [13J. For each component let us define

r = global error estimate/global error,

when the numerator and denominator are nonzero. Because of the items mentioned
above we occasionally encounter unimportant very large (and small) values of r as
well as negative values, for which we have accumulated separate statistics. We have
observed that about 25 percent of the total comparison (including all components
being checked) yielded negative values of r. About 80 percent of these were con-
centrated at the ends of the tolerance range--the first three and the last three
tolerances. Also, about 70 percent of the negative values of r were obtained on the
problem set Class C of [5]. Zero values of the global error estimate and global
error showed up on about 2 percent of the total number of comparisons with virtu-
ally all cases occurring on the Class C problems. This set happens to include prob-
lems exhibiting several of the difficulties already pointed out, namely mild stiffness,
a change in sign of the global error, and insignificantly small components. For
these reasons we have excluded the statistics from this set of problems in the results
of Table II.

In order to obtain more meaningful averages it was necessary to compute the
exponents I log r I (] log I r I I when r < 0). Now at each of the designated output
points we computed the largest deviations (examining all components) of the ex-
ponents from zero. For each tolerance these largest discrepancies were then aver-
aged over the entire set of output points and finally over the ensemble of problems
being considered. The averaged values of the exponents are used to compute the
factors of I r I shown in Table II. We have separated the results of positive and
negative r.

To gain some additional confidence in the performance of the code over all the
problems (including the Class C set), we monitored the ratios of maximum global

Table II . Comparison Factors
from Global Error Eshmates Table I I I . Rat ios of Maximum Global Error

Versus Global Errors Est imates Versus Maximum Global Errors

- l o g Poslhve Negative - l o g
(tolerance) rahos ratios (tolerance) Average Maximum Minimum

2 3 .7 83. 2 .3 10. (1) .03 (2)
3 3 .6 13. 3 .5 3 .2 .03 (1)
4 2 .8 5 .7 4 .6 3 .2 .08 (1)
5 2 .1 6 .4 5 1.0 2 .5 .5
6 1 .8 8 .3 6 1.1 3 .3 .7
7 1.7 4.1 7 1.1 20. (1) .8
8 1.5 5 .9 8 1.1 2 .9 .8
9 1.3 3 .5 9 1 .0 1.4 .6

10 1 .8 6 .2 10 1.2 4 .5 .5
11 3 .7 4 .6 11 .4 100. (2) .1
12 4.1 5.1 12 .2 50. (1) .04 (6)

ACM Transactions on Mathematical Software, Vol. 2, No. 2, June 1976.

Global Error Estimation for Ordinary DifFerential Equations 183

error e s t ima te s to m a x i m u m globa l errors. F o r each to l e rance the m a x i m u m and
m i n i m u m ra t ios and a v e r a g e d va lues were c o m p u t e d over t he ensemble of p rob lems .
These resul ts a re g iven in Tab le I I I . T h e number s in pa ren theses ind ica te the num-
be r of t imes a ra t io di f fered f rom i b y a t leas t a f ac to r of 10.

W e shal l inc lude two examples of t he code ' s behav io r . T h e first example is a
m a t h e m a t i c a l l y uns t ab l e p rob lem,

y ' (x) = 10 (y - -x2) , y (0) = 0.02,

which has t he genera l so lu t ion

y (x) = 0.02 % 0.2x % x 2 -}- ce 1°~.

W e solve this p r o b l e m on the i n t e rva l [-0, 2] us ing pure r e l a t ive error cont ro l and
m o n i t o r the g lobal er ror a t t he end of each s tep us ing the code ' s one-s tep i n t e g r a t o r
mode. T h e fol lowing n o t a t i o n is used in T a b l e I V :

d = fac to r which shows the la rges t d i s c repancy be tw e e n the t rue a n d est i -
m a t e d g lobal errors, g lobal er ror e s t ima te = d* t rue g lobal error,

N D = n u m b e r of de r i va t i ve eva lua t ions .

Tables IV and V

- l og (tolerance) True global error d ND

Table IV. Mathemahcally Unstable Problem

1 - 7 . 2 (~-4) .11 91
2 - 7 . 4 (-t-3) .38 150
3 - 4 . 2 (-t-2) .68 314
4 - 3 . 1 (+1) .83 517
5 - 2 . 9 .90 771
6 - 2 9 (- 1) .94 1021
7 - 3 . 0 (- 2) .96 1348
8 - 3 1 (- 3) .97 2050
9 - 3 . 1 (- 4) .98 3228

10 - 3 . 3 (- 5) .86 5136
11 - 1 . 2 (- 5) 1.74 6522
12 - 1 . 2 (- 5) 1.74 6522

Table V. Restricted 3-Body Problem

1 - - 2 . 6 (d - l) - . 0 3 193
2 - 4 . 6 - .03 810
3 8.7 (- 2) - . 0 3 1055
4 1.3 (--4) .30 1506
5 1.3 (--5) .64 2191
6 1.0 (- 6) 83 3269
7 5 9 (--8) .89 4873
8 --1.1 (--8) 1.01 7041
9 --8.8 (--10) .77 11060

10 - 2 . 5 (-10) --.26 16373
11 --2.5 (--10) --.52 20274
12 - 2 6 (-10) -- 53 21665

ACM Transactions on Mathematical Software, Vol 2, No 2, June 1976.

184 • L.F. Shampine and H. A. Watts

In Table IV the number in the parentheses indicates the exponent of 10 which is
associated with the corresponding value in the table. The global error shown is the
maximum and occurs at 2.

Note how well the estimates monitor the unstable growth, as indicated by d being
near 1. Furthermore, the global error decreases rather uniformly by a factor of
about 1/10, indicating that repeated integration for estimating the global error
would be rather successful with the underlying Runge-Kutta scheme. In fact, when
the global error estimates for GERK are in doubt, one could apply GERK in the
reintegration process for a highly reliable estimation of the global errors. Last, we
see that limiting precision difficulties have been encountered with the smallest
tolerances but that the code is performing satisfactorily.

Our next problem is the restricted 3-body problem I-6],

y~' = 2y~ -F y i - - ~ * (y l + ~) / r l 3 - - ~ (y l - - ~ *) / r ~ 3,

y~' = - - 2y~ -t- Y2 - - t~*y2/r~ 8 - - t~y2/r2 8,

rl = [(yl'~-1~)2"~-y22"1112, r2 - ~ [(y1--la*)2~-y22"] 1/2, la = 1/82.45, ~* = 1 -- ~,

yl(0) = 1.2, y~(0) = 0, y2(0) = 0, y~(0) = --1.04935750983032.

We solve this problem over the first period, P = 6.19216933131964, and use the
interval oriented mode to estimate the global error only at x = P since we do not
have the true solution interior to this interval. This is a severe test of a code's step-
size control (up to three orders of magnitude in the variation between the mini-
mum and maximum step size were noted in the course of this integration). Also,
for crude error tolerances it is rather easy to get off onto other integral paths. This
problem shows rather markedly the three ranges of global error estimate reliability
which may be encountered on any given problem. First, if the tolerances are too
crude and the working step sizes are too large, one easily loses the correct solution
curves. Under these circumstances the asymptotic analysis for global extrapolation
is simply not valid and our error estimates are" poor. In the second range the theory
may be successfully applied and yields excellent agreement between the true and
estimated global errors. In the third range the tolerances are at or near the machine
and code limiting precision capabilities. In this case roundoff contaminates the
solution to the level where the global error estimates are again incorrect. In Table
V we follow the notation of Table IV except that absolute error control is used for
this problem and we show the maximum global error of all the components and the
factor d of the corresponding global error estimate.

Recall from the definition of d that the minus sign indicates that the estimate
had the wrong sign of the true global error. Starting with the tolerance of 10 -5
and continuing through 10 -9 we obtain quite good results. Thus we see rather clearly
the three ranges of reliability of the global error estimator. However, it should be
appreciated that this is quite a difficult problem. Also the reader should keep in
mind that the errors are measured only at the end of the period; so the errors re-
ported could be smaller than the worst errors committed during the integration.
Last, we have defined the three ranges of reliability possible with the global error
estimates in rather loose terms, using the words "tolerances too crude," etc. The
results are problem dependent but their reliability is generally quite satisfactory.

ACM Transactions on Mathematmal Software, Vol 2, No. 2, June 1976.

Global Error Estimation for Ordinary Differential Equations • 185

Table VI. Ratios d of the EsUmated to the True Global Error for Problem 1, the Mathematically
Unstable Problem of Table IV, and Problem 2, the 3-Body Problem of Table V, Obtained Using

PDP-10 and IBM 370 Computers in Single Precision

Problem 1 Problem 2

--log (tolerance) PDP-10 IBM 370 PDP-10 IBM 370

1 .11 .11 --.03
2 .38 .38 --.03
3 .69 .65 --.03
4 .83 .39 .30
5 .88 .54
6 3.6 .43
7 --3.2 .13

- . 0 3

- . 0 4

- . 0 1

.20

The word length of the machine used may limit the useful range of tolerances.
In Table VI we report the results for the two example problems when computed
on a PDP-10 which has about 8 decimal digits and an I B M 370 which has about 7.
The difference in performance is greater than the word lengths suggest because the
former is a binary machine with rounding and the la t ter a hexadecimal machine
with chopping. I t is clear tha t on the difficult 3-body problem one should use double
precision on the I B M System 360 and 370 machines and others with similar arith-
metic characteristics. On the other hand, we have already noted the code should
not be used in double precision on the CDC machines and others with similar
characteristics. Because single precision codes are the more t ransportable we have
chosen to provide a single precision version of G E R K .

ACKNOWLEDGMENT

The authors would like to thank Prof. Ivo Babuska of the Universi ty of Maryland
for getting them interested in this s tudy and Dr. Melvin Scott for his continued
interest in the work. We also wish to thank Mr. Imre Farkas of the Universi ty of
Toronto for providing the computat ions made on an I B M 370.

REFERENCES

1. BLUM, E.K. A modification of the Runge-Kutta fourth order method. Math. Computation 16
(1962), 176-187.

2. BVTCHER, J.C. The effective order of Runge-Kutta methods. Conf. on the Numerical Solutions
of Differential Equations, Lecture Notes m Mathematms No. 109, Springer Verlag, 1969,
pp. 133-139.

3. FEHLBERG, E. Low-order classical Runge-Kutta formulas w~th step-size control and their
application to some heat transfer problems. NASA Tech. Rep. TR R-315, George C. Marshall
Space Flight Center, Marshall, Ala.

4. HENRICI, P. Dzscrete Vamable Methods for Ordznary D,fferential Equations. Wiley, New York,
1962.

5. tttrLL, T.E., ENRmHr, W.H., FELLEN, B.M., h~cn SEDGWICK, A.E. Comparing numerical
methods for ordinary differential equahons. SIAM J. Numer. Anal. 9 (1972), 603-637.

6. KROGH, F.T. On testing a subroutine for the numerical integration of ordinary differential
equations. J. ACM 20, 4 (Oct. 1973), 545-562.

ACM Transactions on Mathematical Software, Vol. 2, No. 2, June 1976.

186 L.F. Shampine and H. A. Watts

7. LETHER, F.G. The use of Richardson extrapolation m one-step methods with variable
step-size. Math. Computation 20 (1966), 379-385.

8. SHAMPINE, L.F. Limiting precision in differential equation solvers. Math. Computation
~8 (1974), 141-144.

9. SHAMPINE, L.F. Local extrapolation in the solution of ordinary differential equations. Math.
Computation 27 (1973), 91-97.

10. SHAMPINE, L.F., AND ALLEN, R.C. Numerical Computing: An Introduction. Saunders,
Philadelphia, Pa., 1973.

11. SHAMPINE, L.F., AN]) GORDON, M.K. Computer Solution of Ordinary Differential Equations:
The Initial Value Problem. Freeman, San Francisco, Calif., 1975.

12. SHAMPIN~, L.F., AND WATTS, H.A. Comparing error estimators for Runge-Kutta methods.
Math. Computation ~5 (1971), 445-455.

13. SHAMPINE, L.F., WATTS, tt.A., AND DAVESPORT, S.M. Solving non-stiff ordinary differential
equations--the state of the art. To appear in S I A M Rev.

14. STETTER, H.J. Local estimation of the global discretization error. S I A M J. Numer. Anal.
8 (1971), 512-523.

15. VITASEK, E. The numerical stability in solution of differential equations. Conf. on the
Numerical Solution of Differential Equations, Lecture Notes in Mathematics No. 109,
Springer Verlag, 1969, pp. 87-111.

Received August 1975

ACM Transactions on Mathematical Software, Vol 2, No. 2, June 1970

