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Resumo

Willian Wang. Model-based meta-learning in neural networks. Monografia (Ba-

charelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,

2024.

Este projeto investiga algoritmos de meta-aprendizagem baseados em modelos, examinando seus fun-

damentos teóricos e complexidades arquiteturais. Nós fornecemos uma visão geral do cenário da meta-

aprendizagem, delineando as várias categorias de algoritmos. Nossa análise então se concentra em métodos

baseados em modelos, explorando especificamente Processos Neurais Condicionais (CNPs), Redes Neurais

Aumentadas por Memória (MANNs), Meta-Aprendizes Atencionais Neurais Simples (SNAILs) e Meta Redes.

Para cada método, discutimos as ideias principais e detalhes de implementação, fazendo observações a

partir do trabalho existente. Finalmente, exploramos brevemente conceitos mais experimentais, como

redes automodificáveis e inteligência coletiva, examinando seu valor potencial para pesquisas futuras em

meta-aprendizagem.

Palavras-chave: aprendizagem profunda. redes neurais. meta-aprendizagem.



Abstract

Willian Wang. Model-based meta-learning in neural networks. Capstone Project

Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São

Paulo, 2024.

This project investigates model-based meta-learning algorithms, examining their theoretical underpin-

nings and architectural complexities. We provide a comprehensive overview of the meta-learning landscape,

outlining the various categories of algorithms. Our analysis then focuses on model-based methods, specifically

exploring Conditional Neural Processes (CNPs), Memory-Augmented Neural Networks (MANNs), Simple

Neural Attentive Meta-Learners (SNAILs), and Meta Networks. For each method, we discuss the core ideas

and implementation details, drawing observations from the existing work. Finally, we briefly explore more

experimental concepts like self-modifying networks and collective intelligence, examining their potential

value for future research in meta-learning.

Keywords: deep learning. neural networks. meta-learning.
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Introduction

Neural networks are typically constructed by first defining their architecture and
then training them from scratch using large datasets. This training process relies on
backpropagation, where the network gradually adjusts its parameters to become proficient
at a specific task. Although this approach has been successful in many applications, it
struggles in scenarios where training data is scarce or where the network must quickly
adapt to new tasks beyond the initial training dataset. Meta-learning addresses these
limitations by distilling knowledge from prior training experiences, aiming to develop
networks that demonstrate superior learning performance on future tasks.

The task distribution view of the meta-learning problem can be formalized as follows.
Let  denote a task sampled from a task distribution 𝑝( ). Each task  consists of a
dataset  divided into a training set train and a test set test. The goal of meta-learning
is to find a set of parameters 𝜃 that minimize the expected loss over the test set test

after training using train for a new task sampled from the task distribution. Formally,
the objective can be expressed as:

𝜃
∗
= argmin

𝜃

𝔼 ∼𝑝( )[(test, 𝑓𝜃(train))] (1)

where 𝑓𝜃 represents the model parameterized by 𝜃 that is trained using train.

Meta-learning, often referred to as "learning to learn," focuses on developing models
that can effectively learn from limited data and rapidly adapt to new tasks. The field
generally categorizes approaches into three main categories: metric-based, optimization-
based, and model-based techniques.

This study focuses on exploring the core concepts of model-based meta-learning
algorithms. While specific benchmarks are not the primary concern, gaining a thorough
understanding of the mechanisms, advantages, and limitations of these algorithms is
essential. This includes examining how they leverage model architectures to facilitate
rapid learning and adaptation.
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Chapter 1

Preliminaries

1.1 General structure

A distinctive aspect of meta-learning is the structure of its training process. Instead
of training on a single task, the network is exposed to a distribution of tasks. Each task
can be viewed as analogous to the input-output data pairs in typical supervised learning,
and is therefore divided into training and testing sets. The training set tasks are used to
update the network parameters, while the testing set serves to evaluate the network’s
performance after learning from the training set.

Within each task, the data is further divided into the support set and the query set.
The model learns from the support set and makes predictions on the query set, similar to a
typical supervised learning problem. However, the amount of data in each task’s support
set is usually very small, making the learning process more challenging. This scarcity
of data is a defining characteristic of meta-learning, pushing the model to generalize
effectively from limited examples.

The training process can be abstractedly separated into two nested loops: the outer
loop and the inner loop. The outer loop optimizes the model’s parameters across tasks,
guiding the general learning direction. The inner loop fine-tunes the model’s parameters
on individual tasks using the support set. While the outer loop might seem similar to
hyperparameter optimization, the process is considerably more complex due to the multi-
task nature and nested structure of the problem.

1.2 Categories of meta-learning algorithms

To explore model-based meta-learning, it is essential to understand the broader land-
scape of meta-learning algorithms. Although these categories are not mutually exclusive,
and more detailed taxonomies have been proposed (Hospedales et al., 2022), this division
offers enough flexibility to encompass the studied algorithms.
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1.2.1 Metric-based approaches
Metric-based approaches, also known as non-parametric algorithms, aim to learn a

metric space where the distance between data points correlates with their label similarity.
These methods make predictions by directly comparing test data points with training
examples in the learned metric space.

Prototypical networks (Snell et al., 2017) are a popular example of metric-based algo-
rithms. The algorithm works very similarly to the k-nearest neighbors (KNN) algorithm,
but instead of storing all training examples, it computes a prototype for each class by
averaging the embeddings of the support set examples belonging to that class. During
inference, the algorithm computes the distance between the query point and the prototypes
of each class, assigning the query point to the class with the closest prototype. Figure
1.1 illustrates this process.

Figure 1.1: Represention of inference using the prototypical network, a metric-based algorithm that

computes the distance between the query point and the prototypes of each class. Image source: Snell

et al., 2017.

A popular set of algorithms often considered outside the scope of meta-learning
that have a lot of similarities with metric-based approaches are the contrastive learning
algorithms (Radford et al., 2021), used frequently in self-supervised learning with images.
The idea of employing data augmentation and comparing augmented versions of the same
image to learn a metric space can be seen as a form of metric-based learning, as exemplified
by the SimCLR algorithm (Chen et al., 2020).

While these approaches are computationally efficient, they often require domain
expertise for effective data augmentation and may struggle in scenarios where the metric
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space is not well-defined or when the underlying data manifold is complex. Importantly,
some of the ideas from this category, particularly the concept of learning an embedding
space, are also present in model-based approaches. This embedding space can be seen as a
form of memory representation, which is a common theme in model-based approaches.

1.2.2 Optimization-based approaches

Optimization-based techniques treat the inner-loop update process itself as a learnable
function. The goal is to find a set of initial parameters that enable the network to quickly
adapt to new tasks with minimal training steps. A prominent example is Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017), which trains networks to find initialization
parameters that enable rapid adaptation to new tasks with only a few gradient steps.
Figure 1.2 illustrates the MAML algorithm.

Figure 1.2: Represention of the model-agnostic meta-learning (MAML) algorithm, optimizing 𝜃 so it

can be further trained on new tasks with minimal gradient steps. Image source: Finn et al., 2017.

One of the main advantages of optimization-based approaches is their flexibility to
be used in different learning scenarios beyond supervised learning. For instance, MAML
has been successfully applied to reinforcement learning too. One of the main limitations
of these approaches is the need for second-order optimization, which, although it can be
simplified or even avoided, typically results in increased computational cost and complexity.

While these approaches offer considerable flexibility and can be applied to diverse prob-
lems, they typically involve complex second-order optimizations and are computationally
intensive. Later work, such as Reptile (Nichol et al., 2018), has attempted to decrease the
computational cost of these algorithms by employing approximations or simplifications to
avoid explicit second-order optimization. However, since this class of algorithms usually
does not have a direct intersection with the model-based approaches that are the focus
of this study, it will not be covered in further detail.
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1.2.3 Model-based approaches
Model-based approaches, also called black-box adaptation algorithms, attempt to

directly encode the learning procedure within the model architecture. This often leads
to more complex neural network architectures and can sometimes make them less in-
terpretable.

These algorithms are usually easier to classify by their differences from the other two
categories than by a common characteristic. However, some of the most common themes
in this category are the use of memory modules and networks that are partially or fully
parameterized by other networks.

Unlike the other two categories, model-based meta-learning lacks widely adopted
"mainstream" techniques. Despite this, it encompasses some of the most radical and
innovative ideas in the field. This study aims to review significant algorithms within this
category and analyze their underlying mechanisms, advantages, and limitations.

1.3 Dataset
A widely adopted benchmark for meta-learning research is the Omniglot dataset

(Lake et al., 2015), comprising 1623 handwritten characters from 50 different alphabets.
This dataset boasts a large number of alphabets, each containing a diverse set of unique
characters. Each character within each alphabet is represented by 20 handwritten samples,
reflecting the inherent variability in handwriting styles. Commonly, the dataset is used for
few-shot classification tasks, where the model is presented with ’N-way K-shot’ problems.
Here, ’N-way’ refers to the number of classes and ’K-shot’ refers to the number of examples
per class in the support set. Figure 1.3 illustrates a 3-way 2-shot classification task using
the Omniglot dataset.

Figure 1.3: Example of handwritten characters from the Omniglot dataset using in a 3-way 2-shot

classification task. Image source: Finn, 2023.
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In a typical meta-learning experiment, the dataset is split such that a model is meta-
trained on a subset of alphabets and then evaluated on a completely disjoint set of alphabets.
This tests the model’s ability to generalize and learn a common structure across different
alphabets and handwriting styles. The Omniglot dataset is particularly well-suited for
this purpose due to the necessity of generalizing across diverse characters and alphabets
instead of relying on numerous examples of the same character.
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Chapter 2

Conditional Neural Processes

One of the simplest ideas to handle few-shot learning in classification problems is to
use a feedforward network that takes as input all the examples from the support set along
with the input query and outputs the prediction directly. Although this approach is simple,
it may be improved with the use of a more sophisticated architecture.

Garnelo et al., 2018 introduces Conditional Neural Processes (CNPs), which utilize
concepts that resemble the idea of prototypical networks from metric-based approaches.
The core idea is to generate an embedding for each support set that represents the task
context and then use this embedding to improve the prediction of the query set. The
naming makes allusion to the fact that the network used for inference is conditioned
on the data from the support set, which makes sense especially because the paper not
only looks at the classification and regression problems but also at the generative side
with the image completion task.

2.1 Algorithm

The first step is to generate an embedding for each example in the support set using the
same encoder network ℎ using both the input and output data. Then, the network computes
another embedding from these individual embeddings by using a permutation-invariant
function 𝑎. This function, which in this case was a simple mean of all the support set
embedding vectors, is then used as additional input to another network 𝑔 that generates
the final prediction for the query set. The architecture is illustrated in Figure 2.1.

The training process for CNPs is straightforward and similar to the training of ordinary
supervised learning problems. Tasks are sampled from training data and the network
predicts all the query set values given the support set. The loss function is the negative
log-likelihood of the target values in the query set given the predicted values.
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Figure 2.1: Represention of inference using CNP. It’s possible to view this example as 3-shot learning,

predicting the value of three or more inputs from the query set. Image source: Garnelo et al., 2018.

2.2 Results
The results presented in the paper demonstrate that Conditional Neural Processes

(CNPs) achieve competitive performance compared to other contemporary meta-learning
algorithms, such as Memory-Augmented Neural Networks (MANNs), which will be dis-
cussed in the next chapter. Notably, CNPs attained 98.1% accuracy on the 5-way 1-shot
Omniglot dataset.

However, the more significant takeaway is the flexibility of the CNP’s core concept:
using a context embedding as an additional input. This approach can be readily adapted
to more complex neural network architectures, opening up possibilities for solving a
wider range of problems.
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Chapter 3

Memory-Augmented Neural
Networks

Unlike traditional Recurrent Neural Networks (RNNs), such as Long Short-Term Mem-
ory networks (LSTMs), Memory-Augmented Neural Networks (MANNs) feature explicit
external memory modules. These modules can be selectively read from and written to,
allowing the network to learn how to store and retrieve information effectively. The
seminal work by Santoro et al., 2016 outlines the application of MANNs to one-shot
learning problems, demonstrating their ability to rapidly learn new concepts from limited
examples. This chapter provides an overview of the MANN architecture, focusing on the
memory, the controller, and the training process.

3.1 Algorithm

The core architecture of a MANN comprises a recurrent neural network (RNN) that
dynamically interacts with an external memory module. This interaction is mediated by a
memory controller, which acts as the intermediary, orchestrating read and write operations
to the memory. The controller itself can be implemented as a feedforward neural network,
an LSTM, or even another type of RNN. Its primary role is to process incoming input
data and generate read and write operations to the memory module. While the specific
architectural details of the controller are left flexible in the original paper, the behavior
of the memory module is well defined.

The addressing mechanism, which dictates how memory locations are accessed, oper-
ates as follows: the controller generates a key vector 𝐤𝑡 from the input data 𝑥𝑡 , which is
used to compute the cosine similarity 𝐾(𝐤𝑡 , 𝐌𝑡(𝑖)) between the key and each row 𝐌𝑡(𝑖)

of the matrix representing the memory.

For the read operation, the controller generates a read weight vector 𝐰𝑟

𝑡
by applying

a softmax function to the cosine similarities. The read vector 𝐫𝑡 is then computed as the
weighted sum of the memory rows, where the weights are given by the read weight vector:
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𝐾(𝐤𝑡 , 𝐌𝑡(𝑖)) =

𝐤𝑡 ⋅ 𝐌𝑡(𝑖)

‖𝐤𝑡‖ ⋅ ‖𝐌𝑡(𝑖)‖

(3.1)

𝑤
𝑟

𝑡
(𝑖) = softmax(𝐾(𝐤𝑡 , 𝐌𝑡(𝑖))) (3.2)

𝐫𝑡 =

𝑁

∑

𝑖=1

𝑤
𝑟

𝑡
(𝑖)𝐌𝑡(𝑖) (3.3)

The write operation is designed to update the memory content and follows the read
operation. To manage memory updates intelligently, an mechanism called Least Recently
Used Access (LRUA) is employed. The LRUA mechanism aims to either write to the least
recently accessed memory location, effectively replacing outdated information, or to the
most recently used location, potentially updating or refining existing information that
might not be accessed again soon.

To implement this mechanism, the controller keeps track of a "usage vector" 𝐰𝑢

𝑡
, which

represents the usage of each row in the memory. This vector takes into account the read
and write operations from previous time steps by decaying their weights and is updated
at each time step.

The write vector 𝐰𝑤

𝑡
is computed as a convex combination of the least used row and

the last used row 𝐰
𝑙𝑢

𝑡
, which is a binary vector that indicates the least used rows according

to the values of 𝐰𝑢

𝑡
and a fixed parameter 𝑛 that will define number of entries with value

1 at 𝐰𝑙𝑢

𝑡
according to 𝑚(𝐰

𝑢

𝑡
, 𝑛), which is the 𝑛-th smallest value of 𝐰𝑢

𝑡
.

𝐰
𝑢

𝑡
= 𝛾𝐰

𝑢

𝑡−1
+ 𝐰

𝑟

𝑡
+ 𝐰

𝑤

𝑡
(3.4)

𝑤
𝑙𝑢

𝑡
(𝑖) =

{

0 if 𝑤𝑢

𝑡
(𝑖) > 𝑚(𝐰

𝑢

𝑡
, 𝑛)

1 if 𝑤𝑢

𝑡
(𝑖) ≤ 𝑚(𝐰

𝑢

𝑡
, 𝑛)

(3.5)

𝐰
𝑤

𝑡
= 𝜎(𝛼)𝐰

𝑟

𝑡−1
+ (1 − 𝜎(𝛼))𝐰

𝑙𝑢

𝑡−1
(3.6)

𝐌𝑡(𝑖) = 𝐌𝑡−1(𝑖) + 𝑤
𝑤

𝑡
(𝑖)𝐤𝑡 , ∀𝑖 (3.7)

For the meta-learning using a recurrent network, it’s necessary to sequentially pro-
cesses input pairs (𝑥𝑡 , 𝑦𝑡−1) at each time step 𝑡, generating a prediction 𝑦̂𝑡 as output. Each
𝑥𝑡 represents an input sample at the current time step, while 𝑦𝑡−1 is the corresponding
label from the previous time step. This sequential processing allows to predict the label of
the current input and immediately receive the true label to compare with the prediction
in the next time step. Because the network is a recurrent architecture, one important
point of care is to ensure that the input pairs and labels are shuffled at the beginning of
each task to prevent the network from learning the order of the input pairs. This process
is illustrated in Figure 3.1.

For implementation in an 𝑛-shot learning scenario, the input sequence is structured
into 𝑛+1 distinct pairs. The initial pair is constructed as (𝑥support

1
, 0), where 𝑥support

1
signifies

the first support set example and the 0 label serves as an initial placeholder. Subsequent
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Figure 3.1: The image (a) represents the process of shuffling the input order to avoid unwanted bias.

The image (b) represents the interaction of the recurrent network with the external memory module.

Image source: Santoro et al., 2016.

pairs are formed using subsequent support samples and their corresponding ground-truth
labels from the support set. The final pair in this sequence is given by (𝑥

query
, 𝑦

support
𝑛

),
where 𝑥

query denotes the query example to be classified, and 𝑦
support
𝑛

is the label of the
last example in the support set. Finally, the network’s final output, 𝑦̂query, represents the
predicted label for the query example and is the only output used for training, even though
the network generates predictions for all query examples.

The described process is repeated for each task in a batch of tasks and trained using
a loss function that compares the predicted label 𝑦̂query with the true label 𝑦query and
backpropagates the error through the network. The memory itself is always zeroed at
the beginning of each task, ensuring a memory controller that is agnostic to the task at
hand. There are no major differences to a common supervised learning problem in the
outer loop of the training process.

3.2 Results
Although the results of the original MANN paper were impressive compared to previous

techniques like the simpler LSTM and kNN, the architecture has since been surpassed
by most other algorithms mentioned in this work. However, the MANN architecture
served as a crucial baseline for subsequent work in the field. Many later meta-learning
methods, such as MAML and Prototypical Networks, used MANNs as a benchmark for
comparison, demonstrating the impact of the work in establishing a standard for few-shot
learning performance.

One particularly interesting later development is the popularization of the Transformer
architecture, which, when used to train very large models with massive datasets and
compute resources, has demonstrated impressive few-shot learning abilities (Brown et al.,
2020). This capability might be partly attributed to the inherent associative nature of
their attention mechanism, which allows them to quickly relate new inputs to relevant
information stored implicitly within their weights during pre-training (Nichani et al.,
2024; Ramsauer et al., 2021). Although the Transformer architecture is not explicitly
designed for memory management like MANNs, it still shows the importance of memory
mechanisms in few-shot learning tasks.
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Chapter 4

Simple Neural Attentive
Meta-Learner

4.1 Algorithm
The Simple Neural Attentive Meta-Learner (SNAIL), introduced by Mishra et al., 2017,

occupies a middle ground between the recurrent nature of Memory-Augmented Neural
Networks (MANNs) from Chapter 3 and the fixed-size embeddings of Conditional Neural
Processes (CNPs) from Chapter 2. SNAIL strategically combines convolutional layers with
soft attention mechanisms, creating a flexible network adaptable to a wide range of tasks.

SNAIL applies convolution across the temporal dimension of the input data—the
sequence of (𝑥𝑡 , 𝑦𝑡) pairs from the support set. This approach is reminiscent of MANNs
but eliminates the need for a one-step time shift. In MANNs, the time shift is necessary to
prevent the network from "peeking" at future labels during training. Since SNAIL is not
recurrent and does not predict at each step, this is unnecessary. A key argument against
recurrent architectures in this context is their limitation on information flow between
steps. SNAIL employs Temporal Convolution (TC), first introduced in Oord et al., 2016. TC
is a type of causal convolution, meaning it only considers past information, as illustrated
in Figure 4.1. Furthermore, TC leverages exponential dilation rates to expand the receptive
field, allowing it to capture longer-range dependencies.

Figure 4.1: Visualization of a stack of dilated causal convolutional layers. Image source: Oord et al.,

2016.

Although the number of causal convolutional layers needed to encompass the entire
sequence grows logarithmically (𝑂(log 𝑛)) with exponential dilation, the network may
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still struggle with exceptionally long sequences. Here, the soft attention mechanism, as
introduced by Vaswani et al., 2017, offers a valuable solution. Attention excels at capturing
relationships between samples in the support set. However, this comes at the cost of
increased computational complexity, scaling quadratically with the sequence length. Fur-
thermore, attention layers inherently lack positional dependence. While this characteristic
can be advantageous in scenarios like reinforcement learning, where the order of input
data is important, it can be a limitation in other applications, similar to the requirement
of shuffling input pairs in MANNs. The combination of TC layers and attention layers
in SNAIL can be seen in Figure 4.2.

Figure 4.2: Visualization of SNAIL used for both supervised and reinforcement learning. Blocks of TC

layers (orange) are followed by attention layers(green). Image source: Mishra et al., 2017.

4.2 Results
In 5-way 1-shot classification tasks, SNAIL outperforms MANNs significantly (99.07%

vs. 82.8%) and remains competitive with optimization-based methods like MAML (98.7%).
This demonstrates that carefully designed architectural modifications can lead to sub-
stantial performance improvements, without relying on complex optimization techniques
or metric learning.
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Chapter 5

Meta network

Training conventional neural networks is often bottlenecked by gradient descent, an
iterative optimization algorithm that fundamentally requires numerous passes through
the entire dataset to converge, even with variants like stochastic gradient descent. Meta
Networks (MetaNets), introduced by Munkhdalai and Yu, 2017, offer a novel approach
to rapidly adapt network parameters to new tasks. MetaNets leverage concepts similar
to those explored in previous chapters, such as memory and embedding generation, to
achieve this rapid adaptation.

5.1 Algorithm
MetaNets consist of two main components: the base-learner and the meta-learner. The

base-learner is the network that performs the final task prediction, while the meta-learner
generates task-specific parameters (fast weights) for the base-learner. Each network has
two sets of weights in its feedforward layers: slow weights and fast weights. Slow weights
are updated using standard gradient descent, while fast weights are dynamically generated
by another network based on the slow weight’s loss gradients. These two sets can be
run independently, as shown in Figure 5.1, and the fast weights are generated using the
gradient of the loss function with respect to only the slow weights of the same network,
as will be explained later.

The first step is to train the meta-learner. The meta-learner, denoted as 𝑓 , has slow
weights 𝜃 and fast weights 𝜃+. Initially, only the slow weights are used to train an em-
bedding of the inputs, minimizing the cross-entropy loss. During each training step 𝑡,
the loss gradients with respect to the slow weights, ∇𝜃𝐿𝑡 , are fed into an LSTM, denoted
as 𝐹 . The input dimension of this LSTM matches the number of parameters in 𝑓 . The
fast weights 𝜃

+ are generated by the LSTM at the end of the training process and are
not used during training.

After training the meta-learner, the base-learner, denoted as 𝑔 , is trained. It also has
slow weights 𝜙 and fast weights 𝜙+. Similar to the meta-learner, the base-learner is initially
trained using only its slow weights. However, instead of an LSTM, the loss gradients ∇𝜙𝐿𝑡

are directly input into a feedforward neural network 𝐺 to generate fast weights that are
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Figure 5.1: Closer look at how the fast and slow weights are not dependant of each other. The results

from fast weight layers are simply summed to the slow weight layer results. Image source: Munkhdalai

and Yu, 2017.

specific to the input data: 𝜙+

𝑡
= 𝐺(∇𝜙𝐿𝑡). These generated fast weights are then stored in

the memory, using as keys the embedding generated by the recently updated meta-learner
𝑓𝜃(𝑥), since the fast weights are not used during the training process.

Finally, after training both networks on the support set, during the query phase, the
base-learner retrieves the necessary fast weights from memory on the fly. For each input,
the embedding function 𝑓𝜃,𝜃+(𝑥) is used as a query to the memory, employing cosine
similarity as in MANNs. The final prediction is then made using 𝑔𝜙,𝜙+(𝑥), where the fast
weights 𝜙+ are those retrieved from memory. An overview of the process is illustrated
in Figure 5.2.

5.2 Results
Despite the architectural complexity and the need for second-order derivatives to train

the fast weight generating networks, MetaNets achieved state-of-the-art results on the
one-shot 5-way classification task using the Omniglot dataset, as previously described.
They reported an accuracy of 98.95%.
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Figure 5.2: Visualization of the communication between different components of the Metanet. Image

source: Munkhdalai and Yu, 2017.
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Chapter 6

Other Algorithms

This chapter explores research in related fields like lifelong learning, continual learning,
and biologically inspired systems. While these works may not explicitly address meta-
learning, they share conceptual overlaps with the algorithms discussed in previous chapters.
Specifically, many draw inspiration from neuroplasticity and Hebbian learning, offering
potentially valuable insights for enhancing multitask learning through a meta-learning
lens. Although direct comparisons to established meta-learning algorithms are often
absent, the core principles presented in these papers could serve as inspiration for future
research in the field.

6.1 Networks that modify networks

The concept of fast weights was not new from Metanets (chapter 5), and it was actually
explored a few times decades ago (Jurgen Schmidhuber, 1987; Hinton and Plaut, 1987).
More recently, they are best known for their use in Hypernetworks (Ha, Dai, et al., 2016)
and Neural Architecture Search (Ren et al., 2021), both of which are focused on generating
neural networks that are more efficient for a specific task and have their own field of
research. On the other side, there are works that focus on the idea of having networks
that can modify themselves during the training process, one of them being self-referential
neural networks.

Self-referential networks (Kirsch and Jürgen Schmidhuber, 2022) focus on eliminating
the need to train the meta-learning process itself (sort of learning to learn how to learn) and
beyond, by handling the task to the network itself. The idea is to adopt an evolutionary-like
algorithm where the modification is stochastic, and the networks with the highest fitness
scores are selected for the next generation. The authors also discuss the relationship with
memory-based meta-learning, arguing that because the memory influences the future
updates to the network itself, the network can be seen as a self-referential system.
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6.2 Collective Intelligence
Ha and Tang, 2022 reviews multiple areas of research in deep learning that can

incorporate concepts of self-organization, emergent behavior, swarm optimization, and
cellular automata to improve the models’ ability to handle the issues from each of these
areas. One of the mentioned areas is meta-learning, citing some recent works that explore
the idea of having neural networks composed of multiple agents that learn how to interact
with each other in such a way that the network exhibits emergent behaviors that can
mimic the learning process of a typical neural network or even improve it.

One of these works is Sandler et al., 2021, which introduces a kind of generalized
neural network by representing each neuron and synapse as multiple parameters. By
doing so, the typical neural network can be viewed as a special case where the data
passed between each neuron is a two-dimensional vector, one for the activation and the
other for the loss gradient. The interaction rules between the neurons are governed by a
low-dimensional genome, which is trained using evolutionary algorithms.

Another work mentioned is Variable Shared Meta-Learning (VSML) (Kirsch and
Jürgen Schmidhuber, 2021). The authors argue that one bottleneck of current recurrent
neural networks is how the number of parameters of the RNN is on the order of 𝑂(𝑛2),
while the hidden state/activations are on the order of 𝑂(𝑛), which makes the network
prone to overfitting. This complements the argument made with SNAIL (chapter 4) to
drop a recurrent architecture in favor of a convolutional/attention-based one. By using
multiple smart manipulations with the weight matrices to increment their dimensions
while keeping the activations on the same order of magnitude, the authors show a few
possible perspectives to the modified architecture, one of them being a feed-forward
network where every neuron of a layer is represented by the exact same RNN. Figure 6.1
shows a visualization of the inference and training process of VSML.

Figure 6.1: Visualization of the inference and training process of VSML. Image source: Kirsch and

Jürgen Schmidhuber, 2021.

Because these techniques offer very flexible bidirectional communication between the
neurons, backpropagation can be viewed as just a special case of the forward pass, where
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the loss is propagated from the output layer to the input layer. By breaking free from
global update rules from backpropagation, the network can explore different local update
rules for the neurons. This exploration of local update rules for neurons and synapses is
a direct consequence of the idea of Hebbian learning.

Both Sandler et al., 2021 and Kirsch and Jürgen Schmidhuber, 2021 actually show
results indicating that their architectures are able to be trained for MNIST classification
but converging faster than a typical feedforward network. These results suggest that
alternative, biologically inspired architectures might offer advantages for certain learning
tasks and provide inspiration for developing more efficient meta-learning algorithms.
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Chapter 7

Conclusion

This work explored model-based meta-learning algorithms, emphasizing their concep-
tual frameworks and trade-offs. While these approaches often exhibit greater architectural
complexity compared to metric-based or optimization-based counterparts—manifested
through multiple specialized modules like memory networks or attention mechanisms—this
complexity does not inherently preclude strong performance. The analysis of Meta Net-
works demonstrated that sophisticated designs can effectively balance expressiveness with
empirical results, albeit at increased computational costs. Conversely, simpler architectures
like Conditional Neural Processes (CNPs) achieved notable efficiency without sacrificing
capabilities. This suggests that complexity should be contextually justified rather than
universally avoided.

Several algorithms revealed how revisiting classical concepts through modern lenses
can yield innovation. For instance, SNAIL’s replacement of recurrent layers with causal
convolutions and attention mechanisms illustrates how hybridizing past techniques with
contemporary components can address traditional limitations. Furthermore, the work
briefly surveyed more radical ideas like self-modifying networks and networks that can
learn to backpropagate. While computationally expensive, these ideas may still offer
insights as experimental frameworks to aid in the research of new concepts.
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