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Abstract

We present a novel methodology for incompressible multi-phase flow simulations in which the fluid indicator is a

local signed distance (level set) function, and front-tracking is used to evaluate accurately geometric interfacial quan-

tities and forces. Employing ideas from Computational Geometry, we propose a procedure in which the level set function

is obtained at optimal computational cost without having to solve the level set equation and its associated re-initiali-

zation. This new approach is robust and yields an accurate and sharp definition of the distinct bulk phases at all times,

irrespective of the geometric complexity of the interfaces. We illustrate the proposed methodology with an example of

surface tension-mediated Kelvin–Helmholtz instability.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

One important problem in multi-phase flow methods is how to update the fluid material properties (vis-

cosity and density) which might have large discontinuity jumps across the interfaces between different flu-

ids. Since the material properties are constant in each of the bulk phases and the interface motion is limited

by the CFL condition to less than a mesh size in each time step, it is computationally appealing to update
these quantities only in a vicinity of the interface.
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Several approaches have been proposed in the literature to address this problem. In front-tracking

methods, the simplest procedure would be to sweep the discrete interface element-wise and identify

on which side of each element (line segment) the Eulerian grid points next to it appear. However, this

straightforward ‘‘local’’ procedure, employed for example by Udaykumar et al. [1], yields incorrect re-

sults when two interfaces or two disparate segments of the same interface lie too close to each other
[2,3]. To prevent this problem, a more ‘‘global’’ approach, where the whole interface is examined for

each Eulerian grid point, must be used. Unverdi and Tryggvason [2] propose a fluid indicator of this

type which is cleverly constructed as the solution of a Poisson equation. This equation incorporates

the global properties of the interface and can be fast and efficiently solved for typical rectangular do-

mains. However, it must be solved on the entire computational domain and does not take advantage

of the fact that the material quantities only change in a vicinity of the interface. Moreover, as reported

by Tryggvason et al. [3], this procedure produces oscillations near the fluid interface and inaccuracies

away from it.
In the level set method approach [4], the interface is implicitly given (‘‘captured’’) by the zero level set of

a function initialized as the signed distance to the fluid interface. This continuous level set function also

serves as a natural fluid indicator for multi-phase incompressible flows and can be updated easily via a sim-

ple advection equation. Typically, this equation is solved on the entire domain, although there have been

important advances in the design of local level set methods [5,6]. However, it is well known that the level set

function can be quickly distorted by the flow and a re-initialization (re-distancing) procedure is needed at

every time-step to keep it as a signed distance function around the interface [7]. Another front-capturing

approach is the volume-of-fluid method (VOF), in which the interface is reconstructed from the dynami-
cally advected volume fraction, a fluid indicator itself. Some recent implementations yield good accuracy

and conservation of mass properties [8]. VOF has also been combined with interface tracking giving rise

to ‘‘hybrid’’ methods to obtain this fluid indicator in a vicinity of the interface as proposed by Popinet

and Zaleski [9], and Aulisa et al. [10].

Here, we start from yet a different hybrid setting [11] in which the level set function serves to update the

fluid material properties and front-tracking (immersed boundary method [12]) couples the fluid interface to

the Eulerian domain. We replace the standard procedures for updating the level set function with a fast

algorithm from Computational Geometry [13]. The resulting new methodology is robust, takes advantage
of the local nature of the problem, and is also computationally optimal (linear in the number of Lagrangian

markers).
2. Mathematical formulation

To present the new approach, let us consider a single interface separating two incompressible fluids of

constant but possibly different density and viscosity and in the presence of (possibly non-uniform) surface
tension. The dynamics of this system can be modeled by:
qð/Þðut þ u � ruÞ ¼ �rp þr � lð/ÞðruþruTÞ þ qð/Þgþ f; ð1Þ

fðx; tÞ ¼
Z

o

oa
ðT t̂Þdðx� Xða; tÞÞda; ð2Þ

r � u ¼ 0; ð3Þ

Xtða; tÞ ¼
Z
X
uðxÞdðx� Xða; tÞÞdx; ð4Þ
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where / is a fluid indicator (e.g., / > 0 for one of the fluids and / < 0 for the other). Here, u, p, and g are

the velocity field, the pressure, and the gravity acceleration, respectively. T is the surface tension coefficient

and t̂ is a unit tangent vector to the interface. Note that the interfacial or immersed boundary force f is

obtained from the explicit Lagrangian representation of the immersed boundary X(a,t), where a is a

Lagrangian parameter. The use of the separately tracked interface makes possible a more accurate compu-
tation of interfacial quantities, allowing for a better resolution of small scale interfacial phenomena.

Given /, the material quantities are obtained by the relations:
qð/Þ ¼ q1 þ ðq2 � q1ÞHð/Þ; ð5Þ

lð/Þ ¼ l1 þ ðl2 � l1ÞHð/Þ; ð6Þ

where q1, q2 and l1, l2 are the constant densities and viscosities, respectively, and H(/) is the Heaviside

function defined by
Hð/Þ ¼
0 if / < 0;

1 if / P 0:

�
ð7Þ
3. Fast computation of the fluid indicator

Let the interface C be represented by a non-self-intersecting, piecewise linear curve. We define / as the

signed distance function only in Tc, a narrow band centered at C and of width 2c > 0. Outside this band, /
is continuously defined to be ±c, that is
/ðxÞ ¼
�c if dðxÞ < �c;
dðxÞ if j dðxÞ j6 þc;
þc if dðxÞ > þc;

8><
>: ð8Þ
where the signed distance function d(x) is the Euclidean distance from the given point x to the fluid inter-

face C for which a sign is chosen according to the direction of the normal.

To keep / as a local signed distance function around C at all times, we employ a fast algorithm to com-

pute the Closest Point Transform (CPT) due to Mauch [13]. The CPT finds the closest point on C and deter-

mines the Euclidean distance to C for all the Eulerian grid points within a specified distance � > 0 from C.
Since C is a piecewise linear curve, the closest point n on C to a given point x, either lies on one of the

‘‘edges’’ (links) or at one of the ‘‘vertices’’ (immersed boundary points). If n lies on a edge, the vector from n

to x is orthogonal to the edge. Thus, the set of closest points to a given edge must lie within a strip defined
by the edge itself and by its normal vector. In particular, the set of closest points within a specified distance
Fig. 1. Polygon P: set of points within distance � to C for which the closest point on C lies on the edge Vi! Vi + 1.
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� > 0 to a given edge is given by the polygon P seen in Fig. 1. When n lies on a vertex, the vector from n to x

must lie between the normal vectors to the two adjacent edges at the vertex. Thus, the closest points to a

vertex must lie in a wedge. If the outside (inside) angle formed by the two adjacent edges is less then p then

there are no points of positive (negative) distance from the vertex. The set of closest points, within a spec-

ified distance � > 0, is contained by polygons P like those shown in Fig. 2. The vertex opposite to Vi in Fig.
2(a) is determined by taking the intersection between the lines which are perpendicular to the edges inter-

secting at Vi (similarly, at Vi+1 in Fig. 2(b)). Note that, given � such that 0 < c < �, the union of all polygons

constructed as above will contain the band Tc.

From the previous considerations, a simple algorithm for updating / in a neighborhood of Tc at every

time step can be devised: Simply put, after updating the location of C, we flag all Eulerian grid points xij in

the union of all polygons (by setting d(xij) = +1) in a first pass. Then, in a second pass, we compute the

CPT for all such points xij, and simultaneously apply the cutoff given by (8). If we let E and V be, respec-

tively, the sets of all edges and of all vertices composing C then, for each element q in the union E [ V, this
algorithm can be written in pseudo-code as

Algorithm 1. Fast computation of the fluid indicator algorithm

for step = 1 to 2 do
for each q 2 E [ V do
Fig. 2.

[(a) or
P polygon containing closest points within distance � to q

G Eulerian grid points inside polygon P

for each point xij2G do

if step = 1 then dij +1 end if

if step = 2 then
Polygons co

(b), respecti
d signed distance from xij to q

if jd j < jdijj then
ntain

vely].
dij d

/ij sign(dij)*min{jdijj,c}

end if
end if

end for

end for

end for
ing the set of points within distance � to C for which the closest point on C lies on either the vertex Vi or Vi + 1
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We emphasize that Algorithm 1 is executed at every time step, after the interface position has been up-

dated. Note also that at t = 0, we must have a fluid indicator function / satisfying (8) so that only a local

correction is needed subsequently. This initial / can be obtained by computing at t = 0 the signed distance

at every point in the Eulerian grid and then by applying the cutoff to it.

To determine G, the set of Eulerian grid points inside P, we start by finding a bounding box

around P, that is, the smallest possible rectangle aligned with the coordinate axes containing P, whose

vertices are grid points. We then proceed by checking whether or not each Eulerian point in the

bounding box is interior to the polygon by applying the Point Containment Algorithm described in

Appendix A.

Finally, we observe that Algorithm 1 has linear computational complexity in the number of interfacial

markers and, since it takes into account the full extent of the free boundary to compute the signed distance,

it correctly handles situations when two disparate interface segments lie too close to each other, such as in

the near merging or in the near self-intersection cases.
4. Numerical scheme

We illustrate the proposed methodology by solving (1)–(4) with an example of a surface tension medi-

ated Kelvin–Helmholtz instability problem when the viscosity is constant and the gravity effects are

neglected. Assuming that Dx = Dy = h for simplicity, we employ on a uniform MAC grid a variable-density

variant of the predictor–corrector scheme introduced in [14], given by
qnþ1
2
;m�1 ¼ q1 þ ðq2 � q1ÞHð/nþ1

2
;m�1Þ; ð9Þ

u�;m � un

Dt
þGpnþ

1
2
;m�1

qnþ1
2
;m�1

¼ l

qnþ1
2
;m�1

L
u�;m þ un

2

� �
� ½ðu � rÞu�nþ

1
2
;m�1 þ fnþ

1
2
;m�1

qnþ1
2
;m�1

; ð10Þ

unþ1;m � un

Dt
þ Gpnþ

1
2
;m

qnþ1
2
;m�1
¼ u�;m � un

Dt
þGpnþ

1
2
;m�1

qnþ1
2
;m�1

; ð11Þ

D � unþ1;m ¼ 0; ð12Þ

Xnþ1;m � Xn

Dt
¼ h2

X
x

Unþ1;m þUn

2

� �
; ð13Þ

/nþ1;m¼: /ðXnþ1;mÞ; ð14Þ

where /nþ1

2
;k¼: 1

2
½/ðXnþ1;kÞ þ /ðXnÞ� with each term being obtained by application of Algorithm 1, and the

velocities by
Unþ1;m¼: unþ1;mdhðx� Xnþ1;m�1Þ þ Unþ1;m
A t̂

nþ1;m�1
: ð15Þ
In (15), UA is a tangential velocity which is conveniently selected in order to dynamically control the fluid

interface mesh spacing, and t̂ is the tangent vector which is given by
t̂
nþ1;m�1 ¼ DDaX

nþ1;m�1

kDDaX
nþ1;m�1k

; ð16Þ
where Da is the mesh spacing in the parametrizing variable and DDa is the centered difference operator

in a.
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The interface position is approximated by a piecewise linear representation, and the Dirac d function is

approximated by a mollified version dh. There are many possible choices for this function. Here, we choose

Peskin�s delta [12],
dhðxi;jÞ ¼ dhðxiÞdhðyjÞ; ð17Þ
where
dhðzÞ ¼
0:25½1þ cosðP

2
z=hÞ�=h for jzj < 2h;

0 for jzjP 2h:

�
ð18Þ
This choice for dh(x) provides good regularization properties around the interface and it is motivated by

a set of compatibility properties described by Peskin [12].

The force in (10) is approximated by fnþ
1
2
;m�1¼: 1

2
½fnþ1;m�1 þ fn�. Since the flow is assumed to take place in a

channel whose walls move in opposite directions, this force, besides the surface tension component given by

(2), has another component originating at the walls. The contribution coming from the surface tension is
computed by Da

P
kTDDa t̂kdhðx� XkÞ. We refer the reader to [14] for detailed discussions on the aspects of

the numerical scheme and on the mathematical modeling not covered here.

We have the predictor step when m = 1 and the corrector step when m = 2. This scheme is formally sec-

ond-order for smooth solutions but in the presence of singular forces, it would be only first-order accurate

near the immersed boundaries. Although the flow solver is an important part in the overall method, note

that the proposed methodology of this work can be implemented with any other Navier–Stokes solver.

We employ the diffused interface setting of the immersed boundary method to compute the interfacial

forces which are smeared out by employing a delta function approximation. However, the same ideas could
also be applied in a sharp interface approach. For example, if the viscosity is continuous, the recent im-

mersed interface method [15] can easily be implemented. It would only require a local modification to

the right hand side of the Poisson equation for the pressure and to determine the fluid velocity on the inter-

face by simple interpolation. Discontinuous viscosity is also possible along the lines of, for example, the

ghost fluid method [16].

Finally, we note that, by employing the Heaviside function (7), the density is treated as a discontinuous

function which, in addition to the singular forces, lowers the accuracy near the immersed boundaries.
5. Numerical example: Kelvin–Helmholtz instability

We apply the proposed methodology to compute the dynamics of a sheared interface between two

incompressible fluids which is subjected to surface tension. The domain is a channel with periodic boundary

conditions in the stream-wise direction and no-slip boundary conditions on the bounding walls.

The flow can be characterized by the ratios of the constant densities and viscosities
n ¼ q2

q1

¼ 0:5; g ¼ l2

l1

¼ 1:0; ð19Þ
where the subscripts 1 (2) corresponds to the fluid below (above) the interface, and by a Reynolds number

Re and a Weber number We associated to one of the fluids
Re ¼ q1kUc

l1

¼ 5000; We ¼ q1kU
2
c

T
¼ 400; ð20Þ
where k and Uc are characteristic length and velocity, respectively and T is the surface tension. We define

the length scale k as the periodicity length of the channel and the velocity scale Uc as the difference between
the horizontal velocities at the walls.



H.D. Ceniceros, A.M. Roma / Journal of Computational Physics 205 (2005) 391–400 397
The computational domain is XC = [0,1] · [�1,1]. The rigid walls are placed at y = ±1.00 « 0.125 and

move in opposite directions at constant speeds «0.500, respectively.

Initially, the fluid interface is given in parametric form by
Table

L2 erro

n

kun�2n
kun�2n

Fig. 3.

Mass v
X0ðaÞ ¼ ðaþ 0:01 sin 2pa;�0:01 sin 2paÞ; 0 6 a 6 1: ð21Þ

We obtain the initial velocity (u0,v0) from a delta supported vorticity with unit strength
x0ðx; yÞ ¼ dh y þ 0:01 sin 2pðxþ yÞð Þ; ðx; yÞ 2 XC; ð22Þ

where dh is given by (18). With this vorticity, we solve the Poisson equation
Dw ¼ �x0 ð23Þ

in Xc with periodic boundary conditions in the stream-wise direction and Dirichlet homogeneous condi-

tions in the normal-wall direction. The initial velocity is then given by
u0ðxÞ ¼ þ
ow
oy
ðxÞ; v0ðxÞ ¼ �

ow
ox
ðxÞ: ð24Þ
To demonstrate the numerical convergence of the overall predictor–corrector scheme (9)–(14), we com-

pute the solution up to t = 3.00 on three different uniform grids: 128 · 256, 256 · 512, and 512 · 1024. In

each case, the time step is chosen respecting the first-order CFL condition. The number of markers em-

ployed to define the interface in each run is variable and dynamically controlled in a manner to ensure that

we have the distance between two consecutive markers, Ds, satisfying Dx/2 6 Ds 6 Dx.
We approximate the L2 errors in two sub-domains, X1 = [0,1] · [�0.35,0.35] and X2 = [0,1] ·

([�0.65,�0. 45] [ [0.45,0.65]), by averaging the finer grid solution onto the coarser one. These estimates

are used to compute the rates of convergence, given in Table 1.

The results indicate that in a vicinity of the fluid interface (on X1) the method performs near or at first-

order accuracy, an inheritance from the immersed boundary method. Away from any immersed boundaries

(on X2), where the flow has more regularity, the performance goes up to or near to its formal second-order

accuracy. Fig. 3, on the left, shows the fluid interface on a 256 · 512 and on a 512 · 1024 resolutions at time

t = 3.00 (dashed and solid lines, respectively). The small difference between the interface profiles provides
1

r approximations and convergence rates in the strips X1 and X2

128 256 Rate

� u2n�4nk2;X1
1.0523 · 10�2 6.0621 · 10�3 0.79

� u2n�4nk2;X2
1.6971 · 10�4 5.4873 · 10�5 1.63
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Left: Interface profiles at t = 3.00 for the 256 · 512 and the 512 · 1024 resolutions (dashed and solid lines, respectively). Right:

ariation of the bottom fluid relative to its initial mass (resolution 512 · 1024).



Fig. 4. Fluid indicator and vorticity (on the left and on the right of each plot, respectively) on a 512 · 1024 grid at different times.

We = 400, Re = 5000, density ratio n = 0.50, viscosity ratio g = 1.0.
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evidence that the flow on 512 · 1024 is well resolved. On the right, Fig. 3 shows the relative change of the

area covered by the lower fluid, (A(t) � A0)/A0, where A0 is the initial area. Note that, for the 512 · 1024

resolution, it implies that mass is conserved with a maximum relative change less than 2.5 · 10�3 %.

Fig. 4 depicts the flow evolution in time. On the left of each plot, we have the fluid indicator / and, on its

rigth, the vorticity, both given as flooded contour plots. Small, asymmetric fluid fingers develop at early

times (t = 1.03) and these subsequently roll up. The rolled-up finger corresponding to the heavier phase (dark

shading) is much thinner than that of the lighter phase. In each time step, the fluid indicator function / is
updated only locally in a vicinity Tc of the interface whose radius c ¼ 2

ffiffiffi
2
p

Dx. By construction, / is always

continuous and specifies sharply the material properties of the two bulk phases. The vorticity which initially

is solely concentrated around the fluid interface subsequently diffuses into the bulk phases. At later times

(t = 1.76 and t = 3.00), large amounts vorticity concentrate near the points of highest interfacial curvature.
6. Concluding remarks

We proposed a method for incompressible multi-phase flow in which the fluid indicator is a local signed

distance function (level set) while front-tracking is used to evaluate accurately geometric interfacial quan-

tities and forces. The main contribution of the present work is the application of a novel technique from
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Computational Geometry [13] to update efficiently the signed distance to a piecewise linear approximation of

the fluid interface. At each time step, the fluid indicator (hence the fluid material properties) is updated only

locally, in a thin band surrounding the interface, at an optimal computational cost O(Nb), where Nb is the

number of interface markers. The proposed methodology is robust and relatively simple to implement,

allowing to work with sharp (discontinuous) material quantities. This approach avoids entirely solving
the level set equation and its associated re-initialization.

We emphasize that the ideas presented here can be implemented with any Navier–Stokes solver derived

from similar mathematical formulations, and be efficiently extended to 3D, as long as triangular meshes are

employed in the discretization of the fluid interface [13]. As a future work, we envisage the possibility of

employing other elementary techniques from Computational Geometry in the simulation of fluid interfaces

(such as determining whether or not a marker chain will self intersect) for dealing with, for example,

changes in the interface topology (e.g., merging, pinching-off and reconnection), which are not currently

handled by our present implementation.
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Appendix A. The point containment algorithm

Given an oriented line segment from Vi = (xi,yi) to Vi+1 = (xi+1,yi+1) and a point P = (xp,yp), the number
cz ¼ ðyp � yiÞðxiþ1 � xiÞ � ðxp � xiÞðyiþ1 � yiÞ ðA:1Þ
is the component in the z-direction of the cross product (Vi+1 � Vi) · (P � Vi). If the result is positive, P is to

the left of the line segment, if it is negative thenP is to its right, andP is on the line segment if the result is zero.
Assuming that the four vertices of our polygons were ordered in the counterclockwise direction, we use

the idea above in Algorithm 2.

Algorithm 2. Point containment algorithm (left-on-right strategy)

inside false

if isleft(P,V1,V2) then

if isleft(P,V2,V3) then
if isleft(P,V3,V4) then

if isleft(P,V4,V1) then
inside true
end if
end if

end if

end if

The logical function ‘‘isleft(P,Q,R)’’ computes (A.1), returning true if P is to the left side of the oriented line

segment from Q to R, or false otherwise.
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Note that the order in which the polygon edges are tested affects the speed of Algorithm 2 The polygons

employed by Algorithm 1 usually have aspect ratio approximately 1:8 (they are thin and long, roughly

0.5Dx · 4Dx). Since they are seldom aligned with the coordinate axes, their bounding boxes are relatively

big and the majority of the Eulerian grid points will lie outside the polygons. In this situation, we greatly

benefit by looking for an early exit of the test due to the point being outside the polygon. This can be
accomplished if the edges are sorted according to their size (by construction). By testing the biggest edges

first (they cut off the most area of the bounding box), our numerical experiments indicate that the compu-

tational cost of classifying a grid point inside the bounding box (interior/exterior to the polygon) is less than

that of four multiplications in the average.
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