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Econornetrica, Vol. 49, No. 5 (September, 1981) 

A TEST FOR MISSPECIFICATION IN THE CENSORED NORMAL 
MODEL 

Estimates of parameters in Tobit and other models for limited, truncated and censored 
dependent variables are not robust against misspecification. A test of the standard 
assumptions against a general misspecified alternative in the univariate censored normal 
model is derived and extended to the Tobit regression case. Computational ease and 
freedom from specification of a specific alternative hypothesis are primary attractions of 
the test. 

IT IS WELL KNOWN that ordinary least squares will produce inconsistent estimates 
of the regression parameters if the dependent variable is censored or t r ~ n c a t e d . ~  
Maximum likelihood estimation on Tobit and other limited dependent variable 
models is being employed with increasing frequency to avoid this inconsistency. 
But the assumptions required of these models are quite strong and any violation, 
such as heteroscedasticity or nonnormality, may result in an asymptotic bias as 
severe as in the naive OLS f~rmulat ion.~ 

The purpose of this paper is to suggest a general test for misspecification in 
these models. Section 1 introduces the simple nonregression case of a censored 
variable. Likelihood equations for the location and scale parameters are obtained 
and the method of moments estimator is discussed. A specification test following 
Hausman [5]is then derived in Section 2 for the general alternative hypothesis of 
misspecification. Section 3 contains a generalization of the model and the 
specification test to the case of a regression formulation. The results are summa- 
rized in Section 4. 

1. THE MODEL AND MOM AND ML ESTIMATORS 

We consider in this section the case of a censored normal variate y defined by 
the distribution function 

= 0 for y < 0, 

'Richard Rosett prompted the author's interest in misspecification of Tobit models and the work 
presented here benefited from earlier collaboration with G. S. Maddala. The paper was written while 
the author was on the faculty at California Institute of Technology. 

21n the statistical literature, the term censored applies to a sample in which some observations are 
recorded only as above (or below) some threshold, the exact value in such a case having been 
censored. The term truncated is applied to samples in which such observations are excluded entirely. 
In the econometrics literature, on the other hand, the term truncated is often applied to the censored 
sample case, apparently in reference to the variable rather than the sample. This note will follow the 
statistical usage. 

3 ~ a u s m a nand Wise [6] have noted inconsistencies arising from misspecification in probit-logit 
models. The effect of heteroscedasticity has been examined by Maddala and Nelson [ l l ]  and by 
Maddala [lo] in the case of the Tobit model and by Hurd [7] in a truncated variable model. Nelson 
[12]provides a more detailed analysis of the effect of heteroscedasticity, and Goldberger [3]examines 
the effect of nonnormality. 
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where @(a) is the unit normal cumulative density function (c.d.f.) 

The c.d.f. allows for a mass point at zero so that a sufficiently large sample will 
contain some observations on y at the threshold of zero. While this distribution 
has received considerable attention in the statistical l i te ra t~re ,~  it will prove 
useful to review here the method of moments and maximum likelihood estima- 
tors. 

Let (y l ,  . . . , y,) be a random sample of observations on y and define the 
random variable vi as 

Then the sample fraction of noncensored observations and the first two sample 
moments (about zero) are given by 

and 

respectively. Since the third and fourth population moments exist, these three 
sample moments will converge to their population counterpartss as N tends to 
infinity: 

MOM estimates p and a" are found by replacing E, and E2on the right-hand 
side of (1.2) and (1.3) by M I  and M2 respectively, substituting ,iiand a" for p and 
a on the left, and solving for and o". Those equations are nonlinear so that 
iterative solution procedures are typically used.6 These MOM estimators are 
consistent but not asymptotically efficient. 

4 ~ e e ,for example, Cohen [Z],Hald [4], and Pearson and Lee [13]. 
5 ~ e eJohnson and Kotz [8] for a derivation of the moments. Note that the three relations, @, E ,  

and E,, depend on only two parameters, p and o, and are thus not independent, a detail implicitly 
recognized in maximum likelihood estimation but not in the method of moments. 

6~lternativelinear estimators are found by solving in turn the three equations: 



TEST FOR MISSPECIFICATION 

The log likelihood is given by 

(1.4) logL[ p,a; ( y , ,. . . ,yN)]  

The likelihood equations can be written as 

where 4E @(,ii/8) and 6 a({/&). The maximum likelihood estimators are the 
nonlinear solutions of (1.5) and (1.6) for fl and 8. 

Second derivatives of the log likelihood divided by N are given by 

where 

i= M ~ / ( P+ $+(?)). 

." = i/?, 

or the three equations: 

? =  ( f  ) = C-I(P), 
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and E l  and E2 are the first and second moments defined by equations (1.2) and 
(1.3) and @ and @ are both evaluated at P/a.  The information matrix is the 
negative of the expectation of H and can be written as 

where 

and 

The inverse of $ is the covariance matrix for (;,&)I. It may be estimated by 
-H(fi, 8; M I ,  M2, P)-I or, perhaps better, by 9.(fi, &)-I. 

A proof of the consistency, asymptotic normality, and asymptotic efficiency 
(i.e., that AC(fi, 8) = 4-I) is provided by Amemiya [I] for the more general case 
of a regression model formulation. Inspection of the likelihood equations (1.5) 
and (1.6) reveals the nature of the consistency. Since P ,  M I ,  and M,, converge to 
@(p/a),  E l ,  and E, respectively, solution of equations (1.5) and (1.6) requires 
fi = p and 8 = a in the limit. The efficiency gain of fi and 8 over the MOM 
estimators f i  and a" arises from the use of additional sample information, namely 
P, in the MLE's. 

It may be the case that parameters of interest are not the location and scale 
parameters p and a but rather some sample moment(s) or the probability of a 
noncensored observation. In this case the sample moments themselves are the 
consistent MOM estimates of the population moments and P is consistent for 
@( p/a). Byt they lack asyqptotic efficiency relative to the maximum likelihood 
estimates E l  = E(y;  fi,8), E, = E ( ~ ~ ;  =fi,8), and 6 @(fi/8). Again the gain in 
efficiency arises from use of more sample information and implicit recognition of 
the dependency among those three parameters. 

The above noted asymptotic properties of the ML and MOM estimators 
depend crucially on the assumption of an i.i.d. censored normal sample. If any of 
these assumptions are violated, for example if the distribution is not normal or if 
all observations do not come from the same distribution, then the sample 
statistics, P, M I ,  and M2 will not, in general, converge to the relations given by 
equation (1.1), (1.2), and (1.3) respectively. Solution of any two of these three 
equations for the MOM estimates fi and a" or the likelihood equations (1.5) and 
(1.6) for the MLE's fi and 8 will therefore yield inconsistent estimates.' 

'Apparently the MLE's are reasonably robust against failure of the independence assumption. Lee 
[9]has established strong consistency in the regression case with serially correlated disturbances. 

mailto:@(fi/8)
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To measure the extent of the bias, Nelson [I21 examined the asymptotic 
solution for the MLE's from the misspecified i.i.d. censored normal model when 
the sample was generated from a mixture of censored normal distributions with 
common location parameter p but different scale parameters a ,  and a,. As an 
example of those results, true parameter values of p = - .5, a,/p, = 2.0, (a:,+ 
4 ) / 2  = 1 led to a2ymptotic biases of - .I64 for fi, - .0042 for a, .0050 for E l ,  
and - .0085 for E,. Such results suggest that estimates of the moments a, E l ,  
and E, may not be too sensitive to misspecification but that the nonrobustness of 
the location and scale parameter estimates may be quite severe. 

2. AN ASYMPTOTIC TEST AGAINST MISSPECIFICATION 

The sensitivity of MLE's to specification error motivates a search for some 
reasonably general test. We suggest in this section an asymptotic specification 
test derived from the w2rk of *Hausman [S]. Hausman's procedure may be 
outlined as follows. Let 0, and 0, be two estimators of the parameter vector 0 
such that under the null hypothesis, H,, they are both c~nsistent~and asymptoti-
cally normal with asymptotic variances Vo and V,. Further, let 0, be asymptoti- 
cally efficient so that Vo = 9- '  and V, - V, is nonnegative definite. Then, as 
Hausman shows, flq = f l (8,  - 8,) is asymptotically normal with variance 
V, - V,. Letting PI and Po b~ cocsistent for V, and Vo respectively, he 
constructs the statistic m = Nql(V, - VO)-lq which, he argues, is asymptotically 
XtK, under Ho, where K is the dimension of 0. 

Consider now an alternative hypothesis, H,, such that, under H,, plimB*,# 0 
but plim8, = 0. Under these conditions q does not converge to zero and the 
distribution of m is skewed to the right relative to the chi-square. Thus m serves 
as a test statistic, with the hypothesis of no misspecification to be rejected with 
large values of m. Power considerations require knowledge of the distribution of 
m under the alternative hypothesis of specification error. Often this distribution 
will be asymptotically noncentral chi-square; Hausman gives some fairly general 
conditions under which this will be the case. 

The apparent attractions of Hausman's asymptotic test are the ease with which 
the variance of q may be obtained and the generality of the procedure. As 
regards the latter, the test is, simultaneously, against all alternatives under which 
8, is consistent but 8*, inconsistent, though of course the power of the test will 
vary with H,. Thus a particular alternative hypothesis need not be fully specified 
-all that is needed is an asymptotically efficient estimator and a second 
consistent but inefficient estimator which exhibits a fair degree of robustness. 

The test appears particularly apt for the censored normal problem of Section 1 
above. There we have a maximum likelihood estimator with all the desired 
asymptotic properties under the maintained assumptions but which may exhibit 
severe bias under a variety of seemingly innocuous misspecifications. We will, in 
what follows, adapt Hausman's test to this case. 

Regardless of the parameters of interest, maximum likelihood estimation yields 
the estimators fi and 6 as either an intermediate or a final step. This vector ( fi,8)' 
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exhibits the necessary properties of the efficient estimator & but there does not 
exist a robust estimator of 0 = (p ,u) '  to serve the role of 0 , .  For example, the 
MOM estimator, ( k ,a")', noted in Section 1 is subject to the same sensitivity to 
misspecification as is the M L E . ~The first two sample moments, M I  and M,, on 
the other hand are, under very general conditions, consistent for the first two 
population mome;ts of whatever popu1a:ion is being sampled. And the MLE for 
these moments, El  = E ( y ;  P,B) and E, = E ( ~ ~ ;  obtained from 0,8) ,  as the 
invariance property, serves as the efficient counterpart. Furthermore we should 
note that the sample proportion of noncensored observations, P, is, again under 
general conditions and random sampling, con$stent for the corresponding popu- 
lation fraction. It's efficient counterpart is Q, = @(f l /8 ) . We thus have three 
population parameters for which both efficient and robust estimators are readily 
available. 

One might reason intuitively that since the censored normal distribution has 
only two parameters, the test statistic can and should be constructed from only 
two of the three available estimator pairs-use of all three would surely result in 
a singularity in the variance-covariance matrix for q. As will be shown directly, 
the problem is even more severe. Define q , ,  q,, and q, as 

p - z l  
(2.2) 9, =: M I  - E ( y ;  fl, 8 )  = -.. ( p- Q),

I - @  

where the equalities in (2.2) and (2.3) are obtained after substitution from 
equations (1.2) and (1.5), and (1.3) and (1.6) respectively. Consider the expan- 
sions of 9, and 9, about p and a. We obtain for 9,: 

-- P - Q ,  ( P - P ) +  R21 - Q ,  1 - Q ,  1 - Q ,  

where R, inc1ud:s all second and higher order terms. Note that R, y d  all term: 
like ( P  - @) . ( E l- E l ) are of smaller order than N - ' I 2  since P, E , ,  f i ,  and Q, 
are all consistent under H,. Thus q, may be simplified to 

*Hausman's condition that 8*,Abe consisfent under H, may be stronger than necessary-his test 
might serve well, so long as plim8, + plim Bo under Ha. In the present case, that would mean the test 
could be based on ( j i ,g) and 6). We have not investigated that possibility 6 )  are(i, since (i, 
computationally more difficult than other statistics we can use. 

mailto:@(fl/8)
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Similarly for q3 we obtain 

,u2 + u2 - E, p2 + u2- E2 
93 = I - Q ,  

( P  - ") -
1-Q ,  (22 - E2)(P -@) 

,u2 + u2  - E2 ,u2 + (r2 - E2-
I - @  

( 6  -Q,)+ 
(I - "12 ( 6  - Q,)(P-Q) 

Again, consistency of z 2 ,  P, &, fi, and 8 allows simplification to 

In the limit, then, q, and q, are constant multiples of q, = (P - 6 )  so that the 
asymptotic covariance matrix V(q), where q = (q, ,q,, q,)', must have *rank one. 

The Hausman article failed to acknowledge the possibility that V(8,) - ~ ( 4 ~ )  
might sometimes or always be singular in a particular application. But the 
resolution of such a difficulty is obvious-base the test on some subset of the 
estimator pairs whict is not perfectly colinear. In the case at hand we will choose 
the estimator pair (a, P )  on computational grounds, but in fact it makes little 
difference which of the three we choose. 

The next step is to obtain the asymptotic variance of P - 6 .  Rathy than 
compute it directly, we will obtain it, as did Hausman, from V(P) - V(Q,).P is 
of course binomial and f i ( P  - a)-AN(O,Q,(I - a)), so that the asymptotic 
variance of P is V(P) = @(I-Q,). 

The asymptotic distribution of 6 and, for completeness, k, and k2,  are 
obtained as follows. Expand each of the three terms in a first-order Taylor series 
about ( ,u, a). (Consistency guarantees that higher order terms are o(N -I / , )  so 
they may be neglected). We obtain 

Each of the three statistics times fi will, in the limit, follow the same asymptotic 
normal distribution as the respective linear combination of fi(fi -,u) and 
fi(8 -0). That is, 
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where 4 is the information matrix defined in (1.7) and A is given by 

In particular the asymptotic variance of 6 is given by 

In principle, any consistent estimators of V(P) and ~ ( 6 )  may be employed in 
construction of the test statistic. The following variance estimator is guaranteed 
to be positive, and experimentation suggests that it serves the purpose well:9 

where 4 is defined by equations (1.7)-(1.10). 
We have, then, the following result which defines the asymptotic specification 

test. Under the maintained hypothesis of a sample from an i.i.d. censored normal 
population with location and scale parameters y and o, the statistic 

follows, asymptotically, a X 2  distribution with one degree of freedom. 
The power characteristics of the test under various alternative hypotheses are 

not derived here. But we do offer, as evidence on the efficacy of the test, the 
following results from some simple simulation experiments. Six experiments were 
run under varying conditions with respect to sample size, location parameters, 
and degree of misspecification. In the first of the experiments the model was 
correctly specified, while the next five involved a heteroscedastic misspecifica- 
tion. In each experiment, two samples of size N/2 were drawn randomly from 
N( y, 6:) distributions, the two subsamples were combined and censored at zero, 
ML estimates f i  and B were obtained under the i.i.d. censored normal assump- 
tion, and the statistic m was computed. This process was repeated fifty times (100 
in the correctly specified experiment) to obtain fifty (100) observations on the 
statistic m under the prespecified structure. The six experiments differed in 
sample size N (100, 250, 500 or 1000), and the location parameter y (- .5 or 
+ .5). In all five misspecified experiments, the two population scale parameters 

9Use of P(1 - P )  in place of 6 .(1 - 6 ) and/or -H - '  in place of i - '  will yield the same 
asymptotic results but produce the unesthetic small sample result of occasional negative variance 
estimates. 
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were fixed at a ,  = .6325 and a, = 1.2649, corresponding to X = a ,  /a, = 2 and 
(a: + a 3 / 2  = 1. 

Table I summarizes the results of those six experiments. For each experiment 
the table contains the nine decile values for the statistic; its mean and variance; 
the proportion of the sample exceeding critical X :  values for tests with a = .01, 
.05, .lo, and .25; and computed asymptotic values for 6 - and 6-y. A 
column containing relevant parameters for the Xt,,distribution is included as a 
benchmark. 

The results from experiment "H," suggest that with no misspecification the 
statistic m fits the x;,,distribution reasonably well even for the moderate sample 
size of 100. With large samples the test seems quite effective at detecting the 
employed degree of misspecification-the null hypothesis is rejected at a = .05 in 
48 of the 50 samples in experiment "H," with N = 1000 and 23 of the 50 samples 
in experiment "H," with N = 500. For smaller sample sizes the results are less 
encouraging-rejection rates at a = .05 are 6/50 and 3/50 in the two misspeci- 
fied experiments with N = 100 and 12/50 in the one with N = 250. 

TABLE I 
PERFORMANCE m = N(P - 612/ +(P - EXPERIMENTSOF TEST STATISTIC 6 )  IN Srx SAMPLING 

Experiment 

Experiment Structure 

X = o , / o *  1 2 2 2 2 2 
P -.5 -.5 -.5 -.5 +.5 +.5 
N 100 100 250 500 100 1000 
Number of Samples 100 50 50 50 50 50 

Sampling Statistics 
Mean of m 1.38 1.92 2.46 5.32 1.56 18.34 1 
Variance of m 7.46 13.65 8.01 22.65 7.41 95.26 2 
mean of ( -pJ -.007 -.I50 -.I48 -.I67 ,013 ,018 
mean of ( P  - a) -.0013 .0028 ,0031 ,0042 .0101 ,0181 

Decile Values for m 

.9 


Rejection Rates (%m > ,y:,,) 
% > 1.32 33 24 52 82 36 100 25 
70> 2.71 13 18 38 64 18 98 10 
% > 3.84 7 12 24 46 6 96 5 
% > 6.63 2 10 10 32 4 92 1 
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3. THE EXTENSION TO A REGRESSION MODEL 

Section 2 introduced a specification test for the case of an i.i.d. censored 
normal random variate. We sketch here the extension to a regression model. 

Let Xi be a k-element vector of exogenous variables, P be a k-element vector 
of unknown regression parameters, and specify 

(3.1) F ( ~ ~ )@( foryi > 0,= "- ' I X i )a 

= 0 fory ,  < 0. 

This is of course the Tobit model more commonly described by 

= O  otherwise; 

The likelihood for a random sample of size N is given by equation (1.4) with p 
replaced by /3 ' X i .  

Define X as the N x K matrix containing Xi'in the ith row; Y as the N X 1 
vector with typical element y i ;  W as the N x N diagonal matrix containing the 
indicator variable, wii = 1 if yi > 0, 0 otherwise, along the diagonal; + as the 
N x 1 vector with + ( P I X i / a )at element i; and 5 as the N x N diagonal qatrix 
with @ ( P I X i / a )at position ii. When + and 3 are evaluated at the MLE's ,B and 
8, they will be indicated as C$ and 5 respectively. Otherwise they will be evaluated 
at the true values, Do and a,. 

Now the likelihood equations may be written, after simplification, as 

(3.2) x ' w x ~ + ~ x ' [ I - w ] [ I - ~ ] - ~ G = x ' Y-

and 

So long as the yi's are random with distribution as specified in (3.1) and the 
sequence Xiis such that 

1lim - X I X =  Q pos. def., 
N+m N 

solution of (3.2) and (3.3) will yield estimates which are consistent, asymptoti- 
cally normal, and asymptotically efficient. That is, 
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with defined as 

X ' [  -+- CB]
(3.4)  $( ,f3, a )  = 

B'CB - -B ' + +  2 t r [ s ]  

where C is an N x N diagonal matrix with typical diagonal element 

and B is an N element vector with typical element b, = ( P ' X , ) / a .  
Violation of any of the distributional assumptions will in general lead to an 

inconsistent estimator. We seek then a general test for those assumptions. The 
test we use is again that proposed by Hausman, based this time on estimates of 
E ( ( I / N ) x ' Y ) . "  Under fairly general conditions on Xi and the distribution of 
y, ,  ( l / N ) X 1  Y  will be consistent for its expectation. Under the maintained as-
sumptions for the censored normal regression model, it will be consistent and 
asymptotically normal though inefficient. Taking Xi as fixed, the first two 
moments of yi  are given by 

and 

Thus 

and the variance of (1/N ) X 1  Y  is 

where 5 is an N x N diagonal matrix with diagonal elements ~ ( y , ? )- as~ ( y , ) ~  
defined in (3.5) and (3.6).Thus, 

( l / N ) X I Y is the consistent but inefficient estimator we require for the test 
statistic and its variance is given by expression (3.8). 

''AS before, statistics for E ( Y I Y ) and tr@) might be included as well but would involve a 
singularity in the asymptotic var-cov matrix for the difference vector. Of the K + 2 possible statistic 
pairs, we must choose only k. 
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The corresponding effi:ient estimator is the maximum likelihood estim:tor for 
Ex,.Define the statistic Ex, as expression (3.7) evaluated at the MLE's ,B and 8. 
Its variance is obtained by expanding it about ,B and a, 

The left side of (3.9) will thus h?ve the same asymptotic distribution as the 
indicated linear combination of (,B - ,B) and (8 - a). That is, 

where Vo is defined by 

Combining these results, we obtain the desired test statistic, 

where PIand Poare obtained by evaluation of (3.8) and (3.10) respectively at the 
MLE's and 8." Under the maintained assumptions, this statistic will follow, 
asymptotically, a X:k) distribution. 

4. SUMMARY 

The Tobit model and maximum likelihood estimation of it are being employed 
with increasing frequency in economics and other areas. The assumptions of that 
model are quite strong, and more attention must be paid to the effect of violating 
those assumptions to avoid erroneous inferences. We have argued above that 
MLE's for this model lack robustness against misspecification. 

Given this sensitivity, some general test against misspecification would be most 
helpful. Such a test was developed along the lines of the asymptotic test proposed 
by Hausman. That test requires two estimators: One exhibiting consistency and 
asymptotic efficiency under the null hypothesis and inconsistency under misspec- 
ification, and the other exhibiting consistency under the alternative as well as the 
null hypothesis. The estimators proposed for this test are, respectively, the 
maximum likelihood and the method of moments estimators for certain popula- 
tion moments. 

The suggested test statistics are given by expressions (2.12) and (3.1 1) for the 
nonregression and regression cases respectively. Consistent estimators of the 
required asymptotic covariance matrices are suggested which will be positive 
definite even with finite samples. The performance of the test statistic in the 

"Again there exist other consistent estimators for V, and V,,, use of -H -'  in (3.9) for example, 
but they will not guarantee a positive definite variance estimate for the difference. 
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nonregression case was examined by Monte Carlo methods at the end of Section 
2. The results suggested that the test statistic fits its asymptotic X 2  distribution 
reasonably well even for moderate sample sizes and was quite effective in 
detecting a heteroscedastic misspecification in samples greater than 500. The test 
appears to exhibit rather weak power, however, with smaller sample sizes. 

The question of what to do if the test detects a significant misspecification has 
not been addressed for two reasons. First it would appear to be impossible to 
distinguish between sources of bias without a priori speculation about particular 
sources. And, second, with well formulated hypotheses, estimation is in principal 
straightforward and standard tests for distinguishing between alternatives are 
available. 

University of Iowa 

Manuscript received November, 1979; Jnal revision received September, 1980. 
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