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Abstract

A distance volume is a volume dataset where the v~ue
stored at each voxel is the shortest distance to the sur-
face of the object being represented by the volume.
Dlstancevolum~ area usefirepresentation in a num-
berof comFutergraphics applications. h this paperwe
present a technique for generating a distance volume
with subvoxel accuracy born one type of geometric
model, a Constructive Sofid Geometry (CSG) model
consisting of supere~psoid primitives. me distance
volume is generati in a two step process. me fit
step c~ctiates the shortest distance to the CSG model
at a set of points within a narrow baud around the ev~-
uati surface. Addition&y, a second set of points,
labeled the zero se~ which ties on the ~G mode~s
surface are computi A point in the zero set is as-
sociated with each point in the narrow band. Once
the narrow band rmd zero set are cdcdati, a Fat
hfarcktig hfethod is employed to propagate tie short-
est distance and closest point information out to the
remaining voxeh in the volume. Our technique has
been used to scan convert a number of CSG models,
producing distance volumes which have been utied
in a vtiety of computer ~mphics applications, e.g.
CSG surface evaluation, offset surface generation, and
3-D model morphing.

1 hhoduction

Volume graphics is a growing field which genedy involves repre-
senting ti~ dimensioned objects as a rectinear 3-D ~tid of scalar
v~ues, a volume datase~ Given this tid of representation nu-
merous ~gofithms have been developed to process, maniptiate and
render volumes. Volume datasets may be generatti in a variety
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of ways. Certain scanning devices, e.g. ~ and ~, generate a
~tineargrid of scdarvahtes directiy from their scrtnningprocess.
me sc~ar vrdues can represent the concentration of water or the
density of matter at each grid point (voxel). Additiondy, volume
datasets can be generated from conventionrd geometric models, us-
ing a process cded 3-D scan conversion.

When 3-D scan converting a geometric model to a volumetric
representation it is not always clear what vrdue should be stored
at each voxel of the volume, and what that vrdue should represenL
Here, we propose the use of distance volumes. A distance volume
is a volume dataset where the vrdue stored at each voxel is the
shortest distance to the surface of the object being represented by
the volume. Ethe object is closed, a signed distance maybe stored
to provide additiond inside-outside information. We store negative
vrdues inside the object rmdpositive distances outside. k tils paper
we @ show how to generate a distance volume with sub-voxel
accuracy from one type of geometric model, a Constructive Sofid
Geometry (CSG) model, and we win rdso show that this type of
volume representation is usefil in a number of computer graphics
apphcations, namely CSG surface evaluation, offset surface gener-
ation, and 3-D model morphing.

Constructive Sofid GeomeW (CSG) modefing is a weU-devel-
opd technique that combines simple sotid primitives using spatial
boolean operations to produce complex three dimensional objects
[15]. Some of the most commofly used primitives in CSG model-
ing are quadrics, superquadrics [1], and closed polygonal objects.
~ese primitives can be added, subtracted, or intersected with each
other to create a variety of sotid geometric models. me structure
that is used to represent a CSG model is ordinarily a binary tree.
me Ieafnodes of tie tree contain sofid primitives, supere~psoids
in our case. A boolean operation is associated with each non-leaf
node and a transformation matrix is associated with each arc of the
tree. me CSG binary tree may dso be derived from a directed
acyctic graph.

While Constructive Sofid Geometry is a powerful modefing
paradigm, unfortunately its modeting representation cannot be di-
recfly displayed on today’s graphics workstations. Additiontiy, it
is a representation not suitable for many other types of modefing
operations. Frequentiythe CSG tree or graph must firstbeevahtated
and converted into a polygonal surface before it can be interactively
displayed, processed or manipulated. We have found that first scan
converting the CSG model into a distance volume dews us to per-
form seved types of graphics operations on the model. Applying
the Marching Cubes algorithm [12] to the distance volume and ex-
tracting the iso-surface at vahte zero produces a polygonal surface
which approximates the evrduated CSG model. Extracting an iso-
surface at a value other than zero produces offset surfaces to the
CSG model. me distance volume may rdso be used to perform 3-D
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model morphing. A deformable impficit model can utihe tie dis-
tance information to change horn one shape into anotier [21]. The
defiv2tive of the distancevolurne describes a field which effectively
points in the direction of the embedded object’s surface. Given an
initird object and the distance volume representing a second objecL
forces are 2pptied on each point of the initi~ model which push it
towards the second objec~

A distance volume is generated in a two step process. The tit
step dctiates the shotist distance to the CSG model at a set of
points within a narrow band around the evrduatd surface. Addi-
tion~y, a second set of points lying on the CSG mode~s surface,
labeldthe zero seL are computi A point in the zero set is associ-
2ti with each point in the narrow band The narrow band and zero
set are crdctiated witi a modified version of the Constructive Cubes
rdgorithrn [3]. Once the narrow band and zero set are crdctiated,
a Fat Jfarctig Afetid stiar to Sethian’s [17], is employed to
propag2te the shortest distance and closest point information out
to the remaining voxek in the volume. Sethian’s approach has
been used in the past to nurnericfly solve partial differentird equa-
tions, but wehave modified it to use a heuristic tie for propagating
closest point information instead of dctiadng distance with a fi-
nite difi-erencescheme. The accumcy of our metiod depends on
a discretization of the surface (resolution of the zero set) and is
independent of the volume grid spacing. We therefore are able to
cdctiate shortest distance at resolutions greater than the resolution
of the find distance volume.

The original Constmctive Cubes rdgorithrn was developed to
produce apolygond approximation to a CSG mode~s surface. This
is 2ccomptishedbyfirst convertingfie CSG model into a volumetric
representation, where the v~ue stored at each voxel is a combination
of the value of tie inside-outside fiction for each of the mode~s
primitives (supere~psoids) ev~uated at the (z, y, z) location of the
voxeL The inside-outside function of a superefipsoid is a non-
fiear fiction of (z, g, z), and is defined to be one on the surface
of the primitive, less than one and gr=ter than zero inside, and
greater than one outside. The modifications made to the Construc-
tive Cubes algorithm were designed to produce the initial closest
point information near the CSG modeYs surfacen~ed for the Fast
Marching Metio& whichthen cdctiates the shortest disticeat the
voxels away born the CSG modeL

The first modification involves cdctiating the closest point to
a single superefipsoid ptitive. h gened this is accomplished
with an itemtive minimization scheme. Given tie closest points to
separate geometic primitives (and therefore the shortest distances),
a new set of combinations ties xe appfied to merge the distance
vrdues of the individud primitives to produce the closest point and
sho~st distance to the entire CSG modeL Unfortunately, there
are smfl re~ons near tie CSG model where the combination rules
generate invtid restits, cdctiating a closest point which does not
Ke on tie evduati surface. ~ese cases, which occur less than
1 percent of the time, can be easfly detecti and discardd by
evduzting the closest points with the ongimd Constructive Cubes
dgorithrn.

The remainder of tie paper first presents related work in 3-
D scan conversion. The paper then detis the steps reqti to
produce a distance volurnti genemting the narrow band of points
near the CSG model surface and zero set on the surface, fo~owed by
the propagation of the closest point information into tie remaining
voxels of the volume with the Fast hlmching hletiod The fid
sation presents the restits of our 3-D scan conversion method
within three app~cation~ CSG surface evrduation, offset surface
generation, and 3-D model morphing.

2 Pretiom Work

3-D scan conversion takes a 3-D geometric model, a surface in
3-D or a sofid model, and converts it into a 3-D volume data set
[4, 9,10,11,1 S], where voxek that contain the originrd surface or
sofid have a value ofone. The remaining voxels have a value ofzero.
Using the volume-samphng methods of Wang and Kaufman [20]
rdiasing artifacts maybe significantly reduced. These methods pro-
duce voxels with vrdues between zero and one, where non-integer
values represent voxels partitiy occupied by the original object.
Scan converted primitives may then be rendered, or combined us-
~g CSG ope~tions [7] titi Ofier SCm converted primitives or
acquired volume datasets. Payne and Toga [13] present a method
for crdculating distance volumes from a polygondmodel. They use
the distance volumes to perform a variety of surface manipulation
tasks. Extensions to discrete distance transforms [2, 5], e.g. Cham-
fer methods, were considered for our work. They were deemed
insufficient for our needs, because they do not provide sub-voxel
accuracy.

Our rdgorithm differs from previous effoti to 3-D scan convert
CSGmodek because we evaluate theparrunetic primitives direcfly
and combme the results in object space, before scan conversion.
~ls avoids the samp~g errors producd when performing CSG
operations on scan converted primitives, that are seen in other meth-
ods. E the primitives are first scan converted, then combined with
CSG operations, errors may occur at the boundaries of the prim-
itives, where exact surface information has been lost [20]. It is
dso possible to evrduate the CSG model to produce a polygonal
approximation to the find object [14]. Payne and Toga’s method
may beusdto then calculate a distance to the polygonrdmodel. We
preferred to make our crdculations direcfly on the originrd model,
and avoid the extra step of approximating the CSG model with
polygons and the errors associated with calculating distance to a
faceted model. Our approach rdso generates the additionrd clos-
est point information, which may be used in a variety of graphics
appKcations.

3 Generating the Distance Volme

This s~tions describes the two major components of our approach.
The first step generates a set of closest points on the surface of the
evaluated model. Additionfly, it calculates the shortest distance to
another set of points in a narrow band near the surface. The second
step uses a Fast Marching Method to propagate this information to
the remaining voxels of the distance volume.

3.1 Csdctiating Closwt Points for the Narrow
Band and Zero Set

Thenarrowbandand zero set needed for the Fast Marching Method
are generated with a modified version of the Constructive Cubes
rdgorithm [3]. For each voxel, the algorithm involves travers-
ing fie CSG mode~s acycfic ~ph, evaluating each primitive’s
inside-outside function at the voxel location, and combining sub-
component values at each non-leaf node of the graph to produce a
value which represents the inside-outside function for the complete
model at a particular point The originrd combination rules of Con-
structive Cubes are defind to produce a value of 1 for points on
the surface of the evaluated CSG model. The Constructive Cubes
algorithm was developed to calculate the finrd ev~uated surface of
a CSG model, which is produced by applying the Marching Cubes
algorithm to the derived volume dataset with an iso-v~ue of one.
It was not developed to produce reasonable values away from the
CSG mode~s surface.
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The Cons~ctive Cubes algorithm has-been modified in hvo
ways to generate tie data needed for the fast marching algorithm.
FirsL the step \~7hichevrduates the inside-outside fiction for each
supereUpsoid at a particdar point has been replaced by a technique
for c~ctiating tie closest point to the supereMpsoid from an ar-
bitrary poinL Given the originrd evahtation point and tie closest
point on tie supere~psoi~ the shortest distance tim the point to
the superefipsoid can be crdctiat~ The second modification in-
volves fornndating new shortest distance combination rules which
are appfied at each non-leafnode of the CSG .-ph. These are for-
mtiated in a way to produce tie closest point and shortest distance
to the entire CSG model from a point near the model surface-

3.1.1 Cdctiating the Closest Point to a

Supere~psoid

The parametic equation for a supere~psoid is

where v and u are tie Iongitudinrd and latitudinal parameters of
the surface, al, az, a3 aze tie sfig factors in tie z, y, and z
directions, and c1 and C2detie tie shape in the longitudinrd and
latimdin~ directions [1].

The distance to the point on the surface of a supere~psoid
definti at [q, u] from an arbhmry point P is

dl(q, u) = I]s[q,w) –Pi]. (2)

Squting and expmding Quation 2 gives

d2(q, u) = (U]cos’’(q)cosd(u) – P=)*

+ (azcos’l(~)sin~ (ti) – PY)2

+ (a3sin’1 (q) – Pz)2- (3)

The closest point to the superefipsoid from an arbhmry point P
can then be crdculatd by determiningg the values of [q, w] which
minimize ~uation 3. h gened Equation 3 is minimized with
a -gradient descent technique u~ig variable ste~sizes. These
values of [q. ~’] may then be plugged into Equation 1 to give the
closest point on the surface of the superefipsoid, which in turn may
be used to crdcdate tie shortest distance.

Sevedissues must be addressed when minimizing ~uation 3.
FirsLthespeciddegenerate =es ofthesupere~psoid mustbededt
with separately, because their surface normrds are discontinuous.
The most common cases are the cuboid (61 = C2= O),the cyfinder
(cl = O,C2= 1), the double cone (cl =2, C2= 1), and tie double
p~tid (cl = 62 = 2). The shortest distance to these primitives
may be determined with non-iterative, closed form solutions.

Findingthe values of q andti at the closestpointwiti a gradient
descent technique involves crdctiating the .-client of ~uation 3,

vd2 = [aa2faq, aa2fau]. (4)

LTnfo~2tely, supere~psoids have a tangent vectorsin.dtity near
values of q or u which are mtitiples of x/2. To overcome this
problem \ve reparameterize S by arc len@ [6]. mat is,

S(q, u) = S(q(a), U(8)) = S(a,p). (5)

(

Given this we can say

av(a)as(~, p) = as(~> W) ._
a~ aq aff

(7) ~

1-
and

as(~, p) = as(q, W) . aw(p)

ao aw ~ .
(8)

Ewe assume that the arc-length parametrization is in the same
direction as the original parametrization, we have

-= as(n, w) ‘1 ~da= as(v, w) ‘1

aff aq aw aw
. (9)

Now we re-express our steepest descent (on d2) so that it is
steepest with respect to the normdzed parameters

aa2 aa2 av aa2 as(q, w) “—= —— =—
aff aq aa a? aq

(lo)

and
aa2 as(q, w) ‘1

*
ad2 aa2 aw_—— =—
w– aw ap aw aw -

(11) .:

}Venow can use the gradient of the repararneterized a2,

va2’ = [ad2fa~, aa2jap], (12) -

to find the closest point with greater stabihty.
The gened formulation of Equation 12 significantly simplifies

for values of q and w near multiples of T/2. bstead of deriving
and implementing these simplifications for ti regions of the su-
perefipsoid we chose to ofly perform the c~culation in the first
octant (O < v < rr/2, O < w < T/2). Since a supere~ipsoid is
8-way synunem;, point P may be reflected into the first octant, the
minimization performed, and the solution point reflected back into
P’s Original octanL

3.12 Combining Shortwt Distance Cdctiations

The CSG graph is processed in a depth-first manner. The clos-
est point on and shortest distance to individud superelfipsoids are
calculated at the leaf nodes. The results from the non-leaf nodes’
subcomponents (A and B) are then combined. Since the subcompo-
nents maybe combined with a variety of boolean operations (union,
intersection and difference) just choosing the closest point to the
subcomponentsdoes not produce the correct result. Similar to CSG
classification methods [19], a set of combination rules are utitized at
each non-leaf node to evrduate the complete model, and are defined
in Tables 1,2, and 3. The rules are formulated for combining signed
distance values which have no prededned fitnits. The values of A
and B are negative inside an object and positive outside. Combi-
nation decisions are based on the signal distances computed from
the non-leaf node’s subcomponents. Additiondly the closest point
to the tested point is appropriately updated at each non-leaf node,
until the complete model has been evaluated.

The entries in the tables have the fo~owing meanings. The ~
conditions are used when the point being tested against subcompo-
nent A orB is inside the subcomponent, and the shortest distance to
that subcomponentis negative. The OUT conditions are used when
the point being tested against subcomponent A or B is outside the
subcomponenL and the shortest distance to that subcomponent is
positive. The ON conditions are used when the point being tested
ag~nst subcomponent A or B is on the subcomponent, and the
shortest distance to that subcomponentis zero. M= states that the
hvo values maybe combined by taking the maximum of the values
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AOUTB h~ B
ON B A A

Table 1: Union combination rules.

*

Table 2 htersection combination ties.

1 B

Table 3: SiWed distance difference combination ales.

1 B

T2ble 4 kside~utside difference combination rules-

retumedby evduatingA and B. h~ states that the two dues may
be combmed by taking the minimum of the No. ‘X states that the
vrduesof A ad B are combmd by taking the shortest distance to
& ‘B states fiat the values of A and B are combined by taking
the shortest distance to B. ‘-B’ states that the v~ues of A and B are
combined by taking the negative of B. h~(A,-B) states that the
combination is produced by taking the-mum of the vrdue of A
and the negative of B.

me combination ties for union and intersection are the same
as the ones described in the original Constructive Cubes paper. A
detied explanation of these ties maybe found in [3].

The combination des for difference (A-B) have been changed
to work witi signed distances, and maybe explained with Fi=we
1. Point P6 is the ~-~ conditiom The shortest distance to the
eVdUatedsurface is the shortest distance to B. Since P6 is inside of
B the shortest distice to B is negative. P6 is outside the evaluated
mode~ andtierefore must be negated to produce the correct signal
distance. k the N-OUT case, A is negative and B is positive.
Therefore h~(L-B) compares two negative numbers, producing
the number with the smtiest absolute v~ue. The correct answer
for P1 is A, wtie the correct answerfor P4 is -B. P5 is in A and on
B. B crzero is the correct restit for this combination. The OUT-~
combination de is dso hM(&-B). h this case A is positive and
B is ne~.tive, and it compares two positive numbers, producing the
distance with the Iqest absolute v~ue. The correct answer at P7
is -B, rec~g that B is negative, and must be negatd to produce
the corrmt siegd resd~ The correct mswer at P3 is A. P1O is
the OUT-OUT condition, with A providing the closest point to the
evaluated model. P12 is the OUT-ON condition, with A *O being
the correct answer. PS represents the ON-~ condition. A is zero
in tils case, and B is negative. B is negatd to produce the correct
signal distanc& P2 is the ON@UT condition, which returns A,
which is zero. me ON-ON case occurs at the intersection point of

A

Plo
●

P12

Figure 1: Evrduation points for a CSG model.

the two objects ~), and returns A, which is zero.
It is not always possible to determine the closest point to a CSG ,.

model ~ven the closest points to the primitives which comprise
iL @rem our experience tils occurs in significantly less than one ,“
percent of the narrow band crdculations.) As seen in Figure 1,
no vrdid restit can be calculated for P13, when evaluating A - B.
Both of the closest points to A and B are not on the find evrduated
model. Similarly, no vrdid solution can be generated at P6 when
evduadug A U B. The closest points to both A and B are on interior
curves, which wi~ not be a part of the find evrduated model. These
invrdid points which do not tie on the find evaluated CSG model
can be easily removed from the zero set by evrduating them with
the original Constructive Cubes rdgonthm. If the evaluation returns
a value within a smd e of 1 (i.e., the point fies on the surface
of the evrduated model), the point is retained. Otherwise it is
discarded. Since the sampfig of the zero set is quite dense, no
adverse effects have been noted from discarding the occasional

*

incorrect closest point The first step of the algorithm produces a
satisfactory distribution of closest points on the evaluated surface
of the CSG model.

Even though the range of the supereltipsoids inside-outside
[0, m] is different than the signed distance [–co, m], the inside-
outside finction combination ties for union and intersection used
in the original Constructive Cubes algorithm are the same as tbe
ties for combining signed distances, and are given in Tables 1 and
2. The inside-outside difference combination roles are different
than the si~ti distance combination rules, and are given in Table
4-

32 Fmt Mmching Method For Computing C1oswt
Points

\Vepresent a Fast Marching Method for computing the approximate
closest point to a surface from the points in a regular grid. It is an
approach based on the work of Sethian [16, 17]. Ms approach has
been used in the past to numericdy solve partial differentkd equa-
tions, but we have modified it to use a heuristic rule for propagating
closest point information instead of calculating distance with a fi-
nite difference scheme. The accuracy of the method depends on a
discretization of the surface and is independent of the volume grid
spacing, Wowing us to cticulate distance to sub-voxel accuracy.

10
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32.1 ~eEikondEqwtion and fieFastMmctig
bvel Set Metiod

Let U(Z, g,:) deRote the signed distance from the closed surface
S. u satisfies the ~onfl equation,

]Va] E J(%)’+ (%)2+ (%)2 =1,

subject to u]~ = O. (13)

The characteristics of Equation 13 are straight ties that are norrnd
to S and point in the direction of increasing distance. For each
point (z, y,=) in space, there is a ke segment from the surface to
the point fiat is a characteristic of the entropy-satis~g solution
of the Eikond ~uation. The point (z, g, z) and tie closest point
on the surface S are the endpoints of tis he se=-enL

Sethian [16, la has developed a Fast hiarching hvel Set
hlethod to solve the EikonA equation,

]Va]f(z, g, =) = 1, subject to al~ = g(~,V,z),

in the c~<etiat ~ is either always positive or negative. The metiod
uses an upwin~ ~iscosi~ solution, tite difference scheme to nu-
meric~y solve this equation. For ~(z, y, z) = 1 and g(z, y, z) =
O,the solution gi~es the signti distance from the surface S. The
initial condition u IS = Ois specified by giving the value of u on a
narrow band of points around the surface S. The distance values in
the remainder of the volume are computi by pushing this narrow
bmd outward.

3QQ CIosmt Point Cdctiation Ovefiew

To cdcdate the closest points to a surface on a re@ar grid, we
utize Sethian’s Fast hfarching hlethod, but instead of using a finite
difference scheme to compute distance, weuse a heuristic rdgorithm
to propagate closest points information. bstead of spemg the
distance for the points in the narrow band as an initird condition, we
sptify tie closest points to tie surface. b one step of the closest
poin~ method

1. The point gp with the s~est distance is removed from the
narrow band and it’s due is frozen

2. Points are added to the narrow band to maintain unit thick-
ness.

3. The closest points of the neighbom with l~er distances than
gp are recomputed using the closest point information from
9P.

The closest points method is based on the fo~owing idea The
closest point on the surface to a point in the grid is usutiy close
to one of the closest points of its neighbors in the grid. Thus if
one knows the closest points of the neighbors of a grid point gp,
one can compute m approximate closest point for gp by assuming
that it is near one of the closest points of its neighbors. This is
ody a heuristic, md in Figure 2 we see cases in two dimensions
for which the heuristic succeeds and f~. h the cases where the
heuristic ftis to determine the correct closest poinL it SW gives a
reasonable approximation of the distance. The heuristic may fail if
the chamcteristics from seved different portions of the stiace S
intersect near gp. Fortunately, if the heuristic fails at a poinL Wls
mistake is usufly not propagated ouhvard to inc~ing distances.
This is because’.inforrnation” in theEiiond equation and the closest
points metiod is propagated along characteristics of Equation 13.
Where characteristics coltid% information goes into the shock and
is losL

11

Figure 2 me Closest Point Heuristic.

3.2.3 TetinoIo~

ht the dkmnce volme be the N x N x N grid that spans the
space around the scan converted object. We wi~ refer to points in
the distance volume with (i, j, k) coordinates. Gt the zero set gtid
be m ilf x M x M uniform grid that spans the same Cartesian
domain. We refer to the ratio M/N as the super-sampltigfactor
of the zero set grid. k most cases the zero set grid is finer than
the distance volume grid, providing distance calculations with sub-
voxel accuracy. We wi~ refer to points in the zero set grid with
(1, J, K) coordinates. Foranygridpoint, theclosestpointis defined
as the Cartesian coordinates of the point on the CSG model surface
that is closest to that grid point.

33.4 Htid Dati

The fast marching algorithm takes as input a set of points in the
distance volume that forms a narrow band around the CSG model
surface and a point samphng of the surface. The narrow band
contains d tie points in the distance volume having the pro erty

?that a neighbor of the point has opposite insiddoutside status. We
generate the narrow band by evrduating the insiddoutside status
[19] of M the grid points of the distance volume, and note where
insiddoutside transitions occur For the points in the narrow band
we must supply the (i, j, k) coordinates of the points and their
insiddoutside status. The narrow band is used as a starting point
for propagating the closest point information outward and inward
to the rest of the points in the distance volume. Note that speci~]ng
the insiddoutsidestatus of the points in the narrow band determines
the insiddoutside status of the other points in the grid.

During this stage of our calculations the CSG model surface
is represented with a set of points that lie on the surface. This
set of points wi~ be c~ed the zero set, as they are points lying
on the isosurface of zero distance. The zero set is made by first
constructing a Wlnband of points in the zero set grid that surrounds
the CSG model surface. This set ofgridpoints wi~ be c~ed the zero
bti. The zero set is the set of closest points on the model surface
to the grid points in the zero band. The method used to calculate
the zero set has been described in the previous section. Given a
point pin the zero set that is closest to the grid point (i, j, k) in the
zero band, one can determine M the points in the zero set that he in

‘fn kdmetions neigtiormas one oftie26Iomtionssumoun~ngachgrid
pohL
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Figure 3: fniti~ Data for the Fast hfarcbing Mgonthn

a neighborhood of p by determining W the points in the zero band
in a neighborhood of (i, j, k). As input to the rdgorithm, we must
supply the (1, J, A-) coordinates of the grid points in the zero band
and the corresponding <z, g, z) coordinates of the points in the zero
seL h Figure 3 the initial data is shown pictorifiy in 2 dimensions.

32.5 Ropagating tie Closest Petit Data

fitidy, we have tie closest points data in the zero baud that snr-
rounds the surface. T1’euse the closest points data in the zero band
to determine tie closest points in the nmw baud of the distance
voh2me and then march the narrow band outward and inwmd to
c~cdate the closest points in the rest of the distance volume. Con-
sider a point gp that neighbors tie band and whose closest point is
unknown. me cIosest point of gp is probably close to one of the
closest points of its neighbors in the bmd ~us for each neighbor
of gp in the band we recompute tie distance of gp by considering
points that are neathe closest points of that neighbor. Fiit we @
present the mmching rdgoritbm that moves the band outward and
then inward Nex&we @ show the algorithm for recomputing the
distance at a point gp, giventhe closestpoint of one ofits neighbors.

tit tiut,~~ denote the insiddoutside status for a point in the
distance volum~ +1 for outside, –1 for inside. kt gridijk denote
the computed distance at a distance volume grid point A value
of w indicates fiat the distance has not yet been computd bt
SOUrCGjRdenote the point in the zero set Z horn which this distance
was computi

tititiy: me closest point to each (1, J, A-) in the zero band is
known. For each (i, ~, k) in the narrow band @dijk = fioutijk.
For each point not in the narrow band @d;jb and houtj~k are set
to be undefined me closest points of the zero band are usti to
genemte approximate closest points for the narrow band Below is
the fast marchmg, closest points dgori~

be~
I/ Itich for.wd to find positive distances -
put each point ~rith a non-negative, finite

&d,Jk in the set U;
V:hile Lr# O

remove the grid point gp v~ith the mnallest
distance from U;

for each of the 26 neig~ors of gp
if the somce of the neighhor is tiovm

add &at neig~or to U;
if the *stance of the 22eig~or is

l~ger than the distance of gp
recompute the neig~or’s &stance

using gp’s source s;
end
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Next the narrow band is marched backward to compute the
closest points with negative distance. Below is the algorithm to
recompute the distance @dilk to the distance grid point gp, using a
zero set sources. ~t (1, J, K) be the coordinates in the zero band
for whichs is the cIosest poin~ me user chooses the search radius
parameter. ~is is the radius of a cube around the point (1, J, K)
in the zero band that defines a neighborhood on the surface around
the points. me parameter, a = 2 * R + 1 is the diameter of the
cube. }~en recomputing the distance, dl the points in the zero
set in a neighborhood arounds are considered as possible closest
points.

begin
for each grid point (1,m, n) in a u x c x u ctie

surrounding (12J, K)
t c Z is the closest point to (1,m, n);
calculate the distance from gp to t;

@dijk = minimum of the a3 computed distances;
sou~~jk = the source of this minimum distance,

(an element of Z);
end

From experience we have found that for most surfaces, a search
radius R of hti the super-sampfing factor of the zero set grid wi~
provide satisfacto~ closest points information to the set Z. Fin~y,
note that since the zero baud is of small constant thickness, the
number of points in the zero band in the a x u x u cube is O(r).

33 Computational Completi@

mere are N3 grid points in the distance volume. Each distance grid
point is removed from the narrow band once, givin~ us a factor of
N3. At any point in the rdgorithm, there are O(N ) points in the ~
narrow band. mere are 2P nodes in the binary tree representing
the CSG model, where P is the number of supere~ipsoids in the
model. Each node of the model must be evrduated (in constant time)
to determine if a particular grid point is inside or outside the model.
Determining which grid points are in theinitird narrow band requires
0(N3P) operations. Determining the closest point on the CSG
model from a particular grid point is rdso an O(P) operation. ~s is
ody computed on the points of the zero band. Calculating the zero
set requires 0(M2P) operations. Unfortunately it is difficult to
characterize the amount oftime needed to crdculatethe closest point
to each superefipsoid, since each one is evrduated with an iterative
technique. ~s cdctiation typic~y requires approximately 30
iterations in our variable step-size gradient descent routine.

me cost of adding and deleting elements from the narrow band
is proportional to the logarithm of the number of points in the narrow
band. ~s gives us a factor of O(log N). me computational cost
of recomputing the distance for a given grid point is proportionedto
the number of zero baud points in a u x u x c cube neighborhood of
a points in the zero baud. ~is gives us a factor of O(U2). ~us the
ove~ computational complexity of the fast marching algorithm is
O(N3C2 log N).

A number of moderately complex CSG models have been scan
converted into distance volumes with our approach. Each of the
CSG models consist of supereMpsoids which have been unioned,
intersected, andor difference to produce the find shapes. me
resulting distance volumes have been used to generate au evrduated
surface of the model, as well as offset surfaces. AdditionaUy, the
volumes have been utihzed to morph one model into another [21].
Fiamre 7 presents an improved evaluated surface of a CSG model
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Figure 5: A 3-D morphing betwmn an X-29 and a da (cont.)

sitiar to the one included in the first Constructive Cubes paper.
me polygonal model is generated by applying the Marching Cubes
algorithm [12] to a distance volume of dimension 195x90x 120,
producing an iso-surface of value zero. me result presented here
is superior to the one presented in the originrd paper. See Figure
6. Since the Marching Cubes algorithm finearly interpolates the
iswsurface v~ue between volume grid points (voxels), utitizing
shortest Euctidea distance instead of the non-hne~ superefipsoid
insideautside finctions values provides the finear relationship nec-
essary for correctiy calculating the iso-surface intersection point
between each voxel in the Marching Cubes algorithm, and for prop-
erly combining subcomponent vrdues in the Constructive Cubes
rdgorithm.

Figure 8 presents the zero iso-surface of a model of an X-29
jet fighter, consisting of 3S primitives and dso generated from
a 96 x 192 x 240 distance volume. Figure 9 presents the iso-
snrface of value zero of a dart model, consisting of 21 primitives,
generated from a 96 x 192x 240 distance volume. ~ese volume
resolutions were chosen because they produced satisfacto~ results
given the cost in time (seved hours) and memory (N17 MBtyes) to
produce them. me excessive time needed to produce our results is
significantly affected by the message-passing overhead imposed by
the object+riented environment used to prototype our algorithms
[S]. We betieve that the processing times can be improved by
at least an order magnitude if the algorithm is custom coded in
a conventional programming environment. Figure 4 presents an
offset surface to the X-29 model. ~is is the iso-surface at vrdue 0.5
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runningthrough the X-29’s distance volurnaThe colorsinFigures
7, S and 9 were ~enerated with tie closest point information that
is maintaind with the shortest distance information Discussion of
tils aspect of our work is beyond the scope of this paper- Figure
5 presents four intermdate shapes produced w~e morphing the
X-29 model in Fikme S into tie dart model in Figure 9. The X-29
model foHo\\7sthe Ws shortest distance information to the surface
of tie dart [21].

5 Condmion

We have descnied a technique for generating a distance volume
with sub-voxel accuracy from one type of geometic model, a CSG
model consisting of superetipsoid primitives. The distance volume
is generati in a two step process. The first step cdctiates tie
shortest distance to the CSG model at a set of points within a
narrow band around the ev~uati surface. Additionfly, a second
set of points, labeled the zero seL which ties on the CSG mode~s
sutiace are computd A point in the zero set is associated titi each
point b the narrow band Once the narrow band and zero set are
cdcula~ a Fast Llarching Method is employed to propagate the
sho~st distance and closest point information out to the remaining
voxels in the voIume. Our technique has been used to scan convert
a number of CSG models, producing distance volumes which have
been utized in a variety of computer graphics applications, e.g.
CSG surface evaluation, offset surface generation, and 3-D model
morphing-
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