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Some Remarks on the 

Lax-Wendroff Finite-Difference Scheme 

for Nonsymmetric Hyperbolic Systems* 


By Masaya Yamaguti 

1. Let us consider the following system of equations: 

where u is an unknown N-vector, Ak are real constant N by N matrices. I t  is well 
known that the Cauchy problem for (1) with initial data 

(2) U(X, 0) = u~(x )  is well posed in the L2sense if we assume the matrices Ak 
to be symmetric. We know also that there is another class of systems for which we 
can prove the well posedness of the Cauchy problem in the L2sense. That class is 
defined by the condition: 

(3) all eigenvalues of Cft=1Ak[k are always real and distinct for all real [, I [ /  # 0, 
and such equations are called a strictly hyperbolic system or a regularly hyperbolic 
system. 

In  [I], Peter Lax remarked that there are systems in the class of strictly hyper- 
bolic equations for which we can not symmetrize all Ak by multiplying with one 
constant symmetric positive matrix. At the same time he remarked that the sym- 
metric hyperbolic system is very sensitive to small perturbation of the Ah, but 
strictly hyperbolic systems obviously are not sensitive to such perturbations. For 
the numerical solution of the Cauchy problem, we know that many finite-difference 
schemes work nicely for the symmetric hyperbolic system. Among them, Fried- 
richs' scheme, which is accurate of first order, is stable for sufficiently small mesh 
ratio (the ratio is determined by the Courant-Friedrichs-Lewy condition) for the 
above two classes of hyperbolic systems, namely the symmetric or the strictly 
hyperbolic system. This is proved in [I]. On the other hand, the Lax-Wendroff 
scheme which has second-order accuracy was proved stable if the mesh ratio is 
small, for any symmetric hyperbolic system [3]. Now, in this paper we are going to 
point out that for the nonsymmetric hyperbolic system, even for the strictly hyper- 
bolic system, the Lax-Wendroff scheme is not always stable, if n > 1,N > 2, no 
matter how small the mesh ratio is. (We can trivially prove that if n = 1or N S 2, 
the scheme is always stable for small mesh ratio.) Also we derive a criterion that 
assures the stability of the Lax-Wendroff scheme.** 
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2. We discuss only the case n = 2, but remark that the general case can be 
treated in the same fashion. Consider the Lax-Wendroff scheme for the system (1) 
forn = 2; 

where the operators DO,, DO,, D*,, D*, are defined in the following way: 

2Dozu(x, y) = u(x + k, y) - u(x - k, y) , 
2Dovu(x, Y) = u(x, Y + k) - u(x, Y - k) 1 

D+zu(x, Y) = u(x + JC, Y) - 4x1  Y) 1 

D+vu(x, Y) = u(x, Y + 12) - u(x, Y) 1 

D-zu(x1 Y) = u(x1 Y) - 4 2  - JC, Y)1 

D-,u(x, Y) = 4x1 Y) - u(x, Y - k) 
and X = h/k .  

Upon taking the Fourier transform, we compute the amplification matrix (see 
[2]) of the scheme: 

c ( f ,  q) = I + iX(A sin .$ + B sinq) 

cost) + 21 
(AB + BA) sin E sinq + ~ ~ ( 1~ ~ ( 1- - cosq)) 

( 5 )  x2 
= I + iX(A sin 4 + B sin 11) (A sin E + B sin q)2 

It is well known (see [2]) that the von Neumann condition is necessary for the 
stability of (4). Hence we only have to check that the absolute value of some eigen- 
value of this matrix is greater than one (a violation of the von Neumann condition), 
in order to show the instability of this scheme. We exhibit this in the following two 

(i) For any real (5, q), A05 + Boq has three real distinct roots. (Of course, it is 

examples. 
Example 1. 

A. = [i 0 
- ;], 0 

Bo= [ I 
- E  

1 
o 
0 

a],
0 

E , ~ . 

Here t is a small positive number. 
We can show very easily the following facts: 

necessary to take E sufficiently small.) 
(ii) A0 and Bo can not be symmetrized simultaneously by multiplication with 

a positive definite matrix. 
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(iii) For any positive numbers (x, l ) ,  AoZX + Bo2b has one negative eigenvalue. 
We simply prove (iii). 

det (Ao2x + B ~ H )= ( X  + (1 - 2)t1(-e21x) < 0 

But the determinant of a matrix is equal to the product of all its eigenvalues, there- 
fore, (iii) follows since any complex eigenvalues constitute a conjugate complex 
pair. Now let us consider the matrix c([, q) a t  [ = a,  q = a.We have 

One eigenvalue of this matrix is greater than 1for any X # 0. 
This proves the instability of the scheme for the strictly hyperbolic system 

Remark 1. It is interesting to see that the instability occurs for the highest fre- 
quencies (neighborhood of a).  

Remark 2. Both matrices A0 and BO have a zero eigenvalue. 
Example 2. 

where k # fm and k ,  m satisfy the following condition: 

Ifwe take p > 0 and sufficiently large, then we can show the instability of (4) with 
A = A1 and B = BI. First we show the strict hyperbolicity of A[ + Bq for real 
[, q. It is easy to verify that B1 has no zero eigenvalue. The characteristic equation 
of A[ + Bq is 

mrl 
(8) 	 det -PE - I* 

-9 

that is, 

Taking the discriminant D of this equation, we have 

D = -4(p2t2 + (mk - 2)q2) + 27(m + k)206 

= -q6{4p6x3+ 12p4(mk- 2)x2+ 1 2 ~ ~ ( m k- 2)'x 
(9) 	 + 4(mh: - 213 - 27(m + k)2j 

where x = E2/q2. We see t,hat 4(mk - 2)3 - 27(m + k)2> 0 implies P(x) > 0 for 
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all x > 0. Thus, we can conclude that D is always negative, which means (8) has 
three real distinct roots. 

Next, we show, as in Example 1,that A12 + B12 has a negative real eigenvalue. 
We comput'e A12 + B12: 

Consider t,he equation 

Since this equation for p2 has a positive root p12, we can conclude det [A12 +B12]< 0 
for large p2. Therefore, the matrix A12 + B12 has one negative eigenvalue. Hence, 
as before, by substitution in (6) we see that (4) is unstable. 

3. Conditions that Assure the Stabiity of Finite-Difference Schemes for a 
Strictly Hyperbolic System. In this paragraph, we review the definition of stability 
given by Lax-Richtmyer for finite-difference schemes for solving a strictly hyper- 
bolic system (1). First, we introduce the finite-difference scheme for solving the 
Cauchy problem. We consider the operator Sk in L2 defined by the following: 

where j is a multi-index (jl, . ., j,), and Ti  represents a product of translation 
operators Tiill . -,Tnjn. (Ti is defined by Tiu(x) = u(x + kei), where ei is the 
unit vector, ei = (lick), 1 5 k 5 n.) Of course, we denote by h the time mesh-length, 
and by k the space mesh-length. We obtain the amplification matrix by taking the 
Fourier transform: 

As stated in [2], Lax-Richtmyer's definition of stability is equivalent to the require- 
ment that cn(f) is unifornlly bounded for all integral n ( / t i /  5 *).There are many 
practical criteria that assure this stability. Before introducing such criteria, we ex- 
plain some notions which are useful (see [3], [5] ) .  

Dejinition. We say the scheme (11) has "accuracy of order p" when (12) satis- 
fies the following inequality for small [,with nonnegative integer p, and constant K: 

where A .f  signifies x:=1AkEk, X = h/k ,  IEI2 = El2 + 5z2 + . - . + L2,and lA 1 is 
the natural matrix norm defined by 1 A1 = sup I .I + o lAx1/1x1. 

Definition. We say the scheme (11) has "dissipation of degree 2r" when all the 
eigenvalues lc,([) of c(t) in (12) satisfy the following inequality with some constant 
6 > 0 and positive integer r: 

(14) lkp(E)l 5 1 - 6Itl2" (] t i]5 T ,(i = 1,2, . . n)) (p = 1, . . .,N )  .a ,  
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Using this terminology, some practical conditions which imply Lax-Richtmyer 
stability are given in the following two theorems. 

THEOREM1. For a strongly hyperbolic system (I), if the scheme (11) has accuracy 
of order 2p - 1and dissipation of degree 2p, then the scheme is stable (Kreiss 141). 

For the definition of a strongly hyperbolic system, see [6], [7]. We only say that 
a strictly hyperbolic system is strongly hyperbolic. 

THEOREM2. For a symmetric hyperbolic system (I), if the scheme (11) has Her- 
mitian coeficients and has accuracy of order 2p - 2 and dissipation of degree 2p, then 
it is stable (Parlett [ 5 ] ) .  

We now prove the following theorem which gives a new criterion for assuring 
stability. 

THEOREM3. For a strictly hyperbolic system (I), if scheme (11) has accuracy 
greater than 1and if i t  satisfies one of the two following conditions, then it is stable: 

(i) c(t) has dissipation of some degree 2r > 0, for [ # 0;  
(ii) the eigenvalues of c(t) are distinct for all t # 0and the von Neumann condition 

is satisfied. 
Proof. First we prove that c(t) is uniformly diagonalizable in a sufficiently small 

neighborhood of t = 0. Observe that c(0) = I,and for small \ E l ,  

Therefore, since the scheme has accuracy of order greater than 1, (13) yields 

logc(t) = iXA.t + R(t) , IR(t)I = O(Itlp) , P > 1 . 
If we put = p, t/ixil = t', then we have for p # 0 

log c(t)/p = iXA.tl + RI(P, 5') , IRi(p, tl) I = 0(pP-'1 . 
Since the eigenvalues of A .tl  are distinct on It'/ = 1, by the strict hyperbolicity, 
the eigenvalues of log c(t)lp are also distinct (uniformly) for small p. Thus, we can 
say there is a positive number y such that log c ( ( ) / ~  is "uniformly diagonalizable" 
for p 5 y. The uniform diagonalizability is defined as follows: When X is the ma- 
trix whose columns are a complete set of unit eigenvectors of the matrix El then 
the diagonal matrix of eigenvalues, A, is given by 

A = X-'EX. 
We say the family E(t) is uniformly diagonalizable if [X(t)]-I is uniformly bounded. 
Since det X(tl), for E E log c(t)/C, is a continuous nonzero function on It'/ = 1, 
Weierstrass' theorem implies ldet XI 2 p > 0, for some constant p. Hence X-I is 
uniformly bounded. This implies that c(t) is also uniformly diagonalizable for 
p 4 y. Before completing the proof of stability, we observe that if the scheme satis- 
fies the condition (ii), then it is easy to see that c(t) is uniformly diagonalizable for 
all t ,  ltil 5 T ,  and the von IL'eumann condition is satisfied, which implies the 
stability by the discussion of Lax-Richtmyer 121. 

Let us now return to case (i). We can limit consideration to the range 5 a, 
y 5 p by the periodicity of c(t) and by the above proof for the range p 5 y. By 
taking a suitable unitary matrix U(t), we can transform c(t) to  an upper triangular 
matrix, B(t), 
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B(E) = U(E)c(E)U*(€) = K( € )  + B1 (E) , 
where K(E) is a diagonal matrix and Bl(,$) is a strictly upper triangular matrix. Of 
course, the diagonal elements of K(E) are the eigenvalues of ~ ( 6 ) .  Now with a diag-
onal matrix D of the form: 

we transform B to DBD-1 = K + Bz with 

By the condition (i), we have 

K*K 5 (1 - 61~1~')1. 

Taking d large, we have 

(K + B2)*(K + B2) 5 I 
which means that all eigenvalues of (K + Bz)* (K + Bz) are less than 1, since 
(K + Bz)* (K + Bz) = K*K + K*Bz + Bz*K + Bz*Bz and p = / € I  2 7.There-
fore, if we put TZ = DU, there is a positive constant a! such that 

max (ITz[, IT^/-') S a! and I T ~ ~ T ~ -5~ ~1 ,  

where we use the natural matrix norm I A I = sup,,, lAx1/1x/ corresponding to the 
Euclidean norm 1x1. Therefore, all powers of c satisfy IT2cnT2-'1 =< 1, whence 
IcnI $ a2and are bounded. 

4. The Lax-Wendroff Scheme for a Strict Hyperbolic System. 

We derive a sufficient condition for the stability of the Lax-Wendroff scheme for 
special strictly hyperbolic systems. We express the condition by using the follow- 
ing notation. 

Ao(€,q) = A s in €  + B s i n q ,  
(15) 	 Al(5, q) = A'  sin4 ~ / 2  + sin^ q/2 . 

THEOREM4. The Lax-Wendro$ scheme is stable for suficiently small mesh ratio X, 
if the coeficient matrices A, B of the strictly hyperbolic system satisfy the following 
conditions: 
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(I) at least one of A and B does not have a zero eigenvalue; 
(2) A2[ + B2q has only real eigenvalues for all real [, q; 
(3) for each eigenvalue of Ao([, q) we denote by 90and $0 the eigenvectors corre- 

sponding to this eigenvalue of Ao([, q) and Ao*([, q) respectively, such that (90, $0) > 0; 
we have 

(Ad[, T ) ~ o ,  $0) 2 1p4(40,$0) 

with 1 being a positive constant and p2 = sin2[ + sin2q. 

Proof. First we remark that the matrix Ao([, q) vanishes a t  (a, a )  but A1([, q) 
does not vanish there. To treat this case specially, we divide our discussion into 
two parts. Namely, for (5, q) which satisfy a - E j I [ /  5 a, a - E 5 jql 5 a, 

and for ([, q) which do not satisfy these inequalities. 
(i) For (5, q) which satisfy a - E $ /[I 5 a, a - E $ I l l /  $ a, by assumption 

(2) and by Lax's concavity theorem for hyperbolic matrices [I], we can show that 
the eigenvalues a,([, q) of 

are strictly positive, that is to say, bounded below by some positive constant which 
is independent of E and (6, q) for this range. Therefore, the eigenvalues k,( [ ,  q) have 
the following form: 

b(E,7) = 1 - a,([, 7) + O ( E )  (P = 1,2 ,  - . N )  
which satisfy the condition (14) for sufficiently small 6. This proves that condition 
(i) of Theorem 4 is satisfied for this range. 

(ii) Now we discuss the domain of [, q except the neighborhood of 151 = a, 
1q1 = a.We use condition (3) t'o prove some dissipation stated in condition (i) for 
small X. Putting p2 = sin2 [ + sin2 q, sin [/p = [ I ,  sin q/p = q' ([I2 + qt2 = 1) 
and Al([, q)lP = All([, q), we consider t,he matrix 

as a perturbation of the matrix Ao([', q') by taking X small. We know that by the 
strict hyperbolicity, the absolute value of the difference of any two eigenvalues of 
Ao(E1, q') is bounded away from zero for [ I 2  + qt2 = 1. Then we can consider the 
convergent Taylor expansion in X of an eigenvalue of cl([, q). 

I n  the follou~ing, we carry out this expansion. Let v([, q) be an eigenvalue of 
cl([, q), and 9([, q) be an eigenvector. Then we have 

v(F, q) = vo + Xv1 + X2v2 + , 
4(F, q) = 90+ X ~ I+ X 2 9 2  I-- - - ; 

substituting these in el([, q)@ = v@, we obtain 

= (vo+Xv1+ ...)(9o+X91+ . . .) .  

By equating the coefficients of XO, we have iAo(tl, ql)do = v d o .  Therefore, if one 
of the eigenva,lues of Ao([', q') is PO,then we have vo = ipo, and 9 0  is t,he corre- 
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sponding eigenvector of Ao. 
From the coefficients of the term X1, we have 

iA0(tt, ?')dl - [g Ao(ttl n')' 4-2A1'(t, n)]do = ipodl + ndo . 

That is, 

We can determine dl  by determining vl from the following equation, since the 
eigenvectors of a matrix E and E*are biorthogonal: 

<(; AO'(tl, n'12 + 2A11(t, n))Oo, $0) 

v1 = -
(do, $0) 

By assumption (3) we have 

and by solving the equation (17), we have a vector dl  whose components are pure 
imaginary and are a t  most O(p) for small p. Next, by equating the coefficients of 
h2 in (16), we obtain 

We can determine v2 by the following equation: 

We note that vz is pure imaginary and is a t  most 0(p2) for small p. Now set V Z  = ivz'. 
By a similar discussion, we have which is real, determined by (18) and 

We note that V Q  is a t  most O(p3) for small p. Finally, we have 

v = i p ~+ A(-ppo2/2 - 2s) + ih2v2+ h3v3+ . . 
Therefore, we obtain an expansion of k(t, q), an eigenvalue of c(t, q), by the homo- 
geneity of v and the definition (5): 

k ( t , n) = 1+ ihp~(E, 71) - h2(po2(t, n)/2 + ~ S P )+ iX3v2'p 4-h4v3p+ . - . 
Now we compute its absolute value: 
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where F is a quantity of a t  most O ( p 4 )  for small p .  We can assume IF1 6 F ' p 4  

(F' is a constant) for l p l  5 po. Now we use condition (3) which implies s p  2 l p 4 .  

Thus we take X such that 

Then we have 

which yields a dissipation of degree 4 for p 5 P O .  For p 2 po, we have 

and taking X sufficiently small, we have some dissipation for this range of (4, q ) .  
These facts imply that condition (i) of Theorem 3 is satisfied. This completes the 
proof. 
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