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Abstract

Consider the eikonal equation, |∇u| = 1. If the initial condition is u = 0 on a mani-

fold, then the solution u is the distance to the manifold. We present a new algorithm

for solving this problem. More precisely, we present an algorithm for computing the

closest point transform to an explicitly described manifold on a rectilinear grid in low

dimensional spaces. The closest point transform finds the closest point on a manifold

and the Euclidean distance to a manifold for all the points in a grid (or the grid

points within a specified distance of the manifold). We consider manifolds composed

of simple geometric shapes, such as, a set of points, piecewise linear curves or triangle

meshes. The algorithm computes the closest point on and distance to the manifold by

solving the eikonal equation |∇u| = 1 by the method of characteristics. The method

of characteristics is implemented efficiently with the aid of computational geometry

and polygon/polyhedron scan conversion. Thus the method is named the charac-

teristic/scan conversion algorithm. The computed distance is accurate to within

machine precision. The computational complexity of the algorithm is linear in both

the number of grid points and the complexity of the manifold. Thus it has optimal

computational complexity. The algorithm is easily adapted to shared-memory and

distributed-memory concurrent algorithms.

Many query problems can be aided by using orthogonal range queries (ORQ).

Given a set of points in k-dimensional space, an ORQ returns the points inside a

specified axis aligned range. There are several standard data structures for performing

ORQ’s, including kd-trees, quadtrees, and cell arrays. We develop additional data

structures based on cell arrays. We study the characteristics of each data structure

and compare their performance. For many applications using ORQ’s, multiple queries
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are performed; the number of queries is on the order of the number of points. We

develop a data structure that for many problems has linear computational complexity

in the number of returned points and linear storage requirements in the number of

points and the number of queries.

We present a new algorithm for solving the single-source, non-negative weight,

shortest path problem. Dijkstra’s algorithm solves this problem with computational

complexity O((E + V ) log V ) where E is the number of edges and V is the number

of vertices. The new algorithm is similar to Dijkstra’s algorithm in that vertices with

known distances from the source are used to update unknown adjacent neighbors.

It is different in that the set of these labeled adjacent neighbors is not stored in

a priority queue. Instead of selecting a single vertex from the queue to become

known at each iteration, the algorithm tries to freeze the value of many of the labeled

vertices. This approach is called Marching with a Correctness Criterion (MCC). The

algorithm has computational complexity O(E + RV ), where R is the ratio of the

largest to smallest edge weight. We compare the performance of Dijkstra’s algorithm

and the MCC algorithm. We indicate how to reduce the computational complexity

to O(E + V + D/A) for the case that R is finite by using a cell array to store the

labeled vertices. Here the D/A term represents the cost of accessing cells where D is

the largest distance in the shortest path tree and A is the smallest edge weight.

Sethian’s Fast Marching Method (FMM) may be used to solve static Hamilton-

Jacobi equations. It has computational complexity O(N logN), where N is the num-

ber of grid points. The fast marching method has been regarded as an optimal

algorithm because it is closely related to Dijkstra’s algorithm for solving the single-

source shortest path problem on a directed graph. The new shortest path algorithm

discussed above can be used to develop an ordered, upwind, finite difference algorithm

for solving static Hamilton-Jacobi equations. This Marching with a Correctness Cri-

terion algorithm requires difference schemes that difference not only in coordinate

directions, but in diagonal directions as well. We compare the performance of these

adjacent-diagonal difference schemes with the standard ones. With a suitable differ-

ence scheme, the MCC algorithm produces the same solution as the Fast Marching



vi

Method. It has computational complexity O(RN), where R is the ratio of the largest

to smallest propagation speed and N is the number of grid points. We compare

the performance of the FMM and the MCC algorithm. For all except pathological

cases, we indicate how to reduce the computational complexity to O(N) by using

a cell array to store the labeled grid points. The MCC algorithm is easily adapted

to efficient concurrent algorithms for both shared-memory and distributed-memory

architectures.
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Chapter 1

Introduction

1.1 Analytical Methods

1.1.1 Notation

Hamilton-Jacobi equations are first-order partial differential equations. The equation

may be time dependent or static. The Cauchy problem for a time dependent Hamilton-

Jacobi equation is

∂u

∂t
+H(x, t, u,Du) = 0 in Ω× (0..T ),

u = φ on ∂Ω× (0..T ), u(x, 0) = u0(x) in Ω.

Here Du denotes the gradient of u, (Du ≡ ∇u ≡ (∂u/∂x1, . . . , ∂u/∂xN)), Ω is an

open domain in RN , φ is a given function and H is called the Hamiltonian. The

Cauchy problem is intimately connected with problems in the calculus of variations

and with Hamiltonian systems of ordinary differential equations.

We will consider the Dirichlet problem for a static Hamilton-Jacobi equation,

which can be written in the form:

H(x, u,Du) = 0 on Ω, u = φ on ∂Ω. (1.1)

Equation 1.1 may be solved locally using the method of characteristics. (See Sec-

tion 1.1.2.) However, in general, the equation does not have classical solutions, i.e.,
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solutions which are C1. The problem does have generalized solutions, which are con-

tinuous and satisfy the differential equation almost everywhere. (See Section 1.1.3.)

1.1.2 Method of Characteristics

In this section we show how to solve the general static Hamilton-Jacobi equation

(1.1) with the method of characteristics [21] [12] [16]. Then we will solve the eikonal

equation as an example. Let (X, U,P) denote the characteristics. They satisfy the

characteristic strip equations :

X′(t) =
∂H

∂P

U ′(t) =
∂H

∂p
·P

P′(t) = −∂H
∂x
− ∂H

∂u
P

X(t) is called the projected characteristic (because it is the projection of the charac-

teristics (X, U,P) onto RN) or simply the characteristic. The characteristics start on

the boundary and propagate the solution into the domain. They satisfy the initial

conditions:

X(0) = x ∈ ∂Ω,

U(0) = φ(x),

P(0) = λn(x) + ∂φ.

Here n is the outward unit normal to ∂Ω and ∂φ is the gradient of φ on ∂Ω. λ is

chosen to satisfy the Hamilton-Jacobi equation at the point x, H(x, φ(x),P(0)) =

0. These 2N + 1 ordinary differential equations with initial conditions describe the

characteristics which determine the solution in a neighborhood of the boundary.

Consider the eikonal equation:

|Du|f(x) = 1 in Ω, u = φ on ∂Ω. (1.2)
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We write the equation as

|Du|2 − 1

f 2
= 0.

The characteristic strip equations are

X′(t) = 2P(t), X(0) = x

U ′(t) = 2|P(t)|2, U(0) = φ(x)

P′(t) = −2
Df(X(t))

f 3(X(t))
, P(0) = λn(x) + ∂φ(x)

λ is chosen to satisfy the Hamilton-Jacobi equation at t = 0.

|λn(x) + ∂φ(x)|f(x) = 1

λ2(x) + (∂φ(x))2 =
1

f 2(x)

λ(x) = −
(

1

f 2(x)
− (∂φ(x))2

)1/2

The minus sign is chosen so that λn is an inward normal to the boundary.

Now consider the case f = 1, φ = 0. We substitute these values into the charac-

teristic strip equations.

X′(t) = 2P(t), X(0) = x

U ′(t) = 2|P(t)|2, U(0) = 0

P′(t) = 0, P(0) = −n(x)

We integrate these equations to obtain the characteristics.

X(t) = x− 2tn(x), U(t) = 2t, P(t) = −n(x)

We switch to an arc-length parameterization to simplify the result.

X(t) = x− tn(x), U(t) = t, P(t) = −n(x) (1.3)
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From this we see that the projected characteristics X(t) are straight lines which

are normal to the boundary and that the local solution u(x) is the distance to the

boundary.

u(x) = dist(x, ∂Ω)

1.1.3 Viscosity Solutions

1.1.3.1 A Motivating Example

In this section we introduce viscosity solutions of static Hamilton-Jacobi equations

through a simple example. (See [12] or [21] for rigorous derivations.) We will compute

the distance to the boundary of a domain by solving an eikonal equation:

|Du| = 1 in Ω, u = 0 on ∂Ω (1.4)

First we consider this problem in 1-D:

|u′| = 1 in (−1..1), u(−1) = u(1) = 0 (1.5)

Note that this problem does not have classical solutions, that is, u ∈ C1. The general

solution of the differential equation is u = ±x + c. We cannot choose a sign for x

and a constant of integration to satisfy both boundary conditions. We can however

find a weak solution that satisfies the differential equation almost everywhere. The

function

u(x) = 1− |x| =

1 + x for − 1 ≤ x ≤ 0,

1− x for 0 ≤ x ≤ 1

satisfies the boundary conditions and satisfies the differential equation everywhere

except x = 0. This solution has the right physical meaning: it gives the distance to

the boundary of the domain. Unfortunately this solution is not unique. There are

an infinite number of ways of constructing weak solutions by piecing together line

segments of slope ±1 that satisfy the boundary conditions. Figure 1.1 shows a few of
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these.

Figure 1.1: Three weak solutions of |u′| = 1, u(−1) = u(1) = 0.

We note that second-order quasi-linear boundary value problems have well devel-

oped existence/uniqueness theories. Consider the boundary value problem:

u′′ = f(x, u, u′) in (0..1), u(0) = a, u(1) = b. (1.6)

If f and fu are continuous and fu ≥ 0, then this problem has a unique solution [34].

We add a small viscosity term to Equation 1.5 to obtain a second-order equation

for uε(x):

−εu′′ε + |u′ε| = 1 in (−1..1), uε(−1) = uε(1) = 0, ε > 0 (1.7)

By comparison with Equation 1.6 we see that the problem now has a unique solution.

For small ε, the viscosity term will have little effect on the solution uε(x) where it

is smooth. However, it will smooth out the corners to make the solution C2. Note

that we have chosen the sign of ε to smooth the solution where it has a relative

maxima. The distance function can have relative maxima, but not relative minima

in the interior of the domain. Choosing the opposite sign for ε would have smoothed

the solution at minima.

Equation 1.7 has the unique solution:

uε(x) = 1− |x|+ εe−1/ε
(
1− e(1−|x|)/ε) .
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Figure 1.2 shows the solution for ε = 1/5, 1/10, 1/20, 1/40. Then it shows the solution

in the limit as ε→ 0. This is called the viscosity solution. Here the viscosity solution

is the distance function we set out to find.

0
0.025
0.05
0.1
0.2

Figure 1.2: Solutions of −εu′′ε + |u′ε| = 1, uε(−1) = uε(1) = 0 for ε = 1/10, 1/20, 1/40
and the viscosity solution as ε→ 0.

We can also obtain the viscosity solution of Equation 1.5 with the method of

characteristics. We will make use of the solution we derived in Equation 1.3. The

solution starting at the left boundary is u1 = x, while the solution starting at the

right boundary is u2 = 1 − x. Combining these gives us a multi-valued solution.

By taking the minimums of the multi-valued solution at each point, we obtain the

viscosity solution: u = 1 − |x|. Figure 1.3 shows the multi-valued and the viscosity

solution.

Figure 1.3: The multi-valued solution obtained with the method of characteristics and
the viscosity solution obtained by taking the minimum of the multi-valued solutions.
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1.1.3.2 The General Case

Now we consider the viscosity solution for a more general problem:

H(Du,x) = 0 on Ω, u = φ on ∂Ω. (1.8)

We assume that H and φ are continuous. We add a viscosity term to this problem to

obtain an elliptic equation:

H(Duε,x)− ε∆uε = 0 on Ω, uε = φ on ∂Ω. (1.9)

This problem has a smooth solution. One can show that uε(x) → u(x) as ε → 0.

However, as ε→ 0 we are no longer able to differentiate the solution. We would like

a definition of the solution that does not involve differentiating u. To accomplish this

we introduce a smooth test function v and move the derivatives to this function by

using the maximum principle.

We fix a smooth test function v ∈ C∞ and suppose that u − v has a strict local

maximum at x = x0 ∈ Ω. That is, u(x0)−v(x0) > u(x)−v(x) in some neighborhood

of x0. For ε sufficiently small, uε − v has a strict local maximum at x = xε where

xε → x0 as ε → 0. We can relate the derivatives of uε and v through the maximum

principle.

Duε(xε) = Dv(xε)

−∆uε(xε) ≥ −∆v(xε)

Now we will show that H(Dv(x0),x0) ≤ 0.

H(Dv(xε),xε) = H(Duε(xε),xε)

= ε∆uε(xε)

≤ ε∆v(xε)
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Letting ε→ 0, we see that

H(Dv(x0),x0) ≤ 0

This also holds if the maximum is not necessarily strict. Likewise, if we suppose that

u− v has a local minimum at x0 then H(Dv(x0),x0) ≥ 0. These inequalities enable

us to define a viscosity solution without differentiating the solution.

A bounded, uniformly continuous function u is a viscosity solution of the problem:

H(Du,x) = 0 on Ω, u = φ on ∂Ω.

provided that the function satisfies the boundary condition and for each v ∈ C∞(Ω):

• if u− v has a local maximum at x0 then H(Dv(x0),x0) ≤ 0,

• if u− v has a local minimum at x0 then H(Dv(x0),x0) ≥ 0.

This definition is consistent with the notion of a classical solution. Suppose that

u ∈ C1(Ω) is a solution. If u − v has a local maximum or minimum at x0 then

Du(x0) = Dv(x0). This implies that H(Dv(x0),x0) = 0 so both inequalities are

satisfied. Further, one can show that the viscosity solution is unique and that it

satisfies the differential equation wherever it is differentiable.

Now we can directly verify that u = 1 − |x| is a viscosity solution of |u′| = 1,

u(−1) = u(1) = 0. We only have to check the point x = 0, since u satisfies the

differential equation elsewhere. The Hamiltonian is H(u′, x) = |u′| − 1. If u − v has

a local maximum at x = 0, then −1 ≤ v′(0) ≤ 1. Therefore |H(v′(0), 0)| ≤ 0. It is

not possible for u− v to have a relative minimum at x = 0. Thus u = 1− |x| is the

unique viscosity solution.

1.1.3.3 An Example in 2-D

Now consider Equation 1.4 in 2-D. u(x) = dist(x, ∂Ω) is the viscosity solution. We

will construct this solution with the method of characteristics for the case that the

domain Ω is bounded by a polygon. (See Figure 1.4.)
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Figure 1.4: A polygonal domain on which to solve the eikonal equation to determine
the distance from the boundary.

We can determine the method of characteristics solution starting from each edge.

From Equation 1.3 we see that each of these solutions are planes. Figure 1.5 shows

the solutions starting at each edge of the polygon.

Figure 1.5: The method of characteristics solution from each side of the polygon.

We combine the method of characteristics solutions to obtain a multi-valued solu-

tion. Then we take the minimum at each point to obtain the viscosity solution. (See

Figure 1.6.) This viscosity solution gives the minimum distance to the boundary:

u(x) = dist(x, ∂Ω).
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Figure 1.6: The left figure shows the multi-valued solution determined with the
method of characteristics. The right figure shows the viscosity solution obtained
by taking the minimum of the multi-valued solutions.

1.2 Numerical Methods

Static Hamilton-Jacobi equations may be numerically solved on a grid with finite

difference methods. We consider the eikonal equation in 1-D, (Equation 1.5). In the

method of characteristics solution, the solution propagates from the boundary and the

solution u increases along the characteristics. At each point, we call the characteristic

direction the downwind direction, as this is the direction in which information flows.

Numerical differencing to determine Du at the grid point ui must only use grid points

uj for which uj ≤ ui. That is, the differencing must be done in the upwind direction.

One can accomplish this with one-sided differences D+
i and D−i to approximate u′(x):

D+
i u =

ui+1 − ui
∆x

, D−i u =
ui − ui−1

∆x

One can easily see that a centered difference:

D0
i u =

ui+1 − ui−1

2∆x

is not suitable. We simply note that it cannot be satisfied where the solution has an

interior maximum. Suppose that ui−1 ≤ ui ≥ ui+1. There is no way of defining ui−1
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and ui+1 so that ui is a local maxima and |D0
i u| = 1.

We will describe upwind, finite difference schemes in Section 5.2. Roughly speak-

ing, given a scheme which differences in the upwind direction, one can use this scheme

to propagate the solution from lower to higher values. One can specify the solution on

the boundary and then iterate with the scheme until the solution converges. There is

a way to avoid this iteration and directly solve for the solution by controlling the order

in which the finite differences are applied. This is Sethian’s Fast Marching Method,

(Section 5.3.) In this method the solution is marched out from the boundary and the

grid points are sorted in a heap as the algorithm progresses.

1.3 Applications

Static Hamilton-Jacobi equations are useful in such areas as wave propagation, com-

putational geometry, and optimal control. (See [29], [21], [3] and [26].) In this section

we will introduce a few of these applications.

1.3.1 Wave Fronts in the Wave Equation: The Eikonal Equa-

tion

Many kinds of disturbances propagating in a media can be modeled with the wave

equation:
∂2φ

∂t2
= c2∇2φ.

For example: in a fluid, small displacements φ to a uniform mass density ρ and

pressure p satisfy the wave equation. Here c satisfies c2 = ∂p/∂ρ. In electrodynamics,

each component of the fields satisfies the wave equation where c2 = c2
0/µε. (c0 is the

speed of light in a vacuum, µ is the permeability and ε is the dielectric constant.) A

solution of the wave equation is called a wave. The moving boundary of a disturbance

is called a wave front. In this section we will show how the wave front can be described

by an eikonal equation. We follow the derivation presented in [10].
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If c is constant, then there are plane traveling wave solutions of the form

φ = φ0eı(k·x−ωt).

(We can take the real or imaginary part to obtain a real-valued solution.) Here the

constant φ0 is the amplitude and ω is the frequency. The wave number vector k is

in the direction of the wave. This is perpendicular to the wave fronts which satisfy

k ·x−ωt = constant. The wave number k is the length of the wave vector, k =
√

k · k

and satisfies k = ω/c. The index of refraction n is defined by c = c0/n. Let k0 be

the wave number in a vacuum where the index of refraction is unity. For simplicity,

consider a wave propagating in the first coordinate direction.

φ = φ0eık0(nx−c0t). (1.10)

Here we have factored out k0 because we will be considering the case when the wave

number is large.

Now we consider the case that the index of refraction n is spatially dependent.

We seek a solution that is similar to the plane wave in (1.10).

φ = exp (A(x) + ık0(ψ(x)− c0t)) . (1.11)

Here the amplitude eA and the phase k0ψ are determined by the slowly varying

functions A(x) and ψ(x). We compute the derivatives of this approximate plane

wave.

∇φ = φ∇(A+ ık0ψ)

∇2φ = φ
(
∇2A+ ık0∇2ψ + (∇A)2 − k2

0(∇ψ)2 + ı2k0∇A · ∇ψ
)
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We substitute (1.11) into the wave equation.

n2

c2
0

φtt = ∇2φ

−k2
0n

2 = ∇2A+ ık0∇2ψ + (∇A)2 − k2
0(∇ψ)2 + ı2k0∇A · ∇ψ

Since A and ψ are real-valued, we equate the real and imaginary parts.

∇2A+ (∇A)2 + k2
0

(
n2 − (∇ψ)2

)
= 0

2∇A · ∇ψ +∇2ψ = 0

We assume that n varies slowly on the length scale of a wavelength, λ = 2π/k. Alter-

natively, for a fixed function n, we assume that the frequency is high (the wavelength

is short). This is the geometrical optics approximation. For large k0, the first equation

is approximately solved by an eikonal equation:

|∇ψ|2 = n2.

We rewrite this eikonal equation in terms of the phase u of the wave.

φ = exp (A(x) + ı(u(x)− ωt)) .

|∇u|2 =
ω2

c2

Surfaces of constant u describe the wave fronts.

1.3.2 Computational Geometry

Consider a surface in 3-D. One could represent the surface explicitly with a parame-

terization. For example, consider the unit sphere:

x = cosα sin β, y = sinα sin β, z = cos β, α ∈ [0..2π), β ∈ [0..π]
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One can also represent the surface implicitly with a level set function u. The surface

is the set of points which satisfy u = const. For example, the unit sphere is the zero

iso-surface of

u =
√
x2 + y2 + z2 − 1.

An explicit representation of a surface can be approximated with a polygon mesh

surface. The implicit representation can be approximated by storing values of u on a

grid.

For evolving surfaces or for applying geometric operations, the implicit repre-

sentation has some advantages over the explicit one. Partial differential equations

governing the evolution of the surface may be applied directly to the grid represen-

tation of u. Also, it is difficult to handle intersections and changes in topology in

the explicit framework. These issues do not require special treatment in the level set

approach. On the other hand, the level set approach also has disadvantages in the

areas of storage and accuracy. The memory required to store the grid function u is

typically much greater than that required to store a polygon mesh. Also, it is easier

for polygon meshes to represent a surface that has features on multiple scales. For

example, it may take a very fine grid to capture the features of a surface that has

thin spikes. In the end, the ease of use and the generality of level set methods makes

them the preferred method for many problems.

In computational geometry, we can represent solids within the level set framework.

The surface of the solid is the zero iso-surface of the signed distance from the surface u.

Grid points with (negative/positive) distance are (inside/outside) the solid. With this

representation, one easily perform Boolean operations to build complex objects from

simple geometric primitives. Consider two solids, X and Y , with level set functions

u and v, respectively. Below we give formulas for the three most common operations:
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union, intersection and difference.

X ∪ Y = min(u, v)

X ∩ Y = max(u, v)

X − Y = max(u,−v)

Another common problem in computational geometry is surface offsetting, that is,

enlarging or reducing a solid by offsetting its surface in the normal direction. This

is a complicated operation with a polygon mesh representation, but is trivial when

using level set methods: one simply adds a constant to the distance function u.

One can generate the distance function u of a solid by solving the eikonal equation

|∇u| = 1 where the boundary condition is specified on the surface S by u|S = 0. For

example, if u were specified near the surface, one could use finite difference methods

to extend u to the rest of the grid. The more common scenario would be that one has

an explicit representation of a solid that one wishes to convert to a level set function.

We develop an optimal algorithm for this transformation in Chapter 2.

1.3.3 Optimal Path Planning

The eikonal equation may be used to solve problems in shortest arrival times or

minimum cost paths [29]. Consider a positive cost function f defined on some domain.

Given points a and b, we wish to find the path Γ that minimizes the cost in going

from a to b. That is, if γ(τ) is the arc-length parameterization of Γ, we wish to

minimize the integral: ∫ b=γ(L)

a=γ(0)

f(γ(τ)) dτ

We define a function u(x) that is the minimum cost to go from a to x.

u(x) = min
γ

∫ x

a

f(γ(τ)) dτ



16

The level set u(x) = c is the set of points that can be reached with minimum cost

c. The minimum cost paths are orthogonal to the level sets. Differentiating the

expression for u, we see that ∇u(x) = f(x)n where n is normal to the level set at x.

Thus u satisfies an eikonal equation:

|∇u| = f

Once we have solved for u, we can find the minimum cost path by following ∇u from

b back to a. That is, we solve

Xt = −∇u, X(0) = b

until we reach a.

1.4 Overview

In Chapter 2 we consider the problem of converting an explicit representation of a

curve or surface into an implicit, level set representation. That is, an explicit surface

such as a triangle mesh is converted to a distance function. We discuss previous work

on this problem and present a new algorithm. This Characteristic/Scan Conversion

algorithm (CSC) has the optimal computational complexity. The CSC Algorithm

solves the eikonal equation |∇u| = 1 subject to the boundary condition that u is

zero on the surface with the method of characteristics. This method is implemented

efficiently with the aid of computational geometry and polygon/polyhedron scan con-

version. For comparison, we also discuss the related problem of extending the distance

function if the distance function is specified near the surface, which can be accom-

plished with Sethian’s Fast Marching Method.

In Chapter 3 we consider orthogonal range queries (ORQ), a fundamental opera-

tion in computational geometry. Given a set of points in k-dimensional space, an ORQ

returns the points inside a specified axis aligned range. In the CSC algorithm, one

uses scan conversion to determine the grid points which lie inside a polyhedron. If one
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were computing the distance transform on an irregular grid, one would use orthogonal

range queries to determine the grid points inside the polyhedron. In Chapter 3 we

first analyze the standard data structures for performing ORQ’s. Then we develop

additional data structures based on cell arrays. In particular we address the problem

of doing multiple ORQ’s on a given data set.

In preparation for developing a new ordered, upwind method for solving static

Hamilton-Jacobi equations, we discuss the single-source shortest paths problem for

graphs in Chapter 4. Sethian’s Fast Marching Method (FMM), which has compu-

tational complexity O(N logN) where N is the number of grid points, has been re-

garded as an optimal algorithm because it is closely related to Dijkstra’s algorithm for

solving the single-source shortest path problem, which has computational complexity

O((E + V ) log V ) where E is the number of edges and V is the number of vertices.

We first discuss Dijkstra’s algorithm for solving this problem and then present a new

algorithm called Marching with a Correctness Criterion (MCC). The MCC algorithm

can reduce the computational complexity to O(E +V +D/A) where D is the largest

distance in the shortest path tree and A is the smallest edge weight.

In Chapter 5 we first present Sethian’s Fast Marching Method for solving static

Hamilton-Jacobi Equations. Then we develop a Marching with a Correctness Cri-

terion algorithm for solving this problem. This MCC algorithm requires difference

schemes that difference not only in coordinate directions, but in diagonal directions

as well. The MCC algorithm produces the same solution as the FMM, but with

computational complexity O(N).
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Chapter 2

Closest Point Transform

2.1 Introduction

Let u(x), x ∈ Rn, be the distance from the point x to a manifold S. If dim(S) =

n−1, (for example curves in 2-D or surfaces in 3-D), then the distance is signed. The

orientation of the manifold determines the sign of the distance. One can adopt the

convention that the outward normal points in the direction of positive or negative

distance. In order for the distance to be well defined, the manifold must be orientable

and have a consistent orientation. A Klein bottle in 3-D for example is not orientable.

Two concentric circles in 2-D have consistent orientations only if the normals of the

inner circle point “inward” and the normals of the outer circle point “outward”, or vice

versa. Otherwise the distance would be ill defined in the region between the circles.

For manifolds which are not closed, the distance is ill defined in any neighborhood of

the boundary. However, the distance is well defined in neighborhoods of the manifold

which do not contain the boundary. If dim(S) < n − 1 (for example a set of points

in 2-D or a curve in 3-D) the distance is unsigned and can be taken as nonnegative.

One can consider the distance to be the arrival time of a front propagating with

unit speed from the manifold. Consider a manifold S that moves in a direction normal

to itself with unit speed. Let u(x) be the arrival time of the surface at the point x.

|∇u| has unit magnitude. On the manifold S, u is zero. The arrival time u is the
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solution of the eikonal equation [29],

|∇u| = 1, u
∣∣
S

= 0. (2.1)

For most initial conditions, there is no strong solution, i.e., a solution which is ev-

erywhere differentiable. However, as described in Chapter 1, there is a vanishing

viscosity solution which is continuous (C0) and satisfies the eikonal equation where

it is differentiable.

Let ξ be the closest point on a manifold to the point x. The distance to the manifold

is |x − ξ|. x and ξ are the endpoints of the line segment that is a characteristic of

the solution of Equation 2.1. If the manifold is smooth then the line connecting x to

ξ is orthogonal to the manifold. If the manifold is not smooth at ξ then the line lies

“between” the normals of the smooth parts of the manifold surrounding ξ.

The distance transform transforms an explicit representation of a manifold into an

implicit one. Specifically, it transforms the manifold to its distance function, u(x).

The manifold can be implicitly represented as the level set of distance zero of the

distance function, u(x) = 0. The inverse operation, converting the distance function

to a manifold may be accomplished with algorithms such as Marching Cubes [22],

which transform the distance function sampled on a regular grid into a triangle mesh

surface. The closest point transform (CPT) also transforms an explicit representation

of a manifold into an implicit one. The closest point function, p(x), gives the closest

point on the manifold to x. The manifold can be implicitly represented as p(x) = x.

The algorithm developed in this chapter computes distance and closest point to

manifolds which are composed of simple geometric primitives. The manifold may

be given as sets of points, curves composed of line segments or surfaces composed

of triangular facets. As an example, Figure 2.1 shows a triangle mesh. The second

picture is a density plot of a slice of the distance. The final picture shows the closest

point transform calculated for the grid points close to the surface. The closest point
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is depicted as line segments from grid points to closest points on the surface.

Figure 2.1: A triangle mesh, its distance transform and its closest point transform.

In the next section we will present some applications of the distance and closest

point transform. These will demonstrate the utility of the new CPT algorithm. Before

presenting the details of this new algorithm we will examine previous work on the

distance and closest point transform. We will consider geometrically based methods

for computing the closest point transform and finite difference based methods for

computing approximate distance transforms. Then we will cover some background

material that is a prerequisite for developing an improved closest point transform

algorithm. This algorithm will be demonstrated first in the context of computing the

closest point transform to a piecewise linear curve in 2-D and then a triangle mesh

surface in 3-D. Finally, we will examine the performance of the improved closest point

transform algorithm and compare its performance to some other methods.

2.2 Applications

The distance and closest point transforms are important in several applications

which we discuss briefly below. The distance transform can be used to convert an

explicit surface into a level set representation of the surface. The surface is the iso-
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surface of value zero. Algorithms for working with the level set are often simpler

and more robust than dealing with the surface directly. Set operations like union

and intersection for facetted surfaces or polynomial patch surfaces are difficult to

implement. However, set operations on the level set representation of the surfaces are

trivial.

Another example of the utility of the distance transform is the application to

surface propagation problems in which a surface moves with a given normal velocity.

A simple example is surface offsetting, that is, finding the surface that is a given

distance from another surface. Working with the surface explicitly can be difficult

because one needs ad hoc methods for dealing with self-intersections and topological

changes. By working with the level set representation of the surface one can describe

these problems with partial differential equations and use finite difference methods

for their solution [25]. Surface offsetting is trivial when the level set representation of

a surface is the distance transform. The surface a distance d from the given surface

is just the iso-surface of value d.

The closest point transform is useful when one needs information about the closest

point on a surface in addition to the distance. Each point on a surface has a position

and may have an associated velocity, color, or other data. For instance, one can use

the closest point transform to do offsetting to a color-shaded surface. By performing

the CPT we obtain closest point volume data. That is, each point in a 3-D grid

stores the closest point on the surface. With the closest point information, we can

generate color volume data, each grid point stores the color of the closest point. Then

an offset surface may be color shaded by conceptually embedding it within the color

and closest point volumes. When the offset surface is rendered, the color value at any

location on its surface may be retrieved as the value of the color at the closest point

on the original surface [6] [5] [7].

The closest point transform has recently found application in certain coupled solid

mechanics/fluid mechanics computations in which we want to explicitly track the lo-

cation of the solid/fluid interface [13] [26] [23]. Using a closest point transform, a

Lagrangian solid mechanics code can communicate the position and velocity of the
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solid interface to an Eulerian fluid mechanics code. Consider a fluid grid which spans

the entire domain, inside and outside the solid. Thus only a portion of the grid points

lie in the fluid. Suppose further that the solid mechanics is done on a tetrahedral

mesh. The boundary of the solid is then a triangle mesh surface. Computing the

distance transform to this surface on the fluid mechanics grid indicates which grid

points are outside the solid and thus in the fluid domain. Through the closest point

transform one can implement boundary conditions for the fluid at the solid boundary.

In particular, it is necessary to recreate the closest point transform at each time step

if the solid/fluid interface is itself time dependent. For such simulations it is highly

desirable that the closest point transform have linear computational complexity in

both the size of the fluid grid and solid mesh. If the CPT does not have linear com-

putational complexity, determining the fluid boundary condition through the CPT

would likely dominate the computation.

2.3 Previous Work

Brute Force Approach. The closest point transform to a manifold may be com-

puted directly by iterating over the geometric primitives in the manifold as one iterates

over the grid points. Consider a manifold S composed of M geometric primitives.

We compute the distance to the manifold and the closest point on the manifold for

the points in a 3-D regular grid with N grid points. The brute force algorithm for

computing the distance and closest point transform follows.

closest point transform brute( distance, closest point, manifold )

for all i, j, k:

distance[i,j,k] = ∞

for primitive in manifold:

for all i, j, k:

new distance = distance from grid point (i,j,k) to primitive

if |new distance| < |distance[i,j,k]|:



23

distance[i,j,k] = new distance

closest point[i,j,k] = closest point on primitive

return

Since there are M geometric primitives in the manifold and N grid points, the

computational complexity of the brute force algorithm is O(MN). If the distance

and closest point are only needed in a neighborhood around the manifold, then the

inner for loop is replaced by a loop over all the grid points within a certain distance of

each geometric primitive. The following function computes the distance and closest

point for all grid points within max distance of the manifold.

closest point transform brute( distance, closest point, manifold, max distance )

for all i, j, k:

distance[i,j,k] = ∞

for primitive in manifold:

close grid points = the set of grid indices within max distance of primitive

for i, j, k in close grid points:

new distance = distance from grid point (i,j,k) to primitive

if |new distance| ≤ max distance and |new distance| < |distance[i,j,k]|:

distance[i,j,k] = new distance

closest point[i,j,k] = closest point on primitive

return

The brute force algorithm is slow. However, it is embarrassingly concurrent with

respect to both the distribution of the geometric primitives and the grid points. If the

grid points are distributed over a number of processors, then the concurrent algorithm

consists of each processor executing the above sequential algorithm on its share of

the grid points. Next, assume that the geometric primitives are distributed over a

number of processors with each processor holding the entire grid. After each processor

executes the sequential code with its share of the primitives, the grids can be merged

by choosing the smallest distance for each of the grid points.
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LUB-Tree Methods. One can also use lower-upper-bound tree methods to com-

pute the distance and closest point transforms [18]. The surface is stored in a tree data

structure in which each subtree can return upper and lower bounds on the distance to

any given point. This is accomplished by constructing bounding boxes around each

subtree. (See Figure 2.2.) For each grid point, the tree is searched to find the closest

point on the surface. As the search progresses, the tree is pruned by using upper and

lower bounds on the distance. Since the average computational complexity of each

search is O(logM), the overall complexity is O(N logM).

Figure 2.2: A LUB-tree for an eight-sided polygon. We show each level in the tree.
The diagram along the bottom shows the branching structure. The data structure
stores a bounding box around each branch. The leaves of the tree are the line seg-
ments.

Finite Difference Methods. Instead of computing the distance to an explicitly

represented manifold, consider an implicitly represented manifold. Then one can use

upwind finite difference methods to solve the eikonal equation (Equation 2.1) and

obtain an approximate distance transform [25]. The initial data is the value of the

distance on the grid points surrounding the surface. (This is the implicit description

of the surface.) This initial condition can be generated with the brute force method.

An upwind finite difference scheme is then used to propagate the distance to the rest
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of the grid points. The scheme may be solved iteratively, yielding a computational

complexity of O(αN), where α is the number of iterations required for convergence.

The scheme may also be solved by ordering the grid points so that information is

always propagated in the direction of increasing distance. This is Sethian’s Fast

Marching Method [27] which has computational complexity O(N logN).

Tsai has developed a method for computing the distance transform with geomet-

rically based finite difference schemes [31]. The solution is propagated outward from

the initial surface by sweeping through the grid in each diagonal coordinate direc-

tion. The computational complexity of the algorithm is O(α2KN), where K is the

dimension and α is the number of iterations. 1 The number of iterations required

for this method is small. By using sophisticated finite difference schemes one can

compute the distance accurately. If the manifold is a set of points, the distance can

be computed to within machine precision. This method has been extended to solve

static Hamilton-Jacobi equations [19]. The result is named the fast sweeping method.

It has computational complexity O(α2KN) where the number of iterations α depends

on the complexity of the Hamiltonian.

2.4 Scan Conversion and Voronoi Diagrams

In order to develop the present algorithm for computing the closest point transform,

we introduce the concepts of scan conversion and Voronoi diagrams.

Scan conversion or rasterization is a standard technique in computer graphics for

displaying filled polygons on raster displays [14] [33]. It is a method for determining

the pixels on the display which lie inside a polygon. Consider a convex polygon and

a rectilinear grid. We can use scan conversion to efficiently determine the grid points

which lie inside the polygon (see Figure 2.3). For each grid row that intersects the

polygon we find the left and right intersection points and mark each grid point in

between as being inside the polygon. Let e be the number of edges of the polygon,

1Though we have not explicitly indicated it, the complexity of the other finite difference methods
also depends on the dimension.
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let r be the number of rows that intersect the polygon and let n be the number of

grid points inside it. The computational complexity of the scan conversion algorithm

is O(e+ r+n). If the sides of the polygon are not smaller than the grid spacing, then

the computational complexity is O(n).

Now consider a convex polyhedron and a 3-D rectilinear grid. We can scan con-

vert the polyhedron by intersecting the polyhedron with the planes that coincide with

the grid rows to form polygons. This reduces the problem to polygon scan conver-

sion. Figure 2.3 shows a pyramid and the polygons formed by intersecting with grid

rows. If the sides of the polyhedron are not smaller than the grid spacing, then the

computational complexity is linear in the number of grid points inside the polyhedron.

Figure 2.3: The left figure depicts scan conversion of a polygon in 2-D. The right
figure shows slicing a polyhedron to form polygons.

Consider a set of points P = {p1, p2, . . . , pM} in R2. The Voronoi diagram [24] is a

subdivision of the plane into M cells such that the Voronoi cell corresponding to pi,

V (pi), contains all the points in R2 to which pi is the closest point in P . Each Voronoi

cell is a bounded or unbounded convex polygon. If we consider a set of points P in the

rectangle [x0, x1]× [y0, y1] ⊂ R2 then each Voronoi cell is a bounded convex polygon.

(See Figure 2.4.) For a set of points in R3 the Voronoi cells are convex polyhedra.

The computational complexity of computing the Voronoi diagram is O(M logM) in

2-D, and O(M2) in 3-D.
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Figure 2.4: Unbounded and bounded Voronoi diagrams.

As a step toward computing the closest point transform to a curve or surface,

we consider the closest point transform to a set of points S. For each point in a

rectilinear grid we will compute the closest point in S and the distance to that point.

We proceed by first finding the Voronoi diagram of S. For each point p ∈ S and its

Voronoi cell, we use scan conversion to determine the grid points which lie inside this

Voronoi polygon/polyhedron. Then the distance to p is computed for each of these

grid points and p is set as its closest point. This process is show pictorially in Figure

2.5.

In implementing the algorithm, the polygons/polyhedra must be enlarged slightly

to make sure that grid points are not missed due to finite precision arithmetic. As

a byproduct of enlarging the polygons/polyhedra, some grid points may be scan

converted more than once. In this case, the smaller distance and thus the closer

point is chosen. Below is the function for computing the closest point transform on a

regular grid to a set of points.

closest point transform point set( distance, closest point, point set )

for all i, j, k:

distance[i,j,k] = ∞

voronoi diagram = voronoi diagram for point set

for point, voronoi cell in voronoi diagram:
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Scan Convert Compute Distance

Grid Voronoi Diagram

Figure 2.5: Computing the closest point transform on a regular grid to a set of points.

voronoi cell = enlarge( voronoi cell )

grid points = scan convert( voronoi cell )

for i, j, k in grid points:

new distance = distance from grid point (i,j,k) to point

if |new distance| < |distance[i,j,k]|:

distance[i,j,k] = new distance

closest point[i,j,k] = point

return

If the edges of the Voronoi polygons/polyhedra are no smaller than the grid spac-

ing, then the computational complexity of the scan conversion will be linear in the

number of interior grid points. In this case, the computation complexity of the closest

point transform is O(M logM + N) in 2-D and O(M2 + N) in 3-D, where M is the
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number of points in S and where N is the number of grid points.

2.5 An Improved CPT Algorithm

In this section we develop an improved algorithm for computing the closest point

transform to a manifold for the points in a regular grid. We will use a similar approach

to that for computing the CPT to a set of points. As a first step in the algorithm,

we need something like a Voronoi diagram for the manifold. However, instead of

computing polygons/polyhedra that exactly contain the closest grid points to a point,

we will compute polygons/polyhedra that at least contain the closest grid points to the

components of the manifold. These polygons/polyhedra can then be scan converted

to determine the grid points that are possibly closest to a given component. Unlike a

Voronoi diagram, we will not need to store all of these polygons/polyhedra at once.

They will be constructed and used one at a time.

2.5.1 The CPT for Piecewise Linear Curves

Consider the distance to a piecewise linear curve. For a given point, the closest

point on a piecewise linear curve either lies on one of the edges or at one of the vertices.

Suppose that the closest point ξ on the curve to a given point x lies on an edge. The

vector from ξ to x is orthogonal to the line segment. Thus the closest points to a given

line segment must lie within an infinite strip. The strip defined by the line segment

and the (outward/inward) normals contains the points of (positive/negative) distance

from the line. See Figure 2.6 for an illustration of the positive and negative strips for

a simple curve. Note that the strips for each edge exactly contain the characteristic

curves of the eikonal equation emanating from that edge.

Next, consider a point x whose closest point ξ is at a vertex. The vector from ξ

to x must lie between the normal vectors to the two adjacent line segments at the

vertex. Thus the closest points to a vertex must lie in a wedge. If the (outside/inside)

angle between two adjacent line segments is less than π, then there are no points of

(positive/negative) distance from the vertex. See Figure 2.7 for an illustration of the
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ξ

x

Figure 2.6: The left figure shows a polygon in thick lines. The strips contain the
points which have positive distance to the edges of the polygon. We depict a point
x and its closest point on the curve, ξ. The right figure shows the strips containing
points which have negative distance to the edges.

positive and negative wedges. These wedges again exactly contain the characteristic

curves of the eikonal equation emanating from the vertices.

x

ξ

Figure 2.7: The left figure shows a polygon in thick lines. The wedges contain the
points which have positive distance to the vertices of the polygon. We depict a point
x and its closest point on the curve, ξ. The right figure shows the wedges containing
points which have negative distance to the vertices.

Now we consider computing the distance and closest point transform to a distance

d away from the curve. We use the fact that the closest points to edges/vertices lie

in strips/wedges to construct polygons which contain the points within a distance
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d. (See Figure 2.8.) For vertices, these are wedge-shaped polygons containing points

of either positive or negative distance. For edges, these are rectangles containing

points of both positive and negative distance. Note that these polygons are similar to

Voronoi cells. They contain at least (instead of exactly) the points which are closest

to the edge or vertex. By using scan conversion, we can determine the grid points

which lie inside each polygon. We can use simple formulas from geometry to compute

the distance and closest point for a given line segment or vertex.

If the closest point transform is being computed to a relatively large distance

away from the curve, the polygons which contain the closest points may have large

overlaps. In this case, we can reduce the size of these polygons by using information

about the curve to clip them. This will result in fewer scan converted grid points and

hence fewer closest point calculations.

d

d

dd

Figure 2.8: The left figure shows a piecewise linear curve and the polygon containing
points within a distance d of a vertex. The right figure shows a portion of a piecewise
linear curve and the polygons containing points of positive and negative distance
which are within a distance d of an edge.

We can now describe a fast algorithm for computing the distance and closest point

transform to a piecewise linear curve for the points in a 2-D grid.

closest point transform( distance, closest point, edges, vertices )

for all i,j:

distance[i,j] = ∞

// Loop over the edges.

for edge in edges:
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polygon = polygon containing closest points to edge

grid indices = scan convert( polygon )

// Loop over the scan converted grid points.

for i,j in grid indices:

new distance = distance from grid point (i,j) to edge

if |new distance| < |distance[i,j]|:

distance[i,j] = new distance

closest point[i,j] = closest point on edge

// Loop over the vertices.

for vertex in vertices:

polygon = polygon containing closest points to vertex

grid indices = scan convert( polygon )

// Loop over the scan converted grid points.

for i,j in grid indices:

new distance = distance from grid point (i,j) to vertex

if |new distance| < |distance[i,j]|:

distance[i,j] = new distance

closest point[i,j] = vertex

return

Because of the use of floating point arithmetic in representing the polygons, one

needs to increase the size of the polygons by a small amount in the outward normal

direction. This ensures that grid points which are close to the boundary of the polygon

are included and no grid points are left out. In implementing the method, only the

polygons for edges need to be enlarged. This ensures that there is a small overlap

between neighboring polygons. (Note that this step would not be necessary if the

characteristic polygons were constructed so that neighbors share vertices. Then the

scan conversion would not miss any grid points. This restriction is easy to enforce

in 2-D when the characteristic polygons are not clipped. However, it would be more

difficult to implement in 3-D or in the presence of clipping. It is easiest to just enlarge
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the polygons.)

Suppose the curve has M edges and vertices. Let there be N grid points within a

distance d of the curve and let r be the ratio of the sum of the areas of all the scan

converted polygons divided by the area of the domain within a distance d of the curve.

The total computational complexity of the algorithm is O(rN+M). The O(rN) term

comes from scan conversion and the closest point and distance computations for the

grid points. The ratio r depends on the shape of the curve and the distance d. If the

curve is jagged and d is relatively large, then r will be large. If the curve is smooth

and d is relatively small (or if d is large and the polygons are effectively clipped) then

r will be close to unity. The O(M) term represents the construction and perhaps the

clipping of the polygons.

2.5.2 Triangle Mesh Surface

We next consider the closest point transform for a triangle mesh surface in 3-D.

The algorithm is very similar to that for computing the CPT to a piecewise linear

curve. Instead of a curve composed of edges and vertices, we will deal with a surface

composed of triangular faces, edges and vertices.

For a given grid point, the closest point on the triangle mesh either lies on one

of the faces, edges or vertices. Analogous to the polygons containing the grid points

which are possibly closest to a given edge or vertex of a curve, in 3-D we will find

polyhedra which contain the grid points which are possibly closest to the faces, edges

or vertices. Suppose that the closest point ξ to a grid point x lies on a triangular face.

The vector from ξ to x is orthogonal to the face. Thus the closest points to a given

face must lie within a triangular prism defined by the face and the normal vectors

at its three vertices. The prism defined by the face and the outward/inward normals

contains the points of positive/negative distance from the face. See Figure 2.9a for

the face polyhedra of an icosahedron.

Consider a grid point x whose closest point ξ is on a edge. Each edge in the

mesh is shared by two faces. The closest points to an edge must lie in a cylindrical
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wedge defined by the line segment and the normals to the two adjacent faces. If the

outside/inside angle between the two adjacent faces is less than π, then there are no

points of positive/negative distance from the line segment. See Figure 2.9b for the

edge polyhedra of an icosahedron. Figure 2.9c shows a single edge polyhedron.

Finally consider a grid point x whose closest point ξ is on a vertex. Each vertex in

the mesh is shared by three or more faces. The closest points to a vertex must lie in

a cone defined by the normals to the adjacent faces. If the mesh is convex/concave at

the vertex then there will only be a cone outside/inside the mesh and only points of

positive/negative distance. Figure 2.9d shows the vertex polyhedra of an icosahedron.

(a) (b)

(c) (d)

Figure 2.9: (a) The positive polyhedra for the faces. (b) The polyhedra for the edges.
(c) The polyhedron for a single edge. (d) The polyhedra for the vertices.
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We next present a fast algorithm for computing the distance and closest point

transform to a triangle mesh surface for the points in a 3-D grid.

closest point transform( distance, closest point, faces, edges, vertices )

for all i,j,k:

distance[i,j,k] = ∞

for face in faces:

polyhedron = polyhedron containing the closest points to face

grid indices = scan convert( polyhedron )

// Loop over the scan converted points.

for i,j,k in grid points:

new distance = distance from grid point (i,j,k) to face

if |new distance| < |distance[i,j,k]|:

distance[i,j,k] = new distance

closest point[i,j,k] = closest point on face

for edge in edges:

. . .

for vertex in vertices:

. . .

return

Let the triangle mesh surface have M faces, edges and vertices. Let the 3-D recti-

linear grid have N points within a distance d of the surface. Let r be the ratio of the

sum of the volumes of all the scan converted polyhedra divided by the volume of the

domain within a distance d of the surface. As in 2-D, the ratio r depends on the shape

of the surface and the distance d. If the surface is jagged and d is relatively large,

then r will be large. If the surface is smooth and d is relatively small then r will be

close to unity. The total computational complexity of the algorithm is O(rN + M).

The O(rN) term again comes from scan conversion and the closest point and distance

computations for the grid points. The O(M) term represents the construction of the
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polyhedra.

2.5.3 The General Algorithm

Consider a manifold composed of simple shapes, for example, a piecewise cubic curve

in 2-D or 3-D or a surface composed of cubic patches in 3-D. One can construct

polygons/polyhedra which contain the closest points within a given distance of these

shapes. Then one can apply the Characteristics/Scan Conversion algorithm for com-

puting the closest point transform. The algorithm is essentially the same as that

presented for the examples of piecewise linear curves and triangle meshes. The only

difference lies in the details of constructing the polygons/polyhedra and computing

distance/closest point to the component shapes. For each component, one constructs

a polygon/polyhedron which contains all the grid points within a given distance of

the component. One then uses scan conversion to determine which grid points are

possibly within the given distance of the component. Then the distance to the com-

ponent and the closest point on the component are computed for these grid points.

For more complicated component shapes, such as cubic patches, one would need to

solve nonlinear equations to determine the distance and closest point.

2.5.4 Concurrent Algorithm

We note that the Characteristics/Scan Conversion algorithm is embarrassingly con-

current. Suppose the grid on which we want to compute the CPT is distributed over a

number of processors. Consider computing the closest point transform to a distance d

away from a manifold. If each processor has the portion of the manifold that is within

a distance d of its grid, then each processor simply executes the sequential algorithm

with its portion of the manifold and the grid. Additionally, one can take advantage of

multi-threaded concurrency. For shared-memory architectures, scan converting and

computing closest points for each polygon/polyhedron are independent tasks which

can proceed concurrently.
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2.5.5 Characteristic Polygons/Polyhedra versus Voronoi Di-

agrams

In the CSC algorithm we have used characteristic polygons/polyhedra which contain

at least all of the closest points to primitives in the curve/surface. For some types

of curves and surfaces it is possible to efficiently construct the Voronoi diagram.

For example, in 2-D the Voronoi diagram of a set of line segments may constructed

in O(M logM) time (M is the number of line segments) using Fortune’s sweepline

algorithm [15]. For this case, the Voronoi cells are not necessarily convex and their

boundaries are composed of line segments and parabolic arcs. Thus one could compute

the closest point transform to a piecewise linear curve by first computing its Voronoi

diagram and then scan converting the Voronoi cells. The computational complexity

of this algorithm would be O(P + M logM) where P is the total number of grid

points. By comparison, the CSC algorithm has complexity O(rN + M) where N is

the number of grid points within the specified distance from the curve. This raises

the question of which approach is more efficient.

There are several advantages to using the characteristic polygons/polyhedra in-

stead of computing the Voronoi diagram to a curve/surface. The characteristic poly-

gons/polyhedra are easier to construct than the Voronoi diagram (both in terms

of computational complexity and in terms of implementation). Also characteristic

polygons/polyhedra are simpler structures than Voronoi cells. The former are convex

polygons/polyhedra while the latter are nonconvex regions with boundaries composed

of curves/surfaces. In order to scan convert these Voronoi cells, one would likely have

to bound them with a polygon/polyhedron. Finally, because they can be constructed

independently, characteristic polygons/polyhedra are better suited to concurrent im-

plementations.

As noted before, for many applications the closest point transform is only needed

in a narrow band around the curve/surface. The CSC algorithm is well suited for

this scenario. Since the Voronoi cells contain all of the closest points, not just the

closest points within the specified distance d, computing the Voronoi diagram might



38

be a waste. Especially because one would clip the Voronoi cell to exclude points

farther away than d before scan converting it. This clipped Voronoi cell would likely

resemble the corresponding characteristic polygon/polyhedra. On the other hand, if

the closest point transform is required on the entire grid then it may be advantageous

to use the Voronoi diagram. This is because the characteristic polygons/polyhedra

may have large amounts of overlap. This may also be the case if the curve/surface is

jagged.

2.6 Performance of the CPT Algorithm

2.6.1 Execution Time

First we examine the performance of the Characteristics/Scan Conversion algorithm

as we vary the grid size. To verify that the algorithm has linear computational

complexity in the grid size, we examine execution time as we refine the grid. We

compute the closest point transform to a tessellation of the unit sphere with 2048

faces on the domain (−2, 2)×(−2, 2)×(−2, 2) to a distance of 0.05 for grid sizes from

103 to 2003. Figure 2.10 shows a log-log plot of execution time versus grid size. Next

we show the scaled execution time per grid point. Let T be the execution time and

N be the grid size. We subract the execution time for the smallest grid T0 and then

divide by N−N0 where N0 = 103 is the smallest grid size. The result is the execution

time per grid point, which should be a constant if the method has linear complexity.

From Figure 2.10, we see that there is sub-linear scalability in the grid size. This

is due to coarser inner loops in the algorithm. As the grid is refined, the polyhedra

contain more grid points. Scan converting polyhedra containing many points is more

efficient than scan converting polyhedra containing few points. Note that the scaled

execution time does not level off until the grid size is fairly large. This is because

there are three nested loops in the scan conversion function. (There is a loop for each

dimension. In the outer loop the polyhedron is sliced into polygons. The middle loop

finds the intersections of a polygon with grid rows. Finally, the inner loop scans along
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a single grid row from the left intersection to the right intersection.) For this example,

the grid must be quite refined before the inner loop scans a moderate number of grid

points. This explains the slow decay of the scaled execution time.

0.5

1

2

4

8

1000 10000 100000 1e+06

T
ot

al
 E

xe
cu

tio
n 

T
im

e 
(s

)

Grid Size

CPT: Effect of Grid Size

0

5

10

15

10000 100000 1e+06T
im

e 
pe

r 
G

rid
 P

oi
nt

 (
m

ic
ro

se
c)

Grid Size

CPT: Effect of Grid Size

Figure 2.10: The left graph shows a log-log plot of execution time versus grid size for
grids varying in size from 103 to 2003. Next we show the scaled execution time per
grid point for grids varying in size from 203 to 2003.

Next we examine the performance of the Characteristics/Scan Conversion algo-

rithm as we vary the mesh size. To verify that the algorithm has linear computational

complexity in the mesh size, we examine the execution time as we refine the mesh.

We compute the closest point transform on a 100× 100× 100 grid to tessellations of

the unit sphere on the domain (−1.2, 1.2)× (−1.2, 1.2)× (−1.2, 1.2) to a distance of

0.1 for mesh sizes from 8 to 131072 faces. Figure 2.11 shows a log-log plot of execution

time versus mesh size. Next we show the scaled execution time per face. Let F be

the number of faces. We subract the execution time for the coarsest mesh T0 and

then divide by F −F0 where F0 = 8. The result is the execution time per face, which

should be a constant if the method has linear complexity. From Figure 2.11, we see

that there is sub-linear scalability in the complexity of the mesh. This is because the

total volume of the polyhedra decreases as the mesh is refined.
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Figure 2.11: The left graph shows a log-log plot of execution time versus the number
of faces for meshes varying in size from 8 to 131072 faces. Next we show the scaled
execution time per face for meshes varying in size from 32 to 131072.

2.6.2 Storage Requirements

The CSC algorithm stores the grids for distance and closest point and the mesh to

which the CPT is computed. Beyond these data structures which define the problem,

it does not require significant additional storage. The components of the mesh (i.e.,

the faces, edges and vertices) are dealt with one at a time. The memory required to

scan convert a single polyhedron is insignificant compared to the grid and the mesh.

Thus the CSC algorithm essentially has the minimum storage requirements for the

CPT problem.

2.6.3 Comparison with Other Methods

2.6.3.1 Finite Difference Methods

We compare finite difference methods for computing distance with the CSC algorithm.

• Finite difference methods compute an approximate distance. The CSC algo-

rithm is accurate to within machine precision.

• The CSC algorithm computes the closest point. To compute the approximate

closest point with a finite difference method, one first computes the distance

and then follows the gradient back to the manifold for each grid point.
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• The CSC algorithm takes an explicit representation of the manifold as an initial

condition. Finite difference methods take an implicit representation, i.e., the

value of the distance on grid points surrounding the manifold, as an initial

condition.

• In d-dimensional space, the computational complexity of the CSC algorithm is

linear in both the size of the manifold and the size of the grid, O(M+N). Once

one has generated the initial condition by computing the distance on the grid

points close to the manifold, the computational complexity of finite difference

methods is O(α2dN) for iterative methods and O(N logN) for fast marching

methods.

• It is relatively easy to implement finite difference methods in higher-dimensional

spaces. A finite difference method in 4-D is little different than one in 2-D. It

requires significant work to implement the CSC algorithm in higher-dimensional

spaces. This is because the geometry involved in constructing the characteristic

volumes and the process of scan converting these volumes is complicated. In

more than 3 dimensions, it is not feasible to construct characteristic volumes

which contain only the closest points. Instead, one would simply put a bounding

box around each component of the manifold to obtain the closest points. In this

case, the method no longer has linear complexity in the number of grid points

because the grid points could be scan converted many times.

• The CSC algorithm is embarrassingly concurrent; each process runs the sequen-

tial algorithm independent of other processes. Finite difference methods require

communication between neighboring processes for concurrent implementations.

Although they solve different problems, we compare the performance of the Char-

acteristics/Scan Conversion algorithm and the Fast Marching Method on a test prob-

lem. We compute the distance transform to tessellations of a unit sphere to a distance

of 0.1 on the domain (−1.2, 1.2)× (−1.2, 1.2)× (−1.2, 1.2). The CSC algorithm was

run for tessellations with 2048 faces and 32768 faces. (The FMM takes an initial con-
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Figure 2.12: Comparison of execution times (sec) for computing the distance trans-
form.

dition on the grid so the execution time is independent of the tessellation refinement.)

Figure 2.12 shows the execution times. The CSC algorithm compares favorably with

the FMM, especially as the grid is refined. For initial data given explicitly as a surface

(instead of implicitly on the grid) using the CSC algorithm to compute the distance

transform would typically be preferable to generating an implicit initial condition and

using a finite difference method.

2.6.3.2 LUB-Tree Methods

The LUB-Tree method and the CSC algorithm are both geometrically based and thus

have many similarities. They both compute the distance and closest point, accurate

to within machine precision. They take an explicit representation of the manifold as

an initial condition. Both algorithms are embarrassingly concurrent.

The primary difference between the algorithms is in performance. The computa-

tional complexity of the CSC algorithm is O(M + N), while the LUB-Tree method

is O(M logM + N logM). Thus the LUB-Tree method is well suited for comput-

ing a small number of closest points but is not efficient in computing the closest

point transform. Also, the LUB-Tree method is not easily adapted to computing the

distance/closest point for only those grid points within a specified distance of the

manifold.
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Figure 2.13: Two views of the characteristics used in the CSC algorithm applied to an
anisotropic eikonal equation. Note the intersection of characteristics and the adding
of new characteristics.

2.7 Extending the CSC Algorithm to Solving Static

Hamilton-Jacobi Equations

In principal the characteristic/scan conversion algorithm could be generalized to solve

static Hamilton-Jacobi equations such as the anisotropic eikonal equation, |∇u|f = 1.

In this case the characteristics would no longer be straight lines, but would be curves.

These curves, which are determined through the method of characteristics, define

volumes emanating from the geometric primitives which define the manifold. By

scan converting these volumes and extrapolating the solution from the characteristic

curves to the grid points one could solve the Hamilton-Jacobi equation. The problem

is dynamic as one marches out from the initial manifold. The characteristics may

intersect or they may spread far apart in which case additional characteristics need to

be computed. (Figure 2.13 shows two views of these characteristics for an anisotropic

eikonal equation where the initial surface is the unit circle.) This algorithm would

have linear computational complexity in the number of grid points.

This extension was attempted. In 2-D the implementation is not easy. While
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conceptually simple, the algorithm would be quite difficult to implement in 3 or more

dimensions because of its mix of geometry, scan conversion and extrapolation. It was

this difficulty which led us to consider ordered, upwind, finite difference methods of

solving static Hamilton-Jacobi equations. Though it is difficult to implement, there

exists an algorithm with linear computational complexity for solving static Hamilton-

Jacobi equations. Therefore it seems reasonable that a linear complexity algorithm

exists which uses finite differences. Furthermore, if such a finite difference algorithm

exists then there ought to be a corresponding algorithm for solving the single-source

shortest path problem on graphs. It was this optimistic assumption which led to the

new algorithms for computing shortest path trees in Chapter 4 and for solving static

Hamilton-Jacobi equations in Chapter 5.

2.8 Conclusions

We have presented the Characteristics/Scan Conversion algorithm for computing

the closest point transform to a manifold. The algorithm utilizes scan conversion to

efficiently solve the eikonal equation with the method of characteristics. The algo-

rithm has optimal computational complexity. In computing the closest point or dis-

tance transform to within a given distance of a manifold the CSC algorithm typically

performs better than previously developed geometry based methods for computing

the closest point transform and finite difference based methods for computing the

approximate distance transform.
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Chapter 3

Orthogonal Range Queries

3.1 Introduction

Consider a database whose entries have multiple searchable attributes. Perhaps a

personnel database that stores employees’ names, addresses, salaries and dates of

birth, or a map that stores the population and location of cities, or a mesh that

stores the Cartesian locations of points. In database terminology, the entries are called

records and the attributes are called keys. A collection of records is a file. If there

are K keys then one can identify each key with a coordinate direction in Cartesian

space. Then each record represents a point in K-dimensional space. Searching a file

for records whose keys satisfy certain criteria is a query. A query for which the keys

must lie in specified ranges is called an orthogonal range query. This is because each of

the ranges correspond to intervals in orthogonal directions. The records which satisfy

the criteria lie in a box in K-dimensional space. The process of finding these records

is called range searching. For example, one could search for cities which lie between

certain coordinates longitude and latitude and have populations between 10,000 and

100,000. This orthogonal range query is depicted in Figure 3.1. The box is projected

onto the three coordinate planes.
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Longitude

Latitude

Population

Figure 3.1: An orthogonal range query for cities.

3.1.1 Example Application: CPT on an Irregular Mesh

Many query problems can be aided by using orthogonal range queries. Consider a file

which holds points in 3-D space. Suppose we wish to find the points which lie inside

a polyhedron. The brute force approach would be to check each point to see if it is

inside. An efficient algorithm would make a bounding box around the polyhedron.

To check if a point is inside the polyhedron, one would first check that it is inside

the bounding box since that is a much simpler test. In this way one could rule out

most of the points before doing the complicated test to see which points are inside

the polyhedron. A better approach (for most scenarios) would be to do an orthogonal

range query to determine which points lie inside the bounding box. Then one could

do the more detailed check on those points. (More generally, one could compute a

set of boxes that together contain the polyhedron. This would be more efficient if the

volume of the bounding box were much greater than the volume of the polyhedron.)

Consider computing the closest point transform presented in Part 2 not on the

points of a regular grid, but on the points of an irregular mesh (perhaps the vertices

of a tetrahedral mesh). To do this one would have to do polyhedron scan conversion

for these irregularly spaced points. That is, given a characteristic polyhedron of a
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face, edge or vertex, we must determine which mesh points are inside. This can be

implemented efficiently using orthogonal range queries.

3.1.2 Example Application: Contact Detection

In this section we consider the finite deformation contact problem for finite element

meshes. A detailed account of this problem is given in [20]. We will follow the

treatment in [1]. Consider a finite element tetrahedron mesh modeling an object (or

objects). The boundary of this mesh is a triangle mesh that comprises the surface

of the object. The vertices on the surface are called contact nodes and the triangle

faces on the surface are called contact surfaces. During the course of a simulation the

object may come in contact with itself or other objects. Unless restoring forces are

applied on the boundary, the objects will inter-penetrate. In order to prevent this,

the contact constraint is applied at the contact nodes. Contact forces are applied to

those nodes that have penetrated contact surfaces. Below is an outline of a time step

in the simulation.

1. Define the contact surface.

2. Predict the location of nodes assuming no contacts by integrating the equations

of motion.

3. Search for potential contacts between nodes and surfaces.

4. Perform a detailed contact check on the potential contacts.

5. Enforce the contacts by applying forces to remove the overlap.

The contact search in step 3 is the most time consuming part of the contact

detection algorithm. At each time step, each triangle face on the surface is displaced.

Nodes which are close to volumes swept out by this motion could potentially contact

the surface. One can find these nodes with the following three steps. 1) Compute

a bounding box around the two positions (the position at the beginning of the time

step and the predicted position at the end of the time step) of the contact surface.
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bounding box

node on surface

surface at time t

capture box

predicted position at t+dt

Figure 3.2: Contact search for a face. The orthogonal range query returns the nodes
in the capture box.

node at time tnode at time t+dt

surface at time t
surface at time t+dt

Figure 3.3: The contact check for a single contact surface and node. The node
penetrates the face.

2) Enlarge the bounding box to account for motion of the nodes. This is called the

capture box. 3) Perform an orthogonal range query on the surface nodes to find those

in the capture box. The contact search is depicted in Figure 3.2.

Following the contact search, the detailed contact check, step 4, is performed on

the potential contacts. In this step, contact is detected by determining if the node

penetrates the contact surface during the time step. This is depicted in Figure 3.3.

Since the contact search is the most time consuming part of contact detection,

the performance of the algorithm depends heavily on efficient methods for doing

orthogonal range queries. The contact detection problem has more structure than

many orthogonal range query problems. Firstly, there are many range queries. Since
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there is a query for every face, the number of orthogonal range queries is of the same

order as the number of nodes. Secondly, the problem is dynamic. At each time step,

the nodes and faces move a small amount. From one time step to the next, the nodes

and ranges are slightly different.

We will first consider the problem of doing a single range query, noting which

methods are easily adapted to dynamic problems. For this we will collect and compare

previously developed algorithms and data structures. Then we will consider the

problem of performing a set of orthogonal range queries. The multiple query problem

has not previously been studied.

3.2 Range Queries

As a stepping stone to orthogonal range queries in K-dimensional space, we consider

the problem of 1-D range queries. We will analyze the methods for doing range

queries and see which ideas carry over well to higher dimensions. Consider a file of

N records. Some of the methods will require only that the records are comparable.

Other methods will require that the records can be mapped to numbers so that we

can use arithmetic methods to divide or hash them. In this case, let the records lie

in the interval [α..β]. We wish to do a range query for the interval [a..b]. Let there

be I records in the query range.

We introduce the following notations for the complexity of the algorithms.

• Preprocess(N) denotes the preprocessing time to build the data structures.

• Reprocess(N) denotes the reprocessing time. That is if the records change by

small amounts, Reprocess(N) is the time to rebuild or repair the data structures.

• Storage(N) denotes the storage required by the data structures.

• Query(N, I) is the time required for a range query if there are I records in the

query range. For some methods, Query() will depend upon additional parame-

ters.
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• For some data structures, the average case performance is much better than

the worst-case complexity. Let AverageQuery(N, I) denote the average case

performance.

3.2.1 Sequential Scan

The simplest approach to the range query problem is to examine each record and

test if it is in the range. Below is the sequential scan algorithm [4]. (Functions for

performing range queries will have the RQ prefix.)

RQ sequential scan( file, range ):

included records = ∅

for record in file:

if record ∈ range:

included records + = record

return included records

The algorithm has the advantage that it is trivial to implement and trivial to

adapt to higher dimensions and dynamic problems. However, the performance is

acceptable only if the file is small or most of the records lie in the query range.

Preprocess = O(N), Reprocess = 0, Storage = O(N), Query = O(N)

3.2.2 Binary Search on Sorted Data

If the records are sorted, then we can find any given record with a binary search at a

cost of O(logN). To do a range query for the interval [a..b], we use a binary search

to find the first record x that satisfies x ≥ a. Then we collect records x in order

while x ≤ b. Alternatively, we could also do a binary search to find the last record in

the interval. Then we could iterate from the first included record to the last without

checking the condition x ≤ b. Either way, the computational complexity of the range

query is O(logN + I).
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To find the first record in the range we use binary search lower bound(). begin and

end are random access iterators to the sorted records. The function returns the first

iterator whose key is greater than or equal to value. (Note that this binary search is

implemented in the C++ STL function std::lower bound() [2].)

binary search lower bound( begin, end, value ):

if begin == end:

return end

middle = (begin + end) / 2

if *middle < value:

return binary search lower bound( middle + 1, end, value)

else:

return binary search lower bound( begin, middle, value )

To find the last record in the range we use binary search upper bound(), which

returns the last iterator whose key is less than or equal to value. (This binary search

is implemented in the C++ STL function std::upper bound() [2].)

binary search upper bound( begin, end, value ):

if begin == end:

return end

middle = (begin + end) / 2

if value < *middle:

return binary search lower bound( begin, middle, value )

else:

return binary search lower bound( middle + 1, end, value)

Below are the two methods of performing a range query with a binary search on

sorted records. If the number of records in the interval is small, specifically I � logN

then RQ binary search single will be more efficient. RQ binary search double has better

performance when there are many records in the query range.
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RQ binary search single( sorted records, range = [a..b] ):

included records = ∅

iter = binary search lower bound( sorted records.begin, sorted records.end, a )

while *iter ≤ b:

included records + = iter

++iter

return included records

RQ binary search double( sorted records, range = [a..b] ):

included records = ∅

begin = binary search lower bound( sorted records.begin, sorted records.end, a )

end = binary search upper bound( sorted records.begin, sorted records.end, b )

for iter in [begin..end):

included records + = iter

return included records

The preprocessing time is O(N logN) because the records must be sorted. The

reprocessing time is O(N), because a nearly sorted sequence can be sorted in linear

time with insertion sort [9]. The storage requirement is linear because the data

structure is simply an array of pointers to the records.

Preprocess = O(N logN), Reprocess = O(N),

Storage = O(N), Query = O(logN + I)

3.2.3 Trees

The records in the file can be stored in a binary search tree data structure [4] [9]. The

records are stored in the leaves. Each branch of the tree has a discriminator. Records

with keys less than the discriminator are stored in the left branch, the other records
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are stored in the right branch. There are a couple of sensible criteria for determining

a discriminator which splits the records. We can split by the median, in which case

half the records go to the left branch and half to the right. We recursively split until

we have no more than a certain number of records. Let this number be leaf size.

These records, stored in a list or an array, make up a leaf of the tree. The depth of

the tree depends only on the number of records.

We can also choose the discriminator to be the midpoint of the interval. If the

records span the interval [α..β] then all records x that satisfy x < (α + β)/2 go to

the left branch and the other records go to the right. Again, we recursively split until

there are no more than leaf size records at which point we store the records in a leaf.

Note that the depth of the tree depends on the distribution of the records.

Below is the code for constructing a binary search tree. The function returns the

root of the tree.

tree make( records ):

if records.size ≤ leaf size:

Make a leaf.

leaf.insert( records )

return leaf

else:

Make a branch.

Choose the branch.discriminator.

left records = { x ∈ records | x < discriminator }

branch.left = tree make( left records )

right records = { x ∈ records | x ≥ discriminator }

branch.right = tree make( right records )

return branch

We now consider range queries on records stored in binary search trees. Given a

branch and a query range [a..b], the domain of the left sub-tree overlaps the query
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range if the discriminator is greater than or equal to a. In this case, the left sub-tree

is searched. If the discriminator is less than or equal to b, then the domain of the

right sub-tree overlaps the query range and the right sub-tree must be searched. This

gives us a prescription for recursively searching the tree. When a leaf is reached, the

records are checked with a sequential scan. RQ tree() performs a range query when

called with the root of the binary search tree.

RQ tree( node, range = [a..b] ):

if node is a leaf:

return RQ sequential scan( node.records, range )

else:

included records = ∅

if node.discriminator ≥ a:

included records + = RQ tree( node.left, range )

if node.discriminator ≤ b:

included records + = RQ tree( node.right, range )

return included records

If the domain of a leaf or branch is a subset of the query range then it is not

necessary to check the records for inclusion. We can simply report all of the records

in the leaf or sub-tree. (See the tree report() function below.) This requires that we

store the domain at each node (or compute the domain as we traverse the tree). The

RQ tree domain() function first checks if the domain of the node is a subset of the

query range and if not, then checks if the domain overlaps the query range.

tree report( node ):

if node is a leaf:

return node.records

else:

return (tree report( node.left ) + tree report( node.right ) )
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RQ tree domain( node, range = [a..b] ):

if node.domain ⊆ range:

return tree report( node )

else:

if node is a leaf:

return RQ sequential scan( node.records, range )

else:

included records = ∅

if node.discriminator ≥ a:

included records + = RQ tree( node.left, range )

if node.discriminator ≤ b:

included records + = RQ tree( node.right, range )

return included records

RQ tree() and RQ tree domain() have the same computational complexity. The

former has better performance when the query range contains few records. The latter

performs better when the number of records in the range is larger than leaf size.

For median splitting, the depth of the tree depends only on the number of records.

The computational complexity depends only on the total number of records, N , and

the number of records which are reported or checked for inclusion, Ĩ.

Preprocess = O(N logN), Reprocess = O(N),

Storage = O(N), Query = O(logN + Ĩ)

For midpoint splitting, the depth of the tree D depends on the distribution of

records. Thus the computational complexity depends on this parameter. The aver-

age case performance of a range query is usually much better than the worst-case



56

computational complexity.

Preprocess = O((D + 1)N), Reprocess = O((D + 1)N), Storage = O((D + 1)N),

Query = O(N), AverageQuery = O(D + Ĩ)

3.2.4 Cells or Bucketing

We can apply a bucketing strategy to the range query problem [4]. Consider a uniform

partition of the interval [α..β] with the points x0, . . . , xM .

x0 = α, xM > β, xm+1 − xm =
xM − x0

M

The mth cell (or bucket) Cm holds the records in the interval [xm..xm+1). We have an

array of M cells, each of which holds a list or an array of the records in its interval.

We can place a record in a cell by converting the key to a cell index. Let the cell array

data structure have the attribute min which returns the minimum key in the interval

α and the attribute delta which returns the size of a cell. The process of putting the

records in the cell array is called a cell sort.

cell sort( cells, file ):

for record in file:

cells[key to cell index( cells, record.key )] + = record

key to cell index( cells, key ):

return b(key - cells.min) / cells.deltac

We perform a range query by determining the range of cells [i..j] whose intervals

overlap the query range [a..b]. Let J be the number of overlapping cells. The contents

of the cells in the range [i+ 1..j − 1] lie entirely in the query range. The contents of

the two boundary cells Ci and Cj lie partially in the query range. We must check the

records in these two cells for inclusion in the query range.
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RQ cell( cells, range = [a .. b] ):

included records = ∅

i = key to cell index(cells, a)

j = key to cell index(cells, b)

for x in cells[i]:

if x ≥ a:

included records + = x

for k in [i+1 .. j-1]:

for x in cells[k]:

included records + = x

for x in cells[j]:

if x ≤ b:

included records + = x

return included records

The preprocessing time is linear in the number of records N and the number

of cells M and is accomplished by a cell sort. Reprocessing is done by scanning the

contents of each cell and moving records when necessary. Thus reprocessing has linear

complexity as well. Since the data structure is an array of cells each containing a list

or array of records, the storage requirement is O(N + M). Let Ĩ be the number

records in the J cells that overlap the query range. The computational complexity of

a query is O(J + Ĩ). If the cell size is no larger than the query range, then we expect

that Ĩ ≈ I. If the number of records is greater than the number of cells, then the

expected computational complexity is O(I).

Preprocess = O(N +M), Reprocess = O(N +M), Storage = O(N +M),

Query = O(J + Ĩ), AverageQuery = O(I)
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3.3 Orthogonal Range Queries

In this section we develop methods for doing orthogonal range queries inK-dimensional

space as extensions of the methods for doing 1-D range queries. We will consider sev-

eral standard methods. In addition, we introduce a new method of using cells coupled

with a binary search.

The execution time and memory usage of tree methods and cell methods depend

on the leaf size and cell size, respectively. For these methods we will examine their

performance in 3-D on two test problems.

3.3.1 Test Problems

The records in our test problems are points in 3-D. We do an orthogonal range query

around each record. The query range is a small cube.

3.3.1.1 Chair

For the chair problem, the points are vertices in the surface mesh of a chair. See

Figure 3.4 for a plot of the vertices in a low resolution mesh. For the tests in this

section, the mesh has 116, 232 points. There is unit spacing between adjacent vertices.

The query size is 8 in each dimension. The orthogonal range queries return a total of

11, 150, 344 records.

3.3.1.2 Random Points

For the random points problem, the points are uniformly randomly distributed in the

unit cube, [0..1]3. There are 100, 000 points. To test the effect of varying the leaf size

or cell size, the query range will have a size of 0.1 in each dimension. For this case,

the orthogonal range queries return a total of 9, 358, 294 records. To show how the

best leaf size or cell size varies with different query ranges, we will use ranges which

vary in size from 0.01 to 0.16.
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Figure 3.4: Points in the surface mesh of a chair. 7200 points.
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3.3.2 Sequential Scan

The simplest approach to the orthogonal range query problem is to examine each

record and test if it is in the range. Below is the sequential scan algorithm.

ORQ sequential scan( file, range )

included records = ∅

for record in file:

if record ∈ range:

included records + = record

return included records

The sequential scan algorithm is implemented by storing pointers to the records

in an array or list. Thus the preprocessing time and storage complexity is O(N).

Since each record is examined once during an orthogonal range query, the complexity

is O(N). The performance of the sequential scan algorithm is acceptable only if the

file is small. However, the sequential scan (or a modification of it) is used in all of

the orthogonal range query algorithms to be presented.

Preprocess = O(N), Reprocess = 0, Storage = O(N), Query = O(N)

3.3.3 Projection

We extend the idea of a binary search on sorted data presented in Section 3.2.2 to

higher dimensions. We simply sort the records in each dimension. Let sorted[k] be

an array of pointers to the records, sorted in the kth dimension. This is called the

projection method because the records are successively projected onto each coordinate

axis before each sort. Doing a range query in one coordinate direction gives us all

the records that lie in a slice of the domain. This is depicted in three dimensions in

Figure 3.5. The orthogonal range along with the slices obtained by doing range queries

in each direction are shown. To perform an orthogonal range query, we determine

the number of records in each slice by finding the beginning and end of the slice with
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Figure 3.5: The projection method. The query range is the intersection of the three
slices.

binary searches. Then we choose the slice with the fewest records and perform the

sequential scan on those records.

ORQ projection( range ):

// Do binary searches in each direction to find the size of the slices.

for k ∈ [0..K):

slice[k].begin = binary search lower bound( sorted[k].begin,

sorted[k].end, range.min[k] )

slice[k].end = binary search upper bound( sorted[k].begin,

sorted[k].end, range.max[k] )

smallest slice = slice with the fewest elements.

return ORQ sequential scan( smallest slice, range )

The projection method requires storing K arrays of pointers to the records so

the storage requirement is O(KN). Preprocessing is comprised of sorting in each

direction and so has complexity O(KN logN). Reprocessing can be accomplished
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by insertion sorting [9] the K arrays of pointers to records. Thus it has complexity

O(KN).

The orthogonal range query is comprised of two steps: 1) Determine the K slices

with 2K binary searches on the the N records at a cost of O(K logN). 2) Perform a

sequential scan on the smallest slice. Thus the computational complexity for a query is

O(K logN+smallest slice size). Typically the number of records in the smallest slice

is much greater than K logN , so the sequential scan is more costly than the binary

searches. Consider the case that the records are uniformly distributed in [0..1]K . The

expected distance between adjacent records is of the order N−1/K . Suppose that the

query range is small and has length O(N−1/K) in each dimension. Then the volume

of any of the slices is of the order N−1/K and thus contains O(N1−1/K) records.

The sequential scan on these records will be more costly than the binary searches.

Below we give the expected cost for this case. In general, the projection method has

acceptable performance only if the total number of records is small or if the number

of records in some slice is small.

Preprocess = O(KN logN), Reprocess = O(KN), Storage = O(KN),

Query = O(K logN + smallest slice size),

AverageQuery = O
(
K logN +N1−1/K

)
3.3.4 Point-in-Box Method

A modification of the projection method was developed by J. W. Swegle. See [1]

and [17], where the method has been applied to the contact detection problem. In

addition to sorting the records in each coordinate direction, the rank of each record

is stored for each direction. When iterating through the records in the smallest

slice the rank arrays are used so that one can compare the rank of keys instead of

the keys themselves. This allows one to do integer comparisons instead of floating

point comparisons. On some architectures, like a Cray Y-MP, this modification will
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significantly improve performance, on others, like most x86 processors, it has little

effect. Also, during the sequential scan step, the records are not accessed, only their

ranks are compared. This improves the performance of the sequential scan.

The projection method requires K arrays of pointers to records. For the Point-

in-Box method, there is a single array of pointers to the records. There are K arrays

of pointers to the record pointers which sort the records in each coordinate direction.

Finally there are K arrays of integers which hold the rank of each record in the given

coordinate. Thus the storage requirement is O((2K+1)N). The point-in-box method

has the same computational complexity as the projection method, but has a higher

storage overhead. Below are the methods for initializing the arrays and performing

an orthogonal range query.

initialize():

// Initialize the vectors of sorted pointers.

for i ∈ [0..num records):

for k ∈ [0..K):

sorted[k][i] = record pointers.begin + i

// Sort in each direction.

for k ∈ [0..K):

sort by coordinate( sorted[k].begin, sorted[k].end, k )

// Make the rank vectors.

for i ∈ [0..num records):

for k ∈ [0..K):

rank[k][ sorted[k][i] - record pointers.begin ] = i

return

ORQ point in box( range ):

// Do binary searches in each direction to find the size of the slices.

for k ∈ [0..K):
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slice[k].begin = binary search lower bound( sorted[k].begin,

sorted[k].end, range.min[k] )

slice[k].end = binary search upper bound( sorted[k].begin,

sorted[k].end, range.max[k] )

rank range.min[k] = slice[k].begin - sorted[k].begin

rank range.max[k] = slice[k].end - sorted[k].end

smallest slice = slice with the fewest elements.

// Do a sequential scan on the smallest slice.

included records = ∅

for ptr ∈ [smallest slice.begin .. smallest slice.end):

for k ∈ [0..K):

record rank[k] = rank[k][*ptr - record pointers.begin]

if record rank ∈ rank range:

included records + = **ptr

return included records

Preprocess = O(KN logN), Reprocess = O(KN), Storage = O((2K + 1)N),

Query = O(K logN + smallest slice size), AverageQuery = O
(
K logN +N1−1/K

)
3.3.5 Kd-Trees

We generalize the trees with median splitting presented in Section 3.2.3 to higher

dimensions. Now instead of a single median, there are K medians, one for each

coordinate. We split in the key with the largest spread. (We could use the distance

from the minimum to maximum keys or some other measure of how spread out the

records are.) The records are recursively split by choosing a key (direction), and

putting the records less than the median in the left branch and the other records in

the right branch. The recursion stops when there are no more than leaf size records.

These records are then stored in a leaf. Figure 3.6 depicts a kd-tree in 2-D with a leaf
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Figure 3.6: A kd-tree in 2-D.

size of unity. Horizontal and vertical lines are drawn through the medians to show the

successive splitting. A kd-tree divides a domain into hyper-rectangles. Note that the

depth of the kd-tree is determined by the number of records alone and is dlog2 Ne.

Below is the function construct(), which constructs the kd-tree and returns its

root. Leaves in the tree simply store records. Branches in the tree must store the

dimension with the largest spread, split dimension, the median value in that dimension,

discriminator, and the left and right sub-trees.

construct( file ):

if file.size > leaf size:

return construct branch( file )

else:

return construct leaf( file )

construct branch( file ):

branch.split dimension = dimension with largest spread

branch.discriminator = median key value in split dimension

left file = records with key < discriminator in split dimension

if left file.size > leaf size:
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branch.left = construct branch( left file )

else:

branch.left = construct leaf( left file )

right file = records with key ≥ discriminator in split dimension

if right file.size > leaf size:

branch.right = construct branch( right file )

else:

branch.right = construct leaf( right file )

return branch

construct leaf( file ):

leaf.records = file

return leaf

We define the orthogonal range query recursively. When we are at a branch in the

tree, we check if the domains of the left and right sub-trees intersect the query range.

We can do this by examining the discriminator. If the discriminator is less than the

lower bound of the query range (in the splitting dimension), then only the right tree

intersects the query range so we return the ORQ on that tree. If the discriminator is

greater than the upper bound of the query range, then only the left tree intersects the

query range so we return the ORQ on the left tree. Otherwise we return the union of

the ORQ’s on the left and right trees. When we reach a leaf in the tree, we use the

sequential scan algorithm to check the records.

ORQ KDTree( node, range ):

if node is a leaf:

return ORQ sequential scan( node.records, range )

else:

if node.discriminator < range.min[node.split dimension]:
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return ORQ KDTree( node.right, range )

else if node.discriminator > range.max[node.split dimension]:

return ORQ KDTree( node.left, range )

else:

return ( ORQ KDTree( node.left, range )

+ ORQ KDTree( node.right, range ) )

Note that with the above implementation of ORQ’s, every record that is returned

is checked for inclusion in the query range with the sequential scan algorithm. Thus

the kd-tree identifies the records that might be in the query range and then these

records are checked with the brute force algorithm. If the query range contains most of

the records, then we expect that the kd-tree will perform no better than the sequential

scan algorithm. Below we give an algorithm that has better performance for large

queries. As we traverse the tree, we keep track of the domain containing the records in

the current sub-tree. If the current domain is a subset of the query range, then we can

simply report the records and avoid checking them with a sequential scan. Note that

this modification does not affect the computational complexity of the algorithm but

it will affect performance. The additional work to maintain the domain will increase

the query time for small queries (small meaning that the number of records returned

is not much greater than the leaf size). However, this additional bookkeeping will

pay off when the query range spans many leaves.

ORQ KDTree domain( node, range, domain ):

if node is a leaf:

if domain ⊆ range:

return node.records

else:

return ORQ sequential scan( node.records, range )

else:

if node.discriminator ≥ range.min[node.split dimension]:
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domain max = domain.max[node.split dimension]

domain.max[node.split dimension] = node.discriminator

if domain ⊆ range:

included records += report( node.left )

else:

included records += ORQ KDTree( node.left, domain, range )

domain.max[node.split dimension] = domain max

if node.discriminator ≤ range.max[node.split dimension]:

domain min = domain.min[node.split dimension]

domain.min[node.split dimension] = node.discriminator

if domain ⊆ range:

included records += report( node.right )

else:

included records += ORQ KDTree( node.right, domain, range )

domain.min[node.split dimension] = domain min

return included records

The worst-case query time for kd-trees is O(N1−1/K + I) [4], which is not very

encouraging. However, if the query range is nearly cubical and contains few elements

the average case performance is much better:

Preprocess = O(N logN), Reprocess = O(N logN), Storage = O(N),

Query = O
(
N1−1/k + I

)
, AverageQuery = O(logN + I)

Figure 3.7 shows the execution times and storage requirements for the chair prob-

lem. The best execution times are obtained for leaf sizes of 4 or 8. There is a mod-

erately high memory overhead for small leaf sizes. For the random points problem, a

leaf size of 8 gives the best performance and has a modest memory overhead.

In Figure 3.8 we show the best leaf size versus the average number of records in

a query for the random points problem. We see that the best leaf size is correlated

to the number of records in a query. For small query sizes, the best leaf size is on
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Figure 3.7: The effect of leaf size on the performance of the kd-tree for the chair
problem and the random points problem.
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Figure 3.8: The best leaf size as a function of records per query for the kd-tree for the
random points problem. The second plot shows the ratio of the number of records
per query and the leaf size.

the order of the number of records in a query. For larger queries, it is best to choose

a larger leaf size. However, the best leaf size is much smaller than the number of

records in a query. This leaf size balances the costs of accessing leaves and testing

records for inclusion in the range. It reflects that the cost of accessing many leaves is

amortized by the structure of the tree.

3.3.6 Quadtrees and Octrees

We can also generalize the trees with midpoint splitting presented in Section 3.2.3

to higher dimensions. Now instead of splitting an interval in two, we split a K-

dimensional domain into 2K equal size hyper-rectangles. Each non-leaf node of the

tree has 2K branches. We recursively split the domain until there are no more than

leaf size records, which we store at a leaf. In 2-D these trees are called quadtrees, in

3-D they are octrees. Figure 3.9 depicts a quadtree. Note that the depth of these

trees depends on the distribution of records. If some records are very close, the tree

could be very deep.

Let D be the depth of the octree. The worst-case query time is as bad as sequential
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Figure 3.9: A quadtree in 2-D.

scan, but in practice the octree has much better performance.

Preprocess = O((D + 1)N), Storage = O((D + 1)N),

Query = O (N + I) AverageQuery = O (logN + I)

Figure 3.10 shows the execution times and storage requirements for the chair

problem. The best execution times are obtained for a leaf size of 16. There is a high

memory overhead for small leaf sizes. For the random points problem, leaf sizes of 8

and 16 give the best performance. The execution time is moderately sensitive to the

leaf size. Compared with the kd-tree, the octree’s memory usage is higher and more

sensitive to the leaf size.

In Figure 3.11 we show the best leaf size versus the average number of records in

a query for the random points problem. We see that the best leaf size is correlated

to the number of records in a query. The results are similar to those for a kd-tree,

but for octrees the best leaf size is a little larger.

3.3.7 Cells

The cell method presented in Section 3.2.4 is easily generalized to higher dimensions

[4]. Consider an array of cells that spans the domain containing the records. Each

cell spans a rectilinear domain of the same size and contains a list or an array of

pointers to the records in the cell. See Figure 3.12 for a representation of a 2-D cell
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Figure 3.10: The effect of leaf size on the performance of the octree for the chair
problem and the random points problem.
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Figure 3.12: First we depict a 2-D cell array. The 8×8 array of cells contains records
depicted as points. Next we show an orthogonal range query. The query range is
shown as a rectangle with thick lines. There are eight boundary cells and one interior
cell.

array (also called a bucket array).

We cell sort the records by converting their multikeys to cell indices. Let the cell

array data structure have the attribute min which returns the minimum multikey in

the domain and the attribute delta which returns the size of a cell. Below are the

functions for this initialization of the cell data structure.

multikey to cell index( cells, multikey ):

for k ∈ [0 .. K):

index[k] = b(multikey[k] - cells.min[k]) / cells.delta[k]c

return index

cell sort( cells, file ):

for record in file:

cells[multikey to cell index( cells, record.multikey )] += record
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An orthogonal range query consists of accessing cells and testing records for inclu-

sion in the range. The query range partially overlaps boundary cells and completely

overlaps interior cells. See Figure 3.12. For the boundary cells we must test for in-

clusion in the range; for interior cells we don’t. Below is the orthogonal range query

algorithm.

ORQ cell( cells, range ):

included records = ∅

for each boundary cell:

for record in boundary cell:

if record ∈ range:

included records += record

for each interior cell:

for record in interior cell:

included records += record

return included records

The query performance depends on the size of the cells and the query range. If

the cells are too large, the boundary cells will likely contain many records which are

not in the query range. We will waste time doing inclusion tests on records that

are not close to the range. If the cells are too small, we will spend a lot of time

accessing cells. The cell method is particularly suited to problems in which the query

ranges are approximately the same size. Then the cell size can be chosen to give

good performance. Let M be the total number of cells. Let J be the number of cells

which overlap the query range and Ĩ be the number of records in the overlapping

cells. Suppose that the cells are no larger than the query range and that both are

roughly cubical. Let R be the ratio of the length of a query range to the length of

a cell in a given coordinate. In this case we expect J ≈ (R + 1)K . The number of

records in these cells will be about Ĩ ≈ (1+1/R)KI, where I is the number of records

in the query range. Let AverageQuery be the expected computational complexity for
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Figure 3.13: The effect of leaf size on the performance of the cell array for the chair
problem and the random points problem.

this case.

Preprocess = O(M +N), Reprocess = O(M +N), Storage = O(M +N),

Query = O(J + Ĩ), AverageQuery = O
(
(R + 1)K + (1 + 1/R)KI

)
Figure 3.13 shows the execution times and storage requirements for the chair

problem. The best execution times are obtained when the ratio of cell length to

query range length, R, is between 1/4 and 1/2. There is a large storage overhead

for R & 3/8. For the random points problem, the best execution times are obtained

when R is between 1/5 and 1/2. There is a large storage overhead for R & 1/5.

In Figure 3.14 we show the best cell size versus the query range size for the random

points problem. We see that the best cell size is correlated to the query size. For
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Figure 3.14: The first plot shows the best cell size versus the query range size for the
cell array on the random points problem. Next we show this data as the ratio of the
cell size to the query range size. Finally we plot the average number of records in a
cell versus the average number of records returned by an orthogonal range query as
a ratio.

small query sizes which return only a few records, the best cell size is a little larger

than the query size. The ratio of best cell size to query size decreases with increasing

query size.

3.3.8 Sparse Cells

Consider the cell method presented in Section 3.3.7. If the cell size and distribution

of records is such that many of the cells are empty then the storage requirement for

the cells may exceed that of the records. Also, the computational cost of accessing

cells may dominate the orthogonal range query. In such cases it may be advantageous

to use a sparse cell data structure in which only non-empty cells are stored and use
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Figure 3.15: A sparse cell array in 2-D. The array is sparse in the x coordinate. Only
the non-empty cells are stored.

hashing to access cells.

As an example, one could use a sparse array data structure. Figure 3.15 depicts

a cell array that is sparse in the x coordinate. For cell arrays that are sparse in one

coordinate, we can access a cell by indexing an array and then performing a binary

search in the sparse direction. The orthogonal range query algorithm is essentially

the same as that for the dense cell array.

As with dense cell arrays, the query performance depends on the size of the cells

and the query range. The same results carry over. However, accessing a cell is more

expensive because of the binary search in the sparse direction. One would choose a

sparse cell method when the memory overhead of the dense cell method is prohibitive.

Let M be the number of cells used with the dense cell method. The sparse cell method

has an array of sparse cell data structures. The array spans K − 1 dimensions and

thus has size O(M1−1/K). The binary searches are performed on the sparse cell data

structures. The total number of non-empty cells is bounded by N . Thus the storage

requirement is O(M1−1/K+N). The data structure is built by cell sorting the records.

Thus the preprocessing and reprocessing times are O(M1−1/K +N).

Let J be the number of non-empty cells which overlap the query range and Ĩ
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be the number of records in the overlapping cells. There will be at most J binary

searches to access the cells. There are O(M1/K) cells in the sparse direction. Thus the

worst-case computational cost of an orthogonal range query is O(J log(M1/K) + Ĩ).

Next we determine the expected cost of a query. Suppose that the cells are no larger

than the query range and that both are roughly cubical. Let R be the ratio of the

length of a query range to the length of a cell in a given coordinate. In this case

J . (R + 1)K . We will have to perform about (R + 1)K−1 binary searches to access

these cells. Each binary search will be performed on no more than O(M1/K) cells.

Thus the cost of the binary searches is O((R + 1)K−1 log(M1/K)). Excluding the

binary searches, the cost of accessing cells is O((R + 1)K). The number of records

in the overlapping cells will be about Ĩ . (1 + 1/R)KI, where I is the number of

records in the query range. For the interior cells, records are simply returned. For the

boundary cells, which partially overlap the query range, the records must be tested

for inclusion. These operations add a cost of O((1 + 1/R)KI):

Preprocess = O(M1−1/K +N), Reprocess = O(M1−1/K +N),

Storage = O(M1−1/K +N), Query = O(J log(M)/K + Ĩ),

AverageQuery = O
(
(R + 1)K−1 log(M)/K + (R + 1)K + (1 + 1/R)KI

)
Figure 3.16 shows the execution times and storage requirements for the chair

problem. Again the best execution times are obtained when R is between 1/4 and

1/2. The performance of the sparse cell arrays is very close to that of dense cell

arrays. The execution times are a little higher than those for dense cell arrays for

medium to large cell sizes. This reflects the overhead of the binary search to access

cells. The execution times are lower than those for dense cell arrays for small cell

sizes. This is due to removing the overhead of accessing empty cells.

Figure 3.17 shows the execution times and storage requirements for the random

points problem. The execution times are very close to those for the dense cell array.

In Figure 3.18 we show the best cell size versus the query range size for the random
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Figure 3.18: The first plot shows the best cell size versus the query range size for the
sparse cell array on the random points problem. Next we show this data as the ratio
of the cell size to the query range size. Finally we plot the average number of records
in a cell versus the average number of records returned by an orthogonal range query
as a ratio.

points problem. We see that the best cell size is correlated to the query size. The

results are very similar to those for dense cell arrays. For sparse cell arrays, the best

cell size is slightly larger due to the higher overhead of accessing a cell.

3.3.9 Cells Coupled with a Binary Search

One can couple the cell method with other search data structures. For instance, one

could sort the records in each of the cells or store those records in a search tree. Most

such combinations of data structures do not offer any advantages. However, there are

some that do. Based on the success of the sparse cell method, we couple a binary

search to a cell array. For the sparse cell method previously presented, there is a
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Figure 3.19: First we depict a cell array with binary search in 2-D. There are 8 cells
which contain records sorted in the x direction. Next we show an orthogonal range
query. The query range is shown as a rectangle with thick lines. There are three
overlapping cells.

dense cell array which spans K− 1 dimensions and a sparse cell structure in the final

dimension. Instead of storing sparse cells in the final dimension, we store records

sorted in that direction. We can access a record with array indexing in the first K−1

dimensions and a binary search in the final dimension. See Figure 3.19 for a depiction

of a cell array with binary searching.

We construct the data structure by cell sorting the records and then sorting the

records within each cell. Let the data structure have the attribute min which returns

the minimum multikey in the domain and the attribute delta which returns the size

of a cell. Let cells be the cell array. Below is the method for constructing the data

structure.

multikey to cell index( multikey ):

for k ∈ [0..K-1):

index[k] = b(multikey[k] - min[k]) / delta[k]c

return index
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construct( file ):

for record in file:

cells[multikey to cell index( record.multikey )] + = record

for cell in cells:

sort by last key( cell )

return

The orthogonal range query consists of accessing cells that overlap the domain

and then doing a binary search followed by a sequential scan on the sorted records in

each of these cells. Below is the orthogonal range query method.

ORQ cell binary search( range ):

included records = ∅

min index = multikey to index( range.min )

max index = multikey to index( range.max )

for index in [min index..max index]:

iter = binary search lower bound( cells[index].begin,

cells[index].end, range.min[K-1] )

while (*iter).multikey[K-1] ≤ range.max[K-1]:

if *iter ∈ range:

included records + = iter

return included records

As with sparse cell arrays, the query performance depends on the size of the cells

and the query range. The same results carry over. The only differences are that the

binary search on records is more costly than the search on cells, but we do not have

the computational cost of accessing cells in the sparse data structure or the storage

overhead of those cells. Let M be the number of cells used with the dense cell method.

The cell with binary search method has an array of cells which contain sorted records.

This array spans K − 1 dimensions and thus has size O(M1−1/K). Thus the storage

requirement is O(M1−1/K +N). The data structure is built by cell sorting the records
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and then sorting the records within each cell. We will assume that the records are

approximately uniformly distributed. Thus each cell contains O(N/M1−1/K) records.

Thus each sort of the records in a cell costs O((N/M1−1/K) log(N/M1−1/K)). The

preprocessing time is O(M1−1/K +N +N log(N/M1−1/K)). We can use insertion sort

for reprocessing, so its cost is O(M1−1/K +N).

Let J be the number of cells which overlap the query range and Ĩ be the number

of records which are reported or checked for inclusion in the overlapping cells. There

will be J binary searches to find the starting record in each cell. Thus the worst-case

computational complexity of an orthogonal range query is O(J log(N/M1−1/K) + Ĩ).

Next we determine the expected cost of a query. Suppose that the cells are no larger

than the query range and that both are roughly cubical (except in the binary search

direction). Let R be the ratio of the length of a query range to the length of a cell

in a given coordinate. In this case J . (R + 1)K−1. Thus the cost of the binary

searches is O((R+ 1)K−1 log(N/M1−1/K)). The number of records in the overlapping

cells that are checked for inclusion is about Ĩ . (1+1/R)K−1I, where I is the number

of records in the query range. These operations add a cost of O((1 + 1/R)K−1I):

Preprocess = O(M1−1/K +N +N log(N/M1−1/K)), Reprocess = O(M1−1/K +N),

Storage = O(M1−1/K +N), Query = O(J log(N/M1−1/K) + Ĩ),

AverageQuery = O
(
(R + 1)K−1 log

(
N/M1−1/K

)
+ (1 + 1/R)K−1I

)
Figure 3.20 shows the execution times and storage requirements for the chair

problem. Like the sparse cell array, the best execution times are obtained when R is

between 1/4 and 1/2. The performance of the cell array coupled with a binary search

is comparable to that of the sparse cell array. However, it is less sensitive to the size

of the cells. Also, compared to sparse cell arrays, there is less memory overhead for

small cells.

Figure 3.21 shows the execution times and storage requirements for the random

points problem. The execution times are better than those for the sparse cell array
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Figure 3.20: The effect of leaf size on the performance of the cell array coupled with
binary searches for the chair problem. The first plot shows the execution time in
seconds versus R. The second plot shows the memory usage in megabytes versus R.
The performance of the sparse cell array is shown for comparison.

0
10
20
30
40
50
60
70

0.5 1 1.5 2

E
xe

cu
tio

n 
T

im
e 

(s
)

Cell Size / Query Size

Cells Binary Search, Cell Size, Random

Search
Sparse

0

0.5

1

1.5

2

0.5 1 1.5 2

M
em

or
y 

U
sa

ge
 (

M
b)

Cell Size / Query Size

Cells Binary Search, Cell Size, Random

Search
Sparse

Figure 3.21: The effect of leaf size on the performance of the cell array coupled with
binary searches for the random points problem. The first plot shows the execution
time in seconds versus R. The second plot shows the memory usage in megabytes
versus R. The performance of the sparse cell array is shown for comparison.

and are less dependent on the cell size. Again, there is less memory overhead for

small cells.

In Figure 3.22 we show the best cell size versus the query range size for the random

points problem. Surprisingly, we see that the best cell size for this problem is not

correlated to the query size.
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Figure 3.22: The first plot shows the best cell size versus the query range size for the
cell array coupled with binary searches on the random points problem. Next we show
this data as the ratio of the cell size to the query range size.

3.4 Performance Tests over a Range of Query Sizes

By choosing the leaf size or cell size, tree methods and cell methods can be tuned to

perform well for a given fixed query size. In this section we well consider how the

various methods for doing single orthogonal range queries perform over a range of

query sizes. For each test there are one million records. The records are points in

3-D space. The query ranges are cubes.

3.4.1 Randomly Distributed Points in a Cube

The records for this test are uniform randomly distributed points in the unit cube,

[0..1]3. The query sizes are { 3
√

1/2n : n ∈ [1..20]} and range in size from about 0.01

to about 0.8. The smallest query range contains about a single record on average.

The largest query range contains about half the records. See Figure 3.23.

3.4.1.1 Sequential Scan

Figure 3.24 shows the performance of the sequential scan method. The performance

is roughly constant for small and medium sized queries. The execution time is higher

for large query sizes for two reasons. Firstly, more records are returned. Secondly,

for large query sizes the inclusion test is unpredictable. (If a branching statement is
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Figure 3.23: Log-log plot of the average number of records in the query versus the
query size for the randomly distributed points in a cube problem.

predictable, modern CPU’s will predict the answer to save time. If they guess incor-

rectly, there is a roll-back penalty.) Still, the performance is only weakly dependent

on the query size. There is only a factor of 2 difference between the smallest and

largest query. We will see that the sequential scan algorithm performs poorly except

for the largest query sizes.
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Figure 3.24: Log-log plot of execution time versus query size for the sequential scan
method with the randomly distributed points in a cube problem.

3.4.1.2 Projection Methods

The performance of the projection method and the related point-in-box method are

shown in Figure 3.25. They perform much better than the sequential scan method,
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The performance of the sequential scan method is shown for comparison.

but we will see that they are not competitive with tree or cell methods. The projection

method has slightly lower execution times than the point-in-box method. The benefit

of doing integer comparisons is outweighed by the additional storage and complexity

of the point-in-box method.

3.4.1.3 Tree Methods

Figure 3.26 shows the performance of the kd-tree data structure. The execution time

is moderately sensitive to the leaf size for small queries and mildly sensitive for large

queries. As expected, small leaf sizes give good performance for small queries and

large leaf sizes give good performance for large queries. The test with a leaf size of 8

has the best overall performance.

Figure 3.27 shows the performance of the kd-tree data structure with domain

checking. The performance is similar to the kd-tree without domain checking, but is

less sensitive to leaf size for small queries. Again, the test with a leaf size of 8 has

the best overall performance.

Figure 3.28 shows the performance of the octree data structure. In terms of leaf

size dependence, the performance is similar to the kd-tree with domain checking,
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Figure 3.26: Log-log plot of execution time versus query size for the kd-tree without
domain checking on the randomly distributed points in a cube problem. The key
shows the leaf size. The performance of the sequential scan method is shown for
comparison. The second plot shows the execution time per reported record.



89

0.0001

0.001

0.01

0.1

0.01 0.02 0.04 0.08 0.16 0.32 0.64

E
xe

cu
tio

n 
T

im
e 

(s
)

Query Size

Kd-tree with Domain Checking, Random Points in a Cube

2
4
8

16
32
64

Sequential Scan

2

4

8

16

32

64

128

256

1 10 100 1000 10000 100000

T
im

e 
P

er
 R

ep
or

te
d 

R
ec

or
d 

(m
ic

ro
se

c)

Number of Reported Records

Kd-tree with Domain Checking, Random Points in a Cube

2
4
8

16
32
64

Figure 3.27: Log-log plot of execution time versus query size for the kd-tree with
domain checking on the randomly distributed points in a cube problem. The key
shows the leaf size. The performance of the sequential scan method is shown for
comparison. The second plot shows the execution time per reported record.
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however the execution times are higher. The test with a leaf size of 16 has the best

overall performance.

We compare the performance of the tree methods in Figure 3.29. For small queries,

the kd-tree method without domain checking gives the best performance. For large

queries, domain checking becomes profitable. The kd-tree data structure with domain

checking during the query appears to give the best overall performance.

3.4.1.4 Cell Methods

Figure 3.30 shows the performance of the cell array data structure. The execution

time is highly sensitive to the cell size for small queries and moderately sensitive for

large queries. Small cell sizes give good performance for small queries. For large

queries, the best cell size is still quite small. The test with a cell size of 0.02 has the

best overall performance.

Figure 3.31 shows the performance of the sparse cell array data structure. The

performance characteristics are similar to those of the dense cell array, however the

execution time is less sensitive to cell size for large queries. The test with a cell size

of 0.02 has the best overall performance.

Figure 3.32 shows the performance of using a cell array with binary searching. The

performance characteristics are similar to those of the dense and sparse cell arrays,

however the execution time is less sensitive to cell size. The test with a cell size of

0.01414 has the best overall performance.

We compare the performance of the cell methods in Figure 3.33. For small queries,

the execution times of the three methods are very close. For large queries, the dense

cell array has a little better performance. Thus dense cell arrays give the best overall

performance for this test.

3.4.1.5 Comparison

We compare the performance of the orthogonal range query methods in Figure 3.34.

We plot the execution times of the best performers from each family of methods.

The projection method has relatively high execution times, especially for small query
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Figure 3.28: Log-log plot of execution time versus query size for the octree on the
randomly distributed points in a cube problem. The key shows the leaf size. The
performance of the sequential scan method is shown for comparison. The second plot
shows the execution time per reported record.
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Figure 3.29: Log-log plot of execution time versus query size for the tree methods
on the randomly distributed points in a cube problem. The key indicates the data
structure. We show the kd-tree with a leaf size of 8, the kd-tree with domain checking
with a leaf size of 8 and the octree with a leaf size of 16. The performance of the
sequential scan method is shown for comparison. The second plot shows the execution
time per reported record.
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Figure 3.30: Log-log plot of execution time versus query size for the cell array on the
randomly distributed points in a cube problem. The key shows the cell size. The
performance of the sequential scan method is shown for comparison. The second plot
shows the execution time per reported record.
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Figure 3.31: Log-log plot of execution time versus query size for the sparse cell array
on the randomly distributed points in a cube problem. The key shows the cell size.
The performance of the sequential scan method is shown for comparison. The second
plot shows the execution time per reported record.
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Figure 3.32: Log-log plot of execution time versus query size for the cell array with
binary searching on the randomly distributed points in a cube problem. The key
shows the cell size. The performance of the sequential scan method is shown for
comparison. The second plot shows the execution time per reported record.
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Figure 3.33: Log-log plot of execution time versus query size for the cell methods
on the randomly distributed points in a cube problem. The key indicates the data
structure. We show the dense cell array with a cell size of 0.02, the sparse cell array
with a cell size of 0.02 and the cell array with binary searching with a cell size of
0.01414. The performance of the sequential scan method is shown for comparison.
The second plot shows the execution time per reported record.
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sizes. The kd-tree without domain checking has good performance for small queries.

The kd-tree with domain checking performs well for large queries and has pretty

good execution times for small queries as well. The dense cell array method has lower

execution times than each of the other methods for all query sizes. It gives the best

overall performance for this test.

3.4.2 Randomly Distributed Points on a Sphere

In the test of the previous section the records were distributed throughout the 3-D

domain. Now we do a test in which the records lie on a 2-D surface. The records

for this test are uniform randomly distributed points on the surface of a sphere with

unit radius. The query sizes are {
√

1/2n : n ∈ [−2..19]} and range in size from about

0.001 to 2. The query ranges are centered about points on the surface of the sphere.

The smallest query range contains about a single record on average. The largest

query range contains about 40% of the records. See Figure 3.35.

3.4.2.1 Sequential Scan

Figure 3.36 shows the performance of the sequential scan method. As before, the

performance is roughly constant for small and medium sized queries but is higher for

large query sizes.

3.4.2.2 Projection Methods

The performance of the projection method and the point-in-box method are shown

in Figure 3.37. Again the projection method has slightly lower execution times than

the point-in-box method.

3.4.2.3 Tree Methods

Figure 3.38 shows the performance of the kd-tree data structure. The execution time

is moderately sensitive to the leaf size for small queries and mildly sensitive for large

queries. As before, small leaf sizes give better performance for small queries and large
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Figure 3.34: Log-log plot of execution time versus query size for the orthogonal range
query methods on the randomly distributed points in a cube problem. The key
indicates the data structure. We show the sequential scan method, the projection
method, the kd-tree with a leaf size of 8, the kd-tree with domain checking with a
leaf size of 8 and the cell array with a cell size of 0.02. The second plot shows the
execution time per reported record.
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Figure 3.35: Log-log plot of the average number of records in the query versus the
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Figure 3.36: Log-log plot of execution time versus query size for the sequential scan
method on the randomly distributed points on a sphere problem.

leaf sizes give better performance for large queries. The test with a leaf size of 8 has

the best overall performance.

Figure 3.39 shows the performance of the kd-tree data structure with domain

checking. The performance characteristics are similar to the kd-tree without domain

checking. The test with a leaf size of 16 has the best overall performance.

Figure 3.40 shows the performance of the octree data structure. The test with a

leaf size of 16 has the best overall performance.

We compare the performance of the tree methods in Figure 3.41. For small queries,

the kd-tree method without domain checking gives the best performance. For large
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and the point-in-box method on the randomly distributed points on a sphere problem.
The performance of the sequential scan method is shown for comparison.

queries, domain checking becomes profitable. For medium sized queries, the different

methods perform similarly. The kd-tree data structure without domain checking

during the query appears to give the best overall performance.

3.4.2.4 Cell Methods

Figure 3.42 shows the performance of the cell array data structure. The execution

time is highly sensitive to the cell size. Small cell sizes give good performance for

small queries. Medium to large cell sizes give good performance for large queries.

The test with a cell size of 0.02 has the best overall performance.

Figure 3.43 shows the performance of the sparse cell array data structure. The

performance is similar to that of the dense cell array for small queries. The execution

time is less sensitive to cell size for large queries. In fact, the performance hardly

varies with cell size. The test with a cell size of 0.02 has the best overall performance.

Figure 3.44 shows the performance of using a cell array with binary searching.

The execution time is moderately sensitive to cell size for small query sizes and

mildly sensitive for large queries. The test with a cell size of 0.02 has the best overall

performance.
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Figure 3.38: Log-log plot of execution time versus query size for the kd-tree without
domain checking data structure on the randomly distributed points on a sphere prob-
lem. The key shows the leaf size. The performance of the sequential scan method is
shown for comparison. The second plot shows the execution time per reported record.
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Figure 3.39: Log-log plot of execution time versus query size for the kd-tree with
domain checking data structure on the randomly distributed points on a sphere prob-
lem. The key shows the leaf size. The performance of the sequential scan method is
shown for comparison. The second plot shows the execution time per reported record.
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Figure 3.40: Log-log plot of execution time versus query size for the octree data
structure on the randomly distributed points on a sphere problem. The key shows
the leaf size. The performance of the sequential scan method is shown for comparison.
The second plot shows the execution time per reported record.
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Figure 3.41: Log-log plot of execution time versus query size for the tree methods
on the randomly distributed points on a sphere problem. The key indicates the data
structure. We show the kd-tree with a leaf size of 8, the kd-tree with domain checking
with a leaf size of 16 and the octree with a leaf size of 16. The performance of the
sequential scan method is shown for comparison. The second plot shows the execution
time per reported record.
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Figure 3.42: Log-log plot of execution time versus query size for the cell array data
structure on the randomly distributed points on a sphere problem. The key shows the
cell size. The performance of the sequential scan method is shown for comparison.
The second plot shows the execution time per reported record.
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Figure 3.43: Log-log plot of execution time versus query size for the sparse cell array
data structure on the randomly distributed points on a sphere problem. The key
shows the cell size. The performance of the sequential scan method is shown for
comparison. The second plot shows the execution time per reported record.
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Figure 3.44: Log-log plot of execution time versus query size for the cell array with
binary searching data structure on the randomly distributed points on a sphere prob-
lem. The key shows the cell size. The performance of the sequential scan method is
shown for comparison. The second plot shows the execution time per reported record.
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We compare the performance of the cell methods in Figure 3.45. Each method

has a cell size of 0.02. For small queries, the cell array with binary searching has the

best performance. For large queries, the dense cell array method is a little faster.

3.4.2.5 Comparison

We compare the performance of the orthogonal range query methods in Figure 3.46.

We plot the execution times of the best overall performers from each family of meth-

ods. The projection method has relatively high execution times, especially for small

query sizes. The kd-tree without domain checking has good performance for small

queries. There is a performance penalty for domain checking for small queries and a

performance boost for large queries. The cell array with binary searching performs

better than the dense cell array for small queries. This is because the size of a cell in

the dense cell array is much larger than the query size so time is wasted with inclusion

tests. The dense cell array has the edge for large queries because the query range

spans many cells.

For small query sizes, the cell array with binary searching and the kd-tree without

domain checking both perform well. For large query sizes the dense cell array performs

best, followed by the cell array with binary searching. The cell array with binary

searching has the best overall performance for this test.

3.5 Multiple Range Queries

3.5.1 Single versus Multiple Queries

To the best of our knowledge, there has not been any previously published work

addressing the issue of doing a set of orthogonal range queries. There has been a great

deal of work on doing single queries. However, there are no previously introduced

algorithms that can perform a set of Q queries in less time than the product of Q and

the time of a single query. In this section we will introduce an algorithm for doing

multiple 1-D range queries. In the following section we will extend the algorithm to
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Figure 3.45: Log-log plot of execution time versus query size for the cell methods on
the randomly distributed points on a sphere problem. The key indicates the data
structure. We show the dense cell array, the sparse cell array and the cell array with
binary searching, each with a cell size of 0.02. The performance of the sequential
scan method is shown for comparison. The second plot shows the execution time per
reported record.
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Figure 3.46: Log-log plot of execution time versus query size for the orthogonal range
query methods on the randomly distributed points on a sphere problem. The key
indicates the data structure. We show the sequential scan method, the projection
method, the kd-tree with a leaf size of 8, the kd-tree with domain checking with a
leaf size of 16, the cell array with a cell size of 0.02 and the cell array with binary
searching with a cell size of 0.02. The second plot shows the execution time per
reported record.
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higher dimensions.

3.5.2 Sorted Key and Sorted Ranges with Forward Searching

In Section 3.2.2 we sorted the file by its keys. The purpose of this was to enable us

to use a binary search to find a record. The binary search requires a random access

iterator to the records. That is, it can access any record of the file in constant time.

Typically this means that the records are stored in an array. Now we introduce a

data structure that stores its data in sorted order, but need only provide a forward

iterator. A container of this type must provide the attribute begin, which points to

the first element and the attribute end, which points to one past the last element. A

forward iterator must support the following operations.

dereference: *iter returns the element pointed to by iter.

increment: ++iter moves iter to the next element.

In addition, the forward iterator supports assignment and equality tests. All of the

containers in the C++ STL library satisfy these criteria. (See [2] for a description of

containers, iterators and the C++ STL library.)

We will store pointers to the records in such a container, sorted by key. Likewise

for the ranges, sorted by the lower end of each range. Below is the algorithm for

doing a set of range queries. The MRQ prefix stands for multiple range queries.

MRQ sorted key sorted range( records, ranges ):

initialize( records )

range iter = ranges.begin

while range iter 6= ranges.end:

included records = RQ forward search( records, *iter )

// Do something with included records

++range iter
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initialize( container ):

container.first in range = container.begin

RQ forward search( records, range ):

1 included records = ∅

2 while ( records.first in range 6= records.end and

(*records.first in range).key < range.min ):

3 ++records.first in range

4 iter = records.first in range

5 while (*iter).key ≤ range.max:

6 included records + = iter

7 ++iter

8 return included records

Let there be N elements and Q queries. Let T be the total number of records in

query ranges, counting multiplicities. The computational complexity of doing a set of

range queries is O(N +Q+ T ). Iterating over the query ranges introduces the O(R)

term. Searching for the beginning of each range accounts for O(N). This occurs on

lines 2 and 3 of RQ forward search(). Finally, collecting the included records (lines

4-7) accounts for the O(T ) term. To match the previous notation, let I be the average

number of records in a query. The average cost of a single query is O(N/Q+ I)

The preprocessing time for making the data structure is O(N logN + Q logQ)

because the records and query ranges must be sorted. If the records and query ranges

change by small amounts, the reprocessing time is O(N +Q) because the records and

query ranges can be resorted with an insertion sort. The storage requirement is linear

in the number of records and query ranges.
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Preprocess = O(N logN +Q logQ), Reprocess = O(N +Q),

Storage = O(N +Q), Query = O(N/Q+ I)

3.6 Multiple Orthogonal Range Queries

3.6.1 Cells Coupled with Forward Searching

In this section we extend the algorithm for doing multiple 1-D range queries to higher

dimensions. Note that one can couple the cell method with other search data struc-

tures. For instance, one could sort the records in each of the cells or store those

records in a search tree. Most such combinations of data structures do not offer any

advantages. However, there are some that do. For example, we coupled a binary

search to a cell array. (Section 3.3.9.) For this data structure, we can access a record

with array indexing in the first K − 1 dimensions and a binary search in the final

dimension.

Coupling the forward search of the previous section, which was designed for multi-

ple queries, with a cell array makes sense. The data structure is little changed. Again

there is a dense cell array which spans K−1 dimensions. In each cell, we store records

sorted in the remaining dimension. However, now each cell has the first in range at-

tribute. In performing range queries, we access records with array indexing in K − 1

dimensions and a forward search in the final dimension.

We construct the data structure by cell sorting the records and then sorting the

records within each cell. Then we sort the query ranges by their minimum key in

the final dimension. Let the data structure have the attribute min which returns

the minimum multikey in the domain and the attribute delta which returns the size

of a cell. Let cells be the cell array. Below are the functions for constructing and

initializing the data structure.
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construct( file ):

for record in file:

cells[multikey to cell index( record.multikey )] + = record

for cell in cells:

sort by last key( cell )

sort by last key( queries )

return

multikey to cell index( multikey ):

for k ∈ [0..K-1):

index[k] = b(multikey[k] - min[k]) / delta[k]c

return index

initialize():

for cell in cells:

cell.first in range = cell.begin

Each orthogonal range query consists of accessing cells that overlap the domain

and then doing a forward search followed by a sequential scan on the sorted records

in each of these cells. Below is the orthogonal range query method.

MORQ cell forward search( range ):

included records = ∅

min index = multikey to index( range.min )

max index = multikey to index( range.max )

for index in [min index..max index]:

cell = cells[index]

while ( cell.first in range 6= cell.end and
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(*cell.first in range).multikey[K-1] < range.min[K-1] ):

++cell.first in range

iter = cell.first in range

while (*iter).multikey[K-1] ≤ range.max[K-1]:

if *iter ∈ range:

included records + = iter

++iter

return included records

As with cell arrays with binary searching, the query performance depends on the

size of the cells and the query range. The same results carry over. The only difference

is that the binary search on records is replaced with a forward search. If the total

number of records in ranges, T , is at least as large as the number of records N , then

we expect the forward searching to be less costly. The preprocessing time for the cell

array with binary search is O(M1−1/K + N + N log(N/M1−1/K)). For the forward

search method we must also sort the Q queries, so the preprocessing complexity is

O(M1−1/K + N + N log(N/M1−1/K) + Q logQ). The reprocessing time for the cell

array with binary search is O(M1−1/K +N). If the records and query ranges change

by small amounts, we can use insertion sort (combined with cell sort for the records)

to resort them. Thus the reprocessing complexity for the forward search method is

O(M1−1/K + N + Q). The forward search method requires that we store the sorted

query ranges. This the storage requirement is O
(
M1−1/K +N +Q

)
.

We will determine the expected cost of a query. Let I the number of records in

a single query range. Let J be the number of cells which overlap the query range

and Ĩ be the number of records which are reported or checked for inclusion in the

overlapping cells. There will be J forward searches to find the starting record in each

cell. The total cost of the forward searches for all the queries (excluding the cost

of starting the search in each cell) is O(N). Thus the average cost of the forward

searching per query is O(J + N/Q). As with the binary search method, we suppose

that the cells are no larger than the query range and that both are roughly cubical
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(except in the forward search direction). Let R be the ratio of the length of a query

range to the length of a cell in a given coordinate. In this case J . (R + 1)K−1.

The number of records in the overlapping cells that are checked for inclusion is about

Ĩ . (1 + 1/R)K−1I. The inclusion tests add a cost of O((1 + 1/R)K−1I). Thus the

average cost of a single query is O((R + 1)K−1 +N/Q+ (1 + 1/R)K−1I).

Preprocess = O
(
M1−1/K +N +N log(N/M1−1/K) +Q logQ

)
,

Reprocess = O
(
M1−1/K +N +Q

)
, Storage = O

(
M1−1/K +N +Q

)
,

AverageQuery = O
(
(R + 1)K−1 +N/Q+ (1 + 1/R)K−1I

)
,

TotalQueries = O
(
Q(R + 1)K−1 +N + (1 + 1/R)K−1T

)
,

Figure 3.47 shows the execution times and storage requirements for the chair

problem. The performance is similar to the cell array coupled with binary searching.

As expected, the execution times are lower, and the memory usage is higher. Because

the forward searching is less costly than the binary searching, the forward search

method is less sensitive to cell size. It has a larger “sweet spot.” For this test, the

best execution times are obtained when R is between 1/8 and 1/2.

Figure 3.48 shows the execution times and storage requirements for the random

points problem. The execution times are better than those for the cell array with

binary searching. This improvement is significant near the sweet spot, but diminishes

when the cell size is not tuned to the query size. There is an increase in memory

usage from the binary search method.

In Figure 3.49 we show the best cell size versus the query range size for the random

points problem. As with the cell array with binary searching, we see that the best

cell size for this problem is not correlated to the query size.
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Figure 3.47: The effect of leaf size on the performance of the cell array coupled with
forward searches for the chair problem. The first plot shows the execution time in
seconds versus R. The second plot shows the memory usage in megabytes versus
R. The performance of the cell array coupled with binary searches is shown for
comparison.
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Figure 3.48: The effect of leaf size on the performance of the cell array coupled with
forward searches for the random points problem. The first plot shows the execution
time in seconds versus R. The second plot shows the memory usage in megabytes
versus R. The performance of the cell array coupled with binary searches is shown
for comparison.
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Figure 3.49: The first plot shows the best cell size versus the query range size for
the cell array coupled with forward searches on the random points problem. Next we
show this data as the ratio of the cell size to the query range size.

3.6.2 Storing the Keys

The most expensive part of doing the orthogonal range queries with the cell array

coupled with forward searching is actually just accessing the records and their keys.

This is because the search method is very efficient and the forward search needs to

access the records. To cut the cost of accessing the records and their keys, we can

store the keys in the data structure. This will reduce the cost of the forward searches

and the inclusion tests. However, there will be a substantial increase in memory

usage. We will examine the effect of storing the keys.

Figure 3.50 shows the execution times and storage requirements for the chair

problem. The performance has the same characteristics as the data structure that

does not store the keys. By storing the keys, we roughly cut the execution time

in half. However, there is a fairly large storage overhead. Instead of just storing a

pointer to the record, we store the pointer and three keys. In this example, the keys

are double precision numbers. Thus the memory usage goes up by about a factor of

seven. If the keys had been integers or single precision floats, the increase would have

been smaller.

Figure 3.51 shows the execution times and storage requirements for the random

points problem. Again we see that storing the keys improves the execution time at
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Figure 3.50: The effect of leaf size on the performance of the cell array that stores keys
and uses forward searches for the chair problem. The first plot shows the execution
time in seconds versus R. The second plot shows the memory usage in megabytes
versus R. The performance of the data structure that does not store the keys is shown
for comparison.
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Figure 3.51: The effect of leaf size on the performance of the cell array coupled with
forward searches that stores the keys for the random points problem. The first plot
shows the execution time in seconds versus R. The second plot shows the memory
usage in megabytes versus R. The performance of the data structure that does not
store the keys is shown for comparison.

the price of increased memory usage.

3.7 Computational Complexity Comparison

Table 3.1 gives labels to the orthogonal range query methods that we will compare.

It also gives a reference to the section in which the method is introduced. Related
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label description reference
seq. scan sequential scan 3.3.2
projection projection 3.3.3
pt-in-box point-in-box 3.3.4
kd-tree kd-tree 3.3.5
kd-tree d. kd-tree with domain checking 3.3.5
octree octree 3.3.6
cell cell array 3.3.7
sparse cell sparse cell array 3.3.8
cell b. s. cell array with binary search 3.3.9
cell f. s. cell array with forward search 3.6.1
cell f. s. k. cell array with forward search on keys 3.6.2

Table 3.1: Labels and references for the orthogonal range query methods.

Method Expected Complexity of ORQ Storage
seq. scan N N

projection K logN +N1−1/K KN
pt-in-box K logN +N1−1/K (2K + 1)N
kd-tree logN + I N
kd-tree d. logN + I N
octree logN + I (D + 1)N
cell (R + 1)K + (1 + 1/R)KI M +N
sparse cell (R + 1)K−1 log

(
M1/K

)
+ (R + 1)K + (1 + 1/R)KI M1−1/K +N

cell b. s. (R + 1)K−1 log
(
N/M1−1/K

)
+ (1 + 1/R)K−1I M1−1/K +N

cell f. s. (R + 1)K−1 +N/Q+ (1 + 1/R)K−1I M1−1/K +N
cell f. s. k. (R + 1)K−1 +N/Q+ (1 + 1/R)K−1I M1−1/K +N

Table 3.2: Computational complexity and storage requirements for the orthogonal
range query methods.

methods are grouped together.

Table 3.2 lists the expected computational complexity for an orthogonal range

query and the storage requirements of the data structure for each of the presented

methods. We consider the case that the query range is small and cubical. To review

the notation: There are N records in K-dimensional space. There are I records in

the query range. There are M cells in the dense cell array method. R is the ratio of

the length of a query range to the length of a cell in a given coordinate. The depth

of the octree is D. For multiple query methods, Q is the number of queries.
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The sequential scan is the brute force method and is rarely practical.

For the projection and point-in-box methods the N1−1/K term, which is the ex-

pected number of records in a slice, typically dominates the query time. This strong

dependence on N means that the projection methods are usually suitable when the

number of records is small. The projection methods also have a fairly high storage

overhead, storing either K or 2K + 1 arrays of length N .

Although the leaf size does not appear in the computational complexity or storage

complexity, choosing a good leaf size is fairly important in getting good performance

from tree methods.

Dense cell array methods are attractive when the distribution of records is such

that the memory overhead of the cells is not too high. A uniform distribution of

records would be the best case. If one can afford the memory overhead of cells, then

one can often choose a cell size that balances the cost of cell accesses, O((R+1)K), and

inclusion tests, O((1+1/R)KI), to obtain a method that is close to linear complexity

in the number of included records.

If the dense cell array method requires too much memory, then a sparse cell

array or a cell array coupled with a binary search on records may give good per-

formance. Both use a binary search; the former to access cells and the latter to

access records. Often the cost of the binary searches, (O((R + 1)K−1 log
(
M1/K

)
)

and O((R + 1)K−1 log
(
N/M1−1/K

)
), respectively), is small compared to the costs of

the inclusion tests. This is because the number of cells, O(M1/K), or the number of

records, O(N/M1−1/K), in the search is small.

For multiple query problems, if the total number T of records in query ranges is

at least as large as the number of records N then a cell array coupled with forward

searching will likely give good performance. In this case the cost of the searching,

O(N/Q), will be small and the cell size can be chosen to balance the cost of accessing

cells, O((R + 1)K−1), with the cost of inclusion tests, O((1 + 1/R)K−1I).
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# records 1,782 7,200 28,968 116,232 465,672 1,864,200
# returned 65,412 265,104 864,296 3,192,056 12,220,376 47,768,216

Table 3.3: The total number of records returned by the orthogonal range queries for
the chair problems.

3.8 Performance Tests for Multiple Queries over a

Range of File Sizes

3.8.1 Points on the Surface of a Chair

We consider the chair data set, introduced in Section 3.3.1. By refining the surface

mesh of the chair, we vary the number of records from 1, 782 to 1, 864, 200. There is

unit spacing between adjacent records. We perform a cubical orthogonal range query

of size 4 around each record. Table 3.3 shows the total number of records returned

for the six tests.

Table 3.4 shows the execution times for the chair problems. The leaf sizes and

cell sizes are chosen to minimize the execution time. The memory usage is shown in

Table 3.5. An entry of “o.t.” indicates that the test exceeded the time limit. An

entry of “o.m.” means out of memory. (Note that the kd-tree method with domain

checking has the same memory usage as the kd-tree method without domain checking

as the data structure is the same.)

Figure 3.52 shows the execution times and memory usage for the various methods.

First consider the tree methods. The octree has significantly lower execution times

than the kd-tree methods. It performs the orthogonal range queries in less than half

the time of the kd-tree methods. This is because the records are regularly spaced.

Having regularly spaced records avoids the primary problem with using octrees: the

octree may be much deeper than a kd-tree. However, memory usage is a different

story. The octree uses about four times the memory of the kd-tree methods.

Next consider the cell methods. The dense cell array has reasonable execution

times, but the the memory usage increases rapidly with the problem size. Recall that
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# records 1,782 7,200 28,968 116,232 465,672 1,864,200
seq. scan 0.195 3.453 98.72 o.t. o.t. o.t.
projection 0.061 0.480 3.86 33.01 322.0 o.t.
pt-in-box 0.045 0.366 2.94 25.78 205.9 o.t.
kd-tree 0.081 0.383 1.94 9.58 46.7 o.t.
kd-tree d. 0.101 0.475 2.50 12.66 63.0 o.t.
octree 0.035 0.164 0.78 3.12 13.4 56
cell 0.024 0.102 0.37 1.41 5.6 o.m.
sparse cell 0.025 0.108 0.40 1.50 5.9 25
cell b. s. 0.028 0.121 0.49 1.89 8.1 34
cell f. s. 0.019 0.081 0.31 1.24 5.0 21
cell f. s. k. 0.013 0.055 0.23 0.93 3.8 17

Table 3.4: The total execution time for the orthogonal range queries for the chair
problem with a query size of 4.

# records 1,782 7,200 28,968 116,232 465,672 1,864,200
seq. scan 7,140 28,812 115,884 o.t. o.t. o.t.
projection 21,420 86,436 347,652 1,394,820 5,588,100 o.t.
pt-in-box 49,980 201,684 811,188 3,254,580 13,038,900 o.t.
kd-tree 17,416 69,808 279,760 1,120,336 4,484,176 o.t.
octree 62,708 272,212 1,160,492 4,520,452 17,979,204 72,681,460
cell 32,328 206,412 1,446,540 10,760,556 82,850,988 o.m.
sparse cell 14,360 63,088 252,976 1,013,680 4,058,800 16,243,888
cell b. s. 8,836 34,684 137,884 550,300 2,199,196 8,793,244
cell f. s. 16,764 66,372 264,708 1,057,860 4,230,084 16,918,212
cell f. s. k. 63,132 252,168 1,009,224 4,039,272 16,163,112 64,665,768

Table 3.5: The memory usage of the data structures for the chair problem.
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Figure 3.52: Log-log plots of the execution times versus the number of reported
records and the memory usage versus the number of records in the file for each of
the orthogonal range query methods on the chair problems. The execution time is
shown in microseconds per returned record. The memory usage is shown in bytes per
record.
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the cell size is chosen to minimize execution time. Following this criterion, the dense

cell array runs out of memory for the largest test case. The execution times of the

sparse cell array are close to those of the dense cell array. However, it uses much less

memory. Like the rest of the cell methods, the memory usage is proportional to the

problem size. The cell array with binary searches has higher execution times than

the other cell methods but has the lowest memory requirements. The cell array with

forward searching has lower execution times than than above methods. Its memory

usage is about the same as the sparse cell array. Finally, storing the keys with the cell

array coupled with forward searching gives the lowest execution times at the price of

a higher memory overhead.

Among the tree methods, the octree offered the lowest execution times. For cell

methods, the sparse cell array and the cell array with forward searching have good

performance. These two cell methods perform significantly better than the octree.

The cell methods do the queries in about half the time of the octree method and

use one quarter of the memory. The cell array with forward searching has the lower

execution times of the two cell methods.

3.8.2 Randomly Distributed Points in a Cube

We consider the random points data set, introduced in Section 3.3.1. The number of

records varies from 100 to 1, 000, 000. We perform cubical orthogonal range queries

around each record. The query size is chosen to contain an average of about 10

records. Table 3.3 shows the total number of records returned for the five tests.

Table 3.7 shows the execution times for the chair problems. Again, the leaf sizes

and cell sizes are chosen to minimize the execution time. The memory usage is shown

in Table 3.8. An entry of “o.t.” indicates that the test exceeded the time limit. (The

kd-tree method with domain checking has the same memory usage as the kd-tree

method without domain checking as the data structure is the same.)

Figure 3.53 shows the execution times and memory usage for the various methods.

First consider the tree methods. The kd-tree methods have lower execution times
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# records 100 1,000 10,000 100,000 1,000,000
# returned 886 9,382 102,836 1,063,446 10,842,624

Table 3.6: The total number of records returned by the orthogonal range queries for
the random points problems.

# records 100 1,000 10,000 100,000 1,000,000
seq. scan 0.00071 0.0683 8.173 o.t. o.t.
projection 0.00077 0.0281 1.323 104.15 o.t.
pt-in-box 0.00061 0.0254 1.304 112.61 o.t.
kd-tree 0.00095 0.0154 0.205 3.56 44
kd-tree d. 0.00114 0.0187 0.268 4.31 52
octree 0.00079 0.0212 0.363 7.08 92
cell 0.00091 0.0135 0.173 3.03 36
sparse cell 0.00101 0.0146 0.201 3.24 39
cell b. s. 0.00088 0.0109 0.140 1.74 27
cell f. s. 0.00068 0.0082 0.109 1.15 16
cell f. s. k. 0.00050 0.0054 0.067 0.77 11

Table 3.7: The total execution time for the orthogonal range queries for the random
points problem.

# records 100 1,000 10,000 100,000 1,000,000
seq. scan 412 4,012 40,012 o.t. o.t.
projection 1,236 12,036 120,036 1,200,036 o.t.
pt-in-box 2,884 28,084 280,084 2,800,084 o.t.
kd-tree 1,088 9,168 121,968 1,055,408 9,242,928
octree 4,628 46,280 398,488 3,425,956 30,199,580
cell 724 5,500 52,000 527,776 5,245,876
sparse cell 928 6,400 57,600 578,112 5,696,368
cell b. s. 652 4,508 41,708 407,852 4,035,452
cell f. s. 1,124 8,708 82,508 811,724 8,053,124
cell f. s. k. 3,848 33,608 326,108 3,229,148 32,132,648

Table 3.8: The memory usage of the data structures for the random points problem.
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than the octree method. This result differs from the chair problems, because now the

records are not regularly spaced. Where records are close to each other, the octree

does more subdivision. Because of the small query size, it is advantageous to not do

domain checking in the kd-tree algorithm. Finally, we note that the kd-tree methods

use about a third of the memory of the octree.

Next consider the cell methods. The dense and sparse cell arrays have the highest

execution times, but they have fairly low memory requirements. Since the records are

distributed throughout the domain, there are few empty cells, and there is nothing to

be gained by using a sparse array over a dense array. However, the penalty for using

the sparse array (in terms of increased cell access time and increased memory usage)

is small. The cell array with binary searching outperforms the dense and sparse cell

arrays. It has lower execution times and uses less memory. The execution times of the

cell array with forward searching are lower still. However, storing the sorted queries

increases the memory usage. Finally, by storing the keys one can obtain the best

execution times at the price of higher memory usage.

Among the tree methods, the kd-tree without domain checking offered the best

performance. For cell methods, the cell array with binary searching and the cell array

with forward searching have low execution times. These two cell methods outperform

the kd-tree method. The cell array with binary searching does the queries in about

half the time of the kd-tree while using less than the half the memory. The cell array

with forward searching has significantly lower execution times than the binary search

method, but uses about twice the memory.

3.9 Conclusions

The performance of orthogonal range query methods depends on many parameters:

the dimension of the record’s multikey, the number of records and their distribution

and the query range. The performance may also depend on additional parameters

associated with the data structure, like leaf size for tree methods or cell size for cell

methods. Also important are the implementation of the algorithms and the computer
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architecture. There is no single best method for doing orthogonal range queries. Some

methods perform well over a wide range of parameters. Others perform well for only

a small class of problems. In this section we will compare the methods previously

presented. We will base our conclusions on our numerical experiments. Thus we

restrict our attention to records with 3-D multikeys and cubic query ranges. Also,

only a few distributions of the records were tested. Finally, note that all codes were

implemented in C++ and executed on a 450 MHz i686 processor with 256 MB of

memory.

3.9.1 Projection Methods

The projection methods have the advantage that they are relatively easy to imple-

ment. The fundamental operations in these methods are sorting an array and doing

binary searches on that array. These operations are in many standard libraries. (The

C++ STL library provides this functionality.) Also, projection methods are easily

adaptable to dynamic problems. When the records change, one merely resorts the

arrays. However, the projection method and the related point-in-box method usually

perform poorly. The execution time does not scale well with the file size, so the meth-

ods are only practical for small files. The memory usage of the projection method is

moderate. It is typically not much higher than a kd-tree. The point-in-box method

has a high memory requirement. Storing the rank arrays in order to do integer com-

parisons more than doubles the memory usage. Also, on x86 processors, doing integer

instead of floating point comparisons usually increases execution time. So the “op-

timization” of integer comparisons becomes a performance penalty. The projection

method typically outperforms the point-in-box method, but neither is recommended

for time critical applications.

3.9.2 Tree Methods

Kd-trees usually outperform octrees by a moderate factor. The octree typically has

higher execution times and uses several times the memory of a kd-tree. This is
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because the octree partitions space while the kd-tree partitions the records. The high

memory usage of the octree is also a result of storing the domain of each sub-tree.

The exception to this rule is when the records are regularly spaced, as in the chair

problem. Then the octree may have lower execution times than the kd-tree. The

octree is also more easily adapted to dynamic problems than the kd-tree.

For kd-trees, it is advantageous to do domain checking during the orthogonal

range query only when the query range is large. For small queries, it is best to not

do domain checking and thus get faster access to the leaves. For a given problem,

kd-trees are typically not the best method for doing orthogonal range queries; there is

usually a cell method that has better execution times and uses less memory. However,

kd-trees perform pretty well in a wide range of problems and the performance is only

moderately sensitive to leaf size.

3.9.3 Cell Methods

The dense cell array method performs very well on problems for which it is well

suited. The structure of tree methods amortizes the cost of accessing leaves. The cell

array offers constant time access to any cell. If the cell array with cell size chosen to

optimize execution time will fit in memory, then the cell array will usually have lower

execution times than any tree method. Depending on the number and distribution

of the records, the memory usage may be quite low or very high. The performance

of cell arrays is fairly sensitive to the cell size.

It has been reported [4] that cell arrays are applicable only in situations when the

query size is fixed and that in this case the cell size should be chosen to match the

query size. This was not the case in our experiments. For the tests in Section 3.4

the cell array with a fixed cell size performed well over a wide range of query sizes.

Choosing the best cell size has more to do with the distribution of the records than

with the size of the query range.

Sparse cell arrays usually have execution times that are almost as low as dense

cell arrays. The binary search to access cells has little effect on performance. If the
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dense cell array has many empty cells, then the sparse cell array may offer significant

savings in memory. However, if the records are distributed throughout the domain,

using the sparse array structure only increases the memory usage and access time

to a cell. Like the dense cell array, the performance of the sparse cell array is fairly

sensitive to the cell size.

Cell arrays coupled with binary searching are similar in structure to sparse cell

arrays. The former searches on records while the latter searches on cells. The execu-

tion times are usually comparable with the other cell methods. However, the memory

usage is typically lower and the performance is less sensitive to cell size. In fact,

the memory usage is often little more than the sequential scan method which stores

only a single pointer for each record. It is interesting to note that like the projec-

tion methods, there is a binary search on records. However, the projection methods

perform this search on the entire file, while the cell array coupled with binary search-

ing searches only within a single cell. The combination of low execution times, low

memory usage and insensitivity to cell size make this an attractive method for many

problems.

3.9.4 Multiple Queries

For multiple query problems where the total number of records inside query ranges is

at least as large as the number records, the cell array coupled with forward searching

typically performs very well. To store the records, it uses almost the same data

structure as the cell array coupled with binary searching. However, its method of

sweeping through the records is more efficient than the binary search. Having to

store the queries so that they can be processed in order increases the memory usage

from light to moderate.

One can moderately decrease the execution time (a factor of 1/3 was common in

our tests) by storing the multikeys to avoid accessing the records. However, this does

increase the memory usage. Storing the keys is a useful optimization in situations

when execution time is critical and available memory is sufficient.
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Chapter 4

Single-Source Shortest Paths

4.1 Introduction

Consider a weighted, directed graph with V vertices and E edges. Let w be the

weight function, which maps edges to real numbers. The weight of a path in the

graph is the sum of the weights of the edges in the path. Given a vertex u, some

subset of the vertices can be reached by following paths from u. The shortest-path

weight from u to v is the minimum weight path over all paths from u to v. A shortest

path from vertex u to vertex v is any path that has the minimum weight. Thus the

shortest path is not necessarily unique. If there is no path from u to v then one can

denote this by defining the shortest-path weight to be infinite.

We consider the single-source shortest-paths problem [9]: given a graph and a

source vertex we want to find the shortest paths to all other vertices. There are sev-

eral related shortest-paths problems. For the single-destination shortest-paths prob-

lem we want to find the shortest paths from all vertices to a given destination vertex.

This problem is equivalent to the single-source problem. Just reverse the orientation

of the edges. For the single-pair shortest-path problem we want to find the short-

est path from a given source vertex to a given destination vertex. One can solve

the single-pair problem by solving the single-source problem. Actually, there are no

known single-pair algorithms with lower computational complexity than single-source

algorithms. Finally, there is the all-pairs shortest-paths problem. For this we want

to find the shortest paths between all pairs of vertices. For dense graphs, one typi-
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cally solves this problem with the Floyd-Warshall algorithm [9]. For sparse graphs,

Johnson’s algorithm [9], which computes the single-source problem for each vertex,

is asymptotically faster.

If the graph contains negative weight edges, then the shortest path between two

connected vertices may not be well defined. This occurs if there is a negative weight

cycle reachable between the source and the destination. Then one can construct a

path between the source and the destination with arbitrarily low weight by repeating

the negative weight cycle. Some shortest-path algorithms, like the Bellman-Ford al-

gorithm, are able to detect negative weight cycles and then indicate that the shortest-

paths problem does not have a solution. Other algorithms, like Dijkstra’s algorithm,

assume that the edge weights are nonnegative. We will consider only graphs with

nonnegative weights.

We can represent the shortest-path weights from a given source by storing this

value as an attribute in each vertex. The distance of the source is defined to be zero,

source.distance = 0, the distance of unreachable vertices is infinite. Some algorithms

keep track of the status of the vertices. For the algorithms we will consider, a vertex

is in one of three states: KNOWN if the distance is known to have the correct value,

LABELED if the distance has been updated from a known vertex and UNLABELED

otherwise.

The shortest paths form a tree with root at the source. We can represent this

tree by having each vertex store a predecessor attribute. The predecessor of a vertex

is that vertex which comes directly before it in the shortest path from the source.

The predecessor of the source and of unreachable vertices is defined to be the special

value NONE. Note that while the shortest distance is uniquely defined, the predecessor

is not. This is because there may be multiple shortest paths from the source to a

given vertex. Below is the procedure for initializing a graph to solve the single-source

shortest-paths problem for a specified source vertex.

initialize( graph, source ):
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for vertex in graph.vertices:

vertex.distance =∞

vertex.predecessor = NONE

vertex.status = UNLABELED

source.distance = 0

source.status = KNOWN

The algorithms that we will consider generate the shortest paths through a process

of labeling. At each stage, the distance attribute of each vertex is an upper bound on

the shortest-path weight. If the distance is not infinite, then it is the sum of the edge

weights on some path from the source. This approximation of the shortest-path weight

is improved by relaxing along an edge. For a known vertex, we see if the distance to

its neighbors can be improved by going through its adjacent edges. For a known vertex

with an adjacent edge leading to a vertex, if known vertex.distance + edge.weight <

vertex.distance then we improve the approximation of vertex.distance by setting it to

known vertex.distance + edge.weight. We also update the predecessor attribute. The

algorithms proceed by labeling the adjacent neighbors of known vertices and freezing

the value of labeled vertices when they are determined to be correct. At termination,

the distance attributes are equal to the shortest-path weights. Below is the procedure

for labeling a single vertex and the procedure for labeling the neighbors of a known

vertex.

label( vertex, known vertex, edge weight ):

if vertex.status == UNLABELED:

vertex.status = LABELED

if known vertex.distance + edge weight < vertex.distance:

vertex.distance = known vertex.distance + edge weight

vertex.predecessor = known vertex

return
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label adjacent( known vertex ):

for each edge of known vertex leading to vertex:

if vertex.status 6= KNOWN:

label( vertex, known vertex, edge.weight )

return

4.1.1 Test Problems

For the purpose of evaluating the performance of the shortest path algorithms we

introduce a few simple test problems for weighted, directed graphs. The first problem

is the grid graph. The vertices are arranged in a 2-D rectangular array. Each vertex

has four adjacent edges to its neighboring vertices. Vertices along the boundary are

periodically connected. Next we consider a complete graph in which each vertex has

adjacent edges to every other vertex. Finally, we introduce the random graph. Each

vertex has a specified number of adjacent and incident edges. These edges are selected

through random shuffles. Figure 4.1 shows examples of the three test problems.

Grid Graph Complete Graph Random Graph

Figure 4.1: Examples of the three test problems: A 3 × 3 grid graph, a complete
graph with 5 vertices and a random graph with 5 vertices and 2 adjacent edges per
vertex are shown.

The edge weights are uniformly, randomly distributed on a given interval. We

characterize the distributions by the ratio of the upper to lower bound of the interval.

For example, edge weights on the interval [1/2..1] have a ratio of R = 2 and edge
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weights on the interval [0..1] have an infinite ratio, R =∞.

4.2 Dijkstra’s Greedy Algorithm

Dijkstra’s algorithm [9] [8] solves the single-source shortest-paths problem for the

case that the edge weights are nonnegative. It is a labeling algorithm. Whenever the

distance of a vertex becomes known, this known vertex labels its adjacent neighbors.

The algorithm begins by labeling the adjacent neighbors of the source. The vertices

with LABELED status are stored in the labeled set. The algorithm iterates until the

labeled set is empty. This occurs when all vertices reachable from the source become

KNOWN. At each step of the iteration, the labeled vertex with minimum distance is

guaranteed to have the correct distance and a correct predecessor. The status of this

vertex is set to KNOWN, it is removed from the labeled set and its adjacent neighbors

are labeled. Below is Dijkstra’s algorithm. The extract minimum() function removes

and returns the vertex with minimum distance from the labeled set. We postpone the

discussion of why the label adjacent() function takes the labeled set as an argument.

Dijkstra( graph, source ):

initialize( graph, source )

labeled = ∅

label adjacent( labeled, source )

while labeled 6= ∅:

minimum vertex = extract minimum( labeled )

minimum vertex.status = KNOWN

label adjacent( labeled, minimum vertex )

return

Dijkstra’s algorithm is a greedy algorithm because at each step, the best alterna-

tive is chosen. That is, the labeled vertex with the smallest distance becomes known.

Now we show how this greedy strategy produces a correct shortest-paths tree. Sup-
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pose that some of the vertices are known to have the correct distance and that all

adjacent neighbors of these known vertices have been labeled. We assert that the

labeled vertex v with minimum distance has the correct distance. Suppose that this

distance to v is computed through the path source  x → v. (Here  indicates a

(possibly empty) path and → indicates a single edge.) Each of the vertices in the

path source x is known. We assume that there exists a shorter path, source y→

u v, where y is known and u is labeled, and obtain a contradiction. First note that

all paths from source to v have this form. At some point the path progresses from

a known vertex y to a labeled vertex u. Since u is labeled, u.distance ≥ v.distance.

Since the edge weights are nonnegative, source  y → u  v is not a shorter path.

We conclude that v has the correct distance.

Dijkstra’s algorithm produces a correct shortest-paths tree. After initialization,

only the source vertex is known. At each step of the iteration, one labeled vertex

becomes known. The algorithm proceeds until all vertices reachable from the source

have the correct distance.

Figure 4.2 shows an example of using Dijkstra’s algorithm to compute the shortest

paths tree. First we show the graph, which is a 3 × 3 grid graph except that the

boundary vertices are not periodically connected. In the initialization step, the lower

left vertex is set to be the source and its two neighbors are labeled. We show known

vertices in black and labeled vertices in red. The current labeling edges are green.

Edges of the shortest-paths tree are shown in black, while the predecessor edges for

labeled vertices are red. After initialization, there is one known vertex (namely the

source) and two labeled vertices. In the first step, the minimum vertex has a distance

of 2. This vertex becomes known and the edge from its predecessor is added to the

shortest paths tree. Then this vertex labels its adjacent neighbors. In the second step,

the three labeled vertices have the same distance. One of them becomes known and

labels its neighbors. Choosing the minimum labeled vertex and labeling its neighbors

continues until all the vertices are known.
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Now that we have demonstrated the correctness of Dijkstra’s algorithm, we deter-

mine the computational complexity. Suppose that we store the labeled vertices in an

array or a list. If there are N labeled vertices, the computational complexity of adding

a vertex or decreasing the distance of a vertex is O(1). To extract the minimum ver-

tex we examine each labeled vertex for a cost of O(N). There are V − 1 calls to

push() and extract minimum(). At any point in the shortest-paths computation, there

are at most V labeled vertices. Hence the push() and extract minimum() operations

add a computational cost of O(V 2). There are E labeling operations and less than

E calls to decrease() which together add a cost of O(E). Thus the computational

complexity of Dijkstra’s algorithm using an array or list to store the labeled vertices

is O(V 2 + E) = O(V 2)

Now we turn our attention to how we can store the labeled vertices so that we can

more efficiently extract one with the minimum distance. The labeled set is a priority

queue [9] that supports three operations:

push(): Vertices are added to the set when they become labeled.

extract minimum(): The vertex with minimum distance can be removed.

decrease(): The distance of a vertex in the labeled set may be decreased through

labeling.

For many problems, a binary heap [9] is an efficient way to implement the priority

queue. Below are new functions for labeling vertices which now take the labeled set

as an argument and use the push() and decrease() operations on it.

label adjacent( heap, known vertex ):

for each edge of known vertex leading to vertex:

if vertex.status 6= KNOWN:

label( heap, vertex, known vertex, edge.weight )

return
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label( heap, vertex, known vertex, edge weight ):

if vertex.status == UNLABELED:

vertex.status = LABELED

vertex.distance = known vertex.distance + edge weight

vertex.predecessor = known vertex

heap.push( vertex )

else if known vertex.distance + edge weight < vertex.distance:

vertex.distance = known vertex.distance + edge weight

vertex.predecessor = known vertex

heap.decrease( vertex.heap ptr )

return

If there are N labeled vertices in the binary heap, the computational complexity

of adding a vertex is O(1). The cost of extracting the minimum vertex or decreasing

the distance of a vertex is O(logN). The V −1 calls to push() and extract minimum()

add a computational cost of O(V log V ). There are E labeling operations, O(E), and

less than E calls to decrease(), O(E log V ). Thus the computational complexity of

Dijkstra’s algorithm using a binary heap is O((V + E) log V ).

4.3 A Greedier Algorithm: Marching with a Cor-

rectness Criterion

If one were to solve by hand the single-source shortest-paths problem using Dijkstra’s

algorithm, one would probably note that at any given step, most of the labeled

vertices have the correct distance and predecessor. Yet at each step only one vertex

is moved from the labeled set to the known set. Let us quantify this observation.

At each step of Dijkstra’s algorithm (there are always V − 1 steps) we count the

number of correct vertices and the total number of vertices in the labeled set. At

termination we compute the fraction of vertices that had correct values. The fraction
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of correct vertices in the labeled set depends on the connectivity of the vertices and

the distribution of edge weights. As introduced in Section 4.1.1, we consider grid,

random and complete graphs. We consider edges whose weights have a uniform

distribution in a given interval. The interval is characterized by the ratio of its upper

limit to its lower limit. We consider the ratios: 2, 10, 100 and ∞. The fraction

of correctly determined labeled vertices is plotted in Figure 4.3. We see that this

fraction depends on the edge weight ratio. This is intuitive. If the edge weights were

all unity (or another constant) then we could solve the shortest-paths problem with a

breadth first search. At each iteration of Dijkstra’s algorithm, all the labeled vertices

would have the correct value. We see that as the edge weight ratio increases, fewer

of the labeled vertices are correct, but even when the ratio is infinite a significant

fraction of the labeled vertices are correct.

These observations motivate us to seek a new algorithm for the single-source

shortest-paths problem. Dijkstra’s algorithm is an example of a greedy algorithm.

At each iteration the single best choice is taken. The labeled vertex with minimum

distance is added to the known set. We seek a greedier algorithm. At each iteration

we take as many correct choices as possible. Each labeled vertex that can be deter-

mined to have the correct distance is added to the known set. Below is this greedier

algorithm.

marching with correctness criterion( graph, source ):

graph.initialize( source )

labeled = new labeled = ∅

label adjacent( labeled, source )

// Loop until all vertices have a known distance.

while labeled 6= ∅:

for vertex in labeled:

if vertex.distance is determined to be correct

vertex.status = KNOWN



142

0

0.25

0.5

0.75

1

100 1600 25600

C
or

re
ct

ly
 D

et
er

m
in

ed
 R

at
io

Number of Vertices

Grid Graph

2
10

100
infinity

0

0.25

0.5

0.75

1

10 80 640

C
or

re
ct

ly
 D

et
er

m
in

ed
 R

at
io

Number of Vertices

Complete Graph

2
10

100
infinity

0

0.25

0.5

0.75

1

100 400 1600

C
or

re
ct

ly
 D

et
er

m
in

ed
 R

at
io

Number of Vertices

Random Graph, 4 Edges

2
10

100
infinity

0

0.25

0.5

0.75

1

100 400 1600

C
or

re
ct

ly
 D

et
er

m
in

ed
 R

at
io

Number of Vertices

Random Graph, 32 Edges

2
10

100
infinity

Figure 4.3: Log-linear plots of the ratio of correctly determined vertices to labeled
vertices versus the number of vertices in the graph. We show plots for a grid graph
where each vertex has an edge to its four adjacent neighbors, a dense graph where
each vertex has an edge to every other vertex, a graph where each vertex has edges
to 4 randomly chosen vertices and finally a graph where each vertex has edges to 32
randomly chosen vertices. The tests are done for maximum-to-minimum edge weight
ratios of 2, 10, 100 and ∞.

label adjacent( new labeled, vertex )

// Get the labeled lists ready for the next step.

remove known( labeled )

labeled + = new labeled

new labeled = ∅

return

It is easy to verify that the algorithm is correct. It gives the correct result because

only vertices with correct distances are added to the known set. It terminates because

at each iteration at least one vertex in the labeled set has the correct distance. We
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call this algorithm marching with a correctness criterion (MCC). All we lack now is

a good method for determining if a labeled vertex is correct. The rest of the algo-

rithm is trivial. We do have one correctness criterion, namely that used in Dijkstra’s

algorithm: The labeled vertex with minimum distance is correct. Using this criterion

would give us Dijkstra’s algorithm with a list as a priority queue, which has com-

putational complexity O(V 2). We turn our attention to finding a better correctness

criterion.

Assume that some of the vertices are known to have the correct distance and that

all adjacent neighbors of known vertices have been labeled. To determine if a labeled

vertex is correct, we look at the labeling operations that have not yet occurred. If

future labeling operations will not decrease the distance, then the distance must be

correct. We formulate this notion by defining a lower bound on the distance of a

labeled vertex. The distance stored in a labeled vertex is an upper bound on the

actual distance. We seek to define a lower bound on the distance by using the current

distance and considering future labeling operations. If the current distance is less

than or equal to the lower bound, then the labeled vertex must be correct. We will

start with a simple lower bound and then develop more sophisticated ones.

Let min unknown be the minimum distance among the labeled vertices. By the

correctness criterion of Dijkstra’s algorithm, any labeled vertex with distance equal

to min unknown is correct. The simplest lower bound for a labeled vertex is the value

of min unknown. We call this the level 0 lower bound.

To get a more accurate lower bound, we use information about the incident

edges. Let each vertex have the attribute min incident edge weight, the minimum

weight over all incident edges. The smaller of vertex.distance and (min unknown +

vertex.min incident edge weight) is a lower bound on the distance. We consider why

this is so. If the predecessor of this vertex in the shortest-paths tree is known, then it

has been labeled from its correct predecessor and has the correct distance. Oth-

erwise, the distance at its correct predecessor is currently not known, but is no

less than min unknown. The edge weight from the predecessor is no less than ver-

tex.min incident edge weight. Thus (min unknown + vertex.min incident edge weight)
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is no greater than the correct distance. We call the minimum of vertex.distance and

min unknown + vertex.min incident edge weight) the level 1 lower bound.

lower bound 1( vertex, min unknown )

return min( vertex.distance,

min unknown + vertex.min incident edge weight )

If the distance at a labeled vertex is less than or equal to the lower bound on the

distance, then the vertex must have the correct distance. This observation allows us

to define the level 1 correctness criterion. We define the is correct 1() method for a

vertex. For a labeled vertex, it returns true if the current distance is less than or

equal to the level 1 lower bound on the distance and false otherwise.

is correct 1( vertex, min unknown, level )

return ( vertex.distance ≤ vertex.lower bound 1( min unknown ) )

Figure 4.4 shows an example of using the MCC algorithm with the level 1 correct-

ness criterion to compute the shortest-paths tree. First we show the graph, which is a

4× 4 grid graph except that the boundary vertices are not periodically connected. In

the initialization step, the lower, left vertex is set to be the source and its two neigh-

bors are labeled. We show known vertices in black and labeled vertices in red. The

labeling operations are shown in green. Edges of the shortest paths tree are shown

in black, while the predecessor edges for labeled vertices are red. After initialization,

there is one known vertex (namely the source) and two labeled vertices. Depictions

of applying the correctness criterion are shown in blue. (Recall that the level 1 cor-

rectness criterion uses the minimum incident edge weight and the minimum labeled

vertex distance to determine if a labeled vertex is correct.) Since future labeling

operations will not decrease their distance, both labeled vertices become known in

the first step. After labeling their neighbors, there are three labeled vertices in step

1. The correctness criterion shows that the vertices with distances 3 and 4 will not
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be decreased by future labeling operations, thus they are correct. However, the cor-

rectness criterion does not indicate that the labeled vertex with distance 8 is correct.

The correctness criterion indicates that a vertex with a distance as small as 3 might

label the vertex with an edge weight as small as 2. This gives a lower bound on the

distance of 5. Thus in step 2, two of the three labeled vertices become known. We

continue checking labeled vertices using the correctness criterion until all the vertices

are known. Finally, we show the shortest-paths tree.

We can get a more accurate lower bound on the distance of a labeled vertex if we

use more information about the incident edges. For the level 1 formula, we used only

the minimum incident edge weight. For the level 2 formula below we use all of the

unknown incident edges.

min

vertex.distance, min
unknown

edges

(edge.weight + min unknown)


The lower bound is the smaller of the current distance and the minimum over un-

known incident edges of (edge.weight + min unknown). Let the method lower bound(

min unknown, level ) return the lower bound for a vertex. Since the level 0 lower bound

is min unknown, we can write the level 2 formula in terms of the level 0 formula.

vertex.lower bound( min unknown, 2 ) = min

(
vertex.distance,

min
unknown

edges

(edge.weight + edge.source.lower bound( min unknown, 0 ))

)

More generally, for n ≥ 2 we can define the level n lower bound in terms of the level

n− 2 lower bound. This gives us a recursive definition of the method.

vertex.lower bound( min unknown, n ) = min

(
vertex.distance,

min
unknown

edges

(edge.weight + edge.source.lower bound( min unknown, n - 2 ))

)
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We consider why this is a correct lower bound. If the correct predecessor of this

vertex is known, then it has been labeled from its predecessor and thus has the

correct distance. Otherwise, the distance at its predecessor is currently not known.

The correct distance is the correct distance of the predecessor plus the weight of the

connecting, incident edge. The minimum over unknown edges of the sum of edge

weight and a lower bound on the distance of the incident vertex is no greater than

the correct distance. Thus the lower bound formula is valid. Below is the lower bound

method which implements the lower bound formulae.

lower bound( vertex, min unknown, level )

if level == 0:

return min unknown

if level == 1:

return min( vertex.distance,

min unknown + vertex.min incident edge weight )

min distance = vertex.distance

for edge in vertex.incident edges:

if edge.source.status 6= KNOWN:

d = edge.weight + edge.source.lower bound( min unknown, level - 2 )

if d < min distance:

min distance = d

return min distance

Now we define the is correct() method for a vertex. For a labeled vertex, it returns

true if the current distance is less than or equal to the lower bound on the distance

and false otherwise. This completes the marching with correctness criterion() function.

We give the refined version of this function below.

is correct( vertex, min unknown, level )

return ( vertex.distance ≤ vertex.lower bound( min unknown, level ) )
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marching with correctness criterion( graph, source, level )

graph.initialize( source )

labeled = new labeled = ∅

label adjacent( labeled, source )

// Loop until all vertices have a known distance.

while labeled 6= ∅:

min unknown = minimum distance in labeled

for vertex in labeled:

if vertex.is correct( min unknown, level ):

vertex.status = KNOWN

label adjacent( new labeled, vertex )

// Get the labeled lists ready for the next step.

remove known( labeled )

labeled + = new labeled

new labeled = ∅

return

Figure 4.5 depicts the incident edges used for the first few levels of correctness

criteria. For each level, the correctness criterion is applied to the center vertex. We

show the surrounding vertices and incident edges. The level 0 criterion does not use

any information about the incident edges. The level 1 criterion uses only the minimum

incident edge. The level 2 criterion uses all the incident edges from unknown vertices.

The level 3 criterion uses the incident edges from unknown vertices and the minimum

incident edge at each of these unknown vertices. The figure depicts subsequent levels

up to level 6. If each vertex had I incident edges then the computational complexity

of the level n correctness criterion would be O(Ibn/2c).

We examine the performance of these correctness criteria. From our analysis of

correctly determined vertices in Dijkstra’s algorithm (Figure 4.3) we expect that the

ratio of vertices which can be determined to be correct will depend on the connectivity
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Figure 4.5: A depiction of the incident edges used in the level n correctness criterion
for n = 0, . . . , 6.
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Figure 4.6: Log-linear plots of the ratio of correctly determined vertices to labeled
vertices versus the number of vertices in the graph. The maximum-to-minimum edge
weight ratio is 2. The key shows the correctness criterion. We show levels 0 through
5. The ideal correctness criterion is shown for comparison.

of the edges and the distribution of edge weights. We also expect that for a given

graph, the ratio of vertices which are determined to be correct will increase with

the level of the correctness criterion. Again we consider grid, random and complete

graphs with maximum-to-minimum edge weight ratios of 2, 10, 100 and ∞.

Figure 4.6 shows the performance of the correctness criteria for each kind of graph

with an edge weight ratio of 2. We run the tests for level 0 through level 5 criteria.

We show the ideal algorithm for comparison. (The ideal correctness criterion would

return true for all labeled vertices whose current distance is correct.) The level 0

correctness criterion (which is the criterion used in Dijkstra’s algorithm) yields a very

low ratio of correctly determined vertices. If the minimum weight of labeled vertices

is unique, then only a single labeled vertex will become determined. The level 1 and

level 2 criteria perform quite well. For the grid graphs and random graphs, about
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Figure 4.7: Log-linear plots of the ratio of correctly determined vertices to labeled
vertices versus the number of vertices in the graph. The maximum-to-minimum edge
weight ratio is 10. The key shows the correctness criterion. We show levels 0 through
5. The ideal correctness criterion is shown for comparison.

3/4 of the labeled vertices are determined at each step. For the complete graph, all

of the labeled vertices are determined at each step. For the ideal criterion, the ratio

of determined vertices is close to or equal to 1 and does not depend on the number

of vertices. The correctness criteria with level 3 and higher come very close to the

ideal criterion. We see that the level 1 and level 3 criteria are the most promising

for graphs with low edge weight ratios. The level 1 criterion yields a high ratio of

determined vertices. The level 2 criterion yields only marginally better results at

the cost of greater algorithmic complexity and higher storage requirements. Recall

that the level 1 criterion only uses the minimum incident edge weight, while the level

2 criterion requires storing the incident edges at each vertex. The level 3 criterion

comes very close to the ideal. Higher levels only add complexity to the algorithm.

Figure 4.7 shows the performance of the correctness criteria for each kind of graph
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Figure 4.8: Log-linear plots of the ratio of correctly determined vertices to labeled
vertices versus the number of vertices in the graph. The maximum-to-minimum edge
weight ratio is 100. The key shows the correctness criterion. We show levels 0 through
5. The ideal correctness criterion is shown for comparison.

with an edge weight ratio of 10. Compared to the results for an edge weight ratio of

2, the determined ratio is lower for the ideal criterion and the determined ratios for

levels 0 through 5 are more spread out. Around 3/4 of the vertices are determined at

each time step with the ideal criterion; there is a slight dependence on the number

of vertices. The level 1 criterion performs fairly well; it determines from about 1/4

to 1/2 of the vertices. The level 2 criterion determines only slightly more vertices

than the level 1. Going to level 3 takes a significant step toward the ideal. Level 4

determines few more vertices than level 3. There is a diminishing return in going to

higher levels.

Figure 4.8 shows the performance of the correctness criteria when the edge weight

ratio is 100. The determined ratio is lower still for the ideal criterion and the deter-

mined ratios for levels 0 through 5 are even more spread out. The determined ratios
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Figure 4.9: Log-linear plots of the ratio of correctly determined vertices to labeled
vertices versus the number of vertices in the graph. The maximum-to-minimum edge
weight ratio is infinite. The key shows the correctness criterion. We show levels 0
through 5. The ideal correctness criterion is shown for comparison.

now have a noticeable dependence on the number of vertices.

Finally, Figure 4.9 shows the performance of the correctness criteria with an in-

finite edge weight ratio. Compared to the results for lower edge weight ratios, the

determined ratio is lower for the ideal criterion and the determined ratios for levels

0 through 5 are more spread out. For the infinite edge weight ratio, the correctness

criteria yield fewer correctly determined vertices.

Note that if the correctly determined ratio is D, then on average a labeled vertex

will be tested 1/D times before it is determined to be correct. For each of the

correctness criteria, we see that the ratio of determined vertices is primarily a function

of the edge weight ratio and the number of edges per vertex. The determined ratio

decreases with both increasing edge weight ratio and increasing edges per vertex.

Thus graphs with a low edge weight ratio and/or few edges per vertex seem well
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suited to the marching with a correctness criterion approach. For graphs with high

edge weight ratios and/or many edges per vertex, the correctness criteria yield fewer

determined vertices, so the method will be less efficient.

Before analyzing execution times in the next section, we develop a more efficient

implementation of the correctness criteria for levels 2 and higher. It is not neces-

sary to examine all of the edges of a vertex each time is correct() is called. Instead,

we amortize this cost over all the calls. The incident edges of each vertex are in

sorted order by edge weight. Additionally, each vertex has a forward edge iterator,

unknown incident edge, which keeps track of the incident edge currently being con-

sidered. To see if a labeled vertex is determined, the incident edges are traversed in

order. If we encounter an edge from an unknown vertex such that the sum of the

edge weight and the lower bound on the distance of that unknown vertex is less than

the current distance, then the vertex is not determined to be correct. The next time

is correct() is called for the vertex, we start at the incident edge where the previous

call stopped. This approach works because the lower bound on the distance of each

vertex is non-increasing as the algorithm progresses. That is, as more vertices become

known and more vertices are labeled, the lower bound on a given vertex may decrease

but will never increase. Below is the more efficient implementation of is correct().

is correct( vertex, min unknown, level ):

if level ≤ 1:

if vertex.distance > vertex.lower bound( min unknown, level ):

return false

else:

vertex.get unknown incident edge()

while vertex.unknown incident edge 6= vertex.incident edges.end():

if ( vertex.distance > vertex.unknown incident edge.weight

+ vertex.unknown incident edge.source.lower bound(

min unknown, level - 2 ) ):
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return false

++vertex.unknown incident edge

vertex.get unknown incident edge()

return true

get unknown incident edge( vertex ):

while ( vertex.unknown incident edge 6= vertex.incident edges.end() and

vertex.unknown incident edge.source.status == KNOWN ):

++vertex.unknown incident edge

return

4.4 Computational Complexity

Now we determine the computational complexity of the MCC algorithm. We will get

a worst-case bound for using the level 1 correctness criterion. Let the edge weights be

in the interval [A . . . B]. As introduced before, let R = B/A be the ratio of the largest

edge weight to the smallest. We will assume that the ratio is finite. Consider the

MCC algorithm in progress. Let µ be the minimum distance of the labeled vertices.

The distances of the labeled vertices are in the range [µ . . . µ+B). When one applies

the correctness criterion, at least all of the labeled vertices with distances less than

or equal to µ + A will become known. Thus at the next step, the minimum labeled

distance will be at least µ+ A. At each step of the algorithm, the minimum labeled

distance increases by at least A. This means that a vertex may be in the labeled set

for at most B/A steps. The cost of applying the correctness criteria is O(RV ). The

cost of labeling is O(E). Since a vertex is simply added to the end of a list or array

when it becomes labeled, the cost of adding and removing labeled vertices is O(V ).

Thus the computation complexity of the MCC algorithm is O(E +RV ).
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4.5 Performance Comparison

We compare the performance of Dijkstra’s algorithm and the Marching with a Cor-

rectness Criterion algorithm. For the MCC algorithm, we consider level 1 and level

3 correctness criteria, which have better performance than other levels. Again we

consider grid, random and complete graphs with maximum-to-minimum edge weight

ratios of 2, 10, 100 and ∞. Figure 4.10 shows the execution times over a range of

graph sizes for each kind of graph with an edge weight ratio of 2. The level 1 MCC

algorithm has relatively low execution times. It performs best for sparse graphs. (The

grid graph and the first random graph each have four adjacent and four incident edges

per vertex.) For the random graph with 32 edges, it is still the fastest method, but

the margin is smaller. For medium to large complete graphs, the execution times are

nearly the same as for Dijkstra’s algorithm. For small complete graphs, Dijkstra’s

algorithm is faster. The level 3 MCC algorithm performs pretty well for the sparser

graphs, but is slower than the other two methods for the denser graphs.

Figure 4.11 shows the execution times for graphs with an edge weight ratio of

10. Again the level 1 MCC algorithm has the best overall performance, however the

margin is a little smaller than in the previous tests.

Figure 4.12 shows the execution times for graphs with an edge weight ratio of 100.

The level 1 MCC algorithm is no longer the best overall performer. It has about the

same execution times as Dijkstra’s algorithm for the complete graph and the random

graph with 32 edges, but is slower than Dijkstra’s algorithm for the grid graph and

the random graph with 4 edges.

Figure 4.13 shows the execution times for graphs with an infinite edge weight

ratio. Except for complete graphs, the level 1 MCC algorithm does not scale well as

the number of vertices is increased. This makes sense upon examining the correctly

determined ratio plots for an infinite edge weight in Figure 4.9. As the size of the

graph increases, the determined ratio decreases. The level 3 MCC algorithm scales

better, but is slower than Dijkstra’s algorithm for each size and kind of graph.

Note that the four plots for complete graphs (with edge weight ratios of 2, 10, 100
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Figure 4.10: Log-log plots of the execution time per vertex versus the number of
vertices in the graph. The maximum-to-minimum edge weight ratio is 2. The key
shows the method: Dijkstra, MCC level 1 or MCC level 3.
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Figure 4.11: Log-log plots of the execution time per vertex versus the number of
vertices in the graph. The maximum-to-minimum edge weight ratio is 10. The key
shows the method: Dijkstra, MCC level 1 or MCC level 3.
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Figure 4.12: Log-log plots of the execution time per vertex versus the number of
vertices in the graph. The maximum-to-minimum edge weight ratio is 100. The key
shows the method: Dijkstra, MCC level 1 or MCC level 3.
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Figure 4.13: Log-log plots of the execution time per vertex versus the number of
vertices in the graph. The maximum-to-minimum edge weight ratio is infinite. The
key shows the method: Dijkstra, MCC level 1 or MCC level 3.
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and ∞) are virtually identical. Dijkstra’s algorithm and the level 1 MCC algorithm

both perform relatively well. For medium to large graphs, their execution times are

very close. This is because there are many more edges than vertices, so labeling adja-

cent vertices dominates the computation. The costs of heap operations for Dijkstra’s

algorithm or correctness tests for the level 1 MCC algorithm are negligible. This is

the case even for an infinite edge weight ratio where on average, each labeled vertex

is checked many times before it is determined to be correct. For complete graphs,

the level 3 MCC algorithm is slower than the other two. This is because all incident

edges of a labeled vertex may be examined during a correctness check. Thus the level

3 correctness criterion is expensive enough to affect the execution time.

Clearly the distribution of edge weights affects the performance of the MCC al-

gorithm. One might try to use topological information to predict the performance.

Consider planar graphs for example, i.e. graphs that can be drawn in a plane with-

out intersecting edges. During the execution of the MCC algorithm (or Dijkstra’s

algorithm) one would expect the labeled vertices to roughly form a band that moves

outward from the source. In this case, the number of labeled vertices would be much

smaller than the total number of vertices. One might expect that the MCC algorithm

would be well suited to planar graphs. However, this is not necessarily the case. Fig-

ure 4.14 shows two shortest-paths trees for a grid graph (a graph in which each vertex

is connected to its four adjacent neighbors). The first diagram shows a typical tree.

The second diagram shows a pathological case in which the shortest-paths tree is a

single path that winds through the graph. For this case, the average number of la-

beled vertices is of the order of the number of vertices. Also, at each step of the MCC

algorithm only a single labeled vertex can become known. For this pathological case,

the complexity of the MCC algorithm is O(N2). Unfortunately, one cannot guarantee

reasonable performance of the MCC algorithm based on topological information.
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Figure 4.14: Two shortest-paths trees for a grid graph.

4.6 Concurrency

Because of its simple data structures, the MCC method is easily adapted to a con-

current algorithm. The outer loop of the algorithm, while labeled 6= ∅, contains two

loops over the labeled vertices. The first loop computes the minimum labeled distance

and assigns this value to min unknown. Though the time required to determine this

minimum unknown distance is small compared to correctness checking and labeling,

it may be done concurrently. The complexity of finding the minimum of N elements

with P processors is O(N/P +log2 P ) [11]. The more costly operations are contained

in the second loop. Each labeled vertex is tested to see if its distance can be deter-

mined to be correct. If so, it becomes known and labels its adjacent neighbors. These

correctness checks and labeling may be done concurrently. Thus the complexity for

both is then O(N/P ). We conclude that the computational complexity of the MCC

algorithm scales well with the number of processors.

By contrast, most other shortest-paths algorithms, including Dijkstra’s algorithm,

are not so easily adapted to a concurrent framework. Consider Dijkstra’s algorithm:

The only operation that easily lends itself to concurrency is labeling vertices when a

labeled vertex becomes known. That is, labeling each adjacent vertex is an indepen-

dent operation. These may be done concurrently. However, this fine scale concurrency
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is limited by the number of edges per vertex. Because only one vertex may become

known at a time, Dijkstra’s algorithm is ill suited to take advantage of concurrency.

4.7 Future Work

4.7.1 A More Sophisticated Data Structure for the Labeled

Set

There are many ways that one could adapt the MCC algorithm. The MCC algorithm

has a sophisticated correctness criterion and stores the labeled set in a simple con-

tainer (namely, an array or a list). At each step the correctness criterion is applied

to all the labeled vertices. By contrast, Dijkstra’s algorithm has a simple correct-

ness criterion and stores the labeled set in a sophisticated container. At each step the

correctness criterion is applied to a single labeled vertex. An approach that lies some-

where between these two extremes may work well for some problems. That approach

would be to employ both a sophisticated correctness criterion and a sophisticated

vertex container.

This more sophisticated container would need to be able to efficiently identify

the labeled vertices on which the correctness test is likely to succeed. At each step,

the correctness criterion would be applied to this subset of the labeled vertices. For

example, the labeled set could be stored in a cell array, cell sorted by distance. The

correctness criterion would be applied to vertices whose current distance is less than

a certain threshold, as vertices with small distances are more likely to be correct than

vertices with large distances. Alternatively, the labeled vertices could be cell sorted by

some other quantity, perhaps the difference of the current distance and the minimum

incident edge weight from an unknown vertex. Again, vertices with lower values are

more likely to be correct. Yet another possibility would be to factor in whether the

distance at a vertex decreased during the previous step. In summary, there are many

possibilities for partially ordering the labeled vertices to select a subset to be tested

for correctness. A more sophisticated data structure for storing the labeled set may
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improve performance, particularly for harder problems.

One can use a cell array data structure to reduce the computational complexity of

the MCC algorithm for the case that the edge weight ratio R is finite. As introduced

before, let the edge weights be in the interval [A..B]. Each cell in the cell array holds

the labeled vertices with distances in the interval [nA..(n + 1)A) for some integer n.

Consider the MCC algorithm in progress. Let µ be the minimum labeled distance.

The labeled distances are in the range [µ..µ + B). We define m = bµ/Ac. The

first cell in the cell array holds labeled vertices in the interval [mA..(m + 1)A). By

the level 1 correctness criterion, all the labeled vertices in this cell are correct. We

intend to apply the correctness criterion only to the labeled vertices in the first cell.

If they labeled their neighbors, the neighbors would have distances in the interval

[µ+A..µ+A+B). Thus we need a cell array with dRe+ 1 cells in order to span the

interval [µ..µ+A+B). (This interval contains all the currently labeled distances and

the labeled distances resulting from labeling neighbors of vertices in the first cell.) At

each step of the algorithm, the vertices in the first cell become known and label their

neighbors. If an unlabeled vertex becomes labeled, it is added to the appropriate

cell. If a labeled vertex decreases its distance, it is moved to a lower cell. After the

labeling, the first cell is removed and an empty cell is added at the end. As Dijkstra’s

algorithm requires that each labeled vertex stores a pointer into the heap of labeled

vertices, this modification of the MCC algorithm would require storing a pointer into

the cell array.

Now consider the computational complexity of the MCC algorithm that uses a cell

array to store the labeled vertices. The complexity of adding or removing a vertex

from the labeled set is unchanged, because the complexity of adding to or removing

from the cell array is O(1). The cost of decreasing the distance of a labeled vertex is

unchanged because moving a vertex in the cell array has cost O(1). We reduce the

cost of applying the correctness criterion from O(RV ) to O(V ) because each vertex

is “tested” only once. We must add the cost of examining cells in the cell array. Let

D be the maximum distance in the shortest path tree. Then in the course of the

computation, D/A cells will be examined. The total computational complexity of
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the MCC algorithm with a cell array for the labeled vertices is O(E + V + D/A).

Note that D could be as large as (V − 2)B + A. In this case D/A ≈ RV and the

computational complexity is the same as that for the plain MCC algorithm.

4.7.2 Re-weighting the Edges

Let w(u, v) be the weight of the edge from vertex u to vertex v. Consider a function

f : V → R defined on the vertices and a modified weight function ŵ:

ŵ(u, v) = w(u, v) + f(u)− f(v)

It is straightforward to show that any shortest path with weight function w is also a

shortest path with weight function ŵ [9]. This is because any path from vertex a to

vertex b is changed by f(a)− f(b). The rest of the f terms telescope in the sum.

It may be possible to re-weight the edges of a graph to improve the performance of

the MCC algorithm. The number of correctness tests performed depends on the ratio

of the highest to lowest edge weight. By choosing f to decrease this ratio, one could

decrease the execution time. One might determine the function f as a preprocessing

step or perhaps compute it on the fly as the shortest-paths computation progresses.

Consider the situation at a single vertex. Assume that f is zero at all other

vertices. Let min incident, min adjacent, max incident and max adjacent denote the

minimum and maximum incident and adjacent edge weights. If min adjacent <

min incident and max adjacent < max incident, then choosing

f =
min incident−min adjacent

2

will reduce the ratio of the highest to lowest edge weight at the given vertex. Likewise

for the case: min adjacent > min incident and max adjacent > max incident.
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4.8 Conclusions

Marching with a Correctness Criterion is a promising new approach for solving short-

est path problems. MCC works well on easy problems. That is, if most of the labeled

vertices are correct, then the algorithm is efficient. It requires few correctness tests

before a vertex is determined to be correct. For such cases, the MCC algorithm out-

performs Dijkstra’s algorithm. For hard problems, perhaps in which the edge weight

ratio is high and/or there are many edges per vertex, fewer labeled vertices have the

correct distance. This means that the MCC algorithm requires more correctness tests.

For such cases, Dijkstra’s algorithm has lower execution times.
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Chapter 5

Static Hamilton-Jacobi Equations

5.1 Introduction

In this chapter we will first describe upwind difference schemes and the Fast Marching

Method (FMM) for solving static Hamilton-Jacobi equations. Then we will develop

a Marching with a Correctness Criterion (MCC) algorithm for solving this problem.

We will find that the MCC algorithm requires nonstandard upwind finite difference

schemes. We will show that the MCC algorithm produces the same solution as the

FMM, but can have computational complexity O(N), the optimal complexity for this

problem. We will perform tests to demonstrate the linear complexity of the MCC

algorithm and to compare its performance to that of the FMM.

5.2 Upwind Finite Difference Schemes

In this section we will present a first-order and a second-order scheme for solving the

eikonal equation. Here we provide a short summary of material in [29]. We consider

solving the eikonal equation, |∇u|f = 1 in 2-D. Let ui,j be the approximate solution

on a regular grid with spacing ∆x. We define one-sided difference operators which
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provide first-order approximations of ∂u/∂x and ∂u/∂y.

D+x
i,j u =

ui+1,j − ui,j
∆x

, D−xi,j u =
ui,j − ui−1,j

∆x

D+y
i,j u =

ui,j+1 − ui,j
∆x

, D−yi,j u =
ui,j − ui,j−1

∆x

Suppose ui,j is the approximate solution. To compute ∂u/∂x at the grid point (i, j),

we will use differencing in the upwind direction. If ui−1,j < ui,j < ui+1,j then the

left is an upwind direction and ∂u/∂x ≈ D−xi,j . If ui−1,j > ui,j > ui+1,j then the right

is an upwind direction and ∂u/∂x ≈ D+x
i,j . If both ui−1,j and ui+1,j are less than

ui,j then we determine the upwind direction by choosing the smaller of the two. If

both ui−1,j and ui+1,j are greater than ui,j then there is no upwind direction. The

derivative in the x direction vanishes. We can concisely encode this information into

the first-order, adjacent difference scheme:

((
max

(
D−xi,j u,−D+x

i,j , 0
))2

+
(
max

(
D−yi,j u,−D

+y
i,j , 0

))2
)1/2

=
1

fi,j
(5.1)

If the four adjacent neighbors of the grid point ui,j are known, then the difference

scheme gives a quadratic equation for ui,j.

Now we seek a second-order accurate scheme. If ui−2,j < ui−1,j < ui,j then the

left is an upwind direction. We use the two adjacent grid points to the left to get a

second-order accurate approximation of ∂u/∂x.

∂u

∂x
≈ 3ui,j − 4ui−1,j + ui−2,j

2∆x

If ui−2,j > ui−1,j < ui,j then the left is still an upwind direction at (i, j), however we

only use the closest adjacent grid point in the difference scheme. Thus we are limited

to a first-order difference scheme in the left direction.

We can write the second-order accurate formula in terms of the one-sided differ-

ences.
∂u

∂x
≈ D−xi,j u+

∆x

2
D−xi,j D

−x
i,j u
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By defining the switch function s−xi,j we can write a formula that is second-order

accurate when ui−2,j < ui−1,j < ui,j and reverts to the first-order formula when

ui−2,j > ui−1,j < ui,j.

s−xi,j =

1 if ui−2,j < ui−1,j

0 otherwise

∂u

∂x
≈ D−xi,j u+ s−xi,j

∆x

2
D−xi,j D

−x
i,j u

We use this to make a second-order accurate finite difference scheme:((
max

(
D−xi,j u+ s−xi,j

∆x

2
D−xi,j D

−x
i,j u,−

(
D+x
i,j − s+x

i,j

∆x

2
D+x
i,j D

+x
i,j u

)
, 0

))2

+

(
max

(
D−yi,j u+ s−yi,j

∆x

2
D−yi,j D

−y
i,j u,−

(
D+y
i,j − s

+y
i,j

∆x

2
D+y
i,j D

+y
i,j u

)
, 0

))2
)1/2

=
1

fi,j

If the adjacent neighbors of the grid point ui,j are known, then this gives a quadratic

equation for ui,j.

5.3 The Fast Marching Method

Tsitsiklis was the first to publish a single-pass algorithm for solving static Hamilton-

Jacobi equations. Addressing a trajectory optimization problem, he presented a first-

order accurate Dijkstra-like algorithm in [32]. Sethian discovered the method inde-

pendently and published his Fast Marching Method in [27]. He presented higher-order

accurate methods and applications in [28].

The Fast Marching Method is similar to Dijkstra’s algorithm [9] for computing the

single-source shortest paths in a weighted, directed graph. In solving this problem,

each vertex is assigned a distance, which is the sum of the edge weights along the

minimum-weight path from the source vertex. As Dijkstra’s algorithm progresses,

the status of each vertex is either known, labeled or unknown. Initially, the source

vertex in the graph has known status and zero distance. All other vertices have
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unknown status and infinite distance. The source vertex labels each of its adjacent

neighbors. A known vertex labels an adjacent vertex by setting its status to labeled

if it is unknown and setting its distance to be the minimum of its current distance

and the sum of the known vertices’ weight and the connecting edge weight. It can be

shown that the labeled vertex with minimum distance has the correct value. Thus

the status of this vertex is set to known, and it labels its neighbors. This process of

freezing the value of the minimum labeled vertex and labeling its adjacent neighbors

is repeated until no labeled vertices remain. At this point all the vertices that are

reachable from the source have the correct shortest path distance. The performance

of Dijkstra’s algorithm depends on being able to quickly determine the labeled vertex

with minimum distance. One can efficiently implement the algorithm by storing

the labeled vertices in a binary heap. Then the minimum labeled vertex can be

determined in O(log n) time where n is the number of labeled vertices.

Sethian’s Fast Marching Method differs from Dijkstra’s algorithm in that the finite

difference scheme is used to label the adjacent neighbors when a grid point becomes

known. If there are N grid points, the labeling operations have a computational cost

of O(N). Since there may be at most N labeled grid points, maintaining the binary

heap and choosing the minimum labeled grid points adds a cost of O(N logN). Thus

the total complexity is O(N logN).

We consider how a grid point that has become known labels its adjacent neighbors

using the first-order, adjacent, upwind difference scheme. For each adjacent neighbor,

there are potentially three ways to compute a new solution there. In Figure 5.1, the

center grid point has just become known. Suppose the adjacent neighbor to the right

is not known. We show three ways the center grid point can be used to compute

the value of this neighbor. First, only the single known grid point is used. This

corresponds to the case that there is no vertical upwind direction. If the grid points

that are diagonal to the known grid point and adjacent to the grid point being labeled

are known, they can be used in the difference scheme as well. This accounts for the

second two cases.

Below we give the functions that implement the first-order, adjacent difference
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adjacent adjacent−adjacent adjacent−adjacent

Figure 5.1: The three ways of labeling an adjacent neighbor using the first-order,
adjacent difference scheme.

scheme for the eikonal equation, |∇u|f = 1. The difference scheme can use a single

adjacent grid point (difference adj()) or two adjacent grid points (difference adj adj()).

The second of these solves a quadratic equation to determine the solution. After we

compute the solution in difference adj adj(), we check that the solution is not less than

its two known neighbors. If the solution is less than one of its neighbors, then the

scheme would not be upwind. In this case, we return infinity.

difference adj( a ):

return a + ∆x / f

difference adj adj( a, b ):

discriminant = 2∆x2/f2 − (a− b)2

if discriminant ≥ 0:

solution =
(

a + b +
√

discriminant
)
/2

if solution ≥ a and solution ≥ b:

return solution

return ∞

We give a more efficient method of implementing difference adj adj() below. If the

condition in difference adj adj() is not satisfied, then the characteristic line comes from

outside the wedge defined by the two adjacent neighbors. In this case, the computed
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value will be higher than one of a or b and thus the difference scheme will not be

upwind. For this case, we return infinity.

difference adj adj( a, b ):

if |a− b| ≤ ∆x/f:

return
(

a + b +
√

2∆x2/f2 − (a− b)2
)
/2

return ∞

Below is the Fast Marching Method for a 2-D grid. As input it takes a grid with a

solution array and a status array. The initial condition has been specified by setting

the status at some grid points to KNOWN and setting the solution there. At all

other grid points the status is UNLABELED and the solution is∞. The binary heap

which stores the labeled grid points supports three operations:

push(): Grid points are added to the heap when they become labeled.

extract minimum(): The grid point with minimum solution can be removed. This

function returns the indices of that grid point.

decrease(): The solution at a grid point in the labeled set may be decreased through

labeling. This function adjusts the position of the grid point in the heap.

The binary heap takes the solution array as an argument in its constructor because

it stores pointers into this array.

fast marching( grid ):

// Make the binary heap.

BinaryHeap labeled( grid.solution )

// Label the neighbors of known grid points.

for each (i, j):

if grid.status( i, j ) == KNOWN:

grid.label neighbors( labeled, i, j )
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// Loop until there are no labeled grid points.

while labeled 6= ∅:

(i, j) = labeled.extract minimum()

grid.label neighbors( labeled, i, j )

return

Below is the label neighbors() function which uses the finite difference scheme to

label the neighbors. This function uses the first-order, adjacent scheme in Equa-

tion 5.1. Thus it labels the four adjacent neighbors. The label() function updates the

value of a grid point and manages the heap of labeled grid points.

label neighbors( grid, labeled, i, j ):

grid.status( i, j ) = KNOWN

soln = grid.solution( i, j )

for the four adjacent indices (p, q):

adj soln = difference adj( soln )

(m, n) = indices diagonal to (i, j) and adjacent to (p, q)

if grid.status( m, n ) == KNOWN:

adj soln = min( adj soln, difference adj adj( soln, grid.solution( m, n ) ) )

(m, n) = other indices diagonal to (i, j) and adjacent to (p, q)

if grid.status( m, n ) == KNOWN:

adj soln = min( adj soln, difference adj adj( soln, grid.solution( m, n ) ) )

label( grid, p, q, adj soln )

return

label( grid, labeled, i, j, value ):

if grid.status( i, j ) == UNLABELED:

grid.status( i, j ) = LABELED

grid.solution( i, j ) = value
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labeled.push( i, j )

else if grid.status( i, j ) == LABELED and value < grid.solution( i, j ):

grid.solution( i, j ) = value

labeled.decrease( i, j )

return

5.3.1 The Status Array

One can implement the Fast Marching Method without the use of the status array.

In this case one does not check that a grid point is known when using it to label

neighbors. A solution value of ∞ signifies that a grid point has not been labeled.

Below is this variation of the Fast Marching Method.

fast marching no status( grid ):

// Make the binary heap.

BinaryHeap labeled( grid.solution )

// Label the neighbors of known grid points.

for each (i, j):

if grid.solution( i, j ) 6=∞:

grid.label neighbors( labeled, i, j )

// Loop until there are no labeled grid points.

while labeled 6= ∅:

i, j = labeled.top()

labeled.pop()

grid.label neighbors( labeled, i, j )

return

label neighbors( grid, labeled, i, j )

soln = grid.solution( i, j )
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for the four adjacent indices (p, q):

adj soln = difference adj( soln )

(m, n) = indices diagonal to (i, j) and adjacent to (p, q)

if grid.solution( m, n ) 6=∞:

adj soln = min( adj soln, difference adj adj( soln, grid.solution( m, n ) ) )

(m, n) = other indices diagonal to (i, j) and adjacent to (p, q)

if grid.solution( m, n ) 6=∞:

adj soln = min( adj soln, difference adj adj( soln, grid.solution( m, n ) ) )

label( grid, p, q, adj soln )

return

label( grid, labeled, i, j, value )

if grid.solution( i, j ) == ∞:

grid.solution( i, j ) = value

labeled.push( i, j )

else if value < grid.solution( i, j ):

grid.solution( i, j ) = value

labeled.decrease( i, j )

return

Forgoing the use of the status array decreases the memory requirement but in-

creases the execution time. This is because the finite difference scheme is called more

often. In Figure 5.2 we show the execution times for solving the eikonal equation

|∇u| = 1 on a 2-D grid with a first-order, adjacent difference scheme. For this test,

not using a status array increased the execution time by about 50%. All further

implementations of the Fast Marching Method presented in this chapter use a status

array.
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Figure 5.2: Log-log plots of the execution time per grid point versus the number of
grid points for the fast marching method with and without a status array.

5.4 Applying the Marching with a Correctness Cri-

terion Method

In analogy with with the single-source shortest paths problem (Chapter 4), we try

to apply the Marching with a Correctness Criterion method to obtain an ordered

upwind method of solving static Hamilton-Jacobi equations. Below we adapt the

MCC algorithm in Section 4.3. Only minor changes are required.

marching with correctness criterion( grid ):

labeled = new labeled = ∅

// Label the neighbors of known grid points.

for each (i, j):

if grid.status( i, j ) == KNOWN:

grid.label neighbors( labeled, i, j )

// Loop until there are no labeled grid points.

while labeled 6= ∅:

for (i,j) in labeled:

if grid.solution(i, j) is determined to be correct
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grid.label neighbors( new labeled, i, j )

// Get the labeled lists ready for the next step.

remove known( labeled )

labeled + = new labeled

new labeled = ∅

return

The algorithm is very similar to Sethian’s Fast Marching Method. However, the la-

beled grid points are stored in an array or list instead of a binary heap. When a labeled

grid point is determined to have the correct solution, it uses the difference scheme

to label its neighbors and it is removed from the labeled set. The label neighbors()

function depends on the difference scheme used. The label() function is the same as

before, except that there is no need to adjust the position of a labeled grid point

when the solution decreases.

label( grid, labeled, i, j, value )

if grid.status( i, j ) == UNLABELED:

grid.status( i, j ) = LABELED

grid.solution( i, j ) = value

labeled += (i, j)

else if grid.status( i, j ) == LABELED and value < grid.solution( i, j ):

grid.solution( i, j ) = value

return

We consider two test problems to probe the possible usefulness of a Marching with

a Correctness Criterion algorithm. We solve the eikonal equation |∇u| = 1 on a 5× 5

grid. For the first problem, we compute distance from a point that coincides with

the lower left grid point. For the second problem, we compute distance from a line

segment that makes an angle of −5◦ with the x axis. See Figure 5.3 for a diagram of

the grids and initial conditions. The diagram also shows the directions from which the

characteristic lines come. For the initial condition of the first problem, the solution
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Figure 5.3: The two test problems for exploring the Marching with a Correctness
Criterion algorithm. In the left diagram, distance is computed from the (0, 0) grid
point. In the right diagram, distance is computed from a line segment.

at grid point (0, 0) is set to zero. For the second problem, the solution is set at grid

points (0, 0) through (4, 0).

We consider solving the test problems with a first-order, adjacent stencil. That

is, a grid point uses its four adjacent neighbors in the difference scheme. Figure 5.4

shows a dependency diagram for the two test problems. That is, each grid point which

is not set in the initial condition has arrows pointing to the grid points on which it

depends (the grid points used in the difference scheme which produce the correct

solution). Note that the arrows identify the quadrant from which the characteristic

line comes. (Except for the degenerate cases where a single adjacent grid point is

used in the difference scheme.)

Now we need to develop a correctness criterion and see if it leads to an efficient

algorithm. We already have one correctness criterion, namely the one used in the Fast

Marching Method: The labeled grid point with minimum solution is correct. Now

we develop a more sophisticated one in analogy with the level 1 correctness criterion

developed for graphs in Section 4.3. That is, we will determine a lower bound on the

solution at a labeled grid point using the assumption that it has at least one unknown

neighbor. If the predicted solution there is no larger than this lower bound, then it
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Figure 5.4: Dependency diagrams for a 5-point, adjacent stencil.

must be correct.

Let µ be the minimum solution among the labeled grid points. Each labeled grid

point has at least one known adjacent neighbor. The correct solution at any unknown

adjacent neighbors may be as low as µ. We determine the smallest predicted solution

using an unknown neighbor. The solution at the known neighbor may be as small

as µ − ∆x. (If it were smaller, the solution at the labeled grid point would be less

than µ.) If the known adjacent neighbor has a value of µ − ∆x and the unknown

adjacent neighbor has a value of µ, then the first-order, adjacent scheme computes

a value of µ for the labeled grid point. Thus µ is our lower bound; any labeled grid

point with solution less than or equal to µ is correct. This is disappointing. Our more

sophisticated correctness criterion is the same as the one used in the Fast Marching

Method: the labeled grid point with smallest solution is correct.

Figure 5.5 shows an order diagram for the two test problems when using the above

correctness criterion with the adjacent stencil. That is, the grid points are labeled

with the order in which they can be computed. The results are disconcerting in

that the order does not reflect the direction of the characteristic lines. The flow of

information in the difference scheme is very different than the flow of information in

the analytical solution. Firstly, the difference scheme itself is troubling. Consider

the second test problem in which distance is computed from a line segment. The
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Figure 5.5: Order diagrams for the 5-point, adjacent stencil.

solution at the grid point (4, 1) depends on all of the grid points set in the initial

condition: (0, 0) through (4, 0). Yet, the direction of the characteristic line is nearly

vertical implying that the flow of information should be roughly vertical. Secondly,

the correctness criterion would not lead to an efficient algorithm. In the second test

problem, only a single labeled grid point is determined to be correct at each step.

(The symmetry in the first problem leads to either one or two labeled grid points

being determined at each step.)

To ameliorate the problems presented above, we introduce a different stencil.

Instead of differencing only in the coordinate directions, we consider differencing in

the diagonal directions as well. Figure 5.6 shows a stencil that uses the four adjacent

grid points and a stencil that uses the eight adjacent and diagonal grid points. First

consider the adjacent stencil. If the characteristic comes from the first quadrant, grid

point a would be used to compute ∂u/∂x and grid point b would be used to determine

∂u/∂y. Next consider the adjacent-diagonal stencil. If the characteristic came from

the first sector, grid point a would be used to compute ∂u/∂x and grid point b would

be used to determine ∂u/∂x + ∂u/∂y from which ∂u/∂y can be determined. The

adjacent-diagonal stencil increases the number of directions in which information can

flow from four to eight.

Now we consider solving the test problems with the 9-point, adjacent-diagonal
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Figure 5.6: The 5-point, adjacent stencil and the 9-point, adjacent-diagonal stencil.
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Figure 5.7: Dependency diagrams for the 9-point, adjacent-diagonal stencil.

stencil. Figure 5.7 shows the dependency diagrams. The arrows identify the π/4

sector from which the characteristic line comes. (Except for the degenerate cases

where a single grid point is used in the difference scheme.) Saying that the char-

acteristic direction comes from a sector of angle π/4 is not an accurate description,

however, it is more accurate that saying it comes from one of the four quadrants. The

adjacent-diagonal stencil reduces the domain of dependence for the grid points.

We turn our attention to developing a correctness criterion for the adjacent-

diagonal stencil. Let µ be the minimum solution among the labeled grid points.

Each labeled grid point has at least one known adjacent or diagonal neighbor. The

correct solution at the other neighbors may be as low as µ. We determine the smallest

predicted solution using an unknown neighbor.
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Figure 5.8: Order diagrams for the 9-point, adjacent-diagonal stencil.

First consider the case that an adjacent neighbor is known and a diagonal neighbor

is unknown. We assign a value of µ to the unknown diagonal neighbor. If the

characteristic line comes from the sector defined by these two neighbors, the smallest

predicted solution is µ + ∆x. Next consider the case that the diagonal neighbor is

known and an adjacent neighbor is unknown. We assign a value of µ to the unknown

adjacent neighbor. The smallest possible predicted solution in this case is µ+∆x/
√

2.

Thus all labeled grid points with solutions less than or equal to µ+ ∆x/
√

2 have the

correct value. This turns out to be a useful correctness criterion. Figure 5.8 shows

the order diagram for the first-order, adjacent-diagonal scheme. We see that at each

step, most of the labeled grid points are determined to be correct. For the second test

problem, all the labeled vertices are determined to be correct. The adjacent-diagonal

stencil with this correctness criterion looks promising.

5.5 Adjacent-Diagonal Difference Schemes

Tsitsiklis presented a first-order accurate Dial-like algorithm [32] for solving static

Hamilton-Jacobi equations that uses the diagonal as well as the adjacent neighbors

in the finite differencing. (In K-dimensional space, a grid point has 2K adjacent

neighbors and a total of 3K − 1 neighbors.) Although his algorithm, which uses all of



183

the neighbors, has the optimal computational complexity O(N), he concluded that

it would not be as efficient as his Dijkstra-like algorithm. Thus he did not present an

implementation.

In this section we will present schemes that use some or all of the diagonal neigh-

bors in differencing. We will study both the accuracy and efficiency of these schemes.

We have seen that the adjacent-diagonal scheme introduced in the previous section

may enable the application of the Marching with a Correctness Criterion methodology.

In this section we will develop first and second-order, adjacent-diagonal difference

schemes. Again we consider solving the eikonal equation, |∇u|f = 1 in 2-D. We

know how to difference in the coordinate directions with adjacent grid points to

approximate ∂u/∂x and ∂u/∂y. We can also difference in diagonal directions to get

first-order approximations of ±∂u/∂x± ∂u/∂y. For example,

ui,j − ui−1,j−1

∆x
=
∂u

∂x
+
∂u

∂y
+O

(
∆x2

)
.

We can also obtain a second-order accurate difference.

3ui,j − 4ui−1,j−1 + ui−2,j−2

2∆x
=
∂u

∂x
+
∂u

∂y
+O

(
∆x3

)
If we know ∂u/∂x+ ∂u/∂y from differencing in a diagonal direction and ∂u/∂x from

differencing in a horizontal direction, then we can determine ∂u/∂y from the difference

of these two. Thus we can determine approximations of ∂u/∂x and ∂u/∂y from one

adjacent difference and one diagonal difference.

We consider how a grid point that has become known labels its neighbors using the

adjacent-diagonal, first-order, upwind difference scheme. For each adjacent neighbor,

there are potentially three ways to compute a new solution there. In Figure 5.9, the

center grid point has just become known. The first row of diagrams show how to

label an adjacent neighbor. Suppose the adjacent neighbor to the right is not known.

We show three ways the center grid point can be used to compute the value of this

neighbor. First, only the center grid point is used. If the grid points that are adjacent
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to the center grid point and diagonal to the grid point being labeled are known, they

can be used in the difference scheme as well. This accounts for the second two cases.

The second row of diagrams show how to label a diagonal neighbor. Again, there are

three ways the center grid point can be used to compute the value of this neighbor.

First, only the center grid point is used. If the grid points that are adjacent to the

center grid point and the grid point being labeled are known, they can be used in the

difference scheme as well.

adjacent−diagonal adjacent−diagonal

diagonal−adjacent diagonal−adjacent

adjacent

diagonal

Figure 5.9: The three ways of labeling an adjacent neighbor and the three ways of
labeling a diagonal neighbor using the adjacent-diagonal, first-order difference scheme.

Using an adjacent-diagonal scheme requires us to more closely examine the upwind

concept. In 1-D, the solution decreases in the upwind direction. The characteristic

comes from the upwind direction. In 2-D, any direction in which the solution decreases

is an upwind direction. If the dot product of a given direction with the characteristic

direction is (positive/negative), then that direction is (downwind/upwind).

For an adjacent difference scheme, the upwind information determines the quad-

rant from which the characteristic comes. The first diagram in Figure 5.10 shows a

stencil for an adjacent difference scheme. A blue line shows the characteristic direc-
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tion. The upwind coordinate directions are colored red while the downwind directions

are green. That the characteristic comes from the third quadrant implies that direc-

tions c and d are upwind. Conversely, if c and d are upwind directions, then the

characteristic comes from the third quadrant. For this case, grid points c and d

would be used in the finite difference scheme to compute the solution at the center

grid point. Choosing the upwind directions ensures that the CFL condition is satis-

fied. That is, the numerical domain of dependence contains the analytical domain of

dependence.

The situation is different for an adjacent-diagonal scheme. The second diagram

in Figure 5.10 shows a stencil for an adjacent-diagonal difference scheme. The char-

acteristic comes from sector 6, but there are four neighboring grid points which are

upwind. We can use grid points f and g to determine the center grid point. If we used

either grid points e and f or grid points g and h, then the scheme would be upwind,

but would not satisfy the CFL condition. That is, the characteristic direction would

be outside the numerical domain of dependence. Using sectors 5 or 7 to determine the

grid point would lead to an incorrect result. We will show a simple example of this

later in this section. Although “CFL satisfying” would be a more accurate adjective

to describe these adjacent-diagonal schemes than “upwind,” we will continue to use

the latter term.
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Figure 5.10: The direction of the characteristic is shown in blue. Upwind directions
are shown in red; downwind directions are shown in green.

Below we give the functions that implement the adjacent-diagonal, first-order dif-

ference scheme for the eikonal equation, |∇u|f = 1. The difference scheme can use a
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single adjacent grid point (difference adj()), a single diagonal grid point (difference diag()),

or an adjacent and a diagonal grid point (difference adj diag()). The last of these solves

a quadratic equation to determine the solution. If the condition in difference adj diag()

is not satisfied, then the characteristic line comes from outside the wedge defined by

the adjacent and diagonal neighbors. In this case the difference scheme will not satisfy

the CFL condition so we return infinity.

difference adj( a ):

return a + ∆x/f

difference diag( a ):

return a +
√

2 ∆x/f

difference adj diag( a, b ):

diff = a - b

if 0 ≤ diff ≤ ∆x/(
√

2 f):

return adj +
√

∆x2/f2 − diff2

return ∞

Now we consider a simple example which demonstrates that the finite difference

scheme must satisfy the CFL condition and not just be upwind. We solve the eikonal

equation |∇u| = 1 on a 3 × 3 grid. The grid spacing is unity and initially the lower

left grid point is set to zero. The solution is the Euclidean distance from that grid

point. Figure 5.11 shows the initial condition and the analytical solution on the grid.

Figure 5.12 shows the result of using the Fast Marching Method with the first-

order, adjacent-diagonal scheme. The scheme is upwind, but we do not enforce the

CFL condition to restrict which differences are applied. Each of the labeling op-

erations are depicted. In step 1, grid point (0, 0) labels its adjacent and diagonal
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Figure 5.11: The initial condition and the analytic solution on the grid.
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Figure 5.12: An adjacent-diagonal difference scheme that is upwind, but does not
satisfy the CFL condition.

neighbors. We see the first sign of trouble in steps 2 and 3. In these steps, grid points

(0, 0) and (1, 0) are used to label (1, 1) with the value 1. The values at these two

known grid points indicate that the characteristic is in the direction of the positive

x axis. Thus the characteristic does not come from the sector described by the three

grid points. As a result, the predicted solution is erroneous. This problem reoccurs

in the subsequent steps. It is apparent that the solution will not converge as the grid

is refined.
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Figure 5.13: An adjacent-diagonal difference scheme that satisfies the CFL condition.

By contrast, Figure 5.13 shows the result of using the first-order, adjacent-diagonal

scheme that satisfies the CFL condition. Each of the labeling operations which satisfy

the CFL condition are depicted. Note that fewer of these operations are permissible.

This approach results in a convergent scheme.

5.6 Computational Complexity

Now we determine the computational complexity of the MCC algorithm for solving

the eikonal equation |∇u|f = 1. Let the values of f be in the interval [A . . . B] and

let R = B/A. Consider the MCC algorithm in progress. Let µ be the minimum

solution of the labeled grid points. The predicted solutions at the labeled grid points

are in the range [µ . . . µ +
√

2∆x/A). When one applies the correctness criterion,

at least all of the labeled vertices with distances less than or equal to µ + ∆x√
2B

will

become known. Thus at the next step, the minimum labeled solution will be at least

µ + ∆x√
2B

. At each step of the algorithm, the minimum labeled solution increases by

at least ∆x√
2B

. This means that a grid point may be in the labeled set for at most
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√

2∆x
A

/ ∆x√
2B

= 2B/A = 2R steps. The computational cost of applying the correctness

criteria is thus O(RN). The cost of labeling is O(N). Since a grid point is simply

added to the end of a list or array when it becomes labeled, the cost of adding and

removing labeled grid points is O(N). Thus the computation complexity of the MCC

algorithm is O(RN).

5.7 Performance Comparison of the Finite Differ-

ence Schemes with the FMM

5.7.1 Test Problems

We consider three test problems. In each problem, the distance is computed from a

point or set of points. We consider cases in which the solution is smooth, the solution

has high curvature and the solution has shocks, i.e., the solution is not everywhere

differentiable. Figure 5.14 shows the test problem with a smooth solution. The grid

spans the domain [−1/2..1/2]× [−1/2..1/2]. The distance is computed from a single

point at (−3/4,−3/4).

Figure 5.15 shows the test problem with high curvature. The distance is computed

from a single point in the center of the grid. The solution has high curvature near

the center. This is where the difference schemes will make the largest errors.

Figure 5.16 shows the problem in which the solution has shocks. The grid spans

the domain [−1/2..1/2] × [−1/2..1/2]. The distance is computed from 16 points on

the circle of unit radius, centered at the origin. There are shocks along lines that

are equidistant from two points. This test case produces shock lines at a variety of

angles.
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Figure 5.14: Test problem for a smooth solution. The top diagram depicts a 10× 10
grid. The distance is computed from the point outside the grid depicted as a solid
black disk. The red grid points show where the initial condition for first-order schemes
is specified. The green grid points show the additional grid points where the initial
condition is specified for second-order schemes. We show a plot of the smooth solution.
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Figure 5.15: Test problem for a solution with high curvature. The diagram shows
a 10 × 10 grid. The distance is computed from a point at the center of the grid.
The red grid points show where the initial condition is specified for first-order and
second-order schemes. Next we show a plot of the solution.
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Figure 5.16: Test problem for a solution with shocks. The diagram depicts a 10× 10
grid. The distance is computed from the points on the unit circle. Lines show the
locations of the shocks. The red grid points show where the initial condition for
first-order schemes is specified. The green grid points show the additional grid points
where the initial condition is specified for second-order schemes. Next we show a plot
of the solution.
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5.7.2 Convergence

5.7.2.1 Smooth Solution

First we examine the behavior of the finite difference schemes on the test problem

with a smooth solution. We use the schemes to solve the problem on a 40 × 40

grid. Figure 5.17 shows plots of the error for the four difference schemes. For the

adjacent stencils, the largest errors are in the diagonal direction. This reflects that

the differencing is done in the coordinate directions. The first-order, adjacent scheme

has a large error. For the second-order scheme, the error is much smaller. For the

adjacent-diagonal stencils, the largest errors are in the directions which lie between

the coordinate and diagonal directions. This is expected as the schemes difference in

the coordinate and diagonal directions. The first-order, adjacent-diagonal scheme has

significantly smaller errors than the first-order, adjacent scheme. The second-order,

adjacent-diagonal scheme has the smallest errors.

Now we examine the convergence of the solution using the difference schemes.

The first graph in Figure 5.18 shows the L1 error versus the grid spacing for grids

ranging in size from 10 × 10 to 5120 × 5120. We see that going from an adjacent

stencil to an adjacent-diagonal stencil reduces the error by about a factor of 10. The

second-order schemes have a higher rate of convergence than the first-order schemes.

The L∞ error shows the same behavior.

Table 5.1 shows the numerical rate of convergence for the difference schemes. (If

the the error is proportional to ∆xα, where ∆x is the grid spacing, then α is the rate

of convergence.) We see that for the smooth solution, the first-order schemes have

first-order convergence and the second-order schemes have second-order convergence.

Scheme L1 L∞
First-Order, Adjacent 0.998 0.992
Second-Order, Adjacent 1.995 1.995
First-Order, Adjacent-Diagonal 0.995 0.997
Second-Order, Adjacent-Diagonal 1.995 1.997

Table 5.1: Convergence to a smooth solution.



194

0
0.5

1

0

0.5

1
−0.01

0

0.01

0.02

Smooth, 1st Order, Adjacent

0
0.5

1

0

0.5

1
−10

−5

0

5
x 10

−4

Smooth, 2nd Order, Adjacent

0
0.5

1

0

0.5

1
−1

0

1

2
x 10

−3

Smooth, 1st Order, Adj−Diag

0
0.5

1

0

0.5

1
−2

−1

0

1
x 10

−4

Smooth, 2nd Order, Adj−Diag

Figure 5.17: Plots of the error for a smooth solution on a 40× 40 grid.
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5.7.2.2 Solution with High Curvature

Next we examine the behavior of the finite difference schemes on the test problem

with high curvature. Again we use the schemes to solve the problem on a 40×40 grid.

Figure 5.19 shows plots of the error for the four difference schemes. The first-order,

adjacent scheme has significant errors in the region of high curvature, but accumu-

lates larger errors in the low curvature region (especially in diagonal directions).

Going to a second-order scheme introduces larger errors in the high curvature region.

However the second-order, adjacent scheme is more accurate where the solution has

low curvature. The first-order, adjacent-diagonal scheme is better at handling the

high curvature region. Like the first-order, adjacent scheme, the error noticeably

accumulates in the low curvature region, but to a lesser extent. The second-order,

adjacent-diagonal scheme has relatively large errors in the high curvature region, but

is very accurate elsewhere.

We examine the convergence of the solution with high curvature using the dif-

ference schemes. The first graph in Figure 5.20 shows the L1 error versus the grid

spacing for grids ranging in size from 10 × 10 to 5120 × 5120. First we note that

the second order schemes have only a slightly higher rate of convergence than the

first-order methods. Using an adjacent-diagonal stencil still significantly reduces the

error. The L∞ error shows the same behavior.

Table 5.2 shows the numerical rate of convergence for the difference schemes. For

the solution with high curvature, the first-order schemes have less than first-order

convergence. For both the adjacent and the adjacent-diagonal schemes it is about

0.85. The second-order schemes have first-order convergence. This is because they

make first-order errors in the region of high curvature and then propagate this error

through the region of low curvature where they are second-order accurate.

5.7.2.3 Solution with Shocks

Finally, we examine the behavior of the finite difference schemes on the test problem

with shocks. The problem is solved on a 40 × 40 grid. Figure 5.21 shows plots of
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Figure 5.19: Plots of the error for a solution with high curvature on a 40× 40 grid.
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Scheme L1 L∞
First-Order, Adjacent 0.840 0.848
Second-Order, Adjacent 1.002 1.000
First-Order, Adjacent-Diagonal 0.853 0.855
Second-Order, Adjacent-Diagonal 0.998 0.999

Table 5.2: Convergence to a solution with high curvature.

the error for the four difference schemes. For the first-order, adjacent scheme, the

errors in the smooth regions and along the shocks have approximately the same mag-

nitude. Away from the shocks, the second order, adjacent scheme has low errors, but

there are relatively large errors in a wide band around the shocks. The first-order,

adjacent-diagonal scheme has significantly smaller errors than the corresponding ad-

jacent scheme. Like the adjacent scheme, the errors in the smooth regions and near

the shocks have approximately the same magnitude. The second-order, adjacent-

diagonal scheme is very accurate in the smooth regions. Like the second-order, adja-

cent scheme, it has relatively large errors near the shocks, but these large errors are

confined to narrow bands around the shocks.

We examine the convergence of the solution with shocks using the four difference

schemes. The first graph in Figure 5.22 shows the L1 error versus the grid spacing

for grids ranging in size from 10 × 10 to 5120 × 5120. As before, using an adjacent-

diagonal stencil significantly reduces the error. For small grids, the first-order and

second-order schemes have about the same rate of convergence. For larger grids, the

second-order schemes have a higher rate of convergence. Unlike the other tests, each

of the schemes has about the same rate of convergence for the L∞ error.

Table 5.3 shows the numerical rate of convergence for the solution with shocks

using the four difference schemes. For the L1 error, the schemes have about the same

rate of convergence as they do on the smooth solution. This is because most of the

grid points are in the smooth region of the solution. Next we consider the L∞ error.

The first-order, adjacent scheme and both of the adjacent-diagonal schemes have

first-order convergence. The second-order, adjacent scheme has less than first-order

convergence. This is because the wide stencil introduces first-order errors from the
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Figure 5.21: Plots of the error for a solution with shocks on a 40× 40 grid.
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shock region into the smooth solution region in a band around the shock. This causes

errors which are larger than first order to accumulate in a band around the shock.

The second-order, adjacent-diagonal scheme did not have this problem for this test.

It confined the first-order errors to narrow bands around the shocks.

Scheme L1 L∞
First-Order, Adjacent 0.977 1.001
Second-Order, Adjacent 1.984 0.915
First-Order, Adjacent-Diagonal 0.990 0.986
Second-Order, Adjacent-Diagonal 1.992 0.994

Table 5.3: Convergence to a solution with shocks.

5.7.3 Execution Time

Figure 5.23 shows the execution times for the four difference schemes using the Fast

Marching Method. The distance from a center point is computed on grids ranging

in size from 10 × 10 to 5120 × 5120. Using the adjacent-diagonal stencils is more

computationally expensive than using the adjacent stencils. For a small grid, using

the first order, adjacent-diagonal scheme increases the execution time by about 25%

over using the adjacent scheme. Using the second-order, adjacent-diagonal scheme

increases the execution time by about 50% over the adjacent scheme. This margin

decreases as the grid size increases. The execution time per grid point increases as

the grid grows. However, the performance difference between each of the methods

remains roughly constant. This reflects the fact that the cost per grid point of labeling

does not depend on the grid size, but the cost per grid point of maintaining the binary

heap increases with the increasing grid size.
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Figure 5.23: Log-log plot of the execution time per grid point versus the number of
grid points for the fast marching method with different stencils.

5.8 Performance Comparison of the FMM and the

MCC Algorithm

5.8.1 Memory Usage

Because the Marching with a Correctness Criterion algorithm has a simpler data

structure for storing labeled grid points, it requires a little less memory than the Fast

Marching Method. First consider the MCC algorithm. It has two arrays of size N

where N is the number of grid points. There is an array of floating point numbers

for the solution and an an array to store the status of the grid points. It also has a

variable sized array of pointers to store the labeled grid points. Since the number of

labeled grid points is typically much smaller than the total number of grid points, the

memory required for the labeled array is negligible compared to the solution array

and status array. The FMM has these three arrays as well. It uses the labeled array

as a binary heap. In addition, the FMM requires a size N array of pointers into

the heap. This is used to adjust the position of a labeled grid point in the heap

when the solution decreases. Thus the MCC algorithm has two size N arrays while
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the FMM has three. Suppose that one uses single precision floating point numbers

for the solution and integers for the status. Single precision floating point numbers,

integers and pointers typically each have a size of 4 words. Thus the FMM requires

about 1/2 more memory than the MCC algorithm. For double precision floating point

numbers (8 words) the FMM requires a third more memory.

5.8.2 Execution Time

Now we compare the execution times of the MCC algorithm and the FMM using

the first-order and second-order, adjacent-diagonal schemes. We also implement a

method that measures the execution time of an ideal algorithm for solving static

Hamilton-Jacobi equations with an ordered, upwind scheme. For this ideal algorithm,

the labeled grid points are stored in a first-in-first-out queue. (This was implemented

with the deque data structure in the C++ standard template library [2].) At each

step the labeled grid point at the front of the queue becomes known and it labels

its neighbors. The algorithm performs a breadth-first traversal of the grid points as

the solution is marched out. This approach does not produce the correct solution. It

represents the ideal execution time because it determines which labeled grid point is

“correct” in small constant time.

In Figure 5.24 we show the execution times for the first-order, adjacent-diagonal

scheme. The graph shows the linear computational complexity of the MCC algorithm.

Its performance comes close to that of the ideal algorithm. We can see the N logN

complexity of the FMM, but it still performs well. For the largest grid size, its

execution time is about twice that of the MCC algorithm.

In Figure 5.25 we show the execution times for the second-order, adjacent-diagonal

scheme. The graph has the same features as that for the first-order scheme. How-

ever, the finite difference operations are more expensive so the relative differences in

performance are smaller.

Recall that the computational complexity of the MCC algorithm for solving the

eikonal equation |∇u|f = 1 is O(RN) where R is the ratio of the maximum to
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Figure 5.24: Log-linear plot of the execution time per grid point versus the number of
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minimum propagation speed in the eikonal equation. We compare the Fast Marching
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minumum propagation speed f . We consider the effect of R on the execution times

of the marching methods. We choose a speed function f that varies between 1 and

R on the domain [0..1]2:

f(x, y) = 1 +
R− 1

2
(1 + sin(6π(x+ y))).

We solve the eikonal equation on a 1000 × 1000 grid with the boundary condition

u(1/2, 1/2) = 0 as we vary R from 1 to 1024. Figure 5.26 shows the execution

times for the first-order, adjacent-diagonal scheme. Figure 5.27 shows results for the

second-order, adjacent-diagonal scheme. We see that varying R has little effect on the

performance of the FMM. It has a moderate effect on the performance of the MCC

algorithm. As expected, the execution time increases with increasing R. However, the

increase is modest because a correctness test is an inexpensive operation compared

to a labeling operation using the finite difference scheme. The MCC algorithm out-

performs the FMM for all tested values of R.
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minimum propagation speed in the eikonal equation. We compare the Fast Marching
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5.9 Extension to 3-D

In this section we extend the previous results in this chapter and consider the eikonal

equation |∇u|f = 1 in 3-D. As before, finite difference schemes that use three adja-

cent grid points are not suitable for the MCC algorithm. We will devise a scheme

that uses adjacent and diagonal neighbors to do the differencing. We will examine

the performance of the adjacent-diagonal difference scheme and then compare the

execution time of the FMM to that of the MCC algorithm.

5.9.1 Adjacent-Diagonal Difference Schemes

We first consider the first-order, adjacent difference scheme. The adjacent differ-

ence scheme in 3-D differences in the three coordinate directions. When a grid point

becomes known, it uses three formulas for updating the values of its adjacent neigh-

bors. First, only the solution at that known grid point is used. Thus difference adj()

computes the solution using a single known adjacent neighbor.
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difference adj( a ):

return a + ∆x/f

Second, in difference adj adj() the solution at the labeled grid point is computed

using pairs of known adjacent solutions. One of these is the grid point that was just

determined to be known, the other is a known grid point in an orthogonal direction.

In this function we test whether the characteristic comes from the region between the

two grid points before we compute the solution.

difference adj adj( a, b ):

if |a− b| ≤ ∆x/f:

return
(

a + b +
√

2∆x2/f2 − (a− b)2
)
/2

return ∞

Finally, in difference adj adj adj() the solution at the labeled grid point is computed

using triples of known adjacent solutions. One of these is the grid point that was just

determined to be known, the other two are known grid points in orthogonal directions.

Here it is easiest to test that the characteristic comes from the correct octant after

we compute the solution.

difference adj adj adj( a, b, c ):

s = a + b + c

discriminant = s2 − 3 (a2 + b2 + c2 −∆x2/f2)

if disc ≥ 0:

soln =
(

s +
√

discriminant
)
/3

if soln ≥ a and soln ≥ b and soln ≥ c:

return soln

return ∞

We develop a correctness criterion for the above first-order, adjacent scheme. We

follow the same approach as for the correctness criteria in 2-D. We will determine a
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lower bound on the solution at a labeled grid point using the assumption that it has

at least one unknown neighbor. If the predicted solution there is no larger than this

lower bound, then it must be correct.

Let µ be the minimum solution among the labeled grid points. The correct solution

at any unknown adjacent neighbors may be as low as µ. We determine the smallest

predicted solution using an unknown neighbor. The solution at the known neighbor

may be as small as µ−∆x. (If it were smaller, the solution at the labeled grid point

would be less than µ.) We obtain a lower bound by using one unknown neighbor with

a value of µ and two known neighbors with values of µ−∆x in the difference scheme.

This yields a predicted solution of µ for the labeled grid point. Thus µ is our lower

bound; any labeled grid point with solution less than or equal to µ is correct. This is

the same correctness criterion used in the Fast Marching Method. As in 2-D, we see

that the 3-D adjacent difference scheme is not suitable for the MCC algorithm.

We introduce a new stencil in analogy with the 2-D adjacent-diagonal difference

scheme. Again, instead of differencing only in the coordinate directions, we consider

differencing in the diagonal directions as well. In 3-D, we adopt the terminology that

diagonal directions lie between two coordinate directions and corner directions lie

between three coordinate directions. Thus an interior grid point has 6 adjacent, 12

diagonal and 8 corner neighbors. Figure 5.28 first shows the adjacent stencil that

uses the 6 adjacent grid points. On the left we show the points alone. On the right

we connect triples of points that are used in the adjacent finite difference scheme.

If the characteristic passes through a triangle face, then those three points are used

to predict a solution. The characteristic may approach through any of the 8 faces.

There are a total of 26 ways in which the solution may be predicted: 6 ways from a

single adjacent point (the corner of a triangle face), 12 ways from a pair of adjacent

points (the side of a triangle face) and 8 ways from a triple of adjacent points that

form a triangle face.

Figure 5.28 next shows a stencil that uses the 6 adjacent and 12 diagonal grid

points to increase the number of directions in which information can flow. On the

left we show the points alone. On the right we connect triples of points that are used
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Figure 5.28: The 7-point, adjacent stencil and the 19-point, adjacent-diagonal stencil.

in the finite difference scheme. Again, if the characteristic passes through a triangle

face, then those three points are used to predict a solution. The characteristic may

approach through any of the 32 faces. By differencing in an adjacent direction, we

can approximate ∂u/∂x, ∂u/∂y or ∂u/∂z. By differencing in a diagonal direction we

can determine the sum or difference of two of these. There are a total of 98 ways in

which the solution may be predicted: 6 ways from a single adjacent point, 12 ways

from a single diagonal point, 24 ways from an adjacent-diagonal pair, 24 ways from a

pair of diagonal points, 24 ways from an adjacent-diagonal-diagonal triple and 8 ways

from a triple of diagonal points.

Below we give the six functions for computing the predicted solution using known

neighbors of a labeled grid point. difference adj() uses a single adjacent neighbor.

difference diag() uses a single diagonal neighbor. difference adj diag() uses an adjacent

and a diagonal neighbor and difference diag diag() uses two diagonal neighbors. These

two functions check that the characteristic passes between the grid points before

computing the predicted solution. difference adj diag diag() uses one adjacent and

two diagonal neighbors. When testing that the characteristic passes through the
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triangle face, it tests the two adjacent-diagonal sides before computing the predicted

solution and tests the diagonal-diagonal side after. difference diag diag diag() uses

three diagonal neighbors. It tests that the characteristic passes through the triangle

face after computing the predicted solution.

difference adj( a ):

return a + ∆x/f

difference diag( a ):

return a +
√

2 ∆x/f

difference adj diag( a, b ):

if 0 ≤ a− b ≤ ∆x/(
√

2 f):

return a +
√

∆x2/f2 − (a− b)2

return ∞

difference diag diag( a, b ):

if |a− b| ≤ ∆x/(
√

2 f):

return a + b +
√

6∆x2/f2 − 3(a− b)2

return ∞

difference adj diag diag( a, b, c ):

if a ≥ b and a ≥ c:

discriminant = ∆x2/f2 − (a− b)2 − (a− c)2

if discriminant ≥ 0:

soln = a +
√

discriminant
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if soln ≥ 3a− b− c:

return soln

return ∞

difference diag diag diag( a, b, c ):

discriminant = 3∆x2/f2 − (a− b)2 − (b− c)2 − (c− a)2

if discriminant ≥ 0:

soln =
(

a + b + c + 2
√

discriminant
)
/3

if soln ≥ 3a− b− c and soln ≥ 3b− c− a and soln ≥ 3c− a− b:

return soln

return ∞

5.9.2 Performance Comparison of the Finite Difference Schemes

5.9.2.1 Test Problems

We consider three test problems which are analogous to the 2-D test problems. In

each problem the distance is computed from a point or set of points. We consider

cases in which the solution is smooth, the solution has high curvature and the solution

has shocks, i.e., the solution is not everywhere differentiable.

Each grid spans the domain [−1/2..1/2]3. For the smooth solution, the distance is

computed from a single point at (−3/4,−3/4,−3/4). Next the distance is computed

from a single point in the center of the grid. The difference schemes will make the

largest errors near the center where the solution has high curvature. For the third

test problem, the distance is computed from 26 points on the sphere of unit radius,

centered at the origin. There are shocks along planes that are equidistant from two

points. This test case produces shock planes at a variety of angles.
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Figure 5.29: L1 and L∞ error for a smooth solution. Log-log plot of the error versus
the grid spacing.

5.9.2.2 Convergence

Smooth Solution. We examine the convergence of the solution using the two dif-

ference schemes. The first graph in Figure 5.29 shows the L1 error versus the grid

spacing for grids ranging in size from 103 to 4003. We see that going from an adjacent

stencil to an adjacent-diagonal stencil reduces the error by about a factor of 2. The

L∞ error shows the same behavior.

Table 5.4 shows the numerical rate of convergence for the difference schemes. We

see that for the smooth solution, both of these first-order schemes have first-order
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convergence.

Scheme L1 L∞
First-Order, Adjacent 0.982 0.969
First-Order, Adjacent-Diagonal 0.989 0.979

Table 5.4: Convergence to a smooth solution.

Solution with High Curvature. Next we examine the convergence of the solution

with high curvature using the two difference schemes. The first graph in Figure 5.30

shows the L1 error versus the grid spacing for grids ranging in size from 103 to 4003.

Using an adjacent-diagonal stencil still reduces the error by about a factor of 2. The

L∞ error shows the same behavior.

Table 5.5 shows the numerical rate of convergence for the two difference schemes.

For the solution with high curvature, these first-order schemes have less than first-

order convergence. For both the adjacent and the adjacent-diagonal schemes it is

about 0.8.

Scheme L1 L∞
First-Order, Adjacent 0.799 0.809
First-Order, Adjacent-Diagonal 0.807 0.816

Table 5.5: Convergence to a solution with high curvature.

Solution with Shocks. Finally we examine the convergence of the solution with

shocks using the two difference schemes. The first graph in Figure 5.31 shows the L1

error versus the grid spacing for grids ranging in size from 103 to 4003. Yet again,

using an adjacent-diagonal stencil reduces the error by about a factor of 2. The L∞

error shows the same behavior.

Table 5.6 shows the numerical rate of convergence for the solution with shocks

using the two difference schemes. The convergence for both schemes is a little less than

first-order. The adjacent-diagonal scheme has a slightly higher rate of convergence.
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Figure 5.30: L1 and L∞ error for a solution with high curvature. Log-log plot of the
error versus the grid spacing.
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Figure 5.31: L1 and L∞ error for a solution with shocks. Log-log plot of the error
versus the grid spacing.
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Scheme L1 L∞
First-Order, Adjacent 0.943 0.924
First-Order, Adjacent-Diagonal 0.961 0.948

Table 5.6: Convergence to a solution with shocks.
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Figure 5.32: Log-log plot of the execution time per grid point versus the number
of grid points for the fast marching method with different stencils. We show the
algorithm with a first-order, adjacent scheme and a first-order, adjacent-diagonal
scheme.

5.9.2.3 Execution Time

Figure 5.32 shows the execution times for the two difference schemes using the Fast

Marching Method. The distance from a center point is computed on grids ranging in

size from 103 to 4003. Using the adjacent-diagonal stencil is more computationally

expensive than using the adjacent stencil. The execution time per grid point increases

as the grid grows. However, the performance difference between each of the methods

remains roughly constant. This reflects the fact that the cost per grid point of labeling

does not depend on the grid size, but the cost per grid point of maintaining the binary

heap increases with the increasing grid size.
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Figure 5.33: Log-log plot of the execution time per grid point versus the number of
grid points for the fast marching algorithm, the marching with a correctness criterion
algorithm and the ideal algorithm using the first-order, adjacent-diagonal scheme.

5.9.3 The FMM versus the MCC Algorithm

We compare the execution times of the MCC algorithm and the FMM using the first-

order, adjacent-diagonal scheme. Again we implement a method that measures the

execution time of an ideal algorithm for solving static Hamilton-Jacobi equations with

an ordered, upwind scheme. Figure 5.33 shows the execution times. The performance

of the MCC algorithm comes close to that of the ideal algorithm. None of these show

exactly linear scalability. The execution time per grid point increases by 13% and

32% and the grid size varies from 103 to 4003 for the ideal algorithm and the MCC

algorithm, respectively. We believe this effect is due to the increased cost of accessing

memory as the memory usage increases. That is, with larger grids there will be more

cache misses so the cost of accessing a single grid value increases. This phenomenon

has less of an effect on the ideal algorithm because it does not access the solution or

status arrays in determining which grid points should become known. We can see the

N logN complexity of the FMM, but it still performs well. For the largest grid size,

its execution time is 88% higher than that of the MCC algorithm.
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5.10 Concurrent Algorithm

Consider solving a static Hamilton-Jacobi equation on a shared-memory architecture

with P processors. It is easy to adapt the sequential MCC algorithm to a concurrent

one. At each step in the algorithm the minimum labeled solution is determined, the

correctness criterion is applied to the labeled set and then the correct grid points label

their neighbors. Each of these operations may be done concurrently. Each processor

is responsible for 1/P of the labeled grid points. The minimum labeled solution

is found by having each processor examine its share of the labeled grid points and

then taking the minimum of the the P values. Then each processor applies the

correctness criterion and labels neighbors of known grid points exactly as in the

sequential algorithm. The computational complexity of the concurrent algorithm is

O(N/P + P ). (The O(P ) term comes from taking the minimum of the P values to

determine the minimum labeled solution and from equitably dividing the labeled grid

points.) The Fast Marching Method is not amenable to this kind of concurrency since

only a single labeled grid point is determined to be correct at a time.

Next consider solving a static Hamilton-Jacobi equation on a distributed-memory

architecture with P processors with the MCC algorithm. We distribute the solution

grid over the processors. Figure 5.10 show a 2-D grid distributed over 16 processors.

In addition to its portion of the grid, each processor needs to store a ghost boundary

that is as thick as the radius of the finite difference stencil. That is, it needs to store

one extra row/column in each direction for a first order difference scheme and 2 extra

rows/columns for a second-order difference scheme. In updating the boundary grid

points, each processor communicates with up to four neighboring processors. In each

step of the concurrent algorithm: 1) The processors communicate to determine the

global value of the minimum labeled solution. 2) Each processor communicates the

grid points along the edge of its grid that became known during the previous step.

3) Each processor performs one step of the sequential MCC algorithm.

Consider a square 2-D grid with a first-order difference scheme. The MCC al-

gorithm will take O(R
√
N) steps. Where R is the ratio of the highest to lowest
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Figure 5.34: Left: A distribution of a 2-D grid over 16 processors. Each processor has
one array. Right: A distribution that would better balance the load. Each processor
has 9 arrays.

propagation speed. At each step, computing the global minimum labeled solution

will take O(logP ) communications. During the course of the algorithm, a total of

4(
√
P − 1)

√
N grid points are communicated to neighboring ghost boundary regions.

In addition, at each time step processors communicate the number of grid points they

will send to their neighbors. Thus in each step, each processor sends and receives 4

integers to determine how many ghost grid points it will receive. Then on average

each processor sends/receives O(
√
P/(R

√
N)) = O(1) grid points and computes cor-

rect values for O(
√
N/(RP )) grid points using the sequential MCC algorithm. This

is a rosy picture except for the “on average” qualification. With the data distribu-

tion shown on the left in Figure 5.10 we would expect a poor load balance. That

is, we would expect that at any given point in the computation some processors

would have many labeled grid points while others would have few or none. Thus

some processors would do many finite difference computations while others would do

none. If the computation were balanced, then the computational complexity would

be O(R
√
N logP +N/P ).

We could help balance the computational load by choosing a different data distri-

bution. For the one shown on the right in Figure 5.10 we first divide the grid into 9
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sub-arrays. Then we distribute the sub-arrays as before. Each processor still commu-

nicates with the same 4 neighbors, but the total number of grid points communicated

is increased to 4(
√
P
√
M − 1)

√
N , where M is the number of sub-arrays. Each pro-

cessor performs the sequential MCC algorithm on M grids. Let L be the average load

imbalance, where the load imbalance is defined as the ratio of the maximum processor

load to the average processor load. If PM � N then the computational complexity

of the concurrent MCC algorithm is O(R
√
N logP + LN/P ).

Note that any algorithm based on an adjacent difference scheme is ill suited to a

distributed-memory concurrent algorithm. This is due to the large numerical domain

of dependence of these schemes. A grid point (i, j, . . .) with solution s may depend on

a grid point whose solution is arbitrarily close to s and whose location is arbitrarily

far away from (i, j, . . .). (See Figure 5.4 for an example.) This phenomenon would

prevent concurrent algorithms from having an acceptable ratio of computation to

communication.

5.11 Future Work

As introduced in Section 4.7, one could use a cell array data structure to reduce the

computational complexity of the MCC algorithm. This is the approach presented by

Tsitsiklis. (See Section 5.5.) Tsitsiklis predicted that this method would not be as

efficient as his Dijkstra-like algorithm. However, based on our experience with the

MCC algorithm, we believe that this approach would outperform the FMM as well.

We consider the eikonal equation |∇u|f = 1 in K-dimensional space, solved on the

unit domain, [0..1]K . Let the values of f be in the interval [A..B] and let R = B/A.

Each cell in the cell array holds the labeled grid points with predicted solutions in

the interval [n ∆x√
2B
..(n + 1) ∆x√

2B
) for some integer n. Consider the MCC algorithm

in progress. Let µ be the minimum labeled solution. The labeled distances are in

the range [µ..µ +
√

2∆x/A). We define m = bµ
√

2B
∆x
c. The first cell in the cell array

holds labeled grid points in the interval [m ∆x√
2B
..(m + 1) ∆x√

2B
). By the correctness

criterion, all the labeled grid points in this cell are correct. We intend to apply
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the correctness criterion only to the labeled grid points in the first cell. If they

labeled their neighbors, the neighbors would have predicted solutions in the interval

[µ + ∆x√
2B
..µ + ∆x√

2B
+
√

2∆x
A

). Thus we need a cell array with d2R + 1e cells in order

to span the interval [µ..µ + ∆x√
2B

+
√

2∆x
A

), which contains all the currently labeled

solutions and the labeled solutions resulting from labeling neighbors of grid points in

the first cell. At each step of the algorithm, the grid points in the first cell become

known and label their neighbors. If an unlabeled grid point becomes labeled, it is

added to the appropriate cell. If a labeled grid point decreases its predicted solution,

it is moved to a lower cell. After the labeling, the first cell is removed and an empty

cell is added at the end. Just as the FMM requires storing an array of pointers into

the heap of labeled grid points, this modification of the MCC algorithm would require

storing an array of pointers into the cell array.

Now consider the computational complexity of the MCC algorithm that uses a

cell array to store the labeled grid points. The complexity of adding or removing a

grid point from the labeled set is unchanged, because the complexity of adding to or

removing from the cell array is O(1). The cost of decreasing the predicted solution of

a labeled grid point is unchanged because moving a grid point in the cell array has cost

O(1). We reduce the cost of applying the correctness criterion from O(RN) to O(N)

because each grid point is “tested”‘ only once. We must add the cost of examining cells

in the cell array. Let D be the difference between the maximum and minimum values

of the solution. Then in the course of the computation, D/ ∆x√
2B

cells will be examined.

The total computational complexity of the MCC algorithm with a cell array for the

labeled grid points is O(N + BD/∆x). Note that for pathological cases in which a

characteristic weaves through most of the grid points, D could be on the order of

∆xN/A. (See Figure 5.35 for an illustration of such a pathological case.) In this case

BD/∆x ≈ RN and the computational complexity is the same as that for the plain

MCC algorithm. However, for reasonable problems we expect that D = O(1/A). In

this case the computational complexity is O(N +R/∆x) = O(N +RN 1/K) = O(N).
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Figure 5.35: A pathological case in which a characteristic weaves through most of the
grid points. We show a 9× 9 grid. Green grid points have a high value of f while red
grid points have a low value. If the initial condition were specified at the lower, left
corner then there would be a characteristic roughly following the path of green grid
points from the lower left corner to the upper right corner.

5.12 Conclusions

Sethian’s Fast Marching Method is an efficient method for solving static Hamilton-

Jacobi equations. It orders the finite difference operations using a binary heap. The

computational complexity is O(N logN) where N is the number of grid points. For

grid sizes of 106, the cost of the finite difference operations (O(N)) is of the same

order as the cost of the heap operations (O(N logN)).

Applying the Marching with a Correctness Criterion methodology to solving static

Hamilton-Jacobi equations requires the use of adjacent-diagonal finite difference schemes.

Typical upwind schemes difference in adjacent (coordinate) directions. Adjacent-

diagonal schemes difference in both adjacent and diagonal directions. They reduce

the numerical domain of dependence and enable efficient correctness criteria to be

applied. In addition, they offer greater accuracy, but are computationally more ex-

pensive.

The Marching with a Correctness Criterion algorithm produces the same solution

as the Fast Marching Method, but with computational complexity O(RN) where R

is the ratio of the highest to lowest propagation speed. Its execution times come

close to those of an ideal ordered, upwind, finite difference method. (For an ideal

method, the cost of ordering the grid points would be negligible.) In practice, the
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MCC algorithm has modestly lower execution times than the FMM and typically uses

1/4 less memory. For a grid size of 106, the MCC algorithm executes in about half

the time of the FMM. The computational complexity of the MCC Algorithm can be

reduced to O(N) by using a cell array to store the labeled grid points.
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Chapter 6

Future Work

We have presented conclusions and areas for future work in each of the previous

chapters. Here we present a few ideas for future work that do not directly fall under

topics covered thus far.

6.1 Greedier Algorithms

Dijkstra’s algorithm and Sethian’s Fast Marching Method are examples of greedy

algorithms. At each step of a greedy algorithm there are a certain number of al-

ternatives from which to choose. In Dijkstra’s algorithm there is a set of labeled

vertices on which the distance has been predicted. In a greedy algorithm the single

best alternative is always chosen. For Dijkstra’s algorithm the labeled vertex with

smallest distance is chosen. The greedy method can be used to solve many problems,

including Huffman code trees, task scheduling and minimum spanning trees.

The Marching with a Correctness Criterion algorithm presented for the single-

source shortest-paths problem and for solving static Hamilton-Jacobi equations can

be termed greedier algorithms. Again at each step of the algorithm there are a certain

number of alternatives from which to choose. The greedier method is to choose as

many of these alternatives as possible. In the Marching with a Correctness Criterion

algorithm for computing the single-source shortest paths there is again a set of labeled

vertices on which the distance has been predicted. However, we choose all of the

vertices which can be determined to have correct values for the distance.
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The greedier method may be applicable to other problems. In particular, it can be

applied to the minimum spanning tree problem, which we explain in the next section.

6.2 Minimum Spanning Trees

Consider a weighted, undirected graph with V vertices and E edges. A set of V − 1

edges that connect all of the vertices is called a spanning tree. Let w be the weight

function, which maps edges to real numbers. The weight of a tree in the graph is the

sum of the weights of the edges in the tree. A minimum spanning tree is a tree of

minimum weight that spans the graph. Such a tree need not be unique.

The most common algorithms for solving the minimum spanning tree problem

are Kruskal’s algorithm and Prim’s algorithm. Both are greedy algorithms and have

computational complexity O(E log V ) when implemented with binary heaps. Both

algorithms use the following property of minimum spanning trees: Let S be a subset

of some minimum spanning tree. The set of edges S divides the graph into connected

components. For any minimum weight edge e connecting two components, S + e is a

subset of some minimum spanning tree.

6.2.1 Kruskal’s Algorithm

Kruskal’s algorithm [9] grows the minimum spanning tree by repeatedly adding the

minimum weight edge that connects two components. It does this by first sorting all

the edges and by keeping track of the connected components as sets with a disjoint-set

data structure [9]. This data structure has three member functions:

make set(u) creates a new set whose only member is u.

find set(u) returns an identifier for the set containing u.

union(u,v) merges the sets containing u and v.
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Kruskal( graph ):

MST = ∅

ds = disjoint-set data structure

for vertex in graph.vertices:

ds.make set( vertex )

Sort graph.edges by weight.

for (u,v) in graph.edges:

if ds.find set(u) 6= ds.find set(v):

MST += (u,v)

ds.union(u,v)

return MST

Sorting the edges takes O(E logE) time. The V make set() operations add O(V ).

The disjoint-set data structure can be implemented so that the O(E) find set() and

union() operations cost O(Eα(V )) where α(V ) = O(log V ). The total complexity for

the algorithm is O(E logE). Since E ≤ V (V − 1)/2, logE = O(log V ). Thus we can

rewrite the complexity as O(E log V ).

6.2.2 Prim’s Algorithm

Prim’s algorithm is very similar to Dijkstra’s algorithm. Prim’s algorithm maintains

a tree that is a subset of the minimum spanning tree. At each step it adds the smallest

edge connecting a vertex which is not in the tree. Initially, the tree is an arbitrarily

chosen vertex. The vertices that are not connected to the tree are stored in a priority

queue. The key for each vertex is the weight of the smallest edge connecting the

vertex to the tree. As the algorithm progresses, vertices are removed from the queue

with extract minimum() and the keys of vertices are decreased with decrease key().

Below is Prim’s algorithm.

Prim( graph ):

for vertex in graph.vertices:
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vertex.key = ∞

vertex.predecessor = None

root = any vertex in graph.vertices

root.key = 0

queue = graph.vertices

while queue 6= ∅:

vertex = queue.extract minimum()

for edge in vertex.edges:

neighbor = edge.target

if neighbor ∈ queue and edge.weight < neighbor.key:

neighbor.key = edge.weight

neighbor.predecessor = vertex

queue.decrease key( neighbor )

MST = ∅

for vertex in graph.vertices:

if vertex.predecessor 6= None:

MST += vertex.predecessor

return MST

If the priority queue is implemented with a binary heap, the computational com-

plexity of Prim’s algorithm is O(E log V ). This is because there are O(V ) ex-

tract minimum() operations and O(E) decrease key() operations, each of which cost

O(log V ).

6.2.3 A Greedier Algorithm

The first algorithm for solving the minimum spanning tree problem was published

in 1926. Boru̇vka’s algorithm [30] maintains a forest of trees that form a subset of

the minimum spanning tree. It takes a concurrent approach to adding edges. At

each step, for each tree we find the smallest edge which connects the tree to the rest

of the graph. Then all of these edges are added. Initially each vertex is a tree in
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the forest. At each step, the number of trees decreases by at least a factor of 2.

Thus the algorithm takes at most log V steps. Since O(E) edges are examined each

step, the computational complexity of the algorithm is O(E log V ). Below we outline

Boru̇vka’s algorithm.

Boru̇vka( graph ):

MST = ∅

forest = graph.vertices

while forest has more than one tree:

For each tree, find the smallest edge connecting it to the rest of the graph.

Add all of these smallest edges to MST.

Merge the trees that have become connected.

return MST

Boru̇vka’s algorithm has a greedier approach to adding edges to the minimum

spanning tree. We add a greedier approach to deleting edges which are not in the

minimum spanning tree. After the trees have been merged, a given tree may have

multiple edges connecting it to another tree. Only one of these edges, namely the one

with lowest weight, could possibly be in the minimum spanning tree. We may delete

the rest so that we do not have to examine them in subsequent steps. We outline this

greedier algorithm below.

greedier( graph ):

MST = ∅

forest = graph.vertices

while forest has more than one tree:

For each tree, find the smallest edge connecting it to the rest of the graph.

Add all of these smallest edges to MST.

Merge the trees that have become connected.

Where multiple edges connect trees, remove all but the smallest edge.
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return MST

At each step of the algorithm, both the number of trees and the number of edges

decreases. We number the steps starting with k = 0. At the kth step there are no more

than V 2−k trees. By only counting the edges that are removed from consideration by

adding them to the minimum spanning tree, we see that there can be no more than

E−V (1−2−k) edges. A graph with n vertices can have no more than n(n−1)/2 edges.

Thus we see that at the kth step there can also be no more than V 2−k(V 2−k − 1)/2

edges. We use these two bounds to obtain the computational complexity for the

greedier algorithm.

O

(
log V∑
k=0

(
V

2k
+ min

(
E − V (1− 2−k),

V

2k+1

(
V

2k
− 1

))))

We can simplify this expression by bounding the latter term in the minimum function.

O

(
V +

log V∑
k=0

min

(
E − V (1− 2−k),

V 2

22k+1

))

Of the two terms in the minimum function, the former decreases slowly while the

latter decreases geometrically. We bound the step at which the latter expression is

the smaller.

E − V =
V 2

22k+1

k =
1

2

(
log

V 2

E − V
− 1

)

Once the problem size starts decreasing geometrically, all of the subsequent steps

cost no more than the current step. It takes at most O(log V 2/(E−V )) steps for the

number of edges to decrease geometrically. During these steps, there are O(E) edges.

Thus the computational complexity of the greedier algorithm is

O
(
E log

V 2

E − V

)
.
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6.3 Adjacent-Diagonal Difference Schemes

The adjacent-diagonal difference schemes we developed for static Hamilton-Jacobi

equations in Section 5.5 may be applicable to other classes of equations. Certainly

they should suitable for time dependent Hamilton-Jacobi equations:

ut +H(x, t, u,Du) = 0.

For these, one uses the same upwind, difference schemes for the spatial derivatives as

for static Hamilton-Jacobi equations. Based on our analysis of the static problem, we

expect that using adjacent-diagonal schemes for the time dependent problem would

also yield modest reductions in the error.
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